



# 2021 SEMIANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

Plant Yates – AP-3, A, B, B', and R6 CCR Landfill Newnan, Georgia

August 31, 2021

Alexandra Simpson Staff Geologist

el rul

Geoffrey Gay, P.E. Technical Expert (Eng) / Project Manager

# 2021 SEMIANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

Plant Yates – AP-3, A, B, B', and R6 CCR Landfill, Newnan, Georgia

#### Prepared for:

Georgia Power Company Newnan, Georgia Coweta County

#### Prepared by:

Arcadis U.S., Inc. 2839 Paces Ferry Road Suite 900 Atlanta Georgia 30339 Tel 770 431 8666 Fax 770 435 2666

Date: August 31, 2021

## **SUMMARY**

This summary of the 2021 Semiannual Monitoring and Corrective Action Report provides the status of the groundwater monitoring and corrective action program January through June 2021 at Georgia Power Company's (Georgia Power's) Plant Yates Ash Ponds (AP) AP-3, A, B, B', and the R6 Landfill (the Site). This summary was prepared by Arcadis U.S., Inc. (Arcadis) on behalf of Georgia Power to meet the requirements listed in Part A, Section 6<sup>1</sup> of the United States Environmental Protection Agency (USEPA) Coal Combustion Residual (CCR) Rule (40 Code of Federal Regulations [CFR] 257 Subpart D).

Plant Yates is located at 708 Dyer Road, approximately 8 miles northwest of Newnan and 13 miles southeast of Carrollton in Coweta County, Georgia. Plant Yates originally operated seven coal-fired steam-generating units. Five of the units were retired in 2015 and two units were converted from coal to natural gas. CCR material resulting from power generation has historically been transferred and stored at the Site. The Site is located on the southwestern portion of the Plant Yates property.

Groundwater at the Site is monitored using a monitoring system comprising 19 upgradient and 8 downgradient wells. Routine sampling and reporting began in 2017 after the completion of eight background sampling events. Based on groundwater conditions at the Site, an assessment



Plant Yates and the Site

monitoring program was established on January 14, 2018 at AP-3, B, and B'; in September 2019 for AP-A; and on November 13, 2019 for the R6 Landfill. An assessment of corrective measures (ACM) was initiated on February 12, 2019 for the AP-3, B, and B' units. AP-A was added to the ACM on June 12, 2019, and the R6 CCR Landfill was incorporated on January 31, 2020. During the 2021 first semiannual reporting period, the Site remained in assessment monitoring.

During the first half of the 2021 reporting period, Arcadis conducted two groundwater sampling events: an initial assessment event in February and a semiannual event in March. Groundwater samples were submitted to Pace Analytical Services, LLC, for analysis. Per the CCR Rule, groundwater results for March 2021 data were evaluated in accordance with the certified statistical methods. That evaluation showed statistically significant values of Appendix III<sup>2</sup> and Appendix IV<sup>3</sup> parameters<sup>4</sup> in the wells identified in the following table.

<sup>&</sup>lt;sup>1</sup> 80 Federal Register (FR) 21468, Apr. 17, 2015, as amended at 81 FR 51807, Aug. 5, 2016; 83 FR 36452, July 30, 2018; and 85 FR 53561, Aug. 28, 2020

<sup>&</sup>lt;sup>2</sup> Boron, calcium, chloride, fluoride, pH, sulfate, and total dissolved solids (TDS)

<sup>&</sup>lt;sup>3</sup> Antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, fluoride, lead, lithium, mercury, molybdenum, selenium, thallium, and radium 226 + 228

<sup>&</sup>lt;sup>4</sup> A state statistically significant level SSL-related constituent is determined by comparing the confidence intervals developed to either the constituent's MCL, if available, or the calculated background interwell prediction limit. A federal SSL-related constituent is determined by comparing the confidence intervals developed to either the constituent's MCL, if available, the USEPA RSL, if no MCL is available, or the calculated background interwell prediction limit.

| Appendix III Parameter             | March 2021                                   |  |
|------------------------------------|----------------------------------------------|--|
| Boron                              | YGWC-23S, YGWC-38, YGWC-41, YGWC-42, YGWC-43 |  |
| Calcium                            | YGWC-38, YGWC-42                             |  |
| Chloride                           | YGWC-24SA                                    |  |
| рН                                 | YGWC-41                                      |  |
| Sulfate                            | YGWC-38, YGWC-42, YGWC-43                    |  |
| Total Dissolved Solids             | YGWC-38, YGWC-41, YGWC-42, YGWC-43           |  |
| Appendix IV Parameter <sup>4</sup> | March 2021                                   |  |
| Beryllium                          | Federal and State: YGWC-38                   |  |
| Selenium                           | Federal and State: YGWC-38, PZ-37            |  |

The beryllium SSL at well YGWC-38 is horizontally delineated by downgradient wells PZ-37 and YGWC-23S. Beryllium SSL at well YGWC-38 is vertically delineated by well YAMW-5. The selenium SSL at well YGWC-38 is horizontally delineated by downgradient wells YGWC-23S and YGWC-36A and vertically by the newly installed PZ-37D. Based on review of the Appendix III and Appendix IV statistical results for the groundwater monitoring and corrective action program from January through June 2021, the Site will continue in assessment monitoring. Georgia Power will continue routine groundwater monitoring and reporting for the Site. Reports will be posted to the website and provided to the Georgia Environmental Protection Division (GAEPD) semiannually.

<sup>&</sup>lt;sup>4</sup> A state statistically significant level SSL-related constituent is determined by comparing the confidence intervals developed to either the constituent's MCL, if available, or the calculated background interwell prediction limit. A federal SSL-related constituent is determined by comparing the confidence intervals developed to either the constituent's MCL, if available, the USEPA RSL, if no MCL is available, or the calculated background interwell prediction limit.

# **CONTENTS**

| Acr | onym         | s and Abbreviationsiii                                        |  |  |  |
|-----|--------------|---------------------------------------------------------------|--|--|--|
| Pro | fessio       | nal Certification                                             |  |  |  |
| 1   | Intro        | duction1                                                      |  |  |  |
| 1   | .1           | Background1                                                   |  |  |  |
| 1   | .2           | Regional Geology and Hydrogeologic Setting2                   |  |  |  |
| 1   | .3           | Groundwater Monitoring Well Network and CCR Unit Description2 |  |  |  |
| 2   | Grou         | undwater Monitoring3                                          |  |  |  |
| 2   | .1           | Monitoring Well Installation and Maintenance3                 |  |  |  |
| 2   | .2           | Assessment Monitoring3                                        |  |  |  |
| 2   | .3           | Other Groundwater Sampling4                                   |  |  |  |
| 2   | .4           | Assessment of Corrective Measures4                            |  |  |  |
| 3   | Sam          | pling Methodology and Analysis4                               |  |  |  |
| 3   | .1           | Groundwater Flow Direction, Gradient, and Velocity4           |  |  |  |
| 3   | .2           | Groundwater Sampling5                                         |  |  |  |
| 3   | .3           | Laboratory Analyses                                           |  |  |  |
| 3   | .4           | Data Quality Assurance/Quality Control and Validation6        |  |  |  |
| 4   | Stat         | stical Analysis6                                              |  |  |  |
| 4   | .1           | Statistical Methods7                                          |  |  |  |
|     | 4.1.1        | Appendix III Statistical Methods7                             |  |  |  |
|     | 4.1.2        | Assessment Monitoring Statistical Methods7                    |  |  |  |
| 4   | .2           | Statistical Analysis Results                                  |  |  |  |
|     | 4.2.1        | Appendix III Monitoring Constituents8                         |  |  |  |
|     | 4.2.2        | Appendix IV Assessment Monitoring Constituents9               |  |  |  |
| 5   | Mon          | itoring Program Status9                                       |  |  |  |
| 6   | Con          | clusions and Recommendations9                                 |  |  |  |
| 7   | 7 References |                                                               |  |  |  |

## **TABLES**

- Table 1A. Monitoring Well Network Summary
- Table 1B. Non-Network Well Summary
- Table 2. Groundwater Sampling Plan
- Table 3. Summary of Groundwater Elevations
- Table 4. Groundwater Flow Velocity Calculations March 2021
- Table 5. Summary of Groundwater Monitoring Parameters
- Table 6. Groundwater Analytical Data February and March 2021
- Table 7. Background Levels and Groundwater Protection Standards

# **FIGURES**

- Figure 1. Site Location Map
- Figure 2. Plant Yates CCR Removal Areas
- Figure 3. Well Location Map
- Figure 4. Groundwater Elevation Map February 2021
- Figure 5. Groundwater Elevation Map March 2021

## **APPENDICES**

- A Semiannual Remedy Selection and Design Progress Report
- B Field Sampling Forms (February and March 2021)
- C Well Installation Report
- D Analytical Laboratory Data and Validation Reports (February and March 2021)
- E Statistical Analysis

# **ACRONYMS AND ABBREVIATIONS**

| ACC           | Atlantic Coast Consulting, Inc.                                           |
|---------------|---------------------------------------------------------------------------|
| ACM           | Assessment of Corrective Measures                                         |
| AP            | Plant Yates Ash Pond                                                      |
| Arcadis       | Arcadis U.S., Inc.                                                        |
| CCR           | Coal Combustion Residuals                                                 |
| CCR units     | the combined monitoring systems of AP-3, A, B, and B' and the R6 Landfill |
| CFR           | Code of Federal Regulations                                               |
| GAEPD         | Georgia Environmental Protection Division                                 |
| Georgia Power | Georgia Power Company                                                     |
| GWPS          | Groundwater Protection Standard                                           |
| MCL           | maximum contaminant level                                                 |
| MDL           | method detection limit                                                    |
| mg/L          | milligrams per liter                                                      |
| QA/QC         | quality assurance/quality control                                         |
| SSI           | statistically significant increase                                        |
| SSL           | statistically significant level                                           |
| USEPA         | United States Environmental Protection Agency                             |

# **PROFESSIONAL CERTIFICATION**

This 2021 Semiannual Groundwater Monitoring and Corrective Action Report for the Georgia Power Company Plant Yates AP-3, A, B, B', and R6 CCR Landfill has been prepared in compliance with the United States Environmental Protection Agency Coal Combustion Residual Rule (40 Code of Federal Regulations 257 Subpart D) and the Georgia Environmental Protection Division Rules for Solid Waste Management 391-3-4-.10 by a qualified groundwater scientist or engineer with Arcadis U.S., Inc.

Arcadis U.S., Inc.



J. Geoffrey Gay, P.E. Technical Expert (Eng) Georgia Registration No. PE 27801 8-31-21

Date

# **1** INTRODUCTION

This 2021 Semiannual Groundwater Monitoring and Corrective Action Report describes groundwater monitoring activities conducted at the Georgia Power Company (Georgia Power) Plant Yates Ash Ponds (AP) AP-3, A, B, B', and R6 Landfill (the site) in February and March 2021. This report was prepared in accordance with the United States Environmental Protection Agency (USEPA) Coal Combustion Residuals (CCR) Rule (40 Code of Federal Regulations [CFR] 257 Subpart D) and the Georgia Environmental Protection Division (GAEPD) Rules for Solid Waste Management 391-3-4-.10. Groundwater monitoring requirements for the site are specified by GAEPD Rule 391-3-4-.10(6)(a), which also incorporates the USEPA CCR Rule. For ease of reference, the USEPA CCR Rule is cited within this report.

This report presents the results of February 2021 annual monitoring for Appendix IV parameters of 40 CFR 257, a semiannual monitoring event conducted in March 2021, and activities completed through June 2021 in accordance with Rule 391-3-4-.10(6)(c).

## 1.1 Background

Plant Yates is located at 708 Dyer Road on the east bank of the Chattahoochee River in Coweta County, Georgia, near the Coweta and Carroll County line. The site is approximately 8 miles northwest of the city of Newnan and 13 miles southeast of the city of Carrollton. Plant Yates occupies approximately 2,400 acres. **Figure 1** depicts the site location relative to the surrounding area. Areas where CCR Removal Reports have been submitted to GA EPD are shown in **Figure 2**. Monitoring well and piezometer locations are shown on **Figure 3**.

Two permit application packages were submitted to GAEPD in November 2018: one for AP-3, A, B, and B', and another for the R6 CCR Landfill. Due to the configuration of the units and overall groundwater flow direction, both permits propose combining the monitoring systems of AP-3, A, B, and B' and the R6 Landfill into a single multi-unit monitoring system that meets federal and state monitoring requirements. Although the permit application is still in review, Georgia Power proactively began monitoring the R6 Landfill as part of a combined multi-unit monitoring program. Groundwater monitoring and reporting for the CCR units are performed in accordance with the monitoring requirements presented in §§ 257.90 through 257.95 of the federal CCR Rule and GAEPD Rule 391-3-4-.10(6)(a)-(c).

Assessment monitoring of the groundwater monitoring unit at AP-3, A, B, and B' began according to 40 CFR § 257.95 in January 2018. An Assessment of Corrective Measures (ACM) Report for AP-3, A, B, and B' was submitted in June 2019 per 40 CFR § 257.96 to address a statistically significant level (SSL) of beryllium. The initial groundwater monitoring report for the R6 CCR Landfill was completed on July 31, 2019 (Atlantic Coast Consulting, Inc. [ACC] 2019). Assessment monitoring for the R6 CCR Landfill was initiated on November 13, 2019. The current semiannual remedy selection progress report for the combined groundwater monitoring unit at AP-3, A, B, B', and the R6 Landfill addresses beryllium and selenium SSLs and is included in **Appendix A**.

This 2021 Semiannual Groundwater Monitoring and Corrective Action Report includes combined results for assessment monitoring of AP-3, A, B, B' and the R6 CCR Landfill.

## 1.2 Regional Geology and Hydrogeologic Setting

Plant Yates is located in the Inner Piedmont Physiographic Province of western Georgia, immediately southeast of the Brevard Zone, a regional fault zone that separates the Piedmont from the Blue Ridge. Rock units at Plant Yates are primarily interlayered gneiss and schists. The rocks in the area have been subjected to extensive metamorphism, deformation, and igneous intrusions. Extensive fracture sets are present in the underlying bedrock. Surface expressions of these fractures are observed on topographic maps and aerial photographs of the Plant Yates area (ACC 2020).

A thin layer of soil from 1 to 2 feet thick overlies a thick layer of saprolite. The saprolite, which extends to typical depths of 20 to 40 feet below ground surface, was formed in-place by the physical and chemical weathering of the underlying metamorphic rocks. The saprolite typically consists of clay- and silt-rich soils that grade to sandier soils with depth. A zone of variable thickness (approximately 5 to 20 feet) of transitionally weathered rock typically exists between the saprolite and competent bedrock. The lithology of the transition zone is highly variable and ranges from medium to coarse unconsolidated material to highly fractured and weathered rock fragments. Localized alluvial soils consisting of generally coarser material (silty-sand, clayey silt, and silty clay with well-rounded gravel and cobbles) that have been observed in saprolite may be related to historical river channel migration.

At Plant Yates, groundwater is typically encountered slightly above the saprolite/weathered rock interface. Groundwater flow in the saprolite zone is through interconnected pores and relict textures and fractures. As the rock becomes increasingly competent with depth, groundwater flow occurs mainly through joints and fractures (i.e., secondary porosity). Recharge to the water-bearing zones in fractured bedrock takes place by seepage through the overlying mantle of soil/saprolite or by direct entrance through openings in outcrops and varies with topography. The water table occurs in the saprolite and in the transitionally weathered zone, at least several feet above the top of rock.

Field hydraulic conductivity tests (i.e., slug tests) have been performed in saprolite and weathered bedrock at multiple locations at the Site. The hydraulic conductivity at these locations typically ranges from 10<sup>-3</sup> to 10<sup>-4</sup> centimeters per second, based on multiple rising-head and falling-head slug tests (ACC 2019). This indicates a fairly uniform medium across the saprolite and weathered rock horizon. The hydraulic conductivity values from the field tests fall within a range consistent with that of Piedmont overburden (Newell et al. 1990).

## **1.3 Groundwater Monitoring Well Network and CCR Unit Description**

Pursuant to 40 CFR § 257.91, a multi-unit groundwater monitoring system was installed within the uppermost aquifer at the site. The multi-unit monitoring system is designed to monitor groundwater passing the waste boundary of the CCR units within the uppermost aquifer. Wells are located to monitor upgradient and downgradient conditions based on groundwater flow direction. The compliance monitoring well network is summarized in **Table 1A**. Additionally, a series of piezometers and non-network wells is installed to supplement characterization and groundwater elevation measurements (**Table 1B**).

As is typical of the Piedmont Physiographic Province, there is a degree of connectivity between the saprolite and partially weathered rock units (Harned, D.A., and Daniel, C.C., III 1992). Fractured bedrock may or may not be connected to the overlying units and flow may be controlled by geologic structures present. Based on the site hydrogeology, the monitoring system is designed to monitor groundwater flow

in the saprolite, the transition zone, and the upper bedrock. Wells suffixed with an "S" are installed in saprolite; an "I" indicates partially weathered rock (transition zone), and a "D" indicates upper bedrock. The monitoring well network for the site is depicted on **Figure 3**.

## 2 **GROUNDWATER MONITORING**

Pursuant to 40 CFR § 257.90(e), the following describes monitoring-related activities performed in 2021 and presents the status of the monitoring program. Groundwater sampling was performed in accordance with 40 CFR § 257.93. Samples were collected from each well in the certified monitoring system shown on **Figure 3**.

Groundwater sampling events conducted by Arcadis U.S., Inc. (Arcadis) in February and March 2021 at AP-3, A, B, B', and the R6 CCR Landfill are summarized in **Table 2**. Field sampling logs are provided in **Appendix B**.

## 2.1 Monitoring Well Installation and Maintenance

Deep bedrock piezometer PZ-37D was installed in April 2021 to delineate selenium and monitor the portion of the bedrock aquifer below PZ-37. A Well Installation Report was submitted to GAEPD under a separate cover on June 30, 2021. The PZ-37D analytical data are included in **Appendix D** and discussed in the Semiannual Remedy Selection and Design Progress Report (**Appendix A**). A copy of the Well Installation Report is included in **Appendix C**. Other monitoring well-related activities were limited to visually inspecting well conditions prior to sampling, recording site conditions, and performing exterior maintenance to provide safe access for sampling.

## 2.2 Assessment Monitoring

An assessment monitoring program was initiated on January 14, 2018 at AP-3, B, and B' and in September 2019 for AP-A. A notice of assessment monitoring was placed in the operating record on May 15, 2018. AP-A is an inactive surface impoundment subject to the revised requirements of 40 CFR § 257.100 and was added to the multi-unit system on April 17, 2019. Assessment monitoring was initiated at the R6 CCR Landfill following review of the results of the March 2019 monitoring event. The first semiannual assessment monitoring event for the R6 CCR Landfill occurred in October 2019; a notice of assessment monitoring for the R6 CCR Landfill was placed in the operating record on November 13, 2019. AP-3, A, B, B' and the R6 CCR Landfill currently remain in assessment monitoring.

Monitoring wells at AP-3, A, B, B' and the R6 CCR Landfill were sampled for Appendix IV parameters in February 2021 pursuant to 40 CFR § 257.95(b). In accordance with 40 CFR § 257.95(d), a semiannual assessment monitoring event occurred in March 2021 in which samples were collected and analyzed for Appendix III parameters and Appendix IV parameters detected at concentrations exceeding the laboratory method detection limit (MDL) during the February 2021 event. Groundwater sampling activities completed during the reporting period as part of semiannual assessment monitoring are summarized in **Table 2**.

## 2.3 Other Groundwater Sampling

To further characterize groundwater quality at the site, additional samples were collected from wells YAMW-1 through YAMW-5, PZ-35, and PZ-37 in February and March 2021. To further delineate selenium concentrations vertically near PZ-37, a sample was collected following installation of newly installed well PZ-37D. Well locations are presented on **Figure 3**. Sampling and analysis were performed following the procedures outlined in Section 3. Analytical results of this additional sampling are included in **Table 6** and discussed in the Semiannual Remedy Selection and Design Progress Report included in **Appendix A**.

## 2.4 Assessment of Corrective Measures

Based on assessment monitoring results presented in the 2018 Annual Groundwater and Corrective Action Monitoring Report, a Notice of Assessment of Corrective Measures was placed in the operating record on February 12, 2019 for the AP-3, B, and B' units in accordance with 40 CFR § 257.96. AP-A was added to the multi-unit groundwater monitoring system on April 17, 2019. The Assessment of Corrective Measures Report for AP-3, A, B, and B' was placed in the operating record on June 12, 2019. The first Semiannual Remedy Selection and Design Progress Report was submitted on December 12, 2019 and updated on January 31, 2020. January 31, 2020 is also the date that the R6 CCR Landfill was incorporated into the ACM. **Appendix A** contains the Semiannual Remedy Selection and Design Progress Report.

# **3 SAMPLING METHODOLOGY AND ANALYSIS**

Groundwater monitoring methods used at the site are described in the following sections.

## 3.1 Groundwater Flow Direction, Gradient, and Velocity

Before the February and March 2021 assessment sampling events, static water levels were recorded from piezometers and wells in the well network at AP-3, A, B, B' and the R6 CCR Landfill. Water levels were collected from the monitoring wells and piezometers as noted in **Table 3**.

Saprolite, transition zone, and shallow bedrock groundwater elevation data were used to prepare potentiometric surface elevation contour maps for February and March 2021 (**Figures 4** and **5**, respectively). Groundwater elevations ranged from 732.56 feet (PZ-35) to 801.53 feet (YGWA-39). The groundwater flow direction for the saprolite, transition zone, and shallow bedrock wells is generally toward the west, northeast, and east from the area south of the R6 Landfill ash disposal area, which serves as a topographic high and groundwater recharge area. Groundwater flows west from the eastern portions of the Ash Management Area, AP-3 area, and AP-B' area to the central portion of the site. The groundwater flow direction is consistent with historical patterns and follows the topographic low between the Ash Management Area (AMA) and R6. Deeper bedrock groundwater elevations vary across the site, ranging from 728.60 feet (YGWC-43) to 793.34 feet (YGWC-40). It is interpreted that these variations are attributed to bedrock geologic structural controls, and therefore do not reflect the surficial aquifer potentiometric surface. Based on this interpretation, the deep bedrock potentiometric surface was not used for contouring.

The groundwater flow velocity at Plant Yates was calculated using a derivation of Darcy's Law:

$$v = \frac{k\left(\frac{dh}{dl}\right)}{n_e}$$
where:  
v = groundwater seepage velocity  
k = hydraulic conductivity  
dh/dl = hydraulic gradient  
n\_e = effective porosity

Groundwater flow velocities were calculated for the Site based on hydraulic gradients, average hydraulic conductivity based on previous slug test data, and an estimated effective porosity of 0.20 (based on a review of several sources including Driscoll 1986, USEPA 1989, and Freeze and Cherry 1979). Calculated groundwater flow velocities for February and March 2021 are presented in **Table 4**. The calculated average linear flow velocity for this reporting period is 26 feet per year.

## 3.2 Groundwater Sampling

Groundwater samples were collected using low-flow sampling procedures in accordance with 40 CFR § 257.93(a). Monitoring wells were purged and sampled using a dedicated bladder pump until water quality parameters stabilized. For wells sampled with non-dedicated bladder pumps, the pumps were lowered into the well so that the intake was at the midpoint of the well screen (or as appropriate determined by the water level). All non-disposable equipment was decontaminated before use and between use at well locations.

An AquaTroll 600 (In-Situ<sup>®</sup> field instrument) was used to monitor and record field water quality parameters during well purging. The stabilization criteria for pH and specific conductivity readings, as noted below, were used to verify stabilization prior to sampling. Turbidity was measured using a portable turbidimeter. Groundwater samples were collected when the following stabilization criteria were met for a minimum of three consecutive readings:

- ± 0.1 standard unit for pH;
- ± 5% for specific conductivity; and
- Less than 5 nephelometric turbidity units for turbidity.

Once stabilization was achieved, samples were collected directly into laboratory-supplied containers with preservative (where applicable). The sample containers were immediately placed on ice in an insulated cooler. The samples were submitted to Pace Analytical Services, LLC following chain-of-custody protocol. Stabilization logs for each well are included in **Appendix B**.

### 3.3 Laboratory Analyses

During the February 2021 sampling event, the AP-3, A, B, B', and R6 CCR Landfill wells were sampled for analysis of Appendix IV parameters according to 40 CFR § 257.95(b). Sampling locations per field event are summarized in **Table 2**. **Table 5** provides a summary of the constituents monitored during the events. Groundwater samples collected during the semiannual event in March 2021 were analyzed for Appendix III parameters as well as those Appendix IV parameters detected above the laboratory MDL during the February 2021 event, in accordance with 40 CFR § 257.95(d). Thallium was not detected

above the laboratory MDL during the February 2021 annual assessment event. Therefore, it was not sampled for in March 2021. The methods used for groundwater sample analyses are listed in the analytical laboratory reports included in **Appendix D**.

Analytical data collected during the 2021 sampling events are summarized in **Table 6**. Laboratory analyses were performed by Pace Analytical Services, LLC, which is accredited by the National Environmental Laboratory Accreditation Program and maintains this certification for all parameters analyzed for this project. Laboratory reports and chain-of-custody records for the monitoring events are included in **Appendix D**.

## 3.4 Data Quality Assurance/Quality Control and Validation

During each sampling event, quality assurance/quality control (QA/QC) samples were collected at a rate of one sample per every 10 samples. QA/QC samples included equipment blanks (where non-dedicated equipment was used), field blanks, and duplicate samples. Groundwater quality data in this report were validated in accordance with USEPA guidance (USEPA 2011) and analytical methods. Data validation generally consisted of reviewing sample integrity, holding times, laboratory method blanks, laboratory control samples, matrix spike/matrix spike duplicate recoveries and relative percent differences, post-digestion spikes, laboratory and field duplicate relative percent differences, equipment blanks, and reporting limits. Where appropriate, validation qualifiers and flags have been applied to the data using USEPA procedures as guidance (USEPA 2017). The data validation report included in **Appendix D** summarizes the validation actions and applicable interpretation.

The purpose of the data quality evaluation was to determine the reliability of the chemical analyses and the accuracy and precision of information acquired from the laboratory. Data quality was assessed through the review and evaluation of field sampling, quality control samples, and data associated with the chemical analytical results. The data are considered usable for meeting project objectives and the results are considered valid. The complete results of the data quality evaluations are provided in **Appendix D**.

A "J" flag following a value indicates that the value is an estimated analyte concentration detected between the MDL and the laboratory reporting limit. The estimated value is positively identified but is below the lowest level that can be reliably achieved within specified limits of precision and accuracy under routine laboratory operating conditions. "J" flagged data are used to establish background statistical limits but are not used when performing statistical analyses.

## 4 STATISTICAL ANALYSIS

Statistical analysis of Appendix III and IV groundwater monitoring data obtained from the AP-3, A, B, B', and R6 Landfill assessment monitoring event (March 2021) was performed pursuant to 40 CFR §§ 257.93–95 following established, certified statistical methods. The statistical method for the site was developed in accordance with 40 CFR § 257.93(f) using methodology presented in Statistical Analysis of Groundwater Data at RCRA Facilities, Unified Guidance, March 2009, USEPA 530/R-09-007 (USEPA 2009).

## 4.1 Statistical Methods

The Sanitas<sup>™</sup> groundwater statistical software was used to perform statistical analyses. Sanitas<sup>™</sup> is a decision support software package that incorporates the statistical tests required of Subtitle C and D facilities by USEPA regulations and guidance as recommended in the Unified Guidance document (USEPA 2009). Although Assessment Monitoring has been implemented, statistical evaluation of Appendix III constituents is performed to determine whether constituents have returned to background conditions.

### 4.1.1 Appendix III Statistical Methods

Groundwater data were evaluated using interwell prediction limits for Appendix III parameters. This method uses sitewide-pooled upgradient monitoring well data to establish a background statistical limit. Data from the March 2021 event were compared to the statistical limit to determine whether concentrations exceeded background levels. The statistical method incorporates an optional 1-of-2 verification resample plan. When an initial statistically significant increase (SSI) or questionable result occurs, a second sample may be collected to verify the initial result or determine whether the result was an outlier. If resampling is performed and the initial finding is not verified, the resampled value replaces the initial finding. When the resample confirms the initial result, both values remain in the database and an SSI is declared. The following criteria were applied to the evaluation:

- Statistical analyses were not performed on analytes containing 100 percent non-detects.
- When data contained less than 15 percent non-detects in background samples, simple substitution of one-half the reporting limit was used in the statistical analysis. The reporting limit used for non-detects is the practical quantification limit reported by the laboratory.
- When data contained between 15 to 50 percent non-detects, the Kaplan-Meier non-detect adjustment was applied to the background data. This technique adjusts the mean and standard deviation of the historical concentrations to account for concentrations below the reporting limit.
- Non-parametric prediction limits were used on data containing greater than 50 percent non-detects.

#### 4.1.2 Assessment Monitoring Statistical Methods

Interwell parametric tolerance limits were used to calculate background limits from pooled upgradient well data for the wells identified in **Table 1A** for Appendix IV constituents with a target of 95 percent confidence and 95 percent coverage.

The confidence and coverage levels for nonparametric tolerance limits are dependent upon the number of background samples. The background levels are then used when determining the groundwater protection standards (GWPS) in accordance with 40 CFR § 257.95(h) and GAEPD Rule 391-3-4-.10(6)(a).

As described in 40 CFR § 257.95(h)(1-3), the GWPS is:

- The maximum contaminant level (MCL) established under 40 CFR §§ 141.62 and 141.66.
- For the following constituents:

- Cobalt: 0.006 milligram per liter (mg/L)
- Lead: 0.015 mg/L
- o Lithium: 0.040 mg/L
- o Molybdenum: 0.100 mg/L; or
- The background level for constituents for which the background level is higher than the MCL or CCR Rule identified GWPS.

USEPA revised the federal CCR Rule on July 30, 2018, providing GWPSs for cobalt, lead, lithium, and molybdenum as described above in 40 CFR 257.95(h)(2). Those updated GWPSs have not yet been incorporated into the current GAEPD Rules for Solid Waste Management 391-3-4-.10(6)(a); therefore, background concentrations are considered when determining the GWPS for constituents for which an MCL has not been established (or where the background level is higher than the MCL). Under the existing GAEPD rules, the GWPS is:

- The MCL; or
- The background concentration when an MCL is not established or when the background concentration is higher than the MCL.

In accordance with the above federal and state rules, GWPSs have been established for statistical comparison of Appendix IV constituents at AP-3, A, B, B', and the R6 CCR Landfill. **Table 7** summarizes the background limits established for each monitoring well for the March 2021 sampling event as well as the GWPSs established under federal and state rules.

To complete the statistical comparison to GWPSs, confidence intervals were constructed for each of the Appendix IV parameters detected in each downgradient well. Those confidence intervals were compared to the GWPSs established under federal and state rules. A sampling result from a well/constituent pair was considered to exceed its respective standard only when results from the entire confidence interval exceeded a GWPS. If there was an exceedance of the established standard, an SSL exceedance was identified.

## 4.2 Statistical Analysis Results

Appendix III statistical analysis for wells associated with the site was performed to determine whether constituent concentrations have returned to background levels. Appendix IV assessment monitoring parameters were evaluated for AP-3, A, B, B,' and the R6 CCR Landfill to determine whether concentrations statistically exceed the established GWPSs. Appendix IV analytical data from the first 2021 semiannual assessment monitoring events for the combined AP-3, A, B, B', and R6 CCR Landfill were statistically analyzed in accordance with the Statistical Analysis Plan (Groundwater Stats Consulting 2019).

### 4.2.1 Appendix III Monitoring Constituents

Based on review of the Appendix III statistical analysis from the March 2021 sampling event presented in **Appendix E**, Appendix III constituents have not returned to background levels; therefore, assessment monitoring should continue pursuant to 40 CFR § 257.95(f). **Appendix E** includes a table summarizing site monitoring wells for which analytical sampling results have identified constituents with SSIs.

### 4.2.2 Appendix IV Assessment Monitoring Constituents

Statistical analysis of the March 2021 Appendix IV data was completed using the GWPSs established according to 40 CFR § 257.95(h) and GAEPD Rule 391-3-4-.10(6)(a). The following SSLs were identified:

- Beryllium: YGWC-38; and
- Selenium: YGWC-38 and PZ-37.

Sanitas<sup>™</sup> statistical output data for calculation of site-specific background concentrations (interwell tolerance limits) and confidence intervals for each Appendix IV constituent in downgradient wells are provided in **Appendix F**.

## 5 MONITORING PROGRAM STATUS

In accordance with 40 CFR § 257.94(e), an assessment monitoring program was implemented in January 2018 for AP-3, A, B, and B'. SSLs of Appendix IV parameters were identified for the multi-unit network during the 2019 assessment monitoring events. The R6 CCR Landfill was placed in assessment monitoring following the initial detection monitoring event in March 2019, and assessment monitoring was initiated with the second 2019 semiannual monitoring event. Pursuant to 40 CFR § 257.96(b), Georgia Power will continue to monitor groundwater at AP-3, A, B, B', and the R6 CCR Landfill in accordance with the assessment monitoring program regulations of 40 CFR § 257.95 while ACM efforts are implemented to evaluate SSL concentrations of beryllium and selenium.

Horizontal and vertical delineation of current and historical SSLs of beryllium, cobalt, and selenium is complete. The ACM efforts completed during the reporting period are summarized in the Semiannual Remedy Selection and Design Progress Report in **Appendix A**. Georgia Power will continue to include future semiannual progress reports with each groundwater monitoring and corrective action report.

## 6 CONCLUSIONS AND RECOMMENDATIONS

This 2021 Semiannual Groundwater Monitoring and Corrective Action Report was prepared to fulfill the requirements of USEPA's 40 CFR §257.95 and GAEPD's Rule 391-3-4-.10. The groundwater flow direction interpreted during this event is consistent with historical evaluations. Statistical evaluations of groundwater monitoring data for the combined monitoring unit AP-3, A, B, B', and the R6 Landfill identified SSLs of beryllium in well YGWC-38 and selenium in well YGWC-38 and delineation well PZ-37. Delineation data for the site indicate that constituents showing SSLs are spatially and vertically delineated onsite to concentrations below the GWPSs.

Assessment monitoring at AP-3, A, B, B', and the R6 CCR Landfill will continue pursuant to 40 CFR § 257.95. In addition, ACM efforts of the multi-unit site will continue as required by 40 CFR § 257.96. In accordance with GAEPD Rule 391-3-4-.10(6)(c), the next semiannual monitoring event is scheduled for August 2021.

## 7 **REFERENCES**

- ACC. 2019. Plant Yates, Ash Ponds 3, A, B and B' 2019 Assessment of Corrective Measures Report. Prepared for Georgia Environmental Protection Division. July.
- ACC. 2020. Plant Yates, Ash Ponds 3, A, B, and B'/R6 CCR Landfill 2019 Annual Groundwater Monitoring and Corrective Action Report. Prepared for Georgia Environmental Protection Division. January.
- Driscoll, F.G. 1986. Groundwater and Wells, Johnson Screens, Saint Paul, Minnesota, 1089 pp.
- Freeze, R.A. and J.A. Cherry. 1979. Groundwater, Prentice-Hall, Englewood Cliffs, New Jersey, 604 pp.
- Groundwater Stats Consulting. 2019. Statistical Analysis Plan Plant Yates Ash Pond 3 and B/B'. Prepared for Georgia Environmental Protection Division.
- Harned, D.A., and Daniel D.D., III, 1992. The transition zone between bedrock and saprolite Conduit for contamination? Ground water in the Piedmont – Proceedings of a conference on ground water in the Piedmont of the eastern United States: Clemson, S.C. p. 336-348.
- Newell, C.J., L.P. Hopkins, and P.B. Bedient. 1990. A Hydrogeologic Database for Ground-Water Modeling. *Ground Water.* 28(5):703-714.
- USEPA. 1989. RCRA Facility Investigation (RFI) Guidance, Interim Final, Vol I. [EPA 530/SW-89-031], OWSER Directive 9502.00-6DUSEPA. 1989. Risk Assessment Guidance for Superfund (RAGS), Vol. I: Human Health Evaluation Manual (Part A) (540-1-89-002).
- USEPA. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance. Office of Resource Conservation and Recovery – Program Implementation and Information Division. March.
- USEPA. 2011. Data Validation Standard Operating Procedures. Science and Ecosystem Support Division. Region IV. Athens, GA. September.
- USEPA. 2017. National Functional Guidelines for Inorganic Superfund Methods Data Review. Office of Superfund Remediation and Technology Innovation. OLEM 9355.0-135 [EPA-540-R-2017-001]. Washington, DC. January.

# **TABLES**

2021 Semiannual Groundwater and Corrective Action Report Plant Yates AP-3, A, B, B' and R6 CCR Landfill Newnan, GA

#### Table 1A - Monitoring Well Network Summary 2021 Semiannual Groundwater Monitoring and Corrective Action Report Plant Yates - AP-3, A, B, B' and R6 CCR Landfill



| Well ID           | Installation<br>Date | Top of Casing<br>Elevation (ft) | Depth to Bottom<br>(ft bTOC) | Bottom Elevation<br>(ft) | Depth to Top of<br>Screen (ft bTOC) | Top of Screen<br>Elevation (ft) | Hydraulic<br>Location |
|-------------------|----------------------|---------------------------------|------------------------------|--------------------------|-------------------------------------|---------------------------------|-----------------------|
| Upgradient Wells  |                      |                                 |                              |                          |                                     |                                 |                       |
| YGWA-4I           | 5/21/2014            | 784.21                          | 48.81                        | 735.40                   | 38.51                               | 745.70                          | Upgradient            |
| YGWA-5I           | 5/21/2014            | 784.54                          | 58.94                        | 725.60                   | 48.64                               | 735.90                          | Upgradient            |
| YGWA-5D           | 5/21/2014            | 784.53                          | 129.13                       | 655.40                   | 78.83                               | 706.00                          | Upgradient            |
| YGWA-17S          | 9/10/2015            | 783.05                          | 39.85                        | 743.20                   | 29.55                               | 753.20                          | Upgradient            |
| YGWA-18S          | 9/8/2015             | 790.57                          | 39.97                        | 750.60                   | 29.97                               | 760.90                          | Upgradient            |
| YGWA-18I          | 9/8/2015             | 790.57                          | 79.97                        | 710.60                   | 69.67                               | 720.90                          | Upgradient            |
| YGWA-20S          | 9/29/2015            | 767.12                          | 29.52                        | 737.60                   | 19.22                               | 747.90                          | Upgradient            |
| YGWA-21I          | 9/28/2015            | 783.70                          | 79.90                        | 703.80                   | 69.60                               | 714.10                          | Upgradient            |
| YGWA-39           | 7/7/2016             | 818.19                          | 68.59                        | 749.60                   | 58.09                               | 760.10                          | Upgradient            |
| YGWA-40           | 7/7/2016             | 815.73                          | 48.23                        | 767.50                   | 37.73                               | 778.00                          | Upgradient            |
| YGWA-1I           | 5/20/2014            | 836.60                          | 53.60                        | 783.00                   | 43.30                               | 793.30                          | Upgradient            |
| YGWA-1D           | 5/20/2014            | 837.25                          | 128.85                       | 708.40                   | 78.05                               | 759.20                          | Upgradient            |
| YGWA-2I           | 5/20/2014            | 866.25                          | 63.75                        | 802.50                   | 53.45                               | 812.80                          | Upgradient            |
| YGWA-3I           | 5/20/2014            | 796.55                          | 59.05                        | 737.50                   | 48.85                               | 747.70                          | Upgradient            |
| YGWA-3D           | 5/20/2014            | 796.78                          | 134.18                       | 662.60                   | 83.88                               | 712.90                          | Upgradient            |
| YGWA-14S          | 5/20/2014            | 748.76                          | 34.96                        | 713.80                   | 24.66                               | 724.10                          | Upgradient            |
| YGWA-30I          | 9/23/2015            | 762.58                          | 59.48                        | 703.10                   | 49.18                               | 713.40                          | Upgradient            |
| YGWA-47           | 7/11/2016            | 758.22                          | 59.19                        | 696.41                   | 48.62                               | 709.60                          | Upgradient            |
| GWA-2             | 4/12/2007            | 805.62                          | 52.02                        | 753.60                   | 41.82                               | 763.80                          | Upgradient            |
| AP-3, A, B and B' |                      |                                 | 1                            | 1                        |                                     |                                 |                       |
| YGWC-23S          | 9/21/2015            | 764.91                          | 38.91                        | 726.00                   | 28.61                               | 736.30                          | Downgradient          |
| YGWC-24SA         | 6/4/2020             | 765.00                          | 57.00                        | 708.00                   | 47.00                               | 718.00                          | Downgradient          |
| YGWC-36A          | 9/22/2020            | 740.88                          | 51.20                        | 689.68                   | 41.18                               | 699.70                          | Downgradient          |
| YGWC-49           | 7/13/2016            | 782.73                          | 78.53                        | 704.20                   | 67.63                               | 715.10                          | Downgradient          |
| R6 CCR Landfill   |                      |                                 |                              |                          |                                     |                                 |                       |
| YGWC-38           | 7/23/2016            | 799.69                          | 49.59                        | 749.10                   | 39.59                               | 760.10                          | Downgradient          |
| YGWC-41           | 7/8/2016             | 803.92                          | 66.82                        | 736.60                   | 56.82                               | 747.10                          | Downgradient          |
| YGWC-42           | 7/8/2016             | 797.86                          | 59.76                        | 738.10                   | 49.36                               | 748.50                          | Downgradient          |
| YGWC-43           | 7/9/2016             | 744.96                          | 79.66                        | 665.30                   | 69.16                               | 675.80                          | Downgradient          |

#### Notes:

Elevation is presented in U.S. Survey Feet (North American Vertical Datum of 1988) based on June 2020 survey.

#### Acronyms and Abbreviations:

bTOC = below top of casing ft = feet

#### Table 1B - Non- Network Well Summary 2021 Semiannual Monitoring and Corrective Action Report Plant Yates - AP-3, A, B, B' and R6 CCR Landfill



| Well ID           | Installation<br>Date | Top of Casing<br>Elevation (ft) | Depth to Bottom<br>(ft bTOC) | Bottom Elevation<br>(ft) | Depth to Top of<br>Screen (ft bTOC) | Top of Screen<br>Elevation (ft) | Purpose      |
|-------------------|----------------------|---------------------------------|------------------------------|--------------------------|-------------------------------------|---------------------------------|--------------|
| AP-3, A, B and B' |                      |                                 |                              |                          |                                     |                                 |              |
| YGWA-6S           | 5/19/2014            | 782.47                          | 39.87                        | 742.60                   | 29.57                               | 752.90                          | Piezometer   |
| YGWA-6I           | 5/19/2014            | 782.73                          | 69.03                        | 713.70                   | 58.73                               | 724.00                          | Piezometer   |
| YAMW-1            | 9/19/2018            | 743.83                          | 69.93                        | 673.90                   | 59.93                               | 683.90                          | Downgradient |
| PZ-04S            | 5/21/2014            | 784.25                          | 32.75                        | 751.50                   | 22.45                               | 761.80                          | Piezometer   |
| PZ-05S            | 5/21/2014            | 784.64                          | 41.94                        | 742.70                   | 31.64                               | 753.00                          | Piezometer   |
| PZ-06D            | 5/19/2014            | 782.02                          | 134.02                       | 648.00                   | 83.72                               | 698.30                          | Piezometer   |
| PZ-24IA           | 6/3/2020             | 764.33                          | 89.53                        | 674.80                   | 79.53                               | 684.80                          | Piezometer   |
| PZ-35             | 7/20/2016            | 743.81                          | 50.01                        | 693.80                   | 38.91                               | 704.90                          | Downgradient |
| PZ-48             | 7/11/2016            | 779.83                          | 58.73                        | 721.10                   | 48.43                               | 731.40                          | Piezometer   |
| R6 CCR Landfill   |                      |                                 |                              |                          |                                     |                                 |              |
| PZ-37             | 7/6/2016             | 760.78                          | 49.78                        | 711.00                   | 39.28                               | 721.50                          | Piezometer   |
| PZ-37D            | 4/16/2021            | 761.12                          | 202.30                       | 558.80                   | 192.30                              | 568.80                          | Piezometer   |
| PZ-51             | 11/8/2019            | 744.30                          | 36.32                        | 707.98                   | 26.32                               | 717.98                          | Piezometer   |
| YAMW-2            | 11/12/2019           | 781.04                          | 46.48                        | 734.56                   | 36.48                               | 744.56                          | Downgradient |
| YAMW-3            | 11/6/2019            | 796.05                          | 91.44                        | 704.61                   | 81.44                               | 714.61                          | Downgradient |
| YAMW-4            | 11/7/2019            | 805.59                          | 96.55                        | 709.04                   | 86.55                               | 719.04                          | Downgradient |
| YAMW-5            | 11/13/2019           | 788.90                          | 90.34                        | 698.56                   | 80.34                               | 708.56                          | Downgradient |

#### Notes:

Elevation is presented in U.S. Survey Feet (North American Vertical Datum of 1988).

#### Acronyms and Abbreviations:

bTOC = below top of casing ft = feet

#### Table 2 - Groundwater Sampling Plan

2021 Semiannual Groundwater Monitoring and Corrective Action Report Plant Yates - AP-3, A, B, B' and R6 CCR Landfill



| Well ID           | Hydraulic    | Assessment <sup>1</sup><br>Monitoring | 2020 First Semiannual<br>Sampling <sup>2</sup> |  |
|-------------------|--------------|---------------------------------------|------------------------------------------------|--|
|                   | Location     | February 8-10, 2021                   | March 2-4, 2021                                |  |
| AP-3, A, B and B' |              |                                       |                                                |  |
| YGWA-4I           | Upgradient   | Х                                     | Х                                              |  |
| YGWA-5I           | Upgradient   | Х                                     | Х                                              |  |
| YGWA-5D           | Upgradient   | Х                                     | Х                                              |  |
| YGWA-17S          | Upgradient   | Х                                     | Х                                              |  |
| YGWA-18S          | Upgradient   | Х                                     | Х                                              |  |
| YGWA-18I          | Upgradient   | Х                                     | Х                                              |  |
| YGWA-20S          | Upgradient   | Х                                     | Х                                              |  |
| YGWA-21I          | Upgradient   | Х                                     | Х                                              |  |
| YGWC-23S          | Downgradient | Х                                     | Х                                              |  |
| YGWC-24SA         | Downgradient | Х                                     | Х                                              |  |
| YGWC-36A          | Downgradient | Х                                     | Х                                              |  |
| YGWC-49           | Downgradient | Х                                     | Х                                              |  |
| R6 CCR Landfill   |              |                                       |                                                |  |
| YGWA-39           | Upgradient   | Х                                     | Х                                              |  |
| YGWA-40           | Upgradient   | Х                                     | Х                                              |  |
| YGWC-38           | Downgradient | Х                                     | X                                              |  |
| YGWC-41           | Downgradient | Х                                     | Х                                              |  |
| YGWC-42           | Downgradient | Х                                     | Х                                              |  |
| YGWC-43           | Downgradient | Х                                     | X                                              |  |

#### Notes:

1. All wells analyzed per Appendix IV.

2. Appendix III and detected Appendix IV.

Appendix III = Consituents for Detection Monitoring - 40 CFR Part 257 Appendix III.

Appendix IV = Consituents for Assessment Monitoring - 40 CFR Part 257 Appendix IV.

USEPA = United States Environmental Protection Agency

CCR = Coal Combustion Residuals

#### Table 3 - Summary of Groundwater Elevations

2021 Semiannual Groundwater Monitoring and Corrective Action Report Plant Yates - AP-3, A, B, B' and R6 CCR Landfill



| Well ID       | Date          | TOC Elevation<br>(ft) | Depth to Water<br>(ft bTOC) | Groundwater<br>Elevation (ft) |  |  |  |  |
|---------------|---------------|-----------------------|-----------------------------|-------------------------------|--|--|--|--|
| February 2021 | February 2021 |                       |                             |                               |  |  |  |  |
| YGWA-4I       | 2/8/2021      | 784.21                | 22.62                       | 761.59                        |  |  |  |  |
| YGWA-5I       | 2/8/2021      | 784.54                | 18.75                       | 765.79                        |  |  |  |  |
| YGWA-5D       | 2/8/2021      | 784.53                | 21.77                       | 762.76                        |  |  |  |  |
| YGWA-6S       | 2/8/2021      | 782.47                | 17.54                       | 764.93                        |  |  |  |  |
| YGWA-6I       | 2/8/2021      | 782.73                | 18.90                       | 763.83                        |  |  |  |  |
| YGWA-17S      | 2/8/2021      | 783.05                | 11.85                       | 771.20                        |  |  |  |  |
| YGWA-18S      | 2/8/2021      | 790.57                | 19.55                       | 771.02                        |  |  |  |  |
| YGWA-18I      | 2/8/2021      | 790.57                | 22.90                       | 767.67                        |  |  |  |  |
| YGWA-20S      | 2/8/2021      | 767.12                | 11.19                       | 755.93                        |  |  |  |  |
| YGWA-21I      | 2/8/2021      | 783.70                | 31.21                       | 756.10                        |  |  |  |  |
| YGWC-23S      | 2/8/2021      | 794.91                | 16.95                       | 747.44                        |  |  |  |  |
| YGWC-24SA     | 2/8/2021      | 765.00                | 28.00                       | 737.00                        |  |  |  |  |
| YGWC-36A      | 2/8/2021      | 740.88                | 9.58                        | 731.30                        |  |  |  |  |
| YGWC-38       | 2/8/2021      | 799.69                | 30.75                       | 768.78                        |  |  |  |  |
| YGWA-39       | 2/8/2021      | 818.19                | 17.37                       | 800.82                        |  |  |  |  |
| YGWA-40       | 2/8/2021      | 815.73                | 22.93                       | 792.80                        |  |  |  |  |
| YGWC-41       | 2/8/2021      | 803.92                | 27.44                       | 776.48                        |  |  |  |  |
| YGWC-42       | 2/8/2021      | 797.86                | 28.19                       | 769.67                        |  |  |  |  |
| YGWC-43       | 2/8/2021      | 744.96                | 16.36                       | 728.60                        |  |  |  |  |
| YGWC-49       | 2/8/2021      | 782.73                | 31.72                       | 751.01                        |  |  |  |  |
| PZ-35         | 2/8/2021      | 743.81                | 11.25                       | 732.56                        |  |  |  |  |
| PZ-04S        | 2/8/2021      | 784.25                | 24.13                       | 760.12                        |  |  |  |  |
| PZ-05S        | 2/8/2021      | 784.64                | 18.69                       | 765.95                        |  |  |  |  |
| PZ-06D        | 2/8/2021      | 782.02                | 21.72                       | 760.30                        |  |  |  |  |
| PZ-24IA       | 2/8/2021      | 764.33                | 28.25                       | 736.08                        |  |  |  |  |
| PZ-37         | 2/8/2021      | 760.78                | 12.55                       | 746.40                        |  |  |  |  |
| PZ-48         | 2/8/2021      | 799.83                | 19.74                       | 780.09                        |  |  |  |  |
| PZ-51         | 2/8/2021      | 744.30                | 7.36                        | 736.94                        |  |  |  |  |
| YAMW-1        | 2/8/2021      | 743.83                | 11.07                       | 732.76                        |  |  |  |  |
| YAMW-2        | 2/8/2021      | 781.04                | 20.79                       | 760.25                        |  |  |  |  |
| YAMW-3        | 2/8/2021      | 796.05                | 35.46                       | 760.59                        |  |  |  |  |
| YAMW-4        | 2/8/2021      | 805.59                | 31.09                       | 774.50                        |  |  |  |  |
| YAMW-5        | 2/8/2021      | 788.90                | 13.48                       | 775.42                        |  |  |  |  |
| March 2021    |               |                       |                             |                               |  |  |  |  |
| YGWA-4I       | 3/2/2021      | 784.21                | 22.12                       | 762.09                        |  |  |  |  |
| YGWA-5I       | 3/2/2021      | 784.54                | 18.19                       | 766.35                        |  |  |  |  |
| YGWA-5D       | 3/2/2021      | 784.53                | 21.88                       | 762.65                        |  |  |  |  |
| YGWA-6S       | 3/2/2021      | 782.47                | 17.87                       | 764.60                        |  |  |  |  |
| YGWA-6I       | 3/2/2021      | 782.73                | 18.25                       | 764.48                        |  |  |  |  |
| YGWA-17S      | 3/2/2021      | 783.05                | 11.38                       | 771.67                        |  |  |  |  |

#### Table 3 - Summary of Groundwater Elevations

2021 Semiannual Groundwater Monitoring and Corrective Action Report Plant Yates - AP-3, A, B, B' and R6 CCR Landfill



| Well ID   | Date     | TOC Elevation<br>(ft) | Depth to Water<br>(ft bTOC) | Groundwater<br>Elevation (ft) |
|-----------|----------|-----------------------|-----------------------------|-------------------------------|
| YGWA-18S  | 3/2/2021 | 790.57                | 18.94                       | 771.63                        |
| YGWA-18I  | 3/2/2021 | 790.57                | 22.41                       | 768.16                        |
| YGWA-20S  | 3/2/2021 | 767.12                | 11.28                       | 755.84                        |
| YGWA-21I  | 3/2/2021 | 783.70                | 31.10                       | 756.10                        |
| YGWC-23S  | 3/2/2021 | 794.91                | 16.59                       | 747.44                        |
| YGWC-24SA | 3/2/2021 | 765.00                | 27.45                       | 737.55                        |
| YGWC-36A  | 3/2/2021 | 740.88                | 10.02                       | 730.86                        |
| YGWC-38   | 3/2/2021 | 799.69                | 30.42                       | 768.78                        |
| YGWA-39   | 3/2/2021 | 818.19                | 16.66                       | 801.53                        |
| YGWA-40   | 3/2/2021 | 815.73                | 22.39                       | 793.34                        |
| YGWC-41   | 3/2/2021 | 803.92                | 26.88                       | 777.04                        |
| YGWC-42   | 3/2/2021 | 797.86                | 27.54                       | 770.32                        |
| YGWC-43   | 3/2/2021 | 744.96                | 16.15                       | 728.81                        |
| YGWC-49   | 3/2/2021 | 782.73                | 31.50                       | 751.23                        |
| PZ-35     | 3/2/2021 | 743.81                | 11.14                       | 732.67                        |
| PZ-04S    | 3/2/2021 | 784.25                | 23.74                       | 760.51                        |
| PZ-05S    | 3/2/2021 | 784.64                | 18.14                       | 766.50                        |
| PZ-06D    | 3/2/2021 | 782.02                | 21.22                       | 760.80                        |
| PZ-24IA   | 3/2/2021 | 764.33                | 27.68                       | 736.65                        |
| PZ-37     | 3/2/2021 | 760.78                | 11.93                       | 746.40                        |
| PZ-48     | 3/2/2021 | 799.83                | 19.35                       | 780.48                        |
| PZ-51     | 3/2/2021 | 744.30                | 6.98                        | 737.32                        |
| YAMW-1    | 3/2/2021 | 743.83                | 10.80                       | 733.03                        |
| YAMW-2    | 3/2/2021 | 781.04                | 19.75                       | 761.29                        |
| YAMW-3    | 3/2/2021 | 796.05                | 34.58                       | 761.47                        |
| YAMW-4    | 3/2/2021 | 805.59                | 30.32                       | 775.27                        |
| YAMW-5    | 3/2/2021 | 788.90                | 13.03                       | 775.87                        |

#### Notes:

Elevation is presented in U.S. Survey Feet (North American Vertical Datum of 1988) based on June 2020 survey.

#### Acronyms and Abbreviations:

bTOC = below top of casing ft = feet TOC = top of casing n<sub>e</sub>



Equation

V = K (dh/dl)

V = groundwater velocity K = hydraulic conductivity dh/dl = i = hydraulic gradient  $n_e$  = effective porosity

where:

#### Values Used in Calculation

|                          | Value        |          | Source                         |
|--------------------------|--------------|----------|--------------------------------|
| K <sub>max</sub> :       | 3.70E-03     | cm/sec   |                                |
|                          | 10           | ft/day   |                                |
| K <sub>min</sub> :       | 9.70E+05     | cm/sec   | Constants 1                    |
|                          | 0.28         | ft/day   | See note 1                     |
| K <sub>avg</sub> :       | 2.90E-04     | cm/sec   |                                |
|                          | 0.8          | ft/day   |                                |
| Di                       | stance from: |          |                                |
| YGWA-40 to<br>YGWA-42    | 1,098        | ft       |                                |
| YGWC-49 to<br>PZ-24I     | 1,002        | ft       |                                |
| Groun                    | dwater Eleva | ation    | Date Collected:                |
| YGWA-40                  | 792.80       |          |                                |
| YGWC-42                  | 769.67       | foot     | Echruppy 2021                  |
| YGWC-49                  | 751.01       | ieei     | Tebruary 2021                  |
| PZ-24I                   | 736.08       |          |                                |
| YGWA-40                  | 793 34       |          |                                |
| YGWC-42                  | 770 32       |          |                                |
| YGWC-49                  | 751.23       | feet     | March 2021                     |
| PZ-24I                   | 736.65       |          |                                |
|                          |              |          | Hydraulic gradient from:       |
| i <sub>1</sub> =         | 0.021        | unitless | YGWA-40 to YGWC-42 (Feb. 2021) |
| i <sub>2</sub> =         | 0.015        | unitless | YGWC-49 to PZ-24I (Feb. 2021)  |
| i <sub>avg</sub> = 0.018 |              | unitless | Average                        |
|                          |              |          |                                |
|                          |              |          | Hydraulic gradient from:       |
| i <sub>1</sub> =         | 0.021        | unitless | YGWA-40 to YGWC-42 (Mar. 2021) |
| i <sub>2</sub> =         | 0.015        | unitless | YGWC-49 to PZ-24I (Mar. 2021)  |
| i <sub>avg</sub> =       | 0.018        | unitless | Average                        |
|                          | 0.00         |          | Con ante 2                     |
| n <sub>e</sub> =         | 0.20         | unitiess | See note 2                     |

Minimum Linear Flow Velocity

February 2021

February 2021

|                                   | <u>March 2021</u>                 |
|-----------------------------------|-----------------------------------|
| V <sub>min</sub> = (0.28) (0.018) | V <sub>min</sub> = (0.28) (0.018) |
| 0.20                              | 0.20                              |

V<sub>min</sub> = 0.03 ft/day, or 11 ft/year V<sub>min</sub> = 0.03 ft/day, or 11 ft/year

Maximum Linear Flow Velocity

|                                 | <u>March 2021</u>                      |
|---------------------------------|----------------------------------------|
| V <sub>max</sub> = (10) (0.018) | V <sub>max</sub> = <u>(10) (0.018)</u> |
| 0.20                            | 0.20                                   |

V<sub>max</sub> = 0.9 ft/day, or 329 ft/year

 $V_{max}$  = 0.9 ft/day, or 329 ft/year

| Average Linear Flow Velocity |                                               |                                               |  |  |  |
|------------------------------|-----------------------------------------------|-----------------------------------------------|--|--|--|
| February 2021                |                                               | March 2021                                    |  |  |  |
|                              | V <sub>avg</sub> = (0.8)(0.018)               | $V_{avg} = (0.8)(0.018)$                      |  |  |  |
|                              | 0.20                                          | 0.20                                          |  |  |  |
|                              | V <sub>avg</sub> = 0.07 ft/day, or 26 ft/year | V <sub>avg</sub> = 0.07 ft/day, or 26 ft/year |  |  |  |

Notes:

Slug tests performed by Atlantic Coast Consulting, Inc. at AP-3/B'B'/R6 (2014-2017). Geomean of test results used for Kavg
 Default value recommended by USEPA for silty sand-type soil (USEPA 1989).



Plant Yates AP-3, A, B, B' and R6 CCR Landfill

| 40 CFR 257<br>Appendix III | 40 CFR 257<br>Appendix IV |  |  |  |  |
|----------------------------|---------------------------|--|--|--|--|
| Boron                      | Antimony                  |  |  |  |  |
| Calcium                    | Arsenic                   |  |  |  |  |
| Chloride                   | Barium                    |  |  |  |  |
| Fluoride                   | Beryllium                 |  |  |  |  |
| рН                         | Cadmium                   |  |  |  |  |
| Sulfate                    | Chromium                  |  |  |  |  |
| Total Dissolved Solids     | Cobalt                    |  |  |  |  |
|                            | Fluoride                  |  |  |  |  |
|                            | Lead                      |  |  |  |  |
|                            | Lithium                   |  |  |  |  |
|                            | Mercury                   |  |  |  |  |
|                            | Molybdenum                |  |  |  |  |
|                            | Combined Radium - 226/228 |  |  |  |  |
|                            | Selenium                  |  |  |  |  |
|                            | Thallium                  |  |  |  |  |

#### Notes:

Italicized groundwater monitoring parameters were not detected during the annual assessment event (February 2021) and therefore not included in March 2021 semiannual parameter list.

CFR = Code of Federal Regulations

2021 Semiannual Groundwater Monitoring and Corrective Action Report

Plant Yates - A-3, A, B, B' and R6 CCR Landfill

|              | Analyte                   | YGWA-4I    | YGWA-4I    | YGWA-5D    | YGWA-5D    | YGWA-5I    | YGWA-5I    | YGWA-17S   | YGWA-17S   |
|--------------|---------------------------|------------|------------|------------|------------|------------|------------|------------|------------|
|              | Allalyte                  | 2/9/2021   | 3/3/2021   | 2/8/2021   | 3/2/2021   | 2/8/2021   | 3/2/2021   | 2/9/2021   | 3/3/2021   |
|              | рН                        | 6.06       | 6.21       | 7.66       | 7.15       | 5.67       | 5.63       | 5.62       | 5.52       |
|              | Boron                     |            | 0.0056 J   |            | 0.0068 J   |            | 0.011 J    |            | 0.010 J    |
|              | Calcium                   |            | 7.7        |            | 1.6        |            | 2.6        |            | 2.5        |
| Appendix III | Chloride                  |            | 4.1        |            | 3.2        |            | 4.3        |            | 7.1        |
|              | Fluoride                  | < 0.050    | < 0.050    | 0.055 J    | < 0.050    | < 0.050    | < 0.050    | < 0.050    | < 0.050    |
|              | Sulfate                   |            | 7.8        |            | 2.6        |            | 2.3        |            | 5.2        |
|              | Total Dissolved Solids    |            | 80.0       |            | 52.0       |            | 67.0       |            | 57.0       |
|              | Antimony                  | < 0.00028  | < 0.00028  | < 0.00028  | < 0.00028  | < 0.00028  | < 0.00028  | < 0.00028  | < 0.00028  |
|              | Arsenic                   | < 0.00078  | < 0.00078  | < 0.00078  | < 0.00078  | < 0.00078  | < 0.00078  | < 0.00078  | < 0.00078  |
|              | Barium                    | 0.013      | 0.014      | 0.0079 J   | 0.014      | 0.020      | 0.019      | 0.016      | 0.017      |
|              | Beryllium                 | < 0.000046 | < 0.000046 | < 0.000046 | < 0.000046 | < 0.000046 | < 0.000046 | 0.000094 J | 0.000099 J |
|              | Cadmium                   | < 0.00012  | < 0.00012  | < 0.00012  | < 0.00012  | < 0.00012  | < 0.00012  | < 0.00012  | < 0.00012  |
|              | Chromium                  | < 0.00055  | 0.0013 J   | < 0.00055  | < 0.00055  | < 0.00055  | < 0.00055  | 0.00098 J  | 0.00082 J  |
| Appendix IV  | Cobalt                    | < 0.00038  | < 0.00038  | < 0.00038  | < 0.00038  | < 0.00038  | < 0.00038  | < 0.00038  | < 0.00038  |
|              | Lead                      | < 0.000036 | < 0.000036 | 0.00013 J  | 0.000051 J | 0.000037 J | 0.000092 J | < 0.000036 | < 0.000036 |
|              | Lithium                   | 0.011 J    | 0.012 J    | 0.0063 J   | 0.0018 J   | 0.0032 J   | 0.0031 J   | < 0.00081  | < 0.00081  |
|              | Mercury                   | < 0.000078 | < 0.000078 | < 0.000078 | < 0.000078 | < 0.000078 | < 0.000078 | < 0.00078  | < 0.000078 |
|              | Molybdenum                | < 0.00069  | < 0.00069  | 0.0011 J   | < 0.00069  | < 0.00069  | < 0.00069  | < 0.00069  | < 0.00069  |
|              | Combined Radium - 226/228 | 0.626 U    | 1.00       | 2.89       | 1.67       | 0.613 U    | 0.579 U    | 0.529 U    | 0.590 U    |
|              | Selenium                  | < 0.0016   | 0.0019 J   | < 0.0016   | < 0.0016   | < 0.0016   | < 0.0016   | < 0.0016   | < 0.0016   |
|              | Thallium                  | < 0.00014  |            | < 0.00014  |            | < 0.00014  |            | < 0.00014  |            |

#### Notes:

Analytical results are reported in milligrams per liter except for combined radium results, which are reported in picoCuries per liter and pH in standard units.

Appendix III = Consituents for Detection Monitoring - 40 CFR Part 257 Appendix III.

Appendix IV = Consituents for Assessment Monitoring - 40 CFR Part 257 Appendix IV.

-- Not analyzed for this constituent.

< Analyte was not detected above the laboratory method detection limit (MDL).

#### Laboratory Qualifiers:

J: Estimated concentration above the method detection limit and below the reporting limit.

U: the substance was detected below the Minimum Detection Concentration (MDC) and the precision of the laboratory instruments could not produce a reliable value. Therefore, the value followed by U is qualified by the laboratory as estimated.

# **ARCADIS**

2021 Semiannual Groundwater Monitoring and Corrective Action Report

Plant Yates - A-3, A, B, B' and R6 CCR Landfill

|              | Analyte                   | YGWA-18I   | YGWA-18I   | YGWA-18S   | YGWA-18S   | YGWA-20S   | YGWA-20S   | YGWA-21I   | YGWA-21I   |
|--------------|---------------------------|------------|------------|------------|------------|------------|------------|------------|------------|
|              | Analyte                   | 2/9/2021   | 3/3/2021   | 2/9/2021   | 3/3/2021   | 2/9/2021   | 3/3/2021   | 2/9/2021   | 3/4/2021   |
|              | рН                        | 6.12       | 5.89       | 5.43       | 5.31       | 5.86       | 5.89       | 6.95       | 6.80       |
|              | Boron                     |            | < 0.0052   |            | 0.0094 J   |            | < 0.0052   |            | 0.0079 J   |
|              | Calcium                   |            | 5.2        |            | 0.96 J     |            | 2.4        |            | 8.7        |
| Appendix III | Chloride                  |            | 7.0        |            | 7.2        |            | 2.7        |            | 1.8        |
|              | Fluoride                  | < 0.050    | < 0.050    | < 0.050    | < 0.050    | < 0.050    | < 0.050    | 0.092 J    | 0.091 J    |
|              | Sulfate                   |            | < 0.50     |            | 1.0        |            | < 0.50     |            | 4.5        |
|              | Total Dissolved Solids    |            | 95.0       |            | 37.0       |            | 53.0       |            | 110        |
|              | Antimony                  | < 0.00028  | < 0.00028  | < 0.00028  | 0.00067 J  | 0.00032 B  | < 0.00028  | 0.0013 B   | 0.0014 J   |
|              | Arsenic                   | < 0.00078  | < 0.00078  | < 0.00078  | < 0.00078  | < 0.00078  | < 0.00078  | 0.0010 J   | 0.00078 J  |
|              | Barium                    | 0.023      | 0.023      | 0.017      | 0.017      | 0.015      | 0.015      | 0.011      | 0.011      |
|              | Beryllium                 | < 0.000046 | < 0.000046 | 0.000098 J | 0.00011 J  | 0.000068 J | 0.000068 J | < 0.000046 | < 0.000046 |
|              | Cadmium                   | < 0.00012  | < 0.00012  | < 0.00012  | < 0.00012  | < 0.00012  | < 0.00012  | 0.00041 J  | < 0.00012  |
|              | Chromium                  | 0.00083 J  | 0.00087 J  | 0.0013 J   | 0.0010 J   | 0.00056 J  | < 0.00055  | < 0.00055  | < 0.00055  |
| Appandix IV  | Cobalt                    | < 0.00038  | < 0.00038  | < 0.00038  | < 0.00038  | < 0.00038  | < 0.00038  | 0.0090     | 0.0065     |
| Appendix IV  | Lead                      | 0.000050 J | < 0.000036 | 0.000094 J | 0.000076 J | 0.000063 J | 0.000045 J | < 0.000036 | < 0.000036 |
|              | Lithium                   | 0.0031 J   | 0.0034 J   | 0.0019 J   | 0.0021 J   | < 0.00081  | < 0.00081  | 0.0060 J   | 0.0062 J   |
|              | Mercury                   | < 0.000078 | < 0.000078 | < 0.000078 | < 0.000078 | < 0.000078 | < 0.000078 | < 0.000078 | < 0.000078 |
|              | Molybdenum                | < 0.00069  | < 0.00069  | < 0.00069  | < 0.00069  | < 0.00069  | < 0.00069  | < 0.00069  | < 0.00069  |
|              | Combined Radium - 226/228 | 0.314 U    | 0.565 U    | 0.259 U    | 0.352 U    | 0.284 U    | 0.133 U    | 1.24       | 1.20       |
|              | Selenium                  | < 0.0016   | < 0.0016   | < 0.0016   | < 0.0016   | < 0.0016   | < 0.0016   | < 0.0016   | < 0.0016   |
|              | Thallium                  | < 0.00014  |            | < 0.00014  |            | < 0.00014  |            | < 0.00014  |            |

#### Notes:

Analytical results are reported in milligrams per liter except for combined radium results, which are reported in picoCuries per liter and pH in standard units.

Appendix III = Consituents for Detection Monitoring - 40 CFR Part 257 Appendix III.

Appendix IV = Consituents for Assessment Monitoring - 40 CFR Part 257 Appendix IV.

-- Not analyzed for this constituent.

< Analyte was not detected above the laboratory method detection limit (MDL).

#### Laboratory Qualifiers:

J: Estimated concentration above the method detection limit and below the reporting limit.

U: the substance was detected below the Minimum Detection Concentration (MDC) and the precision of the laboratory instruments could not produce a reliable value. Therefore, the value followed by U is qualified by the laboratory as estimated.

# **ARCADIS**

2021 Semiannual Groundwater Monitoring and Corrective Action Report

Plant Yates - A-3, A, B, B' and R6 CCR Landfill

|              | Analyte                   | YGWA-39    | YGWA-39    | YGWA-40    | YGWA-40    | YGWC-23S   | YGWC-23S   | YGWC-24SA  | YGWC-24SA  |
|--------------|---------------------------|------------|------------|------------|------------|------------|------------|------------|------------|
|              | Allalyte                  | 2/10/2021  | 3/4/2021   | 2/10/2021  | 3/4/2021   | 2/9/2021   | 3/4/2021   | 2/9/2021   | 3/3/2021   |
|              | pН                        | 5.80       | 5.54       | 5.19       | 5.23       | 5.61       | 5.44       | 5.69       | 5.70       |
|              | Boron                     |            | 0.033 J    |            | 0.078      |            | 1.2        |            | < 0.0052   |
|              | Calcium                   |            | 8.2        |            | 4.6        |            | 10.2       |            | 2.4        |
| Appendix III | Chloride                  |            | 4.9        |            | 4.9        |            | 1.8        |            | 8.6        |
|              | Fluoride                  | < 0.050    | < 0.050    | < 0.050    | < 0.050    | < 0.050    | < 0.050 M1 | < 0.050    | < 0.050    |
|              | Sulfate                   |            | 12.0       |            | 21.5       |            | 61.7 M1    |            | < 0.50     |
|              | Total Dissolved Solids    |            | 168        |            | 57.0       |            | 96.0       |            | 70.0       |
|              | Antimony                  | < 0.00028  | < 0.00028  | < 0.00028  | < 0.00028  | 0.00052 J  | < 0.00028  | < 0.00028  | < 0.00028  |
|              | Arsenic                   | < 0.00078  | < 0.00078  | < 0.00078  | < 0.00078  | < 0.00078  | < 0.00078  | < 0.00078  | < 0.00078  |
|              | Barium                    | 0.027      | 0.028      | 0.032      | 0.032      | 0.042      | 0.043      | 0.031      | 0.025      |
|              | Beryllium                 | 0.000051 J | < 0.000046 | 0.00021 J  | 0.00021 J  | 0.00015 J  | 0.00013 J  | 0.00013 J  | 0.000099 J |
|              | Cadmium                   | 0.00019 J  | 0.00030 J  | < 0.00012  | < 0.00012  | < 0.00012  | < 0.00012  | < 0.00012  | < 0.00012  |
|              | Chromium                  | < 0.00055  | < 0.00055  | < 0.00055  | < 0.00055  | 0.00086 J  | 0.00078 J  | 0.0011 J   | < 0.00055  |
| Appondix IV  | Cobalt                    | 0.00098 J  | 0.00071 J  | < 0.00038  | < 0.00038  | < 0.00038  | < 0.00038  | < 0.00038  | < 0.00038  |
| Appendix IV  | Lead                      | < 0.000036 | < 0.000036 | < 0.000036 | < 0.000036 | < 0.000036 | 0.00021 J  | 0.00036 J  | < 0.000036 |
|              | Lithium                   | 0.0071 J   | 0.0084 J   | < 0.00081  | < 0.00081  | 0.0026 J   | 0.0026 J   | < 0.00081  | < 0.00081  |
|              | Mercury                   | < 0.000078 | < 0.000078 | < 0.000078 | < 0.000078 | 0.00015 J  | < 0.000078 | < 0.000078 | < 0.000078 |
|              | Molybdenum                | 0.0013 J   | 0.0014 J   | < 0.00069  | < 0.00069  | < 0.00069  | < 0.00069  | < 0.00069  | < 0.00069  |
|              | Combined Radium - 226/228 | 0.518 U    | 0.636 U    | 0.783 U    | 0.818 U    | 0.464 U    | 0.771 U    | 0.678 U    | 0.415 U    |
|              | Selenium                  | < 0.0016   | < 0.0016   | < 0.0016   | < 0.0016   | 0.032      | 0.037      | < 0.0016   | < 0.0016   |
|              | Thallium                  | < 0.00014  |            | < 0.00014  |            | < 0.00014  |            | < 0.00014  |            |

#### Notes:

Analytical results are reported in milligrams per liter except for combined radium results, which are reported in picoCuries per liter and pH in standard units.

Appendix III = Consituents for Detection Monitoring - 40 CFR Part 257 Appendix III.

Appendix IV = Consituents for Assessment Monitoring - 40 CFR Part 257 Appendix IV.

-- Not analyzed for this constituent.

< Analyte was not detected above the laboratory method detection limit (MDL).

#### Laboratory Qualifiers:

J: Estimated concentration above the method detection limit and below the reporting limit.

U: the substance was detected below the Minimum Detection Concentration (MDC) and the precision of the laboratory instruments could not produce a reliable value. Therefore, the value followed by U is qualified by the laboratory as estimated.



2021 Semiannual Groundwater Monitoring and Corrective Action Report

Plant Yates - A-3, A, B, B' and R6 CCR Landfill

|              | Analyte                   | YGWC-36A   | YGWC-36A   | YGWC-38    | YGWC-38    | YGWC-41    | YGWC-41    | YGWC-42    | YGWC-42    |
|--------------|---------------------------|------------|------------|------------|------------|------------|------------|------------|------------|
|              | Analyte                   |            | 3/4/2021   | 2/9/2021   | 3/4/2021   | 2/10/2021  | 3/4/2021   | 2/10/2021  | 3/4/2021   |
|              | рН                        | 6.31       | 5.67       | 5.04       | 5.01       | 4.98       | 4.69       | 5.65       | 5.59       |
|              | Boron                     |            | 0.0088 J   |            | 6.4        |            | 4.0        |            | 14.8       |
|              | Calcium                   |            | 5.6        |            | 87.0       |            | 16.4       |            | 90.7       |
| Appendix III | Chloride                  |            | 6.6        |            | 3.9        |            | 3.4        |            | 2.7        |
|              | Fluoride                  | < 0.050    | < 0.050    | < 0.050 M1 | < 0.050    | < 0.050    | < 0.050    | < 0.050    | < 0.050    |
|              | Sulfate                   |            | 6.3        |            | 356        |            | 117        |            | 537        |
|              | Total Dissolved Solids    |            | 69.0       |            | 600        |            | 224        |            | 501        |
|              | Antimony                  | 0.028      | 0.0015 J   | 0.00031 J  | < 0.00028  | 0.0014 J   | < 0.00028  | 0.00053 J  | < 0.00028  |
|              | Arsenic                   | 0.00088 J  | < 0.00078  | 0.00098 J  | < 0.00078  | < 0.00078  | < 0.00078  | 0.0016 J   | < 0.00078  |
|              | Barium                    | 0.035      | 0.028      | 0.016      | 0.016      | 0.017      | 0.017      | 0.031      | 0.030      |
|              | Beryllium                 | 0.000099 J | 0.00016 J  | 0.0029 J   | 0.0029     | 0.0015 J   | 0.0015     | 0.000057 J | < 0.000046 |
|              | Cadmium                   | < 0.00012  | < 0.00012  | 0.0014 J   | 0.0013     | < 0.00012  | < 0.00012  | < 0.00012  | < 0.00012  |
|              | Chromium                  | 0.00094 J  | < 0.00055  | < 0.00055  | < 0.00055  | < 0.00055  | < 0.00055  | < 0.00055  | < 0.00055  |
| Appendix IV  | Cobalt                    | 0.00038 J  | < 0.00038  | < 0.00038  | < 0.00038  | < 0.00038  | < 0.00038  | 0.0019 J   | 0.0018 J   |
|              | Lead                      | 0.00051 J  | 0.00025 J  | < 0.000036 | < 0.000036 | 0.00020 J  | < 0.000036 | 0.000054 J | < 0.000036 |
|              | Lithium                   | 0.0011 J   | < 0.00081  | 0.0067 J   | 0.0067 J   | 0.0021 J   | 0.0021 J   | 0.058      | 0.059      |
|              | Mercury                   | < 0.000078 | < 0.000078 | < 0.000078 | < 0.000078 | < 0.000078 | < 0.000078 | < 0.000078 | < 0.000078 |
|              | Molybdenum                | < 0.00069  | < 0.00069  | < 0.00069  | < 0.00069  | < 0.00069  | < 0.00069  | 0.00094 J  | 0.00085 J  |
|              | Combined Radium - 226/228 | 0.466 U    | 0.0671 U   | 0.626 U    | 0.816 U    | 0.548 U    | 1.23       | 0.612 U    | 1.02       |
|              | Selenium                  | < 0.0016   | < 0.0016   | 0.073      | 0.076      | 0.033      | 0.037      | 0.043      | 0.048      |
|              | Thallium                  | < 0.00014  |            | < 0.00014  |            | < 0.00014  |            | < 0.00014  |            |

#### Notes:

Analytical results are reported in milligrams per liter except for combined radium results, which are reported in picoCuries per liter and pH in standard units.

Appendix III = Consituents for Detection Monitoring - 40 CFR Part 257 Appendix III.

Appendix IV = Consituents for Assessment Monitoring - 40 CFR Part 257 Appendix IV.

-- Not analyzed for this constituent.

< Analyte was not detected above the laboratory method detection limit (MDL).

#### Laboratory Qualifiers:

J: Estimated concentration above the method detection limit and below the reporting limit.

U: the substance was detected below the Minimum Detection Concentration (MDC) and the precision of the laboratory instruments could not produce a reliable value. Therefore, the value followed by U is qualifited by the laboratory as estimated.

# **ARCADIS**

2021 Semiannual Groundwater Monitoring and Corrective Action Report

Plant Yates - A-3, A, B, B' and R6 CCR Landfill

|              | Analyta                   | YGWC-43    | YGWC-43    | YGWC-49    | YGWC-49    | PZ-35      | PZ-35      | PZ-37      | PZ-37      |
|--------------|---------------------------|------------|------------|------------|------------|------------|------------|------------|------------|
|              | Allalyte                  | 2/9/2021   | 3/4/2021   | 2/9/2021   | 3/4/2021   | 2/10/2021  | 3/4/2021   | 2/9/2021   | 3/4/2021   |
|              | рН                        | 5.86       | 5.88       | 5.79       | 5.88       | 5.58       | 5.64       | 5.42       | 5.51       |
|              | Boron                     |            | 3.6        |            | < 0.0052   |            | 0.012 J    |            | 12.4       |
|              | Calcium                   |            | 32.2       |            | 13.0       |            | 4.4        |            | 118        |
| Appendix III | Chloride                  |            | 2.1        |            | 4.1        |            | 6.7        |            | 3.9        |
|              | Fluoride                  | 0.058 J    | 0.063 J    | < 0.050    | < 0.050    | < 0.050    | < 0.050    | < 0.050    | < 0.050    |
|              | Sulfate                   |            | 328        |            | 75.1       |            | 8.8        |            | 485        |
|              | Total Dissolved Solids    |            | 592        |            | 145        |            | 59.0       |            | 856        |
|              | Antimony                  | < 0.00028  | < 0.00028  | < 0.00028  | < 0.00028  | < 0.00028  | 0.00039 J  | 0.00035 J  | < 0.00028  |
|              | Arsenic                   | < 0.00078  | < 0.00078  | < 0.00078  | < 0.00078  | 0.00096 J  | < 0.00078  | 0.0015 J   | < 0.00078  |
|              | Barium                    | 0.041      | 0.039      | 0.071      | 0.069      | 0.032      | 0.033      | 0.036      | 0.036      |
|              | Beryllium                 | 0.00053 J  | 0.00056    | 0.00013 J  | 0.00010 J  | 0.00025 J  | 0.00025 J  | 0.00029 J  | 0.00017 J  |
|              | Cadmium                   | < 0.00012  | < 0.00012  | < 0.00012  | < 0.00012  | < 0.00012  | < 0.00012  | 0.00042 J  | 0.00028 J  |
|              | Chromium                  | < 0.00055  | < 0.00055  | 0.0020 J   | 0.0017 J   | 0.00060 J  | 0.00070 J  | < 0.00055  | < 0.00055  |
| Appandix IV  | Cobalt                    | 0.0017 J   | 0.0015 J   | < 0.00038  | < 0.00038  | < 0.00038  | < 0.00038  | 0.0023 J   | 0.0030 J   |
| Appendix IV  | Lead                      | < 0.000036 | < 0.000036 | < 0.000036 | < 0.000036 | 0.000087 J | 0.00015 J  | 0.000088 J | < 0.000036 |
|              | Lithium                   | 0.024 J    | 0.025 J    | 0.0038 J   | 0.0035 J   | 0.0012 J   | 0.0015 J   | 0.024 J    | 0.028 J    |
| -            | Mercury                   | < 0.000078 | < 0.000078 | 0.00014 J  | < 0.000078 | < 0.000078 | < 0.000078 | < 0.000078 | < 0.000078 |
|              | Molybdenum                | 0.0012 J   | 0.0011 J   | < 0.00069  | < 0.00069  | < 0.00069  | < 0.00069  | 0.0016 J   | 0.0024 J   |
|              | Combined Radium - 226/228 | 6.38       | 6.02       | 0.137 U    | 0.579 U    | < 0.546 U  | < 0.397 U  | 1.52       | 1.49       |
|              | Selenium                  | < 0.0016   | < 0.0016   | 0.0079 J   | 0.0058     | < 0.0016   | < 0.0016   | 0.28       | 0.27       |
|              | Thallium                  | < 0.00014  |            | < 0.00014  |            | < 0.00014  |            | < 0.00014  |            |

#### Notes:

Analytical results are reported in milligrams per liter except for combined radium results, which are reported in picoCuries per liter and pH in standard units.

Appendix III = Consituents for Detection Monitoring - 40 CFR Part 257 Appendix III.

Appendix IV = Consituents for Assessment Monitoring - 40 CFR Part 257 Appendix IV.

-- Not analyzed for this constituent.

< Analyte was not detected above the laboratory method detection limit (MDL).

#### Laboratory Qualifiers:

J: Estimated concentration above the method detection limit and below the reporting limit.

U: the substance was detected below the Minimum Detection Concentration (MDC) and the precision of the laboratory instruments could not produce a reliable value. Therefore, the value followed by U is qualifited by the laboratory as estimated.



2021 Semiannual Groundwater Monitoring and Corrective Action Report

Plant Yates - A-3, A, B, B' and R6 CCR Landfill

|              | Analuta                   | PZ-37D     | YAMW-1     | YAMW-1     | YAMW-2     | YAMW-2     | YAMW-4     | YAMW-4     | YAMW-5     |
|--------------|---------------------------|------------|------------|------------|------------|------------|------------|------------|------------|
|              | Analyte                   | 5/13/2021  | 2/9/2021   | 3/3/2021   | 2/9/2021   | 3/3/2021   | 2/9/2021   | 3/3/2021   | 2/9/2021   |
|              | рН                        | 7.79       | 6.42       | 6.51       | 5.81       | 5.67       | 6.89       | 6.81       | 5.37       |
|              | Boron                     | 1.3        |            | 0.039 J    |            | 0.032 J    |            | 0.81       |            |
|              | Calcium                   | 68.3       |            | 6.9        |            | 1.5        |            | 20.6       |            |
| Appendix III | Chloride                  | 4.0        |            | 6.1        |            | 2.5        |            | 22.9       |            |
|              | Fluoride                  | 0.12       | < 0.050    | < 0.050    | < 0.050    | < 0.050    | 0.14       | 0.14       | < 0.050    |
|              | Sulfate                   | 178        |            | 16.9       |            | 7.9        |            | 91.7       |            |
|              | Total Dissolved Solids    | 381        |            | 121        |            | 40.0       |            | 245        |            |
|              | Antimony                  | 0.00052 J  | 0.00037 J  | 0.025      | < 0.00028  | < 0.00028  | 0.0011 J   | 0.00062 J  | < 0.00028  |
|              | Arsenic                   | < 0.00078  | < 0.00078  | < 0.00078  | < 0.00078  | < 0.00078  | 0.0010 J   | 0.00079 J  | 0.00095 J  |
|              | Barium                    | 0.015      | 0.039      | 0.035      | 0.0085 J   | 0.0082     | 0.020      | 0.021      | 0.042      |
|              | Beryllium                 | < 0.000046 | < 0.000046 | < 0.000046 | 0.000051 J | < 0.000046 | < 0.000046 | < 0.000046 | 0.00015 J  |
|              | Cadmium                   | < 0.00012  | 0.00013 J  | < 0.00012  | < 0.00012  | < 0.00012  | < 0.00012  | < 0.00012  | 0.00025 J  |
|              | Chromium                  | < 0.00055  | 0.0010 J   | 0.00076 J  | 0.0011 J   | 0.0012 J   | 0.00057 J  | < 0.00055  | < 0.00055  |
| Appandix IV  | Cobalt                    | < 0.00038  | 0.030      | 0.018      | 0.0010 J   | 0.00082 J  | 0.00063 J  | 0.0010 J   | < 0.00038  |
| Appendix IV  | Lead                      | 0.000049 J | 0.00019 J  | < 0.000036 | 0.00011 J  | 0.000080 J | 0.00054 J  | 0.000096 J | 0.000073 J |
|              | Lithium                   | 0.011 J    | 0.021 J    | 0.022 J    | < 0.00081  | < 0.00081  | 0.018 J    | 0.020 J    | 0.016 J    |
|              | Mercury                   | < 0.000078 | < 0.000078 | < 0.000078 | < 0.000078 | < 0.000078 | < 0.000078 | < 0.000078 | < 0.000078 |
|              | Molybdenum                | 0.0042 J   | 0.0038 J   | 0.0037 J   | < 0.00069  | < 0.00069  | 0.0068 J   | 0.0049 J   | < 0.00069  |
|              | Combined Radium - 226/228 | 5.36       | < 0.866 U  | < 0.377 U  | < 0.492 U  | < 0.563 U  | < 0.659 U  | 1.07       | < 1.07 U   |
|              | Selenium                  | < 0.0016   | < 0.0016   | < 0.0016   | < 0.0016   | < 0.0016   | < 0.0016   | < 0.0016   | 0.060      |
|              | Thallium                  | < 0.00014  | < 0.00014  |            | < 0.00014  |            | < 0.00014  |            | < 0.00014  |

#### Notes:

Analytical results are reported in milligrams per liter except for combined radium results, which are reported in picoCuries per liter and pH in standard units.

Appendix III = Consituents for Detection Monitoring - 40 CFR Part 257 Appendix III.

Appendix IV = Consituents for Assessment Monitoring - 40 CFR Part 257 Appendix IV.

-- Not analyzed for this constituent.

< Analyte was not detected above the laboratory method detection limit (MDL).

#### Laboratory Qualifiers:

J: Estimated concentration above the method detection limit and below the reporting limit.

U: the substance was detected below the Minimum Detection Concentration (MDC) and the precision of the laboratory instruments could not produce a reliable value. Therefore, the value followed by U is qualified by the laboratory as estimated.



# Table 6 - Groundwater Analytical Data - February and March 20212021 Semiannual Groundwater Monitoring and Corrective Action ReportPlant Yates - A-3, A, B, B' and R6 CCR Landfill

|              | Analuta                   | YAMW-5     |
|--------------|---------------------------|------------|
|              | Analyte                   | 3/4/2021   |
|              | pН                        | 5.32       |
|              | Boron                     | 6.1        |
|              | Calcium                   | 53.8       |
| Appendix III | Chloride                  | 3.7        |
|              | Fluoride                  | < 0.050    |
|              | Sulfate                   | 340        |
|              | Total Dissolved Solids    | 604        |
|              | Antimony                  | < 0.00028  |
|              | Arsenic                   | < 0.00078  |
|              | Barium                    | 0.039      |
|              | Beryllium                 | 0.00013 J  |
|              | Cadmium                   | 0.00018 J  |
|              | Chromium                  | < 0.00055  |
| Appondix IV  | Cobalt                    | < 0.00038  |
| Appendix IV  | Lead                      | 0.000041 J |
|              | Lithium                   | 0.016 J    |
|              | Mercury                   | < 0.000078 |
|              | Molybdenum                | < 0.00069  |
|              | Combined Radium - 226/228 | 1.46       |
|              | Selenium                  | 0.061      |
|              | Thallium                  |            |

#### Notes:

Analytical results are reported in milligrams per liter except for combined radium results, which are reported in picoCuries per liter and pH in standard units.

Appendix III = Consituents for Detection Monitoring - 40 CFR Part 257 Appendix III.

Appendix IV = Consituents for Assessment Monitoring - 40 CFR Part 257 Appendix IV.

-- Not analyzed for this constituent.

< Analyte was not detected above the laboratory method detection limit (MDL).

#### Laboratory Qualifiers:

J: Estimated concentration above the method detection limit and below the reporting limit.

U: the substance was detected below the Minimum Detection Concentration (MDC) and the precision of the laboratory instruments could not produce a reliable value. Therefore, the value followed by U is qualifited by the laboratory as estimated.



Table 7 - Background Levels and Groundwater Protection Standards2021 Semiannual Groundwater Monitoring and Corrective Action ReportPlant Yates - AP-3, A, B, B' and R6 CCR Landfill



| Constituent                              | Units | Background | Federal GWPS       | State GWPS         |  |  |  |  |  |  |  |
|------------------------------------------|-------|------------|--------------------|--------------------|--|--|--|--|--|--|--|
| March 2021 (AP-3, A, B, B', R6 Landfill) |       |            |                    |                    |  |  |  |  |  |  |  |
| Antimony                                 | mg/L  | 0.0047     | 0.006              | 0.006              |  |  |  |  |  |  |  |
| Arsenic                                  | mg/L  | 0.005      | 0.010              | 0.010              |  |  |  |  |  |  |  |
| Barium                                   | mg/L  | 0.071      | 2                  | 2                  |  |  |  |  |  |  |  |
| Beryllium                                | mg/L  | 0.0005     | 0.004              | 0.004              |  |  |  |  |  |  |  |
| Cadmium                                  | mg/L  | 0.0005     | 0.005              | 0.005              |  |  |  |  |  |  |  |
| Chromium                                 | mg/L  | 0.0093     | 0.100              | 0.100              |  |  |  |  |  |  |  |
| Cobalt                                   | mg/L  | 0.035      | 0.035 <sup>3</sup> | 0.035 <sup>3</sup> |  |  |  |  |  |  |  |
| Fluoride                                 | mg/L  | 0.680      | 4                  | 4                  |  |  |  |  |  |  |  |
| Lead                                     | mg/L  | 0.0013     | 0.015              | 0.0013             |  |  |  |  |  |  |  |
| Lithium                                  | mg/L  | 0.030      | 0.040              | 0.030              |  |  |  |  |  |  |  |
| Mercury                                  | mg/L  | 0.0002     | 0.002              | 0.002              |  |  |  |  |  |  |  |
| Molybdenum                               | mg/L  | 0.014      | 0.100              | 0.014              |  |  |  |  |  |  |  |
| Selenium                                 | mg/L  | 0.005      | 0.050              | 0.050              |  |  |  |  |  |  |  |
| Thallium                                 | mg/L  | 0.001      | 0.002              | 0.002              |  |  |  |  |  |  |  |
| Combined Radium - 226/228                | pCi/L | 6.92       | 6.92 <sup>3</sup>  | 6.92 <sup>3</sup>  |  |  |  |  |  |  |  |

#### Notes:

1. Site background: Tolerance limits calculated from pooled upgradient well data.

2. Federal GWPS = Groundwater Protection Standard per 40 CFR §257.95(h).

3. Background concentration is higher than the federally promulgated value (0.006 mg/L for Cobalt). Background is higher than radium MCL (5 mg/L). Therefore, background is the GWPS.

#### Acronyms and Abbreviations:

mg/L = millgrams per liter

pCi/L = picocuries per liter

# **FIGURES**

2021 Semiannual Groundwater and Corrective Action Report Plant Yates AP-3, A, B, B' and R6 CCR Landfill Newnan, GA



84°55'30"W 84°54'40"W 84°54'30"W 84°53'40"W 84°53'10"W 84°53'0"W 84°52'50"W 84°55'20"W 84°55'10"W 84°55'0"W 84°54'50"W 84°54'20"W 84°54'10"W 84°54'0"W 84°53'50"W 84°53'30"W 84°53'20"W

84°55'30"W

84°55'20"W

84°55'10"W

84°55'0"W

84°54'50"W

84°54'40"W

84°54'30"W

84°54'20"W

84°54'10"W

84°54'0"W

84°53'50"W

84°53'40"W

84°53'30"W

84°53'20"W

84°53'10"W

84°53'0"W

84°52'50"W






- SAPROLITE NETWORK MONITORING  $\bullet$ WELL LOCATION
- TRANSITION NETWORK MONITORING  $\bullet$ WELL LOCATION
- BEDROCK NETWORK MONITORING • WELL LOCATION
- SAPROLITE NON-NETWORK WELL/PIEZOMETER ۲
- TRANSITION NON-NETWORK  $\bigcirc$ WELL/PIEZOMETER
- BEDROCK NON-NETWORK WELL/PIEZOMETER ۲
- PERMITTED UNIT BOUNDARY

#### NOTE:

1. PZ-37D WAS INSTALLED AS A VERTICAL DELINEATION WELL FOR PZ-37 IN APRIL 2021.

2. AERIAL IMAGE SOURCES: NOVEMBER 11, 2020 IMAGERY FLOWN AND PROCESSED BY SAM LLC; NATIONAL AGRICULTURE IMAGERY PROGRAM (NAIP) 2019 IMAGERY.



COORDINATE SYSTEM: NAD 1983 STATEPLANE GEORGIA WEST FIPS 1002 FEET





FIGURE 3

84°52'40"W



### LEGEND

- SAPROLITE NETWORK MONITORING € WELL LOCATION
- TRANSITION NETWORK MONITORING  $\bullet$ WELL LOCATION
- BEDROCK NETWORK MONITORING • WELL LOCATION
- SAPROLITE NON-NETWORK WELL/PIEZOMETER
- TRANSITION NON-NETWORK WELL/PIEZOMETER
- BEDROCK NON-NETWORK ۲ WELL/PIEZOMETER
- PERMITTED UNIT BOUNDARY APPROXIMATE POTENTIOMETRIC CONTOUR (FEET) DASHED WHERE INFERRED
- GROUNDWATER FLOW DIRECTION
- 736.94 GROUNDWATER ELEVATION (FEET)

#### NOTES:

1. SHALLOW GROUNDWATER ELEVATIONS ARE DERIVED FROM SOIL COMPRISED OF SAPROLITE, RANGING FROM 15 - 60 FEET BELOW GROUND SURFACE.

2. BEDROCK WELLS YGWA-40, YGWA-39, YGWC-38, YGWC-41, YGWC-42 USED FOR CONTOURING. ALL OTHER BEDROCK WELLS NOT USED TO CREATE CONTOURS.

3. SAPROLITE WELL GROUNDWATER ELEVATIONS WERE USED FOR CONTOURING FOR SAPROLITE/TRANSITION ZONE/BEDROCK WELL CLUSTER LOCATIONS.

4. AERIAL IMAGE SOURCES: NOVEMBER 11, 2020 IMAGERY FLOWN AND PROCESSED BY SAM LLC; NATIONAL AGRICULTURE IMAGERY PROGRAM (NAIP) 2019 IMAGERY.

5. ELEVATION IS PRESENTED IN U.S. SURVEY FEET (NAVD 1988).



COORDINATE SYSTEM: NAD 1983 STATEPLANE GEORGIA WEST FIPS 1002 FEET



84°52'40"W



### LEGEND

- SAPROLITE NETWORK MONITORING WELL LOCATION
- TRANSITION NETWORK MONITORING  $\bullet$ WELL LOCATION
- BEDROCK NETWORK MONITORING • WELL LOCATION
- SAPROLITE NON-NETWORK WELL/PIEZOMETER
- TRANSITION NON-NETWORK WELL/PIEZOMETER
- BEDROCK NON-NETWORK ۲ WELL/PIEZOMETER
- PERMITTED UNIT BOUNDARY APPROXIMATE POTENTIOMETRIC CONTOUR (FEET) DASHED WHERE INFERRED
- GROUNDWATER FLOW DIRECTION
- 773.31 GROUNDWATER ELEVATION (FEET)

#### NOTES:

1. SHALLOW GROUNDWATER ELEVATIONS ARE DERIVED FROM SOIL COMPRISED OF SAPROLITE, RANGING FROM 15 - 60 FEET BELOW GROUND SURFACE.

2. BEDROCK WELLS YGWA-40, YGWA-39, YGWC-38, YGWC-41, YGWC-42 USED FOR CONTOURING. ALL OTHER BEDROCK WELLS NOT USED TO CREATE CONTOURS.

3. SAPROLITE WELL GROUNDWATER ELEVATIONS WERE USED FOR CONTOURING FOR SAPROLITE/TRANSITION ZONE/BEDROCK WELL CLUSTER LOCATIONS.

4. AERIAL IMAGE SOURCES: NOVEMBER 11, 2020 IMAGERY FLOWN AND PROCESSED BY SAM LLC; NATIONAL AGRICULTURE IMAGERY PROGRAM (NAIP) 2019 IMAGERY.

5. ELEVATION IS PRESENTED IN U.S. SURVEY FEET (NAVD 1988).



COORDINATE SYSTEM: NAD 1983 STATEPLANE GEORGIA WEST FIPS 1002 FEET



84°52'40"W

## **APPENDIX A**

Semiannual Remedy Selection and Design Progress Report

2021 Semiannual Groundwater and Corrective Action Report Plant Yates AP-3, A, B, B' and R6 CCR Landfill Newnan, GA





# Semiannual Remedy Selection and Design

## **Progress Report**

Plant Yates – AP-3, A, B, B'/R6 CCR Landfill Newnan, Georgia

August 31, 2021

## Semiannual Remedy Selection and Design Progress Report

Plant Yates - AP-3, A, B, B'/R6 CCR Landfill, Newnan, Georgia

August 31, 2021

Prepared By: Arcadis U.S., Inc. 2839 Paces Ferry Road, Suite 900 Atlanta Georgia 30339 Phone: 770 431 8666 Fax: 770 435 2666 Prepared For: Georgia Power Company

Jennifer Beck Senior Scientist

Marganit Shotcle

Margaret Gentile, Ph.D. Technical Expert

L. Gulling Go

Geoffrey Gay Georgia Registration No. 27801 Technical Expert (Eng) Project Manager

## Contents

| Acronyms and Abbreviationsiii |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|-------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| fess                          | ional Certificationi                                                | iv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Inti                          | roduction                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| 1                             | Site Description                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| 2                             | Summary of SSLs for Corrective Measures                             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| Sci                           | reening of Corrective Measures                                      | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| Su                            | mmary of Work Completed and Data Analysis                           | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| 1                             | Closure Activities                                                  | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| 2                             | Nature and Extent Delineation                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| 3                             | Trend Analysis                                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| Eva                           | aluation of Corrective Measures                                     | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| Pla                           | inned Activities and Schedule                                       | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| Re                            | ferences                                                            | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|                               | ony<br>fess<br>Int<br>1<br>2<br>Sc<br>Su<br>1<br>2<br>3<br>Ev<br>Re | onyms and Abbreviations       i         fessional Certification       i         Introduction       i         1 Site Description       i         2 Summary of SSLs for Corrective Measures       i         Screening of Corrective Measures       i         Summary of Work Completed and Data Analysis       i         1 Closure Activities       i         2 Nature and Extent Delineation       i         3 Trend Analysis       i         Evaluation of Corrective Measures       i         Planned Activities and Schedule       i         References       i |  |  |  |  |

## **Tables**

| Table 1 | 2021 Delineation Well Data |
|---------|----------------------------|
| Table 2 | Remedy Evaluation Summary  |

## **Figures**

- Figure 1 Site Location Map
- Figure 2 Well Location Map
- Figure 3 Selenium Iso-Concentration Map, March 2021
- Figure 4 Cross-Section Location Map
- Figure 5 Cross-Sections A-A' and B-B'
- Figure 6 Cross-Sections C-C' and D-D'
- Figure 7 YGWC-38 Concentration Trends
- Figure 8 PZ-37 Concentration Trends
- Figure 9 YGWC-41 Concentration Trends

Semiannual Remedy Selection and Design Progress Report Ash Ponds 3, A, B, B' and R6 Landfill

## **Attachment**

Attachment 1 Analytical Lab Reports

## **Acronyms and Abbreviations**

| ACC           | Atlantic Coast Consulting, Inc.                                            |  |  |  |  |  |  |  |
|---------------|----------------------------------------------------------------------------|--|--|--|--|--|--|--|
| ACM           | Assessment of Corrective Measures                                          |  |  |  |  |  |  |  |
| AMA           | Ash Management Area                                                        |  |  |  |  |  |  |  |
| amsl          | above mean sea level                                                       |  |  |  |  |  |  |  |
| AP            | Ash Pond                                                                   |  |  |  |  |  |  |  |
| AP-3          | Ash Pond 3                                                                 |  |  |  |  |  |  |  |
| AP-A          | Ash Pond A                                                                 |  |  |  |  |  |  |  |
| AP-B          | Ash Pond B                                                                 |  |  |  |  |  |  |  |
| AP-B'         | Ash Pond B'                                                                |  |  |  |  |  |  |  |
| ash ponds     | Ash Ponds 3, A, B, B'                                                      |  |  |  |  |  |  |  |
| bgs           | below ground surface                                                       |  |  |  |  |  |  |  |
| CCR           | Coal Combustion Residuals                                                  |  |  |  |  |  |  |  |
| CFR           | Code of Federal Regulations                                                |  |  |  |  |  |  |  |
| CSM           | conceptual site model                                                      |  |  |  |  |  |  |  |
| ft            | feet                                                                       |  |  |  |  |  |  |  |
| GAEPD         | Georgia Environmental Protection Division                                  |  |  |  |  |  |  |  |
| Georgia Power | Georgia Power Company                                                      |  |  |  |  |  |  |  |
| GWPS          | Groundwater Protection Standard                                            |  |  |  |  |  |  |  |
| ISS           | In Situ Stabilization/Solidification                                       |  |  |  |  |  |  |  |
| mg/L          | milligram per liter                                                        |  |  |  |  |  |  |  |
| MNA           | monitored natural attenuation                                              |  |  |  |  |  |  |  |
| MODFLOW-US    | GT Modular Three-Dimensional Finite-Difference Unstructured Grid Transport |  |  |  |  |  |  |  |
| NADV88        | North American Vertical Datum 1988                                         |  |  |  |  |  |  |  |
| SSL           | statistically significant level                                            |  |  |  |  |  |  |  |
| TDS           | total dissolved solids                                                     |  |  |  |  |  |  |  |
| USEPA         | United States Environmental Protection Agency                              |  |  |  |  |  |  |  |
| USGS          | United States Geological Survey                                            |  |  |  |  |  |  |  |

## **Professional Certification**

This Semiannual Remedy Selection and Design Progress Report, Georgia Power Company - Plant Yates, Ash Ponds 3, A, B, B' and the R6 Landfill, has been prepared in accordance with the United States Environmental Protection Agency coal combustion residual rule, specifically 40 Code of Federal (CFR) 257.97(a) and the Georgia Environmental Protection Division Rules for Solid Waste Management 391-3-4-.10(6)(a). This report describes the progress made during the first semiannual period of 2021 in selecting and designing a remedy previously documented in the Assessment of Corrective Measures Report – Plant Yates Ash Ponds 3, A, B, B' (ACC 2019).



J. Geoffrey Gay, P.E. Technical Expert (Eng) Georgia Registration No. PE 27801

8.31.21

Date

## **1** Introduction

In accordance with the United States Environmental Protection Agency (USEPA) coal combustion residual (CCR) Rule (40 Code of Federal Regulations [CFR] 257 Subpart D; published in 80 FR 21302-21501, April 17, 2015; CCR Rule or The Rule), and on behalf of the Georgia Power Company (Georgia Power), this Semiannual Remedy Selection and Design Progress Report (Semiannual Progress Report) has been prepared for Plant Yates; Ash Ponds 3, A, B, and B' (ash ponds); and the R6 CCR Landfill (collectively, the Site) pursuant to 40 CFR § 257.97(a) and Georgia Environmental Protection Division (GAEPD) Rule 391-3-4.10(6)(a). To support the evaluation of potential remedies, this Semiannual Progress Report documents activities completed at the Site since the January 2021 submittal of the Semiannual Remedy Selection and Design Progress Report (Arcadis 2021a).

### 1.1 Site Description

The general site description provided in this section is modified from the 2021 Semiannual Groundwater Monitoring and Corrective Action Report (Arcadis 2021b). The Site is located at 708 Dyer Road on the east bank of the Chattahoochee River in Coweta County, Georgia, near the Coweta and Carroll County line, approximately 8 miles northwest of the city of Newnan and 13 miles southeast of the city of Carrollton. A general Site layout is shown in **Figure 1**. Plant Yates was once a coal-fired power generating facility but was converted to natural gas combustion turbines in 2014. Plant Yates was built after World War II and originally had seven coal-fired steam generating units (Units 1 - 7). Units 1 through 5 were retired in 2015 following approval by the Georgia Public Service Commission through the company's 2013 Integrated Resource Plan. The two largest units (Units 6 and 7) were converted from coal to natural gas and remain in service. Plant Yates is comprised of multiple CCR units which are in the process of closing in accordance with federal and state regulations. Ash Ponds 3, A, B, and B' (ash ponds); and the R6 CCR Landfill are the subject of this Remedy Selection and Design Progress Report.

Plant Yates is located within the Inner Piedmont Physiographic Province of western Georgia, immediately southeast of the Brevard Zone, a regional fault zone that separates the Piedmont from the Blue Ridge. Rock units at Plant Yates are primarily interlayered gneiss and schists. A thin layer of soil from 1 to 2 feet (ft) thick overlies a thick layer of saprolite. The saprolite, which extends to typical depths of 20 to 40 ft below ground surface (bgs), was formed in-place by the physical and chemical weathering of the underlying metamorphic rocks. A zone of variable thickness (approximately 5 to 20 ft) of transitionally weathered rock typically exists between the saprolite and competent bedrock. Localized alluvial soils consisting of generally coarser material (silty-sand, clayey silt, and silty clay with well-rounded gravel and cobbles) that have been observed in saprolite may be related to historical river channel migration.

Groundwater is typically encountered slightly above the saprolite/weathered rock interface. Groundwater flow in the saprolite zone is through interconnected pores and relict textures and fractures. As the rock becomes increasingly competent with depth, groundwater flow occurs mainly through joints and fractures. Recharge to the water-bearing zones in fractured bedrock takes place by seepage through the overlying mantle of soil/saprolite or by direct entrance through openings in outcrops.

Pursuant to 40 CFR § 257.91, a multi-unit groundwater monitoring system was installed within the uppermost aquifer at the Site (**Figure 2**). The multi-unit monitoring system is designed to monitor groundwater passing the

waste boundary of the CCR units within the uppermost aquifer. Wells are located to monitor upgradient and downgradient conditions based on groundwater flow direction.

## **1.2 Summary of SSLs for Corrective Measures**

The current Assessment of Corrective Measures (ACM; Atlantic Coast Consulting [ACC] 2019) was placed in the Site's operating record and posted to the Site's CCR Rule Compliance website. To support the ACM and development of the remedy selection, this Semiannual Progress Report summarizes the constituents determined to be present at statistically significant levels (SSLs). SSLs were determined for the following locations and constituents (**Figure 2**) in this semiannual reporting period:

- YGWC-38 (beryllium and selenium) at the R6 CCR Landfill. Results from recent sampling and analysis have shown that beryllium concentrations have decreased and no longer exceed the GWPS at YGWC-38, while the statistical analysis of the historical dataset continues to identify an SSL.
- PZ-37 (selenium) at the R6 CCR Landfill.

An iso-concentration map for selenium is provided on **Figure 3.** Stratigraphic cross-sections with current water level data are depicted in **Figures 4** through **6**. Recent delineation well data are provided in **Table 1** and analytical lab reports are provided in **Attachment 1**. The beryllium SSL at well YGWC-38 is horizontally delineated by downgradient wells PZ-37 and YGWC-23S. Beryllium SSL at well YGWC-38 is vertically delineated by well YAMW-5. Selenium SSL at well YGWC-38 is horizontally delineated by downgradient wells YGWC-38 is horizontally delineated by Well YAMW-5. Selenium SSL at well YGWC-38 is horizontally delineated by downgradient wells YGWC-23S and YGWC-36A, PZ-35 and YAMW-1 to below the GWPS. Selenium SSLs at YGWC-38 was vertically delineated by YAMW-5; however, selenium concentrations in YAMW-5 increased and currently exceed the GWPS of 0.05 mg/L. Downgradient of YGWC-38 and YAMW-5, selenium concentrations are vertically delineated by the newly installed PZ-37D (see Section 4).

There are several historical SSLs that are no longer present at the Site:

- Monitoring well YGWC-41 historically exhibited an SSL for selenium. Concentrations of selenium have decreased to less than the GWPS and the statistical analysis of the historical data set no longer indicates an SSL. YGWC-41 will continue to be listed in the remedy selection and design progress reports and considered in the assessment of corrective measures until such time that the upper confidence interval (EPA Unified Guidance, 2009) of the confidence interval is shown to be below the GWPS for three years pursuant to 257.98(c)(2).
- Historically, YGWC-33S in the ash pond area yielded SSLs for beryllium and cobalt. This monitoring location was abandoned in June 2020 because it was not suitable for detecting groundwater flow away from the combined ash ponds and R6 CCR Landfill waste boundary. Prior to its abandonment, beryllium and cobalt were shown to be delineated by downgradient wells within the permitted unit boundary by YGWC-36A, YAMW-1 and PZ-35. The delineation wells continue to be monitored as part of the combined network at the ash ponds and R6 CCR Landfill. Cobalt will continue listed in the remedy selection and design progress reports and considered in the assessment of corrective measures through August 2023, which will constitute three years following the last SSL for cobalt in August 2020.

In addition to the assessment monitoring program at the Site, a human health and ecological risk evaluation was completed (and reported in Wood 2020) to evaluate constituents present at SSLs in groundwater (i.e., beryllium and selenium) at the ash ponds and the R6 CCR Landfill. The evaluation provides one of many lines of evidence

that will be evaluated and factored into the remedy selection process, which will be completed in accordance with § 257.97. Based on this risk evaluation, concentrations of beryllium and selenium detected in groundwater at the Site between August 2016 and March 2020 are not expected to pose a risk to human health or the environment (Wood 2020). Data collected since March 2020 are consistent with data used in the risk evaluation; therefore, the conclusions provided in the 2020 Risk Evaluation Report are supported by current conditions.

## 2 Screening of Corrective Measures

Pursuant to 40 CFR § 257.97, Georgia Power is evaluating the potential corrective measures presented in the ACM to identify an appropriate remedy or combination of remedies for the Site as soon as feasible.

The ACM presented the following corrective measures as potentially feasible for use at the Site:

- 1. Geochemical Manipulation (In-Situ Injection);
- 2. Hydraulic Containment (Pump and Treat);
- 3. In Situ Stabilization/Solidification (ISS);
- 4. Monitored Natural Attenuation (MNA);
- 5. Subsurface Vertical Barrier Walls;
- 6. Permeable Reactive Barrier;
- 7. Phytoremediation.

This evaluation was first completed and reported in the August Semiannual Progress Report (Arcadis 2020). Building on the initial evaluation of corrective measures presented in the ACM; incorporation of site-specific hydrogeological and geochemical information; and consideration of ease of implementation, performance, and reliability of each, potential corrective measures were screened to further refine the list to be retained for additional evaluation. The list of retained potential corrective measures is presented in this Semiannual Progress Report as **Table 2** and includes:

- 1. MNA;
- 2. Geochemical Manipulation (In-Situ Injection);
- 3. Hydraulic Containment (Pump and Treat);
- 4. Phytoremediation (not currently applicable but retained if needed for future compliance well SSLs downgradient of AP-A/B/B'/3 or R6 CCR Landfill).

Georgia Power proactively initiated adaptive site management as outlined in the ACM Report (ACC 2019) to support the groundwater remedy selection process and address potential changes in site conditions as appropriate during the ash pond closure. The adaptive site management approach will take existing site conditions, including natural attenuation mechanisms into account. Characterization activities to evaluate attenuation mechanisms at the Site may include collection of data necessary to progressively evaluate the existing and long-term effectiveness of these processes in the aquifer and reduce uncertainty for decision making at each screening step as listed in the USEPA guidelines for MNA (USEPA 2007, 2015). In 2007, the USEPA issued MNA technical guidance specific to inorganic contaminants (USEPA, 2007) that contained four "tiers." The 2015 MNA guidance retains these four "tiers," but describes them as "phases" as described below (USEPA,

2015). This 2015 MNA document for inorganic contaminants expands on and is designed to be a companion to the 1999 MNA guidance.

- Phase I: Demonstration that the groundwater plume is not expanding.
- Phase II: Determination that the mechanism and rate of the attenuation process are sufficient.
- Phase III: Determination that the *capacity* of the aquifer is sufficient to attenuate the mass of contaminant within the plume and the *stability* of the immobilized contaminant is sufficient to resist re-mobilization.
- Phase IV: Design of a *performance monitoring program* based on an understanding of the mechanism of the attenuation process, and establishment of contingency remedies tailored to site-specific characteristics.

Georgia power will address Phase IV as appropriate during the development of the future corrective action monitoring plan, after the final remedy selection report.

## 3 Summary of Work Completed and Data Analysis

### 3.1 Closure Activities

Source control is being implemented as part of the closure process and is not specifically intended as a corrective measure. However, there is a strong potential for source control to limit future impact and improve groundwater quality. The following source control measures are underway or complete for the ash ponds and the R6 CCR Landfill:

- R6 CCR landfill capping began in October 2015 and was completed during the fourth quarter of 2016. Final closure certification has not been submitted for the R6 CCR landfill due to final flume tie-in to the surface water drainage ditch currently being constructed along the northern edge of the R6 CCR landfill.
- Consolidation of ash from the ash ponds onto the Ash Management Area (AMA) began in 2014 and is ongoing.

Closure activities at Plant Yates, including management and reduction of ponded water, excavation and consolidation of CCR, and capping, can reduce CCR impacts to groundwater. The removal of ponded water at AP-B and excavation and consolidation of the material at AP-A, AP-B, and other areas reduces potential contact of groundwater with the source of CCR constituents and likely results in improved groundwater quality in the area. Capping of the R6 CCR Landfill and future capping of the consolidated ash pond materials in the AMA also minimizes the infiltration of water through CCR materials.

## 3.2 Nature and Extent Delineation

In April 2021, a deep bedrock groundwater monitoring well (PZ-37D) was installed adjacent to PZ-37 to delineate the nature and extent of selenium in the vicinity of PZ-37, YGWC-38, and YAMW-5 (**Figure 5**). The complete Well Installation Report is provided in Appendix D to the 2021 Semiannual Groundwater Monitoring and Corrective Action Report (Arcadis 2021b).

Semiannual Remedy Selection and Design Progress Report Ash Ponds 3, A, B, B' and R6 Landfill

PZ-37D (**Figure 5**) was installed at a total depth of 202.3 ft bgs at an elevation of 556.5 ft (North American Vertical Datum of 1988 [NAVD88]) using a track-mounted 150CC rotosonic drill equipped with 4-inch coring rods for continuous coring and 6-inch outer casing. Core samples were logged in the field for lithologic properties. Well construction and development information is provided in Appendix D to the 2021 Semiannual Groundwater Monitoring and Corrective Action Report (Arcadis 2021b). During advancement of the drill string, grab samples of groundwater were collected at three discrete intervals (90 to 100 ft bgs [668.8 to 658.8 ft North American Vertical Datum 1988, NAVD88], 130 to 150 ft bgs [628.8 to 608.8 ft NAVD88], and 195 to 200 ft bgs [563.8 to 558.8 ft NAVD88]). The samples were submitted for laboratory analysis for selenium and other constituents to provide a preliminary record of the vertical delineation of groundwater constituent concentrations. Prior to collection of the grab sample from 195-200 ft bgs (563.8 to 558.8 ft NAVD88), the sample interval was sealed from the upper intervals using an inflatable packer. Once installation and well development were complete, a groundwater sample was collected from the newly installed PZ-37D and analyzed for Appendix III and Appendix IV constituents.

Analytical laboratory results from the three discrete interval grab samples and a groundwater sample from the completed well are provided in Attachment 1. Concentrations of selenium in the grab samples ranged from 0.14 mg/L in the 90-100 ft bgs (668.8 to 658.8 ft NAVD88) interval to 0.18 mg/L in the 130-150 ft bgs (628.8 to 608.8 ft NAVD88) interval to below detection limits in the 195-200 ft bgs (563.8 to 558.8 ft NAVD88) interval. Selenium concentrations measured in the upper two intervals where grab samples were collected could be influenced under pumping conditions by structural influences in the bedrock such as fracture density, orientation, and angles, as well as potential casing leakage. In the completed well PZ-37D, selenium concentrations were below detection.

## 3.3 Trend Analysis

Historical groundwater analytical data are presented in Figures 7 - 9 to illustrate how groundwater conditions are changing in conjunction with closure activities. Groundwater monitoring has been performed for the ash ponds since 2016 and the R6 CCR landfill since 2017.

In the R6 CCR Landfill area, decreasing concentration trends are observed on the east side of the unit at YGWC-38 (Figure 7). At this location, concentrations of boron, sulfate, and total dissolved solids (TDS) have been decreasing through time, with concentrations of chloride and pH values remaining stable. For example, boron concentrations decreased from 22.7 milligrams per liter (mg/L) in June of 2018 to 6.4 mg/L in March 2021. Beryllium has decreased from a maximum of 0.0059 mg/L in June 2018 to 0.0029 mg/L in February and March 2021, less than the GWPS of 0.004 mg/L. Because there are no observed concentrations of beryllium exceeding the GWPS of 0.004 mg/L, a beryllium isoconcentration map was not developed. Selenium concentrations in YGWC-38 have also decreased from 0.265 mg/L in September 2017 to 0.073 and 0.076 mg/L in February 2021 and March 2021, respectively. The concentration data (Figure 7) indicate target Appendix III constituent concentrations that are indicators for CCR constituents in groundwater are decreasing near the well (YGWC-38) showing SSLs.

Similar decreasing trends are also noted spatially and vertically downgradient of well YGWC-38. Preliminary data collected from YAMW-5 suggest potential decreasing concentrations of boron, sulfate, and TDS in the deeper aquifer zone adjacent to YGWC-38. Statistical analysis of the current data set at YAMW-5 has not yielded an SSL. However, between September 2020 and March 2021, concentrations of selenium have increased from 0.026 mg/L to 0.061 mg/L, respectively, with the latter measurement exceeding the GWPS of 0.05 mg/L. As additional data become available, a continued evaluation of constituent concentration trends can be performed.

Similar to observed trends at YGWC-38, concentrations of boron, sulfate and TDS have been decreasing through time at PZ-37 (**Figure 8**). Selenium concentrations in PZ-37 varied between 0.168 mg/L in January 2018 and approximately 0.33 mg/L in September 2018 and 2020, before decreasing slightly to 0.27 mg/L in March 2021. To vertically delineate selenium in the vicinity of PZ-37, a deep bedrock well was installed in April 2021. The installation of the new well (PZ-37D) is described in **Section 3.2** above.

On the west side of the R6 CCR Landfill, boron, sulfate, and TDS concentrations have declined at YGWC-41 (**Figure 9**). For example, boron decreased from a maximum of 15.2 mg/L in February 2018 to 4.0 mg/L in March 2020. Selenium concentrations are lower at YWGC-41 on the west side of the unit than at YWGC-38 and PZ-37 on the east side of the unit. Selenium concentrations at YGWC-41 have decreased from a maximum of 0.071 mg/L in February 2018 to approximately 0.035 mg/L in February (0.033 mg/L) and March (0.037 mg/L) 2021. During the reporting period, concentrations of selenium were less than the GWPS of 0.05 mg/L and did not exhibit an SSL.

In general, groundwater monitoring data show declining trends in concentrations of CCR constituents, such as boron, sulfate, beryllium, and selenium, most likely due to pond closure activities progressing at Plant Yates since 2014.

## 4 Evaluation of Corrective Measures

Closure activities (completed and ongoing) for the ash ponds and the R6 CCR Landfill support source control measures that will reduce the potential migration of CCR constituents to groundwater. With few exceptions, constituent concentrations have decreased over time as the shallow aquifer responds to the closure activities completed. Georgia Power proactively initiated an adaptive site management approach, as outlined in the ACM Report (ACC 2019), to support the groundwater remedy selection process and address potential changes in site conditions as appropriate during the ash pond closure. The adaptive site management approach will take existing site conditions, including natural attenuation mechanisms, into account and may be adjusted over the life cycle of the Site as new information and technologies become available. At this time, the data collected support the following retained list of potential corrective measures, as summarized in **Table 2**:

Geochemical Manipulation (In-Situ Injection) In Situ Injection technology is the application of reagents in the subsurface to influence the solubility, mobility, and/or toxicity of inorganic constituents. The hydrogeology of the Site and available in situ options for immobilization of selenium and beryllium supports the implementation of in situ injections. Based on the evaluation to date, the in situ injection technology is retained.

**Hydraulic Containment (Pump and Treat)** Hydraulic control/containment (P&T) uses groundwater extraction to establish a hydraulic gradient to capture and control the migration of groundwater that is impacted by a constituent of concern. Groundwater extraction and treatment is feasible at the Site and <u>hydraulic containment is retained for further consideration.</u>

**MNA** MNA is defined as the reliance on natural attenuation processes (within the context of a carefully controlled and monitored site cleanup approach) to achieve site-specific remediation objectives within a timeframe that is reasonable compared to that offered by other more active methods (USEPA 2007). MNA is a remedial solution that takes advantage of natural attenuation processes to reduce constituents in soil and groundwater. Geochemical characterization, including selenium speciation, solids mineralogical characterization, a bench top sorption study conducted in 2020 (Arcadis 2021a), and trend analysis conducted through the First Half of 2021 continue to support the retention of this technology for consideration in remedy selection.

**Phytoremediation** Phytoremediation is the direct use of various living plants as a means of hydraulic control or containment, immobilization of constituents, and/or uptake/degradation of constituents found in shallow groundwater or, if engineered, using TreeWells® in intermediate depth groundwater. Phytoremediation would be difficult to implement at the depths of the current SSLs at the R6 Landfill. However, phytoremediation could be implementable downgradient of the R6 Landfill and is retained for further evaluation of beryllium and selenium if downgradient wells yield SSLs in the future.

## 5 Planned Activities and Schedule

In support of remedy selection from among the retained corrective measures, the following activities (organized by general site area) are recommended for the remainder of 2021:

- Continue routine groundwater sampling for Appendix III and Appendix IV constituent concentrations at delineation locations to analyze and evaluate trends for effectiveness of source control and plume stability to support the MNA evaluation. Multiple datasets will be needed to assess temporal variations in conditions to confirm current stable and decreasing trends.
- Continue evaluation groundwater and aquifer solids data using the phased framework for the evaluation of MNA as a viable remedy.
- Develop and calibrate a solute transport model for selenium and sulfate as a conservative tracer, using the United States Geological Survey (USGS) Modular Three-Dimensional Finite-Difference Unstructured Grid Transport (MODFLOW-USGT) simulation code. The solute transport model will be used to evaluate remedial options, using metrics such as time to reach GWPS.
- An additional exploratory deep bedrock well in the vicinity of PZ-37D is planned to gather supporting bedrock hydrostratigraphic information through borehole geophysics, packer testing and sampling of intervals with significant water producing fractures. Understanding the flow conditions in this area will support the development of conceptual designs for the evaluation of active remedy options, such as pump and treat, as well as the fate and transport for selenium for options such as MNA.

Georgia Power will include future semiannual ACM progress reports in routine groundwater monitoring reports to document groundwater conditions, results associated with additional data gathering, and the progress of selecting and designing the remedy in accordance with 40 CFR § 257.97(a). Record keeping, notifications, and publicly accessible internet site requirements for the semiannual ACM progress reports will be provided in accordance with 40 CFR § 257.105(h)(12), 257.106(h)(9), and 257.107(h)(9), respectively. Preparation of a remedy selection report is anticipated in 2022.

## 6 References

- ACC. 2019. Assessment of Corrective Measures Report, Georgia Power Company, Plant Yates, Ash Ponds 3, A, B, and B'. Prepared for the Georgia Environmental Protection Division. June 12.
- Arcadis. 2020. Semiannual Remedy Selection and Design Progress Update, Plant Yates, Ash Ponds 3, A, B, and B'/R6 CCR Landfill. August
- Arcadis. 2021a. Semiannual Remedy Selection and Design Progress Update, Plant Yates, Ash Ponds 3, A, B, and B'/R6 CCR Landfill. January.

- Arcadis. 2021b. 2021 Semiannual Groundwater Monitoring and Corrective Action Report, Plant Yates AP-3, A, B, B', and R6 CCR Landfill. August.
- USEPA. 2007. Monitored Natural Attenuation of Inorganic Contaminants in Ground Water. Volume 1 Technical Basis for Assessment. U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-07/139. October.
- USEPA. 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities. Unified Guidance. Office of Resource Conservation and Recovery, Program Implementation and Information Division, United States Environmental Protection Agency. March.
- USEPA. 2015. Use of Monitored Natural Attenuation for Inorganic Contaminants in Groundwater at Superfund Sites. USEPA Office of Solid Waste and Emergency Response. Directive 9283.1-36. August.
- Wood. 2020. Risk Evaluation Report Plant Yates R6 CCR Landfill and Ash Management Area, Coweta County, Georgia. January

## **Tables**

Table 1. 2021 Delineation Well Data

#### Semiannual Remedy Selection and Design Progress Report

Plant Yates AP-3, A, B, B' and R6 CCR Landfill

Georgia Power Company

| Analyte      |                           | Units | PZ-35          | PZ-37          | PZ-37D          | YAMW-1          | YAMW-2          | YAMW-4          | YAMW-5             | YAMW-5             | YGWC-38             | YGWC-41             |
|--------------|---------------------------|-------|----------------|----------------|-----------------|-----------------|-----------------|-----------------|--------------------|--------------------|---------------------|---------------------|
|              |                           |       | PZ-35 03042021 | PZ-37 03042021 | PZ-37D (051321) | YAMW-1 03032021 | YAMW-2 03032021 | YAMW-4 03032021 | YAMW-5<br>(020921) | YAMW-5<br>03042021 | YGWC-38<br>03042021 | YGWC-41<br>03042021 |
|              |                           |       | 3/4/2021       | 3/4/2021       | 5/13/2021       | 3/3/2021        | 3/3/2021        | 3/3/2021        | 2/9/2021           | 3/4/2021           | 3/4/2021            | 3/4/2021            |
|              | Boron                     | mg/l  | 0.012 J        | 12.4           | 1.3             | 0.039 J         | 0.032 J         | 0.81            | NA                 | 6.1                | 6.4                 | 4.0                 |
|              | Calcium                   | mg/l  | 4.4            | 118            | 68.3            | 6.9             | 1.5             | 20.6            | NA                 | 53.8               | 87.0                | 16.4                |
| Appondix III | Chloride                  | mg/l  | 6.7            | 3.9            | 4.0             | 6.1             | 2.5             | 22.9            | NA                 | 3.7                | 3.9                 | 3.4                 |
| Appendix III | Fluoride                  | mg/l  | < 0.050        | < 0.050        | 0.12            | < 0.050         | < 0.050         | 0.14            | < 0.050            | < 0.050            | < 0.050             | < 0.050             |
|              | Sulfate                   | mg/l  | 8.8            | 485            | 178             | 16.9            | 7.9             | 91.7            | NA                 | 340                | 356                 | 117                 |
|              | Total Dissolved Solids    | mg/l  | 59.0           | 856            | 381             | 121             | 40.0            | 245             | NA                 | 604                | 600                 | 224                 |
|              | Antimony                  | mg/l  | 0.00039 J      | < 0.00028      | 0.00052 J       | 0.025           | < 0.00028       | 0.00062 J       | < 0.00028          | < 0.00028          | < 0.00028           | < 0.00028           |
|              | Arsenic                   | mg/l  | < 0.00078      | < 0.00078      | < 0.00078       | < 0.00078       | < 0.00078       | 0.00079 J       | 0.00095 J          | < 0.00078          | < 0.00078           | < 0.00078           |
|              | Barium                    | mg/l  | 0.033          | 0.036          | 0.015           | 0.035           | 0.0082          | 0.021           | 0.042              | 0.039              | 0.016               | 0.017               |
|              | Beryllium                 | mg/l  | 0.00025 J      | 0.00017 J      | < 0.000046      | < 0.000046      | < 0.000046      | < 0.000046      | 0.00015 J          | 0.00013 J          | 0.0029              | 0.0015              |
|              | Cadmium                   | mg/l  | < 0.00012      | 0.00028 J      | < 0.00012       | < 0.00012       | < 0.00012       | < 0.00012       | 0.00025 J          | 0.00018 J          | 0.0013              | < 0.00012           |
|              | Chromium                  | mg/l  | 0.00070 J      | < 0.00055      | < 0.00055       | 0.00076 J       | 0.0012 J        | < 0.00055       | < 0.00055          | < 0.00055          | < 0.00055           | < 0.00055           |
| Appondix IV  | Cobalt                    | mg/l  | < 0.00038      | 0.0030 J       | < 0.00038       | 0.018           | 0.00082 J       | 0.0010 J        | < 0.00038          | < 0.00038          | < 0.00038           | < 0.00038           |
| Appendix IV  | Lead                      | mg/l  | 0.00015 J      | < 0.000036     | 0.000049 J      | < 0.000036      | 0.000080 J      | 0.000096 J      | 0.000073 J         | 0.000041 J         | < 0.000036          | < 0.000036          |
|              | Lithium                   | mg/l  | 0.0015 J       | 0.028 J        | 0.011 J         | 0.022 J         | < 0.00081       | 0.020 J         | 0.016 J            | 0.016 J            | 0.0067 J            | 0.0021 J            |
|              | Mercury                   | mg/l  | < 0.000078     | < 0.000078     | < 0.000078      | < 0.000078      | < 0.000078      | < 0.000078      | < 0.000078         | < 0.000078         | < 0.000078          | < 0.000078          |
|              | Molybdenum                | mg/l  | < 0.00069      | 0.0024 J       | 0.0042 J        | 0.0037 J        | < 0.00069       | 0.0049 J        | < 0.00069          | < 0.00069          | < 0.00069           | < 0.00069           |
|              | Combined Radium - 226/228 | pCi/l | < 0.397 U      | 1.49           | 5.36            | < 0.377 U       | < 0.563 U       | 1.07            | < 1.07 U           | 1.46               | < 0.816 U           | 1.23                |
|              | Selenium                  | mg/l  | < 0.0016       | 0.27           | < 0.0016        | < 0.0016        | < 0.0016        | < 0.0016        | 0.060              | 0.061              | 0.076               | 0.037               |
|              | Thallium                  | mg/l  | NA             | NA             | < 0.00014       | NA              | NA              | NA              | < 0.00014          | NA                 | NA                  | NA                  |
| Field        | pH                        | S.U.  | 5.64           | 5.51           | 7.79            | 6.51            | 5.67            | 6.81            | 5.37               | 5.32               | 5.01                | 4.68                |

#### Notes:

1. < indicates the analyte was not detected above the laboratory method detection limit (MDL).

2. J values indicate the substance was detected at such low levels that the precision of the laboratory instrument could not produce a reliable value.

Therefore, the value displayed (value J) is qualified by the laboratory as an estimated value.

3. Detections are in **bold** 

mg/l - milligrams per liter

- pCi/l picoCuries per liter
- S.U. Standard Units

NA - Not Analyzed

U - the substance was detected below the Minimum Detection Concentration (MDC) and the precision of the laboratory instruments could not



# Table 2.Remedy Evaluation SummaryPlant Yates AP-3, A, B, B', and R6 CCR LandfillGeorgia Power Company

| Corrective<br>Measure     | Geochemical Manipulation<br>(In Situ Injection)                                                                                                                                                                                                                            | Hydraulic Containment                                                                                                                                                                                                                                                                                                                                                                                                                                  | In-Situ<br>Stabilization/Solidification<br>(ISS)                                                                                                                                                                                                                                                                                                                                                   | Monitored Natural<br>Attenuation                                                                                                                                                                                                | Subsurface Vertical<br>Barrier Walls                                                                                                                                                       | Permeable<br>Reactive Barrier                                                                                                                                                                                                                                | Phytoremediation                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Retained/Screened<br>Out  | Retained                                                                                                                                                                                                                                                                   | Retained                                                                                                                                                                                                                                                                                                                                                                                                                                               | Screened Out                                                                                                                                                                                                                                                                                                                                                                                       | Retained                                                                                                                                                                                                                        | Screened Out                                                                                                                                                                               | Screened Out                                                                                                                                                                                                                                                 | Retained if needed for future<br>compliance well SSLs downgradient<br>of AP-A/B/B'/3 or R6 CCR Landfill                                                                                                                                                                                                                                                                                                                          |
| Description               | Injection of a chemical or organic<br>substrate to alter geochemical<br>conditions to those more favorable<br>for stabilization of beryllium and/or<br>selenium.                                                                                                           | Combines a groundwater<br>extraction system with a surface<br>treatment system to remove<br>target analytes from the<br>subsurface and/or to<br>control/prevent constituent<br>migration.                                                                                                                                                                                                                                                              | In-situ solidification is the process<br>by which constituent mobility in a<br>solid matrix is decreased through<br>physical and/or chemical means.<br>Grout or other chemical additives<br>are mixed with aquifer materials to<br>reduce permeability. ISS could be<br>applied to the aquifer matrix in<br>groundwater flow zones but is<br>less applicable than other<br>technologies evaluated. | A remedial solution that<br>takes advantage of natural<br>attenuation processes to<br>attenuate constituents in<br>soil and groundwater.<br>This option can meet the<br>GWPS given sufficient time<br>and favorable conditions. | Used to physically control the<br>migration of impacted<br>groundwater flow through<br>isolation or redirection,<br>typically around or<br>upgradient of a source area.                    | A permeable<br>reactive barrier is a<br>zone of reactive<br>material that<br>extends below the<br>water table to<br>intercept and treat<br>groundwater.                                                                                                      | <ul> <li>Phytoremediation is the direct use of various living plants as a means of hydraulic control or containment, immobilization of constituents, and/or uptake/degradation of constituents in shallow groundwater or, if engineered, using TreeWells® for intermediate depth groundwater.</li> <li>This technology can meet the GWPS for low level metal concentrations present in shallow groundwater.</li> </ul>           |
| 40 CFR<br>257.96(c)(1)    |                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                 |                                                                                                                                                                                            |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Ease of<br>Implementation | This process is not substantially<br>limited by implementation. The<br>hydrogeology of the site is<br>amenable to reagent injection and<br>distribution. Bench testing and pilot<br>testing can be used to optimize<br>implementation.                                     | Relative ease in implementation compared to other technologies.                                                                                                                                                                                                                                                                                                                                                                                        | ISS technology would be difficult<br>to impractical to implement at the<br>scale of the AMA and R6 landfill.<br>The implementation would also be<br>complicated on the R6 landfill<br>where the cap is in place.                                                                                                                                                                                   | This process is not limited by implementation.                                                                                                                                                                                  | Installing into competent<br>bedrock may be challenging<br>due to depth, the presence of<br>fractures, and the<br>groundwater flow directions<br>at the site.                              | Installing into<br>competent bedrock<br>may be challenging<br>due to depth and<br>presence of<br>fractures.<br>Implementation is<br>also challenging due<br>to the groundwater<br>flow directions at the<br>site.                                            | The depth of the treatment zone is<br>limited to depth of root zone when<br>relying on plants alone. When using<br>TreeWell® system, deeper target<br>depths (i.e., 30 feet or more) are<br>achievable. Site ground water<br>elevations are typically 10 feet to 30<br>feet below ground surface.                                                                                                                                |
| Performance               | The geochemical manipulation<br>processes identified have the<br>potential to alter conditions and<br>immobilize beryllium and selenium<br>rapidly,but require ongoing<br>monitoring to ensure that<br>conditions remain favorable.                                        | Hydraulic containment is an<br>effective corrective measure for<br>remediating dissolved<br>constituents provided regular<br>maintenance is performed<br>throughout the operational life.<br>Not typically immediately<br>effective for trace level metals.<br>Rebounding can occur as water<br>levels return to normal once the<br>pumping system is turned off<br>post-remediation. Generally,<br>requires disposal of treated<br>water and sludges. | Performance would need to be<br>assessed through bench or pilot<br>testing. Likely would need to be<br>used in conjunction with an<br>additional technology for<br>groundwater. Technology<br>anticipated to be less effective for<br>groundwater than other options<br>evaluated.                                                                                                                 | This process provides<br>ongoing effectiveness and<br>is well documented as an<br>effective measure for<br>remediating groundwater                                                                                              | Performance may be limited due to site geology.                                                                                                                                            | The effectiveness of<br>this technology may<br>be limited by<br>underflow and<br>reactive lifespan and<br>is only effective for<br>specific constituents.<br>Marginally effective<br>over long periods of<br>time without<br>replacement of PRB<br>material. | May be directly effective by<br>accumulation or uptake of some<br>metals or hydraulic control; however,<br>phytoaccumulation is directly related<br>to the plant species.<br>Constituents may need to be<br>addressed by a method that does not<br>involve direct uptake of impacted<br>groundwater (i.e., traditional<br>phytoremediation). An alternative<br>method, such as a TreeWell® system,<br>may need to be considered. |
| Potential Impacts         | Low potential for impacts: health<br>and safety concerns during<br>injections associated with<br>equipment, injection pressure<br>management and reagent handling,<br>minimal risk of cross media<br>contamination, exposure potential<br>limited to groundwater sampling. | Low potential for impacts:<br>health and safety concerns<br>during construction and O&M,<br>injection pressure management<br>and reagent handling, minimal<br>risk of cross media<br>contamination, exposure<br>potential limited to groundwater<br>sampling.                                                                                                                                                                                          | Low potential for impacts: No<br>health and safety concerns during<br>construction, minimal risk of cross<br>media contamination, exposure<br>potential limited to groundwater<br>sampling.                                                                                                                                                                                                        | Low potential for impacts:<br>No health and safety<br>concerns during<br>construction, minimal risk of<br>cross media contamination,<br>exposure potential limited to<br>groundwater sampling.                                  | Low potential for impacts:<br>health and safety during<br>construction, minimal risk of<br>cross media contamination,<br>exposure post-construction<br>limited to groundwater<br>sampling. | Low potential for<br>impacts: health and<br>safety during<br>construction,<br>minimal risk of cross<br>media<br>contamination,<br>exposure post-<br>construction limited<br>to groundwater<br>sampling.                                                      | Low potential for impacts: health and<br>safety during construction, minimal<br>risk of cross media contamination,<br>exposure post-construction limited to<br>groundwater sampling.                                                                                                                                                                                                                                             |

## ARCADIS

# Table 2.Remedy Evaluation SummaryPlant Yates AP-3, A, B, B', and R6 CCR LandfillGeorgia Power Company

| Corrective<br>Measure         | Geochemical Manipulation<br>(In Situ Injection)                                                                                                                                                                                                                     | Hydraulic Containment                                                                                                                                                                                                                                                                                                                                                                       | In-Situ<br>Stabilization/Solidification<br>(ISS)                                                                                                                                                      | Monitored Natural<br>Attenuation                                                                                                                                                                                                     | Subsurface Vertical<br>Barrier Walls                                                                                                                                                                        | Permeable<br>Reactive Barrier                                                                                                                                                                                            | Phytoremediation                                                                                                                                                                                                                                                                                                                       |
|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Retained/Screened<br>Out      | Retained                                                                                                                                                                                                                                                            | Retained                                                                                                                                                                                                                                                                                                                                                                                    | Screened Out                                                                                                                                                                                          | Retained                                                                                                                                                                                                                             | Screened Out                                                                                                                                                                                                | Screened Out                                                                                                                                                                                                             | Retained if needed for future<br>compliance well SSLs downgradient<br>of AP-A/B/B'/3 or R6 CCR Landfill                                                                                                                                                                                                                                |
| Reliability                   | This process will likely have overall<br>reliability in achieving GWPS goals<br>when adequate volume and<br>subsurface distribution are<br>achieved. Ongoing monitoring is<br>necessary to ensure that favorable<br>conditions are maintained once<br>achieved.     | This technology provides<br>moderate to high reliability<br>based on extraction well up-time<br>and maintenance for the<br>treatment system.                                                                                                                                                                                                                                                | Reliable immobilization over time with proper implementation.                                                                                                                                         | This process will likely have<br>overall reliability in<br>achieving GWPS goals<br>where impacted area<br>remains internal to the site<br>and is adequately<br>monitored.                                                            | The reliability of this<br>technology is limited at depth<br>and by the ability to manage<br>changes in the flow direction<br>and hydraulic head of<br>groundwater.                                         | This technology may<br>not provide reliability<br>in the site-specific<br>lithology due to<br>difficulty in<br>interception<br>groundwater flow<br>though fractured<br>bedrock.                                          | The presence of impacted<br>groundwater below typical root zones<br>would need to be addressed for<br>phytoremediation to be a reliable<br>technology for hydraulic control.<br>Reliable plant species for selenium<br>uptake are more established than for<br>beryllium.                                                              |
| 40 CFR<br>257.96(c)(2)        |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                       |                                                                                                                                                                                                                                      |                                                                                                                                                                                                             |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                        |
| Begin/Complete                | Can begin immediately upon<br>completion of pilot testing and/or<br>bench-scale testing, which may<br>take up to 24 months. Long-term<br>monitoring and reporting likely<br>required.                                                                               | Time needed to model and<br>design may take up to 24<br>months; variable time for<br>construction depending on<br>scale, generally can be<br>accomplished in 6 months.                                                                                                                                                                                                                      | Time needed to model and design<br>may take up to 24 months;<br>variable time for construction<br>depending on scale, generally can<br>be accomplished relatively quickly<br>between 6 and 12 months. | Can begin immediately.<br>Long-term monitoring and<br>reporting likely required.                                                                                                                                                     | Time needed to model and<br>design may take up to 24<br>months. Variable time for<br>construction depending on<br>scale, generally can be<br>accomplished relatively<br>quickly between 6 and 12<br>months. | Time needed to<br>model and design<br>may take up to 24<br>months; variable<br>time for construction<br>depending on scale,<br>generally can be<br>accomplished in 6 to<br>12 months.                                    | Time needed to model and design<br>may take up to 6 months. Pilot testing<br>may be required, which could take up<br>to 3 years. Depending on the number<br>of required units, the installation effort<br>is expected to last several weeks.<br>Full hydraulic capture/control is<br>expected approximately 3 years after<br>planting. |
| 40 CFR<br>257.96(c)(3)        |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                       |                                                                                                                                                                                                                                      |                                                                                                                                                                                                             |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                        |
| Institutional<br>Requirements | Deed restrictions may be<br>necessary until in-situ treatment<br>has achieved GWPS. A new UIC<br>permit (for in-situ injections) would<br>be required to implement this<br>corrective measure. No other<br>institutional requirements are<br>expected at this time. | Depending on the effluent<br>management strategy,<br>modifications to the existing<br>NPDES permit may be required,<br>or obtaining a new underground<br>injection control (UIC) permit<br>may be needed if groundwater<br>reinjection is chosen. In<br>addition, deed restrictions may<br>be required if groundwater<br>conditions are above regulatory<br>standards for unrestricted use. | Deed restrictions may be<br>necessary for groundwater areas<br>downgradient of the stabilized<br>and/or solidified areas. No other<br>institutional requirements are<br>expected at this time.        | MNA may require the<br>implementation of<br>institutional controls, such<br>as deed restrictions, to<br>preclude potential exposure<br>to groundwater within the<br>footprint of impacted<br>groundwater until GWPS<br>are achieved. | Deed restrictions may be<br>necessary for groundwater<br>areas downgradient of the<br>barrier wall until remedial<br>goals are met. No other<br>institutional requirements are<br>expected at this time.    | Deed restrictions<br>may be necessary<br>for groundwater<br>areas upgradient of<br>the PRB (if not<br>installed along the<br>waste boundary).<br>No other institutional<br>requirements are<br>expected at this<br>time. | Deed restrictions may be necessary<br>for groundwater areas upgradient of<br>the phytoremediation area or<br>TreeWell® system. No other<br>institutional requirements are<br>expected at this time.                                                                                                                                    |



#### Table 2. Remedy Evaluation Summary Plant Yates AP-3, A, B, B', and R6 CCR Landfill Georgia Power Company

| Corrective<br>Measure                                 | Geochemical Manipulation<br>(In Situ Injection) Hydraulic Containment                                                                                                                        |                                                                                                                                                                                                                                                                                                                   | In-Situ<br>Stabilization/Solidification<br>(ISS)                                                                                                                                                                                                                                                                                                       | Monitored Natural<br>Attenuation                                                                                                                                                                                                                                                                                             | Subsurface Vertical<br>Barrier Walls                                                                                                                                                                                                                                                                                                                                                                                                                   | Permeable<br>Reactive Barrier                                                                                                                                                                                                                                 | Phytoremediation                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Retained/Screened<br>Out                              | Retained                                                                                                                                                                                     | Retained                                                                                                                                                                                                                                                                                                          | Screened Out                                                                                                                                                                                                                                                                                                                                           | Retained                                                                                                                                                                                                                                                                                                                     | Screened Out                                                                                                                                                                                                                                                                                                                                                                                                                                           | Screened Out                                                                                                                                                                                                                                                  | Retained if needed for future<br>compliance well SSLs downgradient<br>of AP-A/B/B'/3 or R6 CCR Landfill                                                                                                                                                                                                                                                                        |
| Other Env or<br>Public Health<br>Requirements         | None expected at this point. Based<br>on downgradient sampling results<br>near adjacent waterbodies, there<br>currently appear to be no potential<br>receptors downgradient of the<br>units. | Based on downgradient<br>sampling results near adjacent<br>waterbodies, there currently are<br>no complete receptor pathways<br>downgradient of the units.<br>Aboveground treatment<br>components may need to be<br>present for an extended period,<br>generating residuals requiring<br>management and disposal. | None expected at this point.<br>Based on downgradient sampling<br>results near adjacent waterbodies,<br>there currently appear to be no<br>potential receptors downgradient<br>of the unit. Following<br>implementation of ISS, this source<br>control remedy is passive, does<br>not create carbon emissions, and<br>preserves groundwater resources. | Little to no physical<br>disruption to remediation<br>areas and no adverse<br>construction-related impacts<br>are expected on the<br>surrounding community.<br>Based on downgradient<br>sampling results near<br>adjacent waterbodies, there<br>currently are no complete<br>receptor pathways<br>downgradient of the units. | Based on downgradient<br>sampling results near<br>adjacent waterbodies, there<br>currently appear to be no<br>potential receptors<br>downgradient of the unit.<br>Due to the potential need for<br>groundwater extraction<br>associated with barrier walls,<br>aboveground treatment<br>components may need to be<br>present for an extended<br>period, creating carbon<br>emissions and generating<br>residuals requiring<br>management and disposal. | None expected at<br>this point. Based on<br>downgradient<br>sampling results<br>near adjacent<br>waterbodies, there<br>currently are no<br>complete receptor<br>pathways<br>downgradient of the<br>unit. Following<br>installation, the<br>remedy is passive. | None expected at this point. Based<br>on downgradient sampling results<br>near adjacent waterbodies, there<br>currently are no complete receptor<br>pathways downgradient of the units.<br>Innovative and green technology may<br>be positively received by various<br>stakeholders. Following installation,<br>the remedy is passive and does not<br>require external energy. |
| Relative Costs and Screening                          |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                |
| Relative Costs                                        | Moderate costs are associated with this technology.                                                                                                                                          | High costs are associated with this technology (O&M and groundwater disposal).                                                                                                                                                                                                                                    | High costs are associated with this technology <del>.</del>                                                                                                                                                                                                                                                                                            | Relatively lower capital costs are associated with this technology.                                                                                                                                                                                                                                                          | High capital costs are associated with this technology.                                                                                                                                                                                                                                                                                                                                                                                                | High capital costs are associated with this technology.                                                                                                                                                                                                       | Relatively lower costs are associated<br>with this technology. May require<br>periodic harvesting and disposal of<br>plant species.                                                                                                                                                                                                                                            |
| Retaining<br>Technology for<br>Further<br>Evaluation? | Yes                                                                                                                                                                                          | Yes                                                                                                                                                                                                                                                                                                               | No. ISS technology would be<br>difficult to impractical to<br>implement at the scale of the AMA<br>and R6 landfill.                                                                                                                                                                                                                                    | Yes                                                                                                                                                                                                                                                                                                                          | No. Site-specific<br>hydrogeology limits<br>implementability,<br>performance, and<br>effectiveness.                                                                                                                                                                                                                                                                                                                                                    | No. Site-specific<br>hydrogeology limits<br>implementability,<br>performance, and<br>effectiveness.                                                                                                                                                           | Yes                                                                                                                                                                                                                                                                                                                                                                            |

Notes: AMA = Ash Management Area CCR = Coal Combustion Rule

CFR = Code of Federal Regulations

GWPS = Groundwater Protection Standard

MNA = monitored natural attenuation

NPDES = National Pollutant Discharge Elimination System O&M = operation and maintenance

PRB = permeable reactive barrier

SSL = statistically significant level UIC = underground injection control







84°54'40"W 84°54'30"W 84°53'50"W 84°53'40"W 84°53'10"W 84°53'0"W 84°52'50"W 84°55'20"W 84°55'10"W 84°55'0"W 84°54'50"W 84°54'20"W 84°54'10"W 84°54'0"W 84°53'30"W 84°53'20"W

84°55'30"W

84°55'20"W

84°55'10"W

84°55'0"W

84°54'50"W

84°54'40"W

84°54'30"W

84°54'20"W

84°54'10"W

84°54'0"W

84°53'50"W

84°53'40"W

84°53'30"W

84°53'20"W

84°53'10"W

84°53'0"W

84°52'50"W

84°52'30"W 84°52'20"W





- SAPROLITE NETWORK MONITORING  $\bullet$ WELL LOCATION
- TRANSITION NETWORK MONITORING  $\bullet$ WELL LOCATION
- BEDROCK NETWORK MONITORING • WELL LOCATION
- SAPROLITE NON-NETWORK WELL/PIEZOMETER ۲
- TRANSITION NON-NETWORK  $\bigcirc$ WELL/PIEZOMETER
- BEDROCK NON-NETWORK WELL/PIEZOMETER ۲
- PERMITTED UNIT BOUNDARY

#### NOTE:

1. PZ-37D WAS INSTALLED AS A VERTICAL DELINEATION WELL FOR PZ-37 IN APRIL 2021.

2. AERIAL IMAGE SOURCES: NOVEMBER 11, 2020 IMAGERY FLOWN AND PROCESSED BY SAM LLC; NATIONAL AGRICULTURE IMAGERY PROGRAM (NAIP) 2019 IMAGERY.



COORDINATE SYSTEM: NAD 1983 STATEPLANE GEORGIA WEST FIPS 1002 FEET



#### WELL LOCATION MAP



FIGURE 2

84°52'40"W







#### LEGEND:

- EXISTING GRADE
- O PEIZOMETER
- $\pmb{\oplus}$  test boring
- ₩ ABANDONED WELL
- A CROSS-SECTION
  - BOUNDARY PER D&O PLAN
  - ----- EXTENT OF ASH MANAGEMENT AREA FINAL COVER





#### LEGEND:

- ☑ WATER ELEVATION (MARCH 2021)
- WELL SCREEN

#### SAPROLITE:

SILTY SAND - LIGHT BROWN TO TAN FINE-MEDIUM GRAINED SAND WITH SILT. LOOSE CLAYEY SAND - MOTTLED TO BROWN, FINE TO MEDIUM GRAINED SAND WITH CLAY. LOOSE.

#### TRANSITION ZONE:

HIGHLY WEATHERED AND HIGHLY FRACTURED BIOTITE GNEISS, GRANITIC GNEISS, AND MICA SCHIST. FINE TO COARSE SAND AND GRAVEL PRESENT

#### BEDROCK:

BEDROCK (UNDIFFERENTIATED) – UNDIFFERENTIATED BIOTITE GNEISS, GRANITIC GNEISS, AND MICA SCHIST. MODERATELY TO INTENSELY FOLIATED

BIOTITE GNEISS - BIOTITE AND MUSCOVITE GNEISS. MODERATELY TO INTENSELY FOLIATED

#### NOTES:

- 1. WATER ELEVATIONS NOT COLLECTED FOR PZ-37D IN MARCH
- 2021. 2. CROSS SECTION ELEVATIONS ARE MEASURED IN FEET ABOVE MEAN SEA LEVEL (AMSL).

400'

800'







#### LEGEND:

- ☑ WATER ELEVATION (MARCH 2021)
- WELL SCREEN



**ARCADIS** 

6









**Analytical Lab Reports** 

2021 Semiannual Remedy Selection and Design Progress Report Plant Yates AP-3, A, B, B'/R6 CCR Landfill



Pace Analytical Services, LLC 110 Technology Parkway Peachtree Corners, GA 30092 (770)734-4200

March 28, 2021

Ms. Lauren Petty Southern Company 42 Inverness Center Parkway Birmingham, AL 35242

RE: Project: YATES RADS Pace Project No.: 92525905

Dear Ms. Petty:

Enclosed are the analytical results for sample(s) received by the laboratory on March 05, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kein Hung

Kevin Herring kevin.herring@pacelabs.com 1(704)875-9092 HORIZON Database Administrator

Enclosures

cc: Joju Abraham, Georgia Power-CCR Lauren Coker, Georgia Pwer Geoffrey Gay, ARCADIS - Atlanta Kristen Jurinko Kelley Sharpe, ARCADIS - Atlanta Alex Simpson, Arcadis Samantha Thomas Maribel Vital



#### **REPORT OF LABORATORY ANALYSIS**


Pace Analytical Services, LLC 110 Technology Parkway Peachtree Corners, GA 30092 (770)734-4200

### CERTIFICATIONS

Project: YATES RADS Pace Project No.: 92525905

#### Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601 ANAB DOD-ELAP Rad Accreditation #: L2417 Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694 **Delaware Certification** EPA Region 4 DW Rad Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET **Guam Certification** Hawaii Certification Idaho Certification **Illinois Certification** Indiana Certification Iowa Certification #: 391 Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221 Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086 Maine Certification #: 2017020 Maryland Certification #: 308 Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991

Missouri Certification #: 235 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249 Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification Tennessee Certification #: 02867 Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L



Pace Analytical Services, LLC 110 Technology Parkway Peachtree Corners, GA 30092 (770)734-4200

## SAMPLE SUMMARY

Project: YATES RADS Pace Project No.: 92525905

| Lab ID      | Sample ID | Matrix | Date Collected | Date Received  |
|-------------|-----------|--------|----------------|----------------|
| 92525905001 | YAMW-2    | Water  | 03/03/21 14:10 | 03/05/21 09:20 |
| 92525905002 | YAMW-4    | Water  | 03/03/21 13:05 | 03/05/21 09:20 |
| 92525905003 | YAMW-5    | Water  | 03/04/21 14:15 | 03/05/21 09:20 |
| 92525905004 | YAMW-1    | Water  | 03/03/21 15:15 | 03/05/21 09:20 |
| 92525905005 | PZ-35     | Water  | 03/04/21 15:30 | 03/05/21 09:20 |
| 92525905006 | EB1       | Water  | 03/04/21 16:00 | 03/05/21 09:20 |
| 92525905007 | PZ-37     | Water  | 03/04/21 11:55 | 03/05/21 09:20 |



## SAMPLE ANALYTE COUNT

Project:YATES RADSPace Project No.:92525905

| Lab ID      | Sample ID | Method                   | Analysts | Analytes<br>Reported | Laboratory |
|-------------|-----------|--------------------------|----------|----------------------|------------|
| 92525905001 | YAMW-2    | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |           | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |           | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92525905002 | YAMW-4    | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |           | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |           | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92525905003 | YAMW-5    | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |           | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |           | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92525905004 | YAMW-1    | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |           | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |           | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92525905005 | PZ-35     | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |           | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |           | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92525905006 | EB1       | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |           | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |           | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92525905007 | PZ-37     | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |           | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |           | Total Radium Calculation | CMC      | 1                    | PASI-PA    |

PASI-PA = Pace Analytical Services - Greensburg



# SUMMARY OF DETECTION

Project: YATES RADS

Pace Project No.: 92525905

| Lab Sample ID            | Client Sample ID |                                               |       |              |                |            |
|--------------------------|------------------|-----------------------------------------------|-------|--------------|----------------|------------|
| Method                   | Parameters       | Result                                        | Units | Report Limit | Analyzed       | Qualifiers |
| 92525905001              | YAMW-2           |                                               |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.101 ±<br>0.102<br>(0.188)                   | pCi/L |              | 03/25/21 08:50 |            |
| EPA 9320                 | Radium-228       | 0.462 ±<br>0.393<br>(0.795)<br>C:80%<br>T-79% | pCi/L |              | 03/25/21 12:21 |            |
| Total Radium Calculation | Total Radium     | 0.563 ±<br>0.495<br>(0.983)                   | pCi/L |              | 03/26/21 14:34 |            |
| 92525905002              | YAMW-4           |                                               |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.252 ±<br>0.159<br>(0.242)<br>C:72% TNA      | pCi/L |              | 03/25/21 08:50 |            |
| EPA 9320                 | Radium-228       | 0.822 ±<br>0.449<br>(0.823)<br>C:80%<br>T:80% | pCi/L |              | 03/25/21 12:21 |            |
| Total Radium Calculation | Total Radium     | 1.07 ±<br>0.608<br>(1.07)                     | pCi/L |              | 03/26/21 14:34 |            |
| 92525905003              | YAMW-5           |                                               |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.479 ±<br>0.208<br>(0.275)<br>C:84% T:NA     | pCi/L |              | 03/25/21 08:50 |            |
| EPA 9320                 | Radium-228       | 0.979 ±<br>0.406<br>(0.656)<br>C:81%<br>T:89% | pCi/L |              | 03/25/21 12:21 |            |
| Total Radium Calculation | Total Radium     | 1.46 ±<br>0.614<br>(0.931)                    | pCi/L |              | 03/26/21 14:34 |            |
| 92525905004              | YAMW-1           |                                               |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.131 ±<br>0.146<br>(0.301)<br>C:79% T:NA     | pCi/L |              | 03/26/21 08:05 |            |
| EPA 9320                 | Radium-228       | 0.246 ±<br>0.446<br>(0.975)<br>C:81%<br>T:71% | pCi/L |              | 03/23/21 13:46 |            |
| Total Radium Calculation | Total Radium     | 0.377 ±<br>0.592<br>(1.28)                    | pCi/L |              | 03/26/21 14:34 |            |



# SUMMARY OF DETECTION

Project: YATES RADS

Pace Project No.: 92525905

| Lab Sample ID            | Client Sample ID |                                               |       |              |                |            |
|--------------------------|------------------|-----------------------------------------------|-------|--------------|----------------|------------|
| Method                   | Parameters       | Result                                        | Units | Report Limit | Analyzed       | Qualifiers |
| 92525905005              | PZ-35            |                                               |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.131 ±<br>0.116<br>(0.213)<br>C:96% T:NA     | pCi/L |              | 03/26/21 08:05 |            |
| EPA 9320                 | Radium-228       | 0.266 ±<br>0.375<br>(0.806)<br>C:85%<br>T:83% | pCi/L |              | 03/23/21 13:46 |            |
| Total Radium Calculation | Total Radium     | 0.397 ±<br>0.491<br>(1.02)                    | pCi/L |              | 03/26/21 14:34 |            |
| 92525905006              | EB1              |                                               |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.0452 ±<br>0.0923<br>(0.215)<br>C:83% T.NA   | pCi/L |              | 03/26/21 08:05 |            |
| EPA 9320                 | Radium-228       | 0.393 ±<br>0.346<br>(0.695)<br>C:82%<br>T:77% | pCi/L |              | 03/23/21 13:46 |            |
| Total Radium Calculation | Total Radium     | 0.438 ±<br>0.438<br>(0.910)                   | pCi/L |              | 03/26/21 14:34 |            |
| 92525905007              | PZ-37            |                                               |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.868 ±<br>0.271<br>(0.307)<br>C:79% T:NA     | pCi/L |              | 03/26/21 08:10 |            |
| EPA 9320                 | Radium-228       | 0.626 ±<br>0.363<br>(0.662)<br>C:78%<br>T:92% | pCi/L |              | 03/23/21 13:47 |            |
| Total Radium Calculation | Total Radium     | 1.49 ±<br>0.634<br>(0.969)                    | pCi/L |              | 03/26/21 14:34 |            |



Project: YATES RADS

Pace Project No.: 92525905

| Sample: YAMW-2<br>PWS: | Lab ID: 925259<br>Site ID:  | 905001 Collected: 03/03/21 14:10<br>Sample Type: | Received: | 03/05/21 09:20 N | latrix: Water |      |
|------------------------|-----------------------------|--------------------------------------------------|-----------|------------------|---------------|------|
| Parameters             | Method                      | Act ± Unc (MDC) Carr Trac                        | Units     | Analyzed         | CAS No.       | Qual |
|                        | Pace Analytical S           | ervices - Greensburg                             |           |                  |               |      |
| Radium-226             | EPA 9315                    | 0.101 ± 0.102 (0.188)<br>C:85% T:NA              | pCi/L     | 03/25/21 08:50   | 13982-63-3    |      |
|                        | Pace Analytical S           | ervices - Greensburg                             |           |                  |               |      |
| Radium-228             | EPA 9320                    | 0.462 ± 0.393 (0.795)<br>C:80% T:79%             | pCi/L     | 03/25/21 12:21   | 15262-20-1    |      |
|                        | Pace Analytical S           | ervices - Greensburg                             |           |                  |               |      |
| Total Radium           | Total Radium<br>Calculation | 0.563 ± 0.495 (0.983)                            | pCi/L     | 03/26/21 14:34   | 7440-14-4     |      |



Project: YATES RADS

Pace Project No.: 92525905

| Sample: YAMW-4<br>PWS: | Lab ID: 9252<br>Site ID:    | 5905002 Collected: 03/03/21 13:05<br>Sample Type: | Received: | 03/05/21 09:20 M | latrix: Water |      |
|------------------------|-----------------------------|---------------------------------------------------|-----------|------------------|---------------|------|
| Parameters             | Method                      | Act ± Unc (MDC) Carr Trac                         | Units     | Analyzed         | CAS No.       | Qual |
|                        | Pace Analytical             | Services - Greensburg                             |           |                  |               |      |
| Radium-226             | EPA 9315                    | 0.252 ± 0.159 (0.242)<br>C:72% T:NA               | pCi/L     | 03/25/21 08:50   | 13982-63-3    |      |
|                        | Pace Analytical             | Services - Greensburg                             |           |                  |               |      |
| Radium-228             | EPA 9320                    | 0.822 ± 0.449 (0.823)<br>C:80% T:80%              | pCi/L     | 03/25/21 12:21   | 15262-20-1    |      |
|                        | Pace Analytical             | Services - Greensburg                             |           |                  |               |      |
| Total Radium           | Total Radium<br>Calculation | 1.07 ± 0.608 (1.07)                               | pCi/L     | 03/26/21 14:34   | 7440-14-4     |      |



Project: YATES RADS

Pace Project No.: 92525905

| Sample: YAMW-5 | Lab ID: 925259              | 05003 Collected: 03/04/21 14:15      | Received: | 03/05/21 09:20 N | latrix: Water |      |
|----------------|-----------------------------|--------------------------------------|-----------|------------------|---------------|------|
| PWS:           | Site ID:                    | Sample Type:                         |           |                  |               |      |
| Parameters     | Method                      | Act ± Unc (MDC) Carr Trac            | Units     | Analyzed         | CAS No.       | Qual |
|                | Pace Analytical Se          | rvices - Greensburg                  |           |                  |               |      |
| Radium-226     | EPA 9315                    | 0.479 ± 0.208 (0.275)<br>C:84% T:NA  | pCi/L     | 03/25/21 08:50   | 13982-63-3    |      |
|                | Pace Analytical Se          | rvices - Greensburg                  |           |                  |               |      |
| Radium-228     | EPA 9320                    | 0.979 ± 0.406 (0.656)<br>C:81% T:89% | pCi/L     | 03/25/21 12:21   | 15262-20-1    |      |
|                | Pace Analytical Se          | rvices - Greensburg                  |           |                  |               |      |
| Total Radium   | Total Radium<br>Calculation | 1.46 ± 0.614 (0.931)                 | pCi/L     | 03/26/21 14:34   | 7440-14-4     |      |



Project: YATES RADS

Pace Project No.: 92525905

| Sample: YAMW-1<br>PWS: | Lab ID: 925259<br>Site ID:  | 05004 Collected: 03/03/21 15:15<br>Sample Type: | Received: | 03/05/21 09:20 N | latrix: Water |      |
|------------------------|-----------------------------|-------------------------------------------------|-----------|------------------|---------------|------|
| Parameters             | Method                      | Act ± Unc (MDC) Carr Trac                       | Units     | Analyzed         | CAS No.       | Qual |
|                        | Pace Analytical Se          | rvices - Greensburg                             |           |                  |               |      |
| Radium-226             | EPA 9315                    | 0.131 ± 0.146 (0.301)<br>C:79% T:NA             | pCi/L     | 03/26/21 08:05   | 13982-63-3    |      |
|                        | Pace Analytical Se          | rvices - Greensburg                             |           |                  |               |      |
| Radium-228             | EPA 9320                    | 0.246 ± 0.446 (0.975)<br>C:81% T:71%            | pCi/L     | 03/23/21 13:46   | 15262-20-1    |      |
|                        | Pace Analytical Se          | rvices - Greensburg                             |           |                  |               |      |
| Total Radium           | Total Radium<br>Calculation | 0.377 ± 0.592 (1.28)                            | pCi/L     | 03/26/21 14:34   | 7440-14-4     |      |



Project: YATES RADS Pace Project No.: 92525905 Sample: PZ-35 Lab ID: 92525905005 Collected: 03/04/21 15:30 Received: 03/05/21 09:20 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac Parameters Method Units Analyzed CAS No. Qual Pace Analytical Services - Greensburg EPA 9315 0.131 ± 0.116 (0.213) Radium-226 pCi/L 03/26/21 08:05 13982-63-3 C:96% T:NA Pace Analytical Services - Greensburg EPA 9320 0.266 ± 0.375 (0.806) Radium-228 pCi/L 03/23/21 13:46 15262-20-1 C:85% T:83% Pace Analytical Services - Greensburg **Total Radium** Total Radium 0.397 ± 0.491 (1.02) pCi/L 03/26/21 14:34 7440-14-4 Calculation



Project: YATES RADS

| Pace I | Project | No.: | 92525905 |
|--------|---------|------|----------|
|--------|---------|------|----------|

| Sample: EB1  | Lab ID: 9252590             | Collected: 03/04/21 16:00             | Received: | 03/05/21 09:20 N | latrix: Water |      |
|--------------|-----------------------------|---------------------------------------|-----------|------------------|---------------|------|
| PWS:         | Site ID:                    | Sample Type:                          |           |                  |               |      |
| Parameters   | Method                      | Act ± Unc (MDC) Carr Trac             | Units     | Analyzed         | CAS No.       | Qual |
|              | Pace Analytical Serv        | vices - Greensburg                    |           |                  |               |      |
| Radium-226   | EPA 9315                    | 0.0452 ± 0.0923 (0.215)<br>C:83% T:NA | pCi/L     | 03/26/21 08:05   | 13982-63-3    |      |
|              | Pace Analytical Serv        | vices - Greensburg                    |           |                  |               |      |
| Radium-228   | EPA 9320                    | 0.393 ± 0.346 (0.695)<br>C:82% T:77%  | pCi/L     | 03/23/21 13:46   | 15262-20-1    |      |
|              | Pace Analytical Serv        | vices - Greensburg                    |           |                  |               |      |
| Total Radium | Total Radium<br>Calculation | 0.438 ± 0.438 (0.910)                 | pCi/L     | 03/26/21 14:34   | 7440-14-4     |      |



Project: YATES RADS Pace Project No.: 92525905 Sample: PZ-37 Lab ID: 92525905007 Collected: 03/04/21 11:55 Received: 03/05/21 09:20 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac Parameters Method Units Analyzed CAS No. Qual Pace Analytical Services - Greensburg EPA 9315 0.868 ± 0.271 (0.307) Radium-226 pCi/L 03/26/21 08:10 13982-63-3 C:79% T:NA Pace Analytical Services - Greensburg EPA 9320 0.626 ± 0.363 (0.662) Radium-228 pCi/L 03/23/21 13:47 15262-20-1 C:78% T:92% Pace Analytical Services - Greensburg **Total Radium** Total Radium 1.49 ± 0.634 (0.969) pCi/L 03/26/21 14:34 7440-14-4 Calculation



| Project:           | YATES RADS      |                 |                       |                       |                      |            |  |
|--------------------|-----------------|-----------------|-----------------------|-----------------------|----------------------|------------|--|
| Pace Project No.:  | 92525905        |                 |                       |                       |                      |            |  |
| QC Batch:          | 438168          |                 | Analysis Method:      | EPA 9320              |                      |            |  |
| QC Batch Method:   | EPA 9320        |                 | Analysis Description: | tion: 9320 Radium 228 |                      |            |  |
|                    |                 |                 | Laboratory:           | Pace Analytical       | Services - Greensbur | g          |  |
| Associated Lab Sar | mples: 92525905 | 001, 9252590500 | 2, 92525905003        |                       |                      |            |  |
| METHOD BLANK:      | 2115336         |                 | Matrix: Water         |                       |                      |            |  |
| Associated Lab Sar | mples: 92525905 | 001, 9252590500 | 2, 92525905003        |                       |                      |            |  |
| Parar              | meter           | Act ± l         | Inc (MDC) Carr Trac   | Units                 | Analyzed             | Qualifiers |  |
| Radium-228         |                 | 0.0301 ± 0.353  | (0.815) C:79% T:75%   | pCi/L                 | 03/25/21 12:20       |            |  |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:           | YATES RADS                                                       |                  |                    |                 |                      |            |  |
|--------------------|------------------------------------------------------------------|------------------|--------------------|-----------------|----------------------|------------|--|
| Pace Project No.:  | 92525905                                                         |                  |                    |                 |                      |            |  |
| QC Batch:          | 438264                                                           |                  | Analysis Method:   | EPA 9315        |                      |            |  |
| QC Batch Method:   | C Batch Method: EPA 9315 Analysis Description: 9315 Total Radium |                  |                    |                 |                      |            |  |
|                    |                                                                  |                  | Laboratory:        | Pace Analytical | Services - Greensbur | g          |  |
| Associated Lab Sar | mples: 92525905                                                  | 001, 92525905002 | 2, 92525905003     |                 |                      |            |  |
| METHOD BLANK:      | 2115666                                                          |                  | Matrix: Water      |                 |                      |            |  |
| Associated Lab Sar | mples: 92525905                                                  | 001, 92525905002 | 2, 92525905003     |                 |                      |            |  |
| Parar              | neter                                                            | Act ± U          | nc (MDC) Carr Trac | Units           | Analyzed             | Qualifiers |  |
| Radium-226         |                                                                  | 0.0177 ± 0.140 ( | (0.349) C:93% T:NA | pCi/L           | 03/25/21 09:33       |            |  |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:           | YATES RADS      |                                                         |                   |                     |            |  |
|--------------------|-----------------|---------------------------------------------------------|-------------------|---------------------|------------|--|
| Pace Project No.:  | 92525905        |                                                         |                   |                     |            |  |
| QC Batch:          | 438266          | Analysis Method:                                        | EPA 9315          |                     |            |  |
| QC Batch Method:   | EPA 9315        | Analysis Description:                                   | 9315 Total Radiu  | m                   |            |  |
|                    |                 | Laboratory:                                             | Pace Analytical S | ervices - Greensbur | g          |  |
| Associated Lab San | nples: 92525905 | 5004, 92525905005, 92525905006, 9252590500 <sup>°</sup> | 7                 |                     |            |  |
| METHOD BLANK:      | 2115671         | Matrix: Water                                           |                   |                     |            |  |
| Associated Lab San | nples: 92525905 | i004, 92525905005, 92525905006, 9252590500 <sup>°</sup> | 7                 |                     |            |  |
| Paran              | neter           | Act ± Unc (MDC) Carr Trac                               | Units             | Analyzed            | Qualifiers |  |
| Radium-226         |                 | 0.142 ± 0.131 (0.243) C:77% T:NA                        | pCi/L             | 03/26/21 08:05      |            |  |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:           | YATES RADS      |                                            |                                       |                      |            |  |  |  |  |  |
|--------------------|-----------------|--------------------------------------------|---------------------------------------|----------------------|------------|--|--|--|--|--|
| Pace Project No.:  | 92525905        |                                            |                                       |                      |            |  |  |  |  |  |
| QC Batch:          | 438169          | Analysis Method:                           | EPA 9320                              |                      |            |  |  |  |  |  |
| QC Batch Method:   | EPA 9320        | Analysis Description:                      | Analysis Description: 9320 Radium 228 |                      |            |  |  |  |  |  |
|                    |                 | Laboratory:                                | Pace Analytical Se                    | ervices - Greensburg | g          |  |  |  |  |  |
| Associated Lab San | nples: 92525905 | 004, 92525905005, 92525905006, 92525905007 |                                       |                      |            |  |  |  |  |  |
| METHOD BLANK:      | 2115337         | Matrix: Water                              |                                       |                      |            |  |  |  |  |  |
| Associated Lab San | nples: 92525905 | 004, 92525905005, 92525905006, 92525905007 |                                       |                      |            |  |  |  |  |  |
| Paran              | neter           | Act ± Unc (MDC) Carr Trac                  | Units                                 | Analyzed             | Qualifiers |  |  |  |  |  |
| Radium-228         |                 | 0.429 ± 0.325 (0.634) C:80% T:90%          | pCi/L                                 | 03/23/21 13:45       |            |  |  |  |  |  |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### QUALIFIERS

#### Project: YATES RADS Pace Project No.: 92525905

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.



## QUALITY CONTROL DATA CROSS REFERENCE TABLE

| Project:          | YATES RADS |
|-------------------|------------|
| Pace Project No.: | 92525905   |

| Lab ID      | Sample ID | QC Batch Method          | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|-----------|--------------------------|----------|-------------------|---------------------|
| 92525905001 | YAMW-2    | EPA 9315                 | 438264   |                   |                     |
| 92525905002 | YAMW-4    | EPA 9315                 | 438264   |                   |                     |
| 92525905003 | YAMW-5    | EPA 9315                 | 438264   |                   |                     |
| 92525905004 | YAMW-1    | EPA 9315                 | 438266   |                   |                     |
| 92525905005 | PZ-35     | EPA 9315                 | 438266   |                   |                     |
| 92525905006 | EB1       | EPA 9315                 | 438266   |                   |                     |
| 92525905007 | PZ-37     | EPA 9315                 | 438266   |                   |                     |
| 92525905001 | YAMW-2    | EPA 9320                 | 438168   |                   |                     |
| 92525905002 | YAMW-4    | EPA 9320                 | 438168   |                   |                     |
| 92525905003 | YAMW-5    | EPA 9320                 | 438168   |                   |                     |
| 92525905004 | YAMW-1    | EPA 9320                 | 438169   |                   |                     |
| 92525905005 | PZ-35     | EPA 9320                 | 438169   |                   |                     |
| 92525905006 | EB1       | EPA 9320                 | 438169   |                   |                     |
| 92525905007 | PZ-37     | EPA 9320                 | 438169   |                   |                     |
| 92525905001 | YAMW-2    | Total Radium Calculation | 440666   |                   |                     |
| 92525905002 | YAMW-4    | Total Radium Calculation | 440666   |                   |                     |
| 92525905003 | YAMW-5    | Total Radium Calculation | 440666   |                   |                     |
| 92525905004 | YAMW-1    | Total Radium Calculation | 440666   |                   |                     |
| 92525905005 | PZ-35     | Total Radium Calculation | 440666   |                   |                     |
| 92525905006 | EB1       | Total Radium Calculation | 440666   |                   |                     |
| 92525905007 | PZ-37     | Total Radium Calculation | 440666   |                   |                     |

| Contraction the contraction of the contraction                                                               |                                                                                                                         | Document N<br>Sample Condition Line                                                                             | ame:<br>n Receint(SCHR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Document Revised: October 28, 2020                                                                                                                                                                                                  |                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Image: control receiving samples:     Protects result     Protects result     Atlantal:     Kernersville       Sample control receiving samples:     Chent Name:     Project #:     Work:     9252525905       Sample control receiving samples:     Chent Name:     Project #:     Work:     9252525905       Sample control receiving samples:     Date     Date     Biological Tassue Frazent:     J/S/J/J       Sample control receiving samples:     Date     Date     Date     Biological Tassue Frazent:     J/S/J/J       Sample control receiving samples:     Date     Date     Date     Date     Date       Sample control receiving samples:     Date     Date     Date     Date     Date       Sample control receiving samples:     Date     Date     Date     Date     Date       Sample control receiving samples:     Date     Date     Date     Date     Date       Sample control receiving samples:     Date     Date     Date     Date     Date       Sample control receiving samples:     Date     Date     Date     Date     Date       Sample control receiving samples:     Date     Date     Date     Date     Date       Sample control receiving samples receiving s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pace Analytical"                                                                                                        | Document                                                                                                        | No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Issuing Authority:                                                                                                                                                                                                                  |                                        |
| Doratory receiving samples:   sharved edition:   Cleant Name:   Project #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                         | F-CAR-CS-033                                                                                                    | -Rev.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pace Carolinas Quality Office                                                                                                                                                                                                       |                                        |
| Autor and Social States Cleant Name: Project #:   Project #: Project #:   Project #:<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | boratory receiving samples:<br>Asheville Eden Greenwoo                                                                  | d 🔄 Huntersville 🛄                                                                                              | Raleigh M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lechanicsville Atlanta Kerners                                                                                                                                                                                                      | ville                                  |
| urder: Def ds DUPS USPS   Commercial Preac Dother:   acidy Seal Present? Type   Dyseal Present? Type of Les:   Informercial Bubble Wrap   Bubble Bags Elvone   Orrection Factor: Dreft   Iff Gun ID: 2.30   Tremp Corrected PC(: Dreft   Iter Temp: Correction Factor:   A Regulated Soft (  N/A, water sample)   mempers of plants a quarantile access within the United States: CA, NY, or SC (check maps)?   Det samples of present?   Det samples of plants and plants access within the United States: CA, NY, or SC (check maps)?   Det samples of plants and plants access within the United States: CA, NY, or SC (check maps)?   Det samples of plants and plants access within the United States: CA, NY, or SC (check maps)?   Det samples of plants and plants access within the United States: CA, NY, or SC (check maps)?   Det samples of plants and plants access within the United States: CA, NY, or SC (check maps)?   Det samples of plants and plants access within the United States: CA, NY, or SC (check maps)?   Det samples of plants and plants access acc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sample Condition Client Name:<br>Upon Receipt                                                                           | + Power                                                                                                         | Project #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | WO#:92525905                                                                                                                                                                                                                        |                                        |
| cody Seal Present?       Type of les:       Date/Time:         iding Material:       Bubble Wrap       Bubble Bags       Diver         iding Material:       Bubble Wrap       Bubble Bags       Diver         iff RounD:       2.2       Diver       Diver         iff RounD:       2.2       Diver       Diver       Biological Tissue Freezen?         ifer Temp:       Add/Subtract ('Q):       2.1       Diver       Diver       Diver         ifer Temp:       Add/Subtract ('Q):       2.1       Diver       Diver       Diver       Diver         samples of class a forecased ('Q):       Add/Subtract ('Q):       Diver       Diver       Diver       Diver       Diver       Diver         samples of class a fore a sample of class a sample of clasa sample sample of class a sample of classa sample of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | urler: Fed Ex<br>Commercial Pace                                                                                        | UPS USPS<br>Other:                                                                                              | Ident                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 92525905                                                                                                                                                                                                                            |                                        |
| ding Material:       Bubble Wrep       Bubble Bags       Since       Other       Biological Tissue Frozen?         Press       Divertion       Divertion       Divertion       Divertion       Divertion         Press       None       Divertion       Divertion       Divertion       Divertion         Press       Divertion       Add/Subtract (C)       Divertion       Diveri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | cody Seal Present? 🗌 Yes 🛛 🗐 😡                                                                                          | Seals Intact? Yes                                                                                               | <b>□</b> No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Date/Initials Person Examining Contents:                                                                                                                                                                                            | 14                                     |
| momenter:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | king Material: Bubble Wrap                                                                                              | Bubble Bags None                                                                                                | Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Biological Tissue Frozen?                                                                                                                                                                                                           | 1.00                                   |
| Her Temp:       Add/Subtract ("D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rmometer:<br>TR Gun ID: 230<br>Correction                                                                               | Type of Ice:                                                                                                    | Wet Blue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | None                                                                                                                                                                                                                                |                                        |
| AA Regulated Sol (( ) N/A, water sample)       Did samples originate from a foreign source (internationally, including Hawell and Puerto Rico)? [] Yes No         YesNo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ler Temp: Add/Subt                                                                                                      | ract (°C) $\underline{\mathcal{O}}_{1}$                                                                         | " Ten                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | np should be above freezing to 6°C<br>Samples out of temp criteria. Samples on ice, cooli<br>has begun                                                                                                                              | ng process                             |
| Comment/Discrepancy:           Chain of Custody Present?         Qres         No         N/A         1           Samples Arrived within Hold Time?         Qres         No         N/A         2           Short Hold Time Analysis (5/2 hr.)?         Pres         QfeC         N/A         3           Rush Tum Around Time Requested?         Pres         QfeC         N/A         4.           Sufficient Volume?         QfeE         No         N/A         4.           Sufficient Volume?         QfeE         No         N/A         4.           Sufficient Volume?         QfeE         No         N/A         5.           Correct Containers Used?         QfeE         No         N/A         6.           -ace Containers Intact?         QfeE         No         N/A         7.           Dissolved analysis: Samples Field Filtered?         Tres         No         Df/A         9.           -includes Date/Time/ID/Analysis         Matrix:         Mo         N/A         10.         Trip Blank Custody Seals Present?         Pres         No         Qfe/A         11.           Trip Blank Custody Seals Present?         Qres         No         Qfe/A         11.         Trip Blank Custody Seals Present?         Pres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | >A Regulated Soil ( ) N/A, water sample)         samples originate in a quarantine zone within t         Yes         No | he United States: CA, NY, or SC                                                                                 | C (check maps)? Did<br>inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | samples originate from a foreign source (internationaluding Hawaii and Puerto Rico)? Yes                                                                                                                                            | ilty,                                  |
| Chain of Custody Present?       DNO       N/A       1         Samples Arrived within Hold Time?       DVes       N/A       2.         Short Hold Time Analysis (472 hr.)?       DVes       DVes       DVes         Sufficient Volume?       DVes       DVes       DVes         Sufficient Volume?       DYes       DVes       DVes         Correct Containers Used?       DYes       DVes       DVes         -Pace Containers Used?       DYes       DVes       DVes         -Sample Labels Match COC?       DYes       DNo       DV/A       S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                         |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Comments/Discrepancy:                                                                                                                                                                                                               | ************************************** |
| Samples Arrived within Hold Time?       Qiref       No       N/A       2.         Short Hold Time Analysis (c72 hr.)?       Dires       Qiref       N/A       3.         Rush Tum Around Time Requested?       Dires       Qiref       N/A       4.         Sufficient Volume?       Dires       Qiref       N/A       5.         Correct Containers Used?       Dires       Qiref       N/A       6.         -Pace Containers Used?       Diref       No       N/A       6.         -Pace Containers Used?       Diref       No       N/A       7.         Dissolved analysis: Samples Field Filtered?       Diref       No       N/A       8.         Sample Labels Match COC?       Diref       No       N/A       9.         -includes Date/Time/ID/Analysis       Matrix:       M       10.         Trip Blank Present?       Dire       No       Dir/A       11.         Trip Blank Custody Seals Present?       Dire       No       Dir/A       12.         Containers:       Lot ID of split containers:       Lot ID of split containers:       Pres []No         Project Manager SCUER Review:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Chain of Custody Present?                                                                                               | No No                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                     |                                        |
| Short Nold Time Analysis (272 hr.)?   res   dfo   N/A   3.<br>Rush Turn Around Time Requested?   res   dfo   N/A   4.<br>Sufficient Volume?   free   No   N/A   5.<br>Correct Containers Used?   free   No   N/A   5.<br>Correct Containers Used?   free   No   N/A   6.<br>- Pace Containers Used?   free   No   N/A   7.<br>Dissolved analysis: Samples Field Filtered?   Pres   No   Df/A   8.<br>Sample Labels Match COC?   free   No   N/A   9.<br>-includes Date/Time/ID/Analysis Matrix:   //<br>Headspace in VOA Vials [25-6mm]?   Pres   No   Df/A   11.<br>Trip Blank Present?   Pres   No   Df/A   11.<br>Trip Blank Custody Seals Present?   Pres   No   Df/A   12.<br>Lot ID of split containers:<br>EENT NOTIFICATION/RESOLUTION   Date/Time:   Date/Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Samples Arrived within Hold Time?                                                                                       | Byer INO                                                                                                        | <u>□</u> N/A 2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                     |                                        |
| Kush rum Arouns inme Requestedr Ures   Sufficient Volume? Image: State of the state of t                                                                                                         | Short Hold Time Analysis (<72 hr.)?                                                                                     |                                                                                                                 | <u>N/A</u> 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                     | //////                                 |
| Sufficient Volume? Cfree NA 5.<br>Correct Containers Used? Prece Containers Container Conta                                                                                                                                                                                                                                       | Rush Turn Around Time Requested?                                                                                        |                                                                                                                 | <u>UN/A 4.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ann ann an tha ann an tha ann an tha ann an tha tha ann an tha ann an tha tha ann an tha tha ann an tha ann ann<br>Tha ann an tha ann an th | S                                      |
| Correct Containers Used?       Cyres       INA       6.         -Pace Containers Used?       Cyres       INA       6.         Containers Intact?       Cyres       INO       IN/A       7.         Dissolved analysis: Samples Field Filtered?       Cyres       INO       IN/A       7.         Sample tabels Match COC?       Cyres       INO       IN/A       9.         -includes Date/Time/ID/Analysis       Matrix:       W       Includes Date/Time/ID/Analysis       Includes Date/Time/ID/Analysis         Headspace in VOA Vials (>5-6mm)?       Cyres       INO       IN/A       9.         -includes Date/Time/ID/Analysis       Matrix:       W       Includes Date/Time/ID/Analysis       Includes Date/Time/ID/Analysis         Headspace in VOA Vials (>5-6mm)?       Cyres       INO       IN/A       10.         Trip Blank Custody Seals Present?       Cyres       INO       EN/A       Includes Date/Time?         Comments/Sample Discrepancy       Lot ID of split containers:       Includes Containers:       Includes         Project Manager SCURF Review:       Date/Time:       Date/Time:       Includes         Project Manager SEB Badamy       Date/Time:       Date/Time:       Includes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sufficient Volume?                                                                                                      |                                                                                                                 | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ۲۰. ۵۰ می از این                                                                                                                                                                                | 6                                      |
| Containers Intact? Imposed analysis: Samples Field Filtered?   Dissolved analysis: Samples Field Filtered? Imposed analysis: Samples Field Filtered?   Sample Labels Match COC? Imposed analysis: Matrix:   Includes Date/Time/ID/Analysis Matrix:   Headspace In VOA Vials (>5-6mm)? Imposed analysis: Samples Field Filtered?   Trip Blank Custody Seals Present? Imposed                                                                                                                                                                                                                     | Correct Containers Used?<br>-Pace Containers Used?                                                                      |                                                                                                                 | UN/A 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                     |                                        |
| Dissolved analysis: Samples Field Filtered?   Yes_  No   M/A   8.<br>Sample Labels Match COC?   Yes   No   N/A   9.<br>-Includes Date/Time/ID/Analysis Matrix:   W    10.<br>Headspace In VOA Vials [>5-6mm]?   Yes   No   N/A   1.<br>Trip Blank Present?   Yes   No   N/A   1.<br>Trip Blank Custody Seals Present?   Yes   No   Yes   No | Containers Intact?                                                                                                      |                                                                                                                 | □N/A 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                     |                                        |
| Sample Labels Match COC?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dissolved analysis: Samples Field Filtered?                                                                             |                                                                                                                 | ETNIA 8.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                     |                                        |
| -includes Date/Time/ID/Analysis Matrix:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sample Labels Match COC?                                                                                                | TYes No                                                                                                         | □N/A 9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                     | ******                                 |
| Headspace in VOA Vials (>5-6mm)?       IVes       No       IV/A       10.         Trip Blank Present?       IVes       No       IV/A       11.         Trip Blank Custody Seals Present?       IVes       No       IV/A       11.         SOMMENTS/SAMPLE DISCREPANCY       Field Data Required?       IVes       No         Lot ID of split containers:       It is in the interval of                                                                                                                                                                                                                                                                                                                                                 | -Includes Date/Time/ID/Analysis Matrix:                                                                                 | W                                                                                                               | till dill une with labius of which are a set of the set |                                                                                                                                                                                                                                     |                                        |
| Trip Blank Present?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Headspace in VOA Vials (>5-6mm)?                                                                                        | Yes 🗍 No                                                                                                        | 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                     |                                        |
| Trip Blank Custody Seals Present?   OMMENTS/SAMPLE DISCREPANCY   Field Data Required? [Yes ]No Lot ID of split containers: Lot ID of split containers: Person contacted:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Trip Blank Present?                                                                                                     | Yes No                                                                                                          | (IN/A 11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                     |                                        |
| Lot ID of split containers:         IENT NOTIFICATION/RESOLUTION         'erson contacted:         Date/Time:         Project Manager SCURF Review:         Date:         Date:         Date:         Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Trip Blank Custody Seals Present?                                                                                       | QYes No                                                                                                         | Eñ/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Field Data Required? Ye                                                                                                                                                                                                             | s []No                                 |
| IENT NOTIFICATION/RESOLUTION         Person contacted:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                         |                                                                                                                 | Lot ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | of split containers:                                                                                                                                                                                                                |                                        |
| Person contacted: Date/Time: Project Manager SCURF Review: Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IENT NOTIFICATION/RESOLUTION                                                                                            | an a                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                     |                                        |
| Project Manager SCURF Review: Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Person contacted:                                                                                                       |                                                                                                                 | Date/Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                     |                                        |
| Declard Managar SDE Baudauu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Project Manager SCURF Review:                                                                                           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date:                                                                                                                                                                                                                               |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Desta Alexanor PDF Desta                                                                                                | 1000 COLOR 1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date                                                                                                                                                                                                                                |                                        |

| Prove A male direct." | Document Name:<br>Sample Condition Upon Receipt(SCUR) | Document Revised: October 28, 2020<br>Page 2 of 2   |
|-----------------------|-------------------------------------------------------|-----------------------------------------------------|
|                       | Document No.:<br>F-CAR-CS-033-Rev.07                  | Issuing Authority:<br>Pace Carolinas Quality Office |

\*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Project #

WO#:92525905

PM: KLH1 CLIENT: GA-GA Power

Due Date: 03/26/21

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg **\*\*Bottom half of box is to list number of bottles** 

| #Hereit | BP4U-125 mL Plastic Unpreserved (N/A) (CI-) | BP3U-250 mL Plastic Unpreserved (N/A) | BP2U-S00 mL Plastic Unpreserved (N/A) | BP1U-1 liter Plastic Unpreserved (N/A) | <b>BP4S-</b> 125 mL Plastic H2SO4 (pH < 2) (CI-) | BP3N-250 mL plastic HNO3 (pH < 2) | 8042-125 mL Plastic ZN Acetate & NaOH (>9) | BP4C-125 mL Plastic NaOH (pH > 12) (CI-) | WGFU-Wide-mouthed Glass jar Unpreserved | AG1U-1 liter Amber Unpreserved (N/A) (Cl-) | AG1H-1 liter Amber HCl (pH < 2) | AG3U-250 mL Amber Unpreserved (N/A) (CI-) | AG1S-1 liter Amber H2SO4 (pH < 2) | <b>AG3S-</b> 250 mL Amber H2SO4 (pH < 2) | AG3A(DG3A)-250 mL Amber NH4Cl (N/A)(Cl-) | DG9H-40 mL VOA HCI (N/A) | VG9T-40 mL VOA Na2S2O3 (N/A) | VG9U-40 mL VOA Unp (N/A) | DG9P-40 mL VOA H3PO4 (N/A) | VOAK (6 vials per kit)-5035 kit (N/A) | V/GK (3 vials per kit)-VPH/Gas kit (N/A) | SPST-125 mL Sterile Plastic (N/A – lab) | SP2T-250 mL Sterile Plasfic (N/A - lab) | N/N          | BP3A-250 mL Plastic (NH2)2SO4 (9.3-9.7) | AGOU-100 mL Amber Unpreserved vials (N/A) | VSGU-20 mL Scintillation vials (N/A) | DG9U-40 mL Amber Unpreserved vials (N/A) |
|---------|---------------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|--------------------------------------------------|-----------------------------------|--------------------------------------------|------------------------------------------|-----------------------------------------|--------------------------------------------|---------------------------------|-------------------------------------------|-----------------------------------|------------------------------------------|------------------------------------------|--------------------------|------------------------------|--------------------------|----------------------------|---------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------|--------------|-----------------------------------------|-------------------------------------------|--------------------------------------|------------------------------------------|
| 1       | $\square$                                   | 1                                     | 1                                     |                                        | $\sum$                                           | $\mathbb{N}$                      | $\sum$                                     | $\sum$                                   |                                         |                                            | $\sum$                          |                                           | $\sum$                            | $\sum$                                   | $\sum$                                   |                          |                              |                          |                            |                                       |                                          |                                         |                                         | Z            | $\backslash$                            |                                           |                                      |                                          |
| 2       | $\bigwedge$                                 | l                                     | 1                                     |                                        | $\backslash$                                     | X                                 | $\sum$                                     | $\sum$                                   |                                         |                                            | $\backslash$                    |                                           | $\backslash$                      | $\sum$                                   | $\backslash$                             |                          |                              |                          |                            |                                       |                                          |                                         |                                         | à            | $\backslash$                            |                                           |                                      |                                          |
| 3       | $\bigwedge$                                 | (                                     |                                       |                                        | $\backslash$                                     | X                                 | $\backslash$                               | $\backslash$                             |                                         |                                            | $\backslash$                    |                                           | $\backslash$                      | $\backslash$                             | $\backslash$                             |                          |                              |                          |                            |                                       |                                          |                                         |                                         | 2            | $\bigvee$                               |                                           |                                      |                                          |
| 4       | $\backslash$                                | 1                                     | (                                     |                                        | $\backslash$                                     | K                                 | $\backslash$                               | $\backslash$                             |                                         |                                            | $\square$                       |                                           | $\backslash$                      | $\backslash$                             | $\backslash$                             |                          |                              |                          |                            |                                       |                                          |                                         |                                         | A            | $\backslash$                            |                                           |                                      |                                          |
| 5       | $\backslash$                                | 1                                     | l                                     |                                        | $\square$                                        | X                                 | $\backslash$                               | $\backslash$                             |                                         |                                            | $\square$                       |                                           | $\backslash$                      | $\backslash$                             | $\backslash$                             |                          |                              |                          |                            |                                       |                                          |                                         |                                         | X            | $\square$                               |                                           |                                      |                                          |
| 6       | $\backslash$                                | )                                     | l                                     |                                        | $\square$                                        | X                                 | $\sum$                                     | $\mathbf{n}$                             |                                         |                                            | $\backslash$                    |                                           | $\backslash$                      | $\backslash$                             | $\backslash$                             |                          |                              |                          |                            |                                       |                                          |                                         |                                         | 2            | $\square$                               |                                           |                                      |                                          |
| 7       | $\square$                                   | {                                     | ļ                                     |                                        | $\square$                                        | X                                 | $\overline{\ }$                            | $\square$                                |                                         |                                            | $\square$                       |                                           | $\square$                         | $\square$                                | $\square$                                |                          |                              |                          |                            |                                       |                                          |                                         |                                         | X            | $\overline{)}$                          |                                           |                                      |                                          |
| 8       | $\backslash$                                |                                       |                                       |                                        | $\square$                                        | $\overline{)}$                    | $\backslash$                               | $\square$                                |                                         |                                            | $\square$                       |                                           | $\backslash$                      | $\backslash$                             | $\backslash$                             |                          |                              |                          |                            |                                       |                                          |                                         |                                         | $\Box$       | $\overline{\}$                          |                                           |                                      |                                          |
| 9       | $\square$                                   |                                       |                                       |                                        | $\square$                                        | $\square$                         | $\square$                                  | $\backslash$                             | ŀ                                       |                                            | $\square$                       |                                           | $\backslash$                      | $\square$                                | $\square$                                |                          |                              |                          |                            |                                       |                                          | Ì                                       |                                         | $\square$    | $\overline{\}$                          |                                           |                                      |                                          |
| 10      | $\square$                                   |                                       |                                       |                                        | $\square$                                        | $\square$                         | $\square$                                  | $\square$                                |                                         |                                            | $\backslash$                    |                                           | $\backslash$                      | $\square$                                | $\backslash$                             |                          |                              |                          |                            |                                       | T                                        |                                         |                                         |              |                                         |                                           |                                      |                                          |
| 11      | $\square$                                   |                                       |                                       |                                        | $\square$                                        | $\Box$                            | $\square$                                  | $\square$                                |                                         |                                            | $\backslash$                    |                                           | $\backslash$                      | $\bigvee$                                | $\backslash$                             |                          |                              |                          |                            |                                       |                                          |                                         |                                         | $\square$    | $\bigvee$                               |                                           |                                      |                                          |
| 12      | $\backslash$                                |                                       |                                       |                                        | $\backslash$                                     | $\backslash$                      | $\backslash$                               | $\backslash$                             |                                         | ľ                                          | $\backslash$                    |                                           | $\bigvee$                         | $\bigvee$                                |                                          |                          |                              |                          |                            |                                       |                                          |                                         | ľ                                       | $\mathbf{n}$ | $\backslash$                            |                                           |                                      |                                          |

| *************************************** | pH Adjustment Log for Preserved Samples |                 |                            |                               |                                 |       |  |  |  |  |  |
|-----------------------------------------|-----------------------------------------|-----------------|----------------------------|-------------------------------|---------------------------------|-------|--|--|--|--|--|
| Sample ID                               | Type of Preservative                    | pH upon receipt | Date preservation adjusted | Time preservation<br>adjusted | Amount of Preservative<br>added | Lot # |  |  |  |  |  |
|                                         |                                         |                 |                            |                               |                                 |       |  |  |  |  |  |
|                                         |                                         |                 |                            |                               |                                 |       |  |  |  |  |  |
|                                         |                                         |                 |                            |                               |                                 |       |  |  |  |  |  |

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                    |     |                                              |               | 2        | 12 | ö           | 60       | 00          | 7        | တ        | UN .     | *   | ω                                              | (N)     | -          | ITEM #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |         | queste      | jue:          | alt:       | iness:              | mpany.          | pennts              | -tion A       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----|----------------------------------------------|---------------|----------|----|-------------|----------|-------------|----------|----------|----------|-----|------------------------------------------------|---------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|---------|-------------|---------------|------------|---------------------|-----------------|---------------------|---------------|
| Name         Name <th< th=""><th></th><th></th><th></th><th>MICHLOOK.</th><th></th><th></th><th></th><th></th><th></th><th><u>E</u></th><th>PZ.35</th><th>YAMW-1</th><th></th><th>YAMW-5</th><th>YAMWA</th><th>YAWW-2</th><th>SAMPLI<br/>One Character p<br/>(A-Z, G-P<br/>)<br/>Sample kts must</th><th></th><th></th><th>d Due Date:</th><th>(7701334-5526</th><th>A 30114</th><th>1070 Bridge MIII Av</th><th>: Georgia Power</th><th>Cilent Information:</th><th>AVER AVERAGEN</th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |     |                                              | MICHLOOK.     |          |    |             |          |             | <u>E</u> | PZ.35    | YAMW-1   |     | YAMW-5                                         | YAMWA   | YAWW-2     | SAMPLI<br>One Character p<br>(A-Z, G-P<br>)<br>Sample kts must                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                          |         | d Due Date: | (7701334-5526 | A 30114    | 1070 Bridge MIII Av | : Georgia Power | Cilent Information: | AVER AVERAGEN |
| Normal Participant Control         Normal Participant Conteast Conteasteree         Normal Participant Conteast C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |     |                                              | come          |          |    |             |          |             |          |          |          | +   |                                                |         | 10)<br>10) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |         |             | Fax           |            |                     |                 |                     |               |
| Note:         Note: <th< th=""><th></th><th></th><th></th><th>11</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Wrated     Wrated     Wrated</th><th>MATRIXO CODED<br/>Drinning Waterd Dwrd</th><th></th><th>Project #:</th><th>Project Nam</th><th>Puintase O</th><th>Copy To:</th><th>Report To:</th><th>Required Pr</th><th>Conton D</th></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |     |                                              | 11            |          |    |             |          |             |          |          |          |     |                                                |         |            | Wrated     Wrated | MATRIXO CODED<br>Drinning Waterd Dwrd    |         | Project #:  | Project Nam   | Puintase O | Copy To:            | Report To:      | Required Pr         | Conton D      |
| SAURE TYPE         Column         Col                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |     | $\langle \Delta \rangle$                     |               |          |    |             |          |             |          | M        | 3        | 3   | MT                                             | 1       | 15         | MATRIX CODE (see valid co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | odes to jeR)                             |         | 15          | e del *       | 10         |                     | Bec             | oject               |               |
| Name         Section 0           START         Find           START         START           START         START           START         START           START         START <td></td> <td></td> <td></td> <td></td> <td><b></b></td> <td>ļ</td> <td>ļ</td> <td></td> <td>ļ</td> <td>63</td> <td>5</td> <td>0</td> <td>ļļ.</td> <td>-</td> <td>40</td> <td>10.</td> <td>SAMPLE TYPE (G=GRAB</td> <td>C=COMP}</td> <td></td> <td>Take</td> <td></td> <td></td> <td></td> <td>sy Sle</td> <td>Infon</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |     |                                              |               | <b></b>  | ļ  | ļ           |          | ļ           | 63       | 5        | 0        | ļļ. | -                                              | 40      | 10.        | SAMPLE TYPE (G=GRAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C=COMP}                                  |         | Take        |               |            |                     | sy Sle          | Infon               |               |
| Section C         Reservatives         V/N         Reservatives         V/N         Reservatives           NM         Social and social andit and social and social and social andit and social and social an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |     |                                              | ED BY I       |          |    |             |          |             | NA E     | N. I. OK | 100      |     | per light                                      | a fale  | 2010       | DATE ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |         | S KID-AW    |               |            |                     | ever            | mation;             |               |
| Sector 0         Sector 0           In Note: In Note: Sector 0         In Note: Sector 0           In Note: Sector 0         In In Note: Sector 0           In Note: Sector 0         In In Note: Sector 0           In In In Note: Sector 0         In In Note: Sector 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A HA                 |     |                                              | AFFELA        |          |    | 1           |          |             | Ē        | 1530     | SISI     | Π   | IL                                             | 1.<br>K | R.         | ART                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6                                        |         | 5           | :             |            |                     |                 |                     |               |
| Sector C         Sector C           Interest information:         Interest information:           Interest information:         Interest informatinformation:           Inte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LER NAJ<br>RINT Nai  |     |                                              | , Š           |          |    |             |          |             | 15       | <u> </u> |          |     | 10,                                            |         |            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                          |         |             |               |            |                     |                 |                     | The s         |
| Section C         Section C           Name         Samme Tream         Name           Page Trilled Number         Name         Samme Tream         Name           Page Trilled Number         Name         Name         Name         Name           Page Trilled Number         Name         Name         Name         Name         Name           Page Trilled Number         Name         Name         Name         Name         Name         Name           Page Trilled Number         Name         Name </td <td>RE of S</td> <td>┥┥</td> <td>-0</td> <td></td> <td></td> <td> </td> <td></td> <td><u> </u></td> <td></td> <td><b></b></td> <td></td> <td></td> <td></td> <td>+</td> <td></td> <td></td> <td></td> <td>Ø</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Chain</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RE of S              | ┥┥  | -0                                           |               |          |    |             | <u> </u> |             | <b></b>  |          |          |     | +                                              |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ø                                        |         |             |               |            |                     |                 |                     | Chain         |
| R         Seame Televent CoulectIon           mining         Same Televent CoulectIon           mining         Same Contrainers           mining <td>AMPL</td> <td></td> <td>W2</td> <td>DATE</td> <td></td> <td></td> <td></td> <td>ļ</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Mr.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AMPL                 |     | W2                                           | DATE          |          |    |             | ļ        |             |          |          |          |     |                                                |         |            | Mr.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          |         |             |               |            |                     |                 |                     | 5             |
| Barbon C     Market S     Market S       Strington Nume     Strington Nume       Strington Nume     Str                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      | -   | 5                                            |               |          |    |             |          |             |          |          |          |     |                                                |         |            | SAMPLE TEMP AT COLLECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ION                                      |         |             |               |            |                     |                 | 57 14               | usto          |
| A     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X <td>କ୍ରିକ</td> <td></td> <td>5</td> <td>닅</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5</td> <td>S</td> <td>S</td> <td>4</td> <td>10</td> <td>N</td> <td>1 v</td> <td># OF CONTAINERS</td> <td></td> <td>306</td> <td>80</td> <td>306</td> <td>Lidie</td> <td>Comp</td> <td>Allens</td> <td>involc</td> <td>dy is</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | କ୍ରିକ                |     | 5                                            | 닅             |          |    |             |          |             | 5        | S        | S        | 4   | 10                                             | N       | 1 v        | # OF CONTAINERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          | 306     | 80          | 306           | Lidie      | Comp                | Allens          | involc              | dy is         |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | POT                  |     | Ŭ,                                           | ( <b>.</b> Ā. |          |    |             |          |             |          | <u>X</u> | -        | ╟─  |                                                |         |            | H2SO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                        | Profile | - North     | Duote         | 55         | any N               | ð,              | 5 5<br>5 5<br>5 5   | 8 .           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 75 F                 | ╋╸┢ | K                                            |               |          |    |             |          |             | Y        | ×        | ×        | H   | X                                              | X       | ×          | HNO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | P                                        | 39      | 2 Mar       |               |            | ame:                |                 | ă î                 | ធូរ           |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3                    |     | 20                                           |               |          |    |             |          |             |          |          |          |     |                                                |         |            | НСІ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eser                                     | 80T     | nager       |               |            |                     |                 | lon:                | 5             |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | de la                |     | 12                                           |               |          |    |             |          |             | · · · ·  |          |          |     |                                                |         |            | NaOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Vatu                                     | đ       |             |               |            |                     |                 |                     | 2             |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | K                    |     | 2                                            | 8             |          |    | •. <i>v</i> |          |             |          |          |          | 4   | ļ                                              | ļ       |            | Na25203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | les                                      |         | kevin       | Í             |            |                     |                 |                     | ME            |
| Participant     Arriticipant       Image: state of the state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N                    |     | $\mathcal{O}$                                | Gira          |          |    |             |          |             |          |          |          |     |                                                |         |            | Methanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                        |         | .herri      |               |            |                     |                 |                     | 4             |
| $\begin{array}{ c c c } \hline DATE Segmet \\ \hline CUINCY & X \\ \hline X $ |                      |     | 1                                            | BYI           |          |    |             |          |             |          |          |          | L   |                                                | L       |            | Analyzea Tost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          | 11      | Bou         |               |            |                     | l               |                     |               |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | - Concern            |     | 2                                            | t H           |          |    |             |          | 3 S         | ×        | ×        | ×        | ×   | ×                                              | ×       | ×          | TDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                          | 3       | (DCCEH      |               |            |                     |                 |                     | leva          |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TA                   |     | 2                                            | ATIO          |          |    |             |          | <del></del> | ×        | ×        | ×        | ×   | ×                                              | ×       | ×          | CI, F, 904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - ·                                      |         | abs.o       |               |            |                     |                 |                     |               |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E S                  |     | $\mathcal{N}$                                |               |          |    |             |          |             | X        | ×        | ×        | ×   | ×                                              | ×       | ×          | App III/IV Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                          | 8       | ,Â          |               |            |                     |                 |                     | ekds          |
| TEMP in C<br>Received on<br>ceD<br>(V/N)<br>Could of the temp of temp of the temp of t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ped:                 |     | -Lu                                          |               |          |    |             |          |             | ×        | ×        | ×        | ×   | ×                                              | ×       | ×          | RAD 9315/9320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |         |             |               |            |                     |                 |                     | mus           |
| TEMP in C<br>Received on<br>ce<br>CUT C<br>Received on<br>ce<br>CUT C<br>Received on<br>ce<br>CUT C<br>Received on<br>ce<br>CUT C<br>Received on<br>ce<br>CUT C<br>CUT C<br>Received on<br>ce<br>CUT C<br>CUT C<br>Received on<br>ce<br>CUT C<br>CUT C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |     | A                                            |               |          |    |             |          |             |          |          |          |     |                                                |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          | 5       |             |               |            |                     | l               |                     | 8             |
| TEMP In C<br>Received on<br>ceD<br>(V/N)<br>Custody<br>SealedD<br>CoolerD<br>(V/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3                    |     | D'                                           | R.            | <u> </u> |    |             |          |             |          |          |          |     |                                                |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |         |             |               |            |                     |                 |                     | CON           |
| Sealed D     Correction     Sealed D     Sea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>e</u>             |     | -                                            | (TE           |          |    |             |          |             |          |          |          |     |                                                |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>  </b>                                |         |             | H             |            |                     | 1               |                     | nplet         |
| TEMP in C<br>Received on<br>ceD<br>(Y/N)<br>Custody<br>SeatedD<br>CoolerD<br>(Y/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <u>§</u>   -         | ++  | -18                                          |               |          |    |             |          |             |          |          |          |     |                                                |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b> </b>                                 |         |             |               |            |                     |                 |                     | ed a          |
| TEMP In C Received on ceD (Y/N) Custody SealedD CoolerD (Y/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                    |     | 2                                            | į             | _        |    |             |          |             |          |          |          | -   | <u>† – – – – – – – – – – – – – – – – – – –</u> |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          | 3       |             |               |            |                     |                 |                     | 8             |
| TEMP in C<br>Received on<br>cen<br>(Y/N)<br>Custody<br>SealedD<br>CoolerD<br>(Y/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |     |                                              |               |          |    |             |          |             |          |          |          |     | 1                                              |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |         | S.          |               |            |                     | Ę               |                     | atel          |
| Received on centre (1/N)<br>centre (1/N)<br>Custody<br>SealedD<br>CoolerD<br>(/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TEMP in C            |     |                                              |               |          |    |             | 1        |             |          |          |          |     |                                                |         |            | Pasidual Chiedra (VAL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                          |         | 126         |               | Rag        | 9                   | abe.            |                     | y,            |
| $\begin{array}{c cccc} Iccccc} Icccccc} Iccccccccc} Icccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Received on          | ++  |                                              | æ             |          |    |             |          | T           | -        | - 1      | <u> </u> | -   |                                                | -0      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | an a | 0       | t) ) eq     |               | liato      | Ú<br>Q              | ľ               |                     |               |
| Custody<br>SealedD<br>CoolerD<br>(//N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IceD<br>(Y/N)        |     |                                              | E.            |          |    |             |          |             |          | £        | TOT      |     |                                                | Ŧ       | T          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          | ×       | 0000        |               | 2          | (,                  | -               |                     |               |
| Sealed<br>CoolerD<br>(///)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cuslody              | +   | <u>.                                    </u> | 8             |          |    |             |          |             | [        | 2        | ۱×       |     | is                                             | 5       | Ś          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |         | NA.         |               | <b>Bik</b> | 5                   |                 |                     |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sealed()<br>Cooler() |     |                                              | Dig           |          |    |             |          |             |          | 5        | 5        | 1   | 32                                             | 8       | 6          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |         |             |               |            | S.                  | ğ               | 2                   |               |
| Samples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (Y/N)<br>Samples     |     |                                              | 14            |          |    |             |          |             |          | 4        | 2        | 1   |                                                | 0       | 7          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n staan see<br>Pilogen                   |         |             |               |            |                     |                 |                     |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Intactū              |     |                                              | 285           | 2        |    |             |          |             |          |          |          | 1   |                                                |         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                          |         |             |               |            |                     | -               | 1                   |               |

|                                                                    |               |                 |                 | ADOCTICIAL EQUILENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>4</b> |  |                  |                  |         | <b>3</b> |             |                  | S Venters- | 14 YOMO SEA | 13 Marson 62-87 | ITEM #<br>One Character per box.<br>(A.Z. 0-3 /, -<br>)<br>Sample kts must be unique |                                            |                          | puested Due Date:               | me: (770)384-6526 Fax    | alt:             | Jress: 1070 Bridge Mill Ave | Ripany: Georgia Power    | quired Client information:                 | Pace Analytical<br>www.wenus.com                |
|--------------------------------------------------------------------|---------------|-----------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|------------------|------------------|---------|----------|-------------|------------------|------------|-------------|-----------------|--------------------------------------------------------------------------------------|--------------------------------------------|--------------------------|---------------------------------|--------------------------|------------------|-----------------------------|--------------------------|--------------------------------------------|-------------------------------------------------|
| ,                                                                  | 47-an-alter 4 | 191             | 1 hat a the     | RELINCTION OF THE PARTY OF THE |          |  | WT               | WT               | WI      | 5        | WT          | WT               | WT         | WT          | WT 3421         | MATRIX CODE (see valid con<br>SAMPLE TYPE (G=GRAB C                                  | MATRIXE<br>CODE:<br>(55 to left)<br>=COMP) |                          | Project #:                      | Protect Name: Vition AMA | Dimasco Order #- | Copy To:                    | Report To: Becky Steever | Section B<br>Required Project information; |                                                 |
| AMPLER NAME AND SKONATURE                                          |               |                 |                 | FLUTION DATE 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |  |                  |                  |         |          |             |                  |            |             | 122 S           | SAMPLE TEMP AT COLLECTION<br># OF CONTAINERS                                         |                                            |                          | Page P                          | Pace (                   | Addre            | Compa                       | Attend                   | Sectio                                     | CHAIN-OF-CUS                                    |
| athe puptiemin                                                     |               |                 | OVINA/ SI       | ACCEPTED BY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,        |  |                  |                  |         |          |             |                  |            |             |                 | H2SO4<br>HNO3<br>HCI<br>NaOH<br>Na2S2O3<br>Methanol<br>Other                         | Preservatives                              | 0000                     | Project Manager: kevin.herring@ | Quote:                   | SS:              | any Name:                   | ion:                     | on C<br>Information:                       | TODY / Analytical                               |
| DATE Signed: 5.4.7                                                 |               | the the man and | A Part of Broch | STAD SOLUTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |  | X<br>X<br>X<br>X | X<br>X<br>X<br>X | X X X X |          | x<br>x<br>x | ×<br>×<br>×<br>× | X X X X    | X X X X     | X X X X         | Analysee Test<br>TDS<br>Cl, F, SO4<br>App III/IV Metals<br>RAD 9315/9320             |                                            | Receiveral Amelinsic Fit | pacelabs.com,                   |                          |                  |                             |                          |                                            | Request Documer<br>elevant fields must be compl |
| TEMP In C<br>Received on<br>IceO<br>(Y/N)                          |               |                 | 1000            | ine surric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |  |                  |                  |         |          |             | ·····            |            |             |                 | Residual Chlorine (Y/N)                                                              |                                            | GA GA                    | State / Locatio                 |                          | Regulatory Ager  | 0<br>0                      | Faye. 4                  | 0                                          | it<br>ated accurately.                          |
| Cuslòdy<br>Sealed<br>Cooler<br>(Y/N)<br>Samples<br>Intact<br>(Y/N) |               |                 |                 | CONDEDUCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |  |                  |                  |         |          |             |                  |            |             | 5,51            |                                                                                      |                                            | 1                        |                                 |                          |                  | 5                           |                          | 2                                          |                                                 |



Pace Analytical Services, LLC 110 Technology Parkway Peachtree Corners, GA 30092 (770)734-4200

April 07, 2021

Ms. Lauren Petty Southern Company 42 Inverness Center Parkway Birmingham, AL 35242

RE: Project: YATES GPC Pace Project No.: 92531568

Dear Ms. Petty:

Enclosed are the analytical results for sample(s) received by the laboratory on April 07, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Peachtree Corners, GA

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kein Hung

Kevin Herring kevin.herring@pacelabs.com 1(704)875-9092 HORIZON Database Administrator

Enclosures

cc: Joju Abraham, Georgia Power-CCR Lauren Coker, Georgia Pwer Geoffrey Gay, ARCADIS - Atlanta Kristen Jurinko Kelley Sharpe, ARCADIS - Atlanta Alex Simpson, Arcadis Samantha Thomas Maribel Vital





Pace Analytical Services, LLC 110 Technology Parkway Peachtree Corners, GA 30092 (770)734-4200

## CERTIFICATIONS

Project: YATES GPC Pace Project No.: 92531568

#### Pace Analytical Services Peachtree Corners

110 Technology Pkwy, Peachtree Corners, GA 30092 Florida DOH Certification #: E87315 Georgia DW Inorganics Certification #: 812 North Carolina Certification #: 381 South Carolina Certification #: 98011001



## SAMPLE SUMMARY

| Project:<br>Pace Project No | YATES GPC<br>0.: 92531568 |        |                |                |
|-----------------------------|---------------------------|--------|----------------|----------------|
| Lab ID                      | Sample ID                 | Matrix | Date Collected | Date Received  |
| 92531568001                 | PZ-37D (90-100)           | Water  | 04/06/21 17:35 | 04/07/21 08:12 |



## SAMPLE ANALYTE COUNT

| Project:          | YATES GPC |
|-------------------|-----------|
| Pace Proiect No.: | 92531568  |

| Lab ID      | Sample ID       | Method    | Analysts | Analytes<br>Reported |
|-------------|-----------------|-----------|----------|----------------------|
| 92531568001 | PZ-37D (90-100) | EPA 6020B | CW1      | 2                    |

PASI-GA = Pace Analytical Services - Peachtree Corners, GA



## SUMMARY OF DETECTION

| Project:          | YATES GPC        |        |       |              |                |            |
|-------------------|------------------|--------|-------|--------------|----------------|------------|
| Pace Project No.: | 92531568         |        |       |              |                |            |
| Lab Sample ID     | Client Sample ID |        |       |              |                |            |
| Method            | Parameters       | Result | Units | Report Limit | Analyzed       | Qualifiers |
| 92531568001       | PZ-37D (90-100)  |        |       |              |                |            |
| EPA 6020B         | Boron            | 5.6    | mg/L  | 0.20         | 04/07/21 14:26 |            |
| EPA 6020B         | Selenium         | 0.14   | mg/L  | 0.0050       | 04/07/21 14:20 |            |



## ANALYTICAL RESULTS

Project: YATES GPC

Pace Project No.: 92531568

| Sample: PZ-37D (90-100) | Lab ID:                | 92531568001                       | Collected                 | d: 04/06/21               | 17:35         | Received: 04/  | 07/21 08:12 Ma | atrix: Water |      |
|-------------------------|------------------------|-----------------------------------|---------------------------|---------------------------|---------------|----------------|----------------|--------------|------|
|                         |                        |                                   | Report                    |                           |               |                |                |              |      |
| Parameters              | Results                | Units                             | Limit                     | MDL                       | DF            | Prepared       | Analyzed       | CAS No.      | Qual |
| 6020 MET ICPMS          | Analytical<br>Pace Ana | Method: EPA 6<br>lytical Services | 020B Prepa<br>- Peachtree | aration Met<br>Corners, C | hod: EP<br>GA | PA 3005A       |                |              |      |
| Boron                   | 5.6                    | mg/L                              | 0.20                      | 0.026                     | 5             | 04/07/21 10:10 | 04/07/21 14:26 | 7440-42-8    |      |
| Selenium                | 0.14                   | mg/L                              | 0.0050                    | 0.0016                    | 1             | 04/07/21 10:10 | 04/07/21 14:20 | 7782-49-2    |      |



## **QUALITY CONTROL DATA**

| Project:           | YATES GPC        |              |       |            |           |            |            |              |             |           |     |      |
|--------------------|------------------|--------------|-------|------------|-----------|------------|------------|--------------|-------------|-----------|-----|------|
| Pace Project No.:  | 92531568         |              |       |            |           |            |            |              |             |           |     |      |
| QC Batch:          | 611988           |              | Anal  | ysis Metho | od:       | EPA 6020B  |            |              |             |           |     |      |
| QC Batch Method:   | EPA 3005A        |              | Anal  | ysis Desci | ription:  | 6020 MET   |            |              |             |           |     |      |
|                    |                  |              | Labo  | oratory:   |           | Pace Analy | tical Serv | ices - Peach | ntree Corne | rs, GA    |     |      |
| Associated Lab Sar | nples: 925315680 | 001          |       |            |           |            |            |              |             |           |     |      |
| METHOD BLANK:      | 3221312          |              |       | Matrix: V  | Vater     |            |            |              |             |           |     |      |
| Associated Lab Sar | nples: 925315680 | 001          |       |            |           |            |            |              |             |           |     |      |
|                    |                  |              | Bla   | nk         | Reporting |            |            |              |             |           |     |      |
| Parar              | neter            | Units        | Res   | ult        | Limit     | MD         | L          | Analyzec     | l Qi        | ualifiers |     |      |
| Boron              |                  | mg/L         | 0     | .0063J     | 0.04      | 0 (        | 0.0052     | 04/07/21 13  | :45         |           |     |      |
| Selenium           |                  | mg/L         |       | ND         | 0.005     | 60 (       | 0.0016     | 04/07/21 13  | :45         |           |     |      |
| LABORATORY CO      | NTROL SAMPLE:    | 3221313      |       |            |           |            |            |              |             |           |     |      |
|                    |                  |              | Spike | L          | CS        | LCS        | %          | Rec          |             |           |     |      |
| Parar              | neter            | Units        | Conc. | Re         | esult     | % Rec      | Lii        | mits         | Qualifiers  |           |     |      |
| Boron              |                  | mg/L         |       | 1          | 1.0       | 10         | 4          | 80-120       |             | _         |     |      |
| Selenium           |                  | mg/L         | 0     | .1         | 0.10      | 10         | 2          | 80-120       |             |           |     |      |
| MATRIX SPIKE & N   | ATRIX SPIKE DUP  | LICATE: 3221 | 314   |            | 3221315   | 5          |            |              |             |           |     |      |
|                    |                  |              | MS    | MSD        |           |            |            |              |             |           |     |      |
|                    |                  | 92531064001  | Spike | Spike      | MS        | MSD        | MS         | MSD          | % Rec       |           | Max |      |
| Paramete           | r Units          | Result       | Conc. | Conc.      | Result    | Result     | % Rec      | % Rec        | Limits      | RPD       | RPD | Qual |
| Boron              | mg/L             | ND           | 1     | 1          | 1.0       | 1.1        | 10         | 2 109        | 9 75-125    | 6         | 20  |      |
| Selenium           | mg/L             | ND           | 0.1   | 0.1        | 0.11      | 0.10       | 10         | 5 103        | 3 75-125    | 2         | 20  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### QUALIFIERS

Project: YATES GPC Pace Project No.: 92531568

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.



## QUALITY CONTROL DATA CROSS REFERENCE TABLE

| Project:<br>Pace Project No.: | YATES GPC<br>92531568 |                 |          |                   |                     |
|-------------------------------|-----------------------|-----------------|----------|-------------------|---------------------|
| Lab ID                        | Sample ID             | QC Batch Method | QC Batch | Analytical Method | Analytical<br>Batch |
| 92531568001                   | PZ-37D (90-100)       | EPA 3005A       | 611988   | EPA 6020B         | 612061              |

| Paratini                                                                                                              | Document N<br>Sample Condition Upon   | lame:<br>n Receipt(SC | UR)           | Document Revised October 28, 2020<br>Page 1 of 2                                                                 |
|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------|---------------|------------------------------------------------------------------------------------------------------------------|
| Pace Analytical                                                                                                       | Document                              | No.:                  |               | Issuing Authority:                                                                                               |
| aboratory receiving samples:                                                                                          | F*CAA*C3-055                          | -Nev.07               |               | Pace Carolinas Quarty Onice                                                                                      |
| Asheville Eden Greenwood                                                                                              |                                       | Rateigh               |               | techanicsville Atlanta Kernersville                                                                              |
| Sample Condition<br>Upon Receipt                                                                                      | Wer - Ara                             | Pr                    | oject #:<br>- | WO#:92531568                                                                                                     |
| Commercial Pace                                                                                                       | PS USPS<br>Other                      | Etaier                | st.           | 92531568                                                                                                         |
| ustody Seal Present? □Yes 문화한 또                                                                                       | Seals Intact? . 🔲 Yes                 | No                    |               | Date/Initials Person Examining Contents: 4/7/21 KPW                                                              |
| scking Material: Doubble Wrap [                                                                                       | Bubble Bags None                      | Oth Oth               | ier           | Biological Tissue Frozen?                                                                                        |
| [] IR Gun ID: _230_                                                                                                   | Type of Ice:                          | Wet 🔲 Blu             | ie C          | None                                                                                                             |
| ooler Temp: 2.7 Correction 1<br>Add/Subtra<br>ooler Temp Corrected (°C):<br>ISDA Regulated Soil (FTN7A, water sample) | Factor: 0                             | -                     | Te            | mp should be above freezing to 6°C<br>Samples out of temp criteria. Samples on ice, cooling process<br>has begun |
| id samples originate in a quarantine zone within th                                                                   | e United States: CA, NY, or So        | C (check map          | is)? Di<br>in | d samples originate from a foreign source (internationally,<br>cluding Hawaii and Puerto Rico)? []Yes []No       |
| Chain of Custody Present?                                                                                             | - PTivac □ No.                        |                       |               | Comments/ Discrepancy;                                                                                           |
| Samples Arrived within Hold Time?                                                                                     |                                       |                       | <br>          |                                                                                                                  |
| Short Hold Time Analysis (<72 hr.)?                                                                                   |                                       |                       | 3             |                                                                                                                  |
| Rush Turn Around Time Requested?                                                                                      | ATTA Dile                             |                       | 4             |                                                                                                                  |
| Sufficient Volume?                                                                                                    |                                       |                       |               |                                                                                                                  |
| Correct Containers Used?                                                                                              |                                       |                       | 5.<br>c       |                                                                                                                  |
| -Pace Containers Used?                                                                                                |                                       |                       | 0.            |                                                                                                                  |
| Containers Intact?                                                                                                    | CETTes DNO                            |                       | 7.            | 2                                                                                                                |
| Dissolved analysis: Samples Field Filtered?                                                                           | Yes No                                | 8 Parta               | 8.            |                                                                                                                  |
| Sample Labels Match COC?                                                                                              | Zes DNO                               |                       | 9.            |                                                                                                                  |
| -Includes Date/Time/ID/Analysis Matrix:                                                                               | W                                     |                       |               |                                                                                                                  |
| Headspace in VOA Vials (>5-6mm)?                                                                                      | Yes No                                | TAHA                  | 10.           |                                                                                                                  |
| Trip Blank Present?                                                                                                   | Yes No                                |                       | 11.           |                                                                                                                  |
| COMMENTS/SAMPLE DISCREPANCY                                                                                           | LIYes LINO                            | <u>104</u>            | I             | Field Data Required? Yes No                                                                                      |
|                                                                                                                       | · · · · · · · · · · · · · · · · · · · |                       |               | k                                                                                                                |
|                                                                                                                       |                                       | ·····                 |               | ID 6 - 14                                                                                                        |
| CLIENT NOTIFICATION/RESOLUTION                                                                                        |                                       |                       | Lot           | D of split containers:                                                                                           |
|                                                                                                                       | 2                                     |                       |               |                                                                                                                  |
| Person contacted:                                                                                                     |                                       | Date/T                | ime:          |                                                                                                                  |
| Project Manager SCURF Review:                                                                                         |                                       |                       |               | Date:                                                                                                            |
| Project Manager SRF Review:                                                                                           |                                       |                       |               | Date:                                                                                                            |

|                                          |                                                | Ő                                     | Pace                                    | Anal                                     | yticai                             | ı.                                         |                                          |                                           | Samp                                       | ole Co<br>F-                     | Docu<br>nditic<br>Doc<br>CAR-              | ment<br>on Up<br>umer<br>CS-03     | Nam<br>on Ra<br>t No.<br>3-Ray     | e:<br>eceipt<br>:<br>/.07                | (3CU                      | R)                            |                                                                | Docu                           | ment<br>I<br>Pace (                   | Revis<br>Pa<br>Issuin<br>Iarolli         | ge 2 c<br>ge 2 c<br>g Aut<br>nas Q      | ictobe<br>of 2<br>hority<br>uality      | ar 23.<br>/<br>/ Offic | 2010<br>e                              |                                              |                                       |                                          |
|------------------------------------------|------------------------------------------------|---------------------------------------|-----------------------------------------|------------------------------------------|------------------------------------|--------------------------------------------|------------------------------------------|-------------------------------------------|--------------------------------------------|----------------------------------|--------------------------------------------|------------------------------------|------------------------------------|------------------------------------------|---------------------------|-------------------------------|----------------------------------------------------------------|--------------------------------|---------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------|------------------------|----------------------------------------|----------------------------------------------|---------------------------------------|------------------------------------------|
| *Che<br>verifi<br>samp<br>Except<br>**Bo | ck ma<br>ied an<br>oles.<br>tions: Vi<br>ottom | rk to<br>d wit<br>0A, Co<br>half (    | p ha<br>thin<br>liforn<br>of be         | lf of<br>the a<br>n, TOC<br>ox is        | box<br>accer<br>;, oil a<br>to lis | if photan<br>nd Gr                         | t and<br>ce ra<br>rease,<br>ambi         | d/or<br>inge<br>DRO,<br>er of             | dect<br>for (<br>/8015<br>boti             | nlorin<br>prese<br>(wate<br>tles | natio<br>erval<br>n co                     | on is<br>tion<br>c. เมร            | 3                                  | 1                                        | Pro]                      | ect#                          | PC                                                             |                                |                                       | : 9<br>GA-                               | <b>2</b> 5                              | 53<br>Due<br>Powe                       | 15<br>Dat              | 56<br>te:                              | <b>8</b><br>04/                              | 08/2                                  | 21                                       |
| tem# (N/A) (CI-) (CI-)                   | BP3U-250 mL Plastic Unpreserved (N/A)          | BP2U-500 mL Plastic Unpreserved (N/A) | BP1U-1 liter Plastic Unpreserveri (N/A) | BP4S-125 mL Plastic H2SO4 (pH < 2) {CI+} | BP3N-250 mL plastic HNO3 (pH < 2)  | 8P42-125 mL Plastic ZN Acetate & NaOH (>9) | 8P4C-125 mL Plastic NaOH (pH > 12) (Cl-) | WGFU-Witle-minuthed Glass jar Unpreserved | AG1U-1 liter Amber Unpreserved (N/A) (CI-) | AG1H-1 liter Amber HCl (pH < 2)  | AGBU-250 uit Amber Unpreserved (N/A) (CI-) | a615-4 liter Anther H25O4 (pH < 2) | AG35-2530 ntL Amber H25O4 (pH < 2) | AG3A(DG3A)-250 mL Amber NHACI (N/A)(CI-) | 06911-40 mt VOA HCI (N/A) | VG9T-AD INL VOA Na25203 (N/A) | עניטעריאט אין אין אראס אין | DG9P-40) INL VOA FI 3PO4 (N/A) | VOAK (6 vials per kit)-5075 kit (N/A) | V/GK (3 vials per kit)-VPH/Gas kit (N/A) | SP5T-125 mL Sterile Plastic (N/A - lat) | SP2T-25() mL Sterile Physic (N/A – Iab) |                        | BP3A-250 mL Plavic (NH2)2504 (9.3-9.7) | AGOU-100 niL Aminer Umpreserveri vials (N/A) | VSGU-20 ntL Scintillation vials (N/A) | DG9U-40 mL Amber Unpreserved vials (N/A) |
| 1                                        | 1                                              |                                       |                                         | K                                        | 2                                  | K                                          | N                                        | Ţ                                         |                                            | X                                |                                            | N                                  | K                                  | 1                                        |                           |                               |                                                                | 1                              |                                       | 1                                        | 1                                       | Ì                                       | N                      | K                                      |                                              |                                       |                                          |
|                                          | J                                              |                                       | 1                                       | N                                        | N                                  | N                                          | N                                        |                                           |                                            | N                                |                                            | Ì`.                                |                                    | 1                                        |                           |                               |                                                                |                                |                                       | I                                        |                                         |                                         | $\left \right\rangle$  |                                        |                                              |                                       |                                          |
| N                                        | V                                              |                                       |                                         | K                                        | K                                  | N                                          | N                                        |                                           |                                            | N                                |                                            | 1                                  | $\left  \right\rangle$             |                                          |                           | -                             | 5                                                              |                                |                                       |                                          | 1                                       |                                         |                        | $\mathbb{N}$                           |                                              |                                       |                                          |
| 1                                        |                                                |                                       |                                         | 1                                        | $\square$                          | N                                          | N                                        |                                           |                                            | N                                |                                            | Ň                                  | N.                                 |                                          |                           |                               |                                                                |                                | 1                                     |                                          |                                         |                                         | $\square$              | $\mathbb{N}$                           |                                              | [                                     |                                          |
| N                                        | 1                                              |                                       |                                         | $\overline{\langle}$                     | N                                  | N                                          | N                                        |                                           |                                            | N                                |                                            |                                    | N                                  | N                                        |                           |                               | A NAME AND A DESCRIPTION OF                                    | 1                              | 1                                     |                                          |                                         |                                         | 1                      | N                                      |                                              | 1                                     |                                          |
| 5                                        |                                                |                                       |                                         | N                                        | N                                  | N                                          | N                                        |                                           |                                            | N                                |                                            | N                                  | N                                  | 1                                        |                           |                               |                                                                |                                |                                       | -                                        |                                         |                                         | N                      | $\sum_{i=1}^{n}$                       |                                              |                                       |                                          |
| 7                                        |                                                |                                       |                                         | N                                        | N                                  | N                                          | N                                        |                                           |                                            | N                                |                                            | 1                                  | N                                  | A                                        |                           |                               |                                                                |                                |                                       | -                                        |                                         |                                         | D                      | 1                                      |                                              |                                       |                                          |
| 8                                        |                                                |                                       |                                         | N                                        | N                                  | N                                          | N                                        |                                           |                                            | N                                |                                            | N                                  | N                                  | N                                        | Ţ                         |                               |                                                                |                                |                                       | 1                                        |                                         |                                         | $\square$              | N                                      |                                              |                                       |                                          |
| 9                                        | V                                              |                                       |                                         | X                                        | N                                  | N                                          | N                                        |                                           |                                            | N                                | T                                          | N                                  | N                                  | N                                        | J                         |                               |                                                                |                                |                                       |                                          |                                         | -                                       |                        | N                                      |                                              |                                       |                                          |
| 10                                       | J                                              |                                       |                                         | K                                        | Ň                                  | N                                          | N                                        | Ţ                                         |                                            | N                                | T                                          | N                                  | N                                  | N                                        |                           |                               |                                                                |                                |                                       |                                          |                                         |                                         | N                      | 1                                      |                                              |                                       |                                          |
| 11                                       |                                                |                                       |                                         | N                                        | V                                  | N                                          | V                                        | Ţ                                         |                                            | N                                | J                                          | N                                  | N                                  | $\square$                                |                           |                               |                                                                |                                |                                       |                                          |                                         |                                         | $\square$              |                                        |                                              |                                       |                                          |
| 12                                       |                                                |                                       |                                         | N                                        | N                                  | N                                          | N                                        | Ţ                                         | 1                                          | N                                |                                            | 1                                  | N                                  | N                                        |                           |                               |                                                                |                                | 1                                     | -                                        |                                         |                                         | N                      | N                                      |                                              |                                       |                                          |

|           |                      | pH Ad           | ljustment Log for Pres     | erved Samples                 |                                 |       |
|-----------|----------------------|-----------------|----------------------------|-------------------------------|---------------------------------|-------|
| Sample ID | Type of Preservative | pH upon receipt | Date preservation adjusted | Time preservation<br>adjusted | Amount of Preservative<br>added | Lat ¥ |
|           | -                    | N               |                            |                               |                                 |       |
|           |                      |                 |                            |                               |                                 |       |
|           |                      |                 |                            |                               |                                 |       |

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp. Incorrect containers

•

|                                                                           |        |       | RTAT |              | N |     | 5 | 8   | 60 | 4                 | 8 | 0. |       | ۵    | Ŋ             | -      | ITEM#                                                                                                            | 2                                      |                | Tueste         | all:  | tetta, (           | iness:          | npany          | nuined              |                 |
|---------------------------------------------------------------------------|--------|-------|------|--------------|---|-----|---|-----|----|-------------------|---|----|-------|------|---------------|--------|------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------|----------------|-------|--------------------|-----------------|----------------|---------------------|-----------------|
|                                                                           |        |       |      | ADDITIO      |   |     |   |     |    |                   |   |    |       |      |               | 15.7d  | SAMP<br>One Charact<br>(A.Z. )<br>Sample Ids m                                                                   |                                        |                | Due Date: DA   |       | SA 30008           | 1754 Kimberty b | Arcadis (GA Po | Client Information: | Face Analytical |
| ť.                                                                        |        |       |      | WL COMBRENTS |   |     |   |     |    |                   |   |    | -     |      |               | 0-(9-1 | r per box.<br>4) /                                                                                               |                                        |                | AL DEL         | F     |                    | r. SW           | NCr)           |                     |                 |
|                                                                           |        |       | 6    |              |   |     |   |     |    |                   |   |    | - 2 % | 3    | 0 82 U.S. 100 | 8      | Ummang wateru u w<br>Wateru wateru w<br>Protosu pr<br>Souksond st<br>Otheru w<br>Akrc w<br>Treste 13             | MATHAXE C                              |                | Project        | Purch | ised               | Copy            | Repor          | Secto               |                 |
|                                                                           |        |       | TAT  |              |   |     |   |     | 1  | in characteristic | 1 |    | 5100  | set. |               |        | - acgho-825                                                                                                      | N N                                    |                | #:             | Se Or | Å                  | To: (           | To:            | 3.0                 |                 |
|                                                                           |        |       | E    |              |   |     |   |     |    |                   |   |    |       |      |               | E      | MATRIX CODE (see valid cod                                                                                       | es to left)                            |                | E Kard         | ier i | 3                  | 3               | Ga             | t                   |                 |
|                                                                           |        |       | F    | MISH         |   | -   | - |     |    |                   | - | _  |       |      | _             | 5      | SAMPLE TYPE (G=GRAB C                                                                                            | COMP)                                  |                | rrates         |       | S                  | -               | M              |                     |                 |
| 1 124                                                                     |        |       | AND  | ED BY I M    |   |     |   |     |    |                   |   |    |       |      |               | MON    | STA                                                                                                              |                                        |                | 5              | 10    | A P                | 1               | lord           | nation:             |                 |
| PRIN                                                                      | AMPLER |       | Two  | FRIATION     |   |     |   |     |    |                   |   |    |       |      |               | 135    | TIME                                                                                                             | COLLE                                  |                | 3              |       | 582                | 1               |                |                     |                 |
| T Name o                                                                  | NAME   |       | 8    |              |   |     |   |     |    |                   |   |    |       |      |               | 440    | DATE                                                                                                             | CTED                                   |                | 5              |       | N.                 | 62270           |                |                     | The Cha         |
| I SAN                                                                     |        |       | 3    | 2            |   |     |   |     |    |                   |   |    |       |      | ľ             | L      | TIM                                                                                                              |                                        |                | S              |       | or                 | 2               |                |                     | an-o            |
|                                                                           |        |       | E    | æ            |   |     |   |     |    |                   |   |    |       |      |               | J.     |                                                                                                                  |                                        |                | 1              |       | 1                  | 1               |                |                     | P P             |
|                                                                           |        |       | 8    | 12.2         |   |     | - | -   |    |                   |   |    |       | -    | -             | 4      | # OF CONTAINERS                                                                                                  |                                        |                | 312            | 13    | λ                  | 췱               | Σ              |                     | sto -           |
| 31                                                                        |        |       | ĩ    |              |   |     |   |     |    |                   |   |    | _     |      |               | -      | Unpreserved                                                                                                      | T                                      |                |                | 0.00  | dress              | mpa             | lento          | ction               | N N             |
| 2                                                                         |        |       | 1    | H I          |   |     |   |     |    |                   |   |    |       |      |               | -      | H2\$04                                                                                                           | 1                                      |                | offect         | uote: | "                  | NA              | 2              | Ĩ                   | Ĩ.              |
| -                                                                         |        |       | 4    |              |   |     |   |     |    |                   |   |    |       |      |               |        | HNO3                                                                                                             | P                                      |                | Man            |       |                    | 3               |                |                     | GAL             |
| 5                                                                         |        | -     | 1    |              |   |     |   |     |    |                   |   |    |       |      |               |        | нсі                                                                                                              | isen                                   |                | ger            |       |                    |                 | 1              | í                   | 8:              |
| =                                                                         | 4      |       | 2    | 1510         |   |     |   |     |    |                   |   |    |       |      |               |        | NaOH                                                                                                             | ativ                                   | ľ              | •              |       |                    |                 |                |                     | ĕ 5             |
| 8                                                                         | No.    |       | 1    | 6            |   | _   |   |     |    |                   |   |    |       |      | _             |        | Na282O3                                                                                                          | es                                     |                | kevin          |       |                    | 1               |                |                     | ME              |
| à                                                                         |        | 0     | 2    | đ            |   |     |   |     |    |                   | _ |    |       |      |               | -      | Methanol                                                                                                         |                                        |                | hem            |       |                    |                 | 1              |                     |                 |
|                                                                           |        |       | 2    | BYI          |   |     |   | _   |    |                   |   |    | -     |      |               | -      | Other Anabiana Test                                                                                              | VIN                                    | 南部             | NO             | {     |                    |                 |                |                     |                 |
|                                                                           |        |       | 32   | E            | - |     |   |     |    | -                 | - |    | -     |      | -             |        | Se. Bo                                                                                                           | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. |                | acel           |       |                    | 1               | 1              |                     | teva Re         |
| 1                                                                         |        |       | 1    | , A          |   |     | - |     |    | -                 |   |    | -     |      | -             | $\sim$ |                                                                                                                  |                                        | the state      | abs.o          |       |                    |                 |                |                     | a qu            |
|                                                                           | 10     |       | 2    |              |   |     |   |     |    | -                 |   |    |       |      |               |        |                                                                                                                  |                                        | ê              | ,              |       |                    |                 | 1              |                     | elds            |
| 1.                                                                        |        |       | 6    | 101          |   |     |   |     |    |                   |   |    |       |      |               |        |                                                                                                                  |                                        | Salbe          |                |       |                    |                 |                |                     |                 |
|                                                                           |        |       |      | 國家           |   |     |   |     |    |                   |   |    |       |      |               |        |                                                                                                                  |                                        | à              |                | 1     |                    |                 | 1              |                     |                 |
|                                                                           |        | 1     | 4    |              |   |     |   |     |    |                   |   |    | _     | _    | _             |        |                                                                                                                  |                                        | Uysts          | 1              |       |                    |                 |                |                     | i i i           |
|                                                                           |        | -     | 4    | à            |   |     |   | _   |    |                   |   |    | _     |      |               | _      |                                                                                                                  |                                        | 3              | -              | Ц     | 4                  |                 | 1              |                     | nple <b>C</b>   |
|                                                                           |        | + + + | 2    | 対議           |   |     |   |     |    |                   | - |    |       |      | _             | _      |                                                                                                                  |                                        | Z              | 12             |       | 調査                 |                 |                |                     | ied "           |
|                                                                           |        |       | 2    | 3            |   |     |   | _   |    |                   |   | -  |       | -+   | +             | -      | and the second |                                        | NAN D          |                |       | 院長い                |                 |                |                     | 8               |
|                                                                           | 3      |       | ū    | R            | - |     |   | ·   | -  |                   |   |    | _     |      | -             | -      |                                                                                                                  |                                        |                | 的時間            |       | and a              |                 | Г              |                     | urate           |
| 925                                                                       | Ster   | +     | ~    | Sheet a      | - |     |   |     |    |                   |   |    |       | -    | -             | -      |                                                                                                                  |                                        | THE ST         |                |       | 電視                 |                 | Pa             |                     | ely.            |
|                                                                           |        |       |      |              |   |     |   |     |    |                   | _ |    |       |      |               |        | Residual Chlorine (Y/N)                                                                                          | ELS TEN                                |                | State          |       | and a              |                 |                |                     |                 |
| MP In C                                                                   |        |       | -    | \$           | I | Ι   |   | Τ   |    | 1                 |   |    |       | T    | T             | -      | 7 A                                                                                                              | 144                                    | ALC: NO        | 2              |       | story              |                 |                |                     |                 |
| MP in C                                                                   |        |       |      | 2            |   |     |   |     |    |                   |   |    |       |      |               | 81     |                                                                                                                  |                                        |                | Catt           |       | Ş                  |                 | -              |                     |                 |
| MP in C<br>ceived on<br>D<br>N)                                           |        |       |      |              |   | . 1 |   | - 1 |    |                   |   |    |       |      |               | 5      |                                                                                                                  | Rassille                               | (C.)           | ă              |       | 3                  |                 | 1              |                     |                 |
| MP In C<br>ceived on<br>D<br>N)<br>stody                                  | _      | ┼╌┼╌┥ |      | 8            |   |     |   |     | 1  | - P               |   |    |       |      |               | - 1    |                                                                                                                  | 11201-1-54                             |                | 188            |       | 3,6                |                 |                | - 1                 |                 |
| MP in C<br>ceived on<br>D<br>N)<br>istody<br>aled D<br>soler D            |        |       |      | CONDITIO     |   |     |   |     | ĺ  |                   |   |    |       |      |               | Ī      |                                                                                                                  |                                        | and the second | 11111          |       | Section in         |                 | q              |                     |                 |
| EMP in C<br>ceived on<br>D<br>ristody<br>aled D<br>soler(D<br>N)<br>moles |        |       |      | CONDITIONS   |   |     |   |     |    |                   |   |    |       |      |               | 뢰      |                                                                                                                  |                                        | the lawer and  | S. State State |       | Contraction of the |                 | q              | !                   |                 |



Pace Analytical Services, LLC 110 Technology Parkway Peachtree Corners, GA 30092 (770)734-4200

April 12, 2021

Ms. Lauren Petty Southern Company 42 Inverness Center Parkway Birmingham, AL 35242

RE: Project: YATES Pace Project No.: 92532158

Dear Ms. Petty:

Enclosed are the analytical results for sample(s) received by the laboratory on April 08, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Peachtree Corners, GA

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

typer Pager

Tyler Forney for Kevin Herring kevin.herring@pacelabs.com 1(704)875-9092 HORIZON Database Administrator

Enclosures

cc: Joju Abraham, Georgia Power-CCR Lauren Coker, Georgia Pwer Geoffrey Gay, ARCADIS - Atlanta Kristen Jurinko Kelley Sharpe, ARCADIS - Atlanta Alex Simpson, Arcadis Samantha Thomas Maribel Vital





## CERTIFICATIONS

Project: YATES Pace Project No.: 92532158

### Pace Analytical Services Peachtree Corners

110 Technology Pkwy, Peachtree Corners, GA 30092 Florida DOH Certification #: E87315 Georgia DW Inorganics Certification #: 812 North Carolina Certification #: 381 South Carolina Certification #: 98011001


# SAMPLE SUMMARY

| Project:<br>Pace Project No | YATES<br>b.: 92532158 |        |                |                |
|-----------------------------|-----------------------|--------|----------------|----------------|
| Lab ID                      | Sample ID             | Matrix | Date Collected | Date Received  |
| 92532158001                 | PZ-37D (130-150)      | Water  | 04/08/21 15:05 | 04/08/21 16:45 |



### SAMPLE ANALYTE COUNT

Project: YATES Pace Project No.: 92532158

| Lab ID      | Sample ID        | Method    | Analysts | Analytes<br>Reported |
|-------------|------------------|-----------|----------|----------------------|
| 92532158001 | PZ-37D (130-150) | EPA 6020B | CW1      | 2                    |
|             |                  | EPA 6020B | CW1      | 2                    |

PASI-GA = Pace Analytical Services - Peachtree Corners, GA



# SUMMARY OF DETECTION

Project: YATES Pace Project No.: 92532158

| Lab Sample ID<br>Method | Client Sample ID<br>Parameters | Result | Units | Report Limit | Analyzed       | Qualifiers |
|-------------------------|--------------------------------|--------|-------|--------------|----------------|------------|
| 92532158001             | PZ-37D (130-150)               |        |       |              |                |            |
| EPA 6020B               | Boron                          | 5.6    | mg/L  | 0.040        | 04/09/21 11:25 |            |
| EPA 6020B               | Selenium                       | 0.18   | mg/L  | 0.0050       | 04/09/21 11:25 |            |
| EPA 6020B               | Boron, Dissolved               | 6.7    | mg/L  | 0.040        | 04/09/21 12:33 | M1         |
| EPA 6020B               | Selenium, Dissolved            | 0.18   | mg/L  | 0.0050       | 04/09/21 12:33 |            |



Project: YATES

Pace Project No.: 92532158

| Sample: PZ-37D (130-150)                | Lab ID:               | 92532158001                      | Collected                | d: 04/08/21               | 15:05         | Received: 04/                    | 08/21 16:45 Ma                   | atrix: Water           |      |
|-----------------------------------------|-----------------------|----------------------------------|--------------------------|---------------------------|---------------|----------------------------------|----------------------------------|------------------------|------|
|                                         |                       |                                  | Report                   |                           |               |                                  |                                  |                        |      |
| Parameters                              | Results               | Units                            | Limit                    | MDL                       | DF            | Prepared                         | Analyzed                         | CAS No.                | Qual |
| 6020 MET ICPMS                          | Analytical Pace Analy | Method: EPA 6<br>ytical Services | 020B Prep<br>- Peachtree | aration Met<br>Corners, G | hod: EF<br>3A | PA 3005A                         |                                  |                        |      |
| Boron                                   | 5.6                   | mg/L                             | 0.040                    | 0.0052                    | 1             | 04/09/21 08:00                   | 04/09/21 11:25                   | 7440-42-8              |      |
| Selenium                                | 0.18                  | mg/L                             | 0.0050                   | 0.0016                    | 1             | 04/09/21 08:00                   | 04/09/21 11:25                   | 7782-49-2              |      |
| 6020 MET ICPMS, Dissolved               | Analytical            | Method: EPA 6                    | 020B Prep                | aration Met               | hod: EF       | PA 3005A                         |                                  |                        |      |
|                                         | Pace Analy            | vtical Services                  | - Peachtree              | e Corners, G              | <b>A</b>      |                                  |                                  |                        |      |
| Boron, Dissolved<br>Selenium, Dissolved | 6.7<br>0.18           | mg/L<br>mg/L                     | 0.040<br>0.0050          | 0.0052<br>0.0016          | 1<br>1        | 04/09/21 08:00<br>04/09/21 08:00 | 04/09/21 12:33<br>04/09/21 12:33 | 7440-42-8<br>7782-49-2 | M1   |



| Project:           | YATES            |              |       |           |           |            |            |              |            |           |     |            |
|--------------------|------------------|--------------|-------|-----------|-----------|------------|------------|--------------|------------|-----------|-----|------------|
| Pace Project No.:  | 92532158         |              |       |           |           |            |            |              |            |           |     |            |
| QC Batch:          | 612504           |              | Anal  | ysis Meth | nod: I    | EPA 6020B  |            |              |            |           |     |            |
| QC Batch Method:   | EPA 3005A        |              | Anal  | ysis Desc | cription: | 6020 MET   |            |              |            |           |     |            |
|                    |                  |              | Labo  | oratory:  | I         | Pace Analy | tical Serv | ices - Peach | tree Corne | rs, GA    |     |            |
| Associated Lab Sar | mples: 925321580 | 001          |       |           |           |            |            |              |            |           |     |            |
| METHOD BLANK:      | 3224301          |              |       | Matrix:   | Water     |            |            |              |            |           |     |            |
| Associated Lab Sar | mples: 925321580 | 001          |       |           |           |            |            |              |            |           |     |            |
|                    |                  |              | Bla   | nk        | Reporting |            |            |              |            |           |     |            |
| Para               | neter            | Units        | Res   | ult       | Limit     | MD         | L          | Analyzed     | Qı         | ualifiers |     |            |
| Boron              |                  | mg/L         |       | ND        | 0.04      | 0          | 0.0052     | 04/09/21 11  | :14        |           |     |            |
| Selenium           |                  | mg/L         |       | ND        | 0.005     | 0 (        | 0.0016     | 04/09/21 11  | :14        |           |     |            |
| LABORATORY CO      | NTROL SAMPLE:    | 3224302      |       |           |           |            |            |              |            |           |     |            |
|                    |                  |              | Spike | l         | CS        | LCS        | %          | Rec          |            |           |     |            |
| Parar              | neter            | Units        | Conc. | R         | esult     | % Rec      | Li         | mits         | Qualifiers |           |     |            |
| Boron              |                  | mg/L         |       | 1         | 0.98      | 9          | 8          | 80-120       |            | _         |     |            |
| Selenium           |                  | mg/L         | 0     | .1        | 0.098     | 9          | 8          | 80-120       |            |           |     |            |
| MATRIX SPIKE & M   | ATRIX SPIKE DUP  | LICATE: 3224 | 303   |           | 3224304   |            |            |              |            |           |     |            |
|                    |                  |              | MS    | MSD       |           |            |            |              |            |           |     |            |
|                    |                  | 92531885022  | Spike | Spike     | MS        | MSD        | MS         | MSD          | % Rec      |           | Max | <b>.</b> . |
| Paramete           | r Units          | Result       | Conc. | Conc.     | Result    | Result     | % Rec      | % Rec        | Limits     |           |     | Qual       |
| Boron              | mg/L             | ND           | 1     |           | 1 0.98    | 0.93       | ç          | 96 92        | 2 75-125   | 5         | 20  |            |
| Selenium           | mg/L             | ND           | 0.1   | 0.        | 1 0.10    | 0.10       | ę          | 99 101       | 75-125     | 2         | 20  |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:           | YATES            |              |       |            |           |            |           |              |            |           |     |            |
|--------------------|------------------|--------------|-------|------------|-----------|------------|-----------|--------------|------------|-----------|-----|------------|
| Pace Project No.:  | 92532158         |              |       |            |           |            |           |              |            |           |     |            |
| QC Batch:          | 612505           |              | Anal  | ysis Metho | od:       | EPA 6020B  |           |              |            |           |     |            |
| QC Batch Method:   | EPA 3005A        |              | Anal  | ysis Descr | ription:  | 6020 MET [ | Dissolved | l            |            |           |     |            |
|                    |                  |              | Labo  | oratory:   |           | Pace Analy | ical Serv | ices - Peach | tree Corne | rs, GA    |     |            |
| Associated Lab Sar | mples: 925321580 | 001          |       |            |           |            |           |              |            |           |     |            |
| METHOD BLANK:      | 3224306          |              |       | Matrix: V  | Vater     |            |           |              |            |           |     |            |
| Associated Lab Sar | mples: 925321580 | 001          |       |            |           |            |           |              |            |           |     |            |
|                    |                  |              | Bla   | nk         | Reporting |            |           |              |            |           |     |            |
| Para               | meter            | Units        | Res   | sult       | Limit     | MD         | L         | Analyzed     | l Qi       | ualifiers |     |            |
| Boron, Dissolved   |                  | mg/L         |       | ND         | 0.04      | 0 0        | 0.0052    | 04/09/21 12  | :21        |           |     |            |
| Selenium, Dissolve | d                | mg/L         |       | ND         | 0.005     | 0 (        | 0.0016    | 04/09/21 12  | :21        |           |     |            |
| LABORATORY CO      | NTROL SAMPLE:    | 3224307      |       |            |           |            |           |              |            |           |     |            |
|                    |                  |              | Spike | L          | CS        | LCS        | %         | Rec          |            |           |     |            |
| Parar              | meter            | Units        | Conc. | Re         | sult      | % Rec      | Lir       | mits         | Qualifiers |           |     |            |
| Boron, Dissolved   |                  | mg/L         |       | 1          | 1.1       | 10         | 5         | 80-120       |            |           |     |            |
| Selenium, Dissolve | d                | mg/L         | 0     | .1         | 0.11      | 11         | 0         | 80-120       |            |           |     |            |
| MATRIX SPIKE & M   | MATRIX SPIKE DUP | LICATE: 3224 | 308   |            | 3224309   | )          |           |              |            |           |     |            |
|                    |                  |              | MS    | MSD        |           |            |           |              |            |           |     |            |
| _                  |                  | 92532158001  | Spike | Spike      | MS        | MSD        | MS        | MSD          | % Rec      |           | Max | <b>.</b> . |
| Paramete           | r Units          | Result       | Conc. | Conc.      | Result    | Result     | % Rec     | % Rec        | Limits     | RPD       | RPD | Qual       |
| Boron, Dissolved   | mg/L             | 6.7          | 1     | 1          | 6.8       | 7.2        |           | 6 46         | 5 75-125   | 6         | 20  | M1         |
| Selenium, Dissolve | d mg/L           | 0.18         | 0.1   | 0.1        | 0.26      | 0.28       | 8         | 1 105        | 5 75-125   | 9         | 20  |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### QUALIFIERS

Project: YATES Pace Project No.: 92532158

### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

### ANALYTE QUALIFIERS

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.



# QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: YATES Pace Project No.: 92532158

| Lab ID      | Sample ID        | QC Batch Method | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|------------------|-----------------|----------|-------------------|---------------------|
| 92532158001 | PZ-37D (130-150) | EPA 3005A       | 612504   | EPA 6020B         | 612639              |
| 92532158001 | PZ-37D (130-150) | EPA 3005A       | 612505   | EPA 6020B         | 612641              |

| Pace Analytical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | D<br>Sample Conc<br>(<br>F-C/                       | ocument Name:<br>dition Upon Rece<br>Document No.:<br>AR-CS-033-Rev 0 | ípt(SCUR)                           | Document Revised: October 28, 2020<br>Page 1 of 2<br>Issuing Authority:<br>Page Carolines Quality Office                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Laboratory receiving samples:<br>Asheville Eden Greenwood<br>Sample Condition Client Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Hunters                                             | ville 🗌 Rale                                                          | eigh 🗌 M                            | echanicsville Atlanta Kernersville                                                                                                                                                   |
| Courier:<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commercial<br>Commerc | PS DUSPS                                            |                                                                       | Project #:                          | 92532158                                                                                                                                                                             |
| Custody Seal Present? Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ieals Intact?                                       | Yes N                                                                 | lo                                  | Date/Initials Person Examining Contents: 4/8/24                                                                                                                                      |
| Packing Material: Bubble Wrap<br>Thermometer: 233<br>HR Gun ID: 233<br>Cooler Temp: 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Bubble Bags<br>Type of Ice<br>actor:<br>ct (°C) -0. |                                                                       | Other<br>]Blue □N<br>Temp           | Biological Tissue Frozen?                                                                                                                                                            |
| Cooler Temp Corrected (°C): (S<br>USDA Regulated Soil ( N/A, water sample)<br>Did samples originate in a quarantine zone within the<br>Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | • 9<br>United States: CA,                           | NY, or SC (check n                                                    | L.<br>ha<br>naps)? Did sa<br>includ | Imples originate from a foreign source (internationally,<br>Imples originate from a foreign source (internationally,<br>Ing Hawaii and Puerto Rico)? Yes No<br>Comments/Discrepancy: |
| Chain of Custody Present?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LYes                                                |                                                                       | 1.                                  | contractory proceeding.                                                                                                                                                              |
| Samples Arrived within Hold Time?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (Yes                                                |                                                                       | 2.                                  |                                                                                                                                                                                      |
| Short Hold Time Analysis (<72 hr.)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | □ Yes                                               |                                                                       | 3.                                  |                                                                                                                                                                                      |
| Rush Turn Around Time Requested?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pres                                                |                                                                       | 4. A-S                              | AD                                                                                                                                                                                   |
| Sufficient Volume?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Deris                                               |                                                                       | 5117                                | <i>P</i> ,7                                                                                                                                                                          |
| Correct Containers Used?<br>-Pace Containers Used?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Pres<br>Dyer                                        |                                                                       | 6.                                  |                                                                                                                                                                                      |
| Containers Intact?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Gres                                                |                                                                       | 7.                                  |                                                                                                                                                                                      |
| Dissolved analysis: Samples Field Filtered?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | □Yes                                                | DNO TINA                                                              | 8.                                  |                                                                                                                                                                                      |
| Sample Labels Match COC? -Includes Date/Time/ID/Analysis Matrix:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wy                                                  |                                                                       | 9.                                  |                                                                                                                                                                                      |
| Headspace in VOA Vials (>5-6mm)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | []Yes                                               |                                                                       | 10                                  |                                                                                                                                                                                      |
| Trip Blank Present?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Yes                                                 |                                                                       | 11.                                 |                                                                                                                                                                                      |
| Trip Blank Custody Seals Present?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | □Yes [                                              | INO DINIA                                                             |                                     |                                                                                                                                                                                      |
| COMMENTS/SAMPLE DISCREPANCY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     |                                                                       | ****                                | Field Data Required? Yes No                                                                                                                                                          |
| LIENT NOTIFICATION/RESOLUTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |                                                                       | Lot ID of s                         | plit containers:                                                                                                                                                                     |
| Person contacted:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     | Date/Til                                                              | ne:                                 |                                                                                                                                                                                      |
| Decised Manager Courses                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     |                                                                       | (maard T)                           |                                                                                                                                                                                      |
| Project Manager SCURF Review:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |                                                                       |                                     | Date:                                                                                                                                                                                |
| Project Manager SRF Review:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     |                                                                       |                                     | Date:                                                                                                                                                                                |

| Page | 11 | of | 13 |
|------|----|----|----|
|------|----|----|----|

|                             |                                             |                                       | 19                                    | Pace                                   | Ana                                      | lytica                             | nl'                                        |                                          |                                          | Samı                                       | ola Co<br>F-                    | Docu<br>nditi<br>Doc<br>CAR                | mant<br>on Up<br>tume:<br>•CS-03  | Nart<br>Non R<br>Nt No<br>13-Ra  | e:<br>eceip<br>:<br>v.07                 | เริง                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IR)                          |                           | Docu                           | men)<br>Pace (                        | Revi<br>Pa<br>Issuic<br>Caroli           | sed: (<br>ige 2 d<br>ig Aut<br>has C     | Detab<br>of 2<br>inorit<br>Lualic       | ier 23.<br>γ<br>γ Offic | 202)<br>:e                              | 1                                         |                                      |                                          |
|-----------------------------|---------------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|------------------------------------------|------------------------------------|--------------------------------------------|------------------------------------------|------------------------------------------|--------------------------------------------|---------------------------------|--------------------------------------------|-----------------------------------|----------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------|--------------------------------|---------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------------|-------------------------|-----------------------------------------|-------------------------------------------|--------------------------------------|------------------------------------------|
| *C<br>Ve<br>Sa<br>Exi<br>** | heck<br>rifie<br>mpla<br>septio<br>Bott     | c ma<br>d an<br>es.<br>ns: V<br>com   | rk to<br>d wi<br>DA, Co<br>half       | op ha<br>thin<br>bliford<br>of b       | the<br>n, TOC                            | f box<br>acce<br>c, oil i<br>to li | if pl<br>ptan<br>and G<br>st nu            | H an<br>ce ra<br>rease,<br>smba          | d/or<br>ange<br>DRO<br>er of             | dec<br>for<br>/8015<br>bot                 | hlori<br>prese<br>(wate<br>tles | nati<br>erva<br>r) CO                      | on is<br>tion<br>C. LLP           | 3                                |                                          | Proj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | act #                        |                           | PM:<br>CLI                     |                                       | +1<br>GA                                 | 92<br>I-GA                               | 25.<br>Di<br>Poi                        | 32<br>ue D<br>wer       | 1:<br>                                  | 5 <b>8</b>                                | /09                                  | /21                                      |
| ltem#                       | BP4U-125 mL Plastic Unpreserved (N/A) (CI-) | BP3U-250 mL Plastic Unpreserved (N/A) | 8P2U-500 mL Plastic Unpreserved (N/A) | 8P1U-1 liter Plastic Unpreserved (N/A) | BP4S-125 mL Plastic H2SO4 (pH < 2) (CI-) | BP3N-250 mL pfastic HNO3 (pH < 2)  | BP4Z-125 mL Plastic ZN Acetate & NaOH (>9) | BP4C-125 mL Plastic NaOH (pH > 12) (CI-) | WGFU-Wide-unputhed Glass jar Unpreserved | AG1U-1 liter Amber Unpreserved (N/A) (Cl-) | AG1H-1 liter Amber HCI (pH < 2) | AG3U-250 mL Amfaer Umpreserved (N/A) (CI-) | AG15-1 liter Anther H2SOA (pH+ 2) | AG35-250 mL Amber H25O4 {pH < 2} | AG3A{DG3A}-250 mL Amber MHACI (N/A)(Cl-) | DG9H-40 HIL VOA HCI (N/A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | VG91-40 mL VOA Na25203 (N/A) | VG9U-40 nit von Unp (N/A) | DG9P-4() INL VOA (I I/OA (N/A) | VOAK {6 vials per kit}-5035 kit (N/A) | V/GK (3 vials per kit)-VPH/Gas kit (N/A) | SPST-125 unt Sterite Plastic (N/A – fub) | SP2T-250 nil Sterde Plastic (N/A – lab) |                         | BP3A-250 mL Plastic (NH2)2504 (9.3-9.7) | AGOU-100 mt Amber Umpreserved vials (N/A) | VSGU-20 mL Scintillation vials (N/A) | DG9U-40 mL Amber Unpreserved vials (N/A) |
| 1                           |                                             |                                       |                                       |                                        | K                                        | 15                                 | K                                          | N                                        |                                          |                                            |                                 |                                            | 1                                 | 1                                | K                                        | All and the second seco |                              |                           |                                |                                       |                                          |                                          |                                         | $\overline{\mathbb{N}}$ | K                                       |                                           |                                      |                                          |
| 2                           | $\square$                                   |                                       |                                       |                                        | N                                        | Ń                                  | $\square$                                  | K                                        |                                          |                                            | N                               | 1                                          | 1.                                |                                  | $\overline{\mathbb{N}}$                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                           |                                |                                       |                                          | İ                                        | 1                                       | N                       | K,                                      |                                           |                                      |                                          |
| 3                           | $\langle$                                   |                                       |                                       |                                        | 1                                        | N                                  | N                                          |                                          |                                          | ĺ                                          | N                               |                                            | N.                                |                                  |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                           |                                | 1                                     |                                          |                                          |                                         | N                       | K                                       |                                           |                                      |                                          |
| 4                           | $\backslash$                                |                                       |                                       |                                        | $\backslash$                             | N                                  |                                            | N                                        |                                          |                                            | $\overline{\mathbb{N}}$         | 1                                          | Ň                                 |                                  | $\overline{\mathbb{N}}$                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                            | -                         |                                | Ì                                     | • • • • • •                              | 1                                        | Ì                                       | N                       | K                                       | 1                                         | 1                                    | 1                                        |
| 3                           | $\backslash$                                |                                       |                                       |                                        | N                                        | N                                  | N                                          | N                                        |                                          |                                            | K                               | 1                                          | N                                 | N                                |                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |                           |                                | į                                     |                                          | 1                                        | İ                                       | N                       | N                                       | 1                                         |                                      |                                          |
| 6                           | $\sum$                                      |                                       |                                       |                                        | N                                        | N                                  | N                                          | N                                        |                                          |                                            | K                               | 1                                          | N                                 | Ň                                | $\overline{\Lambda}$                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                           | İ                              |                                       |                                          |                                          | 1                                       | N                       | N                                       |                                           |                                      | Ī                                        |
| 7                           | $\backslash$                                |                                       |                                       |                                        | N                                        | N                                  | K                                          | N                                        | 1                                        | İ                                          | K                               | 1                                          | Ň                                 | Ň                                | Ň                                        | Ì                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                            | <u> </u>                  | Ì                              |                                       | İ                                        |                                          |                                         | K                       | X                                       |                                           |                                      | -                                        |
| 8                           | $\square$                                   |                                       |                                       |                                        | N                                        | N                                  | N                                          | K                                        | 1                                        | 1                                          | N                               | 1                                          | Ň                                 | N                                | Ň                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |                           | 1                              |                                       |                                          |                                          | Ì                                       | Ń                       | Ň                                       | <u>.</u>                                  |                                      | l                                        |
| 9                           | $\overline{)}$                              |                                       | Í                                     | 1                                      | N                                        | X                                  | Ň                                          | K                                        |                                          | 1                                          | K                               | Ì                                          | N                                 | Ň                                | Ň                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                            | 1                         | 1                              |                                       |                                          | 1                                        | 1                                       | K                       | Ň                                       |                                           |                                      |                                          |
| 10                          | $\square$                                   | 1                                     |                                       |                                        | K                                        | Ň                                  | K                                          | N                                        | 1                                        |                                            | K                               |                                            | N                                 | Ň                                | X                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | 1                         | 1                              | 1                                     |                                          | 1                                        |                                         | K                       | K                                       |                                           | 1                                    | 1                                        |
| 11                          | N                                           | <b>}</b>                              |                                       | 1                                      | N                                        | K                                  | K                                          | K                                        | 1                                        | +                                          | K                               |                                            | N                                 | X                                | K                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              | 1                         | 1                              |                                       |                                          | 1                                        |                                         | K                       | Ň                                       | <u>\</u>                                  |                                      | İ                                        |
| 12                          | $\square$                                   | Ì                                     |                                       |                                        | N                                        | X                                  | X                                          | X                                        |                                          | 1                                          | N                               |                                            | N                                 | Ň                                | ľ                                        | Ì                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                              |                           | 1                              |                                       | 1                                        | 1                                        |                                         |                         | Ň                                       |                                           |                                      | 1                                        |
|                             |                                             |                                       |                                       | *****                                  |                                          |                                    |                                            |                                          | p                                        | HAG                                        | ljust                           | me                                         | nt Lu                             | og fo                            |                                          | ese                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rvec                         | l Sa                      | mpl                            | es                                    |                                          |                                          |                                         |                         | ¥                                       |                                           | -1                                   |                                          |
| 5                           | ample                                       | ID                                    | Typ                                   | be of i                                | Preser                                   | vative                             | 1                                          | oH up                                    | on rec                                   | eipt                                       | Da                              | a pre                                      | serva                             | lon a                            | djusta                                   | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Time                         | prese<br>adjus            | ervatio<br>tad                 | n                                     | A                                        | meun                                     | t ci Pr<br>adde                         | reserva<br>ed           | itive                                   |                                           | Lot                                  | Ħ                                        |

|  |  | adjusted | added                                    |  |
|--|--|----------|------------------------------------------|--|
|  |  |          |                                          |  |
|  |  |          | 10 10 10 10 10 10 10 10 10 10 10 10 10 1 |  |
|  |  |          |                                          |  |

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DERNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

|                   |                |   | E    |                     | 2 | = | 0 |   | 00 | 7 | 64 | Ui |   | ef<br>I | 8 |                | ITEM #                                            |             | -       | Juested D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | all geo                            | inta, GA 3      | Iress:               | duined Cit   | tion A    | 7                |
|-------------------|----------------|---|------|---------------------|---|---|---|---|----|---|----|----|---|---------|---|----------------|---------------------------------------------------|-------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------|----------------------|--------------|-----------|------------------|
|                   |                |   | NTAT | ADDITIONAL COMMENTS |   |   |   |   |    |   |    |    |   |         |   | 7-570-(13-150) | SAMPLE ID Source Character per box. (A-Z, e-9 /,- | -           |         | ue Date: 4-90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | They gay@arcadis.com/hand.anillCon | 10339           | 2839 Paces Ferry Rd. | enternation: |           | Arace Arabytical |
|                   |                |   | 3    |                     |   |   |   |   |    |   |    |    |   | -       |   |                |                                                   | 800         |         | Project #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Purchase (                         |                 | Copy To:             | Required     | Section B |                  |
|                   |                |   | 出    | 20                  |   |   |   |   |    |   |    | -  |   | Sec. 14 | - | 3              | MATRIX CODE (see valid cod                        | es to left) | -       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Order                              |                 | 5                    | Projec       |           |                  |
|                   |                |   | 3    | -CUIS               |   |   |   |   |    |   |    |    |   |         |   | 3              | SAMPLE TYPE (G=GRAB C                             | COMP}       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                  |                 | onrey                | Linto        |           |                  |
|                   |                |   | K    | 89                  |   |   |   |   |    |   |    |    |   |         |   | 2              | PAT                                               |             |         | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |                 | Gay                  | matio        |           |                  |
| <b></b>           | 18             |   | R    | -                   | - | - |   |   |    |   |    |    | _ |         | - | 1 12           |                                                   |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |                 |                      | R            |           |                  |
| SIG PR            | MPG            |   | Ð    |                     |   |   |   |   |    |   |    |    |   |         |   | 8              | TIME T                                            | COLL        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |                 |                      |              |           |                  |
| IN TH             | RNW            |   | A    | I                   |   |   |   |   |    |   |    |    |   |         |   | 24             | R.                                                | ECTE        |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |                 |                      |              |           | ₹ <b>₽</b>       |
|                   | 2 AM           |   | 4-   | and a               |   | - |   |   |    |   |    |    |   |         |   | 5              |                                                   | ľ           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |                 |                      |              |           | CFa A            |
| SAMP              | Dis Ci         |   | 18/  | 3                   |   |   |   |   |    |   |    |    |   |         |   | 3              | TIME                                              |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |                 |                      |              |           | in-of-           |
|                   | NAT            |   | E    | , e                 |   |   |   |   |    |   |    |    |   |         |   | NO             | SAMPLE TEMP AT COLLECTION                         | J           | 11      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |                 |                      |              |           |                  |
| 3 9               | R              |   |      | A set               |   |   |   |   | _  |   |    |    |   |         |   | ア              | # OF CONTAINERS                                   |             | 11      | Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Page                               | Àd              | Com                  | N.           | Sect      | a C              |
| N Z               |                |   |      | Ä                   |   |   |   |   |    |   | _  |    |   |         |   |                | Unpreserved                                       | 1           |         | Profil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Quot                               | ess:            | Dany h               |              | lon C     | STO              |
| 1115              |                |   | 0    |                     | - |   |   |   |    |   |    |    |   |         |   | x              | HNO3                                              | P           |         | C#:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |                 | lame                 | No.          |           | no<br>No         |
|                   | A CONTRACTOR   |   | A.   |                     |   |   |   |   |    |   |    |    |   |         |   | 1              | HCI                                               | eser        |         | 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    |                 |                      | Hon:         |           |                  |
| 15                | TULA.          |   | È    |                     |   | - |   |   |    |   |    |    |   |         | _ |                | NaOH                                              | vativ       |         | â  _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                 |                      |              |           | Se A             |
| 5                 |                |   | 6    | 8                   |   |   |   | - |    |   |    |    |   |         |   |                | Na2S2O3                                           | 8           | Ш       | (evin.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    |                 |                      |              |           | MEN              |
| 0                 | -              |   | ß    |                     |   |   |   |   |    | _ | •  |    | - |         |   |                | Other                                             |             |         | Temmy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |                 |                      |              |           | T. A             |
|                   |                |   | 1    | INT                 |   |   |   |   |    |   |    |    |   |         |   |                | Analyses Test                                     | Y/N         |         | (@pa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    |                 |                      |              |           | I Rele           |
|                   |                |   | 10h  |                     |   |   |   |   |    |   | _  |    |   |         |   | X<br>V         | Total Metals D. Se.                               |             | Ser Ang | xelabs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                 |                      |              |           | eq               |
| N                 | and the second |   | K    | N.                  | _ |   | _ |   |    | _ | _  |    |   |         |   | $\sim$         | N/A Dissolved Metals D, Se                        |             | Rea     | .00m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |                 |                      |              |           | lies             |
|                   |                |   | 1.   |                     |   |   |   |   |    |   |    |    |   |         |   |                |                                                   |             | ueste   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |                 |                      |              |           | S D              |
| 12                |                | - | -F   |                     |   |   |   |   |    |   |    |    |   |         |   |                |                                                   |             | Ana     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |                 |                      |              |           | st be            |
|                   |                |   | 2    | 8                   |   |   |   |   |    | _ | _  |    |   |         | - |                |                                                   |             | strade  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    |                 |                      |              |           | COM              |
| 5                 | 1<br>1<br>1    |   | F    | Ħ                   |   | - | _ |   |    |   |    |    | - |         |   | -              |                                                   |             |         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H                                  |                 | 1                    |              |           | plete            |
|                   |                |   | 14   |                     |   |   |   |   |    |   |    |    |   |         |   |                |                                                   |             | A IYA   | HULL IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    | たい、             |                      |              |           | id ac            |
|                   | - North        |   | 2    | Ā                   |   |   |   |   |    |   | -  |    |   |         |   |                |                                                   |             | 9       | 15 at 10 to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    | の法律             |                      | _            | _         | curat            |
|                   | NO.            |   |      |                     |   | - | - |   | -  |   |    |    | _ |         |   | -              |                                                   | -           | 1000    | Contraction of the last                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                    |                 |                      | Pag          |           | ely.             |
| TEMP in C         | ;              |   |      |                     |   |   |   |   |    |   |    |    |   |         |   | -              | Residual Chlorine (Y/N)                           | TENAS       | -       | Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                 |                      | Ð            |           |                  |
| Received a        | on             |   |      | -                   |   |   |   |   | Τ  |   |    |    |   | 3       | P | B              |                                                   |             | -       | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                    | tory A          |                      |              |           |                  |
| (Y/N)<br>Custorty |                |   |      | LEQ.                |   |   |   |   |    |   |    |    |   | à       | 3 | E              |                                                   | N.A.        |         | modia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                    |                 |                      |              |           |                  |
| SealedD<br>Cooler |                |   |      | TION                |   |   |   |   |    |   |    |    |   |         | Š | 2              |                                                   |             | and and | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                    | 1               |                      | ò            |           |                  |
| (Y/N)             |                |   |      | ONS                 |   |   |   |   |    |   |    |    |   | 5       | 4 | A              |                                                   |             |         | C.A. and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                    | Constant of the |                      |              |           |                  |
| IntactC           |                |   |      |                     |   |   |   |   |    |   |    |    |   |         |   | 7              |                                                   |             |         | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se |                                    | The second      |                      | -            |           |                  |
| (T/N)             |                |   |      |                     |   |   |   |   |    |   |    |    |   |         |   |                |                                                   | Ma Star     | 6-21    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                    | 1               |                      |              |           |                  |



Pace Analytical Services, LLC 110 Technology Parkway Peachtree Corners, GA 30092 (770)734-4200

April 15, 2021

Ms. Lauren Petty Southern Company 42 Inverness Center Parkway Birmingham, AL 35242

RE: Project: YATES Pace Project No.: 92533139

Dear Ms. Petty:

Enclosed are the analytical results for sample(s) received by the laboratory on April 14, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Peachtree Corners, GA

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kein Hung

Kevin Herring kevin.herring@pacelabs.com 1(704)875-9092 HORIZON Database Administrator

Enclosures

cc: Joju Abraham, Georgia Power-CCR Lauren Coker, Georgia Pwer Geoffrey Gay, ARCADIS - Atlanta Kristen Jurinko Kelley Sharpe, ARCADIS - Atlanta Alex Simpson, Arcadis Samantha Thomas Maribel Vital





# CERTIFICATIONS

Project: YATES Pace Project No.: 92533139

### Pace Analytical Services Peachtree Corners

110 Technology Pkwy, Peachtree Corners, GA 30092 Florida DOH Certification #: E87315 Georgia DW Inorganics Certification #: 812 North Carolina Certification #: 381 South Carolina Certification #: 98011001



# SAMPLE SUMMARY

| 92533139001     | PZ-37D (195-200) | Water  | 04/14/21 12:14 | 04/14/21 15:00 |
|-----------------|------------------|--------|----------------|----------------|
| Lab ID          | Sample ID        | Matrix | Date Collected | Date Received  |
| Pace Project No | p.: 92533139     |        |                |                |
| Project:        | YATES            |        |                |                |



### SAMPLE ANALYTE COUNT

Project: YATES Pace Project No.: 92533139

| Lab ID      | Sample ID        | Method    | Analysts | Analytes<br>Reported |
|-------------|------------------|-----------|----------|----------------------|
| 92533139001 | PZ-37D (195-200) | EPA 6020B | CW1      | 2                    |
|             |                  | EPA 6020B | CW1      | 2                    |

PASI-GA = Pace Analytical Services - Peachtree Corners, GA



### SUMMARY OF DETECTION

| Project:          | YATES            |        |       |              |                |            |
|-------------------|------------------|--------|-------|--------------|----------------|------------|
| Pace Project No.: | 92533139         |        |       |              |                |            |
| Lab Sample ID     | Client Sample ID |        |       |              |                |            |
| Method            | Parameters       | Result | Units | Report Limit | Analyzed       | Qualifiers |
| 92533139001       | PZ-37D (195-200) |        |       |              |                |            |
| EPA 6020B         | Boron            | 0.038J | mg/L  | 0.040        | 04/15/21 10:03 |            |
| EPA 6020B         | Boron, Dissolved | 0.040  | mg/L  | 0.040        | 04/15/21 10:55 |            |



Project: YATES

Pace Project No.: 92533139

| Sample: PZ-37D (195-200)  | Lab ID:                 | 92533139001                       | Collecte                 | d: 04/14/2                | 1 12:14       | Received: 04/  | 14/21 15:00 Ma | atrix: Water |      |
|---------------------------|-------------------------|-----------------------------------|--------------------------|---------------------------|---------------|----------------|----------------|--------------|------|
|                           |                         |                                   | Report                   |                           |               |                |                |              |      |
| Parameters                | Results                 | Units                             | Limit                    | MDL                       | DF            | Prepared       | Analyzed       | CAS No.      | Qual |
| 6020 MET ICPMS            | Analytical<br>Pace Anal | Method: EPA 6<br>lytical Services | 020B Prep<br>- Peachtree | eration Met<br>Corners, C | hod: EF<br>GA | PA 3005A       |                |              |      |
| Boron                     | 0.038J                  | mg/L                              | 0.040                    | 0.0052                    | 1             | 04/14/21 15:19 | 04/15/21 10:03 | 7440-42-8    |      |
| Selenium                  | ND                      | mg/L                              | 0.0050                   | 0.0016                    | 1             | 04/14/21 15:19 | 04/15/21 10:03 | 7782-49-2    |      |
| 6020 MET ICPMS, Dissolved | Analytical              | Method: EPA 6                     | 020B Prep                | aration Met               | hod: EF       | PA 3005A       |                |              |      |
|                           | Pace Anal               | ytical Services                   | - Peachtree              | e Corners, C              | SA            |                |                |              |      |
| Boron, Dissolved          | 0.040                   | mg/L                              | 0.040                    | 0.0052                    | 1             | 04/14/21 15:21 | 04/15/21 10:55 | 7440-42-8    |      |
| Selenium, Dissolved       | ND                      | mg/L                              | 0.0050                   | 0.0016                    | 1             | 04/14/21 15:21 | 04/15/21 10:55 | 7782-49-2    |      |



| Project:           | YATES            |              |       |           |             |            |            |               |             |            |     |      |
|--------------------|------------------|--------------|-------|-----------|-------------|------------|------------|---------------|-------------|------------|-----|------|
| Pace Project No.:  | 92533139         |              |       |           |             |            |            |               |             |            |     |      |
| QC Batch:          | 613734           |              | Anal  | ysis Metł | hod: I      | EPA 6020B  |            |               |             |            |     |      |
| QC Batch Method:   | EPA 3005A        |              | Anal  | ysis Des  | cription: 6 | 6020 MET   |            |               |             |            |     |      |
|                    |                  |              | Labo  | oratory:  | I           | Pace Analy | tical Serv | vices - Peacł | ntree Corne | rs, GA     |     |      |
| Associated Lab Sar | mples: 925331390 | 001          |       |           |             |            |            |               |             |            |     |      |
| METHOD BLANK:      | 3230180          |              |       | Matrix:   | Water       |            |            |               |             |            |     |      |
| Associated Lab Sar | mples: 925331390 | 001          |       |           |             |            |            |               |             |            |     |      |
|                    |                  |              | Bla   | nk        | Reporting   |            |            |               |             |            |     |      |
| Para               | neter            | Units        | Res   | ult       | Limit       | MD         | L          | Analyzed      | d Qı        | ualifiers  |     |      |
| Boron              |                  | mg/L         |       | ND        | 0.04        | 0 0        | 0.0052     | 04/15/21 09   | 9:52        |            |     |      |
| Selenium           |                  | mg/L         |       | ND        | 0.005       | 0 (        | 0.0016     | 04/15/21 09   | 9:52        |            |     |      |
| LABORATORY CO      | NTROL SAMPLE:    | 3230181      |       |           |             |            |            |               |             |            |     |      |
|                    |                  |              | Spike |           | LCS         | LCS        | %          | Rec           |             |            |     |      |
| Parar              | neter            | Units        | Conc. | R         | Result      | % Rec      | Li         | imits         | Qualifiers  |            |     |      |
| Boron              |                  | mg/L         |       | 1         | 0.96        | 9          | 6          | 80-120        |             | _          |     |      |
| Selenium           |                  | mg/L         | 0     | .1        | 0.094       | 9          | 4          | 80-120        |             |            |     |      |
| MATRIX SPIKE & M   | ATRIX SPIKE DUP  | LICATE: 3230 | 182   |           | 3230183     | 6          |            |               |             |            |     |      |
|                    |                  |              | MS    | MSD       |             |            |            |               |             |            |     |      |
| Danassata          | . 11-9-          | 92533139001  | Spike | Spike     | MS          | MSD        | MS         | MSD           | % Rec       |            | Max | Qual |
| Paramete           |                  | Kesuit       | Conc. | Conc.     | Kesuit      | Result     | % Kec      | : % KeC       |             | <u>крр</u> | KPD | Quai |
| Boron              | mg/L             | 0.040        | 1     |           | 1 0.98      | 0.97       | ę          | 94 93         | 3 75-125    | 2          | 20  |      |
| Selenium           | mg/L             | ND           | 0.1   | 0.        | .1 0.097    | 0.086      | ç          | 95 85         | 5 75-125    | 11         | 20  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:           | YATES            |              |       |           |           |            |            |               |             |           |     |      |
|--------------------|------------------|--------------|-------|-----------|-----------|------------|------------|---------------|-------------|-----------|-----|------|
| Pace Project No.:  | 92533139         |              |       |           |           |            |            |               |             |           |     |      |
| QC Batch:          | 613736           |              | Anal  | ysis Meth | od:       | EPA 6020B  |            |               |             |           |     |      |
| QC Batch Method:   | EPA 3005A        |              | Anal  | ysis Desc | ription:  | 6020 MET I | Dissolve   | d             |             |           |     |      |
|                    |                  |              | Labo  | oratory:  |           | Pace Analy | tical Serv | vices - Peach | ntree Corne | rs, GA    |     |      |
| Associated Lab Sar | mples: 925331390 | 001          |       |           |           |            |            |               |             |           |     |      |
| METHOD BLANK:      | 3230190          |              |       | Matrix:   | Water     |            |            |               |             |           |     |      |
| Associated Lab Sa  | mples: 925331390 | 001          |       |           |           |            |            |               |             |           |     |      |
|                    |                  |              | Bla   | nk        | Reporting |            |            |               |             |           |     |      |
| Para               | meter            | Units        | Res   | ult       | Limit     | MD         | L          | Analyzed      | l Qi        | ualifiers |     |      |
| Boron, Dissolved   |                  | mg/L         |       | ND        | 0.04      | 0 (        | 0.0052     | 04/15/21 10   | :44         |           |     |      |
| Selenium, Dissolve | d                | mg/L         |       | ND        | 0.005     | 0          | 0.0016     | 04/15/21 10   | :44         |           |     |      |
| LABORATORY CO      | NTROL SAMPLE:    | 3230191      |       |           |           |            |            |               |             |           |     |      |
|                    |                  |              | Spike | L         | CS        | LCS        | %          | Rec           |             |           |     |      |
| Para               | meter            | Units        | Conc. | R         | esult     | % Rec      | Li         | imits         | Qualifiers  |           |     |      |
| Boron, Dissolved   |                  | mg/L         |       | 1         | 1.1       | 10         | 6          | 80-120        |             | _         |     |      |
| Selenium, Dissolve | d                | mg/L         | 0     | .1        | 0.092     | 9          | 2          | 80-120        |             |           |     |      |
| MATRIX SPIKE & M   | MATRIX SPIKE DUP | LICATE: 3230 | 192   |           | 3230193   | 3          |            |               |             |           |     |      |
|                    |                  |              | MS    | MSD       |           |            |            |               | _           |           |     |      |
| David              |                  | 92533139001  | Spike | Spike     | MS        | MSD        | MS         | MSD           | % Rec       |           | Max | 0    |
| Paramete           | units            | Result       | Conc. | Conc.     | Result    | Result     | % Rec      | Kec           | Limits      | RPD       | RPD | Qual |
| Boron, Dissolved   | mg/L             | 0.040        | 1     |           | 1 1.0     | 1.1        | ç          | 96 105        | 5 75-125    | 8         | 20  |      |
| Selenium, Dissolve | d mg/L           | ND           | 0.1   | 0.1       | 1 0.094   | 0.097      | ę          | 94 97         | 75-125      | 4         | 20  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### QUALIFIERS

Project: YATES Pace Project No.: 92533139

### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.



# QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: YATES Pace Project No.: 92533139

| Lab ID      | Sample ID        | QC Batch Method | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|------------------|-----------------|----------|-------------------|---------------------|
| 92533139001 | PZ-37D (195-200) | EPA 3005A       | 613734   | EPA 6020B         | 613780              |
| 92533139001 | PZ-37D (195-200) | EPA 3005A       | 613736   | EPA 6020B         | 613779              |

| Pace Analytical                                                                                                                             | Doc<br>Sample Condit<br>Do<br>F-CAR                            | ument Name:<br>ion Upon Receipt(<br>cument No.:<br>t-CS-033-Rev.07 | SCUR)                | Document Revised: October 28, 2020<br>Page 1 of 2<br>Issuing Authority:<br>Pace Carolinas Quality Office                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Laboratory receiving samples:<br>Asheville Eden Greenwood                                                                                   | Huntersvi                                                      | lle 🗌 🛛 Raleig                                                     | h[] M                | lechanicsville Atlanta Kernersville                                                                                                                   |
| Sample Condition     Client Name:       Upon Receipt     Arrada       Courier:     Fed Ex       Commercial     Pace                         | rs ⊡usps<br>⊡Other:_                                           | lower Ben                                                          | Project #:           | WO# : 92533139                                                                                                                                        |
| Custody Seal Present? Yes                                                                                                                   | Seals Intact?                                                  | Yes No                                                             |                      | Date/Initials Person Examining Contents: 4/14/24                                                                                                      |
| Packing Material: Bubble Wrap<br>Thermometer:<br>IR Gun ID: 2-3-3<br>Correction F<br>Cooler Temp: 2-1-3<br>Add/Subtra                       | Bubble Bags [<br>Type of Ice:<br>actor:<br>ct (°C) -0-0<br>1 1 |                                                                    | iher<br>lue 🔲<br>Tem | Biological Tissue Frozen?<br>Yes Mo N/A<br>None<br>p should be above freezing to 6°C<br>Samples out of temp criteria. Samples on ice, cooling process |
| Cooler Temp Corrected (°C):<br>USDA Regulated Soil (  N/A, water sample)<br>Did samples originate in a quarantine zone within the<br>Yes No | United States: CA, N                                           | NY, or SC (check ma                                                | ps)? Did<br>incl     | has begun<br>samples originate from a foreign source (internationally,<br>uding Hawaii and Puerto Rico)? Yes No<br>Comments/Discrepancy:              |
| Chain of Custody Present?                                                                                                                   | Teres                                                          |                                                                    | 1.                   |                                                                                                                                                       |
| Samples Arrived within Hold Time?                                                                                                           | Fres                                                           |                                                                    | 2.                   |                                                                                                                                                       |
| Short Hold Time Analysis (<72 hr.)?                                                                                                         | Yes                                                            |                                                                    | 3                    |                                                                                                                                                       |
| Rush Turn Around Time Requested?                                                                                                            | CHT5                                                           |                                                                    | 4. 2                 | thr TAR                                                                                                                                               |
| Sufficient Volume?                                                                                                                          | ATTON                                                          |                                                                    | 5                    |                                                                                                                                                       |
| Sumclent Volumer                                                                                                                            |                                                                |                                                                    | 6                    |                                                                                                                                                       |
| -Pace Containers Used?                                                                                                                      | Q×er                                                           |                                                                    |                      |                                                                                                                                                       |
| Containers Intact?                                                                                                                          | Thes                                                           |                                                                    | 7.                   |                                                                                                                                                       |
| Dissolved analysis: Samples Field Filtered?                                                                                                 | Tres                                                           |                                                                    | 18/14/2              | 4                                                                                                                                                     |
| Sample Labels Match COC?                                                                                                                    | Elves                                                          |                                                                    | 9.                   |                                                                                                                                                       |
| -Includes Date/Time/ID/Analysis Matrix:                                                                                                     | W                                                              |                                                                    |                      |                                                                                                                                                       |
| Headspace in VOA Vials (>5-6mm)?                                                                                                            | □Yes                                                           |                                                                    | 10.                  | -                                                                                                                                                     |
| Trip Blank Present?                                                                                                                         | Yes                                                            | DNO ENTA                                                           | 11.                  |                                                                                                                                                       |
| Trip Blank Custody Seals Present?                                                                                                           | Yes                                                            |                                                                    |                      |                                                                                                                                                       |
| COMMENTS/SAMPLE DISCREPANCY                                                                                                                 |                                                                |                                                                    |                      | Field Data Required? Yes No                                                                                                                           |
|                                                                                                                                             |                                                                |                                                                    | Lot ID               | of split containers:                                                                                                                                  |
| CLIENT NOTIFICATION/RESOLUTION                                                                                                              |                                                                |                                                                    |                      |                                                                                                                                                       |
| Person contacted:                                                                                                                           |                                                                | Date/Ti                                                            | me:                  |                                                                                                                                                       |
| Project Manager SCURF Review:                                                                                                               |                                                                |                                                                    |                      | Date:                                                                                                                                                 |
| Project Manager SRF Review:                                                                                                                 |                                                                |                                                                    |                      | Date:                                                                                                                                                 |

| 2              | Document Name:<br>Sample Condition Upon Receipt(SCUR) | Document Revised: October 23, 2020<br>Page 2 of 2 |
|----------------|-------------------------------------------------------|---------------------------------------------------|
| PaceAnalylical | Document No.:                                         | Issuing Authority:                                |
|                | F-CAR-CS-033-Rev.07                                   | Pace Carolinas Quality Office                     |

Project "

PM: KLH1

WO#: 92533139

Due Date: 04/15/21

\*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/3015 (water) COC. LEH3

| Exc<br>** | eptio<br>Bott                               | ns: V(<br>om l                        | nalf (                                       | liforn<br>of be                        | n, TOC<br>DX is                          | to li                             | and Gi<br>st ni                            | rease,<br>Imbe                           | DRO,<br>er of                            | /3015<br>bot                               | (wate<br>tles                   | r) CO                                        | C. Ll÷                              | 3                                  |                                           |                           |                                     | CLI                         | ENT :                        | GA                                     | -GA                                      | Pou                                      | ier                                     |           |                                         |                                           |                                      |                                          |
|-----------|---------------------------------------------|---------------------------------------|----------------------------------------------|----------------------------------------|------------------------------------------|-----------------------------------|--------------------------------------------|------------------------------------------|------------------------------------------|--------------------------------------------|---------------------------------|----------------------------------------------|-------------------------------------|------------------------------------|-------------------------------------------|---------------------------|-------------------------------------|-----------------------------|------------------------------|----------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------------|-----------|-----------------------------------------|-------------------------------------------|--------------------------------------|------------------------------------------|
| ltem#     | 8P4U-125 mL Plastic Unpreserved (N/A) (CI-) | BP3U-250 mL Plastic Unpreserved (N/A) | BP2U-500 mL Plastic Unpreserved (N/A)        | BP1U-1 liter Plastic Unpreserved (N/A) | 8P4S-125 mL Plastic H2SO4 (pH < 2) (Cl-) | BP3N-250 mL plastic HNO3 (pH < 2) | BP42-125 mL Plastic 2N Acetate & NaOH (>9) | BP4C-125 mL Plastic NaOH (pH > 12) (Cl-) | WGFU-Withe-mouthed Class jar Unpreserved | AGIU-1 liter Amher Unpreserved (N/A) (CI-) | AG1H-1 liter Amher HCI (pH < 2) | 4G3U-250 tol. Anther Unpreserved (N/A) (CI-) | 4615-1 liter Anther (2504 (pl1 + 2) | AG35-25(0 mit Amher H25O4 (pH < 2) | aG3A{DG3A}-250 mL Amber Ni1ACI {M/A}{CI-} | 0G9(1-40 mL VOA HCI (N/A) | (V/V) (V/V) NO2520N VOV THI UV-160/ | VG9U-40 IIIL VOA Unip (N/A) | 069P-40 mt VOA H 11404 (N/A) | VOAK (6 vials per kit)-5:035 kit (N/A) | V/GK (3 vials per kit)-VPH/Gas kit (N/A) | SPST-125 nut Sterile Plastic (N/A - Iab) | SP2T-250 mt Sterile Plastic [N/A - Isb] |           | 8P3A-250 mL Plastic (NH2)25O4 (9.3-9.7) | AGOU-100 mL Amber Unpreserved vials (N/A) | VSGU-20 mL Scritillation vials (N/A) | 069U-40 mL Amher Unpreserved vials (N/A) |
| 1         | $\overline{\langle}$                        |                                       | <u>                                     </u> |                                        | $\overline{\langle}$                     | 3                                 | K                                          | $\overline{\mathbf{N}}$                  | -                                        |                                            | K                               |                                              | 1                                   | N                                  | K                                         |                           |                                     |                             |                              |                                        | 1                                        |                                          |                                         | N         | $\overline{\langle}$                    |                                           |                                      |                                          |
| 2         | $\square$                                   |                                       |                                              |                                        | $\overline{\mathbb{N}}$                  | K                                 | N                                          | K                                        |                                          | 1                                          | N                               |                                              | Ĩ.                                  | [ <u>``.</u>                       | N                                         |                           |                                     | -                           |                              |                                        |                                          |                                          |                                         | N         | $\square$                               |                                           |                                      |                                          |
| 3         | $\square$                                   |                                       |                                              |                                        | X                                        | N                                 |                                            | N                                        |                                          |                                            | N                               |                                              | 1                                   | K                                  | $\overline{ }$                            |                           |                                     |                             | 1                            |                                        | Ę                                        | -                                        |                                         | N         | N                                       |                                           |                                      |                                          |
| 4         | N                                           |                                       |                                              |                                        | N                                        | N                                 | N                                          | N                                        |                                          |                                            | Ň                               | Ţ                                            | Ň                                   |                                    | N                                         |                           |                                     |                             |                              | 1                                      |                                          |                                          |                                         | N         | N                                       |                                           |                                      | -                                        |
| 5         | N                                           |                                       |                                              |                                        | N                                        | N                                 | N                                          | N                                        |                                          |                                            | N                               |                                              | N                                   | N                                  | N                                         |                           |                                     | 1                           | 1                            |                                        | Į.                                       |                                          |                                         | N         | N                                       |                                           |                                      |                                          |
| 6         | N                                           | Ì                                     |                                              |                                        | N                                        | N                                 | N                                          | N                                        | Ţ                                        |                                            | N                               |                                              | N                                   | N                                  | 1                                         |                           |                                     |                             |                              |                                        |                                          |                                          |                                         | $\square$ | N                                       |                                           |                                      |                                          |
| 7         | N                                           |                                       |                                              |                                        | N                                        | N                                 | N                                          | N                                        |                                          |                                            | N                               | J                                            | Ň                                   | N                                  | N                                         |                           |                                     |                             |                              | a an an Andrea                         | Ĭ.                                       |                                          |                                         | N         | $\mathbb{N}$                            |                                           |                                      |                                          |
| 8         | N                                           |                                       |                                              |                                        | N                                        | N                                 | N                                          | N                                        |                                          |                                            | N                               |                                              |                                     | 1                                  | N                                         |                           |                                     |                             |                              | j                                      |                                          |                                          |                                         | $\square$ | $\square$                               |                                           |                                      |                                          |
| 9         | 1                                           |                                       |                                              |                                        | N                                        | K                                 | N                                          | N                                        | Ţ                                        | Ì                                          | N                               | Ţ                                            | N                                   | N                                  | T                                         |                           |                                     |                             |                              | A 100 million (1)                      | 1                                        |                                          |                                         | N         | N                                       |                                           |                                      |                                          |
| 10        | N                                           |                                       |                                              |                                        | N                                        | N                                 | N                                          | N                                        |                                          |                                            | N                               | J                                            | N                                   | T                                  | T                                         |                           |                                     |                             |                              |                                        | İ                                        |                                          |                                         | N         | N                                       |                                           |                                      |                                          |
| 11        | N                                           |                                       |                                              |                                        |                                          | N                                 | N                                          | N                                        | T                                        |                                            | N                               |                                              |                                     | N                                  | T                                         |                           |                                     |                             |                              |                                        |                                          |                                          |                                         |           | $\backslash$                            |                                           |                                      |                                          |
| 12        | N                                           | Ţ                                     |                                              |                                        | N                                        | N                                 | N                                          | N                                        | T                                        |                                            |                                 |                                              | N                                   | T                                  | 1                                         | J                         |                                     |                             |                              |                                        | ì                                        |                                          |                                         |           | 1                                       |                                           |                                      |                                          |

|           |                      | pH Ac           | ljustment Log for Pres     | erved Samples                 |                                 |       |
|-----------|----------------------|-----------------|----------------------------|-------------------------------|---------------------------------|-------|
| Sample ID | Type of Preservative | pH upon receipt | Date preservation adjusted | Time preservation<br>adjusted | Amount of Preservative<br>added | Lot # |
|           |                      |                 |                            |                               |                                 |       |
|           |                      |                 |                            |                               |                                 |       |
|           |                      |                 |                            |                               |                                 |       |

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNE Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

| - | N   |  |
|---|-----|--|
|   | Ca: |  |
|   | Ana |  |
|   |     |  |

# CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

|                                                                                                                    |   | R            |                      | 5 ± 5 | 0 | 4 | 87 U | 6 10 |                   | ITEM #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | Datsant                | ) AR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | all:              | iness.               | npany:             | tion A                        |
|--------------------------------------------------------------------------------------------------------------------|---|--------------|----------------------|-------|---|---|------|------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------|--------------------|-------------------------------|
|                                                                                                                    |   | wsh TAT      | ADDITIONAL COMMENTS  |       |   |   |      |      | 12-3710-(195-200) | SAMPLE ID<br>One Cheracter per box.<br>(A-Z, c-9 /, -<br>)<br>Semple ldts must be unique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | one name: 14 444 2     | Fax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 30000           | 1754 Kimberly Dr. SW | Arcadis (GA Power) | lient Information:            |
|                                                                                                                    |   | Grant        | Bu the second second |       |   |   |      |      |                   | Tesse<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>Tomor<br>To |             | Project #:             | Project Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Purchase Order    | Copy To: Gr          | Report To: G       | Section B<br>Required Proje   |
| s p                                                                                                                | - | A MANICUA    | INCURSED BY / ATTEM  |       |   |   |      |      | 1 G-14/4/24 /209  | SAMPLE TYPE (G-GRAB C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | COMP)       |                        | Yales                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | #                 | mt. wither           | rant Willford      | ct Information:               |
| RINT NAME AND SIGN                                                                                                 |   | Ar-215 4/142 |                      |       |   |   |      |      | + 4/i4/1 /14      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | LECTED      |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10101             | Leonovis-            |                    |                               |
| ATURE<br>C. IKond                                                                                                  |   | 11300        |                      |       |   |   |      | <br> | X                 | SAMPLE TEMP AT COLLECTION<br># OF CONTAINERS<br>Unpreserved<br>H2SO4<br>HNO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | Pace Profile #;        | Page Project Man                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pace Quole:       | Company Name:        | Attention:         | Section C<br>Invoice Informat |
|                                                                                                                    |   | Charle       | ACEPTED              |       |   |   |      |      |                   | HCI<br>NaOH<br>Na2SZO3<br>Methanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | eservatives | 10840                  | lager: kevin.herri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                      |                    | 5                             |
| DA TE signed;                                                                                                      |   | Arale        | BY / AFFLATION       |       |   |   |      |      | XX                | Analyses Test<br>Total Metals<br>Dissolved Metals<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Y/N<br>     | Requested              | ng@pacelabs.com,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |                      |                    |                               |
| MAN                                                                                                                |   | ALL Har      | MR                   |       |   |   |      |      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | l<br>Analysis Filberte |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Garde             |                      |                    |                               |
| e                                                                                                                  |   | 1500         |                      |       |   |   |      | <br> |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |                        | And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |                   |                      |                    | p                             |
| TEMP In C<br>Received on<br>IceD<br>(Y/N)<br>Custody<br>SealedD<br>CoolerD<br>(Y/N)<br>Samples<br>IntactD<br>(Y/N) |   |              | SAMPLE CONDITIONS    |       |   |   |      |      | B, & RUSMIT       | Residual Chiorine (Y/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 0A                     | Stade / Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Regulatory Agency |                      |                    | 5                             |



Pace Analytical Services, LLC 110 Technology Parkway Peachtree Corners, GA 30092 (770)734-4200

May 21, 2021

Ms. Lauren Petty Southern Company 42 Inverness Center Parkway Birmingham, AL 35242

RE: Project: YATES Pace Project No.: 92538834

### Dear Ms. Petty:

Enclosed are the analytical results for sample(s) received by the laboratory on May 14, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Asheville
- Pace Analytical Services Charlotte
- Pace Analytical Services Peachtree Corners, GA

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kein Stury

Kevin Herring kevin.herring@pacelabs.com 1(704)875-9092 HORIZON Database Administrator

Enclosures

cc: Joju Abraham, Georgia Power-CCR Lauren Coker, Georgia Pwer Geoffrey Gay, ARCADIS - Atlanta Kristen Jurinko Kelley Sharpe, ARCADIS - Atlanta Alex Simpson, Arcadis Samantha Thomas Maribel Vital





Pace Analytical Services, LLC 110 Technology Parkway Peachtree Corners, GA 30092 (770)734-4200

### CERTIFICATIONS

Project: YATES Pace Project No.: 92538834

### Pace Analytical Services Charlotte

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12

### Pace Analytical Services Asheville

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648 North Carolina Drinking Water Certification #: 37712

### Pace Analytical Services Peachtree Corners

110 Technology Pkwy, Peachtree Corners, GA 30092 Florida DOH Certification #: E87315 Georgia DW Inorganics Certification #: 812 South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221

North Carolina Wastewater Certification #: 40 South Carolina Certification #: 99030001 Virginia/VELAP Certification #: 460222

North Carolina Certification #: 381 South Carolina Certification #: 98011001



### SAMPLE SUMMARY

Project: YATES Pace Project No.: 92538834

| Lab ID      | Sample ID | Matrix | Date Collected | Date Received  |
|-------------|-----------|--------|----------------|----------------|
| 92538834001 | PZ-37D    | Water  | 05/13/21 12:30 | 05/14/21 09:30 |
| 92538834002 | FB-1      | Water  | 05/13/21 11:30 | 05/14/21 09:30 |
| 92538834003 | EB-1      | Water  | 05/13/21 18:30 | 05/14/21 09:30 |
| 92538834004 | DUP-1     | Water  | 05/13/21 00:00 | 05/14/21 09:30 |



# SAMPLE ANALYTE COUNT

| Project:        | YATES       |                        |          |                      |
|-----------------|-------------|------------------------|----------|----------------------|
| Pace Project No | .: 92538834 |                        |          |                      |
| Lab ID          | Sample ID   | Method                 | Analysts | Analytes<br>Reported |
| 92538834001     | PZ-37D      | EPA 6010D              | KH       | 1                    |
|                 |             | EPA 6020B              | CW1      | 13                   |
|                 |             | EPA 7470A              | VB       | 1                    |
|                 |             | SM 2540C-2011          | ALW      | 1                    |
|                 |             | EPA 300.0 Rev 2.1 1993 | CDC      | 3                    |
| 92538834002     | FB-1        | EPA 6010D              | KH       | 1                    |
|                 |             | EPA 6020B              | CW1      | 13                   |
|                 |             | EPA 7470A              | VB       | 1                    |
|                 |             | SM 2540C-2011          | ALW      | 1                    |
|                 |             | EPA 300.0 Rev 2.1 1993 | CDC      | 3                    |
| 92538834003     | EB-1        | EPA 6010D              | KH       | 1                    |
|                 |             | EPA 6020B              | CW1      | 13                   |
|                 |             | EPA 7470A              | VB       | 1                    |
|                 |             | SM 2540C-2011          | ALW      | 1                    |
|                 |             | EPA 300.0 Rev 2.1 1993 | CDC      | 3                    |
| 92538834004     | DUP-1       | EPA 6010D              | KH       | 1                    |
|                 |             | EPA 6020B              | CW1      | 13                   |
|                 |             | EPA 7470A              | VB       | 1                    |
|                 |             | SM 2540C-2011          | ALW      | 1                    |
|                 |             | EPA 300.0 Rev 2.1 1993 | CDC      | 3                    |

PASI-A = Pace Analytical Services - Asheville PASI-C = Pace Analytical Services - Charlotte

PASI-GA = Pace Analytical Services - Peachtree Corners, GA



# SUMMARY OF DETECTION

Project: YATES

Pace Project No.: 92538834

| Lab Sample ID          | Client Sample ID       |              |            |              |                |            |
|------------------------|------------------------|--------------|------------|--------------|----------------|------------|
| Method                 | Parameters             | Result       | Units      | Report Limit | Analyzed       | Qualifiers |
| 92538834001            | PZ-37D                 |              |            |              |                |            |
|                        | Performed by           | CUSTOME<br>R |            |              | 05/14/21 14:40 |            |
|                        | рН                     | 7.79         | Std. Units |              | 05/14/21 14:40 |            |
| EPA 6010D              | Calcium                | 68.3         | mg/L       | 1.0          | 05/18/21 16:27 |            |
| EPA 6020B              | Antimony               | 0.00052J     | mg/L       | 0.0030       | 05/19/21 14:44 | В          |
| EPA 6020B              | Barium                 | 0.015        | mg/L       | 0.0050       | 05/19/21 14:44 |            |
| EPA 6020B              | Boron                  | 1.3          | mg/L       | 0.040        | 05/19/21 14:44 |            |
| EPA 6020B              | Lead                   | 0.000049J    | mg/L       | 0.0010       | 05/19/21 14:44 |            |
| EPA 6020B              | Lithium                | 0.011J       | mg/L       | 0.030        | 05/19/21 14:44 |            |
| EPA 6020B              | Molybdenum             | 0.0042J      | mg/L       | 0.010        | 05/19/21 14:44 |            |
| SM 2540C-2011          | Total Dissolved Solids | 381          | mg/L       | 10.0         | 05/19/21 08:19 |            |
| EPA 300.0 Rev 2.1 1993 | Chloride               | 4.0          | mg/L       | 1.0          | 05/18/21 01:17 |            |
| EPA 300.0 Rev 2.1 1993 | Fluoride               | 0.12         | mg/L       | 0.10         | 05/18/21 01:17 | M1         |
| EPA 300.0 Rev 2.1 1993 | Sulfate                | 178          | mg/L       | 3.0          | 05/18/21 15:11 | M1         |
| 92538834002            | FB-1                   |              |            |              |                |            |
| EPA 6020B              | Antimony               | 0.0019J      | mg/L       | 0.0030       | 05/19/21 15:06 | В          |
| EPA 6020B              | Boron                  | 0.0092J      | mg/L       | 0.040        | 05/19/21 15:06 |            |
| 92538834003            | EB-1                   |              |            |              |                |            |
| EPA 6020B              | Antimony               | 0.00067J     | mg/L       | 0.0030       | 05/19/21 15:12 | В          |
| EPA 6020B              | Boron                  | 0.0052J      | mg/L       | 0.040        | 05/19/21 15:12 |            |
| 92538834004            | DUP-1                  |              |            |              |                |            |
| EPA 6010D              | Calcium                | 71.6         | mg/L       | 1.0          | 05/18/21 17:24 |            |
| EPA 6020B              | Antimony               | 0.00044J     | mg/L       | 0.0030       | 05/19/21 15:18 | В          |
| EPA 6020B              | Barium                 | 0.015        | mg/L       | 0.0050       | 05/19/21 15:18 |            |
| EPA 6020B              | Boron                  | 1.2          | mg/L       | 0.040        | 05/19/21 15:18 |            |
| EPA 6020B              | Lead                   | 0.000040J    | mg/L       | 0.0010       | 05/19/21 15:18 |            |
| EPA 6020B              | Lithium                | 0.011J       | mg/L       | 0.030        | 05/19/21 15:18 |            |
| EPA 6020B              | Molybdenum             | 0.0040J      | mg/L       | 0.010        | 05/19/21 15:18 |            |
| SM 2540C-2011          | Total Dissolved Solids | 383          | mg/L       | 10.0         | 05/19/21 08:19 |            |
| EPA 300.0 Rev 2.1 1993 | Chloride               | 3.9          | mg/L       | 1.0          | 05/18/21 02:24 |            |
| EPA 300.0 Rev 2.1 1993 | Fluoride               | 0.12         | mg/L       | 0.10         | 05/18/21 02:24 |            |
| EPA 300.0 Rev 2.1 1993 | Sulfate                | 154          | mg/L       | 3.0          | 05/18/21 15:56 |            |



| Pace Project No.:         92538834           Sample:         PZ-37D         Lab ID:         92538834001         Collected:         05/13/21         12:30         Received:         05/14/21         09:30         Matrix:         Water           Parameters         Results         Units         Limit         MDL         DF         Prepared         Analyzed         CAS           Field Data         Analytical Method:<br>Pace Analytical Services - Charlotte         D         DF         Prepared         Analyzed         CAS           Performed by         CUSTOME<br>R         1         05/14/21         14:40         P           G010D ATL ICP         Analytical Method: EPA 6010D         Preparation Method: EPA 3010A<br>Pace Analytical Services - Peachtree Corners, GA         Calcium         68.3         mg/L         1.0         0.13         1         05/18/21         16:27         7440-7           G020 MET ICPMS         Analytical Method: EPA 6020B         Preparation Method: EPA 3005A<br>Pace Analytical Services - Peachtree Corners, GA         O5/18/21         10:21         10:21         10:21         10:21         10:21         10:21         10:21         10:21         10:21         10:21         10:21         10:21         10:21         10:21         10:21 <th20:21< th="">         10:21         10:21<!--</th--><th></th></th20:21<> |          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Sample:         PZ-37D         Lab ID:         92538834001         Collected:         05/13/21         12:30         Received:         05/14/21         09:30         Matrix:         Water           Parameters         Results         Units         Limit         MDL         DF         Prepared         Analyzed         CAS           Field Data         Analytical Method:<br>Pace Analytical Services - Charlotte         P         Prepared         Analyzed         CAS           Performed by         CUSTOME<br>PH         1         05/14/21         05/14/21         14:40           6010D ATL ICP         Analytical Method: EPA 6010D         Preparation Method: EPA 3010A<br>Pace Analytical Services - Peachtree Corners, GA         05/18/21         10:27         7440-7           6020 MET ICPMS         Analytical Method: EPA 6020B         Preparation Method: EPA 3005A<br>Pace Analytical Services - Peachtree Corners, GA         05/18/21         13:16         05/19/21         14:44         7440-3           Antimony         0.00052J         mg/L         0.0030         0.00028         1         05/18/21         13:16         05/19/21         14:44         7440-3           Arsenic         ND         mg/L         0.0050         0.00078         1         05/18/21         13:16         05/19/21         14:44                                        |          |
| ParametersResultsUnitsReport<br>LimitMDLDFPreparedAnalyzedCASField DataAnalytical Method:<br>Pace Analytical Services - CharlottePerformed byCUSTOME<br>R105/14/21 14:40pH7.79Std. Units105/14/21 14:406010D ATL ICPAnalytical Method: EPA 6010D<br>Pace Analytical Services - Peachtree Corners, GAEPA 3010A<br>Pace Analytical Services - Peachtree Corners, GACalcium68.3mg/L1.00.13105/18/21 10:0705/18/21 16:277440-76020 MET ICPMSAnalytical Method: EPA 6020B<br>Pace Analytical Services - Peachtree Corners, GAAnalytical Method: EPA 6020B<br>Preparation Method: EPA 3005A<br>Pace Analytical Services - Peachtree Corners, GAAntimony0.00052Jmg/L0.00300.00028105/18/21 13:1605/19/21 14:447440-3ArsenicNDmg/L0.00500.00078105/18/21 13:1605/19/21 14:447440-3Barium0.015mg/L0.00500.00071105/18/21 13:1605/19/21 14:447440-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | er       |
| ParametersResultsUnitsLimitMDLDFPreparedAnalyzedCASField DataAnalytical Method:<br>Pace Analytical Services - CharlottePerformed byCUSTOME<br>R105/14/21 14:40pH7.79Std. Units105/14/21 14:406010D ATL ICPAnalytical Method: EPA 6010D<br>Pace Analytical Services - Peachtree Corners, GAEPA 3010A<br>Pace Analytical Services - Peachtree Corners, GACalcium68.3mg/L1.00.13105/18/21 10:0705/18/21 16:277440-76020 MET ICPMSAnalytical Method: EPA 6020B<br>Pace Analytical Services - Peachtree Corners, GAAnalytical Services - Peachtree Corners, GAAntimony0.00052Jmg/L0.00300.00028105/18/21 13:1605/19/21 14:447440-3ArsenicNDmg/L0.00500.00078105/18/21 13:1605/19/21 14:447440-3Barium0.0155mg/L0.00500.00078105/18/21 13:1605/19/21 14:447440-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |
| Field Data       Analytical Method:<br>Pace Analytical Services - Charlotte       1       05/14/21 14:40         Performed by       CUSTOME<br>R       1       05/14/21 14:40       1         pH       7.79       Std. Units       1       05/14/21 14:40       1         6010D ATL ICP       Analytical Method: EPA 6010D       Preparation Method: EPA 3010A       Pace Analytical Services - Peachtree Corners, GA       1       05/18/21 10:07       05/18/21 16:27       7440-7         Calcium       68.3       mg/L       1.0       0.13       1       05/18/21 10:07       05/18/21 16:27       7440-7         6020 MET ICPMS       Analytical Method: EPA 6020B       Preparation Method: EPA 3005A       Pace Analytical Services - Peachtree Corners, GA       1       05/18/21 13:16       05/19/21 14:44       7440-3         Antimony       0.00052J       mg/L       0.0030       0.00028       1       05/18/21 13:16       05/19/21 14:44       7440-3         Arsenic       ND       mg/L       0.0050       0.00071       1       05/18/21 13:16       05/19/21 14:44       7440-3                                                                                                                                                                                                                                                                                             | No. Qual |
| Pace Analytical Services - Charlotte         Performed by       CUSTOME<br>R       1       05/14/21 14:40         pH       7.79       Std. Units       1       05/14/21 14:40         6010D ATL ICP       Analytical Method: EPA 6010D Preparation Method: EPA 3010A<br>Pace Analytical Services - Peachtree Corners, GA       EPA 3010A         Calcium       68.3       mg/L       1.0       0.13       1       05/18/21 10:07       05/18/21 16:27       7440-7         6020 MET ICPMS       Analytical Method: EPA 6020B Preparation Method: EPA 3005A<br>Pace Analytical Services - Peachtree Corners, GA       Image: Corners, GA       Image: Corners, GA         Antimony       0.00052J       mg/L       0.0030       0.00028       1       05/18/21 13:16       05/19/21 14:44       7440-3         Arsenic       ND       mg/L       0.0050       0.00078       1       05/18/21 13:16       05/19/21 14:44       7440-3         Out       mg/L       0.0050       0.00071       1       05/18/21 13:16       05/19/21 14:44       7440-3                                                                                                                                                                                                                                                                                                                                              |          |
| Performed by       CUSTOME<br>R       O5/14/21 14:40       O5/14/21 14:40         pH       7.79       Std. Units       1       05/14/21 14:40       05/14/21 14:40         6010D ATL ICP       Analytical Method: EPA 6010D Preparation Method: EPA 3010A<br>Pace Analytical Services - Peachtree Corners, GA       I       05/18/21 10:07       05/18/21 16:27       7440-7         6020 MET ICPMS       Analytical Method: EPA 6020B Preparation Method: EPA 3005A<br>Pace Analytical Services - Peachtree Corners, GA       I       05/18/21 10:07       05/18/21 16:27       7440-7         Antimony       0.00052J<br>ND       mg/L       0.0030       0.0028       1       05/18/21 13:16       05/19/21 14:44       7440-3         Barium       0.015       mg/L       0.0050       0.00071       1       05/18/21 13:16       05/19/21 14:44       7440-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| pH       7.79       Std. Units       1       05/14/21 14:40         6010D ATL ICP       Analytical Method: EPA 6010D Preparation Method: EPA 3010A<br>Pace Analytical Services - Peachtree Corners, GA       EPA 3010A         Calcium       68.3       mg/L       1.0       0.13       1       05/18/21 10:07       05/18/21 16:27       7440-7         6020 MET ICPMS       Analytical Method: EPA 6020B       Preparation Method: EPA 3005A       Pace Analytical Services - Peachtree Corners, GA       Pace Analytical Services - Peachtree Corners, GA         Antimony       0.00052J       mg/L       0.0030       0.00028       1       05/18/21 13:16       05/19/21 14:44       7440-3         Arsenic       ND       mg/L       0.0050       0.00078       1       05/18/21 13:16       05/19/21 14:44       7440-3         Barium       0.015       mg/L       0.0050       0.00071       1       05/18/21 13:16       05/19/21 14:44       7440-3                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| 6010D ATL ICP       Analytical Method: EPA 6010D       Preparation Method: EPA 3010A         Pace Analytical Services - Peachtree Corners, GA       Calcium       68.3       mg/L       1.0       0.13       1       05/18/21 10:07       05/18/21 16:27       7440-7         6020 MET ICPMS       Analytical Method: EPA 6020B       Preparation Method: EPA 3005A       Pace Analytical Services - Peachtree Corners, GA         Antimony       0.00052J       mg/L       0.0030       0.00028       1       05/18/21 13:16       05/19/21 14:44       7440-3         Arsenic       ND       mg/L       0.0050       0.00071       1       05/18/21 13:16       05/19/21 14:44       7440-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| Pace Analytical Services - Peachtree Corners, GA           Calcium         68.3         mg/L         1.0         0.13         1         05/18/21 10:07         05/18/21 16:27         7440-7           6020 MET ICPMS         Analytical Method: EPA 6020B         Preparation Method: EPA 3005A         Pace Analytical Services - Peachtree Corners, GA           Antimony         0.00052J         mg/L         0.0030         0.00028         1         05/18/21 13:16         05/19/21 14:44         7440-3           Arsenic         ND         mg/L         0.0050         0.00078         1         05/18/21 13:16         05/19/21 14:44         7440-3           Barium         0.015         mg/L         0.0050         0.00071         1         05/18/21 13:16         05/19/21 14:44         7440-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| Calcium       68.3       mg/L       1.0       0.13       1       05/18/21 10:07       05/18/21 16:27       7440-7         6020 MET ICPMS       Analytical Method: EPA 6020B       Preparation Method: EPA 3005A       EPA 3005A         Pace Analytical Services - Peachtree Corners, GA         Antimony       0.00052J       mg/L       0.0030       0.00028       1       05/18/21 13:16       05/19/21 14:44       7440-3         Arsenic       ND       mg/L       0.0050       0.00071       1       05/18/21 13:16       05/19/21 14:44       7440-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| 6020 MET ICPMS         Analytical Method: EPA 6020B         Preparation Method: EPA 3005A           Pace Analytical Services - Peachtree Corners, GA           Antimony         0.00052J         mg/L         0.0030         0.00028         1         05/18/21 13:16         05/19/21 14:44         7440-3           Arsenic         ND         mg/L         0.0050         0.00078         1         05/18/21 13:16         05/19/21 14:44         7440-3           Barium         0.015         mg/L         0.0050         0.00071         1         05/18/21 13:16         05/19/21 14:44         7440-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -2       |
| Descention         Pace Analytical Services - Peachtree Corners, GA           Antimony         0.00052J         mg/L         0.0030         0.00028         1         05/18/21         13:16         05/19/21         14:44         7440-3           Arsenic         ND         mg/L         0.0050         0.00078         1         05/18/21         13:16         05/19/21         14:44         7440-3           Barium         0.015         mg/L         0.0050         0.00071         1         05/18/21         13:16         05/19/21         14:44         7440-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
| Antimony         0.00052J         mg/L         0.0030         0.00028         1         05/18/21         13:16         05/19/21         14:44         7440-3           Arsenic         ND         mg/L         0.0050         0.00078         1         05/18/21         13:16         05/19/21         14:44         7440-3           Barium         0.015         mg/L         0.0050         0.00078         1         05/18/21         13:16         05/19/21         14:44         7440-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| Arsenic         ND         mg/L         0.0050         0.00078         1         05/18/21         13:16         05/19/21         14:44         7440-3           Barium         0.015         mg/L         0.0050         0.00078         1         05/18/21         13:16         05/19/21         14:44         7440-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0 B     |
| Barium 0,015 mg/l 0,0050 0,00071 1, 05/18/21 13:16, 05/19/21 14:44, 7440-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -2       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -3       |
| Beryllium ND mg/L 0.00050 0.000046 1 05/18/21 13:16 05/19/21 14:44 7440-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -7       |
| Boron <b>1.3</b> mg/L 0.040 0.0052 1 05/18/21 13:16 05/19/21 14:44 7440-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -8       |
| Cadmium ND mg/L 0.00050 0.00012 1 05/18/21 13:16 05/19/21 14:44 7440-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -9       |
| Chromium ND mg/L 0.0050 0.00055 1 05/18/21 13:16 05/19/21 14:44 7440-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -3       |
| Cobalt ND mg/L 0.0050 0.00038 1 05/18/21 13:16 05/19/21 14:44 7440-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -4       |
| Lead 0.000049J mg/L 0.0010 0.000036 1 05/18/21 13:16 05/19/21 14:44 7439-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1       |
| Lithium 0.011J mg/L 0.030 0.00081 1 05/18/21 13:16 05/19/21 14:44 7439-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -2       |
| Molybdenum 0.0042J mg/L 0.010 0.00069 1 05/18/21 13:16 05/19/21 14:44 7439-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -7       |
| Selenium ND mg/L 0.0050 0.0016 1 05/18/21 13:16 05/19/21 14:44 7782-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -2       |
| Thallium         ND         mg/L         0.0010         0.00014         1         05/18/21         13:16         05/19/21         14:44         7440-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -0       |
| 7470 Mercury Analytical Method: EPA 7470A Preparation Method: EPA 7470A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| Pace Analytical Services - Peachtree Corners, GA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |
| Mercury ND mg/L 0.00020 0.000078 1 05/18/21 14:00 05/19/21 11:03 7439-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -6       |
| 2540C Total Dissolved Solids Analytical Method: SM 2540C-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |
| Pace Analytical Services - Peachtree Corners, GA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |
| Total Dissolved Solids         381         mg/L         10.0         10.0         1         05/19/21         08:19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| <b>300.0 IC Anions 28 Days</b> Analytical Method: EPA 300.0 Rev 2.1 1993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
| Pace Analytical Services - Asheville                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| Chloride <b>4.0</b> ma/L 1.0 0.60 1 05/18/21 01:17 16887-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0-6      |
| Fluoride 0.12 mg/L 0.10 0.050 1 05/18/21 01:17 16984-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8-8 M1   |
| Sulfate <b>178</b> mg/L 3.0 1.5 3 05/18/21 15:11 14808-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9-8 M1   |



| Project:          | YATES    |
|-------------------|----------|
| Pace Project No.: | 92538834 |

| Sample: FB-1                 | Lab ID:    | 92538834002      | Collecte    | ed: 05/13/2  | 1 11:30  | Received: 05/  | 14/21 09:30 Ma | atrix: Water |      |
|------------------------------|------------|------------------|-------------|--------------|----------|----------------|----------------|--------------|------|
| _                            |            |                  | Report      |              |          | _              |                |              |      |
| Parameters                   | Results    | Units            | Limit       | MDL          | DF       | Prepared       | Analyzed       | CAS No.      | Qual |
| 6010D ATL ICP                | Analytical | Method: EPA 6    | 010D Pre    | paration Me  | thod: EF | PA 3010A       |                |              |      |
|                              | Pace Ana   | lytical Services | - Peachtre  | e Corners, 0 | GA       |                |                |              |      |
| Calcium                      | ND         | mg/L             | 1.0         | 0.13         | 1        | 05/18/21 10:07 | 05/18/21 16:37 | 7440-70-2    |      |
| 6020 MET ICPMS               | Analytical | Method: EPA 6    | 020B Pre    | paration Me  | thod: EF | PA 3005A       |                |              |      |
|                              | Pace Ana   | lytical Services | - Peachtre  | e Corners, ( | GΑ       |                |                |              |      |
| Antimony                     | 0.0019J    | mg/L             | 0.0030      | 0.00028      | 1        | 05/18/21 13:16 | 05/19/21 15:06 | 7440-36-0    | В    |
| Arsenic                      | ND         | mg/L             | 0.0050      | 0.00078      | 1        | 05/18/21 13:16 | 05/19/21 15:06 | 7440-38-2    |      |
| Barium                       | ND         | mg/L             | 0.0050      | 0.00071      | 1        | 05/18/21 13:16 | 05/19/21 15:06 | 7440-39-3    |      |
| Beryllium                    | ND         | mg/L             | 0.00050     | 0.000046     | 1        | 05/18/21 13:16 | 05/19/21 15:06 | 7440-41-7    |      |
| Boron                        | 0.0092J    | mg/L             | 0.040       | 0.0052       | 1        | 05/18/21 13:16 | 05/19/21 15:06 | 7440-42-8    |      |
| Cadmium                      | ND         | mg/L             | 0.00050     | 0.00012      | 1        | 05/18/21 13:16 | 05/19/21 15:06 | 7440-43-9    |      |
| Chromium                     | ND         | mg/L             | 0.0050      | 0.00055      | 1        | 05/18/21 13:16 | 05/19/21 15:06 | 7440-47-3    |      |
| Cobalt                       | ND         | mg/L             | 0.0050      | 0.00038      | 1        | 05/18/21 13:16 | 05/19/21 15:06 | 7440-48-4    |      |
| Lead                         | ND         | mg/L             | 0.0010      | 0.000036     | 1        | 05/18/21 13:16 | 05/19/21 15:06 | 7439-92-1    |      |
| Lithium                      | ND         | mg/L             | 0.030       | 0.00081      | 1        | 05/18/21 13:16 | 05/19/21 15:06 | 7439-93-2    |      |
| Molybdenum                   | ND         | mg/L             | 0.010       | 0.00069      | 1        | 05/18/21 13:16 | 05/19/21 15:06 | 7439-98-7    |      |
| Selenium                     | ND         | mg/L             | 0.0050      | 0.0016       | 1        | 05/18/21 13:16 | 05/19/21 15:06 | 7782-49-2    |      |
| Thallium                     | ND         | mg/L             | 0.0010      | 0.00014      | 1        | 05/18/21 13:16 | 05/19/21 15:06 | 7440-28-0    |      |
| 7470 Mercury                 | Analytical | Method: EPA 7    | 470A Pre    | paration Met | thod: EF | PA 7470A       |                |              |      |
|                              | Pace Ana   | lytical Services | - Peachtre  | e Corners, ( | GA       |                |                |              |      |
| Mercury                      | ND         | mg/L             | 0.00020     | 0.000078     | 1        | 05/18/21 14:00 | 05/19/21 11:12 | 7439-97-6    |      |
| 2540C Total Dissolved Solids | Analytical | Method: SM 25    | 540C-2011   |              |          |                |                |              |      |
|                              | Pace Ana   | lytical Services | - Peachtre  | e Corners, ( | GA       |                |                |              |      |
| Total Dissolved Solids       | ND         | mg/L             | 10.0        | 10.0         | 1        |                | 05/19/21 08:19 |              |      |
| 300.0 IC Anions 28 Days      | Analytical | Method: EPA 3    | 00.0 Rev 2  | 2.1 1993     |          |                |                |              |      |
|                              | Pace Ana   | lytical Services | - Asheville | •            |          |                |                |              |      |
| Chloride                     | ND         | mg/L             | 1.0         | 0.60         | 1        |                | 05/18/21 01:57 | 16887-00-6   |      |
| Fluoride                     | ND         | mg/L             | 0.10        | 0.050        | 1        |                | 05/18/21 01:57 | 16984-48-8   |      |
| Sulfate                      | ND         | mg/L             | 1.0         | 0.50         | 1        |                | 05/18/21 01:57 | 14808-79-8   |      |
|                              |            |                  |             |              |          |                |                |              |      |



| Project:              | YATES      |            |                 |             |                         |          |                |                |              |      |
|-----------------------|------------|------------|-----------------|-------------|-------------------------|----------|----------------|----------------|--------------|------|
| Pace Project No.:     | 92538834   |            |                 |             |                         |          |                |                |              |      |
| Sample: EB-1          |            | Lab ID:    | 92538834003     | Collected   | d: 05/13/2 <sup>,</sup> | 1 18:30  | Received: 05/  | 14/21 09:30 Ma | atrix: Water |      |
|                       |            |            |                 | Report      |                         |          |                |                |              |      |
| Parame                | ters       | Results    | Units           | Limit       | MDL                     | DF       | Prepared       | Analyzed       | CAS No.      | Qual |
| 6010D ATL ICP         |            | Analytical | Method: EPA 6   | 010D Prep   | aration Met             | thod: EF | PA 3010A       |                |              |      |
|                       |            | Pace Anal  | ytical Services | - Peachtree | Corners, C              | GΑ       |                |                |              |      |
| Calcium               |            | ND         | mg/L            | 1.0         | 0.13                    | 1        | 05/18/21 10:07 | 05/18/21 16:41 | 7440-70-2    |      |
| 6020 MET ICPMS        |            | Analytical | Method: EPA 6   | 020B Prep   | aration Met             | thod: EF | PA 3005A       |                |              |      |
|                       |            | Pace Anal  | ytical Services | - Peachtree | Corners, C              | ΞA       |                |                |              |      |
| Antimony              |            | 0 00067.1  | ma/l            | 0.0030      | 0 00028                 | 1        | 05/18/21 13.16 | 05/19/21 15.12 | 7440-36-0    | в    |
| Arsenic               |            |            | mg/L            | 0.0050      | 0.00020                 | 1        | 05/18/21 13:16 | 05/19/21 15:12 | 7440-38-2    | D    |
| Barium                |            | ND         | mg/L            | 0.0050      | 0.00071                 | 1        | 05/18/21 13:16 | 05/19/21 15:12 | 7440-39-3    |      |
| Bervllium             |            | ND         | ma/L            | 0.00050     | 0.000046                | 1        | 05/18/21 13:16 | 05/19/21 15:12 | 7440-41-7    |      |
| Boron                 |            | 0.0052J    | ma/L            | 0.040       | 0.0052                  | 1        | 05/18/21 13:16 | 05/19/21 15:12 | 7440-42-8    |      |
| Cadmium               |            | ND         | ma/L            | 0.00050     | 0.00012                 | 1        | 05/18/21 13:16 | 05/19/21 15:12 | 7440-43-9    |      |
| Chromium              |            | ND         | mg/L            | 0.0050      | 0.00055                 | 1        | 05/18/21 13:16 | 05/19/21 15:12 | 7440-47-3    |      |
| Cobalt                |            | ND         | mg/L            | 0.0050      | 0.00038                 | 1        | 05/18/21 13:16 | 05/19/21 15:12 | 7440-48-4    |      |
| Lead                  |            | ND         | mg/L            | 0.0010      | 0.000036                | 1        | 05/18/21 13:16 | 05/19/21 15:12 | 7439-92-1    |      |
| Lithium               |            | ND         | mg/L            | 0.030       | 0.00081                 | 1        | 05/18/21 13:16 | 05/19/21 15:12 | 7439-93-2    |      |
| Molybdenum            |            | ND         | mg/L            | 0.010       | 0.00069                 | 1        | 05/18/21 13:16 | 05/19/21 15:12 | 7439-98-7    |      |
| Selenium              |            | ND         | mg/L            | 0.0050      | 0.0016                  | 1        | 05/18/21 13:16 | 05/19/21 15:12 | 7782-49-2    |      |
| Thallium              |            | ND         | mg/L            | 0.0010      | 0.00014                 | 1        | 05/18/21 13:16 | 05/19/21 15:12 | 7440-28-0    |      |
| 7470 Mercury          |            | Analytical | Method: EPA 7   | 470A Prep   | aration Met             | hod: EP  | A 7470A        |                |              |      |
|                       |            | Pace Anal  | ytical Services | - Peachtree | Corners, C              | GΑ       |                |                |              |      |
| Mercury               |            | ND         | mg/L            | 0.00020     | 0.000078                | 1        | 05/18/21 14:00 | 05/19/21 11:15 | 7439-97-6    |      |
| 2540C Total Dissol    | ved Solids | Analytical | Method: SM 25   | 540C-2011   |                         |          |                |                |              |      |
|                       |            | Pace Anal  | ytical Services | - Peachtree | Corners, C              | GΑ       |                |                |              |      |
| Total Dissolved Solid | ds         | ND         | mg/L            | 10.0        | 10.0                    | 1        |                | 05/19/21 08:19 |              |      |
| 300.0 IC Anions 28    | Days       | Analytical | Method: EPA 3   | 00.0 Rev 2. | 1 1993                  |          |                |                |              |      |
|                       |            | Pace Anal  | ytical Services | - Asheville |                         |          |                |                |              |      |
| Chloride              |            | ND         | mg/L            | 1.0         | 0.60                    | 1        |                | 05/18/21 02:11 | 16887-00-6   |      |
| Fluoride              |            | ND         | mg/L            | 0.10        | 0.050                   | 1        |                | 05/18/21 02:11 | 16984-48-8   |      |
| Sulfate               |            | ND         | mg/L            | 1.0         | 0.50                    | 1        |                | 05/18/21 02:11 | 14808-79-8   |      |



| Project: YATES               |              |               |             |              |          |                |                |              |      |
|------------------------------|--------------|---------------|-------------|--------------|----------|----------------|----------------|--------------|------|
| Pace Project No.: 92538834   |              |               |             |              |          |                |                |              |      |
| Sample: DUP-1                | Lab ID: 9    | 2538834004    | Collecte    | ed: 05/13/2  | 1 00:00  | Received: 05/  | 14/21 09:30 Ma | atrix: Water |      |
|                              |              |               | Report      |              |          |                |                |              |      |
| Parameters                   | Results      | Units         | Limit       | MDL          | DF       | Prepared       | Analyzed       | CAS No.      | Qual |
| 6010D ATL ICP                | Analytical N | lethod: EPA 6 | 010D Pre    | paration Me  | thod: Ef | PA 3010A       |                |              |      |
|                              | Pace Analyt  | ical Services | - Peachtre  | e Corners, ( | GA       |                |                |              |      |
| Calcium                      | 71.6         | mg/L          | 1.0         | 0.13         | 1        | 05/18/21 10:07 | 05/18/21 17:24 | 7440-70-2    |      |
| 6020 MET ICPMS               | Analytical M | lethod: EPA 6 | 020B Pre    | paration Met | thod: EF | PA 3005A       |                |              |      |
|                              | Pace Analyt  | ical Services | - Peachtre  | e Corners, ( | GΑ       |                |                |              |      |
| Antimony                     | 0.00044J     | mg/L          | 0.0030      | 0.00028      | 1        | 05/18/21 13:16 | 05/19/21 15:18 | 7440-36-0    | В    |
| Arsenic                      | ND           | mg/L          | 0.0050      | 0.00078      | 1        | 05/18/21 13:16 | 05/19/21 15:18 | 7440-38-2    |      |
| Barium                       | 0.015        | mg/L          | 0.0050      | 0.00071      | 1        | 05/18/21 13:16 | 05/19/21 15:18 | 7440-39-3    |      |
| Beryllium                    | ND           | mg/L          | 0.00050     | 0.000046     | 1        | 05/18/21 13:16 | 05/19/21 15:18 | 7440-41-7    |      |
| Boron                        | 1.2          | mg/L          | 0.040       | 0.0052       | 1        | 05/18/21 13:16 | 05/19/21 15:18 | 7440-42-8    |      |
| Cadmium                      | ND           | mg/L          | 0.00050     | 0.00012      | 1        | 05/18/21 13:16 | 05/19/21 15:18 | 7440-43-9    |      |
| Chromium                     | ND           | mg/L          | 0.0050      | 0.00055      | 1        | 05/18/21 13:16 | 05/19/21 15:18 | 7440-47-3    |      |
| Cobalt                       | ND           | mg/L          | 0.0050      | 0.00038      | 1        | 05/18/21 13:16 | 05/19/21 15:18 | 7440-48-4    |      |
| Lead                         | 0.000040J    | mg/L          | 0.0010      | 0.000036     | 1        | 05/18/21 13:16 | 05/19/21 15:18 | 7439-92-1    |      |
| Lithium                      | 0.011J       | mg/L          | 0.030       | 0.00081      | 1        | 05/18/21 13:16 | 05/19/21 15:18 | 7439-93-2    |      |
| Molybdenum                   | 0.0040J      | mg/L          | 0.010       | 0.00069      | 1        | 05/18/21 13:16 | 05/19/21 15:18 | 7439-98-7    |      |
| Selenium                     | ND           | mg/L          | 0.0050      | 0.0016       | 1        | 05/18/21 13:16 | 05/19/21 15:18 | 7782-49-2    |      |
| Thallium                     | ND           | mg/L          | 0.0010      | 0.00014      | 1        | 05/18/21 13:16 | 05/19/21 15:18 | 7440-28-0    |      |
| 7470 Mercury                 | Analytical M | lethod: EPA 7 | 470A Pre    | paration Met | hod: EF  | PA 7470A       |                |              |      |
|                              | Pace Analyt  | ical Services | - Peachtre  | e Corners, ( | GΑ       |                |                |              |      |
| Mercury                      | ND           | mg/L          | 0.00020     | 0.000078     | 1        | 05/18/21 14:00 | 05/19/21 11:24 | 7439-97-6    |      |
| 2540C Total Dissolved Solids | Analytical M | lethod: SM 25 | 540C-2011   |              |          |                |                |              |      |
|                              | Pace Analyt  | ical Services | - Peachtre  | e Corners, ( | ЗA       |                |                |              |      |
| Total Dissolved Solids       | 383          | mg/L          | 10.0        | 10.0         | 1        |                | 05/19/21 08:19 |              |      |
| 300.0 IC Anions 28 Days      | Analytical N | lethod: EPA 3 | 00.0 Rev 2  | 2.1 1993     |          |                |                |              |      |
|                              | Pace Analyt  | ical Services | - Asheville |              |          |                |                |              |      |
| Chloride                     | 3.9          | mg/L          | 1.0         | 0.60         | 1        |                | 05/18/21 02:24 | 16887-00-6   |      |
| Fluoride                     | 0.12         | mg/L          | 0.10        | 0.050        | 1        |                | 05/18/21 02:24 | 16984-48-8   |      |
| Sulfate                      | 154          | mg/L          | 3.0         | 1.5          | 3        |                | 05/18/21 15:56 | 14808-79-8   |      |
|                              | -            | 0             |             | -            | -        |                |                |              |      |

**REPORT OF LABORATORY ANALYSIS** 

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



| Project:          | YATES            |                 |            |            |           |             |             |             |            |           |     |      |
|-------------------|------------------|-----------------|------------|------------|-----------|-------------|-------------|-------------|------------|-----------|-----|------|
| Pace Project No.: | 92538834         |                 |            |            |           |             |             |             |            |           |     |      |
| QC Batch:         | 621064           |                 | Anal       | ysis Metho | od:       | EPA 6010D   |             |             |            |           |     |      |
| QC Batch Method:  | EPA 3010A        |                 | Anal       | ysis Descr | ription:  | 6010D ATL   |             |             |            |           |     |      |
|                   |                  |                 | Labo       | oratory:   |           | Pace Analyt | ical Servic | es - Peach  | tree Corne | rs, GA    |     |      |
| Associated Lab Sa | mples: 92538834  | 001, 9253883400 | 2, 9253883 | 34003, 925 | 538834004 |             |             |             |            |           |     |      |
| METHOD BLANK:     | 3267639          |                 |            | Matrix: V  | Vater     |             |             |             |            |           |     |      |
| Associated Lab Sa | mples: 92538834  | 001, 9253883400 | 2, 9253883 | 34003, 925 | 538834004 |             |             |             |            |           |     |      |
|                   |                  |                 | Bla        | nk         | Reporting |             |             |             |            |           |     |      |
| Para              | meter            | Units           | Res        | ult        | Limit     | MDI         | -           | Analyzed    | Qı         | ualifiers |     |      |
| Calcium           |                  | mg/L            |            | ND         | 1         | .0          | 0.13 0      | 5/18/21 15: | 25         |           |     |      |
| LABORATORY CO     | NTROL SAMPLE:    | 3267640         |            |            |           |             |             |             |            |           |     |      |
|                   |                  |                 | Spike      | L          | CS        | LCS         | % R         | lec         |            |           |     |      |
| Para              | meter            | Units           | Conc.      | Re         | sult      | % Rec       | Lim         | its         | Qualifiers |           |     |      |
| Calcium           |                  | mg/L            |            | 1          | 1.1       | 107         | 7           | 80-120      |            | _         |     |      |
| MATRIX SPIKE & I  | MATRIX SPIKE DUF | PLICATE: 3267   | 641        |            | 326764    | 2           |             |             |            |           |     |      |
|                   |                  |                 | MS         | MSD        |           |             |             |             |            |           |     |      |
|                   |                  | 92538933001     | Spike      | Spike      | MS        | MSD         | MS          | MSD         | % Rec      |           | Max |      |
| Paramete          | er Units         | Result          | Conc.      | Conc.      | Result    | Result      | % Rec       | % Rec       | Limits     | RPD       | RPD | Qual |
| Calcium           | mg/L             | . 33100<br>ug/L | 1          | 1          | 34.8      | 33.8        | 167         | 75          | 75-125     | 3         | 20  | M1   |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:           | YATES  | 6                         |                 |            |                    |                    |             |  |
|--------------------|--------|---------------------------|-----------------|------------|--------------------|--------------------|-------------|--|
| Pace Project No.:  | 92538  | 834                       |                 |            |                    |                    |             |  |
| QC Batch:          | 6211   | 35                        | Analysis Meth   | nod:       | EPA 6020B          |                    |             |  |
| QC Batch Method:   | EPA    | 3005A                     | Analysis Desc   | cription:  | 6020 MET           |                    |             |  |
|                    |        |                           | Laboratory:     |            | Pace Analytical Se | rvices - Peachtree | Corners, GA |  |
| Associated Lab Sar | mples: | 92538834001, 92538834002, | 92538834003, 92 | 2538834004 | -                  |                    |             |  |
| METHOD BLANK:      | 32680  | 34                        | Matrix:         | Water      |                    |                    |             |  |
| Associated Lab Sar | mples: | 92538834001, 92538834002, | 92538834003, 92 | 2538834004 |                    |                    |             |  |
|                    |        |                           | Blank           | Reporting  |                    |                    |             |  |
| Parar              | neter  | Units                     | Result          | Limit      | MDL                | Analyzed           | Qualifiers  |  |
| Antimony           |        | mg/L                      | 0.00070J        | 0.003      | 0 0.00028          | 05/19/21 14:26     |             |  |
| Arsenic            |        | mg/L                      | ND              | 0.005      | 0 0.00078          | 05/19/21 14:26     |             |  |
| Barium             |        | mg/L                      | ND              | 0.005      | 0 0.00071          | 05/19/21 14:26     |             |  |
| Beryllium          |        | mg/L                      | ND              | 0.0005     | 0 0.000046         | 05/19/21 14:26     |             |  |
| Boron              |        | mg/L                      | ND              | 0.04       | 0 0.0052           | 05/19/21 14:26     |             |  |
| Cadmium            |        | mg/L                      | ND              | 0.0005     | 0 0.00012          | 05/19/21 14:26     |             |  |
| Chromium           |        | mg/L                      | ND              | 0.005      | 0 0.00055          | 05/19/21 14:26     |             |  |
| Cobalt             |        | mg/L                      | ND              | 0.005      | 0 0.00038          | 05/19/21 14:26     |             |  |
| Lead               |        | mg/L                      | ND              | 0.001      | 0 0.000036         | 05/19/21 14:26     |             |  |
| Lithium            |        | mg/L                      | ND              | 0.03       | 0 0.00081          | 05/19/21 14:26     |             |  |
| Molybdenum         |        | mg/L                      | ND              | 0.01       | 0 0.00069          | 05/19/21 14:26     |             |  |
| Selenium           |        | mg/L                      | ND              | 0.005      | 0 0.0016           | 05/19/21 14:26     |             |  |
| Thallium           |        | mg/L                      | ND              | 0.001      | 0 0.00014          | 05/19/21 14:26     |             |  |
|                    |        |                           |                 |            |                    |                    |             |  |

### LABORATORY CONTROL SAMPLE: 3268035

|            |       | Spike | LCS    | LCS   | % Rec  |            |
|------------|-------|-------|--------|-------|--------|------------|
| Parameter  | Units | Conc. | Result | % Rec | Limits | Qualifiers |
| Antimony   | mg/L  | 0.1   | 0.10   | 105   | 80-120 |            |
| Arsenic    | mg/L  | 0.1   | 0.099  | 99    | 80-120 |            |
| Barium     | mg/L  | 0.1   | 0.099  | 99    | 80-120 |            |
| Beryllium  | mg/L  | 0.1   | 0.10   | 101   | 80-120 |            |
| Boron      | mg/L  | 1     | 1.0    | 104   | 80-120 |            |
| Cadmium    | mg/L  | 0.1   | 0.10   | 102   | 80-120 |            |
| Chromium   | mg/L  | 0.1   | 0.097  | 97    | 80-120 |            |
| Cobalt     | mg/L  | 0.1   | 0.097  | 97    | 80-120 |            |
| Lead       | mg/L  | 0.1   | 0.099  | 99    | 80-120 |            |
| Lithium    | mg/L  | 0.1   | 0.10   | 101   | 80-120 |            |
| Molybdenum | mg/L  | 0.1   | 0.10   | 101   | 80-120 |            |
| Selenium   | mg/L  | 0.1   | 0.096  | 96    | 80-120 |            |
| Thallium   | mg/L  | 0.1   | 0.098  | 98    | 80-120 |            |

| MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3268036 |              |                |             |              | 3268037      |              |            |            |                  |        |          |      |
|------------------------------------------------|--------------|----------------|-------------|--------------|--------------|--------------|------------|------------|------------------|--------|----------|------|
|                                                |              | 92538834001    | MS<br>Spike | MSD<br>Spike | MS           | MSD          | MS         | MSD        | % Rec            |        | Мах      |      |
| Parameter                                      | Units        | Result         | Conc.       | Conc.        | Result       | Result       | % Rec      | % Rec      | Limits           | RPD    | RPD      | Qual |
| Antimony<br>Arsenic                            | mg/L<br>mg/L | 0.00052J<br>ND | 0.1<br>0.1  | 0.1<br>0.1   | 0.10<br>0.10 | 0.11<br>0.10 | 103<br>101 | 105<br>102 | 75-125<br>75-125 | 2<br>1 | 20<br>20 |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: YATES Pace Project No.: 92538834

| MATRIX SPIKE & MATRIX SPIK | MSD   | 3268037     |       |       |        |        |       |       |        |     |     |      |
|----------------------------|-------|-------------|-------|-------|--------|--------|-------|-------|--------|-----|-----|------|
|                            |       | 92538834001 | Spike | Spike | MS     | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter                  | Units | Result      | Conc. | Conc. | Result | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Barium                     | mg/L  | 0.015       | 0.1   | 0.1   | 0.11   | 0.11   | 95    | 98    | 75-125 | 3   | 20  |      |
| Beryllium                  | mg/L  | ND          | 0.1   | 0.1   | 0.091  | 0.091  | 91    | 91    | 75-125 | 0   | 20  |      |
| Boron                      | mg/L  | 1.3         | 1     | 1     | 2.5    | 2.4    | 118   | 114   | 75-125 | 2   | 20  |      |
| Cadmium                    | mg/L  | ND          | 0.1   | 0.1   | 0.10   | 0.10   | 101   | 102   | 75-125 | 1   | 20  |      |
| Chromium                   | mg/L  | ND          | 0.1   | 0.1   | 0.098  | 0.10   | 97    | 100   | 75-125 | 3   | 20  |      |
| Cobalt                     | mg/L  | ND          | 0.1   | 0.1   | 0.098  | 0.10   | 98    | 102   | 75-125 | 4   | 20  |      |
| Lead                       | mg/L  | 0.000049J   | 0.1   | 0.1   | 0.096  | 0.097  | 96    | 97    | 75-125 | 1   | 20  |      |
| Lithium                    | mg/L  | 0.011J      | 0.1   | 0.1   | 0.10   | 0.10   | 91    | 92    | 75-125 | 1   | 20  |      |
| Molybdenum                 | mg/L  | 0.0042J     | 0.1   | 0.1   | 0.10   | 0.11   | 99    | 104   | 75-125 | 5   | 20  |      |
| Selenium                   | mg/L  | ND          | 0.1   | 0.1   | 0.10   | 0.10   | 101   | 101   | 75-125 | 0   | 20  |      |
| Thallium                   | mg/L  | ND          | 0.1   | 0.1   | 0.096  | 0.097  | 96    | 97    | 75-125 | 1   | 20  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.


# **QUALITY CONTROL DATA**

| Project:          | YATES            |                 |                       |                                                  |           |              |       |              |            |           |     |      |  |  |
|-------------------|------------------|-----------------|-----------------------|--------------------------------------------------|-----------|--------------|-------|--------------|------------|-----------|-----|------|--|--|
| Pace Project No.: | 92538834         |                 |                       |                                                  |           |              |       |              |            |           |     |      |  |  |
| QC Batch:         | 621085           |                 | Analy                 | sis Metho                                        | d:        | EPA 7470A    |       |              |            |           |     |      |  |  |
| QC Batch Method:  | EPA 7470A        |                 | Analysis Description: |                                                  |           | 7470 Mercury |       |              |            |           |     |      |  |  |
|                   |                  |                 | Labor                 | Laboratory: Pace Analytical Services - Peachtree |           |              |       |              |            | ers, GA   |     |      |  |  |
| Associated Lab Sa | mples: 92538834  | 001, 9253883400 | 02, 92538834          | 4003, 925                                        | 38834004  |              |       |              |            |           |     |      |  |  |
| METHOD BLANK:     | 3267704          |                 |                       | Matrix: W                                        | ater      |              |       |              |            |           |     |      |  |  |
| Associated Lab Sa | mples: 92538834  | 001, 9253883400 | 02, 92538834          | 4003, 925                                        | 38834004  |              |       |              |            |           |     |      |  |  |
|                   |                  |                 | Blan                  | k                                                | Reporting |              |       |              |            |           |     |      |  |  |
| Parameter         |                  | Units           | Resu                  | ılt                                              | Limit     | MD           | L     | Analyzed     | Q          | ualifiers |     |      |  |  |
| Mercury           |                  | mg/L            |                       | ND                                               | 0.0002    | 20 0.0       | 00078 | 05/19/21 10: | :53        |           |     |      |  |  |
|                   |                  |                 |                       |                                                  |           |              |       |              |            |           |     |      |  |  |
| LABORATORY CO     | NTROL SAMPLE:    | 3267705         |                       |                                                  |           |              |       |              |            |           |     |      |  |  |
|                   |                  |                 | Spike                 | LC                                               | S         | LCS          | %     | Rec          |            |           |     |      |  |  |
| Para              | meter            | Units           | Conc.                 | Res                                              | sult      | % Rec        | Lir   | nits         | Qualifiers |           |     |      |  |  |
| Mercury           |                  | mg/L            | 0.002                 | 5                                                | 0.0024    | 9            | 6     | 80-120       |            | _         |     |      |  |  |
|                   |                  |                 |                       |                                                  |           |              |       |              |            |           |     |      |  |  |
| MATRIX SPIKE & M  | MATRIX SPIKE DUP | PLICATE: 3267   | 706                   |                                                  | 326770    | 7            |       |              |            |           |     |      |  |  |
|                   |                  |                 | MS                    | MSD                                              |           |              |       |              | _          |           |     |      |  |  |
| Demonstra         |                  | 92538834001     | Spike                 | Spike                                            | MS        | MSD          | MS    | MSD          | % Rec      | 000       | Max | 0    |  |  |
| Paramete          |                  | S Result        | Conc.                 | Conc.                                            | Result    | Result       | % Rec | % Rec        | LIMITS     | KPD       | KPD | Qual |  |  |
| Mercury           |                  |                 | 0.0005                | 0.0005                                           | 0 0000    | 0 0004       | 0     | n ne         | 75 405     | 2         | 20  |      |  |  |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



# **QUALITY CONTROL DATA**

| Project:            | YATES         |                  |                  |             |               |                  |                    |
|---------------------|---------------|------------------|------------------|-------------|---------------|------------------|--------------------|
| Pace Project No.:   | 92538834      |                  |                  |             |               |                  |                    |
| QC Batch:           | 621303        |                  | Analysis M       | ethod:      | SM 2540C-20   | 11               |                    |
| QC Batch Method:    | SM 2540C-20   | 11               | Analysis De      | escription: | 2540C Total D | issolved Solids  |                    |
|                     |               |                  | Laboratory       | :           | Pace Analytic | al Services - Pe | achtree Corners, G |
| Associated Lab Sa   | mples: 925388 | 34001, 925388340 | 02, 92538834003, | 92538834004 |               |                  |                    |
| METHOD BLANK:       | 3269201       |                  | Matrix           | x: Water    |               |                  |                    |
| Associated Lab Sa   | mples: 925388 | 34001, 925388340 | 02, 92538834003, | 92538834004 |               |                  |                    |
|                     |               |                  | Blank            | Reporting   |               |                  |                    |
| Para                | meter         | Units            | Result           | Limit       | MDL           | Analy            | zed Qualifie       |
| Total Dissolved Sol | ids           | mg/L             | ND               | D 10.       | .0            | 10.0 05/19/21    | 08:18              |
|                     |               |                  |                  |             |               |                  |                    |
| LABORATORY CO       | NTROL SAMPLE  | : 3269202        |                  |             |               |                  |                    |
|                     |               |                  | Spike            | LCS         | LCS           | % Rec            |                    |
| Para                | meter         | Units            | Conc.            | Result      | % Rec         | Limits           | Qualifiers         |
| Total Dissolved Sol | ids           | mg/L             | 400              | 397         | 99            | 90-111           |                    |
|                     |               |                  |                  |             |               |                  |                    |
| SAMPLE DUPLICA      | TE: 3269203   |                  |                  |             |               |                  |                    |
| _                   |               |                  | 92538698003      | Dup         |               | Max              |                    |
| Para                | meter         | Units            | Result           | Result      | RPD           | RPD              | Qualifiers         |
| Total Dissolved Sol | ids           | mg/L             | 56.0             | ) 71.       | .0            | 24               | 10 D6              |
|                     |               |                  |                  |             |               |                  |                    |
| SAMPLE DUPLICA      | TE: 3269204   |                  |                  |             |               |                  |                    |
| _                   |               |                  | 92539203003      | Dup         |               | Max              | o ""               |
| Para                | meter         | Units            | Result           | Result      | RPD           | RPD              | Qualifiers         |
| Total Dissolved Sol | ids           | mg/L             | 76.0             | 96.         | .0            | 23               | 10 D6              |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



# **QUALITY CONTROL DATA**

| Project:          | YATES    |             |                |             |             |           |                                      |              |             |            |           |     |      |  |
|-------------------|----------|-------------|----------------|-------------|-------------|-----------|--------------------------------------|--------------|-------------|------------|-----------|-----|------|--|
| Pace Project No.: | 925388   | 34          |                |             |             |           |                                      |              |             |            |           |     |      |  |
| QC Batch:         | 62093    | 8           |                | Anal        | ysis Metho  | d:        | EPA 300.0                            | Rev 2.1      | 1993        |            |           |     |      |  |
| QC Batch Method:  | EPA 3    | 00.0 Rev 2. | 1 1993         | Analy       | ysis Descri | ption:    | 300.0 IC Ar                          | nions        |             |            |           |     |      |  |
|                   |          |             |                | Labo        | oratory:    |           | Pace Analytical Services - Asheville |              |             |            |           |     |      |  |
| Associated Lab Sa | imples:  | 925388340   | 01, 9253883400 | 02, 9253883 | 34003, 925  | 38834004  |                                      |              |             |            |           |     |      |  |
| METHOD BLANK:     | 326715   | 5           |                |             | Matrix: W   | ater      |                                      |              |             |            |           |     |      |  |
| Associated Lab Sa | mples:   | 925388340   | 01, 9253883400 | 02, 9253883 | 34003, 925  | 38834004  |                                      |              |             |            |           |     |      |  |
|                   |          |             |                | Blai        | nk          | Reporting |                                      |              |             |            |           |     |      |  |
| Para              | meter    |             | Units          | Res         | ult         | Limit     | MD                                   | L            | Analyzed    | Qı         | ualifiers |     |      |  |
| Chloride          |          |             | mg/L           |             | ND          | 1         | .0                                   | 0.60         | 05/17/21 21 | :42        |           |     |      |  |
| Fluoride          |          |             | mg/L           |             | ND          | 0.1       | 0                                    | 0.050        | 05/17/21 21 | :42        |           |     |      |  |
| Sulfate           |          | mg/L        |                | ND          | 1           | .0        | 0.50                                 | 05/17/21 21: | :42         |            |           |     |      |  |
| LABORATORY CC     | ONTROL S | SAMPLE:     | 3267156        |             |             |           |                                      |              |             |            |           |     |      |  |
|                   |          |             |                | Spike       | LC          | S         | LCS                                  | %            | Rec         |            |           |     |      |  |
| Para              | meter    |             | Units          | Conc.       | Res         | sult      | % Rec                                | Li           | mits        | Qualifiers |           |     |      |  |
| Chloride          |          |             | mg/L           | 5           | 50          | 49.6      | 9                                    | 9            | 90-110      |            |           |     |      |  |
| Fluoride          |          |             | mg/L           | 2           | .5          | 2.4       | 9                                    | 8            | 90-110      |            |           |     |      |  |
| Sulfate           |          |             | mg/L           | 5           | 50          | 48.3      | 9                                    | 7            | 90-110      |            |           |     |      |  |
| MATRIX SPIKE & I  | MATRIX S |             | LICATE: 3267   | '157        |             | 326715    | 8                                    |              |             |            |           |     |      |  |
|                   |          |             |                | MS          | MSD         |           |                                      |              |             |            |           |     |      |  |
|                   |          |             | 92538495031    | Spike       | Spike       | MS        | MSD                                  | MS           | MSD         | % Rec      |           | Max |      |  |
| Paramete          | ər       | Units       | Result         | Conc.       | Conc.       | Result    | Result                               | % Rec        | % Rec       | Limits     | RPD       | RPD | Qual |  |
| Chloride          |          | mg/L        | ND             | 50          | 50          | 50.6      | 50.6                                 | 10           | 01 101      | 90-110     | 0         | 10  |      |  |
| Fluoride          |          | mg/L        | ND             | 2.5         | 2.5         | 2.5       | 2.5                                  | ę            | 99 98       | 90-110     | 0         | 10  |      |  |
| Sulfate           |          | mg/L        | ND             | 50          | 50          | 49.2      | 49.1                                 | ę            | 98 98       | 90-110     | 0         | 10  |      |  |
| MATRIX SPIKE &    | MATRIX S |             | LICATE: 3267   | '159        |             | 326716    | 0                                    |              |             |            |           |     |      |  |
|                   |          |             |                | MS          | MSD         |           |                                      |              |             |            |           |     |      |  |
| _                 |          |             | 92538834001    | Spike       | Spike       | MS        | MSD                                  | MS           | MSD         | % Rec      |           | Max |      |  |
| Paramete          | er       | Units       | Result         | Conc.       | Conc.       | Result    | Result                               | % Rec        | % Rec       | Limits     | RPD       | RPD | Qual |  |
| Chloride          |          | mg/L        | 4.0            | 50          | 50          | 54.1      | 55.3                                 | 10           | 00 103      | 90-110     | 2         | 10  |      |  |
| Fluoride          |          | mg/L        | 0.12           | 2.5         | 2.5         | 2.3       | 2.4                                  | 8            | 39 90       | 90-110     | 2         | 10  | M1   |  |
| Sulfate           |          | mg/L        | 178            | 50          | 50          | 206       | 199                                  | Ę            | 56 42       | 90-110     | 4         | 10  | M1   |  |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

# **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



## QUALIFIERS

Project: YATES Pace Project No.: 92538834

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### ANALYTE QUALIFIERS

B Analyte was detected in the associated method blank.

- D6 The precision between the sample and sample duplicate exceeded laboratory control limits.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.



# QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: YATES Pace Project No.: 92538834

| Lab ID      | Sample ID | QC Batch Method        | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|-----------|------------------------|----------|-------------------|---------------------|
| 92538834001 | PZ-37D    |                        |          |                   |                     |
| 92538834001 | PZ-37D    | EPA 3010A              | 621064   | EPA 6010D         | 621124              |
| 92538834002 | FB-1      | EPA 3010A              | 621064   | EPA 6010D         | 621124              |
| 92538834003 | EB-1      | EPA 3010A              | 621064   | EPA 6010D         | 621124              |
| 92538834004 | DUP-1     | EPA 3010A              | 621064   | EPA 6010D         | 621124              |
| 92538834001 | PZ-37D    | EPA 3005A              | 621135   | EPA 6020B         | 621237              |
| 92538834002 | FB-1      | EPA 3005A              | 621135   | EPA 6020B         | 621237              |
| 92538834003 | EB-1      | EPA 3005A              | 621135   | EPA 6020B         | 621237              |
| 92538834004 | DUP-1     | EPA 3005A              | 621135   | EPA 6020B         | 621237              |
| 92538834001 | PZ-37D    | EPA 7470A              | 621085   | EPA 7470A         | 621197              |
| 92538834002 | FB-1      | EPA 7470A              | 621085   | EPA 7470A         | 621197              |
| 92538834003 | EB-1      | EPA 7470A              | 621085   | EPA 7470A         | 621197              |
| 92538834004 | DUP-1     | EPA 7470A              | 621085   | EPA 7470A         | 621197              |
| 92538834001 | PZ-37D    | SM 2540C-2011          | 621303   |                   |                     |
| 92538834002 | FB-1      | SM 2540C-2011          | 621303   |                   |                     |
| 92538834003 | EB-1      | SM 2540C-2011          | 621303   |                   |                     |
| 92538834004 | DUP-1     | SM 2540C-2011          | 621303   |                   |                     |
| 92538834001 | PZ-37D    | EPA 300.0 Rev 2.1 1993 | 620938   |                   |                     |
| 92538834002 | FB-1      | EPA 300.0 Rev 2.1 1993 | 620938   |                   |                     |
| 92538834003 | EB-1      | EPA 300.0 Rev 2.1 1993 | 620938   |                   |                     |
| 92538834004 | DUP-1     | EPA 300.0 Rev 2.1 1993 | 620938   |                   |                     |

|                                                                                                     |                                |              | -               |               |                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------|--------------------------------|--------------|-----------------|---------------|----------------------------------------------------------------------------------------------------------------------------------|
| 67                                                                                                  | D                              | ocument      | Name:           | (scup)        | Document Revised: October 28, 2020                                                                                               |
| Pace Analytical                                                                                     | Sample Con                     | Document     | t No.:          | (JSCOR)       | Issuing Authority:                                                                                                               |
|                                                                                                     | F-C                            | AR-CS-03     | 3-Rev.07        |               | Pace Carolinas Quality Office                                                                                                    |
| boratory receiving samples:<br>Asheville Eden Greenwood                                             | I 🗌 Hunters                    | ville 🗌      | Ralei           | gh 🗌          | Mechanicsville Atlanta Kernersville                                                                                              |
| Sample Condition<br>Upon Receipt<br>G-COr 9. 01                                                     | power                          |              |                 | Projec        | WO#:92538834                                                                                                                     |
| Durier: Fed Ex U                                                                                    |                                | ;<br>::      | 90              | ient          | 92538834                                                                                                                         |
| tody Seal Present? Yes No                                                                           | Seals Intact?                  | ☐Yes         | DNO             |               | Date/Initials Person Examining Contents: 19 5/14                                                                                 |
| king Material: □Bubble Wrap [<br>rmometer:<br>□ IR Gun ID: <u>230</u>                               | Bubble Bags                    | Avone<br>ce: | e □ 0<br>v√et □ | Other<br>Blue | Biological Jissue Frozen?                                                                                                        |
| oler Temp: <u>212</u> Correction<br>Add/Subtra                                                      | Factor: ±<br>act (°C) ±<br>210 | 0,2          | _               |               | Temp should be above freezing to 6°C<br>Samples out of temp criteria. Samples on ice, cooling proce<br>has begun                 |
| DA Regulated Soil ( 🔲 N/A, water sample)<br>samples originate in a quarantine zone within th<br>Yes | e United States: C/            | A, NY, or S( | C (check m      | aps)?         | Did samples originate from a foreign source (internationally,<br>including Hawaii and Puerto Rico)? Yes<br>Comments/Discrepancy: |
|                                                                                                     | []War                          |              |                 | 1             |                                                                                                                                  |
|                                                                                                     |                                |              |                 |               |                                                                                                                                  |
| Samples Arrived within Hold Time?                                                                   | Wes                            |              |                 | 2.            |                                                                                                                                  |
| Short Hold Time Analysis (<72 hr.)? Rush Turn Around Time Requested?                                | [_]Yes<br>□]Yes                | DINO         |                 | 4.            |                                                                                                                                  |
| Sufficient Volume?                                                                                  |                                |              |                 | 5.            |                                                                                                                                  |
| Correct Containers Used?                                                                            | Difes                          |              |                 | 6,            |                                                                                                                                  |
| -Pace Containers Used?                                                                              | Yes                            | No           | □n/A            |               |                                                                                                                                  |
| Containers Intact?                                                                                  | <b>V</b> Yes                   | □No          |                 | 7.            |                                                                                                                                  |
| Dissolved analysis: Samples Field Filtered?                                                         | ☐ Yes                          | 10 No        | □n/A            | 8.            |                                                                                                                                  |
| Sample Labels Match COC?                                                                            | Mes                            | □No          | ∐n/a            | 9.            |                                                                                                                                  |
| -Includes Date/Time/ID/Analysis Matrix:                                                             |                                |              | ,               |               |                                                                                                                                  |
| Headspace in VOA Vials (>5-6mm)?<br>Trip Blank Present?                                             | ☐Yes<br>☐Yes                   | □No<br>□No   |                 | 10.<br>11.    |                                                                                                                                  |
| Trip Blank Custody Seals Present?                                                                   | Yes                            | No           |                 |               |                                                                                                                                  |
| COMMENTS/SAMPLE DISCREPANCY                                                                         |                                |              |                 |               | Field Data Required? 🗌 Yes 🔲 No                                                                                                  |
|                                                                                                     |                                |              |                 | Lo            | t ID of split containers:                                                                                                        |
| IENT NOTIFICATION/RESOLUTION                                                                        |                                |              |                 |               |                                                                                                                                  |
| Person contacted:                                                                                   |                                |              | Date/1          | lime:         |                                                                                                                                  |
|                                                                                                     |                                |              |                 |               | Deter                                                                                                                            |
| Project Manager SCURF Review:                                                                       |                                |              |                 |               | Date:                                                                                                                            |
| Project Manager SCURF Review:                                                                       |                                |              |                 |               | Date:                                                                                                                            |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,             |              |                  |                 |                |         |                |                |                 |             |                       |              |                         |                         |               |        |           |                 |                               |                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |              | 2000         |            |          |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------|------------------|-----------------|----------------|---------|----------------|----------------|-----------------|-------------|-----------------------|--------------|-------------------------|-------------------------|---------------|--------|-----------|-----------------|-------------------------------|-----------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------|--------------|------------|----------|-------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |              | 1                | Pace            | e Ana          | lytica  | a/             |                |                 | Sam         | ple Co                | Doci         | ion Uj                  | t Nam<br>pon R<br>nt No | ne:<br>.eceip | t(SCU  | IR)       |                 | Doci                          | ment            | Pa<br>Issuir | sed: (<br>ige 2<br>ig Aut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | of 2                                     | y:           | , 2020       | ,          |          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |              |                  |                 |                | -       |                |                |                 |             | F                     | -CAR         | -CS-0                   | 33-Re                   | v.07          |        |           |                 | Pace Carolinas Quality Office |                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |              |              |            |          |             |
| c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | heck          | (ma<br>d an  | rk to<br>d wit   | p ha            | alf of         | box     | if pl          | H an           | d/or            | dec<br>for  | hlori                 | nati<br>erva | on is<br>tion           |                         |               | Proj   | ect #     | ŧ [             | WC                            | )#              | :9           | )2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 53                                       | 38           | 83           | 34         |          |             |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mple          | es.          |                  |                 | .ne            | acce    | pran           |                | ange            | 101         | <b>P</b> 1 C 0        |              |                         |                         |               |        |           |                 | PM :                          | KLH             | 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Du                                       | e Da         | ate:         | 05         | /28      | /21         |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | eptio<br>Bott | ns: Vi<br>om | DA, Co<br>half ( | oliforr<br>of b | n, TO<br>ox is | to li   | and G<br>st ทเ | imb            | , DRO,<br>er of | /8015       | (wate<br>t <b>les</b> | r) DO        | C, LLF                  | łg                      |               |        |           |                 | CLIE                          | NT :            | GA           | -GA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pow                                      | er           |              |            |          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (cl-)         | 1            | 1                |                 | -              |         | (6<) H         | 3              | served          | (c-)        |                       | (A) (CI-)    |                         |                         | (A)(CI-)      |        |           |                 |                               |                 | 0            | Card Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Contro | (                                        |              | (2)          | ls (N/A)   |          | (N/A)       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | erved (N/P    | /N) pava     | erved (N/A       | ved (N/A)       | рН < 2) (Cl    | pH < 2) | ate & NaO      | pH > 12) (C    | jar Unpre       | Inved (N/A) | < 2)                  | served (N/   | pH < 2)                 | (pH < 2)                | NH4CI (N/     |        | (N/A)     |                 | (V)                           | kit (N/A)       | as kit (N/A  | (del – A/N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (N/A – lab                               |              | 504 (9.3-9   | served via | Is (N/A) | erved vials |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unpres        | Unpres       | Unpres           | upresei         | H2SO4          | HNO3 (  | ZN Acet        | HOEN           | d Glass         | Unprese     | HCI (pH               | r Unpre      | 12504 (                 | HZSOA                   | Ambei         | (N/A)  | E02S2     | N/N) di         | PO4 (N                        | { <b>}-5035</b> | )/HJ/-(      | Plastic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Plastic                                  |              | (ZHN)        | r Unpre    | ation vi | Unpres      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Plastic       | Plastic      | Plastic          | lastic U        | Plastic        | plastic | Plastic        | Plastic        | mouthe          | Amber I     | Amber                 | . Ambei      | wher !                  | Amber                   | -250 ml       | VOA HC | IOA Na    | VOA Ur          | VOA H3                        | s per kli       | per kit      | Sterile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . Sterile                                | 5            | Plastic      | L Ambe     | Scintill | Amber       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 125 mL        | 250 mL       | 500 mL           | 1 liter P       | 125 mL         | 250 mL  | 125 ml         | 125 mL         | -Wide-          | 1 liter /   | l liter /             | .250 ml      | 1 liter /               | 250 mL                  | (DG3A)        | 40 mL  | 40 mL \   | 40 mL           | 40 mL                         | (6 vials        | (3 vials     | 125 mL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 250 ml                                   | 11           | -250 ml      | -100 m     | -20 mL   | -40 mL      |
| And a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec | BP4U-         | BP3U-        | BP2U-            | BP1U-           | BP4S-1         | BP3N-   | BP4Z-:         | BP4C-          | WGFU            | AGIU        | AG1H-                 | AG3U         | AG15-                   | AG3S-                   | AG3A          | DG9H   | VG9T-     | VG9U            | DG9P                          | VOAK            | V/GK         | SPST-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SP2T-                                    | 0            | BP3A         | AGOU       | vsgu     | D690        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\square$     | 1            | 1                |                 | $\backslash$   | X       | /              | $\backslash$   |                 |             |                       |              | $\mathbb{N}$            | $\backslash$            | $\backslash$  |        |           |                 |                               |                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | X.           | $\backslash$ |            |          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\square$     | ١            | j                |                 | $\square$      | V       | 1              | $\backslash$   |                 |             | $\sum$                | C            | 1                       | $\langle \rangle$       | $\square$     |        |           |                 |                               |                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | R            | $\sum$       |            |          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sum$        | ١            | 1                |                 | K              | N       | $\square$      | $\square$      |                 |             | N                     |              | $\backslash$            |                         | N             |        | 1         | <b>Þ</b>        |                               |                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | 2            | $\bigwedge$  |            |          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sum$        | 1            | 1                |                 | $\overline{)}$ | X       | $\overline{)}$ | $\overline{)}$ | <b>*</b>        |             | N                     |              | N                       | 1                       | $\backslash$  |        |           |                 |                               |                 | <b>X</b>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | R            | $\bigwedge$  |            |          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sum$        |              |                  |                 | Ń              | N       | $\overline{)}$ | N              |                 |             | N                     |              | X                       | N                       | X             | ×      |           |                 |                               |                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | N            | N            |            |          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\square$     |              |                  |                 | K              | K       | $\square$      |                | 1               |             | K                     | 1            | $\overline{\backslash}$ | N                       | X             |        |           |                 |                               |                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | $\bigwedge$  | N            |            |          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\square$     |              |                  |                 | N              | N       | N              |                |                 |             |                       |              | N                       | N                       | N             |        |           |                 |                               |                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | N            | N            |            |          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\square$     |              |                  |                 | $\backslash$   | N       | N              | N              |                 |             | $\backslash$          |              | 1                       | N                       | N             |        |           |                 |                               |                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | $\backslash$ |              |            |          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\square$     |              |                  |                 | N              | N       | N              | N              |                 |             | N                     |              | $\wedge$                | N                       | N             |        | 2         |                 |                               |                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | $\backslash$ | $\square$    |            |          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\square$     |              |                  |                 | $\backslash$   | N       | N              | K              |                 |             | N                     |              | N                       | Ν                       | N             |        |           |                 |                               |                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | $\square$    | $\square$    |            |          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\square$     |              |                  |                 | $\backslash$   | N       | N              | N              |                 |             | N                     |              | $\backslash$            | N                       | N             |        |           |                 |                               |                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | $\square$    | $\square$    |            |          |             |
| ľ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\backslash$  |              |                  |                 | $\backslash$   | N       | N              | N              | J               |             | $\backslash$          |              | N                       | $\sum$                  | N             |        |           |                 |                               |                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | $\square$    | $\square$    |            |          |             |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |              | -                |                 |                |         |                |                | p               | H Ad        | ljust                 | me           | nt Lo                   | og fo                   | or Pr         | esei   | ved       | Sar             | nple                          | s               |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |              |              |            |          | - 1911/1/2  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ample         | ID           | Тур              | be of 1         | Preser         | vative  | F F            | нир            | on rec          | eipt        | Dat                   | e pre        | servat                  | ion ac                  | ljusted       | 1      | Time<br>a | prese<br>adjust | rvatio<br>ed                  | n               | An           | nount                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | of Pro<br>adde                           | eserva<br>d  | tive         |            | Lot      | #           |
| Í                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -             |              |                  |                 |                |         |                |                |                 |             |                       |              |                         |                         |               |        |           |                 |                               |                 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |              |              |            |          | ****        |

Nate: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

|                                 |         |     |       | ADDITIONAL COMMENTS | SAMPLE ID<br>Che Character per box.<br>(AZ, Cali,<br>Sample Ide must be unique<br>PZ-3TD (0513Z1)<br>EB-01 (0513Z1)<br>DuP-01 (0513Z1)<br>DuP-01 (0513Z1) |               | isted Due Date | c (770)3F4-6526 Fax | n, GA 30114    | ss: 1070 Bridge Mill Ave | any: Georgia Power | n A<br>red Client Information: | Pace Analytical |
|---------------------------------|---------|-----|-------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------|---------------------|----------------|--------------------------|--------------------|--------------------------------|-----------------|
|                                 | -       |     | Berly | B                   | · · · · · · · · · · · · · · · · · · ·                                                                                                                     |               | Project #:     | Project Name:       | Purchase Order | Copy To:                 | Report To: Be      | Section B<br>Required Project  |                 |
|                                 |         |     | 6     | MOUN                | SAMPLE TYPE (G=GRAB C=COMP)                                                                                                                               |               |                | Yat                 | *              |                          | cky SI             | et info                        |                 |
|                                 |         |     | 3     | SHED                | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                     | 1             |                | Ĩ                   |                | ł                        | teeve              | Amati                          |                 |
| <b>-</b>                        | 50      | -   | 3     | HN I VB             |                                                                                                                                                           |               |                |                     |                |                          |                    | 01                             |                 |
| - 56 12                         | AMPLI   |     | R     | FILIATIO            |                                                                                                                                                           |               |                |                     |                |                          |                    |                                |                 |
| NT Name                         | ER NAME |     | A.    | 2                   | ECTED                                                                                                                                                     |               |                |                     |                |                          |                    |                                | 다.<br>다.        |
| of SAL                          | ANDS    |     | 5     | g                   | NO TIME                                                                                                                                                   |               |                |                     |                |                          |                    |                                | ain-of          |
| AP LE                           | AND     |     | 14/2  | Ħ                   | SAMPLE TEMP AT COLLECTION                                                                                                                                 |               |                |                     |                |                          |                    |                                | Č,              |
|                                 | Type -  |     | B     | 1000                | # OF CONTAINERS                                                                                                                                           |               | Pa             | Pa                  |                | 8                        | Atte               |                                | g B             |
| 18                              | 1       |     | 5     |                     | Unpreserved                                                                                                                                               |               | 2 Pro          | * Pro               | Iress:         | npany                    | ntion              | olce I                         | is a            |
| 12                              |         |     | P     |                     | H2SO4                                                                                                                                                     |               | 10.4           | Yeat N              | ote:           | Nan                      | -                  | niom                           | <b>E</b>        |
| d.                              |         |     | 6     |                     | НИОЗ ТОТА                                                                                                                                                 |               |                | Aanag               |                |                          |                    | natio                          | ž i             |
| WLP                             |         |     | 6     |                     |                                                                                                                                                           |               | DR4D           | e.                  |                |                          |                    | 2                              | S Z             |
| 131                             |         |     | 8     | 2                   |                                                                                                                                                           |               |                |                     |                |                          |                    |                                | UM              |
| 8                               |         |     | 6     |                     | Methanol                                                                                                                                                  |               |                |                     |                |                          |                    |                                | 22              |
| 11                              |         |     | 0     | FED B               | Other                                                                                                                                                     |               |                | Printo              |                |                          |                    |                                | ≧ 2             |
|                                 |         |     | 2     | YIN                 | Analyses Test Y/N                                                                                                                                         | Surger of     | K              | Cona                |                |                          |                    |                                |                 |
|                                 |         |     | 2     | FRLM                | R R R App III & IV Metals                                                                                                                                 | Distantion of |                | xelab.              |                |                          |                    |                                | eq.             |
| ATE                             |         |     | (     | NON                 |                                                                                                                                                           | 3             |                | 8                   |                |                          |                    |                                | field           |
| , sê                            |         |     |       |                     | Ci, F, SO4                                                                                                                                                | Treat         |                |                     |                |                          |                    |                                | ã d             |
| 2                               | 10.1    |     |       | 101%                |                                                                                                                                                           | V Pe          |                |                     |                |                          |                    |                                | SE C            |
| 4                               | 100     | ++- | 5     | LULLIN<br>LULLIN    |                                                                                                                                                           | ualty at      |                |                     |                |                          |                    |                                | 6 0 <b>U</b>    |
| 14                              |         |     | 1     | DATE                |                                                                                                                                                           | 1             | 1              |                     |                |                          | $\Box$             |                                | mple<br>IEII    |
|                                 |         |     | 2     |                     |                                                                                                                                                           | 2 a           |                | Charles -           | 1000           |                          |                    |                                | Ĕ 1             |
|                                 |         |     | 60    | 1                   |                                                                                                                                                           | <b>KN</b>     |                |                     | 04040          |                          |                    |                                | acc             |
|                                 |         |     | 30    | A                   |                                                                                                                                                           |               |                | 10/01               |                | 1                        | I                  |                                | 1 at            |
|                                 | 1 문.    | ++- | 2     | 20                  |                                                                                                                                                           | 100           |                |                     | 2              |                          |                    | Page                           | ły              |
| TEMP in C                       |         |     | 22    |                     | Residual Chiorine (Y/N)                                                                                                                                   |               |                | State               | gulat          |                          |                    |                                |                 |
| Received o                      | 'n      |     | 4     | SANDLE              |                                                                                                                                                           |               | A              | Location            | ony Agen       |                          |                    | •                              |                 |
| Custody<br>Sealed D<br>Cooler D | -†-     |     | 3     | CONDITIO            |                                                                                                                                                           | 0             |                | Superior Superior   | SA             |                          |                    | ç                              |                 |
| (Y/N)<br>Samples                | -+      |     |       | NS                  |                                                                                                                                                           |               |                | 8                   |                | 1                        |                    | 6                              | 1 1             |



Pace Analytical Services, LLC 110 Technology Parkway Peachtree Corners, GA 30092 (770)734-4200

June 29, 2021

Ms. Lauren Petty Southern Company 42 Inverness Center Parkway Birmingham, AL 35242

RE: Project: YATES RADS Pace Project No.: 92538831

Dear Ms. Petty:

Enclosed are the analytical results for sample(s) received by the laboratory on May 14, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kein Hung

Kevin Herring kevin.herring@pacelabs.com 1(704)875-9092 HORIZON Database Administrator

Enclosures

cc: Joju Abraham, Georgia Power-CCR Lauren Coker, Georgia Pwer Geoffrey Gay, ARCADIS - Atlanta Kristen Jurinko Kelley Sharpe, ARCADIS - Atlanta Alex Simpson, Arcadis Samantha Thomas Maribel Vital





Pace Analytical Services, LLC 110 Technology Parkway Peachtree Corners, GA 30092 (770)734-4200

### CERTIFICATIONS

Project: YATES RADS Pace Project No.: 92538831

#### Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601 ANAB DOD-ELAP Rad Accreditation #: L2417 Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694 **Delaware Certification** EPA Region 4 DW Rad Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET **Guam Certification** Hawaii Certification Idaho Certification **Illinois Certification** Indiana Certification Iowa Certification #: 391 Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221 Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086 Maine Certification #: 2017020 Maryland Certification #: 308 Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991

Missouri Certification #: 235 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249 Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification Tennessee Certification #: 02867 Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L



# SAMPLE SUMMARY

Project: YATES RADS Pace Project No.: 92538831

| Lab ID      | Sample ID | Matrix | Date Collected | Date Received  |
|-------------|-----------|--------|----------------|----------------|
| 92538831001 | PZ-37D    | Water  | 05/13/21 12:30 | 05/14/21 09:30 |
| 92538831002 | FB-1      | Water  | 05/13/21 11:30 | 05/14/21 09:30 |
| 92538831003 | EB-1      | Water  | 05/13/21 18:30 | 05/14/21 09:30 |
| 92538831004 | DUP-1     | Water  | 05/13/21 00:00 | 05/14/21 09:30 |



# SAMPLE ANALYTE COUNT

| Project:           | YATES RADS |  |
|--------------------|------------|--|
| Pace Project No .: | 92538831   |  |

| Lab ID           | Sample ID | Method                   | Analysts | Analytes<br>Reported | Laboratory |
|------------------|-----------|--------------------------|----------|----------------------|------------|
| 92538831001      | PZ-37D    | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|                  |           | EPA 9320                 | JC2      | 1                    | PASI-PA    |
|                  |           | Total Radium Calculation | RMK      | 1                    | PASI-PA    |
| 92538831002 FB-1 | EPA 9315  | LAL                      | 1        | PASI-PA              |            |
|                  |           | EPA 9320                 | JC2      | 1                    | PASI-PA    |
|                  |           | Total Radium Calculation | RMK      | 1                    | PASI-PA    |
| 92538831003      | EB-1      | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|                  |           | EPA 9320                 | JC2      | 1                    | PASI-PA    |
|                  |           | Total Radium Calculation | RMK      | 1                    | PASI-PA    |
| 92538831004      | DUP-1     | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|                  |           | EPA 9320                 | JC2      | 1                    | PASI-PA    |
|                  |           | Total Radium Calculation | RMK      | 1                    | PASI-PA    |

PASI-PA = Pace Analytical Services - Greensburg



# SUMMARY OF DETECTION

Project: YATES RADS

Pace Project No.: 92538831

| Lab Sample ID            | Client Sample ID |                                                   |       |              |                |            |  |  |  |
|--------------------------|------------------|---------------------------------------------------|-------|--------------|----------------|------------|--|--|--|
| Method                   | Parameters       | Result                                            | Units | Report Limit | Analyzed       | Qualifiers |  |  |  |
| 92538831001              | PZ-37D           |                                                   |       |              |                |            |  |  |  |
| EPA 9315                 | Radium-226       | 2.70 ±<br>0.530<br>(0.161)                        | pCi/L |              | 06/25/21 10:34 |            |  |  |  |
| EPA 9320                 | Radium-228       | C:83% T:NA<br>2.66 ±<br>0.740<br>(0.762)<br>C:64% | pCi/L |              | 06/07/21 11:16 |            |  |  |  |
| Total Radium Calculation | Total Radium     | 1:78%<br>5.36 ± 1.27<br>(0.923)                   | pCi/L |              | 06/28/21 17:08 |            |  |  |  |
| 92538831002              | FB-1             |                                                   |       |              |                |            |  |  |  |
| EPA 9315                 | Radium-226       | 0.0225 ±<br>0.220<br>(0.600)<br>C:88% TNA         | pCi/L |              | 06/04/21 08:46 |            |  |  |  |
| EPA 9320                 | Radium-228       | 0.487 ±<br>0.440<br>(0.891)<br>C:60%              | pCi/L |              | 06/07/21 11:16 |            |  |  |  |
| Total Radium Calculation | Total Radium     | 0.510 ±<br>0.660<br>(1.49)                        | pCi/L |              | 06/21/21 20:12 |            |  |  |  |
| 92538831003              | EB-1             |                                                   |       |              |                |            |  |  |  |
| EPA 9315                 | Radium-226       | -0.0213 ±<br>0.200<br>(0.591)<br>C:92% T:NA       | pCi/L |              | 06/04/21 08:46 |            |  |  |  |
| EPA 9320                 | Radium-228       | 0.247 ±<br>0.316<br>(0.669)<br>C:68%<br>T:85%     | pCi/L |              | 06/07/21 11:16 |            |  |  |  |
| Total Radium Calculation | Total Radium     | 0.247 ±<br>0.516<br>(1.26)                        | pCi/L |              | 06/21/21 20:12 |            |  |  |  |
| 92538831004              | DUP-1            |                                                   |       |              |                |            |  |  |  |
| EPA 9315                 | Radium-226       | 2.47 ±<br>0.489<br>(0.154)<br>C:91% T:NA          | pCi/L |              | 06/25/21 10:34 |            |  |  |  |
| EPA 9320                 | Radium-228       | 1.70 ±<br>0.569<br>(0.728)<br>C:63%<br>T:78%      | pCi/L |              | 06/07/21 11:16 |            |  |  |  |
| Total Radium Calculation | Total Radium     | 4.17 ± 1.06<br>(0.882)                            | pCi/L |              | 06/28/21 17:08 |            |  |  |  |



## ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: YATES RADS Pace Project No.: 92538831 Sample: PZ-37D Lab ID: 92538831001 Collected: 05/13/21 12:30 Received: 05/14/21 09:30 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac Parameters Method Units Analyzed CAS No. Qual Pace Analytical Services - Greensburg 2.70 ± 0.530 (0.161) EPA 9315 Radium-226 pCi/L 06/25/21 10:34 13982-63-3 C:83% T:NA Pace Analytical Services - Greensburg EPA 9320 2.66 ± 0.740 (0.762) Radium-228 pCi/L 06/07/21 11:16 15262-20-1 C:64% T:78% Pace Analytical Services - Greensburg **Total Radium** Total Radium 5.36 ± 1.27 (0.923) pCi/L 06/28/21 17:08 7440-14-4 Calculation



## ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: YATES RADS

| Pace Project No.: 9 | 2538831 |  |
|---------------------|---------|--|
|---------------------|---------|--|

| Sample: FB-1 | Lab ID: 92538               | 831002 Collected: 05/13/21 11:30     | Received: | 05/14/21 09:30 M | latrix: Water |      |
|--------------|-----------------------------|--------------------------------------|-----------|------------------|---------------|------|
| PWS:         | Site ID:                    | Sample Type:                         |           |                  |               |      |
| Parameters   | Method                      | Act ± Unc (MDC) Carr Trac            | Units     | Analyzed         | CAS No.       | Qual |
|              | Pace Analytical S           | Services - Greensburg                |           |                  |               |      |
| Radium-226   | EPA 9315                    | 0.0225 ± 0.220 (0.600)<br>C:88% T:NA | pCi/L     | 06/04/21 08:46   | 13982-63-3    |      |
|              | Pace Analytical S           | Services - Greensburg                |           |                  |               |      |
| Radium-228   | EPA 9320                    | 0.487 ± 0.440 (0.891)<br>C:60% T:79% | pCi/L     | 06/07/21 11:16   | 15262-20-1    |      |
|              | Pace Analytical S           | Services - Greensburg                |           |                  |               |      |
| Total Radium | Total Radium<br>Calculation | 0.510 ± 0.660 (1.49)                 | pCi/L     | 06/21/21 20:12   | 7440-14-4     |      |



## ANALYTICAL RESULTS - RADIOCHEMISTRY

Project:YATES RADSPace Project No.:92538831

| Sample: EB-1 | Lab ID: 92538               | <b>3831003</b> Collected: 05/13/21 18:30 | Received: | 05/14/21 09:30 N | latrix: Water |      |
|--------------|-----------------------------|------------------------------------------|-----------|------------------|---------------|------|
| PWS:         | Site ID:                    | Sample Type:                             |           |                  |               |      |
| Parameters   | Method                      | Act ± Unc (MDC) Carr Trac                | Units     | Analyzed         | CAS No.       | Qual |
|              | Pace Analytical             | Services - Greensburg                    |           |                  |               |      |
| Radium-226   | EPA 9315                    | -0.0213 ± 0.200 (0.591)<br>C:92% T:NA    | pCi/L     | 06/04/21 08:46   | 13982-63-3    |      |
|              | Pace Analytical             | Services - Greensburg                    |           |                  |               |      |
| Radium-228   | EPA 9320                    | 0.247 ± 0.316 (0.669)<br>C:68% T:85%     | pCi/L     | 06/07/21 11:16   | 15262-20-1    |      |
|              | Pace Analytical             | Services - Greensburg                    |           |                  |               |      |
| Total Radium | Total Radium<br>Calculation | 0.247 ± 0.516 (1.26)                     | pCi/L     | 06/21/21 20:12   | 7440-14-4     |      |



Matrix: Water

CAS No.

Qual

## **ANALYTICAL RESULTS - RADIOCHEMISTRY**

Project: YATES RADS Pace Project No.: 92538831 Sample: DUP-1 Lab ID: 92538831004 Collected: 05/13/21 00:00 Received: 05/14/21 09:30 PWS: Site ID: Sample Type: Parameters Method Act ± Unc (MDC) Carr Trac Units Analyzed Pace Analytical Services - Greensburg EPA 9315 2.47 ± 0.489 (0.154) Radium-226 pCi/L 06/25/21 10:34 13982-63-3 C:91% T:NA Pace Analytical Services - Greensburg

| Radium-228   | EPA 9320                    | 1.70 ± 0.569 (0.728)<br>C:63% T:78% | pCi/L | 06/07/21 11:16 15262-20-1 |
|--------------|-----------------------------|-------------------------------------|-------|---------------------------|
|              | Pace Analytica              | l Services - Greensburg             |       |                           |
| Total Radium | Total Radium<br>Calculation | 4.17 ± 1.06 (0.882)                 | pCi/L | 06/28/21 17:08 7440-14-4  |



## **QUALITY CONTROL - RADIOCHEMISTRY**

| Project:           | YATES RADS      |                                            |                   |                      |            |  |
|--------------------|-----------------|--------------------------------------------|-------------------|----------------------|------------|--|
| Pace Project No.:  | 92538831        |                                            |                   |                      |            |  |
| QC Batch:          | 449716          | Analysis Method:                           | EPA 9320          |                      |            |  |
| QC Batch Method:   | EPA 9320        | Analysis Description:                      | 9320 Radium 22    | 8                    |            |  |
|                    |                 | Laboratory:                                | Pace Analytical S | Services - Greensbur | g          |  |
| Associated Lab San | nples: 92538831 | 001, 92538831002, 92538831003, 92538831004 | 4                 |                      |            |  |
| METHOD BLANK:      | 2170082         | Matrix: Water                              |                   |                      |            |  |
| Associated Lab San | nples: 92538831 | 001, 92538831002, 92538831003, 92538831004 | 4                 |                      |            |  |
| Paran              | neter           | Act ± Unc (MDC) Carr Trac                  | Units             | Analyzed             | Qualifiers |  |
| Radium-228         |                 | 0.470 ± 0.364 (0.712) C:62% T:85%          | pCi/L             | 06/07/21 11:17       |            |  |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



# **QUALITY CONTROL - RADIOCHEMISTRY**

| Project:           | YATES RADS      |                                            |                    |                      |            |  |
|--------------------|-----------------|--------------------------------------------|--------------------|----------------------|------------|--|
| Pace Project No.:  | 92538831        |                                            |                    |                      |            |  |
| QC Batch:          | 450480          | Analysis Method:                           | EPA 9315           |                      |            |  |
| QC Batch Method:   | EPA 9315        | Analysis Description:                      | 9315 Total Radiun  | n                    |            |  |
|                    |                 | Laboratory:                                | Pace Analytical Se | ervices - Greensburg | g          |  |
| Associated Lab San | nples: 92538831 | 001, 92538831002, 92538831003, 92538831004 |                    |                      |            |  |
| METHOD BLANK:      | 2173868         | Matrix: Water                              |                    |                      |            |  |
| Associated Lab San | nples: 92538831 | 001, 92538831002, 92538831003, 92538831004 |                    |                      |            |  |
| Paran              | neter           | Act ± Unc (MDC) Carr Trac                  | Units              | Analyzed             | Qualifiers |  |
| Radium-226         |                 | 0.274 ± 0.327 (0.673) C:95% T:NA           | pCi/L              | 06/04/21 08:45       |            |  |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



## QUALIFIERS

Project: YATES RADS Pace Project No.: 92538831

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.



# QUALITY CONTROL DATA CROSS REFERENCE TABLE

| Project:           | YATES RADS |
|--------------------|------------|
| Pace Project No .: | 92538831   |

| Lab ID      | Sample ID | QC Batch Method          | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|-----------|--------------------------|----------|-------------------|---------------------|
| 92538831001 | PZ-37D    | EPA 9315                 | 450480   |                   |                     |
| 92538831002 | FB-1      | EPA 9315                 | 450480   |                   |                     |
| 92538831003 | EB-1      | EPA 9315                 | 450480   |                   |                     |
| 92538831004 | DUP-1     | EPA 9315                 | 450480   |                   |                     |
| 92538831001 | PZ-37D    | EPA 9320                 | 449716   |                   |                     |
| 92538831002 | FB-1      | EPA 9320                 | 449716   |                   |                     |
| 92538831003 | EB-1      | EPA 9320                 | 449716   |                   |                     |
| 92538831004 | DUP-1     | EPA 9320                 | 449716   |                   |                     |
| 92538831001 | PZ-37D    | Total Radium Calculation | 454327   |                   |                     |
| 92538831002 | FB-1      | Total Radium Calculation | 453438   |                   |                     |
| 92538831003 | EB-1      | Total Radium Calculation | 453438   |                   |                     |
| 92538831004 | DUP-1     | Total Radium Calculation | 454327   |                   |                     |

| ~                                                                                                 | D                               | ocument      | Name:               |               | Document Revised: October 28, 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------|---------------------------------|--------------|---------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pace Analytical                                                                                   | Sample Con                      | dition Up    | on Receip           | t(SCUR)       | Page 1 of 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| A accretatytical                                                                                  | F-C                             | AR-CS-03     | it No.:<br>3-Rev.07 |               | Pace Carolinas Quality Office                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| boratory receiving samples:<br>Asheville Eden Greenwoo                                            | d 🗌 Hunters                     | ville 🗌      | ] Ralei             | gh 🗌          | Mechanicsville Atlanta Kernersvil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sample Condition<br>Upon Receipt<br>G-COV 9. 01                                                   | power                           |              |                     | Projec        | , WO# : 92536651                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Commercial                                                                                        |                                 | er:          |                     | nent          | 92538831                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| tody Seal Present? Yes                                                                            | Seals Intact?                   | <b>∐</b> Yes | Dire                | 5             | Date/Initials Person Examining Contents: 州 データ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| cking Material: Bubble Wrap<br>ermometer:<br>IR Gun ID: 230                                       | Bubble Bags                     |              | e 🗌 (<br>hvvet 🗆    | Other<br>Blue | Biological Jissue Frozen?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| vler Temp: <u>212</u> Correction<br>Add/Subt                                                      | Factor: +<br>ract (°C) +<br>2.0 | 0,2          | _                   |               | Temp should be above freezing to 6°C<br>Samples out of temp criteria. Samples on ice, cooling p<br>has begun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DA Regulated Soil (  N/A, water sample)<br>samples originate in a quarantine zone within t<br>Yes | he United States: CA            | A, NY, or S  | C (check m          | iaps)?        | Did samples originate from a foreign source (internationally,<br>including Hawaii and Puerto Rico)? Yes<br>Comments/Discrepancy:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Chain of Custody Present?                                                                         | Fres                            |              |                     | 1.            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Samples Arrived within Hold Time?                                                                 | Dies                            |              |                     | 2.            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Short Hold Time Analysis (<72 hr.)?                                                               | ☐Yes                            | Dino         |                     | 3.            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Rush Turn Around Time Requested?                                                                  | Yes                             | DINO         |                     | 4.            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Sufficient Volume?                                                                                | Pres                            | No           |                     | 5.            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Correct Containers Used?<br>-Pace Containers Used?                                                | Pres<br>Ves                     |              | □n/a<br>□n/a        | 6,            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Containers Intact?                                                                                | Ves                             | No           |                     | 7.            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Dissolved analysis: Samples Field Filtered?                                                       | Yes                             | DNo          |                     | 8.            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Sample Labels Match COC?                                                                          | Ja√<br>∂a√                      | □No          | ∐N/A                | 9.            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -includes bace interior Analysis Matrix                                                           |                                 |              | de                  | 10            | 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - |
| Trip Blank Present?                                                                               | ⊥ Yes                           |              |                     | 11.           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Trip Blank Custody Seals Present?                                                                 | Yes                             | No           |                     |               | Field Data Required?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                   |                                 |              |                     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| IENT NOTIFICATION/RESOLUTION                                                                      |                                 |              |                     | Lot           | ID of split containers:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                   |                                 |              |                     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                   |                                 |              | Date/1              | Time:         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Person contacted:                                                                                 |                                 |              | _ Date/1            | lime: _       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Project Manager SCURF Review:                                                                     |                                 |              | _ Date/1            | fime: _       | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

|             |                                             |                                       |                                       |                                        |                                          |                                   |                                            |                                          | <del></del>                             |                                            |                                 |                                            |                                   | N                                |                                          |                          |                              |                          | Deri                       |                                       | t Doui                                   |                                         | Detak                                   |                         | 2020                                    |                                           |                                      |                                          |
|-------------|---------------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|------------------------------------------|-----------------------------------|--------------------------------------------|------------------------------------------|-----------------------------------------|--------------------------------------------|---------------------------------|--------------------------------------------|-----------------------------------|----------------------------------|------------------------------------------|--------------------------|------------------------------|--------------------------|----------------------------|---------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------|-----------------------------------------|-------------------------------------------|--------------------------------------|------------------------------------------|
|             |                                             |                                       | ø                                     | 2                                      | o A na                                   | Ntin                              | a/                                         |                                          |                                         | Sam                                        | ple Co                          | onditi                                     | lon Uj                            | on R                             | ne:<br>.eceip                            | t(SCL                    | JR)                          |                          | Doct                       | Inen                                  | Pa                                       | ige 2                                   | of 2                                    | Jei 20,                 | , 2020                                  |                                           |                                      |                                          |
|             |                                             |                                       | 1                                     | 1 200                                  |                                          | iy acc                            |                                            |                                          |                                         |                                            | F                               | Do<br>CAR                                  | -CS-O                             | nt No<br>33-Re                   | .:<br>v.07                               |                          |                              |                          |                            | Pace                                  | Carol                                    | inas C                                  | Qualit                                  | ty:<br>ty Otfic         | ce                                      |                                           |                                      |                                          |
| *<br>V<br>S | Check<br>erifie                             | k ma<br>d an<br>es.                   | rk to<br>d wi                         | op ha<br>thin                          | alf of<br>the                            | box<br>acce                       | if pl<br>ptan                              | H an<br>ice r                            | d/or<br>ange                            | dec<br>for                                 | hlori<br>pres                   | nati<br>erva                               | on is<br>ition                    |                                  |                                          | Proj                     | ect #                        |                          | 10<br>1: K                 | # :                                   | 9                                        | 25                                      | 53                                      | 88                      | 33                                      | 1                                         |                                      |                                          |
| E<br>a      | *Boti                                       | ns: V<br>tom                          | 0A, Ca<br>half                        | oliforr<br>of b                        | n, TO<br>ox is                           | to li                             | and G<br><b>st กเ</b>                      | rease,<br>umb                            | , DRO<br>er of                          | /8015<br>bot                               | (wate<br>tles                   | r) DO                                      | C, LLF                            | g                                |                                          |                          |                              | CL                       | IEN                        | IT :                                  | GA-(                                     | GA P                                    | one                                     | r Dat                   |                                         | 06/                                       | 07/2                                 | 21                                       |
| ternat      | BP4U-125 mL Plastic Unpreserved (N/A) (CI-) | BP3U-250 mL Plastic Unpreserved (N/A) | BP2U-500 mL Plastic Unpreserved (N/A) | BP1U-1 liter Plastic Unpreserved (N/A) | BP4S-125 mL Plastic H2SO4 (pH < 2) (Cl-) | BP3N-250 mL plastic HNO3 (pH < 2) | BP4Z-125 mL Plastic ZN Acetate & NaOH (>9) | BP4C-125 mL Plastic NaOH (pH > 12) (Cl-) | WGFU-Wide-mouthed Glass jar Unpreserved | AG1U-1 liter Amber Unpreserved (N/A) (CI-) | AG1H-1 liter Amber HCI (pH < 2) | AG3U-250 ml. Amber Unpreserved (N/A) (CI-) | AG1S-1 liter Amber H2SO4 (pH < 2) | AG3S-250 mL Amber H2SO4 (pH < 2) | AG3A(DG3A)-250 mL Amber NH4Cl {N/A)(Cl-) | DG9H-40 mL VOA HCI (N/A) | VG9T-40 mL VOA Na252O3 (N/A) | VG9U-40 mL VOA Unp (N/A) | DG9P-40 mL VOA H3PO4 (N/A) | VOAK (6 vials per kit)-5035 kit (N/A) | V/GK (3 vials per kit)-VPH/Gas kit (N/A) | SP5T-125 mL Sterile Plastic (N/A - lab) | SP2T-250 mL Sterile Plastic (N/A - lab) | GPIN                    | BP3A-250 mL Plastic (NH2)2504 (9.3-9.7) | AGOU-100 mL Amber Unpreserved vials (N/A) | VSGU-20 mL Scintillation vials (N/A) | DG9U-40 mL Amber Unpreserved vials (N/A) |
| 1           | $\overline{)}$                              | 1                                     | ١                                     |                                        | $\overline{)}$                           | Y                                 | $\overline{)}$                             | $\overline{)}$                           |                                         |                                            | X                               |                                            | $\overline{\langle}$              | $\overline{\langle}$             | $\overline{)}$                           |                          |                              |                          |                            |                                       |                                          |                                         |                                         | X                       | 1                                       |                                           |                                      |                                          |
| 2           | $\left \right\rangle$                       | 1                                     | 1                                     |                                        | K                                        | V                                 |                                            | $\overline{)}$                           |                                         |                                            | K                               |                                            | K                                 | 1                                | K                                        |                          |                              |                          | -                          | Ī                                     |                                          |                                         |                                         | R                       | 7                                       |                                           |                                      |                                          |
| 3           | K                                           | 1                                     | 1                                     |                                        | K.                                       | V                                 | Ŕ                                          | Ń                                        |                                         |                                            | Ń                               |                                            | N                                 |                                  | K                                        | 4                        | 1                            | <b>A</b>                 |                            | 1                                     | 1                                        |                                         |                                         | 2                       | N                                       | ł                                         |                                      | -                                        |
| 4           | $\overline{)}$                              |                                       | 1                                     |                                        | K                                        | 1                                 | K                                          | K                                        |                                         |                                            | R                               |                                            | K                                 | 1                                | $\sum$                                   |                          |                              | 1                        |                            |                                       | -                                        |                                         |                                         | 2                       | K                                       | 1                                         |                                      |                                          |
| 5           | $\left \right\rangle$                       |                                       | ,<br>,                                |                                        | $\langle \rangle$                        | 1                                 | $\overline{)}$                             | $\langle \rangle$                        | <u> </u>                                |                                            | $\langle \rangle$               |                                            | $\langle \rangle$                 | $\langle \rangle$                | $\overline{)}$                           | ¥                        |                              |                          |                            | <u> </u>                              |                                          |                                         |                                         | K                       | K                                       | ¥                                         | -                                    |                                          |
| 6           | $\overline{)}$                              |                                       | 1                                     |                                        | (                                        | $\left( \right)$                  | $\langle \rangle$                          | $\langle \rangle$                        |                                         |                                            | $\langle \cdot \rangle$         |                                            | $\overline{)}$                    | $\overline{)}$                   | K)                                       | <u> </u>                 |                              |                          | 1                          |                                       | 1                                        | <u> </u>                                |                                         | $\overline{\mathbf{X}}$ | $\overline{)}$                          |                                           |                                      |                                          |
| 7           | $\left \right\rangle$                       |                                       |                                       |                                        | $\overline{)}$                           | $\langle \rangle$                 | $\left( \right)$                           | $\leftarrow$                             | ┥                                       |                                            | $\langle \rangle$               |                                            | (                                 | $\langle \cdot \rangle$          | K                                        | \<br>                    |                              | <br>                     |                            |                                       |                                          |                                         |                                         | $\mathbf{k}$            | $\langle \rangle$                       | <b>.</b>                                  | -                                    | <u> </u>                                 |
| 8           | $\langle \rangle$                           | ¥                                     |                                       |                                        | $\left\{ \right\}$                       | $\left( \right)$                  | $\left\{ \right\}$                         | R                                        | 1                                       |                                            | $\left\{ \right\}$              |                                            | K                                 | $\overline{)}$                   | K                                        | <u> </u>                 | 1                            |                          |                            |                                       |                                          |                                         |                                         | $\overline{\mathbf{X}}$ | $\langle \rangle$                       | ١.                                        |                                      | -                                        |
| 9           | $\mathbb{R}$                                | ¥                                     | <b>.</b>                              |                                        | $\langle \cdot \rangle$                  | $\left( \right)$                  | $\leftarrow$                               | $\left( \right)$                         |                                         | +                                          | K                               | <u> </u>                                   | K                                 | $\left\{ \right\}$               | K                                        | <u> </u>                 | 3                            | -                        |                            | -                                     |                                          | 1                                       |                                         | $\mathbf{k}$            | K                                       |                                           |                                      |                                          |
| 10          | $\left \right\rangle$                       | ┥                                     | +                                     |                                        | $\left \right\rangle$                    | $\left\{ \right\}$                | $\left\{ \right\}$                         | $\leftarrow$                             | ┥                                       |                                            | $\left\{ \right\}$              | ¥                                          | $\left  \right\rangle$            | $\leftarrow$                     | $\left( \right)$                         | 1                        | <u> </u>                     | 1                        |                            |                                       | -                                        | _                                       |                                         | $\mathbf{k}$            | $\left\{ \right\}$                      | ¥                                         |                                      |                                          |
| 11          | $\left \right\rangle$                       | <b>\</b>                              |                                       |                                        | $\left  \right\rangle$                   | $\left\{ \right\}$                | $\left\{ \right\}$                         | 1                                        | <b>\</b>                                |                                            | 1                               | ـ                                          | 1                                 | $\left\{ \right\}$               | $\left( \right)$                         |                          |                              |                          |                            |                                       |                                          |                                         |                                         | $\left( \right)$        | $\left\{ \right\}$                      |                                           |                                      |                                          |
| 12          | $\left\{ \right\}$                          | ┥                                     |                                       |                                        | $\left \right\rangle$                    | $\left\{ \right\}$                | $\left\{ \right\}$                         | $\left\{ \right\}$                       | 4                                       |                                            | $\left( \right)$                | -                                          | $\left\langle \right\rangle$      | $\left\{ \right\}$               | K                                        | <u>\</u>                 | 1                            | <u> </u>                 | 1                          | <u> </u>                              |                                          | +                                       |                                         | $\left  \right\rangle$  | $\left\{ \right\}$                      | +                                         | +                                    |                                          |
|             | $\square$                                   | J                                     |                                       | 1                                      | $\square$                                | $\sum$                            | $\overline{1}$                             | $\sum$                                   | 1                                       | <u> </u>                                   | $\sum$                          |                                            | $\square$                         | 17                               | 1)                                       | <u> </u>                 |                              |                          |                            | 1                                     | <u> </u>                                 | 1                                       |                                         |                         | 17                                      | J                                         | <u> </u>                             | 1                                        |
|             |                                             | 10                                    | 1                                     |                                        |                                          |                                   |                                            |                                          | р                                       | HAC                                        | just                            | me                                         | nt Lo                             | og fo                            | or Pr                                    | ese                      | rved                         | Sar                      | nple                       | es                                    | ۵۳                                       | nount                                   | of Pr                                   | pserva                  | tive                                    | 1                                         | Lot                                  | *                                        |
|             | pample                                      | 210                                   | TY1                                   | pe of I                                | rreser                                   | vative                            |                                            | н ирс                                    | on rec                                  | eipt                                       | Dat                             | e pre                                      | selvat                            | ion ac                           | 105(80                                   | -                        | inne                         | adjust                   | ed                         |                                       |                                          |                                         | adde                                    | d                       |                                         |                                           |                                      |                                          |

Nate: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

|                                      | K      | ADDITIONAL COMMENTS                     |          | Dup-01 (051321) | (25150) (05152) | 128-01 (05:521) | PZ-37D (05134) | Sample ids must be unique  | MATRIXO CODED |         | isted Due Date: Project #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | r /770/344 6596 Fax Prived Na | SS: 1070 Binge Mil Ave Juoyy Iu: | any: Georgia Power Report To: | red Cilent Information: Required | Face Analytical | 2 |
|--------------------------------------|--------|-----------------------------------------|----------|-----------------|-----------------|-----------------|----------------|----------------------------|---------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------|-------------------------------|----------------------------------|-----------------|---|
|                                      | May    | RELA                                    | +        | <br>_           | _               |                 |                | MATRIX CODE (see valid cod | es to left)   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Order #                       |                                  | Bec                           | Project                          |                 | l |
|                                      | 8      | IQUIS                                   |          |                 |                 |                 |                | SAMPLE TYPE (G=GRAB C=     | COMP)         |         | Igit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Vala                          | 1                                | ky Ste                        | Infon                            |                 | l |
| S AN                                 | When   | 190 BY / NIFILI                         |          | -415-           | 81 21 K         | 5/13/10         | 5/12/12:       | START                      | g             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                  | iever                         | mation:                          |                 |   |
| PLER NAME<br>PRINT Name<br>SIGNATURE | CB2    | ATHON                                   |          | <br>            | 30              | 8               | 8.             | El DATE                    | NLECTED       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                  |                               |                                  | The Ch          |   |
| of SAMPLER                           | 2/11/5 | DATE                                    |          |                 |                 |                 |                | SAMPLE TEMP AT COLLECTION  |               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                  |                               |                                  | ain-of-Cus      |   |
|                                      | C C    |                                         |          |                 |                 |                 |                | # OF CONTAINERS            |               |         | Pao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pace                          | Com                              | Atter                         | Invo                             | lody            | ļ |
| 1 El                                 | ET 1   | TIME                                    | <br>     |                 |                 |                 |                | Unpreserved                |               |         | Prof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Quo                           | VUED                             | tion:                         | ice In                           | is a l          |   |
| HE -                                 |        | 建的                                      |          | <br>-           |                 |                 |                | H2SO4                      | -             |         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               | Name                             |                               | forma                            | EG              | Į |
| a M                                  | 2      |                                         |          |                 |                 |                 |                | нсі                        | resei         | 5       | inger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | noner                         |                                  |                               | tion:                            |                 | ł |
| 124                                  | 8      |                                         |          |                 |                 |                 |                | NaOH                       | Vativ         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                  |                               |                                  | DCU             | Ì |
| 00                                   | 6      | CCEP                                    |          | -               |                 |                 |                | Na2S2O3                    | 8             |         | CUNAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                                  |                               |                                  | MEN             | ł |
| \ <b>7</b>                           | 0      | TEDB                                    |          | <br>            |                 |                 |                | Other                      |               |         | Buuna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                                  |                               |                                  |                 | l |
|                                      | 2      | VINE                                    |          |                 |                 |                 |                | Analyses Test              | Y/N           | No.     | Gibao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                                  |                               |                                  | relev           | Į |
| 0                                    |        | TMUS                                    |          | 8               | I               | Z               |                | App III & IV Metals        |               |         | erabs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |                                  |                               |                                  | ant i           |   |
| ATES                                 | (.     | 2                                       | + -      | R               | £               | 5               | Ě              | CI, F, SO4                 |               | Raq     | will,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                                  |                               |                                  | ields           |   |
|                                      |        | <b>推行</b>                               |          | X               | 2               | X               | X              | RAD 9315/9320              |               | ested   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                  |                               |                                  | mus             |   |
|                                      |        |                                         |          | (               |                 |                 |                |                            |               | Anah    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                  |                               |                                  |                 |   |
|                                      | 1/5    | g                                       | +-+-     | <br>+           | _               |                 |                |                            |               | a sta   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                  |                               |                                  |                 |   |
| adrit.                               | 112    | #                                       | <br>1-1- |                 |                 | _               | _              |                            |               |         | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |                                  |                               |                                  | lete            | ŀ |
| 1997<br>1997                         | 9      |                                         |          |                 |                 |                 |                | *****                      |               | RN      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |                                  |                               |                                  | acc             |   |
|                                      | 3 5 (  | R.                                      |          | <br>_           | _               |                 | _              |                            | <u> </u>      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | A DECK                           | 1                             |                                  |                 |   |
| 1944                                 |        | San San San San San San San San San San |          | <br>            | -               |                 |                |                            |               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 2                           |                                  |                               | Page                             | Ϋ́              |   |
| EMP in C                             | 27     |                                         |          | ا <u>ا ا</u>    |                 |                 | _              | Residual Chlorine (Y/N)    |               | and the | 1 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A STORE                       |                                  |                               |                                  | -               |   |
| Received on<br>xeD<br>Y/N)           | 7      | SAMPLE CI                               |          |                 |                 |                 |                |                            |               | 5       | Tonanon.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                               |                                  |                               | -                                |                 |   |
| iealedD<br>SocierD<br>Y/N)           | 5      | DND(TIONS                               |          |                 |                 |                 |                |                            |               |         | Contraction of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the loc |                               |                                  |                               | ç                                |                 |   |
| itactC<br>Y/N)                       |        |                                         |          |                 |                 |                 |                |                            |               |         | account of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               | Collins and                      |                               | -                                |                 |   |

TAR\_60915\_W.xls Total Alpha Radium (ENV-FRM-GBUR-0142 R0).xls

ymul8/21

1 of 1

6

Comments:

| Pace Analytical<br>www.peededes.com                                                                    | Ra-336               |                      | Analyst Must Manually Enter All Fields Highlighted in Yello                                                | <u>ow.</u> |          |
|--------------------------------------------------------------------------------------------------------|----------------------|----------------------|------------------------------------------------------------------------------------------------------------|------------|----------|
| Analyst<br>Date:                                                                                       | LAL<br>6/4/2021      |                      | Sample Matrix Spike Control Assessment MS/<br>Sample Collection Date:                                      | S/MSD 1    | MS/MSD 2 |
| Worklist<br>Matrix:                                                                                    | 60915<br>DW          |                      | Sample I.D.<br>Sample MS I.D.                                                                              |            |          |
| Method Blank Assessment                                                                                |                      |                      | Sample MSD I.D.                                                                                            |            |          |
| MB Sample ID                                                                                           | 2173868              |                      | MS/MSD Decay Corrected Spike Concentration (pCi/mL):                                                       |            |          |
| MB concentration:                                                                                      | 0.274                |                      | Spike Volume Used in MS (mL):                                                                              |            |          |
| M/B Counting Uncertainty:                                                                              | 0.325                |                      | Spike Volume Used in MSD (mL):<br>MS Alicut (L. g. F):                                                     |            |          |
| MB Numerical Performance Indicator                                                                     | 1.66                 |                      | MS Target Conc.(pCi/L, g, F):                                                                              |            |          |
| MB Status vs Numerical Indicator:                                                                      | N/A                  |                      | MSD Tarnet Conc. (nCiA or EV                                                                               |            |          |
|                                                                                                        |                      |                      | MS Spike Uncertainty (calculated):                                                                         |            |          |
| Laboratory Control Sample Assessment                                                                   | CSD (Y or N)?        | Y                    | MSD Spike Uncertainty (calculated):                                                                        |            |          |
| Count Date:                                                                                            | 6/4/20/21            | 6/4/2021             | Sample Result Counting Uncertainty (pCi/L_g. F):                                                           |            |          |
| Spike I.D.:                                                                                            | 19-033               | 19-033               | Sample Matrix Spike Result                                                                                 |            |          |
| Decay Corrected Spike Concentration (pCi/mL):                                                          | 24.037               | 24.037               | Matrix Spike Result Counting Uncertainty (pCi/L, g, F):                                                    |            |          |
| Aliquid Volume (L. d. F):                                                                              | 0.10                 | 0,10                 | Sample Matrix Spike Duplicate Result:<br>Matrix Spike Duplicate Result Counting Uncertainty (pCI/L. g. F): |            |          |
| Target Conc. (pCi/L, g, F):                                                                            | 4.738                | 4.794                | MS Numerical Performance Indicator:                                                                        |            |          |
| Uncertainty (Calculated):                                                                              | 0.057                | 0.058                | MSD Numerical Performance Indicator:                                                                       |            |          |
| LCS/LCSD Counting Uncertainty (pCi/L, g, F):                                                           | 0.897                | 0.930                | MSD Percent Recovery:                                                                                      |            |          |
| Numerical Performance Indicator:                                                                       | -0.18                | 0.39                 | MS Status vs Numerical Indicator:                                                                          |            |          |
| Percent Recovery:                                                                                      | 98.30%               | 1U3.84%              | MSD Status vs Nutrierical indicator:                                                                       |            |          |
| Status vs Numerical Indicator:                                                                         | Pass                 | Pass                 | MSD Status vs Recovery                                                                                     |            |          |
| Upper % Recovery Limits:                                                                               | 125%                 | 125%                 | MS/MSD Upper % Recovery Limits:                                                                            |            |          |
|                                                                                                        | 0,01                 | 1070                 | Mis/Mis/ Lower // Necovery Linnis.                                                                         |            |          |
| Duplicate Sample Assessment                                                                            |                      |                      | Matrix Spike/Matrix Spike Duplicate Sample Assessment                                                      |            |          |
| Sample I.D.:                                                                                           | LCS60915             |                      | Sample I.D.                                                                                                |            |          |
| Sample Result (pCi/L, g, F):                                                                           | 4.657                |                      | Sample MSD I.D.                                                                                            |            |          |
| Sample Result Counting Uncertainty (pCi/L, g, F):                                                      | 0,897                |                      | Sample Matrix Spike Result:                                                                                |            |          |
| Sample Duplicate Result (pCi/L, g, F):                                                                 | 4.978                |                      | Matrix Spike Result Counting Uncertainty (pCi/L, g, F):                                                    |            |          |
| Are sample and/or duplicate results below RL?                                                          | NO                   |                      | Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):                                          |            |          |
| Duplicate Numerical Performance Indicator.                                                             | -0.487               |                      | Duplicate Numerical Performance Indicator:                                                                 |            |          |
| (pased on the LCO/LCOD) Felcent Recoveries/ publicate RFD.<br>Dublicate Status vs Numerical Indicator: | N/A                  |                      | MS/ MSD Duplicate Status vs Numerical Indicator:                                                           |            |          |
| Duplicate Status vs RPD:                                                                               | Pass                 |                      | MS/ MSD Duplicate Status vs RPD:                                                                           |            |          |
| ## Evaluation of dunlicate precision is not applicable if either the sa                                | mole or dunlicate r  | esults are helow the |                                                                                                            |            |          |
| ## Evaluation of dublicate precision is not applicable if either the se                                | imple or duplicate r | esuits are below ind |                                                                                                            |            |          |

**Quality Control Sample Performance Assessment** 

Pace Analytical Services, Inc. Total Alpha Radium QC Assessment

Page 17 of 18



Comments:

## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

| Bana Analytical                                          |               |                  | · · · · · · · · · · · · · · · · · · ·                                                           |      |          |
|----------------------------------------------------------|---------------|------------------|-------------------------------------------------------------------------------------------------|------|----------|
| www.pacedaba.com Test                                    | Ra-228        |                  | Analyst must manually chter An Fleids righnighted in Tehow.                                     |      |          |
| Analyst                                                  | JC2           |                  | Sample Matrix Spike Control Assessment MS/MSI                                                   | SD 1 | MS/MSD 2 |
| Date:                                                    | 6/3/2021      |                  | Sample Collection Date:                                                                         |      |          |
| Worklist                                                 | 60773         |                  | Sample I.D.                                                                                     |      |          |
| Matrix:                                                  | W I           |                  |                                                                                                 |      |          |
| Method Blank Assessment                                  |               |                  | Spike 1.D.:                                                                                     |      |          |
| MB Sample ID                                             | 2170082       |                  | MS/MSD Decay Corrected Spike Concentration (pCi/mL):                                            | -    |          |
| MB concentration:                                        | 0.470         |                  | Spike Volume Used in MS (mL):                                                                   |      |          |
| M/B 2 Sigma CSU:                                         | 0.364         |                  | Spike Volume Used in MSD (mL):<br>MS Aliciust /1 or E):                                         |      |          |
| MR Numerical Performance Indicator                       | 2 53          |                  | MS Target Conc. (pCi/L, g, F):                                                                  |      |          |
| MB Status vs Numerical Indicator:                        | Warning       |                  | MSD Aliquot (L, g, F):                                                                          |      |          |
| MB Status vs. MDC:                                       | Pass          |                  | MSD Target Conc. (pCi/l., g, F):                                                                |      |          |
| aboratory Control Sample Assessment                      | CSD /Y or N/2 | Y                | MSD Spike Uncertainty (concurrent);                                                             |      |          |
|                                                          | LCS60773      | LCSD60773        | Sample Result:                                                                                  |      |          |
| Count Date:                                              | 6/7/2021      | 6/7/2021         | Sample Result 2 Sigma CSU (pCi/L, g, F):                                                        |      |          |
|                                                          | 37 407        | 37 407           | Matrix Spike Result 2 Sigma CSU (nCi/L or F):                                                   |      |          |
| Volume Used (mL):                                        | 0.10          | 0.10             | Sample Matrix Spike Duplicate Result:                                                           |      |          |
| Aliquot Volume (L, g, F):<br>Tarnet Conc. (bCi/L, g, F): | 0.816         | 0.852<br>4.392   | Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):<br>MS Numerical Performance Indicator: |      |          |
| Uncertainty (Calculated):                                | 0.225         | 0.215            | MSD Numerical Performance Indicator:                                                            |      |          |
| Result (pCi/L, g, F):                                    | 4.404         | 4.759            | MSD Percent Recovery:                                                                           |      |          |
| Numerical Performance Indicator:                         | -0.34         | 0.67             | MS Status vs Numerical Indicator:                                                               |      |          |
| Percent Recovery:                                        | 96.08%        | 108.37%          | MSD Status vs Numerical Indicator:                                                              |      |          |
| Status vs Numerical Indicator:                           | N/A           | N/A              | MS Status vs Recovery:                                                                          |      |          |
| Status vs Recovery:                                      | Pass          | Pass             | MSD Status vs Recovery:                                                                         |      |          |
| Upper % Recovery Limits:<br>Lower % Recovery Limits:     | 135%<br>60%   | 135%<br>60%      | MS/MSU Upper % Recovery Limits:<br>MS/MSD Lower % Recovery Limits:                              |      |          |
|                                                          |               |                  | Matrix SpikoMatrix Spika Duplicate Sample Assassment                                            |      |          |
| Dubitrate Gallible Assessment                            |               |                  |                                                                                                 |      |          |
| Sample I.D.:                                             | LCS60773      | Enter Duplicate  | Sample I.D.                                                                                     |      |          |
| Sample Desuit (nCi/l or EV)                              | 4 404         | other than       | Sample MSD 1.D.                                                                                 |      |          |
| Sample Result 2 Sigma CSU (pCi/L, g, F):                 | 1.013         | LCS/LCSD in      | Sample Matrix Spike Result:                                                                     |      |          |
| Sample Duplicate Result (pCi/L, g, F):                   | 4.759         | the space below. | Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):                                                  |      |          |
| Sample Duplicate Result 2 Sigma CSU (pCi/L, g, F):       | 1.051         |                  | Sample Matrix Spike Duplicate Result 3 Sinna CSU (aCi/L a EV                                    |      |          |
| Dunitate Numerical Deformance Indicator                  | _0 477        |                  | Dunlicate Numerical Performance Indicator                                                       |      |          |
| Based on the LCS/LCSD Percent Recoveries) Duplicate RPD: | 12.02%        |                  | (Based on the Percent Recoveries) MS/ MSD Duplicate RPD:                                        |      |          |
| Duplicate Status vs Numerical Indicator:                 | Pass          |                  | MS/ MSD Duplicate Status vs Numerical Indicator:                                                |      |          |
| Duplicate Status vs RPD:<br>% RPD Limit:                 | Pass<br>36%   |                  | MS/ MSU Duplicate Status vs KPD:<br>% RPD Limit                                                 |      |          |
|                                                          |               |                  |                                                                                                 |      |          |

**Quality Control Sample Performance Assessment** 

Arcadis U.S., Inc.

2839 Paces Ferry Road, Suite 900 Atlanta Georgia 30339 Phone: 770 431 8666 Fax: 770 435 2666 www.arcadis.com

# **APPENDIX B**

Field Sampling Forms (February and March 2021)

2021 Semiannual Groundwater and Corrective Action Report Plant Yates AP-3, A, B, B' and R6 CCR Landfill Newnan, GA February 2021 Scan Event

Project Plant Yates

Field Staff: Becky Steever/Katie Pupkiewicz/Peter Argyrakis

#### Instrument Calibration Date: 2/08/21 Time: 14:30

| Parameter    | Units        | Standard | SmarTROLL SN<br>513261 | SmarTROLL SN<br>518550 | SmarTROLL SN<br>509072 |
|--------------|--------------|----------|------------------------|------------------------|------------------------|
| DO           | % saturation | 100      | 100                    | 100                    | NA                     |
| Conductivity | us/cm        | 8000     | 8000                   | 8000                   | NA                     |
| pН           | S.U.         | 4.00     | 4.00                   | 4.00                   | NA                     |
| pН           | S.U.         | 7.00     | 7.00                   | 7.00                   | NA                     |
| pН           | S.U.         | 10.00    | 10.00                  | 10.00                  | NA                     |
| ORP          | mV           | 232.0    | 232.0                  | 232.0                  | NA                     |

| Turbidity<br>Standard | Units | LaMotte<br>SN 1164-2911 | LaMotte<br>SN 6012-4015 | LaMotte<br>SN 6012-4015 |
|-----------------------|-------|-------------------------|-------------------------|-------------------------|
| 0.0                   | NTU   | 0.00                    | 0.00                    | NA                      |
| 10.0                  | NTU   | 10.00                   | 10.00                   | NA                      |

#### Notes:

DO - Dissolved Oxygen; us/cm - microsiemens/centimeter; ORP - oxidation-reduction potential; mV - millivolts; NTU - Nphelometric Turbidity Units; NC - Not calibrated

Quick Cal solution standard is dependant on temperature and will fluctuate

Project Plant Yates

Field Staff: Becky Steever/Katie Pupkiewicz/Peter Argyrakis

# Instrument Calibration

Date: 2/09/21 Time: 7:00

| Parameter    | Units        | Standard | SmarTROLL SN<br>513261 | SmarTROLL SN<br>518550 | SmarTROLL SN<br>509072 |
|--------------|--------------|----------|------------------------|------------------------|------------------------|
| DO           | % saturation | 100      | 100                    | 100                    | 100                    |
| Conductivity | us/cm        | 8000     | 8000                   | 8000                   | 8000                   |
| pН           | S.U.         | 4.00     | 4.00                   | 4.00                   | 4.00                   |
| pН           | S.U.         | 7.00     | 7.00                   | 7.00                   | 7.00                   |
| pН           | S.U.         | 10.00    | 10.00                  | 10.00                  | 10.00                  |
| ORP          | mV           | 232.0    | 232.0                  | 232.0                  | 232.0                  |

| Turbidity<br>Standard | Units | LaMotte<br>SN 1164-2911 | LaMotte<br>SN 6012-4015 | LaMotte<br>SN 6012-4015 |
|-----------------------|-------|-------------------------|-------------------------|-------------------------|
| 0.0                   | NTU   | 0.00                    | 0.00                    | NA                      |
| 10.0                  | NTU   | 10.00                   | 10.00                   | NA                      |

Project Plant Yates

Field Staff: Becky Steever/Katie Pupkiewicz/Peter Argyrakis

# Instrument Calibration

Date: 2/09/21 Time: Midday

| Parameter    | Units        | Standard | SmarTROLL SN<br>513261 | SmarTROLL SN<br>518550 | SmarTROLL SN<br>509072 |
|--------------|--------------|----------|------------------------|------------------------|------------------------|
| DO           | % saturation | 100      | 100                    | 100                    | 100                    |
| Conductivity | us/cm        | 8000     | 8000                   | 8000                   | 8000                   |
| pН           | S.U.         | 4.00     | 4.00                   | 4.00                   | 4.00                   |
| pН           | S.U.         | 7.00     | 7.00                   | 7.00                   | 7.00                   |
| pН           | S.U.         | 10.00    | 10.00                  | 10.00                  | 10.00                  |
| ORP          | mV           | 232.0    | 232.0                  | 232.0                  | 232.0                  |

| Turbidity<br>Standard | Units | LaMotte<br>SN 1164-2911 | LaMotte<br>SN 6012-4015 | LaMotte<br>SN 6012-4015 |
|-----------------------|-------|-------------------------|-------------------------|-------------------------|
| 0.0                   | NTU   | 0.00                    | 0.00                    | NA                      |
| 10.0                  | NTU   | 10.00                   | 10.00                   | NA                      |

#### Notes:

DO - Dissolved Oxygen; us/cm - microsiemens/centimeter; ORP - oxidation-reduction potential; mV - millivolts; NTU - Nphelometric Turbidity Units; NC - Not calibrated

Quick Cal solution standard is dependant on temperature and will fluctuate

Project Plant Yates

Field Staff: Becky Steever/Katie Pupkiewicz/Peter Argyrakis

#### Instrument Calibration Date: 2/10/21 Time: 7:00

| Parameter    | Units        | Standard | SmarTROLL SN<br>513261 | SmarTROLL SN<br>518550 | SmarTROLL SN<br>509072 |
|--------------|--------------|----------|------------------------|------------------------|------------------------|
| DO           | % saturation | 100      | 100                    | 100                    | 100                    |
| Conductivity | us/cm        | 8000     | 8000                   | 8000                   | 8000                   |
| pН           | S.U.         | 4.00     | 4.00                   | 4.00                   | 4.00                   |
| pН           | S.U.         | 7.00     | 6.98                   | 6.98                   | 6.98                   |
| pН           | S.U.         | 10.00    | 10.00                  | 10.00                  | 10.00                  |
| ORP          | mV           | 229      | 232.0                  | 232.0                  | 232.0                  |

| Turbidity<br>Standard | Units | LaMotte<br>SN 1164-2911 | LaMotte<br>SN 6012-4015 | Geotech<br>SN 18081847 |
|-----------------------|-------|-------------------------|-------------------------|------------------------|
| 0.0                   | NTU   | 0.00                    | 0.00                    | 0.00                   |
| 10.0                  | NTU   | 10.00                   | 10.00                   | 10.00                  |

#### Date: 2/10/21 Time: Midday

| Parameter    | Units        | Standard | SmarTROLL SN<br>513261 | SmarTROLL SN<br>518550 | SmarTROLL SN<br>509072 |
|--------------|--------------|----------|------------------------|------------------------|------------------------|
| DO           | % saturation | 100      | 100                    | 100                    | 100                    |
| Conductivity | us/cm        | 8000     | 8000                   | 8000                   | 8000                   |
| pН           | S.U.         | 4.00     | 4.00                   | 4.00                   | 4.00                   |
| pН           | S.U.         | 7.00     | 6.98                   | 6.98                   | 6.98                   |
| pН           | S.U.         | 10.00    | 10.00                  | 10.00                  | 10.00                  |
| ORP          | mV           | 228      | 232.0                  | 232.0                  | 232.0                  |

| Turbidity<br>Standard | Units | LaMotte<br>SN 1164-2911 | LaMotte<br>SN 6012-4015 | Geotech<br>SN 18081847 |
|-----------------------|-------|-------------------------|-------------------------|------------------------|
| 0.0                   | NTU   | NA                      | 0.00                    | NA                     |
| 10.0                  | NTU   | NA                      | 10.00                   | NA                     |

#### Notes:

DO - Dissolved Oxygen; us/cm - microsiemens/centimeter; ORP - oxidation-reduction potential; mV - millivolts; NTU - Nphelometric Turbidity Units; NC - Not calibrated

Quick Cal solution standard is dependant on temperature and will fluctuate

Project Plant Yates

Field Staff: Becky Steever/Katie Pupkiewicz/Peter Argyrakis

#### Instrument Calibration Date: 2/11/21 Time: 7:00

| Parameter    | Units        | Standard | SmarTROLL SN<br>513261 | SmarTROLL SN<br>518550 | SmarTROLL SN<br>509072 |
|--------------|--------------|----------|------------------------|------------------------|------------------------|
| DO           | % saturation | 100      | 100                    | 100                    | 100                    |
| Conductivity | us/cm        | 8000     | 8000                   | 8000                   | 8000                   |
| pН           | S.U.         | 4.00     | 4.00                   | 4.00                   | 4.00                   |
| pН           | S.U.         | 7.00     | 6.98                   | 6.98                   | 6.98                   |
| pН           | S.U.         | 10.00    | 10.00                  | 10.00                  | 10.00                  |
| ORP          | mV           | 229      | 232.0                  | 232.0                  | 232.0                  |

| Turbidity<br>Standard | Units | LaMotte<br>SN 1164-2911 | LaMotte<br>SN 6012-4015 | Geotech<br>SN 18081847 |
|-----------------------|-------|-------------------------|-------------------------|------------------------|
| 0.0                   | NTU   | 0.00                    | 0.00                    | 0.00                   |
| 10.0                  | NTU   | 10.00                   | 10.00                   | 10.00                  |

#### Date: 2/11/21 Time: Midday

| Parameter    | Units        | Standard | SmarTROLL SN<br>513261 | SmarTROLL SN<br>518550 | SmarTROLL SN<br>509072 |
|--------------|--------------|----------|------------------------|------------------------|------------------------|
| DO           | % saturation | 100      | 100                    | 100                    | 100                    |
| Conductivity | us/cm        | 8000     | 8000                   | 8000                   | 8000                   |
| pН           | S.U.         | 4.00     | 4.00                   | 4.00                   | 4.00                   |
| pН           | S.U.         | 7.00     | 6.98                   | 6.98                   | 6.98                   |
| pН           | S.U.         | 10.00    | 10.00                  | 10.00                  | 10.00                  |
| ORP          | mV           | 228      | 232.0                  | 232.0                  | 232.0                  |

| Turbidity<br>Standard | Units | LaMotte<br>SN 1164-2911 | LaMotte<br>SN 6012-4015 | Geotech<br>SN 18081847 |
|-----------------------|-------|-------------------------|-------------------------|------------------------|
| 0.0                   | NTU   | NA                      | 0.00                    | NA                     |
| 10.0                  | NTU   | NA                      | 10.00                   | NA                     |

#### Notes:

DO - Dissolved Oxygen; us/cm - microsiemens/centimeter; ORP - oxidation-reduction potential; mV - millivolts; NTU - Nphelometric Turbidity Units; NC - Not calibrated

Quick Cal solution standard is dependant on temperature and will fluctuate



| Client:           |          | Georgia Power         |                        |                 |          |  |
|-------------------|----------|-----------------------|------------------------|-----------------|----------|--|
| Project Location: |          | AMA AP-3, A, B and B' |                        |                 |          |  |
| Date:             |          | 2/8/2021              |                        |                 |          |  |
| Sampler:          |          | Peter Argyakis        |                        |                 |          |  |
| Equipment:        |          | water probe           |                        |                 |          |  |
| Well              | Date     | Time                  | Depth to<br>Water (ft) | Well Depth (ft) | Comments |  |
| PZ-06D            | 2/8/2021 | 11:19:00              | 21.72                  | 134.02          |          |  |
| YGWA-6S           | 2/8/2021 | 11:21:00              | 17.54                  | 39.87           |          |  |
| YGWA-6I           | 2/8/2021 | 11:22:00              | 18.90                  | 69.03           |          |  |
| YGWA-17S          | 2/8/2021 | 11:25:00              | 11.85                  | 39.85           |          |  |
| YGWA-18S          | 2/8/2021 | 11:34:00              | 19.55                  | 39.97           |          |  |
| YGWA-18I          | 2/8/2021 | 11:38:00              | 22.90                  | 79.97           |          |  |
| PZ-48             | 2/8/2021 | 11:50:00              | 19.74                  | 58.73           |          |  |
| YGWC-49           | 2/8/2021 | 11:55:00              | 31.72                  | 78.53           |          |  |
| PZ-35             | 2/8/2021 | 12:01:00              | 11.25                  | 50.01           |          |  |
| YAMW-1            | 2/8/2021 | 12:02:00              | 11.07                  | 69.93           |          |  |
| YGWC-<br>24SA     | 2/8/2021 | 12:35:00              | 28.00                  | 57.00           |          |  |
| PZ-24IA           | 2/8/2021 | 12:47:00              | 28.25                  | 89.85           |          |  |
| YGWA-20S          | 2/8/2021 | 13:22:00              | 11.19                  | 29.52           |          |  |
| YGWA-21I          | 2/8/2021 | 13:24:00              | 31.21                  | 79.90           |          |  |
| PZ-05S            | 2/8/2021 | 13:40:00              | 18.69                  | 41.94           |          |  |
| YGWA-5I           | 2/8/2021 | 13:43:00              | 18.75                  | 58.94           |          |  |
| YGWA-5D           | 2/8/2021 | 13:44:00              | 21.77                  | 129.13          |          |  |
| PZ-04S            | 2/8/2021 | 13:47:00              | 24.13                  | 33.33           |          |  |
| YGWA-4I           | 2/8/2021 | 13:49:00              | 22.62                  | 48.81           |          |  |



| Client:<br>Project Location: |          | Georgia Power       |                        |                 |          |  |
|------------------------------|----------|---------------------|------------------------|-----------------|----------|--|
|                              |          | AMA R6 CCR Landfill |                        |                 |          |  |
| Date:                        |          | 2/8/2021            |                        |                 |          |  |
| Sampler:                     |          | Peter Argyakis      |                        |                 |          |  |
| Equipment:                   |          | water probe         |                        |                 |          |  |
| Well                         | Date     | Time                | Depth to<br>Water (ft) | Well Depth (ft) | Comments |  |
| YGWC-42                      | 2/8/2021 | 09:28:00            | 28.19                  | 59.76           |          |  |
| YAMW-3                       | 2/8/2021 | 09:32:00            | 35.46                  | 91.44           |          |  |
| PZ-51                        | 2/8/2021 | 09:40:00            | 7.36                   | 36.00           |          |  |
| YGWC-43                      | 2/8/2021 | 09:46:00            | 16.36                  | 79.66           |          |  |
| YAMW-4                       | 2/8/2021 | 09:55:00            | 31.09                  | 96.55           |          |  |
| YGWC-41                      | 2/8/2021 | 09:57:00            | 27.44                  | 67.32           |          |  |
| YGWA-40                      | 2/8/2021 | 10:02:00            | 22.93                  | 48.23           |          |  |
| PZ-37                        | 2/8/2021 | 10:08:00            | 12.55                  | 49.78           |          |  |
| YGWA-39                      | 2/8/2021 | 10:16:00            | 17.37                  | 68.59           |          |  |
| YAMW-5                       | 2/8/2021 | 10:27:00            | 13.48                  | 90.34           |          |  |
| YGWC-38                      | 2/8/2021 | 10:29:00            | 30.75                  | 50.59           |          |  |
| YAMW-2                       | 2/8/2021 | 10:49:00            | 20.79                  | 46.48           |          |  |
| YGWC-36A                     | 2/8/2021 | 12:05:00            | 9.58                   | 51.20           |          |  |


Page 1 of 1

| Client:       |                                                           | Georgia Power    |                                                                              |             |  |  |  |  |  |
|---------------|-----------------------------------------------------------|------------------|------------------------------------------------------------------------------|-------------|--|--|--|--|--|
| Project Locat | ion:                                                      |                  | AMA AP-3, A, B and B'                                                        |             |  |  |  |  |  |
| Date:         |                                                           | 2/8/2021         |                                                                              |             |  |  |  |  |  |
| Sampler:      |                                                           | Katie Pupkiewicz |                                                                              |             |  |  |  |  |  |
| Equipment:    |                                                           |                  |                                                                              | water probe |  |  |  |  |  |
| Well          | Date                                                      | Time             | Time         Depth to<br>Water (ft)         Well Depth (ft)         Comments |             |  |  |  |  |  |
| YGWC-23S      | YGWC-23S 2/8/2021 10:42:00 16.95 38.91 Well casing damage |                  |                                                                              |             |  |  |  |  |  |



| Project Number                 | 30053437            | Well ID                    | PZ-37       |                         |               | Date                    | 02/09/2021       |
|--------------------------------|---------------------|----------------------------|-------------|-------------------------|---------------|-------------------------|------------------|
| Project Location               | AMA R6 CCR Landfill |                            | Weather(°F) | Cloudy 55°F             |               |                         |                  |
| Measuring Pt.<br>Description   | Top of Inner Casing | Screen<br>Setting (ft-bmp) | 39.28       | Casing<br>Diameter (in) | 2             | Well Casing<br>Material | PVC              |
| Static Water<br>Level (ft-bmp) | 12.56               | Total Depth (ft-<br>bmp)   | 49.78       | Water<br>Column(ft)     | 37.22         | Gallons in<br>Well      | 6.05             |
| MP Elevation                   | 760.78              | Pump Intake (ft-<br>bmp)   | 45          | Purge Method            | Low-Flow      | Sample<br>Method        | Low-Flow         |
| Sample Time                    | 09:30               | Well Volumes<br>Purged     | 0.26        | Sample ID               | PZ-37(020921) | Sampled by              | Katie Pupkiewicz |
| Purge Start                    | 08:53               | Gallons Purged             | 1.59        | Replicate/<br>Code No.  |               | Color                   | Clear            |
|                                |                     |                            |             |                         |               |                         |                  |

#### Purge End 09:25

| Time     | Total<br>Elapsed<br>Minutes | Rate<br>(mL/min) | Depth to<br>Water<br>(ft) | pH<br>(standard<br>units) | Specific<br>Conductivity<br>(µS/cm) | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Temperature<br>°C | Redox<br>(mV) |
|----------|-----------------------------|------------------|---------------------------|---------------------------|-------------------------------------|--------------------|-------------------------------|-------------------|---------------|
| 08:53:22 | 00:00                       | 200              | 12.91                     | 6.79                      | 1268.16                             | 0.68               | 5.53                          | 15.7              | 176.21        |
| 08:58:22 | 05:00                       | 200              | 12.92                     | 5.81                      | 1252.83                             | 0.09               | 0.87                          | 16.4              | 175.01        |
| 09:03:22 | 10:00                       | 200              | 12.91                     | 5.64                      | 1245.70                             | 0.00               | 1.61                          | 16.6              | 173.36        |
| 09:08:22 | 15:00                       | 200              | 12.92                     | 5.58                      | 1252.33                             | 94.66              | 4.36                          | 16.4              | 172.90        |
| 09:13:22 | 20:00                       | 200              | 12.92                     | 5.51                      | 1269.87                             | 0.10               | 0.63                          | 16.5              | 173.59        |
| 09:18:22 | 25:00                       | 200              | 12.92                     | 5.45                      | 1280.76                             | 0.17               | 0.76                          | 16.6              | 173.42        |
| 09:23:22 | 30:00                       | 200              | 12.92                     | 5.42                      | 1286.39                             | 0.20               | 0.88                          | 16.8              | 173.47        |

| Constituent Sampled | Container      | Number | Preservative |
|---------------------|----------------|--------|--------------|
| RAD Chem            | 1L Plastic     | 2      | HNO3         |
| Metals              | 250 mL Plastic | 1      | HNO3         |
| Fluoride            | 250 mL Plastic | 1      | None         |

Comments: La Motteturbidity readings in five minute intervals in accordance with the VuSitu purge log
1.16
0.85
1.14
0.62

#### Well Casing Volume Conversion

0.73 0.67 0.52

| Well diameter (inches) = gallons per foot | 1 = 0.04 1.5 = 0.09 2.5 = 0.26 3.5 = 0.50 6 = 1.47<br>1.25 = 0.06 2 = 0.16 3 = 0.37 4 = 0.65 |    |  |  |  |  |
|-------------------------------------------|----------------------------------------------------------------------------------------------|----|--|--|--|--|
| Well Information                          |                                                                                              |    |  |  |  |  |
| Well Location:                            | Well Locked at Arrival:                                                                      |    |  |  |  |  |
| Condition of Well:                        | Well Locked at Departure:                                                                    |    |  |  |  |  |
| Well Completion: NA                       | Key Number To Well:                                                                          | NA |  |  |  |  |
|                                           |                                                                                              |    |  |  |  |  |

ft-bmp = feet below measuring point in = inches ft = feet mL/min = milliliters per minute mS/cm = milliSiemens per centimeterNTU = Nephelometric Turbidity Unit mg/L = milligrams per liter  $\mu S/cm = microSiemens per centimeters$ 



| Project Number                 | 30052922              | Well ID                    | YGWA-4I     |                         |                      | Date                    | 02/09/2021         |
|--------------------------------|-----------------------|----------------------------|-------------|-------------------------|----------------------|-------------------------|--------------------|
| Project Location               | AMA AP-3, A, B and B' |                            | Weather(°F) | 52.7 degrees F          | and Cloudy. The wind | is blowing unde         | efined at 0.0 mph. |
| Measuring Pt.<br>Description   | Top of Inner Casing   | Screen<br>Setting (ft-bmp) | 38.51       | Casing<br>Diameter (in) | 2                    | Well Casing<br>Material | PVC                |
| Static Water<br>Level (ft-bmp) | 22.61                 | Total Depth (ft-<br>bmp)   | 48.81       | Water<br>Column(ft)     | 26.2                 | Gallons in<br>Well      | 4.26               |
| MP Elevation                   | 784.21                | Pump Intake (ft-<br>bmp)   | 45          | Purge Method            | Low-Flow             | Sample<br>Method        | Low-Flow           |
| Sample Time                    | 09:33                 | Well Volumes<br>Purged     | 0.35        | Sample ID               | YGWA-4I              | Sampled by              | Becky Steever      |
| Purge Start                    | 09:00                 | Gallons Purged             | 1.49        | Replicate/<br>Code No.  |                      | Color                   | Clear              |

Purge End 09:47

| Time     | Total<br>Elapsed<br>Minutes | Rate<br>(mL/min) | Depth to<br>Water<br>(ft) | pH<br>(standard<br>units) | Specific<br>Conductivity<br>(µS/cm) | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Temperature<br>°C | Redox<br>(mV) |
|----------|-----------------------------|------------------|---------------------------|---------------------------|-------------------------------------|--------------------|-------------------------------|-------------------|---------------|
| 09:00:56 | 00:00                       | 125              | 24.82                     | 7.92                      | 1.21                                | 0.00               | 10.79                         | 12.4              | 231.36        |
| 09:05:56 | 05:00                       | 125              | 24.83                     | 6.17                      | 0.07                                | 0.31               | 10.24                         | 13.0              | 221.85        |
| 09:10:56 | 10:00                       | 125              | 24.84                     | 6.44                      | 0.14                                | 0.05               | 10.45                         | 13.0              | 228.38        |
| 09:15:56 | 15:00                       | 125              | 24.85                     | 6.55                      | 0.25                                | 0.07               | 10.39                         | 13.1              | 230.12        |
| 09:20:56 | 20:00                       | 125              | 24.86                     | 6.13                      | 122.92                              | 1.15               | 2.87                          | 14.5              | 223.37        |
| 09:25:56 | 25:00                       | 125              | 24.9                      | 6.15                      | 155.73                              | 1.25               | 2.28                          | 14.8              | 223.99        |
| 09:30:56 | 30:00                       | 125              | 24.91                     | 6.13                      | 151.54                              | 1.37               | 2.38                          | 14.8              | 224.27        |
| 09:35:56 | 35:00                       | 125              | 24.93                     | 6.10                      | 147.32                              | 1.27               | 2.55                          | 14.8              | 224.72        |
| 09:40:56 | 40:00                       | 125              | 24.93                     | 6.09                      | 143.34                              | 0.97               | 2.70                          | 14.9              | 225.06        |
| 09:45:56 | 45:00                       | 125              | 24.93                     | 6.06                      | 140.86                              | 0.87               | 2.85                          | 14.9              | 225.33        |

| Constituent Sampled | Container      | Number | Preservative |
|---------------------|----------------|--------|--------------|
| RAD Chem            | 1L Plastic     | 2      | HNO3         |
| Fluoride            | 250 mL Plastic | 1      | None         |
| Metals              | 250 mL Plastic | 1      | HNO3         |

Comments: LaMotte turbidity readings taken concurrently on stand alone meter at each five minute interval: 0.83, 0.26, 0.55, 1.32, 1.22, 01.31, 1.26, 1.01, & 0.98 NTU.

| Well Casing Volun                         | ne Conversion   |                                                         |                                           |                 |   |
|-------------------------------------------|-----------------|---------------------------------------------------------|-------------------------------------------|-----------------|---|
| Well diameter (inches) = gallons per foot |                 | 1 = 0.04 1.5 = 0.09 2.5 =<br>1.25 = 0.06 2 = 0.16 3 = 0 | 0.26 3.5 = 0.50 6 = 1.47<br>0.37 4 = 0.65 |                 |   |
| Well Information                          |                 |                                                         |                                           |                 |   |
| Well Location:                            |                 |                                                         | Well Locked at Arrival:                   |                 |   |
| Condition of Well:                        |                 |                                                         | Well Locked at Departure:                 |                 | _ |
| Well Completion:                          | NA              |                                                         | Key Number To Well:                       | NA              | - |
|                                           |                 |                                                         |                                           |                 | - |
| ft-bmp = feet below                       | measuring point | mS/cm = milliSiemens pe                                 | er centimeter                             | mV = millivolts |   |

in = inches ft = feet mL/min = milliliters per minute mS/cm = milliSiemens per centimeter NTU = Nephelometric Turbidity Unit mg/L = milligrams per liter  $\mu$ S/cm = microSiemens per centimeters



| Project Number                 | 30052922              | Well ID                    | YGWA-17S    |                         |                       | Date                    | 02/09/2021          |
|--------------------------------|-----------------------|----------------------------|-------------|-------------------------|-----------------------|-------------------------|---------------------|
| Project Location               | AMA AP-3, A, B and B' |                            | Weather(°F) | 62.2 degrees F<br>mph.  | and Mostly Cloudy. Th | ne wind is blowi        | ng undefined at 0.0 |
| Measuring Pt.<br>Description   | Top of Inner Casing   | Screen<br>Setting (ft-bmp) | 29.65       | Casing<br>Diameter (in) | 2                     | Well Casing<br>Material | PVC                 |
| Static Water<br>Level (ft-bmp) | 11.83                 | Total Depth (ft-<br>bmp)   | 39.85       | Water<br>Column(ft)     | 28.02                 | Gallons in<br>Well      | 4.55                |
| MP Elevation                   | 783.05                | Pump Intake (ft-<br>bmp)   | 35          | Purge Method            | Low-Flow              | Sample<br>Method        | Low-Flow            |
| Sample Time                    | 11:15                 | Well Volumes<br>Purged     | 0.29        | Sample ID               | YGWA-17S              | Sampled by              | Becky Steever       |
| Purge Start                    | 10:40                 | Gallons Purged             | 1.32        | Replicate/<br>Code No.  |                       | Color                   | Clear               |

Purge End 11:12

| Time     | Total<br>Elapsed<br>Minutes | Rate<br>(mL/min) | Depth to<br>Water<br>(ft) | pH<br>(standard<br>units) | Specific<br>Conductivity<br>(µS/cm) | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Temperature<br>°C | Redox<br>(mV) |
|----------|-----------------------------|------------------|---------------------------|---------------------------|-------------------------------------|--------------------|-------------------------------|-------------------|---------------|
| 10:40:27 | 00:00                       | 160              | 11.83                     | 6.13                      | 0.07                                | 0.04               | 10.54                         | 13.3              | 202.00        |
| 10:45:27 | 05:00                       | 160              | 12.39                     | 5.62                      | 70.73                               | 0.97               | 7.65                          | 16.2              | 210.13        |
| 10:50:27 | 10:00                       | 160              | 12.39                     | 5.61                      | 70.17                               | 3.48               | 7.46                          | 16.5              | 214.90        |
| 10:55:27 | 15:00                       | 160              | 12.4                      | 5.61                      | 61.83                               | 6.45               | 7.18                          | 16.6              | 219.69        |
| 11:00:27 | 20:00                       | 160              | 12.41                     | 5.63                      | 85.95                               | 3.30               | 2.03                          | 17.0              | 219.29        |
| 11:05:27 | 25:00                       | 160              | 12.41                     | 5.63                      | 88.65                               | 3.77               | 1.96                          | 17.1              | 220.36        |
| 11:10:27 | 30:00                       | 160              | 12.41                     | 5.62                      | 89.22                               | 3.29               | 1.92                          | 17.0              | 220.37        |

| Constituent Sampled | Container      | Number | Preservative |
|---------------------|----------------|--------|--------------|
| RAD Chem            | 1L Plastic     | 2      | HNO3         |
| Metals              | 250 mL Plastic | 1      | HNO3         |
| Fluoride            | 250 mL Plastic | 1      | None         |

Comments: LaMotte turbidity readings taken concurrently on stand alone meter at each five minute interval. All readings below 5.0 NTU. Reading at time of sampling 0.43 NTU

#### Well Casing Volume Conversion

| Well diameter (inches) = gallons per foot | 1 = 0.04 1.5 = 0.09 2.5 = 0.26 3.5 = 0.50 6 = 1.47 |
|-------------------------------------------|----------------------------------------------------|
|                                           | 1.25 = 0.06 2 = 0.16 3 = 0.37 4 = 0.65             |

#### Well Information

Well Location:

Condition of Well:

Well Completion: NA

Well Locked at Arrival:

Well Locked at Departure:

Key Number To Well: NA



| Project Number 30052922 Well ID YGWA-18S Date 02/09/2                                                                                                   | 021     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Project Location       AMA AP-3, A, B and B'       Weather(°F)       60.6 degrees F and Cloudy. The wind is blowing N/NW at 3.4                         | mph.    |
| Measuring Pt.<br>DescriptionTop of Inner Casing<br>Setting (ft-bmp)Screen<br>29.97Casing<br>Diameter (in)Well Casing<br>MaterialPVC                     |         |
| Static Water<br>Level (ft-bmp)19.51Total Depth (ft-<br>bmp)39.97Water<br>Column(ft)20.46Gallons in<br>Well3.32                                          |         |
| MP Elevation         790.57         Pump Intake (ft-<br>bmp)         35         Purge Method         Low-Flow         Sample<br>Method         Low-Flow | w       |
| Sample Time         13:25         Well Volumes<br>Purged         0.47         Sample ID         YGWA-18S         Sampled by         Becky               | Steever |
| Purge Start12:47Gallons Purged1.56Replicate/<br>Code No.ColorClear                                                                                      |         |

#### Purge End 13:23

| Time     | Total<br>Elapsed<br>Minutes | Rate<br>(mL/min) | Depth to<br>Water<br>(ft) | pH<br>(standard<br>units) | Specific<br>Conductivity<br>(µS/cm) | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Temperature<br>°C | Redox<br>(mV) |
|----------|-----------------------------|------------------|---------------------------|---------------------------|-------------------------------------|--------------------|-------------------------------|-------------------|---------------|
| 12:47:58 | 00:00                       | 200              | 19.51                     | 6.15                      | 0.06                                | 9.58               | 8.01                          | 22.6              | 186.45        |
| 12:52:58 | 05:00                       | 200              | 20.42                     | 5.52                      | 59.53                               | 15.02              | 4.85                          | 18.4              | 191.97        |
| 12:57:58 | 10:00                       | 155              | 20.58                     | 5.42                      | 62.74                               | 12.20              | 2.19                          | 18.8              | 204.03        |
| 13:02:58 | 15:00                       | 155              | 20.32                     | 5.40                      | 62.65                               | 6.77               | 1.77                          | 19.2              | 208.00        |
| 13:07:58 | 20:00                       | 155              | 20.35                     | 5.38                      | 63.23                               | 5.86               | 1.37                          | 18.8              | 213.62        |
| 13:12:58 | 25:00                       | 155              | 20.37                     | 5.40                      | 64.32                               | 7.06               | 1.34                          | 19.5              | 216.24        |
| 13:17:58 | 30:00                       | 155              | 20.38                     | 5.42                      | 64.09                               | 4.89               | 1.27                          | 20.4              | 217.41        |
| 13:22:58 | 35:00                       | 155              | 20.38                     | 5.43                      | 64.60                               | 5.84               | 1.14                          | 21.5              | 219.24        |

| Constituent Sampled | Container      | Number | Preservative |
|---------------------|----------------|--------|--------------|
| RAD Chem            | 1L Plastic     | 2      | HNO3         |
| Metals              | 250 mL Plastic | 1      | HNO3         |
| Fluoride            | 250 mL Plastic | 1      | None         |

Comments: LaMotte turbidity readings taken concurrently on stand alone meter at each five minute interval: 5.63, 6.77, 6.32, 5.56, 4.88, 7.44, 3.22, 4.76

#### Well Casing Volume Conversion

| Well diameter (inches) = gallons per foot | 1 = 0.04 1.5 = 0.09 2.5 = 0.26 3.5 = 0.50 6 = 1.47<br>1.25 = 0.06 2 = 0.16 3 = 0.37 4 = 0.65 |    |  |  |
|-------------------------------------------|----------------------------------------------------------------------------------------------|----|--|--|
| Well Information                          |                                                                                              |    |  |  |
| Well Location:                            | Well Locked at Arrival:                                                                      |    |  |  |
| Condition of Well:                        | Well Locked at Departure:                                                                    |    |  |  |
| Well Completion: NA                       | Key Number To Well:                                                                          | NA |  |  |
|                                           | ·                                                                                            |    |  |  |

mS/cm = milliSiemens per centimeter NTU = Nephelometric Turbidity Unit mg/L = milligrams per liter µS/cm = microSiemens per centimeters



| Project Number                 | 30052922              | Well ID                    | YGWA-18I    |                         |                      | Date                    | 02/09/2021    |
|--------------------------------|-----------------------|----------------------------|-------------|-------------------------|----------------------|-------------------------|---------------|
| Project Location               | AMA AP-3, A, B and B' |                            | Weather(°F) | 67.6 degrees F          | and Cloudy. The wind | is blowing S at         | 4.7 mph.      |
| Measuring Pt.<br>Description   | Top of Inner Casing   | Screen<br>Setting (ft-bmp) | 69.67       | Casing<br>Diameter (in) | 2                    | Well Casing<br>Material | PVC           |
| Static Water<br>Level (ft-bmp) | 22.85                 | Total Depth (ft-<br>bmp)   | 79.97       | Water<br>Column(ft)     | 57.12                | Gallons in<br>Well      | 9.28          |
| MP Elevation                   | 790.57                | Pump Intake (ft-<br>bmp)   | 75          | Purge Method            | Low-Flow             | Sample<br>Method        | Low-Flow      |
| Sample Time                    | 14:20                 | Well Volumes<br>Purged     | 0.13        | Sample ID               | YGWA-18I             | Sampled by              | Becky Steever |
| Purge Start                    | 13:55                 | Gallons Purged             | 1.19        | Replicate/<br>Code No.  |                      | Color                   | Clear         |

Purge End 14:18

| Time     | Total<br>Elapsed<br>Minutes | Rate<br>(mL/min) | Depth to<br>Water<br>(ft) | pH<br>(standard<br>units) | Specific<br>Conductivity<br>(µS/cm) | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Temperature<br>°C | Redox<br>(mV) |
|----------|-----------------------------|------------------|---------------------------|---------------------------|-------------------------------------|--------------------|-------------------------------|-------------------|---------------|
| 13:55:53 | 00:00                       | 200              | 23.01                     | 6.75                      | 102.78                              | 0.51               | 7.78                          | 17.6              | 215.66        |
| 14:00:53 | 05:00                       | 200              | 23.04                     | 6.27                      | 108.41                              | 1.50               | 3.56                          | 18.7              | 222.91        |
| 14:05:53 | 10:00                       | 200              | 23.08                     | 6.15                      | 98.29                               | 1.76               | 3.67                          | 18.5              | 225.72        |
| 14:10:53 | 15:00                       | 200              | 23.09                     | 6.13                      | 96.33                               | 0.44               | 3.76                          | 18.4              | 225.49        |
| 14:15:53 | 20:00                       | 200              | 23.11                     | 6.12                      | 98.09                               | 0.95               | 3.81                          | 18.2              | 225.10        |

| Constituent Sampled | Container      | Number | Preservative |
|---------------------|----------------|--------|--------------|
| RAD Chem            | 1L Plastic     | 2      | HNO3         |
| Metals              | 250 mL Plastic | 1      | HNO3         |
| Fluoride            | 250 mL Plastic | 1      | None         |

LaMotte turbidity readings (time=NTU) 1434=3.22; 1439=3.67; 1444=4.03; 1449=3.99; 1454=3.71 Comments: Well Casing Volume Conversion Well diameter (inches) = gallons per foot 1 = 0.04 1.5 = 0.09 2.5 = 0.26 3.5 = 0.50 6 = 1.47 1.25 = 0.06 2 = 0.16 3 = 0.37 4 = 0.65 Well Information Well Location:

Well Locked at Arrival:

Condition of Well:

Well Completion: NA

Well Locked at Departure:

Key Number To Well: NA

mS/cm = milliSiemens per centimeter NTU = Nephelometric Turbidity Unit mg/L = milligrams per liter µS/cm = microSiemens per centimeters



| Project Number                 | 30052922             | Well ID                    | YGWC-49     |                         |                       | Date                    | 02/09/2021           |
|--------------------------------|----------------------|----------------------------|-------------|-------------------------|-----------------------|-------------------------|----------------------|
| Project Location               | AMA AP-3, A, B and B | 1                          | Weather(°F) | 66.7 degrees F<br>mph.  | and Mostly Cloudy. TI | he wind is blowi        | ing undefined at 0.0 |
| Measuring Pt.<br>Description   | Top of Inner Casing  | Screen<br>Setting (ft-bmp) | 68.03       | Casing<br>Diameter (in) | 2                     | Well Casing<br>Material | PVC                  |
| Static Water<br>Level (ft-bmp) | 32.72                | Total Depth (ft-<br>bmp)   | 78.53       | Water<br>Column(ft)     | 45.81                 | Gallons in<br>Well      | 7.44                 |
| MP Elevation                   | 782.73               | Pump Intake (ft-<br>bmp)   | 73          | Purge Method            | Low-Flow              | Sample<br>Method        | Low-Flow             |
| Sample Time                    | 15:15                | Well Volumes<br>Purged     | 0.10        | Sample ID               | YGWC-49               | Sampled by              | Becky Steever        |
| Purge Start                    | 14:53                | Gallons Purged             | 0.77        | Replicate/<br>Code No.  |                       | Color                   | Clear                |

Purge End 15:10

| Time     | Total<br>Elapsed<br>Minutes | Rate<br>(mL/min) | Depth to<br>Water<br>(ft) | pH<br>(standard<br>units) | Specific<br>Conductivity<br>(µS/cm) | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Temperature<br>°C | Redox<br>(mV) |
|----------|-----------------------------|------------------|---------------------------|---------------------------|-------------------------------------|--------------------|-------------------------------|-------------------|---------------|
| 14:53:40 | 00:00                       | 160              | 33.03                     | 5.97                      | 248.54                              | 0.79               | 3.98                          | 18.7              | -15.60        |
| 14:58:40 | 05:00                       | 160              | 33.28                     | 5.84                      | 243.89                              | 0.48               | 2.39                          | 18.6              | 52.23         |
| 15:03:40 | 10:00                       | 160              | 33.37                     | 5.81                      | 246.84                              | 0.44               | 2.29                          | 18.4              | 84.56         |
| 15:08:40 | 15:00                       | 160              | 33.41                     | 5.79                      | 249.59                              | 0.39               | 2.37                          | 18.4              | 103.63        |

| Constituent Sampled | Container      | Number | Preservative |
|---------------------|----------------|--------|--------------|
| RAD Chem            | 1L Plastic     | 2      | HNO3         |
| Metals              | 250 mL Plastic | 1      | HNO3         |
| Fluoride            | 250 mL Plastic | 1      | None         |

Comments: LaMotte turbidity readings (time, NTU) 1453, 1.20 1458, 0.88 1503, 0.65 1508, 0.59

#### Well Casing Volume Conversion

| Well diameter (inches) = gallons per foot | 1 = 0.04 1.5 = 0.09 2.5 = 0.26 3.5 = 0.50 6 = 1.47<br>1.25 = 0.06 2 = 0.16 3 = 0.37 4 = 0.65 |
|-------------------------------------------|----------------------------------------------------------------------------------------------|
|-------------------------------------------|----------------------------------------------------------------------------------------------|

| Well Information    |                           |
|---------------------|---------------------------|
| Well Location:      | Well Locked at Arrival:   |
| Condition of Well:  | Well Locked at Departure: |
| Well Completion: NA | Key Number To Well: NA    |

mS/cm = milliSiemens per centimeterNTU = Nephelometric Turbidity Unit mg/L = milligrams per liter  $\mu S/cm = microSiemens per centimeters$ 



| Project Number                 | 30052922              | Well ID                    | YGWA-21I    |                         |                      | Date                    | 02/09/2021    |
|--------------------------------|-----------------------|----------------------------|-------------|-------------------------|----------------------|-------------------------|---------------|
| Project Location               | AMA AP-3, A, B and B' |                            | Weather(°F) | 67.6 degrees F          | and Cloudy. The wind | is blowing S at         | 4.7 mph.      |
| Measuring Pt.<br>Description   | Top of Inner Casing   | Screen<br>Setting (ft-bmp) | 69.6        | Casing<br>Diameter (in) | 2                    | Well Casing<br>Material | PVC           |
| Static Water<br>Level (ft-bmp) | 32                    | Total Depth (ft-<br>bmp)   | 79.9        | Water<br>Column(ft)     | 47.9                 | Gallons in<br>Well      | 7.78          |
| MP Elevation                   | 783.7                 | Pump Intake (ft-<br>bmp)   | 75          | Purge Method            | Low-Flow             | Sample<br>Method        | Low-Flow      |
| Sample Time                    | 15:50                 | Well Volumes<br>Purged     | 0.08        | Sample ID               | YGWA-21I             | Sampled by              | Becky Steever |
| Purge Start                    | 15:48                 | Gallons Purged             | 0.66        | Replicate/<br>Code No.  |                      | Color                   | Clear         |

Purge End 16:05

| Time     | Total<br>Elapsed<br>Minutes | Rate<br>(mL/min) | Depth to<br>Water<br>(ft) | pH<br>(standard<br>units) | Specific<br>Conductivity<br>(µS/cm) | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Temperature<br>°C | Redox<br>(mV) |
|----------|-----------------------------|------------------|---------------------------|---------------------------|-------------------------------------|--------------------|-------------------------------|-------------------|---------------|
| 15:48:26 | 00:00                       | 200              | 32                        | 7.19                      | 157.96                              | 8.15               | 8.83                          | 17.9              | 83.27         |
| 15:53:26 | 05:00                       | 100              | 35.55                     | 6.95                      | 167.86                              | 0.38               | 2.83                          | 17.9              | -53.34        |
| 15:58:26 | 10:00                       | 100              | 35.43                     | 6.92                      | 166.84                              | 0.92               | 1.21                          | 17.9              | -58.74        |
| 16:03:26 | 15:00                       | 100              | 35.33                     | 6.95                      | 160.22                              | 0.33               | 9.47                          | 17.8              | -53.31        |

| Constituent Sampled | Container      | Number | Preservative |
|---------------------|----------------|--------|--------------|
| RAD Chem            | 1L Plastic     | 2      | HNO3         |
| Metals              | 250 mL Plastic | 1      | HNO3         |
| Fluoride            | 250 mL Plastic | 1      | None         |

| Comments: | LaMotte turb | bidity reading | gs (time=NTU)        |
|-----------|--------------|----------------|----------------------|
|           | 1548=1.26,   | 1553=0.56,     | 1558=0.49, 1603=0.44 |

#### Well Casing Volume Conversion

Well diameter (inches) = gallons per foot

1 = 0.04 1.5 = 0.09 2.5 = 0.26 3.5 = 0.50 6 = 1.47 1.25 = 0.06 2 = 0.16 3 = 0.37 4 = 0.65

#### Well Information

| Well Location:     | Well Locked at Arrival:   |
|--------------------|---------------------------|
| Condition of Well: | Well Locked at Departure: |
| Well Completion: N | Key Number To Well: NA    |

mS/cm = milliSiemens per centimeter NTU = Nephelometric Turbidity Unit mg/L = milligrams per liter µS/cm = microSiemens per centimeters



| Project Number                 | 30053437            | Well ID                    | YGWA-39     |                         |                        | Date                    | 02/10/2021       |
|--------------------------------|---------------------|----------------------------|-------------|-------------------------|------------------------|-------------------------|------------------|
| Project Location               | AMA R6 CCR Landfill |                            | Weather(°F) | It is Fog/Mist. T       | he wind is blowing E/N | IE at 3.4 mph.          | 54°              |
| Measuring Pt.<br>Description   | Top of Inner Casing | Screen<br>Setting (ft-bmp) | 58.09       | Casing<br>Diameter (in) | 2                      | Well Casing<br>Material | PVC              |
| Static Water<br>Level (ft-bmp) | 17.28               | Total Depth (ft-<br>bmp)   | 68.59       | Water<br>Column(ft)     | 51.31                  | Gallons in<br>Well      | 8.34             |
| MP Elevation                   | 818.19              | Pump Intake (ft-<br>bmp)   | 63          | Purge Method            | Low-Flow               | Sample<br>Method        | Low-Flow         |
| Sample Time                    | 09:30               | Well Volumes<br>Purged     | 0.14        | Sample ID               | YGWA-39                | Sampled by              | Katie Pupkiewicz |
| Purge Start                    | 08:58               | Gallons Purged             | 1.19        | Replicate/<br>Code No.  |                        | Color                   | Clear            |

#### Purge End 09:26

| Time     | Total<br>Elapsed<br>Minutes | Rate<br>(mL/min) | Depth to<br>Water<br>(ft) | pH<br>(standard<br>units) | Specific<br>Conductivity<br>(µS/cm) | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Temperature<br>°C | Redox<br>(mV) |
|----------|-----------------------------|------------------|---------------------------|---------------------------|-------------------------------------|--------------------|-------------------------------|-------------------|---------------|
| 08:58:13 | 00:00                       | 160              | 17.57                     | 9.40                      | 185.55                              | 0.20               | 5.25                          | 14.9              | 117.79        |
| 09:03:13 | 05:00                       | 160              | 17.59                     | 7.91                      | 262.94                              | 0.05               | 0.92                          | 16.2              | 98.60         |
| 09:08:13 | 10:00                       | 160              | 17.65                     | 6.12                      | 270.94                              | 0.05               | 0.23                          | 16.7              | 92.74         |
| 09:13:13 | 15:00                       | 160              | 17.66                     | 5.88                      | 272.85                              | 0.10               | 0.16                          | 16.8              | 92.57         |
| 09:18:13 | 20:00                       | 160              | 17.66                     | 5.82                      | 268.67                              | 0.12               | 0.12                          | 17.0              | 92.67         |
| 09:23:13 | 25:00                       | 160              | 17.67                     | 5.80                      | 267.91                              | 0.16               | 0.13                          | 17.2              | 92.12         |

| Constituent Sampled | Container      | Number | Preservative |
|---------------------|----------------|--------|--------------|
| RAD Chem            | 1L Plastic     | 2      | HNO3         |
| Metals              | 250 mL Plastic | 1      | HNO3         |
| Fluoride            | 250 mL Plastic | 1      | None         |

Comments: LaMotte turbidity readings taken every five minutes in accordance with VuSitu purge log
1.08
5.79
0.45
0.32
3.92

#### Well Casing Volume Conversion

0.73

| allons per foot 1 = 0<br>1.25 | 0.04 1.5 = 0.09 2.5 = 0.26 3.5 = 0.50 6 = 1.47<br>= 0.06 2 = 0.16 3 = 0.37 4 = 0.65 |                                                                                                                                                                                                                                                       |
|-------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                               |                                                                                     |                                                                                                                                                                                                                                                       |
|                               | Well Locked at Arrival:                                                             |                                                                                                                                                                                                                                                       |
|                               | Well Locked at Departure:                                                           | _                                                                                                                                                                                                                                                     |
|                               | Key Number To Well: NA                                                              |                                                                                                                                                                                                                                                       |
|                               | allons per foot 1 = 0<br>1.25                                                       | allons per foot       1 = 0.04 1.5 = 0.09 2.5 = 0.26 3.5 = 0.50 6 = 1.47         1.25 = 0.06 2 = 0.16 3 = 0.37 4 = 0.65         Well Locked at Arrival:         Well Locked at Arrival:         Well Locked at Departure:         Key Number To Well: |

 $\begin{array}{l} mS/cm = milliSiemens \ per \ centimeter \\ NTU = Nephelometric \ Turbidity \ Unit \\ mg/L = milligrams \ per \ liter \\ \mu S/cm = microSiemens \ per \ centimeters \end{array}$ 



| Project Number                 | 30053437            | Well ID                    | YGWA-40     |                         |               | Date                    | 02/10/2021       |
|--------------------------------|---------------------|----------------------------|-------------|-------------------------|---------------|-------------------------|------------------|
| Project Location               | AMA R6 CCR Landfill |                            | Weather(°F) | Sunny and 65°F          | =             |                         |                  |
| Measuring Pt.<br>Description   | Top of Inner Casing | Screen<br>Setting (ft-bmp) | 37.73       | Casing<br>Diameter (in) | 2             | Well Casing<br>Material | PVC              |
| Static Water<br>Level (ft-bmp) | 22.92               | Total Depth (ft-<br>bmp)   | 48.23       | Water<br>Column(ft)     | 25.31         | Gallons in<br>Well      | 4.11             |
| MP Elevation                   | 815.73              | Pump Intake (ft-<br>bmp)   | 42          | Purge Method            | Low-Flow      | Sample<br>Method        | Low-Flow         |
| Sample Time                    | 10:50               | Well Volumes<br>Purged     | 0.48        | Sample ID               | YGWA-39       | Sampled by              | Katie Pupkiewicz |
| Purge Start                    | 10:10               | Gallons Purged             | 1.98        | Replicate/<br>Code No.  | FB-01(021021) | Color                   | Clear            |

#### Purge End 10:46

| Time     | Total<br>Elapsed<br>Minutes | Rate<br>(mL/min) | Depth to<br>Water<br>(ft) | pH<br>(standard<br>units) | Specific<br>Conductivity<br>(µS/cm) | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Temperature<br>°C | Redox<br>(mV) |
|----------|-----------------------------|------------------|---------------------------|---------------------------|-------------------------------------|--------------------|-------------------------------|-------------------|---------------|
| 10:10:23 | 00:00                       | 200              | 23.52                     | 6.13                      | 84.39                               | 0.27               | 8.94                          | 16.9              | 94.30         |
| 10:15:23 | 05:00                       | 200              | 23.71                     | 5.46                      | 80.20                               | 0.17               | 8.29                          | 18.3              | 86.49         |
| 10:20:23 | 10:00                       | 200              | 23.7                      | 5.37                      | 78.37                               | 0.17               | 8.36                          | 18.5              | 91.07         |
| 10:25:23 | 15:00                       | 200              | 23.68                     | 5.30                      | 80.89                               | 0.22               | 8.25                          | 18.2              | 94.18         |
| 10:30:23 | 20:00                       | 200              | 23.68                     | 5.22                      | 81.73                               | 0.25               | 8.18                          | 17.9              | 121.25        |
| 10:35:23 | 25:00                       | 200              | 23.68                     | 5.16                      | 119.86                              | 0.23               | 6.14                          | 17.5              | 121.99        |
| 10:40:23 | 30:00                       | 200              | 23.68                     | 5.13                      | 119.19                              | 0.21               | 4.11                          | 17.5              | 125.84        |
| 10:45:23 | 35:00                       | 200              | 23.67                     | 5.19                      | 118.93                              | 0.23               | 4.10                          | 17.6              | 123.45        |

| Constituent Sampled | Container      | Number | Preservative |
|---------------------|----------------|--------|--------------|
| RAD Chem            | 1L Plastic     | 2      | HNO3         |
| Metals              | 250 mL Plastic | 1      | HNO3         |
| Fluoride            | 250 mL Plastic | 1      | None         |

Comments: LaMotte turbidity readings taken every five minutes in accordance with VuSitu purge log 0.33 0.04 0.09

0.07 0.00 0.24 0.20 0.24

#### Well Casing Volume Conversion

Well diameter (inches) = gallons per foot

1 = 0.04 1.5 = 0.09 2.5 = 0.26 3.5 = 0.50 6 = 1.47 1.25 = 0.06 2 = 0.16 3 = 0.37 4 = 0.65

#### Well Information

Well Location:

Well Locked at Arrival:

| Condition of Well:                  | Well Locked at Departure:           |                    |
|-------------------------------------|-------------------------------------|--------------------|
| ft.hmp - feet below measuring point | mS/cm – milliSigmans par cantimeter | m = millivolte     |
| in = inches                         | NTU = Nephelometric Turbidity Unit  | °F = degrees Fahre |

ft = feet mL/min = milliliters per minute mg/L = milligrams per liter µS/cm = microSiemens per centimeters

enheit C = degrees Celsius



| Project Number                 | 30053437            | Well ID                    | YGWC-41     |                         |                        | Date                    | 02/10/2021       |
|--------------------------------|---------------------|----------------------------|-------------|-------------------------|------------------------|-------------------------|------------------|
| Project Location               | AMA R6 CCR Landfill |                            | Weather(°F) | 68.0 degrees F          | and Clear. The wind is | s blowing E/SE          | at 8.1 mph.      |
| Measuring Pt.<br>Description   | Top of Inner Casing | Screen<br>Setting (ft-bmp) | 56.82       | Casing<br>Diameter (in) | 2                      | Well Casing<br>Material | PVC              |
| Static Water<br>Level (ft-bmp) | 27.44               | Total Depth (ft-<br>bmp)   | 67.32       | Water<br>Column(ft)     | 39.88                  | Gallons in<br>Well      | 6.48             |
| MP Elevation                   | 803.92              | Pump Intake (ft-<br>bmp)   | 62          | Purge Method            | Low-Flow               | Sample<br>Method        | Low-Flow         |
| Sample Time                    | 13:25               | Well Volumes<br>Purged     | 0.25        | Sample ID               | YGWC-41                | Sampled by              | Katie Pupkiewicz |
| Purge Start                    | 12:47               | Gallons Purged             | 1.61        | Replicate/<br>Code No.  |                        | Color                   | Clear            |

Purge End 13:23

| Time     | Total<br>Elapsed<br>Minutes | Rate<br>(mL/min) | Depth to<br>Water<br>(ft) | pH<br>(standard<br>units) | Specific<br>Conductivity<br>(µS/cm) | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Temperature<br>°C | Redox<br>(mV) |
|----------|-----------------------------|------------------|---------------------------|---------------------------|-------------------------------------|--------------------|-------------------------------|-------------------|---------------|
| 12:47:49 | 00:00                       | 160              | 28.25                     | 5.25                      | 345.00                              | 0.38               | 5.72                          | 19.2              | 125.48        |
| 12:52:49 | 05:00                       | 160              | 28.39                     | 4.97                      | 290.67                              | 0.38               | 4.52                          | 19.7              | 125.75        |
| 12:57:49 | 10:00                       | 160              | 28.36                     | 4.96                      | 0.06                                | 0.19               | 7.80                          | 21.3              | 131.36        |
| 13:02:49 | 15:00                       | 160              | 28.39                     | 4.92                      | 250.64                              | 0.42               | 4.57                          | 20.1              | 145.89        |
| 13:07:49 | 20:00                       | 160              | 28.39                     | 4.95                      | 256.65                              | 0.44               | 4.51                          | 20.7              | 144.14        |
| 13:12:49 | 25:00                       | 160              | 28.39                     | 4.96                      | 376.58                              | 0.55               | 4.61                          | 20.3              | 159.42        |
| 13:17:49 | 30:00                       | 160              | 28.39                     | 4.92                      | 382.81                              | 1.01               | 4.71                          | 19.8              | 155.83        |
| 13:22:49 | 35:00                       | 160              | 28.39                     | 4.98                      | 384.33                              | 2.56               | 4.85                          | 20.5              | 159.05        |

| Constituent Sampled | Container      | Number | Preservative |
|---------------------|----------------|--------|--------------|
| RAD Chem            | 1L Plastic     | 2      | HNO3         |
| Metals              | 250 mL Plastic | 1      | HNO3         |
| Fluoride            | 250 mL Plastic | 1      | None         |

Comments: LaMotte turbidity reading every five minutes in accordance with VuSitu purge log
0.54
0.68
0.59
0.20
0.20
0.20
0.09

#### Well Casing Volume Conversion

Well diameter (inches) = gallons per foot

0.45 0.36

> 1 = 0.04 1.5 = 0.09 2.5 = 0.26 3.5 = 0.50 6 = 1.47 1.25 = 0.06 2 = 0.16 3 = 0.37 4 = 0.65

#### Well Information

f

Well Location:

Well Locked at Arrival:

| Condition of Well:                               | Well Locked at Departure:                   |                                      |
|--------------------------------------------------|---------------------------------------------|--------------------------------------|
|                                                  |                                             | -                                    |
| t-bmp = feet below measuring point<br>n = inches | mS/cm = milliSiemens<br>NTU = Nephelometric | s per centimeter<br>: Turbidity Unit |

ft = feet mL/min = milliliters per minute mS/cm = milliSiemens per centimeterNTU = Nephelometric Turbidity Unit mg/L = milligrams per liter  $\mu S/cm = microSiemens per centimeters$ 



| Project Number                 | 30053437            | Well ID                    | YGWC-42     |                         |                      | Date                    | 02/10/2021         |
|--------------------------------|---------------------|----------------------------|-------------|-------------------------|----------------------|-------------------------|--------------------|
| Project Location               | AMA R6 CCR Landfill |                            | Weather(°F) | 69.8 degrees F          | and Cloudy. The wind | l is blowing und        | efined at 0.0 mph. |
| Measuring Pt.<br>Description   | Top of Inner Casing | Screen<br>Setting (ft-bmp) | 49.36       | Casing<br>Diameter (in) | 2                    | Well Casing<br>Material | PVC                |
| Static Water<br>Level (ft-bmp) | 28.11               | Total Depth (ft-<br>bmp)   | 59.76       | Water<br>Column(ft)     | 31.65                | Gallons in<br>Well      | 5.14               |
| MP Elevation                   | 797.86              | Pump Intake (ft-<br>bmp)   | 55          | Purge Method            | Low-Flow             | Sample<br>Method        | Low-Flow           |
| Sample Time                    | 14:30               | Well Volumes<br>Purged     | 0.16        | Sample ID               | YGWC-42              | Sampled by              | Katie Pupkiewicz   |
| Purge Start                    | 14:10               | Gallons Purged             | 0.82        | Replicate/<br>Code No.  |                      | Color                   | Clear              |
| Purge End                      | 14:26               |                            |             |                         |                      |                         |                    |

| Time     | Total<br>Elapsed<br>Minutes | Rate<br>(mL/min) | Depth to<br>Water<br>(ft) | pH<br>(standard<br>units) | Specific<br>Conductivity<br>(µS/cm) | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Temperature<br>°C | Redox<br>(mV) |
|----------|-----------------------------|------------------|---------------------------|---------------------------|-------------------------------------|--------------------|-------------------------------|-------------------|---------------|
| 14:10:02 | 00:00                       | 120              | 29.11                     | 5.55                      | 1333.11                             | 2.12               | 5.11                          | 18.6              | 157.84        |
| 14:15:02 | 05:00                       | 100              | 29.95                     | 5.63                      | 1417.90                             | 0.88               | 1.59                          | 19.1              | 138.88        |
| 14:20:02 | 10:00                       | 100              | 30.05                     | 5.62                      | 1413.86                             | 2.37               | 1.44                          | 19.9              | 140.09        |
| 14:25:02 | 15:00                       | 100              | 30.02                     | 5.65                      | 1411.69                             | 3.80               | 1.43                          | 19.6              | 142.24        |
| 14:30:02 | 20:00                       | 100              | 30.02                     | 5.86                      | 0.24                                | 0.28               | 8.30                          | 22.4              | 144.37        |
| 14:34:49 | 24:47                       | 100              | 30.02                     | 5.88                      | 0.06                                | 0.40               | 8.37                          | 23.0              | 154.86        |

| Constituent Sampled | Container      | Number | Preservative |
|---------------------|----------------|--------|--------------|
| RAD Chem            | 1L Plastic     | 2      | HNO3         |
| Metals              | 250 mL Plastic | 1      | HNO3         |
| Fluoride            | 250 mL Plastic | 1      | None         |

| Comments:                     | LaMotte turbidity readings every five minutes in accordance with VuSitu purge log 0.50 |  |  |  |  |  |
|-------------------------------|----------------------------------------------------------------------------------------|--|--|--|--|--|
|                               | 1.57                                                                                   |  |  |  |  |  |
|                               | 1.66                                                                                   |  |  |  |  |  |
|                               | 1.31                                                                                   |  |  |  |  |  |
| Well Casing Volume Conversion |                                                                                        |  |  |  |  |  |

| Well diameter (inches) = gallons per foot | 1 = 0.04 1.5 = 0.09 2.5 = 0.26 3.5 = 0.50 6 = 1.47<br>1.25 = 0.06 2 = 0.16 3 = 0.37 4 = 0.65 |   |
|-------------------------------------------|----------------------------------------------------------------------------------------------|---|
| Well Information                          |                                                                                              |   |
| Well Location:                            | Well Locked at Arrival:                                                                      |   |
| Condition of Well:                        | Well Locked at Departure:                                                                    |   |
| Well Completion: NA                       | Key Number To Well: N                                                                        | A |
|                                           |                                                                                              |   |



| Project Number                 | 30053437              | Well ID                    | PZ-35       |                         |                      | Date                    | 02/10/2021         |
|--------------------------------|-----------------------|----------------------------|-------------|-------------------------|----------------------|-------------------------|--------------------|
| Project Location               | AMA AP-3, A, B and B' |                            | Weather(°F) | 70.2 degrees F          | and Cloudy. The wind | is blowing und          | efined at 0.0 mph. |
| Measuring Pt.<br>Description   | Top of Inner Casing   | Screen<br>Setting (ft-bmp) | 38.91       | Casing<br>Diameter (in) | 2                    | Well Casing<br>Material | PVC                |
| Static Water<br>Level (ft-bmp) | 11.74                 | Total Depth (ft-<br>bmp)   | 50.01       | Water<br>Column(ft)     | 38.27                | Gallons in<br>Well      | 6.22               |
| MP Elevation                   | 743.81                | Pump Intake (ft-<br>bmp)   | 45          | Purge Method            | Low-Flow             | Sample<br>Method        | Low-Flow           |
| Sample Time                    | 16:15                 | Well Volumes<br>Purged     | 0.14        | Sample ID               | PZ-35                | Sampled by              | Katie Pupkiewicz   |
| Purge Start                    | 15:57                 | Gallons Purged             | 0.85        | Replicate/<br>Code No.  |                      | Color                   | Clear              |

Purge End 16:13

| Time     | Total<br>Elapsed<br>Minutes | Rate<br>(mL/min) | Depth to<br>Water<br>(ft) | pH<br>(standard<br>units) | Specific<br>Conductivity<br>(µS/cm) | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Temperature<br>°C | Redox<br>(mV) |
|----------|-----------------------------|------------------|---------------------------|---------------------------|-------------------------------------|--------------------|-------------------------------|-------------------|---------------|
| 15:57:50 | 00:00                       | 180              | 11.93                     | 5.83                      | 110.48                              | 1.95               | 6.68                          | 19.7              | 139.34        |
| 16:02:50 | 05:00                       | 180              | 11.93                     | 5.62                      | 107.72                              | 3.18               | 5.48                          | 19.7              | 135.59        |
| 16:07:50 | 10:00                       | 180              | 11.93                     | 5.58                      | 107.24                              | 0.51               | 5.21                          | 19.5              | 135.37        |
| 16:12:50 | 15:00                       | 180              | 11.94                     | 5.53                      | 105.49                              | 1.00               | 4.92                          | 19.2              | 138.00        |

| Constituent Sampled | Container      | Number | Preservative |
|---------------------|----------------|--------|--------------|
| RAD Chem            | 1L Plastic     | 2      | HNO3         |
| Metals              | 250 mL Plastic | 1      | HNO3         |
| Fluoride            | 250 mL Plastic | 1      | None         |

LaMotte turbidity readings every five minutes in accordance with VuSitu purge log Comments: 1.60 1.11

#### 1.05 Well Casing Volume Conversion

1.06

| Well diameter (inche | s) = gallons per foot | 1 = 0.04 1.5 = 0.09 2.5 = 0.26 3.5 = 0.50 6 = 1.47<br>1.25 = 0.06 2 = 0.16 3 = 0.37 4 = 0.65 |  |  |  |  |  |
|----------------------|-----------------------|----------------------------------------------------------------------------------------------|--|--|--|--|--|
| Well Information     |                       |                                                                                              |  |  |  |  |  |
| Well Location:       |                       | Well Locked at Arrival:                                                                      |  |  |  |  |  |
| Condition of Well:   |                       | Well Locked at Departure:                                                                    |  |  |  |  |  |

Well Completion: NA

Key Number To Well: NA

mS/cm = milliSiemens per centimeter NTU = Nephelometric Turbidity Unit mg/L = milligrams per liter µS/cm = microSiemens per centimeters



| Project Number                 | 30052922              | Well ID                    | YGWA-5D     |                                                                |          | Date                    | 02/08/2021     |  |
|--------------------------------|-----------------------|----------------------------|-------------|----------------------------------------------------------------|----------|-------------------------|----------------|--|
| Project Location               | AMA AP-3, A, B and B' |                            | Weather(°F) | 59.5 degrees F and Clear. The wind is blowing S/SE at 9.2 mph. |          |                         |                |  |
| Measuring Pt.<br>Description   | Top of Inner Casing   | Screen<br>Setting (ft-bmp) | 78.83       | Casing<br>Diameter (in)                                        | 2        | Well Casing<br>Material | PVC            |  |
| Static Water<br>Level (ft-bmp) | 22.29                 | Total Depth (ft-<br>bmp)   | 129.13      | Water<br>Column(ft)                                            | 106.84   | Gallons in<br>Well      | 17.36          |  |
| MP Elevation                   | 784.53                | Pump Intake (ft-<br>bmp)   | 124         | Purge Method                                                   | Low-Flow | Sample<br>Method        | Low-Flow       |  |
| Sample Time                    | 16:45                 | Well Volumes<br>Purged     | 0.15        | Sample ID                                                      | YGWA-5D  | Sampled by              | Peter Argyakis |  |
| Purge Start                    | 15:51                 | Gallons Purged             | 2.60        | Replicate/<br>Code No.                                         |          | Color                   | Clear          |  |

Purge End 16:41

| Time     | Total<br>Elapsed<br>Minutes | Rate<br>(mL/min) | Depth to<br>Water<br>(ft) | pH<br>(standard<br>units) | Specific<br>Conductivity<br>(µS/cm) | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Temperature<br>°C | Redox<br>(mV) |
|----------|-----------------------------|------------------|---------------------------|---------------------------|-------------------------------------|--------------------|-------------------------------|-------------------|---------------|
| 15:51:10 | 00:00                       | 200              | 22.29                     | 7.86                      | 164.99                              | 296.62             | 9.59                          | 16.7              | -164.27       |
| 15:56:10 | 05:00                       | 200              | 22.29                     | 7.78                      | 165.22                              | 273.17             | 9.56                          | 16.4              | -187.88       |
| 16:01:10 | 10:00                       | 200              | 22.29                     | 7.73                      | 173.79                              | 258.87             | 9.65                          | 15.9              | -127.42       |
| 16:06:10 | 15:00                       | 200              | 22.29                     | 7.71                      | 154.23                              | 239.64             | 9.71                          | 15.6              | -139.89       |
| 16:11:10 | 20:00                       | 200              | 22.29                     | 7.63                      | 206.52                              | 222.85             | 9.62                          | 15.2              | -139.78       |
| 16:16:10 | 25:00                       | 200              | 22.29                     | 7.61                      | 178.26                              | 208.31             | 9.66                          | 15.1              | -111.34       |
| 16:21:10 | 30:00                       | 200              | 22.29                     | 7.62                      | 167.01                              | 196.81             | 9.65                          | 15.0              | -110.68       |
| 16:26:10 | 35:00                       | 200              | 22.29                     | 7.64                      | 155.65                              | 186.23             | 9.52                          | 15.0              | -114.65       |
| 16:31:10 | 40:00                       | 200              | 22.29                     | 7.64                      | 148.92                              | 176.24             | 9.49                          | 15.0              | -122.46       |
| 16:36:10 | 45:00                       | 200              | 22.29                     | 7.65                      | 144.09                              | 166.85             | 9.50                          | 14.9              | -127.04       |
| 16:41:10 | 50:00                       | 200              | 22.29                     | 7.66                      | 143.98                              | 158.30             | 9.49                          | 14.8              | -129.62       |

| Constituent Sampled | Container      | Number | Preservative |
|---------------------|----------------|--------|--------------|
| Metals              | 250 mL Plastic | 1      | HNO3         |
| RAD Chem            | 1L Plastic     | 2      | HNO3         |
| Fluoride            | 250 mL Plastic | 1      | None         |

| Comments: | LaMotte turbidity readings (time:NTU)<br>1550: 1.12<br>1555: 1.13<br>1600: 1.44<br>1605: 2.11<br>1610: 1.51<br>1615: 1.57<br>1620: 1.47<br>1625: 1.19<br>1630: 1.07<br>1635: 0.97 |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | 1640: 1.05                                                                                                                                                                        |

Well Casing Volume Conversion

mS/cm = milliSiemens per centimeter NTU = Nephelometric Turbidity Unit mg/L = milligrams per liter $\mu S/cm = microSiemens per centimeters$ 



| Project Number                 | 30053437            | Well ID                    | YGWC-38     |                         |                      | Date                    | 02/09/2021         |
|--------------------------------|---------------------|----------------------------|-------------|-------------------------|----------------------|-------------------------|--------------------|
| Project Location               | AMA R6 CCR Landfill |                            | Weather(°F) | 59.9 degrees F          | and Cloudy. The wind | is blowing unde         | efined at 0.0 mph. |
| Measuring Pt.<br>Description   | Top of Inner Casing | Screen<br>Setting (ft-bmp) | 39.59       | Casing<br>Diameter (in) | 2                    | Well Casing<br>Material | PVC                |
| Static Water<br>Level (ft-bmp) | 30.75               | Total Depth (ft-<br>bmp)   | 50.59       | Water<br>Column(ft)     | 19.84                | Gallons in<br>Well      | 3.22               |
| MP Elevation                   | 799.69              | Pump Intake (ft-<br>bmp)   | 45          | Purge Method            | Low-Flow             | Sample<br>Method        | Low-Flow           |
| Sample Time                    | 13:50               | Well Volumes<br>Purged     | 0.18        | Sample ID               | YGWC-38              | Sampled by              | Katie Pupkiewicz   |
| Purge Start                    | 13:31               | Gallons Purged             | 0.58        | Replicate/<br>Code No.  | MS/MSD               | Color                   | Clear              |

Purge End 13:48

| Time     | Total<br>Elapsed<br>Minutes | Rate<br>(mL/min) | Depth to<br>Water<br>(ft) | pH<br>(standard<br>units) | Specific<br>Conductivity<br>(µS/cm) | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Temperature<br>°C | Redox<br>(mV) |
|----------|-----------------------------|------------------|---------------------------|---------------------------|-------------------------------------|--------------------|-------------------------------|-------------------|---------------|
| 13:31:26 | 00:00                       | 140              | 31.3                      | 5.29                      | 961.97                              | 1.26               | 6.50                          | 20.3              | 142.48        |
| 13:36:26 | 05:00                       | 100              | 32.1                      | 5.02                      | 929.66                              | 3.82               | 4.47                          | 18.5              | 139.84        |
| 13:41:26 | 10:00                       | 100              | 32.07                     | 5.02                      | 919.74                              | 1.11               | 4.29                          | 18.3              | 139.47        |
| 13:46:26 | 15:00                       | 100              | 32.05                     | 5.04                      | 920.86                              | 0.69               | 4.23                          | 18.1              | 144.02        |

| Constituent Sampled | Container      | Number | Preservative |
|---------------------|----------------|--------|--------------|
| RAD Chem            | 1L Plastic     | 2      | HNO3         |
| Metals              | 250 mL Plastic | 1      | HNO3         |
| Fluoride            | 250 mL Plastic | 1      | None         |

Comments: LaMotte turbidity readings every five minutes in accordance with VuSitu purge log 1.57 2.80

#### 1.70 1.01

# Well Casing Volume Conversion Well diameter (inches) = gallons per foot 1 = 0.04 1.5 = 0.09 2.5 = 0.26 3.5 = 0.50 6 = 1.47 1.25 = 0.06 2 = 0.16 3 = 0.37 4 = 0.65 Well Information Well Location: Well Locked at Arrival:

Condition of Well:

Well Locked at Departure:

Well Completion: NA

Key Number To Well: NA



| Project Number                 | 30053437              | Well ID                    | YGWA-5I     |                         |                        | Date                    | 02/08/2021       |
|--------------------------------|-----------------------|----------------------------|-------------|-------------------------|------------------------|-------------------------|------------------|
| Project Location               | AMA AP-3, A, B and B' |                            | Weather(°F) | 59.2 degrees F          | and Clear. The wind is | s blowing S/SE          | at 10.3 mph.     |
| Measuring Pt.<br>Description   | Top of Inner Casing   | Screen<br>Setting (ft-bmp) | 48.64       | Casing<br>Diameter (in) | 2                      | Well Casing<br>Material | PVC              |
| Static Water<br>Level (ft-bmp) | 18.8                  | Total Depth (ft-<br>bmp)   | 58.94       | Water<br>Column(ft)     | 40.14                  | Gallons in<br>Well      | 6.52             |
| MP Elevation                   | 784.54                | Pump Intake (ft-<br>bmp)   | 53          | Purge Method            | Low-Flow               | Sample<br>Method        | Low-Flow         |
| Sample Time                    | 16:20                 | Well Volumes<br>Purged     | 0.22        | Sample ID               | YGWA-5I(020821         | Sampled by              | Katie Pupkiewicz |
| Purge Start                    | 15:47                 | Gallons Purged             | 1.45        | Replicate/<br>Code No.  | Dup-01                 | Color                   | Clear            |

Purge End 16:15

| Time     | Total<br>Elapsed<br>Minutes | Rate<br>(mL/min) | Depth to<br>Water<br>(ft) | pH<br>(standard<br>units) | Specific<br>Conductivity<br>(µS/cm) | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Temperature<br>°C | Redox<br>(mV) |
|----------|-----------------------------|------------------|---------------------------|---------------------------|-------------------------------------|--------------------|-------------------------------|-------------------|---------------|
| 15:47:47 | 00:00                       | 200              | 19.24                     | 6.88                      | 99.76                               | 0.33               | 6.11                          | 16.3              | 198.20        |
| 15:52:47 | 05:00                       | 200              | 19.24                     | 6.03                      | 96.34                               | 0.12               | 6.46                          | 16.3              | 188.16        |
| 15:57:47 | 10:00                       | 200              | 19.2                      | 5.75                      | 76.12                               | 0.09               | 6.51                          | 16.3              | 181.96        |
| 16:02:47 | 15:00                       | 200              | 19.22                     | 5.70                      | 69.72                               | 0.60               | 6.47                          | 16.4              | 179.77        |
| 16:07:47 | 20:00                       | 200              | 19.22                     | 5.67                      | 67.26                               | 0.74               | 6.49                          | 16.4              | 176.42        |
| 16:12:47 | 25:00                       | 200              | 19.22                     | 5.67                      | 67.27                               | 2.42               | 6.46                          | 16.4              | 175.21        |

| Constituent Sampled | Container      | Number | Preservative |
|---------------------|----------------|--------|--------------|
| Metals              | 250 mL Plastic | 1      | HNO3         |
| RAD Chem            | 1L Plastic     | 2      | HNO3         |
| Fluoride            | 250 mL Plastic | 1      | None         |

| Comments: | LaMotte turbidity taken every 5 min in accordance With VuSitu sample troll |
|-----------|----------------------------------------------------------------------------|
|           | 1.33                                                                       |
|           | 1.60                                                                       |
|           | 1.25                                                                       |
|           | 0.92                                                                       |
|           | 1.40                                                                       |
|           | 1.50                                                                       |

#### Well Casing Volume Conversion

| Well diameter (inches) = gallons per foot $1 = 0.04 \ 1.5 = 0.09 \ 2.5 \\ 1.25 = 0.06 \ 2 = 0.16 \ 3$ |    | 5 = 0.26 3.5 = 0.50 6 = 1.47<br>= 0.37 4 = 0.65 |                           |    |  |
|-------------------------------------------------------------------------------------------------------|----|-------------------------------------------------|---------------------------|----|--|
| Well Information                                                                                      |    |                                                 |                           |    |  |
| Well Location:                                                                                        |    |                                                 | Well Locked at Arrival:   |    |  |
| Condition of Well:                                                                                    |    |                                                 | Well Locked at Departure: |    |  |
| Well Completion:                                                                                      | NA |                                                 | Key Number To Well:       | NA |  |



| Project Number                 | 30053437              | Well ID                    | YGWA-20S    |                         |                      | Date                    | 02/09/2021         |
|--------------------------------|-----------------------|----------------------------|-------------|-------------------------|----------------------|-------------------------|--------------------|
| Project Location               | AMA AP-3, A, B and B' |                            | Weather(°F) | 68.0 degrees F          | and Cloudy. The wind | is blowing unde         | efined at 0.0 mph. |
| Measuring Pt.<br>Description   | Top of Inner Casing   | Screen<br>Setting (ft-bmp) | 19.22       | Casing<br>Diameter (in) | 2                    | Well Casing<br>Material | PVC                |
| Static Water<br>Level (ft-bmp) | 11.27                 | Total Depth (ft-<br>bmp)   | 29.52       | Water<br>Column(ft)     | 18.25                | Gallons in<br>Well      | 2.97               |
| MP Elevation                   | 767.12                | Pump Intake (ft-<br>bmp)   | 24.5        | Purge Method            | Low-Flow             | Sample<br>Method        | Low-Flow           |
| Sample Time                    | 16:50                 | Well Volumes<br>Purged     | 0.33        | Sample ID               | YGWA-20S             | Sampled by              | Katie Pupkiewicz   |
| Purge Start                    | 16:26                 | Gallons Purged             | 0.98        | Replicate/<br>Code No.  |                      | Color                   | Clear              |

Purge End 16:46

| Time     | Total<br>Elapsed<br>Minutes | Rate<br>(mL/min) | Depth to<br>Water<br>(ft) | pH<br>(standard<br>units) | Specific<br>Conductivity<br>(µS/cm) | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Temperature<br>°C | Redox<br>(mV) |
|----------|-----------------------------|------------------|---------------------------|---------------------------|-------------------------------------|--------------------|-------------------------------|-------------------|---------------|
| 16:26:09 | 00:00                       | 160              | 11.97                     | 5.96                      | 65.31                               | 19.43              | 7.76                          | 17.3              | 61.51         |
| 16:31:09 | 05:00                       | 160              | 12                        | 5.93                      | 60.57                               | 10.01              | 7.47                          | 17.1              | 55.91         |
| 16:36:09 | 10:00                       | 160              | 12.04                     | 5.90                      | 60.16                               | 3.12               | 7.42                          | 16.9              | 58.04         |
| 16:41:09 | 15:00                       | 160              | 12.05                     | 5.87                      | 59.94                               | 1.91               | 7.41                          | 16.7              | 61.08         |
| 16:46:09 | 20:00                       | 160              | 12.05                     | 5.86                      | 60.08                               | 1.43               | 7.38                          | 16.7              | 66.54         |

| Constituent Sampled | Container      | Number | Preservative |
|---------------------|----------------|--------|--------------|
| RAD Chem            | 1L Plastic     | 2      | HNO3         |
| Metals              | 250 mL Plastic | 1      | HNO3         |
| Fluoride            | 250 mL Plastic | 1      | None         |

Comments: LaMotte turbidity readings every five minutes in accordance with VuSitu purge log 13.01 7.41

| 3. | 84 |  |
|----|----|--|
|    |    |  |

2.10 1.95

#### Well Casing Volume Conversion

| Well diameter (inches) = gallons per foot | 1 = 0.04 1.5 = 0.09 2.5 = 0.26 3.5 = 0.50 6 = 1.47<br>1.25 = 0.06 2 = 0.16 3 = 0.37 4 = 0.65 |  |
|-------------------------------------------|----------------------------------------------------------------------------------------------|--|
| Well Information                          |                                                                                              |  |

# Well Location:

Well Locked at Arrival:

Condition of Well:

Well Completion: NA

Well Locked at Departure:

#### Key Number To Well: NA



| Project Number                 | 30053437            | Well ID                    | YGWC-23S    |                         |                  | Date                    | 02/09/2021       |
|--------------------------------|---------------------|----------------------------|-------------|-------------------------|------------------|-------------------------|------------------|
| Project Location               | AMA AP-3, A, B an   | d B'                       | Weather(°F) | Cloudy breezy           | 55°F             |                         |                  |
| Measuring Pt.<br>Description   | Top of Inner Casing | Screen<br>Setting (ft-bmp) | 28.61       | Casing<br>Diameter (in) | 2                | Well Casing<br>Material | PVC              |
| Static Water<br>Level (ft-bmp) | 16.96               | Total Depth (ft-<br>bmp)   | 38.91       | Water<br>Column(ft)     | 21.95            | Gallons in<br>Well      | 3.57             |
| MP Elevation                   | 764.91              | Pump Intake (ft-<br>bmp)   | 34          | Purge Method            | Low-Flow         | Sample<br>Method        | Low-Flow         |
| Sample Time                    | 11:10               | Well Volumes<br>Purged     | 0.50        | Sample ID               | YGW -23S(020921) | Sampled by              | Katie Pupkiewicz |
| Purge Start                    | 10:33               | Gallons Purged             | 1.80        | Replicate/<br>Code No.  |                  | Color                   | Clear            |
| Purge End                      | 11:05               |                            |             |                         |                  |                         |                  |
|                                | Total               | Depth to                   |             | nacific                 | Disselved        |                         |                  |

| Time     | Total<br>Elapsed<br>Minutes | Rate<br>(mL/min) | Depth to<br>Water<br>(ft) | pH<br>(standard<br>units) | Specific<br>Conductivity<br>(µS/cm) | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Temperature<br>°C | Redox<br>(mV) |
|----------|-----------------------------|------------------|---------------------------|---------------------------|-------------------------------------|--------------------|-------------------------------|-------------------|---------------|
| 10:33:25 | 00:00                       | 210              | 17.75                     | 5.94                      | 207.22                              | 27.52              | 8.51                          | 16.7              | 80.82         |
| 10:38:25 | 05:00                       | 210              | 17.76                     | 5.73                      | 205.72                              | 17.88              | 8.22                          | 16.9              | 90.41         |
| 10:43:25 | 10:00                       | 210              | 17.77                     | 5.62                      | 200.80                              | 9.98               | 8.70                          | 17.1              | 91.95         |
| 10:48:25 | 15:00                       | 210              | 17.79                     | 5.73                      | 131.25                              | 2.85               | 7.80                          | 17.2              | 88.62         |
| 10:53:25 | 20:00                       | 210              | 17.77                     | 5.64                      | 196.98                              | 1.28               | 7.84                          | 17.1              | 88.05         |
| 10:58:25 | 25:00                       | 210              | 17.8                      | 5.62                      | 195.78                              | 0.59               | 7.88                          | 17.3              | 90.60         |
| 11:03:25 | 30:00                       | 210              | 17.82                     | 5.61                      | 195.48                              | 0.24               | 7.90                          | 17.4              | 98.16         |

| Constituent Sampled | Container      | Number | Preservative |
|---------------------|----------------|--------|--------------|
| RAD Chem            | 1L Plastic     | 2      | HNO3         |
| Metals              | 250 mL Plastic | 1      | HNO3         |
| Fluoride            | 250 mL Plastic | 1      | None         |

| Comments: | LaMotte turbidity readings taken every five minutes in accordance with the VuSitu purge log |
|-----------|---------------------------------------------------------------------------------------------|
|           | 12.43                                                                                       |
|           | 7.01                                                                                        |
|           | 5.63                                                                                        |
|           | 2.09                                                                                        |
|           | 1.13                                                                                        |

| Well Casing Volume Conversi | on |
|-----------------------------|----|
|-----------------------------|----|

1.11 0.75

| Well diameter (inches) = gallons per foot | 1 = 0.04 1.5 = 0.09 2.5 = 0.26 3.5 = 0.50 6 = 1.47<br>1.25 = 0.06 2 = 0.16 3 = 0.37 4 = 0.65 |    |  |  |  |
|-------------------------------------------|----------------------------------------------------------------------------------------------|----|--|--|--|
| Well Information                          |                                                                                              |    |  |  |  |
| Well Location:                            | Well Locked at Arrival:                                                                      |    |  |  |  |
| Condition of Well:                        | Well Locked at Departure:                                                                    |    |  |  |  |
| Well Completion: NA                       | Key Number To Well:                                                                          | NA |  |  |  |
|                                           |                                                                                              |    |  |  |  |

ft-bmp = feet below measuring point in = inches ft = feet mL/min = milliliters per minute mS/cm = milliSiemens per centimeter NTU = Nephelometric Turbidity Unit mg/L = milligrams per liter $\mu S/cm = microSiemens per centimeters$ 



| Project Number                 | 30053437            | Well ID                    | YGWC-43     |                         |                       | Date                    | 02/09/2021           |
|--------------------------------|---------------------|----------------------------|-------------|-------------------------|-----------------------|-------------------------|----------------------|
| Project Location               | AMA R6 CCR Landfill |                            | Weather(°F) | 66.7 degrees F<br>mph.  | and Mostly Cloudy. Th | ne wind is blowi        | ing undefined at 0.0 |
| Measuring Pt.<br>Description   | Top of Inner Casing | Screen<br>Setting (ft-bmp) | 69.16       | Casing<br>Diameter (in) | 2                     | Well Casing<br>Material | PVC                  |
| Static Water<br>Level (ft-bmp) | 16.28               | Total Depth (ft-<br>bmp)   | 79.66       | Water<br>Column(ft)     | 63.38                 | Gallons in<br>Well      | 10.3                 |
| MP Elevation                   | 744.96              | Pump Intake (ft-<br>bmp)   | 75          | Purge Method            | Low-Flow              | Sample<br>Method        | Low-Flow             |
| Sample Time                    | 15:30               | Well Volumes<br>Purged     | 0.07        | Sample ID               | YGWC-43               | Sampled by              | Katie Pupkiewicz     |
| Purge Start                    | 15:09               | Gallons Purged             | 0.69        | Replicate/<br>Code No.  |                       | Color                   | Clear                |

Purge End 15:26

| Time     | Total<br>Elapsed<br>Minutes | Rate<br>(mL/min) | Depth to<br>Water<br>(ft) | pH<br>(standard<br>units) | Specific<br>Conductivity<br>(µS/cm) | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Temperature<br>°C | Redox<br>(mV) |
|----------|-----------------------------|------------------|---------------------------|---------------------------|-------------------------------------|--------------------|-------------------------------|-------------------|---------------|
| 15:09:47 | 00:00                       | 140              | 16.41                     | 5.82                      | 809.51                              | 3.40               | 5.57                          | 19.3              | 43.08         |
| 15:14:47 | 05:00                       | 140              | 16.45                     | 5.77                      | 898.40                              | 0.56               | 1.38                          | 18.6              | 36.52         |
| 15:19:47 | 10:00                       | 140              | 16.52                     | 5.82                      | 892.29                              | 0.43               | 0.90                          | 18.2              | 36.03         |
| 15:24:47 | 15:00                       | 140              | 16.45                     | 5.86                      | 868.41                              | 0.38               | 1.20                          | 18.2              | 36.25         |

| Constituent Sampled | Container      | Number | Preservative |
|---------------------|----------------|--------|--------------|
| RAD Chem            | 1L Plastic     | 2      | HNO3         |
| Metals              | 250 mL Plastic | 1      | HNO3         |
| Fluoride            | 250 mL Plastic | 1      | None         |

Comments: LaMotte turbidity readings taken every five minutes in accordance with VuSitu purge log 3.92 1.64

| 0.68 |  |
|------|--|
| 0.77 |  |

#### Well Casing Volume Conversion

| Well diameter (inches) = gallons per foot | 1 = 0.04 1.5 = 0.09 2.5 = 0.26 3.5 = 0.50 6 = 1.47<br>1.25 = 0.06 2 = 0.16 3 = 0.37 4 = 0.65 |  |
|-------------------------------------------|----------------------------------------------------------------------------------------------|--|
| Well Information                          |                                                                                              |  |
| Well Location:                            | Well Locked at Arrival:                                                                      |  |
| Condition of Well:                        |                                                                                              |  |

Well Completion: NA

\_\_\_\_\_

\_\_\_\_\_

Key Number To Well: NA



| Project Number                 | 30053438            | Well ID                    | YGWC-36A    |                         |                       | Date                    | 02/10/2021       |
|--------------------------------|---------------------|----------------------------|-------------|-------------------------|-----------------------|-------------------------|------------------|
| Project Location               | AMA R6 CCR Landfill |                            | Weather(°F) | 69.8 degrees F          | and Mostly Cloudy. Th | ne wind is blowi        | ng S at 3.4 mph. |
| Measuring Pt.<br>Description   | Top of Inner Casing | Screen<br>Setting (ft-bmp) | 689.7       | Casing<br>Diameter (in) | 2                     | Well Casing<br>Material | PVC              |
| Static Water<br>Level (ft-bmp) | 13.43               | Total Depth (ft-<br>bmp)   | 51.2        | Water<br>Column(ft)     | 37.77                 | Gallons in<br>Well      | 6.14             |
| MP Elevation                   | 739.61              | Pump Intake (ft-<br>bmp)   | 48          | Purge Method            | Low-Flow              | Sample<br>Method        | Low-Flow         |
| Sample Time                    | 14:30               | Well Volumes<br>Purged     | 0.22        | Sample ID               | YGWC-36A              | Sampled by              | Peter Argyakis   |
| Purge Start                    | 13:56               | Gallons Purged             | 1.32        | Replicate/<br>Code No.  |                       | Color                   | Clear            |
|                                |                     |                            |             |                         |                       |                         |                  |

#### Purge End 14:27

| Time     | Total<br>Elapsed<br>Minutes | Rate<br>(mL/min) | Depth to<br>Water<br>(ft) | pH<br>(standard<br>units) | Specific<br>Conductivity<br>(µS/cm) | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Temperature<br>°C | Redox<br>(mV) |
|----------|-----------------------------|------------------|---------------------------|---------------------------|-------------------------------------|--------------------|-------------------------------|-------------------|---------------|
| 13:56:54 | 00:00                       | 150              | 13.43                     | 5.85                      | 111.21                              | 67.53              | 8.56                          | 19.1              | 133.62        |
| 14:01:54 | 05:00                       | 150              | 13.5                      | 5.99                      | 111.32                              | 27.91              | 8.38                          | 20.1              | 131.77        |
| 14:06:54 | 10:00                       | 150              | 13.63                     | 6.13                      | 111.86                              | 25.95              | 8.43                          | 20.9              | 125.34        |
| 14:11:54 | 15:00                       | 150              | 13.75                     | 6.20                      | 112.17                              | 26.85              | 8.44                          | 21.6              | 122.82        |
| 14:16:54 | 20:00                       | 150              | 13.9                      | 6.25                      | 112.21                              | 18.93              | 8.44                          | 22.3              | 121.99        |
| 14:21:54 | 25:00                       | 150              | 13.98                     | 6.31                      | 112.81                              | 20.67              | 8.50                          | 23.1              | 120.45        |
| 14:26:54 | 30:00                       | 150              | 14.11                     | 6.31                      | 112.80                              | 18.91              | 8.50                          | 23.8              | 121.60        |

| Constituent Sampled | Container      | Number | Preservative |
|---------------------|----------------|--------|--------------|
| Metals              | 250 mL Plastic | 1      | HNO3         |
| Fluoride            | 250 mL Plastic | 1      | None         |
| RAD Chem            | 1L Plastic     | 2      | HNO3         |
|                     |                |        |              |

| Comments:                                                                   | LaMotte turbidity readin<br>1357: 11.4<br>1402: 7.33<br>1407: 5.94<br>1412: 4.21<br>1417: 4.87<br>1422: 4.56<br>1427: 3.09 | gs (time:NTU)                                                                                    |                                                                |                                                                    |  |
|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------|--|
|                                                                             | Sample sightly more tur                                                                                                    | bid compared to low-flo                                                                          | ow purge                                                       |                                                                    |  |
| Well Casing Volum                                                           | e Conversion                                                                                                               |                                                                                                  |                                                                |                                                                    |  |
| Well diameter (inche                                                        | es) = gallons per foot                                                                                                     | 1 = 0.04 1.5 = 0.09 2.5<br>1.25 = 0.06 2 = 0.16 3                                                | 5 = 0.26 3.5 = 0.50 6 = 1.47<br>= 0.37 4 = 0.65                |                                                                    |  |
| Well Information                                                            |                                                                                                                            |                                                                                                  |                                                                |                                                                    |  |
| Well Location:                                                              |                                                                                                                            |                                                                                                  | Well Locked at Arrival:                                        |                                                                    |  |
| Condition of Well:                                                          |                                                                                                                            |                                                                                                  | Well Locked at Departure:                                      |                                                                    |  |
| Well Completion:                                                            | NA                                                                                                                         |                                                                                                  | Key Number To Well:                                            | NA                                                                 |  |
| ft-bmp = feet below r<br>in = inches<br>ft = feet<br>mL/min = milliliters p | neasuring point<br>er minute                                                                                               | mS/cm = milliSiemens<br>NTU = Nephelometric<br>mg/L = milligrams per<br>$\mu S/cm = microSiemen$ | per centimeter<br>Turbidity Unit<br>liter<br>s per centimeters | mV = millivolts<br>°F = degrees Fahrenheit<br>°C = degrees Celsius |  |



| Project Number                 | 30053438            | Well ID                    | YAMW-5      |                         |          | Date                    | 02/09/2021     |
|--------------------------------|---------------------|----------------------------|-------------|-------------------------|----------|-------------------------|----------------|
| Project Location               | AMA R6 CCR Landfill |                            | Weather(°F) | Cold, dry               |          |                         |                |
| Measuring Pt.<br>Description   | Top of Inner Casing | Screen<br>Setting (ft-bmp) | 80.3        | Casing<br>Diameter (in) | 2        | Well Casing<br>Material | PVC            |
| Static Water<br>Level (ft-bmp) | 13.98               | Total Depth (ft-<br>bmp)   | 90.34       | Water<br>Column(ft)     | 76.36    | Gallons in<br>Well      | 12.41          |
| MP Elevation                   | 788.9               | Pump Intake (ft-<br>bmp)   | 85          | Purge Method            | Low-Flow | Sample<br>Method        | Low-Flow       |
| Sample Time                    | 09:45               | Well Volumes<br>Purged     | 0.14        | Sample ID               | YAMW-5   | Sampled by              | Peter Argyakis |
| Purge Start                    | 09:03               | Gallons Purged             | 1.78        | Replicate/<br>Code No.  |          | Color                   | Clear          |

#### Purge End 09:43

| Time     | Total<br>Elapsed<br>Minutes | Rate<br>(mL/min) | Depth to<br>Water<br>(ft) | pH<br>(standard<br>units) | Specific<br>Conductivity<br>(µS/cm) | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Temperature<br>°C | Redox<br>(mV) |
|----------|-----------------------------|------------------|---------------------------|---------------------------|-------------------------------------|--------------------|-------------------------------|-------------------|---------------|
| 09:03:44 | 00:00                       | 250              | 12.98                     | 5.37                      | 0.07                                | 43.49              | 10.52                         | 11.9              | 223.76        |
| 09:08:44 | 05:00                       | 200              | 13.9                      | 5.32                      | 0.07                                | 55.09              | 10.21                         | 12.5              | 220.41        |
| 09:13:44 | 10:00                       | 150              | 14.47                     | 5.36                      | 0.07                                | 67.25              | 10.04                         | 12.7              | 218.76        |
| 09:18:44 | 15:00                       | 150              | 14.72                     | 5.33                      | 0.07                                | 80.70              | 9.89                          | 13.0              | 217.80        |
| 09:23:44 | 20:00                       | 150              | 14.88                     | 5.34                      | 0.07                                | 83.16              | 9.79                          | 13.2              | 216.61        |
| 09:28:44 | 25:00                       | 150              | 14.96                     | 5.66                      | 0.07                                | 108.44             | 9.86                          | 13.5              | 216.52        |
| 09:33:44 | 30:00                       | 150              | 15.05                     | 5.34                      | 0.07                                | 112.43             | 9.78                          | 13.8              | 214.02        |
| 09:38:44 | 35:00                       | 150              | 15.14                     | 5.34                      | 0.07                                | 130.82             | 9.72                          | 14.1              | 214.52        |
| 09:43:44 | 40:00                       | 150              | 15.14                     | 5.34                      | 0.07                                | 143.48             | 9.58                          | 14.3              | 213.19        |

| Constituent Sampled | Container      | Number | Preservative |
|---------------------|----------------|--------|--------------|
| RAD Chem            | 1L Plastic     | 2      | HNO3         |
| Metals              | 250 mL Plastic | 1      | HNO3         |
| Fluoride            | 250 mL Plastic | 1      | None         |

| Comments: | LaMotte turbidity readings (time:NTU) |
|-----------|---------------------------------------|
|           | 0903: 3.28                            |
|           | 0908: 2.67                            |
|           | 0913: 2.54                            |
|           | 0918: 2.15                            |
|           | 0923: 2.18                            |
|           | 0928: 1.96                            |
|           | 0933: 2.08                            |
|           | 0938: 2.29                            |
|           | 0943: 2.12                            |
|           |                                       |

Last depth to water: 15.18

#### Well Casing Volume Conversion

Well diameter (inches) = gallons per foot

1 = 0.04 1.5 = 0.09 2.5 = 0.26 3.5 = 0.50 6 = 1.47 1.25 = 0.06 2 = 0.16 3 = 0.37 4 = 0.65

#### Well Information

ft-bmp = feet below measuring point in = inches ft = feet mL/min = milliliters per minute mS/cm = milliSiemens per centimeterNTU = Nephelometric Turbidity Unit mg/L = milligrams per liter  $\mu S/cm = microSiemens per centimeters$ 



| Project Number                 | 30053438            | Well ID                    | YAMW-4      |                         |          | Date                    | 02/09/2021     |
|--------------------------------|---------------------|----------------------------|-------------|-------------------------|----------|-------------------------|----------------|
| Project Location               | AMA R6 CCR Landfill |                            | Weather(°F) | Sunny, dry              |          |                         |                |
| Measuring Pt.<br>Description   | Top of Inner Casing | Screen<br>Setting (ft-bmp) | 86.59       | Casing<br>Diameter (in) | 2        | Well Casing<br>Material | PVC            |
| Static Water<br>Level (ft-bmp) | 31.98               | Total Depth (ft-<br>bmp)   | 96.55       | Water<br>Column(ft)     | 64.57    | Gallons in<br>Well      | 10.49          |
| MP Elevation                   | 805.59              | Pump Intake (ft-<br>bmp)   | 90          | Purge Method            | Low-Flow | Sample<br>Method        | Low-Flow       |
| Sample Time                    | 11:20               | Well Volumes<br>Purged     | 0.21        | Sample ID               | YAMW-4   | Sampled by              | Peter Argyakis |
| Purge Start                    | 10:24               | Gallons Purged             | 2.18        | Replicate/<br>Code No.  |          | Color                   | Clear          |

Purge End 11:19

| Time     | Total<br>Elapsed<br>Minutes | Rate<br>(mL/min) | Depth to<br>Water<br>(ft) | pH<br>(standard<br>units) | Specific<br>Conductivity<br>(µS/cm) | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Temperature<br>°C | Redox<br>(mV) |
|----------|-----------------------------|------------------|---------------------------|---------------------------|-------------------------------------|--------------------|-------------------------------|-------------------|---------------|
| 10:24:43 | 00:00                       | 150              | 31.98                     | 5.60                      | 0.07                                | 194.37             | 10.17                         | 13.1              | 185.76        |
| 10:29:43 | 05:00                       | 150              | 32.15                     | 6.88                      | 0.07                                | 110.70             | 9.78                          | 14.0              | 176.61        |
| 10:34:43 | 10:00                       | 150              | 32.36                     | 6.88                      | 0.07                                | 102.23             | 9.75                          | 14.4              | 170.84        |
| 10:39:43 | 15:00                       | 150              | 32.48                     | 6.90                      | 0.07                                | 103.96             | 9.59                          | 14.3              | 152.16        |
| 10:44:43 | 20:00                       | 150              | 32.59                     | 6.93                      | 0.30                                | 105.82             | 9.57                          | 14.3              | 134.78        |
| 10:49:43 | 25:00                       | 150              | 32.71                     | 6.89                      | 446.03                              | 0.00               | 9.20                          | 15.4              | 75.09         |
| 10:54:43 | 30:00                       | 150              | 32.76                     | 6.88                      | 437.06                              | 0.00               | 9.19                          | 15.4              | 56.75         |
| 10:59:43 | 35:00                       | 150              | 32.83                     | 6.89                      | 417.28                              | 107.16             | 9.25                          | 15.3              | 44.68         |
| 11:04:43 | 40:00                       | 150              | 33.01                     | 6.78                      | 474.74                              | 1.36               | 6.48                          | 16.9              | -6.45         |
| 11:09:43 | 45:00                       | 150              | 33.09                     | 6.91                      | 471.10                              | 0.00               | 3.10                          | 15.8              | -9.92         |
| 11:14:43 | 50:00                       | 150              | 33.15                     | 6.94                      | 470.46                              | 0.00               | 3.52                          | 15.1              | -1.65         |
| 11:19:43 | 55:00                       | 150              | 33.15                     | 6.96                      | 470.22                              | 0.00               | 3.96                          | 14.7              | -3.43         |

| Constituent Sampled | Container      | Number | Preservative |
|---------------------|----------------|--------|--------------|
| Fluoride            | 250 mL Plastic | 1      | None         |
| RAD Chem            | 1L Plastic     | 2      | HNO3         |
| Metals              | 250 mL Plastic | 1      | HNO3         |

mS/cm = milliSiemens per centimeter NTU = Nephelometric Turbidity Unit mg/L = milligrams per liter $\mu S/cm = microSiemens per centimeters$ 



| Comments: LaMotte turbidity read          | lings (time:NTU)                                                                             |    |
|-------------------------------------------|----------------------------------------------------------------------------------------------|----|
| 1024. 1.31                                |                                                                                              |    |
| 1023. 1.33                                |                                                                                              |    |
| 1039: 1.47                                |                                                                                              |    |
| 1044 2 02                                 |                                                                                              |    |
| 1049: 1.77                                |                                                                                              |    |
| 1054: 1.50                                |                                                                                              |    |
| 1059: 1.86                                |                                                                                              |    |
| 1104: 1.42                                |                                                                                              |    |
| 1109: 1.58                                |                                                                                              |    |
| 1114: 1.75                                |                                                                                              |    |
| 1119: 2.03                                |                                                                                              |    |
| Last depth to water: 3                    | 33.22                                                                                        |    |
| Well Casing Volume Conversion             |                                                                                              |    |
| Well diameter (inches) = gallons per foot | 1 = 0.04 1.5 = 0.09 2.5 = 0.26 3.5 = 0.50 6 = 1.47<br>1.25 = 0.06 2 = 0.16 3 = 0.37 4 = 0.65 |    |
| Well Information                          |                                                                                              |    |
| Well Location:                            | Well Locked at Arrival:                                                                      |    |
| Condition of Well                         | Well Locked at Departure:                                                                    |    |
|                                           |                                                                                              |    |
| Well Completion: NA                       | Key Number To Well:                                                                          | NA |



| Project Number                 | 30053438            | Well ID                    | YAMW-2      |                         |                      | Date                    | 02/09/2021         |
|--------------------------------|---------------------|----------------------------|-------------|-------------------------|----------------------|-------------------------|--------------------|
| Project Location               | AMA R6 CCR Landfill |                            | Weather(°F) | 57.4 degrees F          | and Cloudy. The wind | is blowing und          | efined at 0.0 mph. |
| Measuring Pt.<br>Description   | Top of Inner Casing | Screen<br>Setting (ft-bmp) | 36.44       | Casing<br>Diameter (in) | 2                    | Well Casing<br>Material | PVC                |
| Static Water<br>Level (ft-bmp) | 20.5                | Total Depth (ft-<br>bmp)   | 46.48       | Water<br>Column(ft)     | 25.98                | Gallons in<br>Well      | 4.22               |
| MP Elevation                   | 781.04              | Pump Intake (ft-<br>bmp)   | 41          | Purge Method            | Low-Flow             | Sample<br>Method        | Low-Flow           |
| Sample Time                    | 12:45               | Well Volumes<br>Purged     | 0.19        | Sample ID               | YMWA-2               | Sampled by              | Peter Argyakis     |
| Purge Start                    | 12:21               | Gallons Purged             | 0.79        | Replicate/<br>Code No.  |                      | Color                   | Clear              |

Purge End 12:41

| Time     | Total<br>Elapsed<br>Minutes | Rate<br>(mL/min) | Depth to<br>Water<br>(ft) | pH<br>(standard<br>units) | Specific<br>Conductivity<br>(µS/cm) | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Temperature<br>°C | Redox<br>(mV) |
|----------|-----------------------------|------------------|---------------------------|---------------------------|-------------------------------------|--------------------|-------------------------------|-------------------|---------------|
| 12:21:40 | 00:00                       | 150              | 20.5                      | 5.75                      | 0.00                                | 0.55               | 9.19                          | 17.6              | 127.23        |
| 12:26:40 | 05:00                       | 150              | 20.63                     | 5.90                      | 23.25                               | 41.93              | 9.11                          | 17.3              | 113.65        |
| 12:31:40 | 10:00                       | 150              | 20.8                      | 5.80                      | 65.07                               | 83.36              | 7.56                          | 17.9              | 125.49        |
| 12:36:40 | 15:00                       | 150              | 20.88                     | 5.78                      | 65.62                               | 68.30              | 7.49                          | 18.7              | 130.35        |
| 12:41:40 | 20:00                       | 150              | 20.93                     | 5.81                      | 67.95                               | 83.32              | 7.34                          | 20.4              | 131.93        |

| Constituent Sampled | Container      | Number | Preservative |
|---------------------|----------------|--------|--------------|
| RAD Chem            | 1L Plastic     | 2      | HNO3         |
| Metals              | 250 mL Plastic | 1      | HNO3         |
| Fluoride            | 250 mL Plastic | 1      | None         |

| Comments: | LaMotte turbidity readings (time:NTU) |
|-----------|---------------------------------------|
|           | 1221: 3.92                            |
|           | 1226: 3.46                            |
|           | 1231: 2.85                            |
|           | 1236: 2.51                            |
|           | 1241: 2.18                            |

#### Well Casing Volume Conversion

| Well diameter (inches) = gallons per foot | 1 = 0.04 1.5 = 0.09 2.5 = 0.26 3.5 = 0.50 6 = 1.47<br>1.25 = 0.06 2 = 0.16 3 = 0.37 4 = 0.65 |  |
|-------------------------------------------|----------------------------------------------------------------------------------------------|--|
| Well Information                          |                                                                                              |  |
| Well Location:                            | Well Locked at Arrival:                                                                      |  |
| Condition of Well:                        |                                                                                              |  |

Well Completion: NA

Key Number To Well: NA

mS/cm = milliSiemens per centimeter NTU = Nephelometric Turbidity Unit mg/L = milligrams per liter µS/cm = microSiemens per centimeters



| Project Number                 | 30053438              | Well ID                    | YAMW-1      |                         |                       | Date                    | 02/09/2021              |
|--------------------------------|-----------------------|----------------------------|-------------|-------------------------|-----------------------|-------------------------|-------------------------|
| Project Location               | AMA AP-3, A, B and B' |                            | Weather(°F) | 63.9 degrees F          | and Partly Cloudy. Th | e wind is blowir        | g undefined at 0.0 mph. |
| Measuring Pt.<br>Description   | Top of Inner Casing   | Screen<br>Setting (ft-bmp) | 59.6        | Casing<br>Diameter (in) | 2                     | Well Casing<br>Material | PVC                     |
| Static Water<br>Level (ft-bmp) | 12.63                 | Total Depth (ft-<br>bmp)   | 69.93       | Water<br>Column(ft)     | 57.3                  | Gallons in<br>Well      | 9.31                    |
| MP Elevation                   | 743.83                | Pump Intake (ft-<br>bmp)   | 65          | Purge Method            | Low-Flow              | Sample<br>Method        | Low-Flow                |
| Sample Time                    | 14:10                 | Well Volumes<br>Purged     | 0.08        | Sample ID               | YAMW-1                | Sampled by              | Peter Argyakis          |
| Purge Start                    | 13:53                 | Gallons Purged             | 0.73        | Replicate/<br>Code No.  |                       | Color                   | Clear                   |

Purge End 14:08

| Time     | Total<br>Elapsed<br>Minutes | Rate<br>(mL/min) | Depth to<br>Water<br>(ft) | pH<br>(standard<br>units) | Specific<br>Conductivity<br>(µS/cm) | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Temperature<br>°C | Redox<br>(mV) |
|----------|-----------------------------|------------------|---------------------------|---------------------------|-------------------------------------|--------------------|-------------------------------|-------------------|---------------|
| 13:53:02 | 00:00                       | 250              | 12.63                     | 5.49                      | 0.06                                | 0.00               | 8.80                          | 20.7              | 129.48        |
| 13:58:02 | 05:00                       | 150              | 12.99                     | 6.41                      | 183.45                              | 0.00               | 2.98                          | 19.1              | 126.64        |
| 14:03:02 | 10:00                       | 150              | 13.18                     | 6.42                      | 183.35                              | 0.00               | 2.91                          | 19.1              | 128.01        |
| 14:08:02 | 15:00                       | 150              | 13.23                     | 6.42                      | 183.16                              | 0.00               | 3.21                          | 19.0              | 128.31        |

| Constituent Sampled | Container      | Number | Preservative |
|---------------------|----------------|--------|--------------|
| RAD Chem            | 1L Plastic     | 2      | HNO3         |
| Metals              | 250 mL Plastic | 1      | HNO3         |
| Fluoride            | 250 mL Plastic | 1      | HNO3         |

| Comments: | LaMotte turbidity reading (time:NTU) |
|-----------|--------------------------------------|
|           | 1353: 2.42                           |
|           | 1358: 1.48                           |
|           | 1403: 1.89                           |
|           | 1409: 1.74                           |

#### Well Casing Volume Conversion

| Well diameter (inches) = gallons per foot | 1 = 0.04 1.5 = 0.09 2.5 = 0.26 3.5 = 0.50 6 = 1.47 |
|-------------------------------------------|----------------------------------------------------|
|                                           | 1.25 = 0.06 2 = 0.16 3 = 0.37 4 = 0.65             |

| Well Information   |                           |
|--------------------|---------------------------|
| Well Location:     | Well Locked at Arrival:   |
| Condition of Well: | Well Locked at Departure: |
| Well Completion:   | NA Key Number To Well: NA |

mS/cm = milliSiemens per centimeter NTU = Nephelometric Turbidity Unit mg/L = milligrams per liter $\mu S/cm = microSiemens per centimeters$ 



| Project Number                 | 30053438             | Well ID                    | YGWC-24SA   |                         |                       | Date                    | 02/09/2021          |
|--------------------------------|----------------------|----------------------------|-------------|-------------------------|-----------------------|-------------------------|---------------------|
| Project Location               | AMA AP-3, A, B and B |                            | Weather(°F) | 66.7 degrees F<br>mph.  | and Mostly Cloudy. Th | ne wind is blowi        | ng undefined at 0.0 |
| Measuring Pt.<br>Description   | Top of Inner Casing  | Screen<br>Setting (ft-bmp) | 47          | Casing<br>Diameter (in) | 2                     | Well Casing<br>Material | PVC                 |
| Static Water<br>Level (ft-bmp) | 28.52                | Total Depth (ft-<br>bmp)   | 57          | Water<br>Column(ft)     | 28.48                 | Gallons in<br>Well      | 4.63                |
| MP Elevation                   | 765                  | Pump Intake (ft-<br>bmp)   | 92          | Purge Method            | Low-Flow              | Sample<br>Method        | Low-Flow            |
| Sample Time                    | 16:10                | Well Volumes<br>Purged     | 0.51        | Sample ID               | YGWC-24SA             | Sampled by              | Peter Argyakis      |
| Purge Start                    | 15:09                | Gallons Purged             | 2.38        | Replicate/<br>Code No.  | DUP-2                 | Color                   | Clear               |

Purge End 16:04

| Time     | Total<br>Elapsed<br>Minutes | Rate<br>(mL/min) | Depth to<br>Water<br>(ft) | pH<br>(standard<br>units) | Specific<br>Conductivity<br>(µS/cm) | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Temperature<br>°C | Redox<br>(mV) |
|----------|-----------------------------|------------------|---------------------------|---------------------------|-------------------------------------|--------------------|-------------------------------|-------------------|---------------|
| 15:09:39 | 00:00                       | 300              | 28.52                     | 5.67                      | 0.06                                | 0.00               | 8.41                          | 22.2              | 281.84        |
| 15:14:39 | 05:00                       | 150              | 28.97                     | 6.17                      | 53.00                               | 0.00               | 9.20                          | 20.1              | 228.97        |
| 15:19:39 | 10:00                       | 150              | 29.03                     | 6.13                      | 42.94                               | 0.00               | 9.02                          | 20.2              | 228.78        |
| 15:24:39 | 15:00                       | 150              | 29.08                     | 6.09                      | 35.31                               | 0.00               | 8.99                          | 19.9              | 229.72        |
| 15:29:39 | 20:00                       | 150              | 29.11                     | 6.06                      | 29.35                               | 0.00               | 8.89                          | 20.4              | 231.59        |
| 15:34:39 | 25:00                       | 150              | 29.15                     | 6.07                      | 32.41                               | 0.00               | 8.68                          | 20.6              | 232.71        |
| 15:39:39 | 30:00                       | 150              | 29.16                     | 6.11                      | 32.39                               | 0.00               | 8.58                          | 21.0              | 232.63        |
| 15:44:39 | 35:00                       | 150              | 29.19                     | 5.74                      | 102.62                              | 0.00               | 8.29                          | 19.9              | 227.52        |
| 15:49:39 | 40:00                       | 150              | 29.24                     | 5.68                      | 104.53                              | 0.00               | 8.16                          | 19.9              | 215.83        |
| 15:54:39 | 45:00                       | 150              | 29.26                     | 5.70                      | 104.97                              | 0.00               | 8.16                          | 20.2              | 207.74        |
| 15:59:39 | 50:00                       | 150              | 29.3                      | 5.69                      | 105.75                              | 0.00               | 8.12                          | 20.4              | 205.13        |
| 16:04:39 | 55:00                       | 150              | 29.34                     | 5.69                      | 105.68                              | 0.00               | 8.10                          | 20.5              | 203.62        |

| Constituent Sampled | Container      | Number | Preservative |
|---------------------|----------------|--------|--------------|
| RAD Chem            | 1L Plastic     | 2      | HNO3         |
| Fluoride            | 250 mL Plastic | 1      | None         |
| Metals              | 250 mL Plastic | 1      | HNO3         |

**Comments:** Lamotte turbidity reading (time:NTU)

| 1509: 1.84 |
|------------|
| 1514: 1.03 |
| 1519: 1.68 |
| 1524: 1.33 |
| 1529: 1.74 |
| 1534: 1.50 |
| 1539: 1.29 |
| 1544: 0.88 |
| 1549: 1.39 |
| 1554: 1.02 |
| 1559: 1.19 |
| 1604: 1.55 |

ft-bmp = feet below measuring point in = inches ft = feet mL/min = milliliters per minute mS/cm = milliSiemens per centimeterNTU = Nephelometric Turbidity Unit mg/L = milligrams per liter  $\mu S/cm = microSiemens per centimeters$ 



| rmit Number    |                                                                                                                                                                                                                                     | 1      |    |   |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----|---|
|                | VANW-3                                                                                                                                                                                                                              | -      |    |   |
| rson Gauging:  | Peter Aravakis                                                                                                                                                                                                                      | -      |    |   |
| Date:          | 2/8/2021                                                                                                                                                                                                                            | -      |    |   |
| Time:          | 09:32:00                                                                                                                                                                                                                            | 1      |    |   |
|                |                                                                                                                                                                                                                                     | Yes    | No | ٦ |
| 1 Location Ide | ntification:                                                                                                                                                                                                                        |        |    |   |
| а              | Is the well visible and accessible?                                                                                                                                                                                                 | Ø      |    |   |
| b              | Is the well properly identified with the correct well ID?                                                                                                                                                                           | V      |    |   |
| c              | Is the well in a high traffic area and does the well require protection from traffic?                                                                                                                                               |        | Ø  |   |
| d              | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                                                                                                  | V      |    |   |
| 2 Protective C | asing:                                                                                                                                                                                                                              |        |    |   |
| а              | Is the protective casing free from apparent damage and able to be secured?                                                                                                                                                          | Ø      |    |   |
| b              | Is the casing free of degradation or deterioration?                                                                                                                                                                                 | Ø      |    |   |
| ~<br>C         | Does the casing have a functioning weep hole?                                                                                                                                                                                       | 2      |    |   |
| d              | Is the annular space between casings clear of debris and water, or filled with nea gravel/sand?                                                                                                                                     | -<br>- | П  |   |
| 3 Surface Pad  |                                                                                                                                                                                                                                     |        |    |   |
| a              | Is the well pad in good condition (not cracked or broken)?                                                                                                                                                                          | 2      |    |   |
| b              | Is the well pad sloped away from the protective casing?                                                                                                                                                                             |        | Ø  |   |
| C C            | Is the well pad in complete contact with the protective casing?                                                                                                                                                                     | -<br>- |    |   |
| d              | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)                                                                              | V      |    |   |
| e              | Is the pad surface clean (not covered with sediment or debris)?                                                                                                                                                                     | V      |    |   |
| 4 Internal Cas |                                                                                                                                                                                                                                     |        |    |   |
| a              | Does the cap prevent entry of foreign material into the well?                                                                                                                                                                       | J      |    |   |
| b              | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                                                                                                   | V      |    |   |
| C              | Is the well properly vented for equilibration of air pressure?                                                                                                                                                                      | -<br>- |    |   |
| d              | Is the survey point clearly marked on the inner casing?                                                                                                                                                                             |        |    |   |
| 0              | Is the depth of the well consistent with the original well log?                                                                                                                                                                     |        |    |   |
| f              | Is the depth of the wen consistent with the original wen log:<br>Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand<br>due to lack of grout or use of slip couplings in construction) | Ø      |    |   |
| 5 Samplina: G  | roundwater Wells Only:                                                                                                                                                                                                              |        |    | - |
| a              | Does well recharge adequately when purged?                                                                                                                                                                                          |        |    |   |
| b              | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                                                                                                 |        |    |   |
| с              | Does the well require redevelopment (low flow, turbid)?                                                                                                                                                                             |        |    |   |
| 6 Based on vo  | ur professional judgement, is the well construction / location:                                                                                                                                                                     |        |    | - |
|                | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                                                                                      | Ø      |    |   |
|                | and 2) comply with the applicable regulatory requirements?                                                                                                                                                                          |        |    |   |
| 7 Corrective a | ctions as needed by date:                                                                                                                                                                                                           | -      |    | - |
|                | cions as needed, by date.                                                                                                                                                                                                           |        |    |   |



| Well ID;<br>son Gaudian         P2=51<br>Peter Argyakis           Date:         Peter Argyakis           Date:         Peter Argyakis           Time:         094000           Ison Gaudian         (Pargya)           Image:         Peter Argyakis           Date:         Ves           Image:         Peter Argyakis           Image:         Peter Argyakis           Operation (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Comparison (Image: Com                                                                                                                                                                                                                                                                                            |       |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|
| Sort Gauging: Peter Argankis           Value: 2/3/2021           Time: 1994000           Yes           Image: 2/3/2021           Yes           Image: 2/3/2021           Yes           Image: 2/3/2021           Yes           Image: 2/3/2021           Image: 2/3/2021           Yes           Image: 2/3/2021           Image: 2/3/2022           Image: 2/3/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |       |
| Date: 2/4/2021           Yes           1         Location Identification:           a         Is the well visible and accessible?         Ø           b         Is the well properly identified with the correct well ID?         Ø           c         Is the well in a high traffic area and does the well require protection from traffic?         Ø           d         Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)         Ø           2         Protective Casing:         Image around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)         Ø           2         Protective Casing:         Image around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)         Ø           2         Protective Casing:         Image around the well acceptable? (no standing water, or filled with pea gravel/sand?         Ø           a         Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?         Ø           3         Sufface Pad         Image alsoped away from the protective casing?         Ø           a         Is the well pad in complete contact with the protective casing?         Ø           d         Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |       |
| Time:         (99:40:00           I         Location Identification:         Yes           a         Is the well visible and accessible?         Image: Section Identification:         Image: Section IdentideIdentification:         <                                                                                                                                                                                                                                                                                                                                                                                                                 |       |       |
| I Location Identification:       Image: Section Identification:       Image: Section Identification:         a       Is the well visible and accessible?       Image: Section Identification:       Image: Section Identification:         a       Is the well in a high traffic area and does the well require protection from traffic?       Image: Section Identification:       Image: Section Identification:         d       Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)       Image: Section Identification:       Image: Section Identification:         2       Protective Casing:       Image: Section Identification:       Image: Section Identification:       Image: Section Identification:         a       Is the protective casing free of degradation or deterioration?       Image: Section Identification:       Image: Section Identification:       Image: Section Identification:         a       Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?       Image: Section Identification:       Image: Sec                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | Vee   |
| a       Is the well visible and accessible?       Ø         b       Is the well nopperly identified with the correct well ID?       Ø         c       Is the well in a high traffic area and does the well require protection from traffic?       □         d       Is the vell in a high traffic area and does the well require protection from traffic?       □         d       Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)       Ø         2       Protective Casing:       □       Ø         a       Is the protective casing free of degradation or deterioration?       Ø         c       Does the casing free of degradation or deterioration?       Ø         d       Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?       Ø         a       Is the well pad in good condition (not cracked or broken)?       Ø         a       Is the well pad in complete contact with the protective casing?       Ø         c       Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)       Ø         e       Is the easing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?       Ø         b       Is the easing stable? (or does the por move easily when touched or can it be taken apart by hand due to lack of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S INO | res   |
| a       Is the well properly identified with the correct well ID?       Image: Constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint of the constraint | í п   |       |
| a       b       b       b       b       b       b       c       b       b       c       b       b       c       b       c       b       c       b       c       b       c       c       b       c       c       b       c       c       b       c       c       b       c       c       b       c       c       b       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | _<br> |
| a       b       b       b       b       b       b       b       c       c         d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d       d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |       |
| 2       Protective Casing:       Image: Step Step Step Step Step Step Step Step                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | í 🗆   | Ø     |
| a       Is the protective casing free from apparent damage and able to be secured?       Image: Comparison of the casing free of degradation or deterioration?       Image: Comparison of the casing free of degradation or deterioration?       Image: Comparison of the casing free of degradation or deterioration?       Image: Comparison of the casing free of degradation or deterioration?       Image: Comparison of the casing free of degradation or deterioration?       Image: Comparison of the casing free of degradation or deterioration?       Image: Comparison of the casing free of degradation or deterioration?       Image: Comparison of the casing free of degradation or deterioration?       Image: Comparison of the casing free of degradation or deterioration?       Image: Comparison of the casing free of degradation or deterioration?       Image: Comparison of the casing free of degradation or deterioration?       Image: Comparison of the casing free of degradation or deterioration?       Image: Comparison of the casing free of degradation or deterioration?       Image: Comparison of the casing free of the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?       Image: Comparison of the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?       Image: Comparison of the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?       Image: Comparison of the casing free of kinks or bends, or any obstruction foreign objects (such as bailers)?       Image: Comparison of the casing free of kinks or bends, or any obstruction foreign objects (such as bailers)?       Image: Comparison of the casing free of kinks or bends, or any obstruction foreign objects (such as bailers)?       Image: Compariso                                                                                                                                                                            |       |       |
| b       Is the casing free of degradation or deterioration?       Image: Comparison of the casing have a functioning weep hole?         c       Does the casing have a functioning weep hole?       Image: Comparison of the casing have a functioning weep hole?         d       Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?       Image: Comparison of the casing have a function (not cracked or broken)?       Image: Comparison of the casing have a function (not cracked or broken)?       Image: Comparison of the casing have a function (not cracked or broken)?       Image: Comparison of the casing have a function (not cracked or broken)?       Image: Comparison of the casing have a function (not cracked or broken)?       Image: Comparison of the casing have a function (not cracked or broken)?       Image: Comparison of the comparison of the casing?       Image: Comparison of the comparison of the casing?       Image: Comparison of the comparison of the comparison of the casing?       Image: Comparison of the comparison of the comparison of the comparison of the comparison of the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?       Image: Comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the casing free of kinks or bends, or any obstruction for can it be taken apart by hand due to lack of grout or use of slip couplings in construction)       Image: Comparison of the casing stable?       Image: Compariso                                                                                                                                                                                                                                         | í 🗆   | V     |
| c       Does the casing have a functioning weep hole?       Image: Comparison of the casing scale of debris and water, or filled with pea gravel/sand?       Image: Comparison of the casing scale of debris and water, or filled with pea gravel/sand?       Image: Comparison of the casing scale of debris and water, or filled with pea gravel/sand?       Image: Comparison of the casing scale of debris and water, or filled with pea gravel/sand?       Image: Comparison of the casing scale of debris and water, or filled with pea gravel/sand?       Image: Comparison of the casing scale of debris and water, or filled with pea gravel/sand?       Image: Comparison of the casing scale of debris and water, or filled with pea gravel/sand?       Image: Comparison of the casing scale of debris and water, or filled with pea gravel/sand?       Image: Comparison of the casing scale of debris and water, or filled with pea gravel/sand?       Image: Comparison of the casing scale of debris and water, or filled with pea gravel/sand?       Image: Comparison of the well pad in complete contact with the protective casing?       Image: Comparison of the casing scale of the casing scale of the casing scale of the casing scale of the casing scale of the casing and does not move when stepped on)       Image: Comparison of the casing scale of the casing scale of the casing scale of the casing scale of the casing scale of the casing scale of the casing scale of the casing scale of the casing scale of the casing scale of the casing scale of the casing scale of the casing scale of the casing scale of the casing scale of the casing scale of the casing scale of the casing scale of the casing scale of the casing scale of the casing scale of the casing scale of the casing scale of the casing scale of the casing scale of the casing scale of the casing scasing marked on the inner casing?                                                                                                                        | í 🗆   | V     |
| d       Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?       Image: Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comp | í 🗆   | V     |
| 3       Surface Pad       Is the well pad in good condition (not cracked or broken)?       Image: Constraint of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of t          | í 🗆   | V     |
| a       Is the well pad in good condition (not cracked or broken)?       Image: Construct of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of t |       |       |
| b         Is the well pad sloped away from the protective casing?         □           c         Is the well pad in complete contact with the protective casing?         ∅           d         Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)         ∅           e         Is the pad surface clean (not covered with sediment or debris)?         ∅           4         Internal Cast         ∅           a         Does the cap prevent entry of foreign material into the well?         ∅           b         Is the assing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?         ∅           c         Is the survey point clearly marked on the inner casing?         ∅           c         Is the depth of the well consistent with the original well log?         ∅           f         Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction)         ∅           s         Sampling: Uncoverter Wells Only:         Image:         □           a         Does well recharge adequately when purged?         □         □           b         If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?         □         □         □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | í 🗆   | V     |
| c       Is the well pad in complete contact with the protective casing?       Image: Complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)       Image: Complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)       Image: Complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)       Image: Complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)       Image: Complete complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)       Image: Complete complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)       Image: Complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complete complet                                                       | I 🗹   |       |
| d       Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)       Image: Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of | í 🗆   | V     |
| e       Is the pad surface clean (not covered with sediment or debris)?       Image: Comparison of the pad surface clean (not covered with sediment or debris)?       Image: Comparison of the pad surface clean (not covered with sediment or debris)?       Image: Comparison of the pad surface clean (not covered with sediment or debris)?       Image: Comparison of the pad surface clean (not covered with sediment or debris)?       Image: Comparison of the pad surface clean (not covered with sediment or debris)?       Image: Comparison of the pad surface clean (not covered with sediment or debris)?       Image: Comparison of the pad surface clean (not covered with sediment or debris)?       Image: Comparison of the pad surface clean (not covered with sediment or debris)?       Image: Comparison of the pad surface clean (not covered with sediment or debris)?       Image: Comparison of the pad surface clean (not covered with sediment or debris)?       Image: Comparison of the pad surface clean (not covered with sediment or debris)?       Image: Comparison of the pad surface clean (not covered with sediment or debris)?       Image: Comparison (not clean (not covered with sediment or debris)?       Image: Comparison (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not clean (not                                                                                                                       | í 🗆   | V     |
| 4       Internal Casimy       Image: Casimy and the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the c | í 🗆   | V     |
| a       Does the cap prevent entry of foreign material into the well?       Image: Comparison of the cap prevent entry of foreign material into the well?         b       Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?       Image: Comparison of the cap prevent entry of foreign material into the well?         c       Is the well properly vented for equilibration of air pressure?       Image: Comparison of the well consistent with the original well log?         d       Is the depth of the well consistent with the original well log?       Image: Comparison of the cap prevent wells?         f       Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction)       Image: Comparison of the cap prevent wells?         5       Sampling:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |       |
| b       Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?       Image: Comparison of the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?       Image: Comparison of the casing free of kinks or bends, or any obstruction of air pressure?         c       Is the well properly vented for equilibration of air pressure?       Image: Comparison of the casing free of kinks or bends, or any obstruction of air pressure?       Image: Comparison of the casing free of kinks or bends, or any obstruction of air pressure?         d       Is the survey point clearly marked on the inner casing?       Image: Comparison of the casing stable?       Image: Comparis of the casing stable?       Imag                                                                                                                                                                                                                                                                                                                 | 1 🗆   | V     |
| c       Is the well properly vented for equilibration of air pressure?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing based on survey point clearly marked on the survey point clearly marked on the point point installed, is it in good condition and specified in the approved groundwater plan for the facility?       Image: Comparison of the facility?       Image: Comparison of the facility?       Image: Comparison of the facility?       Image: Comparison of the facility?       Image: Comparison of the facility?       Image: Comparison of the facility?       Image:                                                                                                                                                                                                       | í 🗆   | V     |
| d       Is the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?         e       Is the depth of the well consistent with the original well log?       Image: Comparison of the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction)       Image: Comparison of the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction)       Image: Comparison of the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction)       Image: Comparison of the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction)       Image: Comparison of the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction)         5       Sampling: Comparison of the facility?       Image: Comparison of the facility?       Image: Comparison of the facility?       Image: Comparison of the facility?       Image: Comparison of the facility?       Image: Comparison of the casing propriate to 1) achieve the objectives of the Groundwater Monitoring Program       Image: Comparison of the casing program       Image: Comparison of the casing program       Image: Comparison of the casing program       Image: Comparison of the casing program       Image: Comparison of the casing program       Image: Comparison of the casing program       Image: Comparis                                                                                                                                                                                                                                | 1 🗆   | V     |
| e       Is the depth of the well consistent with the original well log?       Image: Construction         f       Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction)       Image: Construction         5       Sampling: Coundwater Wells Only:       Image: Construction       Image: Construction         a       Does well recharge adequately when purged?       Image: Construction       Image: Construction         b       If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?       Image: Construction       Image: Construction         c       Does the well require redevelopment (low flow, turbid)?       Image: Construction / location:       Image: Construction / location:       Image: Construction / location:         6       Based on your professional judgement, is the well construction / location:       Image: Construction / location:       Image: Construction / location:         a       appropriate to 1) achieve the objectives of the Groundwater Monitoring Program       Image: Construction / location:       Image: Construction / location:         a       appropriate to 1) achieve the objectives of the Groundwater Monitoring Program       Image: Construction / location:       Image: Construction / location:         7       Corrective actions as needed, by date:       Image: Construction / location:       Image: Constru                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | í 🗆   | V     |
| f       Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction)       Image: Complex construction         5       Sampling: Coundwater Wells Only:       Image: Complex construction         a       Does well recharge adequately when purged?       Image: Complex construction         b       If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?       Image: Complex construction         c       Does the well require redevelopment (low flow, turbid)?       Image: Complex construction / location:       Image: Complex construction / location:         6       Based on your professional judgement, is the well construction / location:       Image: Complex construction / location:       Image: Complex construction / location:         7       Corrective actions as needed, by date:       Complex construction / sections as needed, by date:       Image: Complex construction / location:       Image: Complex construction / location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | í 🗆   | Ø     |
| 5       Sampling: Undwater Wells Only:       Image: Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex Complex C | 1     | V     |
| a       Does well recharge adequately when purged?       □         b       If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?       □         c       Does the well require redevelopment (low flow, turbid)?       □         6       Based on your professional judgement, is the well construction / location:       □         appropriate to 1) achieve the objectives of the Groundwater Monitoring Program       ☑         and 2) comply with the applicable regulatory requirements?       ☑         7       Corrective actions as needed, by date:       □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |       |
| b       If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?       □         c       Does the well require redevelopment (low flow, turbid)?       □         6       Based on your professional judgement, is the well construction / location:       □         appropriate to 1) achieve the objectives of the Groundwater Monitoring Program       ☑         and 2) comply with the applicable regulatory requirements?       ☑         7       Corrective actions as needed, by date:       □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | i 🗆   |       |
| c       Does the well require redevelopment (low flow, turbid)?       □         6       Based on your professional judgement, is the well construction / location:       □         appropriate to 1) achieve the objectives of the Groundwater Monitoring Program       ☑         and 2) comply with the applicable regulatory requirements?       ☑         7       Corrective actions as needed, by date:       □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |       |
| 6       Based on your professional judgement, is the well construction / location:       appropriate to 1) achieve the objectives of the Groundwater Monitoring Program       Image: Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Construction / Constru          | i 🗆   |       |
| appropriate to 1) achieve the objectives of the Groundwater Monitoring Program       Image: Complex of the applicable regulatory requirements?         and 2) comply with the applicable regulatory requirements?       Image: Complex of the applicable regulatory requirements?         7 Corrective actions as needed, by date:       Image: Complex of the applicable regulatory requirements?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |       |
| and 2) comply with the applicable regulatory requirements?     Image: Constant of the applicable regulatory requirements?       7 Corrective actions as needed, by date:     Image: Constant of the applicable regulatory requirements?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | l 🗆   | V     |
| 7 Corrective actions as needed, by date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | í 🗆   | V     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |       |



| mit N  | Number     |                                                                                                                                                                 | 1   |    |   |
|--------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|---|
|        | Well ID:   | YGWC-43                                                                                                                                                         | 1   |    |   |
| son G  | Gauging:   | Peter Argyakis                                                                                                                                                  | 1   |    |   |
|        | Date:      | 2/8/2021                                                                                                                                                        | 1   |    |   |
|        | Time:      | 09:46:00                                                                                                                                                        | 1   |    |   |
|        |            |                                                                                                                                                                 | Yes | No | , |
| 1 Loc  | cation Ide | ntification:                                                                                                                                                    |     |    |   |
| а      |            | Is the well visible and accessible?                                                                                                                             | Ø   |    |   |
| b      |            | Is the well properly identified with the correct well ID?                                                                                                       | V   |    |   |
| с      |            | Is the well in a high traffic area and does the well require protection from traffic?                                                                           |     | V  |   |
| d      |            | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              | Ø   |    |   |
| 2 Pro  | otective C | asing:                                                                                                                                                          |     |    |   |
| а      |            | Is the protective casing free from apparent damage and able to be secured?                                                                                      | V   |    |   |
| b      |            | Is the casing free of degradation or deterioration?                                                                                                             | V   |    |   |
| с      |            | Does the casing have a functioning weep hole?                                                                                                                   | Ø   |    |   |
| d      |            | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | Ø   |    |   |
| 3 Sur  | rface Pad  |                                                                                                                                                                 |     |    |   |
| а      |            | Is the well pad in good condition (not cracked or broken)?                                                                                                      | V   |    |   |
| b      |            | Is the well pad sloped away from the protective casing?                                                                                                         |     | Ø  |   |
| с      |            | Is the well pad in complete contact with the protective casing?                                                                                                 | Ø   |    |   |
| d      |            | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          | Ø   |    |   |
| е      |            | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 | V   |    |   |
| 4 Inte | ernal Casi | ing                                                                                                                                                             |     |    |   |
| а      |            | Does the cap prevent entry of foreign material into the well?                                                                                                   | Ø   |    |   |
| b      |            | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                               | V   |    |   |
| с      |            | Is the well properly vented for equilibration of air pressure?                                                                                                  | V   |    |   |
| d      |            | Is the survey point clearly marked on the inner casing?                                                                                                         | V   |    |   |
| е      |            | Is the depth of the well consistent with the original well log?                                                                                                 | V   |    |   |
| f      |            | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | Ø   |    |   |
| 5 Sar  | mpling: G  | roundwater Wells Only:                                                                                                                                          |     |    |   |
| а      |            | Does well recharge adequately when purged?                                                                                                                      |     |    |   |
| b      |            | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             |     |    |   |
| с      |            | Does the well require redevelopment (low flow, turbid)?                                                                                                         |     |    |   |
| 6 Bas  | sed on yo  | ur professional judgement, is the well construction / location:                                                                                                 |     |    |   |
|        |            | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  | Ø   |    |   |
|        |            | and 2) comply with the applicable regulatory requirements?                                                                                                      | Ø   |    |   |
| 7 Cor  | rrective a | ctions as needed, by date:                                                                                                                                      |     |    |   |
|        |            |                                                                                                                                                                 |     |    |   |



| rmit Number:   |                                                                                                                                                                 | 1   |    |   |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|---|
| Well ID:       | YAMW-4                                                                                                                                                          | -   |    |   |
| rson Gauging:  | Peter Argyakis                                                                                                                                                  | 1   |    |   |
| Date:          | 2/8/2021                                                                                                                                                        |     |    |   |
| Time:          | 09:55:00                                                                                                                                                        | 1   |    |   |
|                |                                                                                                                                                                 | Yes | No |   |
| 1 Location Ide | intification:                                                                                                                                                   |     |    |   |
| а              | Is the well visible and accessible?                                                                                                                             | Ø   |    |   |
| b              | Is the well properly identified with the correct well ID?                                                                                                       | V   |    |   |
| с              | Is the well in a high traffic area and does the well require protection from traffic?                                                                           | V   |    |   |
| d              | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              | Ø   |    |   |
| 2 Protective C | asing:                                                                                                                                                          |     |    | _ |
| а              | Is the protective casing free from apparent damage and able to be secured?                                                                                      | V   |    |   |
| b              | Is the casing free of degradation or deterioration?                                                                                                             | Ø   |    |   |
| с              | Does the casing have a functioning weep hole?                                                                                                                   | Ø   |    |   |
| d              | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | V   |    |   |
| 3 Surface Pad  |                                                                                                                                                                 |     |    | _ |
| а              | Is the well pad in good condition (not cracked or broken)?                                                                                                      | Ø   |    |   |
| b              | Is the well pad sloped away from the protective casing?                                                                                                         |     | Ø  |   |
| с              | Is the well pad in complete contact with the protective casing?                                                                                                 | Ø   |    |   |
| d              | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          | Ø   |    |   |
| е              | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 | V   |    |   |
| 4 Internal Cas | ing                                                                                                                                                             |     |    | _ |
| а              | Does the cap prevent entry of foreign material into the well?                                                                                                   | Ø   |    |   |
| b              | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                               | Ø   |    |   |
| с              | Is the well properly vented for equilibration of air pressure?                                                                                                  | V   |    |   |
| d              | Is the survey point clearly marked on the inner casing?                                                                                                         | V   |    |   |
| е              | Is the depth of the well consistent with the original well log?                                                                                                 | V   |    |   |
| f              | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | Ø   |    |   |
| 5 Sampling: G  | roundwater Wells Only:                                                                                                                                          |     |    | _ |
| а              | Does well recharge adequately when purged?                                                                                                                      |     |    |   |
| b              | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             |     |    |   |
| с              | Does the well require redevelopment (low flow, turbid)?                                                                                                         |     |    |   |
| 6 Based on yo  | pur professional judgement, is the well construction / location:                                                                                                |     |    | _ |
|                | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  | V   |    |   |
|                | and 2) comply with the applicable regulatory requirements?                                                                                                      | V   |    |   |
| 7 Corrective a | ctions as needed, by date:                                                                                                                                      |     |    | _ |
|                |                                                                                                                                                                 |     |    |   |



| Well ID:YGon Gauging:PeDate:2/3Date:2/3Time:09Iocation Idertia18b18c18d18d18d18d18b18c18d18b18c18b18c18b18c18b18c18b18c18d18b18c18d18b18c18d18b18c18d18b18c18f18f18f18f18f18f18f18f18f18f18f18f18f18f18f18f18f18f18f18f18f18f18f18f18f18f18f18f18f18f <th><br/>YGWC-41</th> <th>-</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <br>YGWC-41                                                                                                                                                     | -   |    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| on Gauging:       Per         Date:       2/4         Date:       2/4         Time:       09         Location Id=It       18         b       18         b       18         c       18         d       18         d       18         b       18         d       18         b       18         c       18         b       18         c       18         d       18         c       18         d       18         c       18         d       18         c       18         d       18         d       18         c       18         d       18         d       18         d       18         d       18         d       18         d       18 <th></th> <th></th> <th></th>                                                                                               |                                                                                                                                                                 |     |    |
| Date:2/3Time:09Iocation Id=rite09aIsbIscIsdIsdIsdIsbIscIsbIscIsbIscIsbIscIsbIscIsbIscIsdIsbIscIsdIsbIscIsdIsbIscIsdIsbIscIsfIsfIsfIsbIsfIsfIsfIsfIsfIsfIsfIsfIsfIsfIsfIsfIsfIsfIsfIsfIsfIsfIsfIsfIsfIsfIsfIsfIsfIsfIsfIsfIsfIsfIs <tr< th=""><th>Peter Argyakis</th><th>-</th><th></th></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Peter Argyakis                                                                                                                                                  | -   |    |
| Time:09Location IdIsaIsbIscIsdIsdIsdIsbIsdIsbIsdIsbIsbIscIsdIsbIscIsdIscIsdIscIsdIscIsdIscIsdIscIsfIsfSampling: GrupaDabIscIsfSampling: GrupaDabIsfIsgSampling: GrupbIsfSampling: GrupaDabIsfIsfSampling: GrupgBased on y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2/8/2021                                                                                                                                                        | 1   |    |
| Location Id=-         a       Is         b       Is         c       Is         d       Is         d       Is         d       Is         d       Is         b       Is         d       Is         b       Is         b       Is         b       Is         c       Data         d       Is         b       Is         c       Is         d       Is         c       Is         d       Is         d       Is         c       Is         d       Is         d       Is         c       Is         d       Is         c       Is         d       Is         c       Is         f       Is         d       Is         c       Is         d       Is         d       Is         d       Is         d       Is         d       Is         d       Is </th <th>09:57:00</th> <th>1</th> <th></th>                                                                                               | 09:57:00                                                                                                                                                        | 1   |    |
| Location Ide-risiaIsbIscIsdIsdIsdIsbIsbIscDatadIsbIscIsdIsbIscIsdIscIsdIscIsdIscIsdIscIsdIsfIsdIsfIsfIsfSampling: GrupaDatabIfgSampling: GrupbIfgBased on y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                 | Yes | No |
| aIsbIscIscIsdIsdIsaIsbIscDodIscIsbIscIsbIscIsbIscIsdIsbIscIsdIscIsdIscIsdIscIsfIsfIsfIsfSampling: GraDobIsfSampling: GraDobIsfSampling: GraDobIsfSampling: GraDobIsfSampling: GrfBased on y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ntification:                                                                                                                                                    |     |    |
| bIscIsdIsdIsdIsaIsbIscDatadIsbIscIsbIscIsbIscIsdIscIsdIscIsdIscIsdIscIsdIscIsfIsfIsfIsbIsfIsfIsbIsfIsbIsfIsgDatabIsfIsgDatabIfgDatabIfgDatabIfgDatabIfgDatafDatagDatagDatagDatagDatagDatagDatagDatagDatagDatagDatagDatagDatagDatagDatagDatagDatagDatagData <t< td=""><td>Is the well visible and accessible?</td><td>V</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Is the well visible and accessible?                                                                                                                             | V   |    |
| cIsdIsdIsdIsaIsbIscDodIsbIscIsbIsbIscIsbIscIsdIsdIsdIsdIsdIsdIsdIsdIscIsdIsfIsfIsfSampling: GrupperaDobIfgrupperIfbIfgrupperDobIfgrupperDobIfgrupperDobIfgrupperDobIfgrupperDobIfgrupperDobIfgrupperDobIfgrupperDobIfgrupperDobIfgrupperDobIfgrupperDogrupperDogrupperDogrupperDogrupperDogrupperDogrupperDogrupperDogrupperDogrupperDogrupperDo<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Is the well properly identified with the correct well ID?                                                                                                       | V   |    |
| d     Is       Protective Casi       a     Is       b     Is       c     Do       d     Is       c     Do       d     Is       s     Surface Pad       a     Is       b     Is       c     Is       d     Is       c     Is       d     Is       c     Is       d     Is       a     Is       c     Is       d     Is       d     Is       f     Is       f     Is       a     Is       f     Is       f     Is       b     Is       f     Is       du     Is       f     Is       f     Is       f     Is       g     Sampling: Group       b     If       g     C       b     If       g     Based on y                                                                                                                                                                                                                                                                                | Is the well in a high traffic area and does the well require protection from traffic?                                                                           | V   |    |
| Protective Casila   a Is   b Is   c Do   d Is   c Do   d Is   s Surface Pad   a Is   b Is   c Is   d Is   c Is   d Is   d Is   d Is   d Is   d Is   d Is   d Is   b Is   c Is   d Is   b Is   c Is   f Is   a Do   b Is   c Is   b If   gr c   b If   gr c   b If   gr c   b If   gr apped                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              | Ø   |    |
| aIsbIscDodIsdIsbIsbIscIsdIsdIsdIsdIsdIsdIsdIsdIsdIsaIsbIscIsdIscIsfIsfIsbIsfIsbIsbIsbIsbIsfIsbIfgCbIfbIfgBased on y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | asing:                                                                                                                                                          |     |    |
| bIscDodIsdIsaIsbIscIsdIscIsdIsdIsdIsbIscIsbIsbIscIsdIsfIsfIsfIsfIsbIsfIsgJampling: GroupbIfbIfgCbIfgBased on you                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Is the protective casing free from apparent damage and able to be secured?                                                                                      | V   |    |
| cDodIsdIsaIsbIscIsdIsdIsdIseIsfIsdIsfIsfIsfIsfIsfIsbIsfIsfIsgSampling: GroupaDobIfgSampling: GroupbIfgBased on yourapIsapIn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Is the casing free of degradation or deterioration?                                                                                                             | V   |    |
| disSurface Padisaisbiscisdisdiseisfisdiscisdisisisdisisisfisfisaofisfisaobisfisgobifgocobifgased on y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Does the casing have a functioning weep hole?                                                                                                                   | V   |    |
| Surface Pad<br>a Is<br>b Is<br>c Is<br>d Is<br>e Is<br>nternal Casing<br>a Do<br>b Is<br>c Is<br>d Is<br>e Is<br>f Is<br>Sampling: Grou<br>a Do<br>b Is<br>c Is<br>d Is<br>f Is<br>b Is<br>f Is<br>b Is<br>f Is<br>b Is<br>f Is<br>b Is<br>c Is<br>d Is<br>c Is<br>d Is<br>c Is<br>f Is<br>b Is<br>c Is<br>c Is<br>d Is<br>c Is<br>f Is<br>b Is<br>c Is<br>c Is<br>c Is<br>c Is<br>c Is<br>c Is<br>c Is<br>c                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | Ø   |    |
| a Is<br>b Is<br>c Is<br>d Is<br>e Is<br>internal Casing<br>a Da<br>b Is<br>c Is<br>d Is<br>c Is<br>d Is<br>c Is<br>d Is<br>d Is<br>s a Is<br>d Is<br>s a Is<br>d Is<br>c Is<br>d Is<br>c Is<br>d Is<br>d Is<br>d Is<br>c Is<br>d Is<br>d Is<br>c Is<br>d Is<br>d Is<br>c Is<br>d Is<br>d Is<br>c Is<br>d Is<br>c Is<br>d Is<br>c Is<br>d Is<br>c Is<br>d Is<br>c Is<br>d Is<br>c Is<br>d Is<br>c Is<br>d Is<br>c Is<br>d Is<br>c Is<br>d Is<br>c Is<br>d Is<br>c Is<br>d Is<br>c Is<br>d Is<br>c Is<br>d Is<br>c Is<br>d Is<br>c Is<br>d Is<br>c Is<br>d Is<br>c Is<br>d Is<br>c Is<br>d Is<br>c Is<br>d Is<br>c Is<br>d Is<br>c Is<br>d Is<br>c Is<br>d Is<br>c Is<br>d Is<br>c Is<br>d Is<br>c Is<br>d Is<br>c Is<br>d Is<br>c Is<br>d Is<br>c Is<br>d Is<br>c Is<br>d Is<br>c Is<br>d Is<br>c Is<br>d Is<br>c Is<br>d Is<br>c Is<br>c Is<br>c Is<br>c Is<br>c Is<br>c Is<br>c Is<br>c |                                                                                                                                                                 |     |    |
| bIscIsdIsdIseIseIsaDobIscIsdIsfIsfIsfSampling: GroupaDobIfgrCbIfgrCbIfgrCaDoaDoaDobIfgrCaDoaDoaDoaDoaDobIfgrCbIfaDobIfgrCbIfaDoaDobIfaDobIfaDobIfaDobIfaDobIfaDobIfaDobIfaDobIfbIfbIfbIfbIfbIfbIfbIfbIfbIfbIfbIfbIfbIfb<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Is the well pad in good condition (not cracked or broken)?                                                                                                      | V   |    |
| cIsdIseIseIsaDabIscIsdIsfIsfIsaDabIsfIsfIsbIsfIsgControlbIfbIfgControlbIfgControlbIfgControlaDabIfgControlaDaaDabIfgControlaDaaDabIfgControlaDabIfaDabIfaDabIfaDabIfaDabIfaDabIfaDabIfbIfbIfbIfbIfaIfbIfaIfbIfbIfbIfbIfbIfbIfbIfbIfbIfbIfbIf <td>Is the well pad sloped away from the protective casing?</td> <td></td> <td>Ø</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Is the well pad sloped away from the protective casing?                                                                                                         |     | Ø  |
| dIs<br>ereIseIsaDabIscIsdIsdIsfIsfIsfSampling: GroupaDabIfggcDaBased on yourap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Is the well pad in complete contact with the protective casing?                                                                                                 | V   |    |
| e Is<br>Internal Casing<br>a Do<br>b Is<br>c Is<br>d Is<br>e Is<br>f Is<br>Sampling: Grou<br>a Do<br>b If<br>gr<br>c Do<br>Based on your                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          | Ø   |    |
| Internal Casing<br>a Do<br>b Is<br>c Is<br>d Is<br>e Is<br>f Is<br>f Sampling: Grou<br>a Do<br>b If<br>gr<br>c Do<br>Based on your                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 | Ø   |    |
| a Do<br>b Is<br>c Is<br>d Is<br>e Is<br>f Is<br>f Is<br>f Sampling: Grou<br>a Do<br>b If<br>g<br>c Do<br>b If<br>g<br>g<br>c Do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ng                                                                                                                                                              |     |    |
| b Is<br>c Is<br>d Is<br>e Is<br>f Is<br>f Is<br>du<br>f Sampling: Grou<br>a Da<br>b If<br>gr<br>c Da<br>Based on your                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Does the cap prevent entry of foreign material into the well?                                                                                                   | V   |    |
| c Is<br>d Is<br>e Is<br>f Is<br>f Sampling: Grou<br>a Do<br>b If<br>gr<br>c Do<br>Based on your                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                               | Ø   |    |
| d Is<br>e Is<br>f Is<br>du<br>Sampling: Grou<br>a Da<br>b If<br>gr<br>c Da<br>Based on your                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Is the well properly vented for equilibration of air pressure?                                                                                                  | V   |    |
| e ls<br>f ls<br>f Sampling: Grou<br>a Do<br>b lf<br>gr<br>c Do<br>Based on your                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Is the survey point clearly marked on the inner casing?                                                                                                         | V   |    |
| f Is<br>Sampling: Grou<br>a Da<br>b If<br>c Da<br>Based on your                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Is the depth of the well consistent with the original well log?                                                                                                 | V   |    |
| Sampling: Grou<br>a Do<br>b If<br>gr<br>c Do<br>Based on your<br>ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | Ø   |    |
| a Do<br>b If<br>gr<br>c Do<br>Based on your<br>ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | oundwater Wells Only:                                                                                                                                           |     |    |
| b If gr<br>c Do<br>Based on your<br>ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Does well recharge adequately when purged?                                                                                                                      |     |    |
| c Do<br>Based on your<br>ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             |     |    |
| Based on your                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Does the well require redevelopment (low flow, turbid)?                                                                                                         |     |    |
| ар                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ur professional judgement, is the well construction / location:                                                                                                 |     |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  | V   |    |
| an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | and 2) comply with the applicable regulatory requirements?                                                                                                      | V   |    |
| Corrective action                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ztions as needed, by date:                                                                                                                                      |     |    |



| rmit Number:    |                                                                                                                                                                 | 1   |    |   |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|---|
| Well ID:        | YGWA-40                                                                                                                                                         | -   |    |   |
| rson Gauging:   | Peter Argyakis                                                                                                                                                  | 1   |    |   |
| Date:           | 2/8/2021                                                                                                                                                        | 1   |    |   |
| Time:           | 10:02:00                                                                                                                                                        | 1   |    |   |
|                 |                                                                                                                                                                 | Yes | No |   |
| 1 Location Ide  | ntification:                                                                                                                                                    |     |    |   |
| а               | Is the well visible and accessible?                                                                                                                             | Ø   |    |   |
| b               | Is the well properly identified with the correct well ID?                                                                                                       | Ø   |    |   |
| с               | Is the well in a high traffic area and does the well require protection from traffic?                                                                           | Ø   |    |   |
| d               | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              | V   |    |   |
| 2 Protective C  | asing:                                                                                                                                                          |     |    |   |
| а               | Is the protective casing free from apparent damage and able to be secured?                                                                                      | V   |    |   |
| b               | Is the casing free of degradation or deterioration?                                                                                                             | Ø   |    |   |
| с               | Does the casing have a functioning weep hole?                                                                                                                   | Ø   |    |   |
| d               | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | Ø   |    |   |
| 3 Surface Pad   |                                                                                                                                                                 |     |    | _ |
| а               | Is the well pad in good condition (not cracked or broken)?                                                                                                      | Ø   |    |   |
| b               | Is the well pad sloped away from the protective casing?                                                                                                         |     | Ø  |   |
| с               | Is the well pad in complete contact with the protective casing?                                                                                                 | V   |    |   |
| d               | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          | V   |    |   |
| е               | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 | V   |    |   |
| 4 Internal Casi | ng                                                                                                                                                              |     |    | _ |
| а               | Does the cap prevent entry of foreign material into the well?                                                                                                   | V   |    |   |
| b               | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                               | V   |    |   |
| с               | Is the well properly vented for equilibration of air pressure?                                                                                                  | V   |    |   |
| d               | Is the survey point clearly marked on the inner casing?                                                                                                         | V   |    |   |
| е               | Is the depth of the well consistent with the original well log?                                                                                                 | V   |    |   |
| f               | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | Q   |    |   |
| 5 Sampling: G   | roundwater Wells Only:                                                                                                                                          |     |    |   |
| а               | Does well recharge adequately when purged?                                                                                                                      |     |    |   |
| b               | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             |     |    |   |
| с               | Does the well require redevelopment (low flow, turbid)?                                                                                                         |     |    |   |
| 6 Based on yo   | ur professional judgement, is the well construction / location:                                                                                                 |     |    |   |
|                 | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  | V   |    |   |
|                 | and 2) comply with the applicable regulatory requirements?                                                                                                      | V   |    |   |
| 7 Corrective a  | ctions as needed, by date:                                                                                                                                      |     |    |   |
|                 |                                                                                                                                                                 |     |    |   |



|      |              |                                                                                                                                                                 | -   |    |   |
|------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|---|
| mιτ  |              | P7-37                                                                                                                                                           | -   |    |   |
| on   | Gauging:     | Peter Arovakis                                                                                                                                                  | -   |    |   |
| SOII | Date:        | 2/8/2021                                                                                                                                                        | -   |    |   |
|      | Time:        | 10:08:00                                                                                                                                                        | 1   |    |   |
|      |              |                                                                                                                                                                 | Yes | No | , |
| 1 Lo | ocation Ide  | ntification:                                                                                                                                                    |     |    |   |
| а    |              | Is the well visible and accessible?                                                                                                                             | V   |    |   |
| b    |              | Is the well properly identified with the correct well ID?                                                                                                       | Ø   |    |   |
| с    |              | Is the well in a high traffic area and does the well require protection from traffic?                                                                           |     | V  |   |
| d    |              | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              | V   |    |   |
| 2 Pr | rotective C  | asing:                                                                                                                                                          |     |    |   |
| а    |              | Is the protective casing free from apparent damage and able to be secured?                                                                                      | V   |    |   |
| b    |              | Is the casing free of degradation or deterioration?                                                                                                             | V   |    |   |
| с    |              | Does the casing have a functioning weep hole?                                                                                                                   | V   |    |   |
| d    |              | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | V   |    |   |
| 3 Si | urface Pad   |                                                                                                                                                                 |     |    |   |
| а    |              | Is the well pad in good condition (not cracked or broken)?                                                                                                      | V   |    |   |
| b    |              | Is the well pad sloped away from the protective casing?                                                                                                         |     | V  |   |
| с    |              | Is the well pad in complete contact with the protective casing?                                                                                                 | V   |    |   |
| d    |              | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          | V   |    |   |
| e    |              | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 | Ø   |    |   |
| 4 In | nternal Casi | ng                                                                                                                                                              |     |    |   |
| а    |              | Does the cap prevent entry of foreign material into the well?                                                                                                   |     | V  |   |
| b    |              | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                               | V   |    |   |
| с    |              | Is the well properly vented for equilibration of air pressure?                                                                                                  | V   |    |   |
| d    |              | Is the survey point clearly marked on the inner casing?                                                                                                         | Ø   |    |   |
| e    |              | Is the depth of the well consistent with the original well log?                                                                                                 | Ø   |    |   |
| f    |              | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | V   |    |   |
| 5 Sa | ampling: G   | roundwater Wells Only:                                                                                                                                          |     |    |   |
| а    |              | Does well recharge adequately when purged?                                                                                                                      |     |    |   |
| b    |              | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             |     |    |   |
| с    |              | Does the well require redevelopment (low flow, turbid)?                                                                                                         |     |    |   |
| 6 Ba | ased on yo   | ur professional judgement, is the well construction / location:                                                                                                 |     |    |   |
|      |              | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  | Ø   |    |   |
|      |              | and 2) comply with the applicable regulatory requirements?                                                                                                      | Ø   |    |   |
| 7 C  | orrective a  | ctions as needed, by date:                                                                                                                                      |     |    |   |
|      |              |                                                                                                                                                                 |     |    | - |



| rmit Number:   |                                                                                                                                                                 |     |    |  |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|--|
| Well ID:       | YGWA-39                                                                                                                                                         | -   |    |  |
| rson Gauging:  | Peter Argyakis                                                                                                                                                  | 1   |    |  |
| Date:          | 2/8/2021                                                                                                                                                        |     |    |  |
| Time:          | 10:16:00                                                                                                                                                        |     |    |  |
|                |                                                                                                                                                                 | Yes | No |  |
| 1 Location Ide | intification:                                                                                                                                                   |     |    |  |
| а              | Is the well visible and accessible?                                                                                                                             | V   |    |  |
| b              | Is the well properly identified with the correct well ID?                                                                                                       | V   |    |  |
| с              | Is the well in a high traffic area and does the well require protection from traffic?                                                                           | V   |    |  |
| d              | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              | Ø   |    |  |
| 2 Protective C | asing:                                                                                                                                                          |     |    |  |
| а              | Is the protective casing free from apparent damage and able to be secured?                                                                                      | V   |    |  |
| b              | Is the casing free of degradation or deterioration?                                                                                                             | Ø   |    |  |
| с              | Does the casing have a functioning weep hole?                                                                                                                   | Ø   |    |  |
| d              | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | Ø   |    |  |
| 3 Surface Pad  |                                                                                                                                                                 |     |    |  |
| а              | Is the well pad in good condition (not cracked or broken)?                                                                                                      | Ø   |    |  |
| b              | Is the well pad sloped away from the protective casing?                                                                                                         |     | Ø  |  |
| с              | Is the well pad in complete contact with the protective casing?                                                                                                 | V   |    |  |
| d              | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          | Ø   |    |  |
| е              | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 | V   |    |  |
| 4 Internal Cas | ing                                                                                                                                                             |     |    |  |
| а              | Does the cap prevent entry of foreign material into the well?                                                                                                   | V   |    |  |
| b              | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                               | V   |    |  |
| с              | Is the well properly vented for equilibration of air pressure?                                                                                                  | V   |    |  |
| d              | Is the survey point clearly marked on the inner casing?                                                                                                         | V   |    |  |
| e              | Is the depth of the well consistent with the original well log?                                                                                                 | V   |    |  |
| f              | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | Ø   |    |  |
| 5 Sampling: G  | roundwater Wells Only:                                                                                                                                          |     |    |  |
| а              | Does well recharge adequately when purged?                                                                                                                      |     |    |  |
| b              | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             |     |    |  |
| с              | Does the well require redevelopment (low flow, turbid)?                                                                                                         |     |    |  |
| 6 Based on yo  | pur professional judgement, is the well construction / location:                                                                                                |     |    |  |
|                | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  | V   |    |  |
|                | and 2) comply with the applicable regulatory requirements?                                                                                                      | V   |    |  |
| 7 Corrective a | ctions as needed, by date:                                                                                                                                      |     |    |  |
|                |                                                                                                                                                                 | 1   |    |  |



| mit Number     |                                                                                                                                                                 | 1   |    |   |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|---|
|                | VAMM/-5                                                                                                                                                         | -   |    |   |
| weii iD.       | Peter Argyakis                                                                                                                                                  | 1   |    |   |
| Date           | 2/8/2021                                                                                                                                                        | -   |    |   |
| Time:          | 10:27:00                                                                                                                                                        | 1   |    |   |
|                | I                                                                                                                                                               | Yes | No | - |
| 1 Location Ide | entification:                                                                                                                                                   |     |    |   |
| а              | Is the well visible and accessible?                                                                                                                             | V   |    |   |
| b              | Is the well properly identified with the correct well ID?                                                                                                       | Ø   |    |   |
| с              | Is the well in a high traffic area and does the well require protection from traffic?                                                                           |     | Ø  |   |
| d              | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              | V   |    |   |
| 2 Protective C | asing:                                                                                                                                                          |     |    |   |
| а              | Is the protective casing free from apparent damage and able to be secured?                                                                                      | V   |    |   |
| b              | Is the casing free of degradation or deterioration?                                                                                                             | V   |    |   |
| с              | Does the casing have a functioning weep hole?                                                                                                                   | V   |    |   |
| d              | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | V   |    |   |
| 3 Surface Pad  |                                                                                                                                                                 |     |    |   |
| а              | Is the well pad in good condition (not cracked or broken)?                                                                                                      | Ø   |    |   |
| b              | Is the well pad sloped away from the protective casing?                                                                                                         |     | Ø  |   |
| с              | Is the well pad in complete contact with the protective casing?                                                                                                 | V   |    |   |
| d              | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          | V   |    |   |
| e              | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 | V   |    |   |
| 4 Internal Cas | ing                                                                                                                                                             |     |    |   |
| а              | Does the cap prevent entry of foreign material into the well?                                                                                                   | V   |    |   |
| b              | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                               | V   |    |   |
| с              | Is the well properly vented for equilibration of air pressure?                                                                                                  | V   |    |   |
| d              | Is the survey point clearly marked on the inner casing?                                                                                                         | V   |    |   |
| e              | Is the depth of the well consistent with the original well log?                                                                                                 | V   |    |   |
| f              | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | Ø   |    |   |
| 5 Sampling: G  | roundwater Wells Only:                                                                                                                                          |     |    |   |
| а              | Does well recharge adequately when purged?                                                                                                                      |     |    |   |
| b              | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             |     |    |   |
| с              | Does the well require redevelopment (low flow, turbid)?                                                                                                         |     |    |   |
| 6 Based on yo  | pur professional judgement, is the well construction / location:                                                                                                |     |    |   |
|                | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  | V   |    |   |
|                | and 2) comply with the applicable regulatory requirements?                                                                                                      | Ø   |    |   |
| 7 Corrective a | ctions as needed, by date:                                                                                                                                      |     |    |   |
|                |                                                                                                                                                                 |     |    |   |



| rmit Number:   |                                                                                                                                                                 | 1   |    |   |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|---|
| Well ID:       | YGWC-38                                                                                                                                                         | 1   |    |   |
| rson Gauging:  | Peter Argyakis                                                                                                                                                  | 1   |    |   |
| Date:          | 2/8/2021                                                                                                                                                        |     |    |   |
| Time:          | 10:29:00                                                                                                                                                        |     |    |   |
|                |                                                                                                                                                                 | Yes | No |   |
| 1 Location Ide | ntification:                                                                                                                                                    |     |    |   |
| а              | Is the well visible and accessible?                                                                                                                             | V   |    |   |
| b              | Is the well properly identified with the correct well ID?                                                                                                       | V   |    |   |
| с              | Is the well in a high traffic area and does the well require protection from traffic?                                                                           |     | V  |   |
| d              | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              | V   |    |   |
| 2 Protective C | asing:                                                                                                                                                          |     |    |   |
| а              | Is the protective casing free from apparent damage and able to be secured?                                                                                      | V   |    |   |
| b              | Is the casing free of degradation or deterioration?                                                                                                             | Ø   |    |   |
| с              | Does the casing have a functioning weep hole?                                                                                                                   | Ø   |    |   |
| d              | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | Ø   |    |   |
| 3 Surface Pad  |                                                                                                                                                                 | 1   |    | - |
| а              | Is the well pad in good condition (not cracked or broken)?                                                                                                      | Ø   |    |   |
| b              | Is the well pad sloped away from the protective casing?                                                                                                         |     | V  |   |
| с              | Is the well pad in complete contact with the protective casing?                                                                                                 | Ø   |    |   |
| d              | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          | V   |    |   |
| e              | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 | Ø   |    |   |
| 4 Internal Cas | ng                                                                                                                                                              |     |    | - |
| а              | Does the cap prevent entry of foreign material into the well?                                                                                                   | Ø   |    |   |
| b              | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                               | Ø   |    |   |
| с              | Is the well properly vented for equilibration of air pressure?                                                                                                  | Ø   |    |   |
| d              | Is the survey point clearly marked on the inner casing?                                                                                                         | V   |    |   |
| e              | Is the depth of the well consistent with the original well log?                                                                                                 | Ø   |    |   |
| f              | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | V   |    |   |
| 5 Sampling: G  | roundwater Wells Only:                                                                                                                                          |     |    | - |
| a              | Does well recharge adequately when purged?                                                                                                                      |     |    |   |
| b              | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             |     |    |   |
| с              | Does the well require redevelopment (low flow, turbid)?                                                                                                         |     |    |   |
| 6 Based on yo  | ur professional judgement, is the well construction / location:                                                                                                 |     |    | - |
| ,<br>,         | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  | V   |    |   |
|                | and 2) comply with the applicable regulatory requirements?                                                                                                      | V   |    |   |
| 7 Corrective a | ctions as needed, by date:                                                                                                                                      |     |    | - |
|                | • •                                                                                                                                                             |     |    |   |


| rmit Numbe    | n                                                                                                                                                               | 1   |    |   |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|---|
| Well IC       | •<br>• YAMW-2                                                                                                                                                   | -   |    |   |
| rson Gauging  | Peter Argyakis                                                                                                                                                  | 1   |    |   |
| Date          | 2/8/2021                                                                                                                                                        | -   |    |   |
| Time          | : 10:49:00                                                                                                                                                      | 1   |    |   |
|               |                                                                                                                                                                 | Yes | No |   |
| 1 Location lo | lentification:                                                                                                                                                  |     |    |   |
| а             | Is the well visible and accessible?                                                                                                                             | Ø   |    |   |
| b             | Is the well properly identified with the correct well ID?                                                                                                       | Ø   |    |   |
| с             | Is the well in a high traffic area and does the well require protection from traffic?                                                                           | Ø   |    |   |
| d             | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              | V   |    |   |
| 2 Protective  | Casing:                                                                                                                                                         |     |    | - |
| а             | Is the protective casing free from apparent damage and able to be secured?                                                                                      | Ø   |    |   |
| b             | Is the casing free of degradation or deterioration?                                                                                                             | Ø   |    |   |
| с             | Does the casing have a functioning weep hole?                                                                                                                   | V   |    |   |
| d             | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | V   |    |   |
| 3 Surface Pa  | d                                                                                                                                                               |     |    |   |
| а             | Is the well pad in good condition (not cracked or broken)?                                                                                                      | V   |    |   |
| b             | Is the well pad sloped away from the protective casing?                                                                                                         |     | Ø  |   |
| с             | Is the well pad in complete contact with the protective casing?                                                                                                 | Ø   |    |   |
| d             | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          | V   |    |   |
| e             | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 | V   |    |   |
| 4 Internal Ca | sing                                                                                                                                                            |     |    | - |
| а             | Does the cap prevent entry of foreign material into the well?                                                                                                   | V   |    |   |
| b             | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                               | V   |    |   |
| с             | Is the well properly vented for equilibration of air pressure?                                                                                                  | V   |    |   |
| d             | Is the survey point clearly marked on the inner casing?                                                                                                         | Ø   |    |   |
| e             | Is the depth of the well consistent with the original well log?                                                                                                 | V   |    |   |
| f             | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | V   |    |   |
| 5 Sampling:   | Groundwater Wells Only:                                                                                                                                         |     |    | _ |
| a             | Does well recharge adequately when purged?                                                                                                                      |     |    |   |
| b             | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             |     |    |   |
| с             | Does the well require redevelopment (low flow, turbid)?                                                                                                         |     |    |   |
| 6 Based on y  | our professional judgement, is the well construction / location:                                                                                                |     |    | _ |
| ,<br>         | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  | V   |    |   |
|               | and 2) comply with the applicable regulatory requirements?                                                                                                      | V   |    |   |
| 7 Corrective  | actions as needed, by date:                                                                                                                                     |     |    | _ |
|               |                                                                                                                                                                 |     |    |   |



| mi  | t Number:    |                                                                                                                                                                 | -   |    |   |
|-----|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|---|
|     | Well ID:     | YGWC-23S                                                                                                                                                        | -   |    |   |
| soi | n Gauging:   | Katie Pupkiewicz                                                                                                                                                | -   |    |   |
|     | Date:        | 2/8/2021                                                                                                                                                        | -   |    |   |
|     | Time:        | 10:42:00                                                                                                                                                        | Voc | No | - |
| 1 L | ocation Ide  | ntification:                                                                                                                                                    | 103 | NO |   |
| a   | 3            | Is the well visible and accessible?                                                                                                                             | Ø   |    |   |
| ł   | )            | Is the well properly identified with the correct well ID?                                                                                                       | V   |    |   |
| c   | :            | Is the well in a high traffic area and does the well require protection from traffic?                                                                           |     | V  |   |
| C   | ł            | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              |     |    |   |
| 2 F | Protective C | asing:                                                                                                                                                          |     |    |   |
| a   | a            | Is the protective casing free from apparent damage and able to be secured?                                                                                      |     | Ø  |   |
| k   | ט            | Is the casing free of degradation or deterioration?                                                                                                             | Ø   |    |   |
| C   | 2            | Does the casing have a functioning weep hole?                                                                                                                   | Ø   |    |   |
| c   | ł            | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | Ø   |    |   |
| 3 5 | Surface Pad  |                                                                                                                                                                 |     |    |   |
| a   | 3            | Is the well pad in good condition (not cracked or broken)?                                                                                                      | Ø   |    |   |
| k   | D            | Is the well pad sloped away from the protective casing?                                                                                                         |     | V  |   |
| C   | 2            | Is the well pad in complete contact with the protective casing?                                                                                                 | Ø   |    |   |
| C   | k            | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          | Ø   |    |   |
| e   | 9            | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 | Ø   |    |   |
| 4   | nternal Casi | ng                                                                                                                                                              |     |    |   |
| ā   | à            | Does the cap prevent entry of foreign material into the well?                                                                                                   | Ø   |    |   |
| k   | כ            | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                               | V   |    |   |
| c   | 2            | Is the well properly vented for equilibration of air pressure?                                                                                                  | Ø   |    |   |
| c   | k            | Is the survey point clearly marked on the inner casing?                                                                                                         | Ø   |    |   |
| e   | 9            | Is the depth of the well consistent with the original well log?                                                                                                 | Ø   |    |   |
| f   | -            | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | V   |    |   |
| 5 5 | Sampling: G  | roundwater Wells Only:                                                                                                                                          |     |    |   |
| ā   | a            | Does well recharge adequately when purged?                                                                                                                      |     |    |   |
| k   | 0            | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             |     |    |   |
| c   | :            | Does the well require redevelopment (low flow, turbid)?                                                                                                         |     |    |   |
| 6 E | Based on yo  | ur professional judgement, is the well construction / location:                                                                                                 |     |    |   |
|     |              | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  | Ø   |    |   |
|     |              | and 2) comply with the applicable regulatory requirements?                                                                                                      | Ø   |    |   |
| 7 ( | Corrective a | ctions as needed, by date:                                                                                                                                      |     |    |   |
| _   |              |                                                                                                                                                                 |     |    |   |



| jec | t Location:   | AMA AP-3, A, B and B'                                                                                                                                  | 1   |    |    |
|-----|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|----|
| rm  | it Number:    |                                                                                                                                                        | 4   |    |    |
|     | Well ID:      | PZ-06D                                                                                                                                                 | -   |    |    |
| rso | n Gauqinq:    | Peter Argyakis                                                                                                                                         | -   |    |    |
|     | Date:         | 2/8/2021                                                                                                                                               | -   |    |    |
|     | Time:         | 11:19:00                                                                                                                                               | N   | N  | Τ, |
| 1   |               |                                                                                                                                                        | Yes | NO | _  |
| 1   | Location ide  |                                                                                                                                                        | -   | _  | +  |
|     | a             | Is the well visible and accessible?                                                                                                                    |     |    | +  |
|     | b             | Is the well properly identified with the correct well ID?                                                                                              |     |    |    |
|     | С             | Is the well in a high traffic area and does the well require protection from traffic?                                                                  |     | Ø  | _  |
|     | d             | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                     | Ø   |    |    |
| 2   | Protective C  | asing:                                                                                                                                                 |     |    |    |
|     | а             | Is the protective casing free from apparent damage and able to be secured?                                                                             | Ø   |    |    |
|     | b             | Is the casing free of degradation or deterioration?                                                                                                    | Ø   |    |    |
|     | с             | Does the casing have a functioning weep hole?                                                                                                          | Ø   |    |    |
|     | d             | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                        | Ø   |    |    |
| 3   | Surface Pad   |                                                                                                                                                        |     |    |    |
|     | а             | Is the well pad in good condition (not cracked or broken)?                                                                                             | Ø   |    |    |
|     | b             | Is the well pad sloped away from the protective casing?                                                                                                | V   |    |    |
|     | с             | Is the well pad in complete contact with the protective casing?                                                                                        | Ø   |    |    |
|     | d             | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on) | Ø   |    |    |
|     | e             | Is the pad surface clean (not covered with sediment or debris)?                                                                                        | V   |    |    |
| 4   | Internal Casi | ing                                                                                                                                                    |     |    | -  |
|     | а             | Does the cap prevent entry of foreign material into the well?                                                                                          | Ø   |    |    |
|     | b             | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                      | Ø   |    |    |
|     | c             | Is the well properly vented for equilibration of air pressure?                                                                                         |     |    |    |
|     | d             | Is the survey point clearly marked on the inner casing?                                                                                                |     |    |    |
|     | u<br>o        | Is the depth of the well consistent with the original well log?                                                                                        |     |    |    |
|     | e<br>r        | Is the cosing stable? (or does the nucleon each when touched or can it be taken enert by hend                                                          |     |    |    |
|     | 1             | due to lack of grout or use of slip couplings in construction)                                                                                         | Ø   |    |    |
| 5   | Sampling: G   | roundwater Wells Only:                                                                                                                                 |     |    |    |
|     | а             | Does well recharge adequately when purged?                                                                                                             |     |    |    |
|     | b             | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                    |     |    |    |
|     | с             | Does the well require redevelopment (low flow, turbid)?                                                                                                |     |    |    |
| 6   | Based on yo   | ur professional judgement, is the well construction / location:                                                                                        |     |    |    |
|     |               | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                         | Ø   |    |    |
|     |               | and 2) comply with the applicable regulatory requirements?                                                                                             | V   |    |    |
| 7   | Corrective a  | ctions as needed, by date:                                                                                                                             |     |    |    |
| _   |               |                                                                                                                                                        |     |    | _  |
| 8   | Date by whe   | en corrective actions are needed:                                                                                                                      |     |    |    |



| mit Numbe     |                                                                                                                                                                 | 1   |    |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| Well II       | : YGWA-6S                                                                                                                                                       | -   |    |
| son Gauging   | Peter Argyakis                                                                                                                                                  |     |    |
| Date          | 2/8/2021                                                                                                                                                        | 1   |    |
| Time          | 11:21:00                                                                                                                                                        | 1   |    |
|               |                                                                                                                                                                 | Yes | No |
| 1 Location lo | dentification:                                                                                                                                                  |     |    |
| а             | Is the well visible and accessible?                                                                                                                             | V   |    |
| b             | Is the well properly identified with the correct well ID?                                                                                                       | V   |    |
| с             | Is the well in a high traffic area and does the well require protection from traffic?                                                                           |     | Ø  |
| d             | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              | Ø   |    |
| 2 Protective  | Casing:                                                                                                                                                         |     |    |
| а             | Is the protective casing free from apparent damage and able to be secured?                                                                                      | V   |    |
| b             | Is the casing free of degradation or deterioration?                                                                                                             | V   |    |
| с             | Does the casing have a functioning weep hole?                                                                                                                   | V   |    |
| d             | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | V   |    |
| 3 Surface Pa  | d                                                                                                                                                               |     |    |
| а             | Is the well pad in good condition (not cracked or broken)?                                                                                                      | V   |    |
| b             | Is the well pad sloped away from the protective casing?                                                                                                         | V   |    |
| с             | Is the well pad in complete contact with the protective casing?                                                                                                 | V   |    |
| d             | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          | Ø   |    |
| e             | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 | V   |    |
| 4 Internal Ca | Ising                                                                                                                                                           |     |    |
| а             | Does the cap prevent entry of foreign material into the well?                                                                                                   | V   |    |
| b             | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                               | V   |    |
| с             | Is the well properly vented for equilibration of air pressure?                                                                                                  | V   |    |
| d             | Is the survey point clearly marked on the inner casing?                                                                                                         | Ø   |    |
| e             | Is the depth of the well consistent with the original well log?                                                                                                 | V   |    |
| f             | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | V   |    |
| 5 Sampling:   | Groundwater Wells Only:                                                                                                                                         |     |    |
| а             | Does well recharge adequately when purged?                                                                                                                      |     |    |
| b             | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             |     |    |
| с             | Does the well require redevelopment (low flow, turbid)?                                                                                                         |     |    |
| 6 Based on y  | /our professional judgement, is the well construction / location:                                                                                               |     |    |
| ,             | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  | V   |    |
|               | and 2) comply with the applicable regulatory requirements?                                                                                                      | V   |    |
| 7 Corrective  | actions as needed, by date:                                                                                                                                     |     |    |
|               |                                                                                                                                                                 |     |    |



| rmit Number   | :                                                                                                                                                               | 1   |    |   |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|---|
| Well ID       | : YGWA-6I                                                                                                                                                       | 1   |    |   |
| rson Gauging  | Peter Argyakis                                                                                                                                                  | 1   |    |   |
| Date          | : 2/8/2021                                                                                                                                                      |     |    |   |
| Time          | : 11:22:00                                                                                                                                                      |     |    | _ |
|               |                                                                                                                                                                 | Yes | No |   |
| 1 Location Id | entification:                                                                                                                                                   |     |    |   |
| а             | Is the well visible and accessible?                                                                                                                             | Ø   |    |   |
| b             | Is the well properly identified with the correct well ID?                                                                                                       | Ø   |    |   |
| с             | Is the well in a high traffic area and does the well require protection from traffic?                                                                           |     | V  |   |
| d             | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              | Ø   |    |   |
| 2 Protective  | Casing:                                                                                                                                                         |     |    |   |
| а             | Is the protective casing free from apparent damage and able to be secured?                                                                                      | V   |    |   |
| b             | Is the casing free of degradation or deterioration?                                                                                                             | V   |    |   |
| с             | Does the casing have a functioning weep hole?                                                                                                                   | V   |    |   |
| d             | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | Ø   |    |   |
| 3 Surface Pag | ł                                                                                                                                                               |     |    |   |
| а             | Is the well pad in good condition (not cracked or broken)?                                                                                                      | Ø   |    |   |
| b             | Is the well pad sloped away from the protective casing?                                                                                                         | Ø   |    |   |
| с             | Is the well pad in complete contact with the protective casing?                                                                                                 | V   |    |   |
| d             | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          | Ø   |    |   |
| е             | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 | V   |    |   |
| 4 Internal Ca | sing                                                                                                                                                            |     |    | - |
| а             | Does the cap prevent entry of foreign material into the well?                                                                                                   | V   |    |   |
| b             | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                               | V   |    |   |
| с             | Is the well properly vented for equilibration of air pressure?                                                                                                  | V   |    |   |
| d             | Is the survey point clearly marked on the inner casing?                                                                                                         | V   |    |   |
| e             | Is the depth of the well consistent with the original well log?                                                                                                 | V   |    |   |
| f             | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | Ø   |    |   |
| 5 Sampling:   | Groundwater Wells Only:                                                                                                                                         |     |    | - |
| a             | Does well recharge adequately when purged?                                                                                                                      |     |    |   |
| b             | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             |     |    |   |
| с             | Does the well require redevelopment (low flow, turbid)?                                                                                                         |     |    |   |
| 6 Based on y  | our professional judgement, is the well construction / location:                                                                                                |     |    | - |
|               | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  | V   |    |   |
|               | and 2) comply with the applicable regulatory requirements?                                                                                                      | V   |    |   |
| 7 Corrective  | actions as needed, by date:                                                                                                                                     |     |    |   |
|               |                                                                                                                                                                 |     |    |   |
| 8 Date by wh  | en corrective actions are needed:                                                                                                                               |     |    |   |



| Well ID:   GWA-175     son Gauding   Peter Argyakis     Date   2/8/2021     Time   1125:00     1   Location Identification:     a   Is the well roperly identified with the correct well ID?     c   Is the well in a high traffic area and does the well require protection from traffic?     d   Is the well in a high traffic area and does the well require protection from traffic?     a   Is the well in a high traffic area and does the well accestable? (no standing water, nor is well located in obvious driving driving the well accestable? (no standing water, nor is well located in obvious driving are find and the well accestable? (no standing water, nor is well located in obvious driving water and to be secured?     2   Protective Casing:   Image: the casing free of degradation or deterioration?     c   Does the casing have a functioning weep hole?   Image: the well pad in good condition (not cracked or broken)?     d   Is the well pad in good condition (not cracked or broken)?   Image: the well pad in complete contact with the protective casing?   Image: the casing free of kinks or bonds with setsipped on)     e   Is the well pad in complete contact with the ground surface and stable? (not undermined by erroison, animal burrows, and does not move when stepped on)   Image: the casing stable?   Image: the casing stable?     d   Is the well pad incompl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |                                                                                                                                                                 | -   |    |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|---|
| Weil Dr. Numer 1/2       Galaxies     Peter Argakis       Date:     Z/8/2021       Time:     11-25:00       1 Location Identification:     Image: International Control Identification:     Image: International Control Identification:       a     Is the well visible and accessible?     Image: International Control Identification:     Image: International Control Identification:       c     Is the well in a high traffic area and does the well require protection from traffic?     Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image:                                                                                                                                                                                                                                                                                      | mit Number    |                                                                                                                                                                 | -   |    |   |
| Soft Bading     Predict Ayyaks       Dates     2/27/021       Time:     Yes     Not       Location Identification:     Image: Soft Bading     Image: Soft Bading     Image: Soft Bading       a     Is the well properly identified with the correct well ID?     Image: Soft Bading     Image: Soft Bading     Image: Soft Bading       b     Is the well properly identified with the correct well ID?     Image: Soft Bading     Image: Soft Bading     Image: Soft Bading     Image: Soft Bading     Image: Soft Bading     Image: Soft Bading     Image: Soft Bading     Image: Soft Bading     Image: Soft Bading     Image: Soft Bading     Image: Soft Bading     Image: Soft Bading     Image: Soft Bading     Image: Soft Bading     Image: Soft Bading     Image: Soft Bading     Image: Soft Bading     Image: Soft Bading     Image: Soft Bading     Image: Soft Bading     Image: Soft Bading     Image: Soft Bading     Image: Soft Bading     Image: Soft Bading     Image: Soft Bading     Image: Soft Bading     Image: Soft Bading     Image: Soft Bading     Image: Soft Bading     Image: Soft Bading     Image: Soft Bading     Image: Soft Bading     Image: Soft Bading     Image: Soft Bading     Image: Soft Bading     Image: Soft Bading     Image: Soft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Well IL       | YGWA-1/S                                                                                                                                                        | -   |    |   |
| Inter     Option       Time     11/25:00       Ves     Nc       a     Is the well visible and accessible?     Image: Control of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the                                                                                                                           | son Gaugino   |                                                                                                                                                                 | -   |    |   |
| Time   Transmit   Yes   No.     1   Location Identification:   Image: State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State State St                                                                      | Date          | 11:25:00                                                                                                                                                        | -   |    |   |
| Location Identification:   Image: Control Identification:   Image: Control Identification:     a   Is the well properly identified with the correct well ID?   Image: Control Identification:     b   Is the well in a high traffic area and does the well require protection from traffic?   Image: Control Identification:     c   Is the well in a high traffic area and does the well require protection from traffic?   Image: Control Identification:     c   Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)   Image: Control Identification:     2   Protective Casing:   Image: Control Identification:   Image: Control Identification:     a   Is the protective casing free from apparent damage and able to be secured?   Image: Control Identification:     b   Is the casing free of degradation or deterioration?   Image: Control Identification:   Image: Control Identification:     c   Does the casing have a functioning weep hole?   Image: Control Identification:   Image: Control Identification:     a   Is the well pad in good condition (nct cracked or broken)?   Image: Control Identification:   Image: Control Identification:     b   Is the well pad in complete contact with the protective casing?   Image: Control Identification:   Image: Control Identification:     c <th></th> <th><u>F</u> [1125.00</th> <th>Vac</th> <th>No</th> <th>-</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | <u>F</u> [1125.00                                                                                                                                               | Vac | No | - |
| a   Is the well visible and accessible?   Image: Constraint of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the se | 1 Location lo | Jentification:                                                                                                                                                  | 103 | NO |   |
| b   is the well properly identified with the correct well ID?   Image: Construction of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o | а             | Is the well visible and accessible?                                                                                                                             |     |    |   |
| c   Is the well in a high traffic area and does the well require protection from traffic?   Image: the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec | b             | Is the well properly identified with the correct well ID?                                                                                                       |     |    |   |
| a   Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)   a     2   Protective Casing:   a     a   Is the protective casing free from apparent damage and able to be secured?   a     b   Is the casing free of degradation or deterioration?   a     c   Does the casing have a functioning weep hole?   a     d   Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?   a     a   Is the well pad in good condition (not cracked or broken)?   a   a     b   Is the well pad in good condition (not cracked or broken)?   a   a     b   Is the well pad in complete contact with the protective casing?   a   a     c   Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)   a   a     e   Is the well pad in complete contact with the secure?   a   a   a     d   Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?   a   a     d   Is the asing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction)   a<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C C           | Is the well in a high traffic area and does the well require protection from traffic?                                                                           |     | V  |   |
| Protective Casing:   Is the protective casing free from apparent damage and able to be secured?   Image: Content of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent of the secure intent intent intent intent intent intent intent intent intent intent  | d             | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              | Ø   |    |   |
| a   Is the protective casing free from apparent damage and able to be secured?   Image: Construction of the secured?   Image: Construction of the secured?   Image: Construction of the secured?   Image: Construction of the secured?   Image: Construction of the secured?   Image: Construction of the secured?   Image: Construction of the secured?   Image: Construction of the secured?   Image: Construction of the secured?   Image: Construction of the secured?   Image: Construction of the secured?   Image: Construction of the secured?   Image: Construction of the secured?   Image: Construction of the secured?   Image: Construction of the secured?   Image: Construction of the secured?   Image: Construction of the secured?   Image: Construction of the secured?   Image: Construction of the secured?   Image: Construction of the secured?   Image: Construction of the secured?   Image: Construction of the secured?   Image: Construction of the secured?   Image: Construction of the secured?   Image: Construction of the secured?   Image: Construction of the secured?   Image: Construction of the secured?   Image: Construction of the secured?   Image: Construction of the secured?   Image: Construction of the secured?   Image: Construction of the secured?   Image: Construction of the secured?   Image: Construction of the secured?   Image: Construction of the secured?   Image: Construction of the secured?   Image: Construction of the secured?   Image: Construction of the secured?   Image: Construction o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2 Protective  | Casing:                                                                                                                                                         |     |    | - |
| b   Is the casing free of degradation or deterioration?   Image: Construction of the casing have a functioning weep hole?   Image: Construction of the casing have a function of deterioration?   Image: Construction of the casing have a function of deterioration?   Image: Construction of the casing have a function of deterioration?   Image: Construction of the casing have a function of deterioration?   Image: Construction of the casing have a function of deterioration?   Image: Construction of the casing have a function of deterioration?   Image: Construction of the casing have a function of the casing?   Image: Construction of the casing have a function of the casing?   Image: Construction of the casing have a function of the casing?   Image: Construction of the casing have a function of the casing?   Image: Construction of the casing have a function of the casing?   Image: Construction of the casing function of the casing?   Image: Construction of the casing?   Image: Construction of the casing?   Image: Construction of the casing?   Image: Construction of the casing?   Image: Construction of the casing?   Image: Construction of the casing?   Image: Construction of the casing?   Image: Construction of the casing?   Image: Construction of the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?   Image: Construction of the casing?   Image: Construction of the casing?   Image: Construction of the casing?   Image: Construction of the casing?   Image: Construction of the casing free of kinks or bends, or any obstruction of the casing free of kinks or bends, or any obstruction of the casing                                                                                                                                                                                                                                                                                                                                                    | а             | Is the protective casing free from apparent damage and able to be secured?                                                                                      | V   |    |   |
| c   Does the casing have a functioning weep hole?   Image: Construction of the casing have a function of the casing clear of debris and water, or filled with pea gravel/sand?     d   Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?   Image: Construction of the casing clear of debris and water, or filled with pea gravel/sand?     a   Is the well pad in good condition (not cracked or broken)?   Image: Construction of the casing?   Image: Construction of the casing?     b   Is the well pad in complete contact with the protective casing?   Image: Construction of the casing?   Image: Construction of the casing?   Image: Construction of the casing?     d   Is the pad surface clean (not covered with sediment or debris)?   Image: Construction of the casing?   Image: Construction of the casing?   Image: Construction of the casing?   Image: Construction of the casing?   Image: Construction of the casing?   Image: Construction of the casing?   Image: Construction of the casing?   Image: Construction of the casing?   Image: Construction of the casing?   Image: Construction of the casing?   Image: Construction of the casing?   Image: Construction of the casing?   Image: Construction of the casing?   Image: Construction of the casing?   Image: Construction of the casing?   Image: Construction of the casing?   Image: Construction of the casing?   Image: Construction of the casing stable? (or does the pvc move easily when touched or can it be taken a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | b             | Is the casing free of degradation or deterioration?                                                                                                             | V   |    |   |
| d   Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?   Image: Construction of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon | c             | Does the casing have a functioning weep hole?                                                                                                                   | V   |    |   |
| 3   Surface Pad   Image: Surface Pad and the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second problem in the second p | d             | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | V   |    |   |
| a   Is the well pad in good condition (not cracked or broken)?   Image: Construct of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the st | 3 Surface Pa  | d                                                                                                                                                               |     |    |   |
| b   Is the well pad sloped away from the protective casing?   Image: Complete contact with the protective casing?   Image: Complete contact with the protective casing?   Image: Complete contact with the protective casing?   Image: Complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)   Image: Complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)   Image: Complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)   Image: Complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)   Image: Complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)     4   Internal Casing   Image: Complete contact with sediment or debris)?   Image: Complete contact with the original burrows, and burrows, and observe?   Image: Complete contact with the original burrows, and burrows, and burrows, and observe?   Image: Complete contact with the original well log?   Image: Complete contact with the original well log?   Image: Complete contact wells Contact wells construction)   Image: Complete contact well contact wells construction)   Image: Complete contact wells contact wells   Image: Complete contact wells   Image: Complete contact wells   Image: Complete contact wells   Image: Complete contact wells   Image: Complete contact wells   Image: Complete contact wells   Image: Complete con                                                                                                                                                                                                                                                                                                                                          | а             | Is the well pad in good condition (not cracked or broken)?                                                                                                      | V   |    |   |
| c   Is the well pad in complete contact with the protective casing?   Image: Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Content of Control of Control o | b             | Is the well pad sloped away from the protective casing?                                                                                                         | V   |    |   |
| d   Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)   Image: construction of the pad surface clean (not covered with sediment or debris)?   Image: construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction construction construction construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of construction of constru              | c             | Is the well pad in complete contact with the protective casing?                                                                                                 | V   |    |   |
| e   Is the pad surface clean (not covered with sediment or debris)?   Image: Construction of the pad surface clean (not covered with sediment or debris)?     4   Internal Casing   Image: Construction of the pad surface clean (not covered with sediment or debris)?   Image: Construction of the pad surface clean (not covered with sediment or debris)?     4   Internal Casing   Image: Construction of the pad surface clean (not covered with sediment or debris)?   Image: Construction of the pad surface clean (not covered with sediment or debris)?     a   Does the cap prevent entry of foreign material into the well?   Image: Construction of the pad surface clean (not covered with sediment or debris)?   Image: Construction of the pad surface clean (not covered with sediment or debris)?     b   Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?   Image: Construction (such as bailers)?   Image: Construction (such as bailers)?   Image: Construction (such as bailers)?   Image: Construction (such as bailers)?   Image: Construction (such as bailers)?   Image: Construction (such as bailers)?   Image: Construction (such as bailers)?   Image: Construction (such as bailers)?   Image: Construction (such as bailers)?   Image: Construction (such as bailers)?   Image: Construction (such as bailers)?   Image: Construction (such as bailers)?   Image: Construction (such as bailers)?   Image: Construction (such as bailers)?   Image: Construction (such as bailers)?   Image: Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d             | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          | Ø   |    |   |
| 4   Internal Casing   Internal Casing   Internal Casing     a   Does the cap prevent entry of foreign material into the well?   Image: Casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?   Image: Casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?   Image: Casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?   Image: Casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?   Image: Casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?   Image: Casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?   Image: Casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?   Image: Casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?   Image: Casing free of kinks or bends, or any obstruction for free grant of air pressure?   Image: Casing free of kinks or bends, or any obstruction free grant of air pressure?   Image: Casing free of kinks or bends, or any obstruction free grant of air pressure?   Image: Casing free of kinks or bends, or any obstruction free grant of air pressure?   Image: Casing free of kinks or bends, or any obstruction free grant of air pressure?   Image: Casing free of kinks or bends, or any obstruction free grant of an or any obstruction free grant of an or any obstruction free grant of an or any obstruction free grant of an or any obstruction free grant of an or any obstruction free grant of an or any obstruction free grant of an or any obstruction or any obstruction free grant of an or any obstruction free grant of an or                                                                                                                                                                                                                                                | e             | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 | V   |    |   |
| a   Does the cap prevent entry of foreign material into the well?   Image: Comparison of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap of the cap  | 4 Internal Ca | ising                                                                                                                                                           |     |    | - |
| b   Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?   Image: Construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a construction of a const constructio o constructio constructio o construction o | а             | Does the cap prevent entry of foreign material into the well?                                                                                                   | V   |    |   |
| c   Is the well properly vented for equilibration of air pressure?   Image: Construction of air pressure?   Image: Construction of air pressure?     d   Is the survey point clearly marked on the inner casing?   Image: Construction of air pressure?   Image: Construction of air pressure?   Image: Construction of air pressure?   Image: Construction of air pressure?   Image: Construction of air pressure?   Image: Construction of air pressure?   Image: Construction of air pressure?   Image: Construction of air pressure?   Image: Construction of air pressure?   Image: Construction of air pressure?   Image: Construction of air pressure?   Image: Construction of air pressure?   Image: Construction of air pressure?   Image: Construction of air pressure?   Image: Construction of air pressure?   Image: Construction of air pressure?   Image: Construction of air pressure?   Image: Construction of air pressure?   Image: Construction of air pressure?   Image: Construction of air pressure?   Image: Construction of air pressure?   Image: Construction of air pressure?   Image: Construction of air pressure?   Image: Construction of air pressure?   Image: Construction of air pressure?   Image: Construction of air pressure?   Image: Construction of air pressure?   Image: Construction of air pressure?   Image: Construction of air pressure?   Image: Construction of air pressure?   Image: Construction of air pressure?   Image: Construction of air pressure?   Image: Construction of air pressure?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | b             | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                               | V   |    |   |
| d   Is the survey point clearly marked on the inner casing?   Image: Comparison of the survey point clearly marked on the inner casing?   Image: Comparison of the survey point clearly marked on the inner casing?     e   Is the depth of the well consistent with the original well log?   Image: Comparison of the survey point clearly marked on the inner casing?   Image: Comparison of the survey point clearly marked on the inner casing?   Image: Comparison of the survey point clearly marked on the inner casing?   Image: Comparison of the survey point clearly marked on the inner casing?   Image: Comparison of the survey point clearly marked on the inner casing?   Image: Comparison of the survey point clearly marked on the inner casing?   Image: Comparison of the survey point clearly marked on the inner casing?   Image: Comparison of the survey point clearly marked on the inner casing?   Image: Comparison of the survey point clearly marked on the inner casing?   Image: Comparison of the survey point clearly marked on the inner casing?   Image: Comparison of the survey point clearly marked on the inner casing?   Image: Comparison of the survey point clearly marked on the inner casing marked on the inner casing marked on the inner casing marked on the inner casing marked on the inner casing marked on the inner casing marked on the inner casing marked on the inner casing marked on the inner casing marked on the inner casing marked on the inner casing marked on the inner casing marked on the inner casing marked on the inner casing marked on the inner casing marked on the inner casing marked on the inner casing marked on the inner casing marked on the inner casing marked on the inner casing marked on the inner casing marked on the inner casing marked on the i                                                                                                                                                                                                                     | с             | Is the well properly vented for equilibration of air pressure?                                                                                                  | V   |    |   |
| e   Is the depth of the well consistent with the original well log?   Image: Construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction | d             | Is the survey point clearly marked on the inner casing?                                                                                                         | V   |    |   |
| f   Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction)   Image: Construction     5   Sampling: Groundwater Wells Only:   Image: Construction   Image: Construction     a   Does well recharge adequately when purged?   Image: Construction   Image: Construction     b   If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?   Image: Construction   Image: Construction     c   Does the well require redevelopment (low flow, turbid)?   Image: Construction   Image: Construction   Image: Construction     6   Based on your professional judgement, is the well construction / location:   Image: Construction / location:   Image: Construction / location:   Image: Construction / location:     and 2) comply with the applicable regulatory requirements?   Image: Construction / location:   Image: Construction / location:   Image: Construction / location:     7   Corrective actions as needed, by date:   Image: Construction / location:   Image: Construction / location:   Image: Construction / location:   Image: Construction / location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | e             | Is the depth of the well consistent with the original well log?                                                                                                 | V   |    |   |
| 5   Sampling: Groundwater Wells Only:   Image: Groundwater Wells Only:   Image: Groundwater Wells Only:     a   Does well recharge adequately when purged?   Image: Groundwater Decision and Specified in the approved groundwater plan for the facility?   Image: Groundwater Decision and Specified in the approved groundwater plan for the facility?   Image: Groundwater Plan for the facility?   Image: Groundwater Plan for the facility?   Image: Groundwater Plan for the facility?   Image: Groundwater Plan for the facility?   Image: Groundwater Plan for the facility?   Image: Groundwater Plan for the facility?   Image: Groundwater Plan for the facility?   Image: Groundwater Plan for the facility?   Image: Groundwater Plan for the facility?   Image: Groundwater Plan for the facility?   Image: Groundwater Plan for the facility?   Image: Groundwater Plan for the facility?   Image: Groundwater Plan for the facility?   Image: Groundwater Plan for the facility?   Image: Groundwater Plan for the facility?   Image: Groundwater Plan for the facility?   Image: Groundwater Plan for the facility?   Image: Groundwater Plan for the facility?   Image: Groundwater Plan for the facility?   Image: Groundwater Plan for the facility?   Image: Groundwater Plan for the facility?   Image: Groundwater Plan for the facility?   Image: Groundwater Plan for the facility?   Image: Groundwater Plan for the facility?   Image: Groundwater Plan for the facility?   Image: Groundwater Plan for the facility?   Image: Groundwater Plan for the facility?   Image: G                                                                                                                                                                                                                                                                                                                                                                                                                                                               | f             | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | Ø   |    |   |
| a   Does well recharge adequately when purged?   □     b   If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?   □   □     c   Does the well require redevelopment (low flow, turbid)?   □   □     6   Based on y=r professional judgement, is the well construction / location:   □   □     appropriate to 1) achieve the objectives of the Groundwater Monitoring Program   □   □     and 2) comply with the applicable regulatory requirements?   □   □     7   Corrective actions as needed, by date:   □   □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5 Sampling:   | Groundwater Wells Only:                                                                                                                                         |     |    | - |
| b   If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?   □   □     c   Does the well require redevelopment (low flow, turbid)?   □   □     6   Based on your professional judgement, is the well construction / location:   □   □     appropriate to 1) achieve the objectives of the Groundwater Monitoring Program   □   □     and 2) comply with the applicable regulatory requirements?   □   □     7   Corrective actions as needed, by date:   □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | а             | Does well recharge adequately when purged?                                                                                                                      |     |    |   |
| c   Does the well require redevelopment (low flow, turbid)?   □     6   Based on your professional judgement, is the well construction / location:   □     appropriate to 1) achieve the objectives of the Groundwater Monitoring Program   □     and 2) comply with the applicable regulatory requirements?   □     7   Corrective actions as needed, by date:   □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | b             | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             |     |    |   |
| 6   Based on your professional judgement, is the well construction / location:   appropriate to 1) achieve the objectives of the Groundwater Monitoring Program   I     and 2) comply with the applicable regulatory requirements?   I   I     7   Corrective actions as needed, by date:   I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | с             | Does the well require redevelopment (low flow, turbid)?                                                                                                         |     |    |   |
| appropriate to 1) achieve the objectives of the Groundwater Monitoring Program   Image: Constant of the Groundwater Monitoring Program     and 2) comply with the applicable regulatory requirements?   Image: Constant of the Groundwater Monitoring Program     7   Corrective actions as needed, by date:   Image: Constant of the Groundwater Monitoring Program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6 Based on y  | /our professional judgement, is the well construction / location:                                                                                               |     |    |   |
| and 2) comply with the applicable regulatory requirements? Image: Comply with the applicable regulatory requirements?   7 Corrective actions as needed, by date: Image: Comply with the applicable regulatory requirements?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,             | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  | V   |    |   |
| 7 Corrective actions as needed, by date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | and 2) comply with the applicable regulatory requirements?                                                                                                      | V   |    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7 Corrective  | actions as needed, by date:                                                                                                                                     |     |    | - |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                                                                                                                                                                 |     |    |   |



| mit l | Number:     |                                                                                                                                                                 | -   |    |   |
|-------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|---|
|       | Well ID:    | YGWA-18S                                                                                                                                                        | -   |    |   |
| son ( | Gauging:    | Peter Argyakis                                                                                                                                                  | -   |    |   |
|       | Date:       | 2/8/2021                                                                                                                                                        | -   |    |   |
|       | Time:       | 11:34:00                                                                                                                                                        | Voc | No | - |
| 1 Loo | cation Ide  | ntification:                                                                                                                                                    | 163 | NO |   |
| а     |             | Is the well visible and accessible?                                                                                                                             | V   |    |   |
| b     |             | Is the well properly identified with the correct well ID?                                                                                                       | V   |    |   |
| с     |             | Is the well in a high traffic area and does the well require protection from traffic?                                                                           |     | V  |   |
| d     |             | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              | Ø   |    |   |
| 2 Pro | otective C  | asing:                                                                                                                                                          |     |    |   |
| а     |             | Is the protective casing free from apparent damage and able to be secured?                                                                                      | V   |    |   |
| b     |             | Is the casing free of degradation or deterioration?                                                                                                             | V   |    |   |
| с     |             | Does the casing have a functioning weep hole?                                                                                                                   | V   |    |   |
| d     |             | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | V   |    |   |
| 3 Su  | rface Pad   |                                                                                                                                                                 |     |    |   |
| а     |             | Is the well pad in good condition (not cracked or broken)?                                                                                                      | V   |    |   |
| b     |             | Is the well pad sloped away from the protective casing?                                                                                                         | V   |    |   |
| с     |             | Is the well pad in complete contact with the protective casing?                                                                                                 | Ø   |    |   |
| d     |             | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          | Ø   |    |   |
| е     |             | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 | Ø   |    |   |
| 4 Int | ternal Casi | ng                                                                                                                                                              |     |    |   |
| а     |             | Does the cap prevent entry of foreign material into the well?                                                                                                   | V   |    |   |
| b     |             | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                               | V   |    |   |
| с     |             | Is the well properly vented for equilibration of air pressure?                                                                                                  | V   |    |   |
| d     |             | Is the survey point clearly marked on the inner casing?                                                                                                         | V   |    |   |
| е     |             | Is the depth of the well consistent with the original well log?                                                                                                 | V   |    |   |
| f     |             | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | Ø   |    |   |
| 5 Sai | mpling: G   | roundwater Wells Only:                                                                                                                                          |     |    |   |
| а     |             | Does well recharge adequately when purged?                                                                                                                      |     |    |   |
| b     |             | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             |     |    |   |
| с     |             | Does the well require redevelopment (low flow, turbid)?                                                                                                         |     |    |   |
| 6 Ba  | sed on yo   | ur professional judgement, is the well construction / location:                                                                                                 |     |    |   |
|       |             | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  | V   |    |   |
|       |             | and 2) comply with the applicable regulatory requirements?                                                                                                      | Ø   |    |   |
| 7 Co  | orrective a | ctions as needed, by date:                                                                                                                                      |     |    |   |
| 8 Da  | ite by whe  | n corrective actions are needed:                                                                                                                                |     |    | - |



| rmit l | Number:    |                                                                                                                                                                 | 1   |    |   |
|--------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|---|
|        | Well ID:   | YGWA-18I                                                                                                                                                        |     |    |   |
| rson ( | Gauging:   | Peter Argyakis                                                                                                                                                  | ]   |    |   |
|        | Date:      | 2/8/2021                                                                                                                                                        | ]   |    |   |
|        | Time:      | 11:38:00                                                                                                                                                        |     |    |   |
|        |            |                                                                                                                                                                 | Yes | No |   |
| 1 Loc  | cation Ide | ntification:                                                                                                                                                    |     |    |   |
| а      |            | Is the well visible and accessible?                                                                                                                             | Ø   |    |   |
| b      |            | Is the well properly identified with the correct well ID?                                                                                                       | Ø   |    |   |
| с      |            | Is the well in a high traffic area and does the well require protection from traffic?                                                                           |     | Ø  |   |
| d      |            | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              |     |    |   |
| 2 Pro  | otective C | asing:                                                                                                                                                          |     |    |   |
| а      |            | Is the protective casing free from apparent damage and able to be secured?                                                                                      | Ø   |    |   |
| b      |            | Is the casing free of degradation or deterioration?                                                                                                             | V   |    |   |
| с      |            | Does the casing have a functioning weep hole?                                                                                                                   | V   |    |   |
| d      |            | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | V   |    |   |
| 3 Sui  | rface Pad  |                                                                                                                                                                 |     |    |   |
| а      |            | Is the well pad in good condition (not cracked or broken)?                                                                                                      | Ø   |    |   |
| b      |            | Is the well pad sloped away from the protective casing?                                                                                                         | Ø   |    |   |
| с      |            | Is the well pad in complete contact with the protective casing?                                                                                                 | V   |    |   |
| d      |            | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          | Ø   |    |   |
| e      |            | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 | V   |    |   |
| 4 Inte | ernal Casi | na                                                                                                                                                              |     |    | - |
| а      |            | Does the cap prevent entry of foreign material into the well?                                                                                                   | V   |    |   |
| b      |            | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                               | V   |    |   |
| c      |            | Is the well properly vented for equilibration of air pressure?                                                                                                  | V   |    |   |
| d      |            | Is the survey point clearly marked on the inner casing?                                                                                                         | Ø   |    |   |
| e      |            | Is the depth of the well consistent with the original well log?                                                                                                 | Ø   |    |   |
| f      |            | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | Ø   |    |   |
| 5 Sar  | mplina: G  | roundwater Wells Only:                                                                                                                                          | -   |    | 1 |
| а      | - 3        | Does well recharge adequately when purged?                                                                                                                      |     |    |   |
| b      |            | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             |     |    |   |
| с      |            | Does the well require redevelopment (low flow, turbid)?                                                                                                         |     |    |   |
| 6 Bas  | sed on vo  | ur professional judgement, is the well construction / location:                                                                                                 | -   |    | 1 |
|        |            | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  | Ø   |    |   |
|        |            | and 2) comply with the applicable regulatory requirements?                                                                                                      |     |    |   |
| 7 ( ~  | proctivo a | rtions as needed by date:                                                                                                                                       |     |    | + |
| 1 00   | inective a | ctions as needed, by date.                                                                                                                                      |     |    |   |
|        |            |                                                                                                                                                                 |     |    |   |



| ect Locatio  |                                                                                                                                                                 | -   |    |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| Woll I       | ۲.<br>D· P7-48                                                                                                                                                  | -   |    |
| son Gaugin   | n: Peter Aravakis                                                                                                                                               | 1   |    |
| Dat          | e: 2/8/2021                                                                                                                                                     |     |    |
| Tim          | e: 11:50:00                                                                                                                                                     |     |    |
|              |                                                                                                                                                                 | Yes | No |
| 1 Location I | dentification:                                                                                                                                                  |     |    |
| а            | Is the well visible and accessible?                                                                                                                             | V   |    |
| b            | Is the well properly identified with the correct well ID?                                                                                                       | Ø   |    |
| с            | Is the well in a high traffic area and does the well require protection from traffic?                                                                           |     | V  |
| d            | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              | Ø   |    |
| 2 Protective | Casing:                                                                                                                                                         |     |    |
| а            | Is the protective casing free from apparent damage and able to be secured?                                                                                      | Ø   |    |
| b            | Is the casing free of degradation or deterioration?                                                                                                             | Ø   |    |
| с            | Does the casing have a functioning weep hole?                                                                                                                   | Ø   |    |
| d            | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | Ø   |    |
| 3 Surface Pa | ad                                                                                                                                                              |     |    |
| а            | Is the well pad in good condition (not cracked or broken)?                                                                                                      | V   |    |
| b            | Is the well pad sloped away from the protective casing?                                                                                                         | V   |    |
| с            | Is the well pad in complete contact with the protective casing?                                                                                                 | V   |    |
| d            | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          | V   |    |
| е            | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 | Ø   |    |
| 4 Internal C | asing                                                                                                                                                           |     |    |
| а            | Does the cap prevent entry of foreign material into the well?                                                                                                   | V   |    |
| b            | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                               | V   |    |
| с            | Is the well properly vented for equilibration of air pressure?                                                                                                  | V   |    |
| d            | Is the survey point clearly marked on the inner casing?                                                                                                         | Ø   |    |
| е            | Is the depth of the well consistent with the original well log?                                                                                                 | V   |    |
| f            | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | Ø   |    |
| 5 Sampling:  | Groundwater Wells Only:                                                                                                                                         |     |    |
| а            | Does well recharge adequately when purged?                                                                                                                      |     |    |
| b            | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             |     |    |
| с            | Does the well require redevelopment (low flow, turbid)?                                                                                                         |     |    |
| 6 Based on   | your professional judgement, is the well construction / location:                                                                                               |     |    |
|              | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  | V   |    |
|              | and 2) comply with the applicable regulatory requirements?                                                                                                      | V   |    |
| 7 Corrective | actions as needed, by date:                                                                                                                                     |     |    |
|              |                                                                                                                                                                 |     |    |



|     | ct Location:  | AMA AP-3, A, B and B                                                                                                                                   | -            |          |   |
|-----|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------|---|
| rm  | it Number:    |                                                                                                                                                        | -            |          |   |
|     | Well ID:      | YGWC-49                                                                                                                                                | -            |          |   |
| rso | on Gauging:   |                                                                                                                                                        | -            |          |   |
|     | Date:         | 11:55:00                                                                                                                                               | -            |          |   |
|     | Time:         | 11.55.00                                                                                                                                               | Voc          | No       | N |
| 1   | Location Ide  | ntification:                                                                                                                                           | 163          | NO       |   |
|     | 2             | Is the well visible and accessible?                                                                                                                    | ন            |          | - |
|     | a<br>b        | Is the well preparty identified with the correct well ID?                                                                                              | L<br>L       |          | + |
| -   | D<br>C        | Is the well in a high traffic area and does the well require protection from traffic?                                                                  |              | L<br>N   | + |
| -   | ر<br>۲        | Is the drained a region of the well accepted and does the well require protection from traincy                                                         |              | <b>V</b> | + |
|     | a             | drainage flow path)                                                                                                                                    | Ø            |          |   |
| 2   | Protective C  | asing:                                                                                                                                                 |              |          |   |
|     | а             | Is the protective casing free from apparent damage and able to be secured?                                                                             | V            |          |   |
|     | b             | Is the casing free of degradation or deterioration?                                                                                                    | Ø            |          |   |
|     | с             | Does the casing have a functioning weep hole?                                                                                                          | $\checkmark$ |          |   |
|     | d             | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                        | V            |          |   |
| 3   | Surface Pad   |                                                                                                                                                        |              |          |   |
|     | а             | Is the well pad in good condition (not cracked or broken)?                                                                                             | V            |          |   |
|     | b             | Is the well pad sloped away from the protective casing?                                                                                                | Ø            |          | T |
|     | с             | Is the well pad in complete contact with the protective casing?                                                                                        | V            |          |   |
|     | d             | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on) | Ø            |          |   |
| -   | е             | Is the pad surface clean (not covered with sediment or debris)?                                                                                        | V            |          | + |
| 4   | Internal Casi | inα                                                                                                                                                    |              |          | t |
| -   | а             | Does the cap prevent entry of foreign material into the well?                                                                                          | V            |          | T |
|     | b             | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                      | V            |          | t |
| -   | ~<br>C        | Is the well properly vented for equilibration of air pressure?                                                                                         |              |          | + |
| -   | d             | Is the survey point clearly marked on the inner casing?                                                                                                |              | -        | + |
| -   | u<br>0        | Is the depth of the well consistent with the original well log?                                                                                        | R            |          | + |
|     | t             | Is the cacing stable? (or does the nuc move easily when touched or can it be taken apart by hand                                                       |              |          | + |
|     | I             | due to lack of grout or use of slip couplings in construction)                                                                                         |              |          |   |
| 5   | Sampling: G   | roundwater Wells Only:                                                                                                                                 |              |          |   |
|     | а             | Does well recharge adequately when purged?                                                                                                             |              |          |   |
|     | b             | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                    |              |          |   |
|     | с             | Does the well require redevelopment (low flow, turbid)?                                                                                                |              |          |   |
| 6   | Based on yo   | ur professional judgement, is the well construction / location:                                                                                        |              |          |   |
|     |               | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                         | Ø            |          | T |
|     |               | and 2) comply with the applicable regulatory requirements?                                                                                             | V            |          | t |
|     |               | ctions as nooded by date:                                                                                                                              | -            |          | + |



| ject Location | : AMA AP-3, A, B and B'                                                                                                                                         | _   |    |   |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|---|
| rmit Number   | :                                                                                                                                                               | -   |    |   |
| Well ID       | : PZ-35                                                                                                                                                         | 4   |    |   |
| son Gauging   | Peter Argyakis                                                                                                                                                  | -   |    |   |
| Date          | : 2/8/2021                                                                                                                                                      | -   |    |   |
| Time          | : 12:01:00                                                                                                                                                      |     |    | _ |
|               | · · ·                                                                                                                                                           | Yes | No | _ |
| 1 Location Id | entification:                                                                                                                                                   |     |    | _ |
| а             | Is the well visible and accessible?                                                                                                                             |     |    |   |
| b             | Is the well properly identified with the correct well ID?                                                                                                       | Ø   |    |   |
| С             | Is the well in a high traffic area and does the well require protection from traffic?                                                                           | Ø   |    |   |
| d             | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              | Ø   |    |   |
| 2 Protective  | Casing:                                                                                                                                                         |     |    |   |
| а             | Is the protective casing free from apparent damage and able to be secured?                                                                                      | V   |    |   |
| b             | Is the casing free of degradation or deterioration?                                                                                                             | V   |    |   |
| с             | Does the casing have a functioning weep hole?                                                                                                                   | V   |    |   |
| d             | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | Ø   |    |   |
| 3 Surface Pag | ł                                                                                                                                                               |     |    |   |
| а             | Is the well pad in good condition (not cracked or broken)?                                                                                                      | V   |    |   |
| b             | Is the well pad sloped away from the protective casing?                                                                                                         | V   |    |   |
| с             | Is the well pad in complete contact with the protective casing?                                                                                                 | V   |    |   |
| d             | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          | V   |    |   |
| е             | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 | Ø   |    |   |
| 4 Internal Ca | sing                                                                                                                                                            |     |    | - |
| а             | Does the cap prevent entry of foreign material into the well?                                                                                                   | Ø   |    |   |
| b             | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                               | Ø   |    |   |
| с             | Is the well properly vented for equilibration of air pressure?                                                                                                  | V   |    |   |
| d             | Is the survey point clearly marked on the inner casing?                                                                                                         | Ø   |    |   |
| e             | Is the depth of the well consistent with the original well log?                                                                                                 | V   |    |   |
| f             | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | V   |    |   |
| 5 Sampling:   | Groundwater Wells Only:                                                                                                                                         |     |    | - |
| a             | Does well recharge adequately when purged?                                                                                                                      |     |    |   |
| b             | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             |     |    |   |
| с             | Does the well require redevelopment (low flow, turbid)?                                                                                                         |     |    |   |
| 6 Based on v  | our professional judgement, is the well construction / location:                                                                                                |     |    | - |
|               | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  | V   |    |   |
|               | and 2) comply with the applicable regulatory requirements?                                                                                                      | J   |    |   |
| 7 Corrective  | actions as needed, by date:                                                                                                                                     |     |    | - |
|               |                                                                                                                                                                 |     |    |   |
|               |                                                                                                                                                                 |     |    | _ |



| rmi  | it Number     |                                                                                                                                                                 | 1   |    |   |
|------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|---|
|      | Well ID:      | YAMW-1                                                                                                                                                          | 1   |    |   |
| rsoi | n Gauging:    | Peter Argyakis                                                                                                                                                  | 1   |    |   |
|      | Date:         | 2/8/2021                                                                                                                                                        | 1   |    |   |
|      | Time:         | 12:02:00                                                                                                                                                        | 1   |    |   |
|      |               |                                                                                                                                                                 | Yes | No |   |
| 1 I  | Location Ide  | ntification:                                                                                                                                                    |     |    |   |
| ć    | а             | Is the well visible and accessible?                                                                                                                             | Ø   |    |   |
| ł    | b             | Is the well properly identified with the correct well ID?                                                                                                       | Ø   |    |   |
| C    | с             | Is the well in a high traffic area and does the well require protection from traffic?                                                                           | V   |    |   |
| (    | d             | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              | Ø   |    |   |
| 2    | Protective C  | asing:                                                                                                                                                          |     |    |   |
| á    | а             | Is the protective casing free from apparent damage and able to be secured?                                                                                      | V   |    |   |
| ł    | b             | Is the casing free of degradation or deterioration?                                                                                                             | V   |    |   |
| C    | с             | Does the casing have a functioning weep hole?                                                                                                                   | V   |    |   |
| C    | d             | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | V   |    |   |
| 3 9  | Surface Pad   |                                                                                                                                                                 |     |    | - |
| ć    | а             | Is the well pad in good condition (not cracked or broken)?                                                                                                      | V   |    |   |
| ł    | b             | Is the well pad sloped away from the protective casing?                                                                                                         | V   |    |   |
| (    | с             | Is the well pad in complete contact with the protective casing?                                                                                                 | V   |    |   |
| (    | d             | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          | Ø   |    |   |
| e    | e             | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 | Ø   |    |   |
| 4    | Internal Casi | ng                                                                                                                                                              |     |    | - |
| ć    | а             | Does the cap prevent entry of foreign material into the well?                                                                                                   | V   |    |   |
| ł    | b             | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                               | V   |    |   |
| (    | с             | Is the well properly vented for equilibration of air pressure?                                                                                                  | V   |    |   |
| (    | d             | Is the survey point clearly marked on the inner casing?                                                                                                         | Ø   |    |   |
| e    | e             | Is the depth of the well consistent with the original well log?                                                                                                 | Ø   |    |   |
| f    | f             | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) |     |    |   |
| 5 9  | Sampling: G   | roundwater Wells Only:                                                                                                                                          |     |    | - |
| ć    | a             | Does well recharge adequately when purged?                                                                                                                      |     |    |   |
| ł    | b             | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             |     |    |   |
| (    | с             | Does the well require redevelopment (low flow, turbid)?                                                                                                         |     |    |   |
| 6 1  | Based on yo   | ur professional judgement, is the well construction / location:                                                                                                 | -   |    | - |
|      | ,<br>,        | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  | Ø   |    |   |
|      |               | and 2) comply with the applicable regulatory requirements?                                                                                                      | Ø   |    |   |
| 7 (  | Corrective a  | ctions as needed, by date:                                                                                                                                      |     |    | - |
|      |               |                                                                                                                                                                 | 1   |    |   |



|                                                                     |               |                                                                                                                                                                 | -      |    |   |
|---------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----|---|
| rm                                                                  | it Number:    |                                                                                                                                                                 | -      |    |   |
| Well ID<br>erson Gauging<br>Date<br>Time<br>1 Location Id<br>a<br>b |               | YGWC-36A                                                                                                                                                        | -      |    |   |
|                                                                     |               | Peter Argyakis                                                                                                                                                  | -      |    |   |
|                                                                     |               | 12:05:00                                                                                                                                                        | -      |    |   |
|                                                                     |               | 12.05.00                                                                                                                                                        |        |    |   |
| 1                                                                   | l ocation Ide | ntification                                                                                                                                                     | 163    | NO | + |
|                                                                     |               | Is the well visible and accessible?                                                                                                                             | ব      | п  | + |
| a<br>b<br>c                                                         |               | Is the well properly identified with the correct well ID?                                                                                                       |        |    | _ |
|                                                                     |               | Is the well in a high traffic area and does the well require protection from traffic?                                                                           |        |    | _ |
|                                                                     | ر<br>ما       | Is the drained around the well acceptable? (no standing water, nor is well leasted in obvious                                                                   |        |    | + |
|                                                                     | a             | drainage flow path)                                                                                                                                             | Ø      |    | _ |
| 2                                                                   | Protective C  | asing:                                                                                                                                                          |        |    | _ |
| i                                                                   | а             | Is the protective casing free from apparent damage and able to be secured?                                                                                      | Ø      |    |   |
|                                                                     | b             | Is the casing free of degradation or deterioration?                                                                                                             | Ø      |    |   |
|                                                                     | с             | Does the casing have a functioning weep hole?                                                                                                                   | Ø      |    |   |
|                                                                     | d             | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | Ø      |    |   |
| 3                                                                   | Surface Pad   |                                                                                                                                                                 |        |    |   |
| i                                                                   | а             | Is the well pad in good condition (not cracked or broken)?                                                                                                      | Ø      |    |   |
| 1                                                                   | b             | Is the well pad sloped away from the protective casing?                                                                                                         |        | Ø  |   |
|                                                                     | с             | Is the well pad in complete contact with the protective casing?                                                                                                 | V      |    |   |
|                                                                     | d             | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          | Ø      |    |   |
|                                                                     | e             | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 | Ø      |    |   |
| 4                                                                   | Internal Casi | ng                                                                                                                                                              |        |    | + |
|                                                                     | а             | Does the cap prevent entry of foreign material into the well?                                                                                                   | Ø      |    |   |
| 1                                                                   | b             | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                               | Ø      |    |   |
|                                                                     | c             | Is the well properly vented for equilibration of air pressure?                                                                                                  | V      |    |   |
|                                                                     | d             | Is the survey point clearly marked on the inner casing?                                                                                                         |        |    | - |
|                                                                     | ۵             | Is the denth of the well consistent with the original well log?                                                                                                 | -<br>- | П  | + |
| 1                                                                   | f             | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | Ø      |    |   |
| 5 1                                                                 | Sampling: G   | roundwater Wells Only:                                                                                                                                          |        |    | - |
|                                                                     | a             | Does well recharge adequately when purged?                                                                                                                      |        | п  | - |
|                                                                     | b             | If dedicated sampling equipment installed, is it in good condition and specified in the approved                                                                |        |    |   |
| -                                                                   |               | groundwater plan for the facility?                                                                                                                              |        |    | + |
| (                                                                   | с<br>         | Does the well require redevelopment (low flow, turbid)?                                                                                                         |        |    | _ |
| 6                                                                   | Based on yo   | ur protessional judgement, is the well construction / location:                                                                                                 |        |    | + |
| -                                                                   |               | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  |        |    | + |
|                                                                     |               | and 2) comply with the applicable regulatory requirements?                                                                                                      | Ø      |    | _ |
| 7                                                                   | Corrective a  | ctions as needed, by date:                                                                                                                                      |        |    |   |
|                                                                     |               |                                                                                                                                                                 |        |    |   |



| mit Num   | iber:                                                                                                                                                           | 1   |    |   |  |  |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|---|--|--|
| We        | II ID: YGWC-24SA                                                                                                                                                | -   |    |   |  |  |
| son Gauc  | aing: Peter Argyakis                                                                                                                                            |     |    |   |  |  |
| C         | Date: 2/8/2021                                                                                                                                                  | 1   |    |   |  |  |
| т         | ime: 12:35:00                                                                                                                                                   | 1   |    |   |  |  |
|           |                                                                                                                                                                 | Yes | No |   |  |  |
| 1 Locatio | Location Identification:<br>a Is the well visible and accessible?                                                                                               |     |    |   |  |  |
| а         | Is the well visible and accessible?                                                                                                                             | V   |    |   |  |  |
| b         | Is the well properly identified with the correct well ID?                                                                                                       | V   |    |   |  |  |
| с         | Is the well in a high traffic area and does the well require protection from traffic?                                                                           |     | Ø  |   |  |  |
| d         | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              | Ø   |    |   |  |  |
| 2 Protect | ive Casing:                                                                                                                                                     |     |    |   |  |  |
| а         | Is the protective casing free from apparent damage and able to be secured?                                                                                      | V   |    |   |  |  |
| b         | Is the casing free of degradation or deterioration?                                                                                                             | V   |    |   |  |  |
| с         | Does the casing have a functioning weep hole?                                                                                                                   | V   |    |   |  |  |
| d         | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | V   |    |   |  |  |
| 3 Surface | e Pad                                                                                                                                                           | Ì   |    |   |  |  |
| а         | Is the well pad in good condition (not cracked or broken)?                                                                                                      | Ø   |    |   |  |  |
| b         | Is the well pad sloped away from the protective casing?                                                                                                         |     | Ø  |   |  |  |
| с         | Is the well pad in complete contact with the protective casing?                                                                                                 | V   |    |   |  |  |
| d         | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          | Ø   |    |   |  |  |
| e         | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 | V   |    |   |  |  |
| 4 Interna | l Casing                                                                                                                                                        |     |    | - |  |  |
| а         | Does the cap prevent entry of foreign material into the well?                                                                                                   | V   |    |   |  |  |
| b         | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                               | V   |    |   |  |  |
| с         | Is the well properly vented for equilibration of air pressure?                                                                                                  | Ø   |    |   |  |  |
| d         | Is the survey point clearly marked on the inner casing?                                                                                                         | V   |    |   |  |  |
| е         | Is the depth of the well consistent with the original well log?                                                                                                 | V   |    |   |  |  |
| f         | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | Ø   |    |   |  |  |
| 5 Sampli  | ng: Groundwater Wells Only:                                                                                                                                     |     |    |   |  |  |
| а         | Does well recharge adequately when purged?                                                                                                                      |     |    |   |  |  |
| b         | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             |     |    |   |  |  |
| с         | Does the well require redevelopment (low flow, turbid)?                                                                                                         |     |    |   |  |  |
| 6 Based o | on your professional judgement, is the well construction / location:                                                                                            |     |    |   |  |  |
|           | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  | Ø   |    |   |  |  |
|           | and 2) comply with the applicable regulatory requirements?                                                                                                      | Ø   |    |   |  |  |
| 7 Correct | ive actions as needed, by date:                                                                                                                                 |     |    | _ |  |  |
|           |                                                                                                                                                                 |     |    | _ |  |  |



| mit Number               | :                                                                                                                                                               | 4   |     |   |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|---|
| Well ID                  | : PZ-24IA                                                                                                                                                       | _   |     |   |
| son Gauging              | Peter Argyakis                                                                                                                                                  |     |     |   |
| Date                     | : 2/8/2021                                                                                                                                                      | -   |     |   |
| Time                     | e: 12:47:00                                                                                                                                                     |     |     | - |
| 1 Location Id            | entification:                                                                                                                                                   | res | INO |   |
| 2                        | Is the well visible and accessible?                                                                                                                             | ন   |     |   |
| u<br>h                   | Is the well properly identified with the correct well ID?                                                                                                       |     |     |   |
| D<br>C                   | Is the well in a high traffic area and does the well require protection from traffic?                                                                           |     |     |   |
| d                        | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              | Ø   |     |   |
| 2 Protective             | Casing:                                                                                                                                                         |     |     |   |
| а                        | Is the protective casing free from apparent damage and able to be secured?                                                                                      | V   |     |   |
| b                        | Is the casing free of degradation or deterioration?                                                                                                             | V   |     |   |
| с                        | Does the casing have a functioning weep hole?                                                                                                                   | V   |     |   |
| d                        | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | V   |     |   |
| 3 Surface Pad            | k                                                                                                                                                               |     |     |   |
| а                        | Is the well pad in good condition (not cracked or broken)?                                                                                                      | V   |     |   |
| b                        | Is the well pad sloped away from the protective casing?                                                                                                         |     | V   |   |
| с                        | Is the well pad in complete contact with the protective casing?                                                                                                 | V   |     |   |
| d                        | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          | Ø   |     |   |
| е                        | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 | V   |     |   |
| <sup>4</sup> Internal Ca | sing                                                                                                                                                            |     |     |   |
| а                        | Does the cap prevent entry of foreign material into the well?                                                                                                   | V   |     |   |
| b                        | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                               | V   |     |   |
| с                        | Is the well properly vented for equilibration of air pressure?                                                                                                  | V   |     |   |
| d                        | Is the survey point clearly marked on the inner casing?                                                                                                         | V   |     |   |
| е                        | Is the depth of the well consistent with the original well log?                                                                                                 | V   |     |   |
| f                        | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | Ø   |     |   |
| 5 Sampling: (            | Groundwater Wells Only:                                                                                                                                         |     |     |   |
| а                        | Does well recharge adequately when purged?                                                                                                                      |     |     |   |
| b                        | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             |     |     |   |
| с                        | Does the well require redevelopment (low flow, turbid)?                                                                                                         |     |     |   |
| 6 Based on y             | our professional judgement, is the well construction / location:                                                                                                |     |     |   |
|                          | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  | V   |     |   |
|                          | and 2) comply with the applicable regulatory requirements?                                                                                                      | V   |     |   |
| 7 Corrective             | actions as needed, by date:                                                                                                                                     |     |     |   |
|                          |                                                                                                                                                                 |     |     | - |



| mit Number:           |                                                                                                                                                                 | -   |    |   |  |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|---|--|
| well ID:              | Peter Arovakis                                                                                                                                                  | -   |    |   |  |
| Son Gauging.<br>Date: | 2/8/2021                                                                                                                                                        | -   |    |   |  |
| Time                  | Time: 13:22:00                                                                                                                                                  |     |    |   |  |
|                       |                                                                                                                                                                 | Yes | No | - |  |
| 1 Location Ide        | entification:                                                                                                                                                   |     |    |   |  |
| а                     | Is the well visible and accessible?                                                                                                                             |     |    |   |  |
| b                     | Is the well properly identified with the correct well ID?                                                                                                       | V   |    |   |  |
| c                     | Is the well in a high traffic area and does the well require protection from traffic?                                                                           |     | Ø  |   |  |
| d                     | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              | Ø   |    |   |  |
| 2 Protective C        | lasing:                                                                                                                                                         |     |    |   |  |
| а                     | Is the protective casing free from apparent damage and able to be secured?                                                                                      | V   |    |   |  |
| b                     | Is the casing free of degradation or deterioration?                                                                                                             | V   |    |   |  |
| с                     | Does the casing have a functioning weep hole?                                                                                                                   | V   |    |   |  |
| d                     | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | Ø   |    |   |  |
| 3 Surface Pad         |                                                                                                                                                                 |     |    | - |  |
| а                     | Is the well pad in good condition (not cracked or broken)?                                                                                                      | Ø   |    |   |  |
| b                     | Is the well pad sloped away from the protective casing?                                                                                                         | V   |    |   |  |
| с                     | Is the well pad in complete contact with the protective casing?                                                                                                 | V   |    |   |  |
| d                     | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          | Ø   |    |   |  |
| e                     | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 | V   |    |   |  |
| 4 Internal Cas        | ing                                                                                                                                                             |     |    |   |  |
| а                     | Does the cap prevent entry of foreign material into the well?                                                                                                   | V   |    |   |  |
| b                     | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                               | Ø   |    |   |  |
| с                     | Is the well properly vented for equilibration of air pressure?                                                                                                  | V   |    |   |  |
| d                     | Is the survey point clearly marked on the inner casing?                                                                                                         | V   |    |   |  |
| e                     | Is the depth of the well consistent with the original well log?                                                                                                 | V   |    |   |  |
| f                     | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | Ø   |    |   |  |
| 5 Sampling: G         | iroundwater Wells Only:                                                                                                                                         |     |    |   |  |
| а                     | Does well recharge adequately when purged?                                                                                                                      |     |    |   |  |
| b                     | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             |     |    |   |  |
| с                     | Does the well require redevelopment (low flow, turbid)?                                                                                                         |     |    |   |  |
| 6 Based on yo         | our professional judgement, is the well construction / location:                                                                                                |     |    |   |  |
|                       | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  | Ø   |    |   |  |
|                       | and 2) comply with the applicable regulatory requirements?                                                                                                      | V   |    |   |  |
| 7 Corrective a        | ictions as needed, by date:                                                                                                                                     |     |    | _ |  |
|                       |                                                                                                                                                                 |     |    |   |  |



| mit N   | imber:                                                                                                                                                          | _   |        |   |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|---|
| V       | /ell ID: YGWA-211                                                                                                                                               | _   |        |   |
| son Ga  | uging: Peter Argyakis                                                                                                                                           | _   |        |   |
|         | Date: 2/8/2021                                                                                                                                                  | _   |        |   |
|         | 13:24:00                                                                                                                                                        | Voc | No     | - |
| 1 Loca  | ion Identification:                                                                                                                                             | 163 | INU    |   |
| a       | Is the well visible and accessible?                                                                                                                             |     |        |   |
| u<br>b  | Is the well properly identified with the correct well ID?                                                                                                       |     |        |   |
| C C     | Is the well in a high traffic area and does the well require protection from traffic?                                                                           |     | -<br>- |   |
| d       | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              | Ø   |        |   |
| 2 Prot  | ective Casing:                                                                                                                                                  |     |        |   |
| а       | Is the protective casing free from apparent damage and able to be secured?                                                                                      | V   |        |   |
| b       | Is the casing free of degradation or deterioration?                                                                                                             | V   |        |   |
| с       | Does the casing have a functioning weep hole?                                                                                                                   | V   |        |   |
| d       | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | V   |        |   |
| 3 Surfa | ce Pad                                                                                                                                                          |     |        |   |
| а       | Is the well pad in good condition (not cracked or broken)?                                                                                                      | V   |        |   |
| b       | Is the well pad sloped away from the protective casing?                                                                                                         | V   |        |   |
| с       | Is the well pad in complete contact with the protective casing?                                                                                                 | V   |        |   |
| d       | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          | V   |        |   |
| е       | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 | V   |        |   |
| 4 Inter | nal Casing                                                                                                                                                      |     |        |   |
| а       | Does the cap prevent entry of foreign material into the well?                                                                                                   | V   |        |   |
| b       | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                               | V   |        |   |
| с       | Is the well properly vented for equilibration of air pressure?                                                                                                  | V   |        |   |
| d       | Is the survey point clearly marked on the inner casing?                                                                                                         | V   |        |   |
| е       | Is the depth of the well consistent with the original well log?                                                                                                 | V   |        |   |
| f       | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | Ø   |        |   |
| 5 Sam   | oling: Groundwater Wells Only:                                                                                                                                  |     |        |   |
| а       | Does well recharge adequately when purged?                                                                                                                      |     |        |   |
| b       | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             |     |        |   |
| с       | Does the well require redevelopment (low flow, turbid)?                                                                                                         |     |        |   |
| 6 Base  | d on your professional judgement, is the well construction / location:                                                                                          |     |        |   |
|         | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  | V   |        |   |
|         | and 2) comply with the applicable regulatory requirements?                                                                                                      | V   |        |   |
| 7 Corr  | ective actions as needed, by date:                                                                                                                              |     |        | - |
|         | hy when corrective actions are needed:                                                                                                                          |     |        |   |



|                      |                                                                                                                                                                 | -   |    |  |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|--|
| mit Numbe<br>Wall II | P7.055                                                                                                                                                          | -   |    |  |
|                      | Peter Arovakis                                                                                                                                                  | -   |    |  |
| Date                 | • 2/8/2021                                                                                                                                                      | -   |    |  |
| Time                 | 13:40:00                                                                                                                                                        |     |    |  |
|                      |                                                                                                                                                                 | Yes | No |  |
| 1 Location lo        | lentification:                                                                                                                                                  |     |    |  |
| а                    | Is the well visible and accessible?                                                                                                                             | Ø   |    |  |
| b                    | Is the well properly identified with the correct well ID?                                                                                                       | Ø   |    |  |
| с                    | Is the well in a high traffic area and does the well require protection from traffic?                                                                           |     | Ø  |  |
| d                    | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              | Ø   |    |  |
| 2 Protective         | Casing:                                                                                                                                                         |     |    |  |
| а                    | Is the protective casing free from apparent damage and able to be secured?                                                                                      | V   |    |  |
| b                    | Is the casing free of degradation or deterioration?                                                                                                             | V   |    |  |
| с                    | Does the casing have a functioning weep hole?                                                                                                                   | V   |    |  |
| d                    | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | V   |    |  |
| 3 Surface Pa         | d                                                                                                                                                               |     |    |  |
| а                    | Is the well pad in good condition (not cracked or broken)?                                                                                                      | V   |    |  |
| b                    | Is the well pad sloped away from the protective casing?                                                                                                         | V   |    |  |
| с                    | Is the well pad in complete contact with the protective casing?                                                                                                 | V   |    |  |
| d                    | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          | Ø   |    |  |
| e                    | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 | V   |    |  |
| 4 Internal Ca        | ising                                                                                                                                                           | Ì   |    |  |
| а                    | Does the cap prevent entry of foreign material into the well?                                                                                                   | Ø   |    |  |
| b                    | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                               | V   |    |  |
| с                    | Is the well properly vented for equilibration of air pressure?                                                                                                  | Ø   |    |  |
| d                    | Is the survey point clearly marked on the inner casing?                                                                                                         | V   |    |  |
| e                    | Is the depth of the well consistent with the original well log?                                                                                                 | Ø   |    |  |
| f                    | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | Ø   |    |  |
| 5 Sampling:          | Groundwater Wells Only:                                                                                                                                         |     |    |  |
| а                    | Does well recharge adequately when purged?                                                                                                                      |     |    |  |
| b                    | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             |     |    |  |
| с                    | Does the well require redevelopment (low flow, turbid)?                                                                                                         |     |    |  |
| 6 Based on y         | our professional judgement, is the well construction / location:                                                                                                |     |    |  |
|                      | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  | V   |    |  |
|                      | and 2) comply with the applicable regulatory requirements?                                                                                                      | V   |    |  |
| 7 Corrective         | actions as needed, by date:                                                                                                                                     |     |    |  |
|                      |                                                                                                                                                                 |     |    |  |



| rmit Nu  | nber:                                                                                                                                                           | 1   |    |   |  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|---|--|
| W        | ell ID: YGWA-5I                                                                                                                                                 | 1   |    |   |  |
| rson Gau | iqing: Peter Argyakis                                                                                                                                           | 1   |    |   |  |
|          | Date: 2/8/2021                                                                                                                                                  | ]   |    |   |  |
|          | Time: 13:43:00                                                                                                                                                  |     |    |   |  |
|          |                                                                                                                                                                 | Yes | No |   |  |
| 1 Locat  | ocation Identification:                                                                                                                                         |     |    |   |  |
| а        | Is the well visible and accessible?                                                                                                                             | V   |    |   |  |
| b        | Is the well properly identified with the correct well ID?                                                                                                       | V   |    |   |  |
| с        | Is the well in a high traffic area and does the well require protection from traffic?                                                                           |     | Ø  |   |  |
| d        | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              | Ø   |    |   |  |
| 2 Prote  | tive Casing:                                                                                                                                                    |     |    |   |  |
| а        | Is the protective casing free from apparent damage and able to be secured?                                                                                      | V   |    |   |  |
| b        | Is the casing free of degradation or deterioration?                                                                                                             | V   |    |   |  |
| с        | Does the casing have a functioning weep hole?                                                                                                                   | V   |    |   |  |
| d        | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | V   |    |   |  |
| 3 Surfac | e Pad                                                                                                                                                           |     |    |   |  |
| а        | Is the well pad in good condition (not cracked or broken)?                                                                                                      | V   |    |   |  |
| b        | Is the well pad sloped away from the protective casing?                                                                                                         | V   |    |   |  |
| с        | Is the well pad in complete contact with the protective casing?                                                                                                 | V   |    |   |  |
| d        | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          | V   |    |   |  |
| е        | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 | V   |    |   |  |
| 4 Intern | al Casing                                                                                                                                                       |     |    |   |  |
| а        | Does the cap prevent entry of foreign material into the well?                                                                                                   | Ø   |    |   |  |
| b        | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                               | V   |    |   |  |
| с        | Is the well properly vented for equilibration of air pressure?                                                                                                  | Ø   |    |   |  |
| d        | Is the survey point clearly marked on the inner casing?                                                                                                         | V   |    |   |  |
| е        | Is the depth of the well consistent with the original well log?                                                                                                 | V   |    |   |  |
| f        | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | Ø   |    |   |  |
| 5 Samp   | ing: Groundwater Wells Only:                                                                                                                                    |     |    | - |  |
| a        | Does well recharge adequately when purged?                                                                                                                      |     |    |   |  |
| b        | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             |     |    |   |  |
| с        | Does the well require redevelopment (low flow, turbid)?                                                                                                         |     |    |   |  |
| 6 Based  | on your professional judgement, is the well construction / location:                                                                                            |     |    | - |  |
|          | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  | V   |    |   |  |
|          | and 2) comply with the applicable regulatory reguirements?                                                                                                      | V   |    |   |  |
| 7 Corre  | ctive actions as needed, by date:                                                                                                                               |     |    | - |  |
|          |                                                                                                                                                                 |     |    |   |  |



| mit Nu   | mber                                                                                                                                                            | 1   |    |   |  |  |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|---|--|--|
| W        | Yowa-5D                                                                                                                                                         | 1   |    |   |  |  |
| son Ga   | ugina: Peter Argyakis                                                                                                                                           | 1   |    |   |  |  |
| Jon Ga   | Date: 2/8/2021                                                                                                                                                  | 1   |    |   |  |  |
|          | Time: 13:44:00                                                                                                                                                  | 1   |    |   |  |  |
|          | L                                                                                                                                                               | Yes | No |   |  |  |
| 1 Locat  | Location Identification:<br>a Is the well visible and accessible?                                                                                               |     |    |   |  |  |
| а        | Is the well visible and accessible?                                                                                                                             | Ø   |    |   |  |  |
| b        | Is the well properly identified with the correct well ID?                                                                                                       | Ø   |    |   |  |  |
| с        | Is the well in a high traffic area and does the well require protection from traffic?                                                                           |     | Ø  |   |  |  |
| d        | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              | Ø   |    |   |  |  |
| 2 Prote  | ctive Casing:                                                                                                                                                   |     |    |   |  |  |
| а        | Is the protective casing free from apparent damage and able to be secured?                                                                                      | V   |    |   |  |  |
| b        | Is the casing free of degradation or deterioration?                                                                                                             | V   |    |   |  |  |
| с        | Does the casing have a functioning weep hole?                                                                                                                   | V   |    |   |  |  |
| d        | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | Ø   |    |   |  |  |
| 3 Surfa  | ce Pad                                                                                                                                                          |     |    |   |  |  |
| а        | Is the well pad in good condition (not cracked or broken)?                                                                                                      | Ø   |    |   |  |  |
| b        | Is the well pad sloped away from the protective casing?                                                                                                         | V   |    |   |  |  |
| с        | Is the well pad in complete contact with the protective casing?                                                                                                 | V   |    |   |  |  |
| d        | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          | Ø   |    |   |  |  |
| e        | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 | V   |    |   |  |  |
| 4 Interi | nal Casing                                                                                                                                                      |     |    |   |  |  |
| а        | Does the cap prevent entry of foreign material into the well?                                                                                                   | V   |    |   |  |  |
| b        | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                               | V   |    |   |  |  |
| с        | Is the well properly vented for equilibration of air pressure?                                                                                                  | V   |    |   |  |  |
| d        | Is the survey point clearly marked on the inner casing?                                                                                                         | V   |    |   |  |  |
| е        | Is the depth of the well consistent with the original well log?                                                                                                 | V   |    |   |  |  |
| f        | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | Ø   |    |   |  |  |
| 5 Samp   | ling: Groundwater Wells Only:                                                                                                                                   |     |    | - |  |  |
| а        | Does well recharge adequately when purged?                                                                                                                      |     |    |   |  |  |
| b        | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             |     |    |   |  |  |
| с        | Does the well require redevelopment (low flow, turbid)?                                                                                                         |     |    |   |  |  |
| 6 Based  | d on your professional judgement, is the well construction / location:                                                                                          |     |    |   |  |  |
|          | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  | V   |    |   |  |  |
|          | and 2) comply with the applicable regulatory requirements?                                                                                                      | Ø   |    |   |  |  |
| 7 Corre  | ective actions as needed, by date:                                                                                                                              |     |    |   |  |  |
|          |                                                                                                                                                                 |     |    | _ |  |  |



| mit Number    |                                                                                                                                                                 | 1                 |  |  |  |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|--|--|
| Well ID       | PZ-04S                                                                                                                                                          | -                 |  |  |  |
| son Gauging   | Peter Argyakis                                                                                                                                                  |                   |  |  |  |
| Date          | : 2/8/2021                                                                                                                                                      |                   |  |  |  |
| Time          | : 13:47:00                                                                                                                                                      | ]                 |  |  |  |
|               |                                                                                                                                                                 |                   |  |  |  |
| 1 Location Id | entification:                                                                                                                                                   |                   |  |  |  |
| а             | Is the well visible and accessible?                                                                                                                             | Ø                 |  |  |  |
| b             | Is the well properly identified with the correct well ID?                                                                                                       | $\mathbf{\nabla}$ |  |  |  |
| с             | Is the well in a high traffic area and does the well require protection from traffic?                                                                           |                   |  |  |  |
| d             | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              | Ø                 |  |  |  |
| 2 Protective  | Casing:                                                                                                                                                         |                   |  |  |  |
| а             | Is the protective casing free from apparent damage and able to be secured?                                                                                      | V                 |  |  |  |
| b             | Is the casing free of degradation or deterioration?                                                                                                             | V                 |  |  |  |
| с             | Does the casing have a functioning weep hole?                                                                                                                   | V                 |  |  |  |
| d             | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | V                 |  |  |  |
| 3 Surface Pac | ł                                                                                                                                                               |                   |  |  |  |
| а             | Is the well pad in good condition (not cracked or broken)?                                                                                                      | V                 |  |  |  |
| b             | Is the well pad sloped away from the protective casing?                                                                                                         | V                 |  |  |  |
| с             | Is the well pad in complete contact with the protective casing?                                                                                                 | V                 |  |  |  |
| d             | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          | V                 |  |  |  |
| e             | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 | Ø                 |  |  |  |
| 4 Internal Ca | sing                                                                                                                                                            |                   |  |  |  |
| а             | Does the cap prevent entry of foreign material into the well?                                                                                                   | V                 |  |  |  |
| b             | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                               | V                 |  |  |  |
| с             | Is the well properly vented for equilibration of air pressure?                                                                                                  | V                 |  |  |  |
| d             | Is the survey point clearly marked on the inner casing?                                                                                                         | V                 |  |  |  |
| e             | Is the depth of the well consistent with the original well log?                                                                                                 | V                 |  |  |  |
| f             | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | Q                 |  |  |  |
| 5 Sampling: ( | Groundwater Wells Only:                                                                                                                                         |                   |  |  |  |
| а             | Does well recharge adequately when purged?                                                                                                                      |                   |  |  |  |
| b             | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             |                   |  |  |  |
| с             | Does the well require redevelopment (low flow, turbid)?                                                                                                         |                   |  |  |  |
| 6 Based on y  | our professional judgement, is the well construction / location:                                                                                                |                   |  |  |  |
|               | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  | V                 |  |  |  |
|               | and 2) comply with the applicable regulatory requirements?                                                                                                      | V                 |  |  |  |
| 7 Corrective  | actions as needed, by date:                                                                                                                                     |                   |  |  |  |
|               |                                                                                                                                                                 |                   |  |  |  |



|                         | ct Location:  | AMA AP-3, A, B and B                                                                                                                                   | -   |        |   |
|-------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------|---|
| rm                      | it Number:    |                                                                                                                                                        | -   |        |   |
|                         | Well ID:      | YGWA-4I                                                                                                                                                | -   |        |   |
| 'SO                     | n Gauging:    | 2 (8/2021                                                                                                                                              | -   |        |   |
|                         | Date:         | 13:49:00                                                                                                                                               | -   |        |   |
| 1 Location Id<br>a<br>b |               | 15.45.00                                                                                                                                               |     |        |   |
| 1                       | Location Ide  | ntification:                                                                                                                                           | 163 | NO     |   |
| '                       |               | Is the well visible and accessible?                                                                                                                    |     |        | - |
| -                       | a<br>b        | Is the well properly identified with the correct well ID?                                                                                              |     |        | - |
| -                       | о<br>С        | Is the well in a high traffic area and does the well require protection from traffic?                                                                  |     | L<br>N | - |
| -                       | ر<br>م        | Is the drained a round the well accentable? (no standing water, nor is well leasted in obvious                                                         |     |        | - |
|                         | a             | drainage flow path)                                                                                                                                    | ☑   |        |   |
| 2                       | Protective C  | asing:                                                                                                                                                 |     |        |   |
|                         | а             | Is the protective casing free from apparent damage and able to be secured?                                                                             | Ø   |        |   |
|                         | b             | Is the casing free of degradation or deterioration?                                                                                                    | Ø   |        |   |
|                         | с             | Does the casing have a functioning weep hole?                                                                                                          | Ø   |        |   |
|                         | d             | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                        | V   |        |   |
| 3                       | Surface Pad   |                                                                                                                                                        |     |        |   |
|                         | а             | Is the well pad in good condition (not cracked or broken)?                                                                                             | Ø   |        |   |
|                         | b             | Is the well pad sloped away from the protective casing?                                                                                                | Ø   |        |   |
|                         | с             | Is the well pad in complete contact with the protective casing?                                                                                        | V   |        |   |
|                         | d             | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on) | Ø   |        |   |
| -                       | e             | Is the pad surface clean (not covered with sediment or debris)?                                                                                        | V   |        | - |
| 4                       | Internal Casi | inα                                                                                                                                                    |     |        | 1 |
|                         | а             | Does the cap prevent entry of foreign material into the well?                                                                                          | V   |        | - |
|                         | b             | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                      | V   |        | + |
|                         | c             | Is the well properly vented for equilibration of air pressure?                                                                                         | Ø   |        | - |
|                         | d             | Is the survey point clearly marked on the inner casing?                                                                                                | ন   | п      | - |
| -                       | <u> </u>      | Is the depth of the well consistent with the original well log?                                                                                        |     | -      | + |
|                         | t             | Is the cacing stable? (or does the pue move easily when touched or can it be taken apart by hand                                                       |     | -      | - |
|                         | 1             | due to lack of grout or use of slip couplings in construction)                                                                                         | Ø   |        |   |
| 5                       | Sampling: G   | roundwater Wells Only:                                                                                                                                 |     |        | _ |
|                         | а             | Does well recharge adequately when purged?                                                                                                             |     |        |   |
|                         | b             | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                    |     |        |   |
|                         | с             | Does the well require redevelopment (low flow, turbid)?                                                                                                |     |        |   |
| 6                       | Based on yo   | ur professional judgement, is the well construction / location:                                                                                        |     |        |   |
|                         |               | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                         | V   |        |   |
|                         |               | and 2) comply with the applicable regulatory requirements?                                                                                             | Ø   |        | 1 |
|                         | Carrier       | ctions as needed, by date:                                                                                                                             |     |        | 1 |



| lec                                      | ct Location:  | AMA R6 CCR Landfill                                                                                                                                    | _   |    |   |
|------------------------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|---|
| rm                                       | it Number:    |                                                                                                                                                        | -   |    |   |
| Well ID<br>erson Gauging<br>Date<br>Time |               | YGWC-42                                                                                                                                                | -   |    |   |
|                                          |               | Peter Argyakis                                                                                                                                         | -   |    |   |
|                                          |               |                                                                                                                                                        | -   |    |   |
|                                          |               | 05.26.00                                                                                                                                               |     |    |   |
| 1 Location Id                            |               | ntification                                                                                                                                            | Tes | NO |   |
| '                                        |               |                                                                                                                                                        |     |    | - |
| a<br>b<br>c<br>d                         |               | Is the well visible and accessible?                                                                                                                    |     |    | _ |
|                                          |               | Is the well properly identified with the correct well b?                                                                                               |     |    | - |
| -                                        | с             | Is the drained around the well acceptable? (no standing water, nor is well leasted in obvious                                                          |     |    |   |
|                                          | d             | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                     |     |    |   |
| 2                                        | Protective C  | asing:                                                                                                                                                 |     |    |   |
|                                          | а             | Is the protective casing free from apparent damage and able to be secured?                                                                             | V   |    |   |
| Ł                                        | b             | Is the casing free of degradation or deterioration?                                                                                                    | Ø   |    |   |
|                                          | с             | Does the casing have a functioning weep hole?                                                                                                          | V   |    |   |
|                                          | d             | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                        | Ø   |    |   |
| 3                                        | Surface Pad   |                                                                                                                                                        |     |    |   |
|                                          | а             | Is the well pad in good condition (not cracked or broken)?                                                                                             | V   |    |   |
|                                          | b             | Is the well pad sloped away from the protective casing?                                                                                                |     | V  |   |
|                                          | с             | Is the well pad in complete contact with the protective casing?                                                                                        | V   |    |   |
|                                          | d             | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on) | Ø   |    |   |
|                                          | е             | Is the pad surface clean (not covered with sediment or debris)?                                                                                        | Ø   |    |   |
| 4                                        | Internal Casi | ing                                                                                                                                                    |     |    |   |
|                                          | а             | Does the cap prevent entry of foreign material into the well?                                                                                          | V   |    | 1 |
|                                          | b             | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                      | V   |    | 1 |
|                                          | C             | Is the well properly vented for equilibration of air pressure?                                                                                         | V   |    |   |
|                                          | d             | Is the survey point clearly marked on the inner casing?                                                                                                |     |    | + |
|                                          | <u> </u>      | Is the depth of the well consistent with the original well log?                                                                                        |     |    | + |
|                                          | f             | Is the casing stable? (or does the pyc move easily when touched or can it be taken apart by hand                                                       |     |    | + |
|                                          | ·             | due to lack of grout or use of slip couplings in construction)                                                                                         | ☑   |    |   |
| 5                                        | Sampling: G   | roundwater Wells Only:                                                                                                                                 |     |    |   |
|                                          | а             | Does well recharge adequately when purged?                                                                                                             | Ø   |    |   |
|                                          | b             | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                    | Ø   |    |   |
|                                          | с             | Does the well require redevelopment (low flow, turbid)?                                                                                                |     | Ø  |   |
| 6                                        | Based on yo   | ur professional judgement, is the well construction / location:                                                                                        |     |    |   |
|                                          |               | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                         | V   |    |   |
|                                          |               | and 2) comply with the applicable regulatory requirements?                                                                                             | V   |    |   |
| 7                                        | Corrective a  | ctions as needed, by date:                                                                                                                             | -   |    | + |
|                                          |               |                                                                                                                                                        |     |    |   |
|                                          |               |                                                                                                                                                        |     |    |   |

March 2021 Event



| Client:       |          |                       |                            | Georgia Power   |          |  |  |  |  |  |
|---------------|----------|-----------------------|----------------------------|-----------------|----------|--|--|--|--|--|
| Project Locat | ion:     | AMA AP-3, A, B and B' |                            |                 |          |  |  |  |  |  |
| Date:         |          |                       | 3/2/2021<br>Peter Argyakis |                 |          |  |  |  |  |  |
| Sampler:      |          |                       |                            |                 |          |  |  |  |  |  |
| Equipment:    |          | water probe           |                            |                 |          |  |  |  |  |  |
| Well          | Date     | Time                  | Depth to<br>Water (ft)     | Well Depth (ft) | Comments |  |  |  |  |  |
| YGWA-5D       | 3/2/2021 | 08:05:00              | 21.88                      | 129.13          |          |  |  |  |  |  |
| YGWA-5I       | 3/2/2021 | 08:09:00              | 18.19                      | 58.94           |          |  |  |  |  |  |
| PZ-05S        | 3/2/2021 | 08:11:00              | 18.14                      | 41.94           |          |  |  |  |  |  |
| PZ-04S        | 3/2/2021 | 08:19:00              | 23.74                      | 33.33           |          |  |  |  |  |  |
| YGWA-4I       | 3/2/2021 | 08:21:00              | 22.12                      | 48.81           |          |  |  |  |  |  |
| YGWA-20S      | 3/2/2021 | 08:32:00              | 11.28                      | 29.52           |          |  |  |  |  |  |
| YGWA-21I      | 3/2/2021 | 08:39:00              | 31.10                      | 79.90           |          |  |  |  |  |  |
| YGWA-6I       | 3/2/2021 | 09:03:00              | 18.25                      | 69.03           |          |  |  |  |  |  |
| YGWA-6S       | 3/2/2021 | 09:05:00              | 17.87                      | 39.87           |          |  |  |  |  |  |
| PZ-06D        | 3/2/2021 | 09:07:00              | 21.22                      | 134.02          |          |  |  |  |  |  |
| PZ-48         | 3/2/2021 | 09:11:00              | 19.35                      | 58.73           |          |  |  |  |  |  |
| YGWC-49       | 3/2/2021 | 09:18:00              | 31.50                      | 78.53           |          |  |  |  |  |  |
| PZ-24IA       | 3/2/2021 | 09:27:00              | 27.68                      | 89.85           |          |  |  |  |  |  |
| YGWC-<br>24SA | 3/2/2021 | 09:29:00              | 27.45                      | 57.00           |          |  |  |  |  |  |
| YAMW-1        | 3/2/2021 | 09:31:00              | 10.80                      | 69.93           |          |  |  |  |  |  |
| PZ-35         | 3/2/2021 | 09:35:00              | 11.14                      | 50.01           |          |  |  |  |  |  |



| Client:       |          | Georgia Power       |                        |                  |          |  |  |
|---------------|----------|---------------------|------------------------|------------------|----------|--|--|
| Project Locat | ion:     | AMA R6 CCR Landfill |                        |                  |          |  |  |
| Date:         |          |                     |                        | 3/2/2021         |          |  |  |
| Sampler:      |          |                     |                        | Katie Pupkiewicz |          |  |  |
| Equipment:    |          |                     |                        |                  |          |  |  |
| Well          | Date     | Time                | Depth to<br>Water (ft) | Well Depth (ft)  | Comments |  |  |
| YAMW-5        | 3/2/2021 | 08:40:00            | 13.03                  | 90.34            |          |  |  |
| YGWC-38       | 3/2/2021 | 08:43:00            | 30.42                  | 50.59            |          |  |  |
| PZ-37         | 3/2/2021 | 08:49:00            | 11.93                  | 49.78            |          |  |  |
| YGWA-39       | 3/2/2021 | 08:58:00            | 16.66                  | 68.59            |          |  |  |
| YGWA-40       | 3/2/2021 | 09:05:00            | 22.39                  | 48.23            |          |  |  |
| YAMW-4        | 3/2/2021 | 09:09:00            | 30.32                  | 96.55            |          |  |  |
| YGWC-41       | 3/2/2021 | 09:10:00            | 26.88                  | 67.32            |          |  |  |
| YAMW-2        | 3/2/2021 | 09:15:00            | 19.75                  | 46.48            |          |  |  |
| YAMW-3        | 3/2/2021 | 09:25:00            | 34.58                  | 91.44            |          |  |  |
| YGWC-42       | 3/2/2021 | 09:26:00            | 27.54                  | 59.76            |          |  |  |
| PZ-51         | 3/2/2021 | 09:33:00            | 6.98                   | 36.00            |          |  |  |
| YGWC-43       | 3/2/2021 | 09:35:00            | 16.15                  | 79.66            |          |  |  |



Page 1 of 1

| Client:                 |          | Georgia Power |                        |                     |          |  |  |
|-------------------------|----------|---------------|------------------------|---------------------|----------|--|--|
| Project Locat           | ion:     |               |                        | AMA R6 CCR Landfill |          |  |  |
| Date:                   |          | 3/2/2021      |                        |                     |          |  |  |
| Sampler: Peter Argyakis |          |               |                        |                     |          |  |  |
| Equipment:              |          |               | water probe            |                     |          |  |  |
| Well                    | Date     | Time          | Depth to<br>Water (ft) | Well Depth (ft)     | Comments |  |  |
| YGWC-36A                | 3/2/2021 | 09:37:00      | 10.02                  | 51.20               |          |  |  |



Page 1 of 1

| Client:       |          |          |                        | Georgia Power        |          |  |  |  |
|---------------|----------|----------|------------------------|----------------------|----------|--|--|--|
| Project Locat | ion:     |          |                        | AMA AP-3, A, B and B |          |  |  |  |
| Date:         |          |          |                        | 3/2/2021             |          |  |  |  |
| Sampler:      |          |          |                        | Katie Pupkiewicz     |          |  |  |  |
| Equipment:    |          |          | -                      |                      |          |  |  |  |
| Well          | Date     | Time     | Depth to<br>Water (ft) | Well Depth (ft)      | Comments |  |  |  |
| YGWA-18S      | 3/2/2021 | 08:16:00 | 18.94                  | 39.97                |          |  |  |  |
| YGWA-18I      | 3/2/2021 | 08:17:00 | 22.41                  | 79.97                |          |  |  |  |
| YGWA-17S      | 3/2/2021 | 08:24:00 | 08:24:00 11.38 39.85   |                      |          |  |  |  |
| YGWC-23S      | 3/2/2021 | 08:52:00 | 16.59                  | 38.91                |          |  |  |  |

Project Plant Yates

Field Staff: Becky Steever/Katie Pupkiewicz/Peter Argyrakis/Jake Swanson

# Instrument Calibration

Date: 3/01/21 Time: 11:00

| Parameter    | Units        | Standard | SmarTROLL SN<br>518784 | SmarTROLL SN<br>613960 | SmarTROLL SN<br>532229 | SmarTROLL SN<br>519017 |
|--------------|--------------|----------|------------------------|------------------------|------------------------|------------------------|
| DO           | % saturation | 100      | 100                    | 100                    | 100                    | NA                     |
| Conductivity | us/cm        | 8000     | 8000                   | 8000                   | 8000                   | NA                     |
| pН           | S.U.         | 4.00     | 4.00                   | 4.00                   | 4.00                   | NA                     |
| pН           | S.U.         | 7.00     | 7.00                   | 7.00                   | 7.00                   | NA                     |
| pН           | S.U.         | 10.00    | 10.00                  | 10.00                  | 10.00                  | NA                     |
| ORP          | mV           | 235.4    | 235.4                  | 235.4                  | 235.4                  | NA                     |

|                       |       | •                       |                         |                         |                         |
|-----------------------|-------|-------------------------|-------------------------|-------------------------|-------------------------|
| Turbidity<br>Standard | Units | LaMotte<br>SN 8140-2616 | LaMotte<br>SN 3764-4013 | LaMotte<br>SN 1505-2219 | LaMotte<br>SN 1143-1319 |
| 0.0                   | NTU   | 0.00                    | 0.00                    | 0.00                    | NA                      |
| 10.0                  | NTU   | 10.00                   | 10.00                   | 10.00                   | NA                      |

### Notes:

DO - Dissolved Oxygen; us/cm - microsiemens/centimeter; ORP - oxidation-reduction potential; mV - millivolts; NTU - Nphelometric Turbidity Units; NC - Not calibrated

Quick Cal solution standard is dependant on temperature and will fluctuate

Project Plant Yates

Field Staff: Becky Steever/Katie Pupkiewicz/Peter Argyrakis/Jake Swanson

## Instrument Calibration

Date: 3/02/21 Time: 10:00

| Parameter    | Units        | Standard | SmarTROLL SN<br>518784 | SmarTROLL SN<br>613960 | SmarTROLL SN<br>532229 | SmarTROLL SN<br>519017 |
|--------------|--------------|----------|------------------------|------------------------|------------------------|------------------------|
| DO           | % saturation | 100      | 100                    | 100                    | 100                    | NA                     |
| Conductivity | us/cm        | 8000     | 8000                   | 8000                   | 8000                   | NA                     |
| pН           | S.U.         | 4.00     | 4.00                   | 4.00                   | 4.00                   | NA                     |
| рН           | S.U.         | 7.00     | 7.00                   | 7.00                   | 7.00                   | NA                     |
| pН           | S.U.         | 10.00    | 10.00                  | 10.00                  | 10.00                  | NA                     |
| ORP          | mV           | 232.0    | 232.0                  | 232.0                  | 232.0                  | NA                     |

| Turbidity<br>Standard | Units | LaMotte<br>SN 8140-2616 | LaMotte<br>SN 3764-4013 | LaMotte<br>SN 1505-2219 | LaMotte<br>SN 1143-1319 |
|-----------------------|-------|-------------------------|-------------------------|-------------------------|-------------------------|
| 0.0                   | NTU   | 0.00                    | 0.00                    | 0.00                    | NA                      |
| 10.0                  | NTU   | 10.00                   | 10.00                   | 10.00                   | NA                      |

#### Notes:

DO - Dissolved Oxygen; us/cm - microsiemens/centimeter; ORP - oxidation-reduction potential; mV - millivolts; NTU - Nphelometric Turbidity Units; NC - Not calibrated

Quick Cal solution standard is dependant on temperature and will fluctuate

Project Plant Yates

Field Staff: Becky Steever/Katie Pupkiewicz/Peter Argyrakis/Jake Swanson

| Instrument | Calibration |
|------------|-------------|
|            |             |

| Date: | 3/03/21 | Time: | 07:45 |
|-------|---------|-------|-------|
|       |         |       |       |

| Parameter    | Units        | Standard | SmarTROLL SN<br>518784 | SmarTROLL SN<br>613960 | SmarTROLL SN<br>532229 | SmarTROLL SN<br>519017 |
|--------------|--------------|----------|------------------------|------------------------|------------------------|------------------------|
| DO           | % saturation | 100      | 100                    | 100                    | 100                    | 100                    |
| Conductivity | us/cm        | 8000     | 8000                   | 8000                   | 8000                   | 8000                   |
| pН           | S.U.         | 4.00     | 4.00                   | 4.00                   | 4.00                   | 4.00                   |
| pН           | S.U.         | 7.00     | 7.00                   | 7.00                   | 7.00                   | 7.00                   |
| pН           | S.U.         | 10.00    | 10.00                  | 10.00                  | 10.00                  | 10.00                  |
| ORP          | mV           | 232.0    | 232.0                  | 232.0                  | 232.0                  | 232.0                  |

| Turbidity<br>Standard | Units | LaMotte<br>SN 8140-2616 | LaMotte<br>SN 3764-4013 | LaMotte<br>SN 1505-2219 | LaMotte<br>SN 1143-1319 |
|-----------------------|-------|-------------------------|-------------------------|-------------------------|-------------------------|
| 0.0                   | NTU   | 0.00                    | 0.00                    | 0.00                    | 0.00                    |
| 10.0                  | NTU   | 10.00                   | 10.00                   | 10.00                   | 10.00                   |

## Date: 3/03/21 Time: Midday

| Parameter    | Units        | Standard | SmarTROLL SN<br>518784 | SmarTROLL SN<br>613960 | SmarTROLL SN<br>532229 | SmarTROLL SN<br>519017 |
|--------------|--------------|----------|------------------------|------------------------|------------------------|------------------------|
| DO           | % saturation | 100      | 100                    | 100                    | 100                    | NA                     |
| Conductivity | us/cm        | 8000     | 8000                   | 8000                   | 8000                   | NA                     |
| pН           | S.U.         | 4.00     | 4.00                   | 4.00                   | 4.00                   | NA                     |
| pН           | S.U.         | 7.00     | 7.00                   | 7.00                   | 7.00                   | NA                     |
| pН           | S.U.         | 10.00    | 10.00                  | 10.00                  | 10.00                  | NA                     |
| ORP          | mV           | 232.0    | 232.0                  | 232.0                  | 232.0                  | NA                     |

| Turbidity<br>Standard | Units | LaMotte<br>SN 8140-2616 | LaMotte<br>SN 3764-4013 | LaMotte<br>SN 1505-2219 | LaMotte<br>SN 1143-1319 |
|-----------------------|-------|-------------------------|-------------------------|-------------------------|-------------------------|
| 0.0                   | NTU   | 0.00                    | 0.00                    | 0.00                    | NA                      |
| 10.0                  | NTU   | 10.00                   | 10.00                   | 10.00                   | NA                      |

### Notes:

DO - Dissolved Oxygen; us/cm - microsiemens/centimeter; ORP - oxidation-reduction potential; mV - millivolts; NTU - Nphelometric Turbidity Units; NC - Not calibrated

Quick Cal solution standard is dependant on temperature and will fluctuate

Project Plant Yates

Field Staff: Becky Steever/Katie Pupkiewicz/Peter Argyrakis/Jake Swanson

| Instrument | Calibration |
|------------|-------------|
|            |             |

Date: 3/04/21 Time: 08:00

| Parameter    | Units        | Standard | SmarTROLL SN<br>518784 | SmarTROLL SN<br>613960 | SmarTROLL SN<br>532229 | SmarTROLL SN<br>519017 |
|--------------|--------------|----------|------------------------|------------------------|------------------------|------------------------|
| DO           | % saturation | 100      | 100                    | 100                    | 100                    | 100                    |
| Conductivity | us/cm        | 8000     | 8000                   | 8000                   | 8000                   | 8000                   |
| pН           | S.U.         | 4.00     | 4.00                   | 4.00                   | 4.00                   | 4.00                   |
| pН           | S.U.         | 7.00     | 7.00                   | 7.00                   | 7.00                   | 7.00                   |
| pН           | S.U.         | 10.00    | 10.00                  | 10.00                  | 10.00                  | 10.00                  |
| ORP          | mV           | 232.0    | 232.0                  | 232.0                  | 232.0                  | 232.0                  |

| Turbidity<br>Standard | Units | LaMotte<br>SN 8140-2616 | LaMotte<br>SN 3764-4013 | LaMotte<br>SN 1505-2219 | LaMotte<br>SN 1143-1319 |
|-----------------------|-------|-------------------------|-------------------------|-------------------------|-------------------------|
| 0.0                   | NTU   | 0.00                    | 0.00                    | 0.00                    | 0.00                    |
| 10.0                  | NTU   | 10.00                   | 10.00                   | 10.00                   | 10.00                   |

## Date: 3/04/21 Time: Midday

| Parameter    | Units        | Standard | SmarTROLL SN<br>518784 | SmarTROLL SN<br>613960 | SmarTROLL SN<br>532229 | SmarTROLL SN<br>519017 |
|--------------|--------------|----------|------------------------|------------------------|------------------------|------------------------|
| DO           | % saturation | 100      | 100                    | 100                    | 100                    | NA                     |
| Conductivity | us/cm        | 8000     | 8000                   | 8000                   | 8000                   | NA                     |
| pН           | S.U.         | 4.00     | 4.00                   | 4.00                   | 4.00                   | NA                     |
| pН           | S.U.         | 7.00     | 7.00                   | 7.00                   | 7.00                   | NA                     |
| pН           | S.U.         | 10.00    | 10.00                  | 10.00                  | 10.00                  | NA                     |
| ORP          | mV           | 232.0    | 232.0                  | 232.0                  | 232.0                  | NA                     |

| Turbidity<br>Standard | Units | LaMotte<br>SN 8140-2616 | LaMotte<br>SN 3764-4013 | LaMotte<br>SN 1505-2219 | LaMotte<br>SN 1143-1319 |
|-----------------------|-------|-------------------------|-------------------------|-------------------------|-------------------------|
| 0.0                   | NTU   | 0.00                    | 0.00                    | 0.00                    | 0.00                    |
| 10.0                  | NTU   | 10.00                   | 10.00                   | 10.00                   | 10.00                   |

### Notes:

DO - Dissolved Oxygen; us/cm - microsiemens/centimeter; ORP - oxidation-reduction potential; mV - millivolts; NTU - Nphelometric Turbidity Units; NC - Not calibrated

Quick Cal solution standard is dependant on temperature and will fluctuate



| Project Number                 | 30052922                          | Well ID                    | YGWA-17S    |                                                                                |          | Date                    | 03/03/2021   |
|--------------------------------|-----------------------------------|----------------------------|-------------|--------------------------------------------------------------------------------|----------|-------------------------|--------------|
| Project Location               | ocation AMA AP-3, A, B and B' Wea |                            | Weather(°F) | <b>Teather(°F)</b> 53.6 degrees F and Clear. The wind is blowing N at 9.2 mph. |          |                         |              |
| Measuring Pt.<br>Description   | Top of Inner Casing               | Screen<br>Setting (ft-bmp) | 29.65       | Casing<br>Diameter (in)                                                        | 2        | Well Casing<br>Material | PVC          |
| Static Water<br>Level (ft-bmp) | 11.44                             | Total Depth (ft-<br>bmp)   | 39.85       | Water<br>Column(ft)                                                            | 28.41    | Gallons in<br>Well      | 4.62         |
| MP Elevation                   | 783.05                            | Pump Intake (ft-<br>bmp)   | 34          | Purge Method                                                                   | Low-Flow | Sample<br>Method        | Low-Flow     |
| Sample Time                    | 12:20                             | Well Volumes<br>Purged     | 0.19        | Sample ID                                                                      | YGWA-17S | Sampled by              | Jake Swanson |
| Purge Start                    | 11:40                             | Gallons Purged             | 0.86        | Replicate/<br>Code No.                                                         |          | Color                   | Clear        |
| Purge End                      | 12:15                             |                            |             |                                                                                |          |                         |              |

| Time     | Total<br>Elapsed<br>Minutes | Rate<br>(mL/min) | Depth to<br>Water<br>(ft) | pH<br>(standard<br>units) | Specific<br>Conductivity<br>(µS/cm) | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Temperature<br>°C | Redox<br>(mV) |
|----------|-----------------------------|------------------|---------------------------|---------------------------|-------------------------------------|--------------------|-------------------------------|-------------------|---------------|
| 11:40:19 | 00:00                       | 100              | 11.44                     | 5.98                      | 123.43                              | 1.65               | 6.24                          | 17.0              | 201.80        |
| 11:42:43 | 02:24                       | 100              | 11.65                     | 5.75                      | 107.75                              | 11.48              | 5.50                          | 17.0              | 272.02        |
| 11:47:43 | 07:24                       | 100              | 11.65                     | 5.58                      | 97.19                               | 23.84              | 3.89                          | 16.9              | 249.22        |
| 11:52:43 | 12:24                       | 100              | 11.65                     | 5.54                      | 95.43                               | 17.22              | 2.87                          | 16.7              | 245.54        |
| 11:57:43 | 17:24                       | 100              | 11.65                     | 5.53                      | 97.11                               | 9.17               | 2.66                          | 16.4              | 243.19        |
| 12:02:43 | 22:24                       | 100              | 11.65                     | 5.52                      | 97.48                               | 5.24               | 2.45                          | 16.4              | 242.51        |
| 12:07:43 | 27:24                       | 100              | 11.65                     | 5.52                      | 97.19                               | 4.06               | 2.44                          | 16.3              | 243.58        |
| 12:12:43 | 32:24                       | 100              | 11.65                     | 5.52                      | 96.78                               | 4.65               | 2.40                          | 16.3              | 244.61        |

| Constituent Sampled   | Container      | Number | Preservative |
|-----------------------|----------------|--------|--------------|
| RAD Chem              | 1L Plastic     | 2      | HNO3         |
| Metals                | 250 mL Plastic | 1      | HNO3         |
| TDS                   | 500 mL Plastic | 1      | None         |
| Chloride,Fluoride SO4 | 250 mL Plastic | 1      | None         |

#### Comments:

LaMotte turbidity reading (elapsed time=NTU): 22:24 = 4.22, 27:24 = 2.39, 32:24 = 1.89

#### Well Casing Volume Conversion

Well diameter (inches) = gallons per foot  $1 = 0.04 \ 1.5 = 0.09 \ 2.5 = 0.26 \ 3.5 = 0.50 \ 6 = 1.47$  $1.25 = 0.06 \ 2 = 0.16 \ 3 = 0.37 \ 4 = 0.65$ 

#### Well Information

| Well Location: |  |
|----------------|--|
|                |  |

Condition of Well:

Well Locked at Arrival: Well Locked at Departure:

Well Completion: NA

Key Number To Well: NA

ft-bmp = feet below measuring point in = inches ft = feet mL/min = milliliters per minute mS/cm = milliSiemens per centimeterNTU = Nephelometric Turbidity Unit mg/L = milligrams per liter  $\mu S/cm = microSiemens per centimeters$  mV = millivolts °F = degrees Fahrenheit °C = degrees Celsius



| Project Number                 | 30053438             | Well ID                    | YGWA-5I     |                         |                       | Date                    | 03/02/2021     |
|--------------------------------|----------------------|----------------------------|-------------|-------------------------|-----------------------|-------------------------|----------------|
| Project Location               | AMA AP-3, A, B and B |                            | Weather(°F) | 45.5 degrees F          | and Light Rain. The w | ind is blowing E        | E at 5.8 mph.  |
| Measuring Pt.<br>Description   | Top of Inner Casing  | Screen<br>Setting (ft-bmp) | 48.64       | Casing<br>Diameter (in) | 2                     | Well Casing<br>Material | PVC            |
| Static Water<br>Level (ft-bmp) | 18.21                | Total Depth (ft-<br>bmp)   | 58.94       | Water<br>Column(ft)     | 40.73                 | Gallons in<br>Well      | 6.62           |
| MP Elevation                   | 784.54               | Pump Intake (ft-<br>bmp)   | 53          | Purge Method            | Low-Flow              | Sample<br>Method        | Low-Flow       |
| Sample Time                    | 14:05                | Well Volumes<br>Purged     | 0.30        | Sample ID               | YGWA-5I               | Sampled by              | Peter Argyakis |
| Purge Start                    | 13:30                | Gallons Purged             | 1.98        | Replicate/<br>Code No.  |                       | Color                   | Clear          |

#### Purge End 14:01

| Time     | Total<br>Elapsed<br>Minutes | Rate<br>(mL/min) | Depth to<br>Water<br>(ft) | pH<br>(standard<br>units) | Specific<br>Conductivity<br>(µS/cm) | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Temperature<br>°C | Redox<br>(mV) |
|----------|-----------------------------|------------------|---------------------------|---------------------------|-------------------------------------|--------------------|-------------------------------|-------------------|---------------|
| 13:30:52 | 00:00                       | 250              | 18.21                     | 5.91                      | 96.12                               | 0.42               | 6.46                          | 17.0              | 182.12        |
| 13:35:52 | 05:00                       | 250              | 18.26                     | 5.72                      | 95.57                               | 0.45               | 6.33                          | 16.4              | 212.16        |
| 13:40:52 | 10:00                       | 250              | 18.33                     | 5.64                      | 96.65                               | 1.37               | 6.46                          | 15.8              | 226.13        |
| 13:45:52 | 15:00                       | 250              | 18.4                      | 5.61                      | 97.09                               | 1.04               | 6.51                          | 15.7              | 232.09        |
| 13:50:52 | 20:00                       | 250              | 18.42                     | 5.61                      | 96.00                               | 0.51               | 6.50                          | 15.7              | 240.81        |
| 13:55:52 | 25:00                       | 250              | 18.49                     | 5.62                      | 96.03                               | 0.44               | 6.73                          | 15.6              | 244.63        |
| 14:00:52 | 30:00                       | 250              | 18.53                     | 5.63                      | 96.06                               | 0.24               | 6.92                          | 15.2              | 245.00        |

| Constituent Sampled | Container      | Number | Preservative |
|---------------------|----------------|--------|--------------|
| RAD Chem            | 1L Plastic     | 2      | HNO3         |
| Anions              | 250 mL Plastic | 1      | None         |
| Metals              | 500 mL Plastic | 1      | HNO3         |
| TDS                 | 500 mL Plastic | 1      | None         |

| Comments:            | LaMotte turbidity readi | ng (time:NTU)           |                              |                         |  |
|----------------------|-------------------------|-------------------------|------------------------------|-------------------------|--|
|                      | 1331: 1.65              |                         |                              |                         |  |
|                      | 1336: 0.68              |                         |                              |                         |  |
|                      | 1346 0 77               |                         |                              |                         |  |
|                      | 1351: 1.04              |                         |                              |                         |  |
|                      | 1356: 0.67              |                         |                              |                         |  |
|                      | 1401: 0.88              |                         |                              |                         |  |
| Well Casing Volu     | me Conversion           |                         |                              |                         |  |
| Well diameter (inch  | nes) = gallons per foot | 1 = 0.04 1.5 = 0.09 2.5 | 5 = 0.26 3.5 = 0.50 6 = 1.47 |                         |  |
|                      |                         | 1.25 = 0.06 2 = 0.16 3  | $= 0.37 \ 4 = 0.65$          |                         |  |
| Well Information     |                         |                         |                              |                         |  |
| Well Location        | :                       |                         | Well Locked at Arrival:      |                         |  |
| Condition of Well    | :                       |                         | Well Locked at Departure:    |                         |  |
| Well Completion      | : NA                    |                         | Key Number To Well:          | NA                      |  |
|                      |                         |                         |                              |                         |  |
| ft-bmp = feet below  | measuring point         | mS/cm = milliSiemens    | per centimeter               | mV = millivolts         |  |
| in = inches          | 01                      | NTU = Nephelometric     | Turbidity Unit               | °F = degrees Fahrenheit |  |
| ft = feet            |                         | mg/L = milligrams per   | liter                        | °C = degrees Celsius    |  |
| mL/min = milliliters | per minute              | µS/cm = microSiemen     | s per centimeters            |                         |  |



| Project Number                 | 30053438             | Well ID                    | YGWA-20S    |                         |                      | Date                    | 03/03/2021        |
|--------------------------------|----------------------|----------------------------|-------------|-------------------------|----------------------|-------------------------|-------------------|
| Project Location               | AMA AP-3, A, B and B |                            | Weather(°F) | 44.1 degrees F          | and Mostly Cloudy. T | ne wind is blowi        | ing N at 8.1 mph. |
| Measuring Pt.<br>Description   | Top of Inner Casing  | Screen<br>Setting (ft-bmp) | 19.22       | Casing<br>Diameter (in) | 2                    | Well Casing<br>Material | PVC               |
| Static Water<br>Level (ft-bmp) | 11.21                | Total Depth (ft-<br>bmp)   | 29.52       | Water<br>Column(ft)     | 18.31                | Gallons in<br>Well      | 2.98              |
| MP Elevation                   | 767.12               | Pump Intake (ft-<br>bmp)   | 24.5        | Purge Method            | Low-Flow             | Sample<br>Method        | Low-Flow          |
| Sample Time                    | 09:40                | Well Volumes<br>Purged     | 0.58        | Sample ID               | YGWA-20S             | Sampled by              | Peter Argyakis    |
| Purge Start                    | 09:07                | Gallons Purged             | 1.72        | Replicate/<br>Code No.  |                      | Color                   | Clear             |

## Purge End 09:37

| Time     | Total<br>Elapsed<br>Minutes | Rate<br>(mL/min) | Depth to<br>Water<br>(ft) | pH<br>(standard<br>units) | Specific<br>Conductivity<br>(µS/cm) | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Temperature<br>°C | Redox<br>(mV) |
|----------|-----------------------------|------------------|---------------------------|---------------------------|-------------------------------------|--------------------|-------------------------------|-------------------|---------------|
| 09:07:25 | 00:00                       | 200              | 11.21                     | 7.31                      | 103.51                              | 4.83               | 10.44                         | 13.6              | 96.66         |
| 09:12:25 | 05:00                       | 200              | 11.27                     | 5.93                      | 74.72                               | 10.12              | 8.33                          | 14.5              | 204.04        |
| 09:17:25 | 10:00                       | 200              | 11.29                     | 5.83                      | 62.58                               | 7.30               | 8.03                          | 14.3              | 224.31        |
| 09:22:25 | 15:00                       | 200              | 11.3                      | 5.82                      | 60.16                               | 4.38               | 7.92                          | 14.2              | 227.98        |
| 09:27:25 | 20:00                       | 200              | 11.3                      | 5.80                      | 58.49                               | 3.64               | 7.97                          | 14.1              | 238.50        |
| 09:32:25 | 25:00                       | 200              | 11.32                     | 5.83                      | 57.97                               | 2.75               | 7.91                          | 13.9              | 238.95        |
| 09:37:25 | 30:00                       | 200              | 11.33                     | 5.89                      | 57.90                               | 2.91               | 7.89                          | 13.8              | 241.09        |

| Constituent Sampled | Container      | Number | Preservative |
|---------------------|----------------|--------|--------------|
| Anions              | 250 mL Plastic | 1      | None         |
| Mercury,Metals      | 250 mL Plastic | 1      | HNO3         |
| RAD Chem            | 500 mL Plastic | 2      | HNO3         |
| TDS                 | 500 mL Plastic | 1      | None         |

| Comments:                                                               | LaMotte turbidity readi<br>0907: 4.28<br>0912: 3.73<br>0917: 2.81<br>0922: 3.00<br>0927: 2.68<br>0932: 2.76<br>0937: 2.44 | ngs (time:NTU)                                                                              |                                                                |                                                                    |   |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------|---|
| Well Casing Volum                                                       | ne Conversion                                                                                                             |                                                                                             |                                                                |                                                                    |   |
| Well diameter (inch                                                     | es) = gallons per foot                                                                                                    | 1 = 0.04 1.5 = 0.09 2.5<br>1.25 = 0.06 2 = 0.16 3                                           | 5 = 0.26 3.5 = 0.50 6 = 1.47<br>= 0.37 4 = 0.65                |                                                                    |   |
| Well Information                                                        |                                                                                                                           |                                                                                             |                                                                |                                                                    |   |
| Well Location:                                                          |                                                                                                                           |                                                                                             | Well Locked at Arrival:                                        |                                                                    |   |
| Condition of Well:                                                      |                                                                                                                           |                                                                                             | Well Locked at Departure:                                      |                                                                    |   |
| Well Completion:                                                        | NA                                                                                                                        |                                                                                             | Key Number To Well:                                            | NA                                                                 | _ |
| ft-bmp = feet below<br>in = inches<br>ft = feet<br>mL/min = milliliters | measuring point                                                                                                           | mS/cm = milliSiemens<br>NTU = Nephelometric<br>mg/L = milligrams per<br>μS/cm = microSiemen | per centimeter<br>Turbidity Unit<br>liter<br>s per centimeters | mV = millivolts<br>°F = degrees Fahrenheit<br>°C = degrees Celsius |   |



| Project Number                 | 30053438              | Well ID                    | PZ-35       |                         |                        | Date                    | 03/04/2021     |
|--------------------------------|-----------------------|----------------------------|-------------|-------------------------|------------------------|-------------------------|----------------|
| Project Location               | AMA AP-3, A, B and B' |                            | Weather(°F) | 70.3 degrees F          | and Clear. The wind is | blowing N at 1          | 1.4 mph.       |
| Measuring Pt.<br>Description   | Top of Inner Casing   | Screen<br>Setting (ft-bmp) | 38.91       | Casing<br>Diameter (in) | 2                      | Well Casing<br>Material | PVC            |
| Static Water<br>Level (ft-bmp) | 11.1                  | Total Depth (ft-<br>bmp)   | 50.01       | Water<br>Column(ft)     | 38.91                  | Gallons in<br>Well      | 6.32           |
| MP Elevation                   | 743.81                | Pump Intake (ft-<br>bmp)   | 45          | Purge Method            | Low-Flow               | Sample<br>Method        | Low-Flow       |
| Sample Time                    | 15:30                 | Well Volumes<br>Purged     | 0.18        | Sample ID               | PZ-35                  | Sampled by              | Peter Argyakis |
| Purge Start                    | 15:03                 | Gallons Purged             | 1.14        | Replicate/<br>Code No.  |                        | Color                   | Clear          |

Purge End 15:20

| Time     | Total<br>Elapsed<br>Minutes | Rate<br>(mL/min) | Depth to<br>Water<br>(ft) | pH<br>(standard<br>units) | Specific<br>Conductivity<br>(µS/cm) | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Temperature<br>°C | Redox<br>(mV) |
|----------|-----------------------------|------------------|---------------------------|---------------------------|-------------------------------------|--------------------|-------------------------------|-------------------|---------------|
| 15:03:06 | 00:00                       | 150              | 11.1                      | 6.02                      | 0.05                                | 6.22               | 7.92                          | 26.0              | 178.05        |
| 15:08:06 | 05:00                       | 150              | 11.1                      | 5.66                      | 111.72                              | 2.49               | 6.39                          | 24.9              | 220.96        |
| 15:13:06 | 10:00                       | 150              | 11.1                      | 5.64                      | 110.65                              | 2.80               | 5.91                          | 25.7              | 227.79        |
| 15:18:06 | 15:00                       | 150              | 11.1                      | 5.62                      | 107.74                              | 8.17               | 5.78                          | 26.0              | 231.44        |
| 15:23:06 | 20:00                       | 150              | 11.1                      | 5.62                      | 106.49                              | 15.26              | 5.65                          | 26.4              | 238.38        |
| 15:28:06 | 25:00                       | 150              | 11.1                      | 5.64                      | 104.50                              | 2.21               | 5.57                          | 27.0              | 234.50        |

| Constituent Sampled | Container      | Number | Preservative |
|---------------------|----------------|--------|--------------|
| RAD Chem            | 1L Plastic     | 2      | HNO3         |
| Mercury,Metals      | 250 mL Plastic | 1      | HNO3         |
| Anions              | 250 mL Plastic | 1      | None         |
| TDS                 | 500 mL Plastic | 1      | None         |

| Comments:      | LaMotte turbidity reading (time:NTU) |
|----------------|--------------------------------------|
|                | 1508: 4.09                           |
|                | 1513: 2.72                           |
|                | 1518: 1.84                           |
|                | 1523: 1.53                           |
|                | 1528: 1.44                           |
| Well Casing Vo | lume Conversion                      |

| Well diameter (inches) = gallons per foot | 1 = 0.04 1.5 = 0.09 2.5 = 0.26 3.5 = 0.50 6 = 1.47<br>1.25 = 0.06 2 = 0.16 3 = 0.37 4 = 0.65 |    |  |
|-------------------------------------------|----------------------------------------------------------------------------------------------|----|--|
| Well Information                          |                                                                                              |    |  |
| Well Location:                            | Well Locked at Arrival:                                                                      |    |  |
| Condition of Well:                        | Well Locked at Departure:                                                                    |    |  |
| Well Completion: NA                       | Key Number To Well:                                                                          | NA |  |
|                                           |                                                                                              |    |  |

mS/cm = milliSiemens per centimeter NTU = Nephelometric Turbidity Unit mg/L = milligrams per liter $\mu S/cm = microSiemens per centimeters$  mV = millivolts °F = degrees Fahrenheit °C = degrees Celsius
.....



| Project Number                 | 30052922              | Well ID                    | YGWA-18S    |                                                              |          | Date                    | 03/03/2021   |
|--------------------------------|-----------------------|----------------------------|-------------|--------------------------------------------------------------|----------|-------------------------|--------------|
| Project Location               | AMA AP-3, A, B and B' |                            | Weather(°F) | 59.0 degrees F and Clear. The wind is blowing N at 10.3 mph. |          |                         |              |
| Measuring Pt.<br>Description   | Top of Inner Casing   | Screen<br>Setting (ft-bmp) | 29.97       | Casing<br>Diameter (in)                                      | 2        | Well Casing<br>Material | PVC          |
| Static Water<br>Level (ft-bmp) | 18.89                 | Total Depth (ft-<br>bmp)   | 39.97       | Water<br>Column(ft)                                          | 21.08    | Gallons in<br>Well      | 3.43         |
| MP Elevation                   | 790.57                | Pump Intake (ft-<br>bmp)   | 35          | Purge Method                                                 | Low-Flow | Sample<br>Method        | Low-Flow     |
| Sample Time                    | 13:50                 | Well Volumes<br>Purged     | 0.19        | Sample ID                                                    | YGWA-18S | Sampled by              | Jake Swanson |
| Purge Start                    | 13:14                 | Gallons Purged             | 0.66        | Replicate/<br>Code No.                                       |          | Color                   | Clear        |

Purge End 13:40

| Time     | Total<br>Elapsed<br>Minutes | Rate<br>(mL/min) | Depth to<br>Water<br>(ft) | pH<br>(standard<br>units) | Specific<br>Conductivity<br>(µS/cm) | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Temperature<br>°C | Redox<br>(mV) |
|----------|-----------------------------|------------------|---------------------------|---------------------------|-------------------------------------|--------------------|-------------------------------|-------------------|---------------|
| 13:14:02 | 00:00                       | 100              | 18.89                     | 5.74                      | 100.59                              | 13.67              | 6.07                          | 17.8              | 211.21        |
| 13:19:02 | 05:00                       | 100              | 19.5                      | 5.42                      | 78.24                               | 19.66              | 3.55                          | 19.8              | 204.88        |
| 13:24:02 | 10:00                       | 100              | 19.52                     | 5.47                      | 87.48                               | 9.15               | 3.61                          | 21.1              | 200.16        |
| 13:29:02 | 15:00                       | 100              | 19.54                     | 5.41                      | 77.03                               | 2.92               | 3.71                          | 20.0              | 203.74        |

| Constituent Sampled   | Container      | Number | Preservative |
|-----------------------|----------------|--------|--------------|
| RAD Chem              | 1L Plastic     | 2      | HNO3         |
| Metals                | 250 mL Plastic | 1      | HNO3         |
| TDS                   | 500 mL Plastic | 1      | None         |
| Chloride,Fluoride SO4 | 250 mL Plastic | 1      | None         |

LaMotte turbidity reading below 5.0 NTU at time of sampling Comments:

### Well Casing Volume Conversion

Well diameter (inches) = gallons per foot 1 = 0.04 1.5 = 0.09 2.5 = 0.26 3.5 = 0.50 6 = 1.47 1.25 = 0.06 2 = 0.16 3 = 0.37 4 = 0.65

### Well Information

Well Location: Well Locked at Arrival: Condition of Well: Well Locked at Departure: Well Completion: NA Key Number To Well: NA

mS/cm = milliSiemens per centimeter NTU = Nephelometric Turbidity Unit mg/L = milligrams per liter µS/cm = microSiemens per centimeters



| Project Number                 | 30053438                | Well ID                    | YAMW-1      |                                                              |          | Date                    | 03/03/2021     |  |
|--------------------------------|-------------------------|----------------------------|-------------|--------------------------------------------------------------|----------|-------------------------|----------------|--|
| Project Location               | n AMA AP-3, A, B and B' |                            | Weather(°F) | 64.0 degrees F and Clear. The wind is blowing NW at 5.8 mph. |          |                         |                |  |
| Measuring Pt.<br>Description   | Top of Inner Casing     | Screen<br>Setting (ft-bmp) | 59.6        | Casing<br>Diameter (in)                                      | 2        | Well Casing<br>Material | PVC            |  |
| Static Water<br>Level (ft-bmp) | 10.98                   | Total Depth (ft-<br>bmp)   | 69.93       | Water<br>Column(ft)                                          | 58.95    | Gallons in<br>Well      | 9.58           |  |
| MP Elevation                   | 743.83                  | Pump Intake (ft-<br>bmp)   | 65          | Purge Method                                                 | Low-Flow | Sample<br>Method        | Low-Flow       |  |
| Sample Time                    | 15:15                   | Well Volumes<br>Purged     | 0.11        | Sample ID                                                    | YAMW-1   | Sampled by              | Peter Argyakis |  |
| Purge Start                    | 14:42                   | Gallons Purged             | 1.06        | Replicate/<br>Code No.                                       |          | Color                   | Clear          |  |

### Purge End 15:12

| Time     | Total<br>Elapsed<br>Minutes | Rate<br>(mL/min) | Depth to<br>Water<br>(ft) | pH<br>(standard<br>units) | Specific<br>Conductivity<br>(µS/cm) | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Temperature<br>°C | Redox<br>(mV) |
|----------|-----------------------------|------------------|---------------------------|---------------------------|-------------------------------------|--------------------|-------------------------------|-------------------|---------------|
| 14:42:21 | 00:00                       | 200              | 10.98                     | 6.51                      | 126.29                              | 2.49               | 8.23                          | 19.7              | 220.69        |
| 14:47:21 | 05:00                       | 100              | 11.23                     | 6.47                      | 128.90                              | 2.27               | 7.64                          | 20.5              | 208.16        |
| 14:52:21 | 10:00                       | 100              | 11.27                     | 6.51                      | 137.25                              | 0.92               | 6.86                          | 20.7              | 201.71        |
| 14:57:21 | 15:00                       | 100              | 11.4                      | 6.51                      | 154.98                              | 0.67               | 5.52                          | 20.8              | 198.37        |
| 15:02:21 | 20:00                       | 100              | 11.49                     | 6.54                      | 169.72                              | 0.67               | 4.38                          | 21.2              | 193.24        |
| 15:07:21 | 25:00                       | 100              | 11.52                     | 6.54                      | 171.24                              | 0.41               | 4.22                          | 22.1              | 190.38        |
| 15:12:21 | 30:00                       | 100              | 11.54                     | 6.54                      | 172.50                              | 0.74               | 4.21                          | 23.2              | 189.22        |

| Container      | Number                                                                        | Preservative                                                            |
|----------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| 250 mL Plastic | 1                                                                             | SO4                                                                     |
| 250 mL Plastic | 1                                                                             | HNO3                                                                    |
| 500 mL Plastic | 1                                                                             | None                                                                    |
| 1L Plastic     | 2                                                                             | HNO3                                                                    |
|                | Container<br>250 mL Plastic<br>250 mL Plastic<br>500 mL Plastic<br>1L Plastic | ContainerNumber250 mL Plastic1250 mL Plastic1500 mL Plastic11L Plastic2 |

| LaMotte turbidity readi | ings (time:NTU)                                                                                                                                                                      |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1442: 1.38              |                                                                                                                                                                                      |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1447: 0.84              |                                                                                                                                                                                      |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1452: 0.67              |                                                                                                                                                                                      |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1502: 1.58              |                                                                                                                                                                                      |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1507: 2.03              |                                                                                                                                                                                      |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1512: 1.10              |                                                                                                                                                                                      |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| me Conversion           |                                                                                                                                                                                      |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| nes) = gallons per foot | 1 = 0.04 1.5 = 0.09 2.5                                                                                                                                                              | 5 = 0.26 3.5 = 0.50 6 = 1.47                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                         | 1.25 = 0.06 2 = 0.16 3                                                                                                                                                               | $= 0.37 \ 4 = 0.65$                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                         |                                                                                                                                                                                      |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| :                       |                                                                                                                                                                                      | Well Locked at Arrival:                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| :                       |                                                                                                                                                                                      | Well Locked at Departure:                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| NA                      |                                                                                                                                                                                      | Key Number To Well:                                                                                                                                                                                                                              | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                         |                                                                                                                                                                                      |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| measuring point         | mS/cm = milliSiemens                                                                                                                                                                 | s per centimeter                                                                                                                                                                                                                                 | mV = millivolts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                         | NIU = Nephelometric                                                                                                                                                                  | lurbidity Unit                                                                                                                                                                                                                                   | $^{\circ}F = degrees Fanrenneit $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| per minute              | µS/cm = microSiemen                                                                                                                                                                  | s per centimeters                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                         | LaMotte turbidity readi<br>1442: 1.38<br>1447: 0.84<br>1452: 0.67<br>1457: 1.15<br>1502: 1.58<br>1507: 2.03<br>1512: 1.10<br><b>ne Conversion</b><br><b>nes</b> ) = gallons per foot | LaMotte turbidity readings (time:NTU)<br>1442: 1.38<br>1447: 0.84<br>1452: 0.67<br>1457: 1.15<br>1502: 1.58<br>1507: 2.03<br>1512: 1.10<br><b>ne Conversion</b><br>nes) = gallons per foot 1 = 0.04 1.5 = 0.09 2.5<br>1.25 = 0.06 2 = 0.16 3<br> | LaMotte turbidity readings (time:NTU)         1442: 1.38         1447: 0.84         1452: 0.67         1457: 1.15         1502: 1.58         1507: 2.03         1512: 1.10         ne Conversion         res) = gallons per foot       1 = 0.04 1.5 = 0.09 2.5 = 0.26 3.5 = 0.50 6 = 1.47         1.25 = 0.06 2 = 0.16 3 = 0.37 4 = 0.65         Well Locked at Arrival:         Well Locked at Arrival:         Well Locked at Departure:         MA         measuring point         mS/cm = milliSiemens per centimeter         NTU = Nephelometric Turbidity Unit         mg/L = milligrams per liter         µS/cm = microSiemens per centimeters | LaMotte turbidity readings (time:NTU)<br>1442: 1.38<br>1447: 0.84<br>1452: 0.67<br>1457: 1.15<br>1502: 1.58<br>1507: 2.03<br>1512: 1.10<br><b>ne Conversion</b><br>tes) = gallons per foot $1 = 0.04 \ 1.5 = 0.09 \ 2.5 = 0.26 \ 3.5 = 0.50 \ 6 = 1.47$<br>1.25 = 0.06 2 = 0.16 3 = 0.37 4 = 0.65<br>Well Locked at Arrival:<br>Well Locked at Departure:<br>Well Locked at Departure:<br>NA<br>Well Locked at Departure:<br>Common Signature of the probability Unit of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probability of the probabilit |



| Project Number                 | 30053438              | Well ID                    | YGWA-5D     |                         |          | Date                    | 03/02/2021     |
|--------------------------------|-----------------------|----------------------------|-------------|-------------------------|----------|-------------------------|----------------|
| Project Location               | AMA AP-3, A, B and B' |                            | Weather(°F) | Cloudy                  |          |                         |                |
| Measuring Pt.<br>Description   | Top of Inner Casing   | Screen<br>Setting (ft-bmp) | 78.83       | Casing<br>Diameter (in) | 2        | Well Casing<br>Material | PVC            |
| Static Water<br>Level (ft-bmp) | 21.95                 | Total Depth (ft-<br>bmp)   | 129.13      | Water<br>Column(ft)     | 107.18   | Gallons in<br>Well      | 17.42          |
| MP Elevation                   | 784.53                | Pump Intake (ft-<br>bmp)   | 124         | Purge Method            | Low-Flow | Sample<br>Method        | Low-Flow       |
| Sample Time                    | 15:40                 | Well Volumes<br>Purged     | 0.02        | Sample ID               | YGWA-5D  | Sampled by              | Peter Argyakis |
| Purge Start                    | 14:25                 | Gallons Purged             | 0.26        | Replicate/<br>Code No.  | DUP-1    | Color                   | Clear          |

Purge End 14:35

| Time     | Total<br>Elapsed<br>Minutes | Rate<br>(mL/min) | Depth to<br>Water<br>(ft) | pH<br>(standard<br>units) | Specific<br>Conductivity<br>(µS/cm) | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Temperature<br>°C | Redox<br>(mV) |
|----------|-----------------------------|------------------|---------------------------|---------------------------|-------------------------------------|--------------------|-------------------------------|-------------------|---------------|
| 14:25:44 | 00:00                       | 100              | 21.95                     | 7.12                      | 221.71                              | 0.20               | 7.08                          | 12.2              | -68.91        |
| 14:30:44 | 05:00                       | 100              | 21.95                     | 7.14                      | 221.80                              | 0.17               | 6.42                          | 12.2              | -76.27        |
| 14:35:44 | 10:00                       | 100              | 21.95                     | 7.15                      | 222.28                              | 0.17               | 5.33                          | 12.2              | -76.29        |

| Constituent Sampled | Container      | Number | Preservative |
|---------------------|----------------|--------|--------------|
| RAD Chem            | 1L Plastic     | 2      | HNO3         |
| TDS                 | 500 mL Plastic | 1      | None         |
| Metals              | 250 mL Plastic | 1      | HNO3         |
| Anions              | 250 mL Plastic | 1      | None         |

LaMotte turbidity readings (time:NTU) Comments: 1425: 3.09 1430: 3.31 1435: 1.72

#### Well Casing Volume Conversion

| . , , , , , , , , , , , , , , , , , , ,   | 1.25 = 0.06 2 = 0.16 3 = 0.37 4 = 0.65             |  |
|-------------------------------------------|----------------------------------------------------|--|
| Well diameter (inches) = gallons per foot | 1 = 0.04 1.5 = 0.09 2.5 = 0.26 3.5 = 0.50 6 = 1.47 |  |

#### Well Information

Well Location: Condition of Well:

Well Locked at Arrival:

Well Completion: NA

Well Locked at Departure:

Key Number To Well: NA

mS/cm = milliSiemens per centimeter NTU = Nephelometric Turbidity Unit mg/L = milligrams per liter µS/cm = microSiemens per centimeters



| Project Number                 | 30052922              | Well ID                    | YGWC-23S    |                                                              |          | Date                    | 03/04/2021   |  |
|--------------------------------|-----------------------|----------------------------|-------------|--------------------------------------------------------------|----------|-------------------------|--------------|--|
| Project Location               | AMA AP-3, A, B and B' |                            | Weather(°F) | 66.2 degrees F and Clear. The wind is blowing N at 13.9 mph. |          |                         |              |  |
| Measuring Pt.<br>Description   | Top of Inner Casing   | Screen<br>Setting (ft-bmp) | 28.61       | Casing<br>Diameter (in)                                      | 2        | Well Casing<br>Material | PVC          |  |
| Static Water<br>Level (ft-bmp) | 16.49                 | Total Depth (ft-<br>bmp)   | 38.91       | Water<br>Column(ft)                                          | 22.42    | Gallons in<br>Well      | 3.64         |  |
| MP Elevation                   | 764.91                | Pump Intake (ft-<br>bmp)   | 33          | Purge Method                                                 | Low-Flow | Sample<br>Method        | Low-Flow     |  |
| Sample Time                    | 12:15                 | Well Volumes<br>Purged     | 0.16        | Sample ID                                                    | YGWC-23S | Sampled by              | Jake Swanson |  |
| Purge Start                    | 11:42                 | Gallons Purged             | 0.57        | Replicate/<br>Code No.                                       |          | Color                   | Clear        |  |

Purge End 12:05

| Time     | Total<br>Elapsed<br>Minutes | Rate<br>(mL/min) | Depth to<br>Water<br>(ft) | pH<br>(standard<br>units) | Specific<br>Conductivity<br>(µS/cm) | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Temperature<br>°C | Redox<br>(mV) |
|----------|-----------------------------|------------------|---------------------------|---------------------------|-------------------------------------|--------------------|-------------------------------|-------------------|---------------|
| 11:42:39 | 00:00                       | 100              | 16.49                     | 5.83                      | 186.51                              | 0.49               | 8.42                          | 19.2              | 151.60        |
| 11:43:16 | 00:37                       | 100              | 16.49                     | 5.73                      | 186.11                              | 1.37               | 8.46                          | 19.4              | 157.66        |
| 11:49:09 | 06:30                       | 100              | 16.69                     | 5.47                      | 193.21                              | 1.64               | 8.07                          | 19.1              | 180.67        |
| 11:54:09 | 11:30                       | 100              | 16.7                      | 5.45                      | 195.04                              | 3.31               | 8.11                          | 19.3              | 189.70        |
| 11:59:09 | 16:30                       | 100              | 16.71                     | 5.44                      | 193.82                              | 0.84               | 8.10                          | 19.1              | 195.16        |
| 12:04:09 | 21:30                       | 100              | 16.71                     | 5.44                      | 191.99                              | 0.00               | 7.78                          | 19.3              | 200.90        |

| Constituent Sampled   | Container      | Number | Preservative |
|-----------------------|----------------|--------|--------------|
| RAD Chem              | 1L Plastic     | 2      | HNO3         |
| Metals                | 250 mL Plastic | 1      | HNO3         |
| TDS                   | 500 mL Plastic | 1      | None         |
| Chloride,Fluoride SO4 | 250 mL Plastic | 1      | None         |

| Comments:            | mments: LaMotte turbidity readings (elapsed time=NTU) |                                                                                              |  |  |  |  |  |  |
|----------------------|-------------------------------------------------------|----------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                      | 11:30=2.12, 16:30=2.02, 21:30=1.88                    |                                                                                              |  |  |  |  |  |  |
| Well Casing Volum    | e Conversion                                          |                                                                                              |  |  |  |  |  |  |
| Well diameter (inche | s) = gallons per foot                                 | 1 = 0.04 1.5 = 0.09 2.5 = 0.26 3.5 = 0.50 6 = 1.47<br>1.25 = 0.06 2 = 0.16 3 = 0.37 4 = 0.65 |  |  |  |  |  |  |
| Well Information     |                                                       |                                                                                              |  |  |  |  |  |  |
| Well Location:       |                                                       | Well Locked at Arrival:                                                                      |  |  |  |  |  |  |
| Condition of Well:   |                                                       | Well Locked at Departure:                                                                    |  |  |  |  |  |  |
| -                    |                                                       |                                                                                              |  |  |  |  |  |  |

Well Completion: NA

Key Number To Well: NA

mS/cm = milliSiemens per centimeter NTU = Nephelometric Turbidity Unit mg/L = milligrams per liter $\mu S/cm = microSiemens per centimeters$ 



| Project Number                 | 30053438              | Well ID                    | YGWA-21I    |                         |                         | Date                    | 03/04/2021     |
|--------------------------------|-----------------------|----------------------------|-------------|-------------------------|-------------------------|-------------------------|----------------|
| Project Location               | AMA AP-3, A, B and B' |                            | Weather(°F) | It is Clear. The        | wind is blowing N at 10 | ).3 mph.                |                |
| Measuring Pt.<br>Description   | Top of Inner Casing   | Screen<br>Setting (ft-bmp) | 69.6        | Casing<br>Diameter (in) | 2                       | Well Casing<br>Material | PVC            |
| Static Water<br>Level (ft-bmp) | 31.23                 | Total Depth (ft-<br>bmp)   | 79.9        | Water<br>Column(ft)     | 48.67                   | Gallons in<br>Well      | 7.91           |
| MP Elevation                   | 783.7                 | Pump Intake (ft-<br>bmp)   | 75          | Purge Method            | Low-Flow                | Sample<br>Method        | Low-Flow       |
| Sample Time                    | 09:35                 | Well Volumes<br>Purged     | 0.12        | Sample ID               | YGWA-21I                | Sampled by              | Peter Argyakis |
| Purge Start                    | 09:04                 | Gallons Purged             | 0.92        | Replicate/<br>Code No.  |                         | Color                   | Clear          |

### Purge End 09:34

| Time     | Total<br>Elapsed<br>Minutes | Rate<br>(mL/min) | Depth to<br>Water<br>(ft) | pH<br>(standard<br>units) | Specific<br>Conductivity<br>(µS/cm) | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Temperature<br>°C | Redox<br>(mV) |
|----------|-----------------------------|------------------|---------------------------|---------------------------|-------------------------------------|--------------------|-------------------------------|-------------------|---------------|
| 09:04:36 | 00:00                       | 100              | 31.23                     | 6.83                      | 222.21                              | 1.57               | 5.53                          | 16.4              | -17.54        |
| 09:09:36 | 05:00                       | 100              | 31.25                     | 6.89                      | 171.04                              | 2.30               | 3.41                          | 16.0              | -54.51        |
| 09:14:36 | 10:00                       | 100              | 31.33                     | 6.89                      | 163.94                              | 1.15               | 2.20                          | 15.6              | -63.05        |
| 09:19:36 | 15:00                       | 100              | 31.34                     | 6.88                      | 160.47                              | 0.59               | 1.54                          | 15.5              | -60.87        |
| 09:24:36 | 20:00                       | 100              | 31.4                      | 6.83                      | 159.33                              | 0.49               | 1.50                          | 15.5              | -52.55        |
| 09:29:36 | 25:00                       | 100              | 31.4                      | 6.80                      | 158.96                              | 0.43               | 1.51                          | 15.5              | -48.96        |
| 09:34:36 | 30:00                       | 100              | 31.4                      | 6.80                      | 158.80                              | 0.35               | 1.50                          | 15.5              | -45.88        |

| Constituent Sampled | Container      | Number | Preservative |
|---------------------|----------------|--------|--------------|
| RAD Chem            | 1L Plastic     | 2      | HNO3         |
| TDS                 | 500 mL Plastic | 1      | None         |
| Mercury,Metals      | 250 mL Plastic | 1      | HNO3         |
| Anions              | 250 mL Plastic | 1      | SO4          |

| Comments:                                                               | LaMotte turbidity readi<br>0904: 1.85<br>0909: 2.66<br>0914: 1.90<br>0919: 1.47<br>0924: 1.62<br>0929: 2.05<br>0934: 2.33 | ngs (time:NTU)                                                                                 |                                                               |                                                                    |   |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------|---|
| Well Casing Volun                                                       | ne Conversion                                                                                                             |                                                                                                |                                                               |                                                                    |   |
| Well diameter (inch                                                     | es) = gallons per foot                                                                                                    | 1 = 0.04 1.5 = 0.09 2.5<br>1.25 = 0.06 2 = 0.16 3                                              | = 0.26 3.5 = 0.50 6 = 1.47<br>= 0.37 4 = 0.65                 |                                                                    |   |
| Well Information                                                        |                                                                                                                           |                                                                                                |                                                               |                                                                    |   |
| Well Location:                                                          |                                                                                                                           |                                                                                                | Well Locked at Arrival:                                       |                                                                    |   |
| Condition of Well:                                                      |                                                                                                                           |                                                                                                | Well Locked at Departure:                                     |                                                                    | - |
| Well Completion:                                                        | NA                                                                                                                        |                                                                                                | Key Number To Well:                                           | NA                                                                 | - |
| ft-bmp = feet below<br>in = inches<br>ft = feet<br>mL/min = milliliters | measuring point                                                                                                           | mS/cm = milliSiemens<br>NTU = Nephelometric<br>mg/L = milligrams per l<br>μS/cm = microSiemens | per centimeter<br>Turbidity Unit<br>iter<br>s per centimeters | mV = millivolts<br>°F = degrees Fahrenheit<br>°C = degrees Celsius | - |



| Project Number                 | 30052922                              | Well ID                    | YGWC-49     |                                                             |          | Date                    | 03/04/2021       |  |
|--------------------------------|---------------------------------------|----------------------------|-------------|-------------------------------------------------------------|----------|-------------------------|------------------|--|
| Project Location               | roject Location AMA AP-3, A, B and B' |                            | Weather(°F) | 69.4 degrees F and Clear. The wind is blowing N at 8.1 mph. |          |                         |                  |  |
| Measuring Pt.<br>Description   | Top of Inner Casing                   | Screen<br>Setting (ft-bmp) | 68.03       | Casing<br>Diameter (in)                                     | 2        | Well Casing<br>Material | PVC              |  |
| Static Water<br>Level (ft-bmp) | 31.33                                 | Total Depth (ft-<br>bmp)   | 78.53       | Water<br>Column(ft)                                         | 47.2     | Gallons in<br>Well      | 7.67             |  |
| MP Elevation                   | 782.73                                | Pump Intake (ft-<br>bmp)   | 73          | Purge Method                                                | Low-Flow | Sample<br>Method        | Low-Flow         |  |
| Sample Time                    | 14:50                                 | Well Volumes<br>Purged     | 0.10        | Sample ID                                                   | YGWC-49  | Sampled by              | Katie Pupkiewicz |  |
| Purge Start                    | 14:32                                 | Gallons Purged             | 0.77        | Replicate/<br>Code No.                                      | FB-02    | Color                   | Clear            |  |

Purge End 14:48

| Time     | Total<br>Elapsed<br>Minutes | Rate<br>(mL/min) | Depth to<br>Water<br>(ft) | pH<br>(standard<br>units) | Specific<br>Conductivity<br>(µS/cm) | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Temperature<br>°C | Redox<br>(mV) |
|----------|-----------------------------|------------------|---------------------------|---------------------------|-------------------------------------|--------------------|-------------------------------|-------------------|---------------|
| 14:32:16 | 00:00                       | 200              | 31.95                     | 6.63                      | 259.53                              | 0.53               | 7.37                          | 20.3              | 182.33        |
| 14:37:16 | 05:00                       | 140              | 32.25                     | 5.93                      | 259.23                              | 0.50               | 3.34                          | 19.6              | 191.71        |
| 14:42:16 | 10:00                       | 140              | 32.07                     | 5.88                      | 257.97                              | 0.55               | 3.22                          | 19.6              | 198.40        |
| 14:47:16 | 15:00                       | 140              | 32.06                     | 5.88                      | 254.81                              | 0.41               | 2.92                          | 19.8              | 199.29        |

| Constituent Sampled       | Container      | Number | Preservative |
|---------------------------|----------------|--------|--------------|
| RAD Chem                  | 1L Plastic     | 2      | HNO3         |
| Metals                    | 250 mL Plastic | 1      | HNO3         |
| TDS                       | 500 mL Plastic | 1      | None         |
| Chloride,Fluoride and SO4 | 250 mL Plastic | 1      | None         |

Comments: LaMotte turbidity readings taken every five minutes in accordance with VuSitu purge log 0.94 1.70

#### 1.18 1.09

### Well Casing Volume Conversion

| Well diameter (inches) = gallons per foot | 1 = 0.04 1.5 = 0.09 2.5 = 0.26 3.5 = 0.50 6 = 1.47<br>1.25 = 0.06 2 = 0.16 3 = 0.37 4 = 0.65 |    |
|-------------------------------------------|----------------------------------------------------------------------------------------------|----|
| Well Information                          |                                                                                              |    |
| Well Location:                            | Well Locked at Arrival:                                                                      |    |
| Condition of Well:                        | Well Locked at Departure:                                                                    |    |
| Well Completion: NA                       | Key Number To Well:                                                                          | NA |

mS/cm = milliSiemens per centimeterNTU = Nephelometric Turbidity Unit mg/L = milligrams per liter  $\mu S/cm = microSiemens per centimeters$ 



| Project Number                 | 30053438             | Well ID                    | YGWC-24SA   |                         |                        | Date                    | 03/03/2021     |
|--------------------------------|----------------------|----------------------------|-------------|-------------------------|------------------------|-------------------------|----------------|
| Project Location               | AMA AP-3, A, B and B |                            | Weather(°F) | 53.6 degrees F          | and Clear. The wind is | s blowing N at S        | 9.2 mph.       |
| Measuring Pt.<br>Description   | Top of Inner Casing  | Screen<br>Setting (ft-bmp) | 47          | Casing<br>Diameter (in) | 2                      | Well Casing<br>Material | PVC            |
| Static Water<br>Level (ft-bmp) | 28.05                | Total Depth (ft-<br>bmp)   | 57          | Water<br>Column(ft)     | 28.95                  | Gallons in<br>Well      | 4.7            |
| MP Elevation                   | 765                  | Pump Intake (ft-<br>bmp)   | 52          | Purge Method            | Low-Flow               | Sample<br>Method        | Low-Flow       |
| Sample Time                    | 11:50                | Well Volumes<br>Purged     | 0.31        | Sample ID               | YGWC-24SA              | Sampled by              | Peter Argyakis |
| Purge Start                    | 11:25                | Gallons Purged             | 1.45        | Replicate/<br>Code No.  | DUP-2                  | Color                   | Clear          |

Purge End 11:45

| Time     | Total<br>Elapsed<br>Minutes | Rate<br>(mL/min) | Depth to<br>Water<br>(ft) | pH<br>(standard<br>units) | Specific<br>Conductivity<br>(µS/cm) | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Temperature<br>°C | Redox<br>(mV) |
|----------|-----------------------------|------------------|---------------------------|---------------------------|-------------------------------------|--------------------|-------------------------------|-------------------|---------------|
| 11:25:25 | 00:00                       | 200              | 28.05                     | 6.07                      | 93.54                               | 3.03               | 7.55                          | 17.9              | 228.00        |
| 11:30:25 | 05:00                       | 200              | 28.05                     | 5.80                      | 79.73                               | 3.81               | 6.77                          | 18.7              | 243.15        |
| 11:35:25 | 10:00                       | 300              | 28.05                     | 5.71                      | 78.78                               | 1.51               | 6.73                          | 17.8              | 253.34        |
| 11:40:25 | 15:00                       | 300              | 28.05                     | 5.70                      | 77.05                               | 1.28               | 6.59                          | 18.1              | 258.58        |
| 11:45:25 | 20:00                       | 300              | 28.05                     | 5.70                      | 79.20                               | 1.52               | 6.56                          | 18.2              | 260.52        |

| Constituent Sampled | Container      | Number | Preservative |
|---------------------|----------------|--------|--------------|
| RAD Chem            | 1L Plastic     | 2      | HNO3         |
| Mercury,Metals      | 250 mL Plastic | 1      | HNO3         |
| TDS                 | 500 mL Plastic | 1      | None         |
| Anions              | 250 mL Plastic | 1      | SO4          |

| Comments: LaMotte turbidity rea<br>1125: 2.25<br>1130: 3.18<br>1135: 2.34<br>1140: 1.89<br>1145: 2.03 | dings (time:NTU)                                                                             |
|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Well Casing Volume Conversion                                                                         |                                                                                              |
| Well diameter (inches) = gallons per foot                                                             | 1 = 0.04 1.5 = 0.09 2.5 = 0.26 3.5 = 0.50 6 = 1.47<br>1.25 = 0.06 2 = 0.16 3 = 0.37 4 = 0.65 |
| Well Information                                                                                      |                                                                                              |
| Well Location:                                                                                        | Well Locked at Arrival:                                                                      |

Condition of Well:

Well Completion: NA

Well Locked at Departure:

Key Number To Well: NA



| Project Number                 | 30053438              | Well ID                    | YGWA-4I     |                         |                        | Date                    | 03/03/2021     |
|--------------------------------|-----------------------|----------------------------|-------------|-------------------------|------------------------|-------------------------|----------------|
| Project Location               | AMA AP-3, A, B and B' |                            | Weather(°F) | 50.0 degrees F          | and Clear. The wind is | s blowing N at 1        | 0.3 mph.       |
| Measuring Pt.<br>Description   | Top of Inner Casing   | Screen<br>Setting (ft-bmp) | 38.51       | Casing<br>Diameter (in) | 2                      | Well Casing<br>Material | PVC            |
| Static Water<br>Level (ft-bmp) | 24.32                 | Total Depth (ft-<br>bmp)   | 48.81       | Water<br>Column(ft)     | 24.49                  | Gallons in<br>Well      | 3.98           |
| MP Elevation                   | 784.21                | Pump Intake (ft-<br>bmp)   | 45          | Purge Method            | Low-Flow               | Sample<br>Method        | Low-Flow       |
| Sample Time                    | 10:35                 | Well Volumes<br>Purged     | 0.17        | Sample ID               | YGWA-4I                | Sampled by              | Peter Argyakis |
| Purge Start                    | 10:18                 | Gallons Purged             | 0.66        | Replicate/<br>Code No.  |                        | Color                   | Clear          |

Purge End 10:33

| Time     | Total<br>Elapsed<br>Minutes | Rate<br>(mL/min) | Depth to<br>Water<br>(ft) | pH<br>(standard<br>units) | Specific<br>Conductivity<br>(µS/cm) | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Temperature<br>°C | Redox<br>(mV) |
|----------|-----------------------------|------------------|---------------------------|---------------------------|-------------------------------------|--------------------|-------------------------------|-------------------|---------------|
| 10:18:33 | 00:00                       | 200              | 24.32                     | 6.08                      | 150.39                              | 4.93               | 6.36                          | 14.7              | 247.14        |
| 10:23:33 | 05:00                       | 100              | 24.48                     | 6.20                      | 154.45                              | 0.27               | 4.11                          | 14.8              | 240.12        |
| 10:28:33 | 10:00                       | 100              | 24.55                     | 6.20                      | 152.74                              | 0.16               | 3.99                          | 14.8              | 239.85        |
| 10:33:33 | 15:00                       | 100              | 24.67                     | 6.21                      | 150.47                              | 0.17               | 4.11                          | 14.6              | 239.77        |

| Constituent Sampled | Container      | Number | Preservative |  |
|---------------------|----------------|--------|--------------|--|
| Anions              | 250 mL Plastic | 1      | None         |  |
| Mercury,Metals      | 250 mL Plastic | 1      | HNO3         |  |
| RAD Chem            | 1L Plastic     | 2      | HNO3         |  |
| TDS                 | 500 mL Plastic | 1      | None         |  |
|                     |                |        |              |  |

| Comments: | LaMotte turbidity readings (time:NTU)<br>1018: 1.03<br>1023: 1.59<br>1028: 0.76<br>1033: 1.14 |
|-----------|-----------------------------------------------------------------------------------------------|
|           | 1033: 1.14                                                                                    |

### Well Casing Volume Conversion

| Well diameter (inches) = gallons per foot | $1 = 0.04 \ 1.5 = 0.09 \ 2.5 = 0.26 \ 3.5 = 0.50 \ 6 = 1.47$ $1.25 = 0.06 \ 2 = 0.16 \ 3 = 0.37 \ 4 = 0.65$ |  |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|
| Well Information                          |                                                                                                             |  |
| Well Location:                            | Well Locked at Arrival:                                                                                     |  |
| Condition of Well:                        | Well Locked at Departure:                                                                                   |  |
| Well Completion: NA                       | Key Number To Well: NA                                                                                      |  |

mS/cm = milliSiemens per centimeter NTU = Nephelometric Turbidity Unit mg/L = milligrams per liter $\mu S/cm = microSiemens per centimeters$ 



| Project Number                 | 30053438            | Well ID                    | YAMW-2      |                         |                        | Date                    | 03/03/2021     |
|--------------------------------|---------------------|----------------------------|-------------|-------------------------|------------------------|-------------------------|----------------|
| Project Location               | AMA R6 CCR Landfill |                            | Weather(°F) | 60.8 degrees F          | and Clear. The wind is | blowing N/NW            | at 11.4 mph.   |
| Measuring Pt.<br>Description   | Top of Inner Casing | Screen<br>Setting (ft-bmp) | 36.44       | Casing<br>Diameter (in) | 2                      | Well Casing<br>Material | PVC            |
| Static Water<br>Level (ft-bmp) | 19.85               | Total Depth (ft-<br>bmp)   | 46.48       | Water<br>Column(ft)     | 26.63                  | Gallons in<br>Well      | 4.33           |
| MP Elevation                   | 781.04              | Pump Intake (ft-<br>bmp)   | 42          | Purge Method            | Low-Flow               | Sample<br>Method        | Low-Flow       |
| Sample Time                    | 13:34               | Well Volumes<br>Purged     | 0.40        | Sample ID               | YAMW-2                 | Sampled by              | Peter Argyakis |
| Purge Start                    | 13:34               | Gallons Purged             | 1.72        | Replicate/<br>Code No.  |                        | Color                   | Clear          |

Purge End 14:04

| Time     | Total<br>Elapsed<br>Minutes | Rate<br>(mL/min) | Depth to<br>Water<br>(ft) | pH<br>(standard<br>units) | Specific<br>Conductivity<br>(µS/cm) | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Temperature<br>°C | Redox<br>(mV) |
|----------|-----------------------------|------------------|---------------------------|---------------------------|-------------------------------------|--------------------|-------------------------------|-------------------|---------------|
| 13:44:02 | 10:00                       | 200              | 19.85                     | 5.71                      | 59.21                               | 4.33               | 5.42                          | 20.3              | 151.20        |
| 13:49:02 | 15:00                       | 200              | 19.85                     | 5.69                      | 58.47                               | 5.00               | 5.13                          | 20.3              | 167.02        |
| 13:54:02 | 20:00                       | 200              | 19.85                     | 5.67                      | 58.68                               | 2.52               | 4.97                          | 20.1              | 180.86        |
| 13:59:02 | 25:00                       | 200              | 19.85                     | 5.65                      | 58.97                               | 2.55               | 4.97                          | 20.2              | 187.85        |
| 14:04:02 | 30:00                       | 200              | 19.85                     | 5.67                      | 59.05                               | 1.90               | 4.95                          | 20.7              | 189.97        |

| Constituent Sampled | Container      | Number | Preservative |
|---------------------|----------------|--------|--------------|
| Anions              | 250 mL Plastic | 1      | SO4          |
| Mercury,Metals      | 250 mL Plastic | 1      | HNO3         |
| TDS                 | 500 mL Plastic | 1      | None         |
| RAD Chem            | 1L Plastic     | 2      | None         |

| Comments:                                                                                    | LaMotte turbidity readi<br>1334: 3.32<br>1339: 2.61<br>1344: 2.90<br>1349: 2.55<br>1354: 1.63<br>1359: 2.08<br>1404: 1.35 | ngs (time:NTU)      |                                                 |  |  |
|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------|--|--|
| Well Casing Volur                                                                            | ne Conversion                                                                                                             |                     |                                                 |  |  |
| Well diameter (inches) = gallons per foot 1 = 0.04 1.5 = 0.09 2.5 = 1.25 = 0.06 2 = 0.16 3 = |                                                                                                                           |                     | 5 = 0.26 3.5 = 0.50 6 = 1.47<br>= 0.37 4 = 0.65 |  |  |
| Well Information                                                                             |                                                                                                                           |                     |                                                 |  |  |
| Well Location:                                                                               |                                                                                                                           |                     | Well Locked at Arrival:                         |  |  |
| Condition of Well:                                                                           |                                                                                                                           |                     | Well Locked at Departure:                       |  |  |
| Well Completion: NA                                                                          |                                                                                                                           | Key Number To Well: | NA                                              |  |  |
|                                                                                              |                                                                                                                           |                     |                                                 |  |  |

 $\begin{array}{l} mS/cm = milliSiemens \ per \ centimeter \\ NTU = Nephelometric \ Turbidity \ Unit \\ mg/L = milligrams \ per \ liter \\ \mu S/cm = microSiemens \ per \ centimeters \end{array}$ 



| Project Number                 | 30052922            | Well ID                    | PZ-37       |                         |          | Date                    | 03/04/2021       |
|--------------------------------|---------------------|----------------------------|-------------|-------------------------|----------|-------------------------|------------------|
| Project Location               | AMA R6 CCR Landfill |                            | Weather(°F) |                         |          |                         |                  |
| Measuring Pt.<br>Description   | Top of Inner Casing | Screen<br>Setting (ft-bmp) | 39.28       | Casing<br>Diameter (in) | 2        | Well Casing<br>Material | PVC              |
| Static Water<br>Level (ft-bmp) | 11.85               | Total Depth (ft-<br>bmp)   | 49.78       | Water<br>Column(ft)     | 37.93    | Gallons in<br>Well      | 6.16             |
| MP Elevation                   | 760.78              | Pump Intake (ft-<br>bmp)   | 45          | Purge Method            | Low-Flow | Sample<br>Method        | Low-Flow         |
| Sample Time                    | 11:55               | Well Volumes<br>Purged     | 0.14        | Sample ID               | PZ-37    | Sampled by              | Katie Pupkiewicz |
| Purge Start                    | 11:34               | Gallons Purged             | 0.85        | Replicate/<br>Code No.  |          | Color                   | Clear            |

Purge End 11:51

| Time     | Total<br>Elapsed<br>Minutes | Rate<br>(mL/min) | Depth to<br>Water<br>(ft) | pH<br>(standard<br>units) | Specific<br>Conductivity<br>(µS/cm) | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Temperature<br>°C | Redox<br>(mV) |
|----------|-----------------------------|------------------|---------------------------|---------------------------|-------------------------------------|--------------------|-------------------------------|-------------------|---------------|
| 11:34:59 | 00:00                       | 180              | 12.02                     | 5.68                      | 1510.62                             | 0.09               | 6.36                          | 18.5              | 203.06        |
| 11:39:59 | 05:00                       | 180              | 12.07                     | 5.54                      | 1425.18                             | 0.00               | 1.16                          | 19.8              | 225.54        |
| 11:44:59 | 10:00                       | 180              | 12.07                     | 5.51                      | 1436.50                             | 0.00               | 0.73                          | 20.2              | 234.96        |
| 11:49:59 | 15:00                       | 180              | 12.1                      | 5.51                      | 1423.21                             | 0.12               | 0.63                          | 20.0              | 242.65        |

| Constituent Sampled       | Container      | Number | Preservative |
|---------------------------|----------------|--------|--------------|
| RAD Chem                  | 1L Plastic     | 2      | HNO3         |
| Metals                    | 250 mL Plastic | 1      | HNO3         |
| TDS                       | 500 mL Plastic | 1      | None         |
| Chloride,Fluoride and SO4 | 250 mL Plastic | 1      | None         |

Comments:

1.40 1.62 1.54

1.24

### Well Casing Volume Conversion

| Well diameter (inches) = gallons per foot | 1 = 0.04 1.5 = 0.09 2.5 = 0.26 3.5 = 0.50 6 = 1.47<br>1.25 = 0.06 2 = 0.16 3 = 0.37 4 = 0.65 |  |
|-------------------------------------------|----------------------------------------------------------------------------------------------|--|
| Well Information                          |                                                                                              |  |
| Well Location:                            | Well Locked at Arrival:                                                                      |  |
| Condition of Well:                        | Well Locked at Departure:                                                                    |  |
| Well Completion: NA                       | Key Number To Well: NA                                                                       |  |

mS/cm = milliSiemens per centimeterNTU = Nephelometric Turbidity Unit mg/L = milligrams per liter  $\mu S/cm = microSiemens per centimeters$ 

LaMotte turbidity readings taken every five minutes accordance with VuSitu purge log



| Project Number                 | 30052922            | Well ID                    | YGWC-38     |                         |          | 0          | Date                    | 03/04/2021       |
|--------------------------------|---------------------|----------------------------|-------------|-------------------------|----------|------------|-------------------------|------------------|
| Project Location               | AMA R6 CCR Landfill |                            | Weather(°F) |                         |          |            |                         |                  |
| Measuring Pt.<br>Description   | Top of Inner Casing | Screen<br>Setting (ft-bmp) | 39.59       | Casing<br>Diameter (in) | 2        | V          | Vell Casing<br>Aaterial | PVC              |
| Static Water<br>Level (ft-bmp) | 30.22               | Total Depth (ft-<br>bmp)   | 50.59       | Water<br>Column(ft)     | 20.37    | C<br>V     | Gallons in<br>Vell      | 3.31             |
| MP Elevation                   | 799.69              | Pump Intake (ft-<br>bmp)   | 45          | Purge Method            | Low-Flow | S<br>N     | Sample<br>Nethod        | Low-Flow         |
| Sample Time                    | 13:45               | Well Volumes<br>Purged     | 0.24        | Sample ID               | YGWC-3   | 3 <b>S</b> | Sampled by              | Katie Pupkiewicz |
| Purge Start                    | 13:23               | Gallons Purged             | 0.79        | Replicate/<br>Code No.  |          | C          | Color                   | Clear            |
| Purge End                      | 13:43               |                            |             |                         |          |            |                         |                  |
|                                | Total               | Depth to                   | nH S        | necific                 |          | Dissolved  |                         |                  |

| Time     | Total<br>Elapsed<br>Minutes | Rate<br>(mL/min) | Depth to<br>Water<br>(ft) | pH<br>(standard<br>units) | Specific<br>Conductivity<br>(µS/cm) | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Temperature<br>°C | Redox<br>(mV) |
|----------|-----------------------------|------------------|---------------------------|---------------------------|-------------------------------------|--------------------|-------------------------------|-------------------|---------------|
| 13:23:01 | 00:00                       | 140              | 30.83                     | 6.07                      | 884.21                              | 0.87               | 7.95                          | 21.2              | 224.62        |
| 13:28:01 | 05:00                       | 120              | 31.26                     | 5.07                      | 840.89                              | 5.57               | 4.72                          | 19.8              | 227.82        |
| 13:33:01 | 10:00                       | 120              | 31.34                     | 5.01                      | 919.53                              | 2.32               | 4.20                          | 19.7              | 227.67        |
| 13:38:01 | 15:00                       | 120              | 31.4                      | 5.02                      | 915.37                              | 1.30               | 4.02                          | 20.1              | 226.86        |
| 13:43:01 | 20:00                       | 120              | 31.47                     | 5.01                      | 914.31                              | 0.81               | 3.96                          | 20.1              | 233.18        |

| Constituent Sampled       | Container      | Number | Preservative |
|---------------------------|----------------|--------|--------------|
| RAD Chem                  | 1L Plastic     | 2      | HNO3         |
| Metals                    | 250 mL Plastic | 1      | HNO3         |
| TDS                       | 500 mL Plastic | 1      | None         |
| Chloride,Fluoride and SO4 | 250 mL Plastic | 1      | None         |

Comments: LaMotte turbidity readings taken every five minutes in accordance with VuSitu purge log
1.15
3.96
3.40

# 0.97 Well Casing Volume Conversion

1.49

| Well diameter (inches) = gallons per foot | 1 = 0.04 1.5 = 0.09 2.5 = 0.26 3.5 = 0.50 6 = 1.47 |
|-------------------------------------------|----------------------------------------------------|
|                                           | 1.25 = 0.06 2 = 0.16 3 = 0.37 4 = 0.65             |

### Well Information

Well Location:

Well Locked at Arrival:

Condition of Well:

Well Completion: NA

Well Locked at Departure:

Key Number To Well: NA



| Project Number                 | 30053438            | Well ID                    | YAMW-5      |                         |                        | Date                    | 03/04/2021     |
|--------------------------------|---------------------|----------------------------|-------------|-------------------------|------------------------|-------------------------|----------------|
| Project Location               | AMA R6 CCR Landfill |                            | Weather(°F) | 67.8 degrees F          | and Clear. The wind is | s blowing N at 8        | 3.1 mph.       |
| Measuring Pt.<br>Description   | Top of Inner Casing | Screen<br>Setting (ft-bmp) | 80.3        | Casing<br>Diameter (in) | 2                      | Well Casing<br>Material | PVC            |
| Static Water<br>Level (ft-bmp) | 13.41               | Total Depth (ft-<br>bmp)   | 90.34       | Water<br>Column(ft)     | 76.93                  | Gallons in<br>Well      | 12.5           |
| MP Elevation                   | 788.9               | Pump Intake (ft-<br>bmp)   | 86          | Purge Method            | Low-Flow               | Sample<br>Method        | Low-Flow       |
| Sample Time                    | 14:15               | Well Volumes<br>Purged     | 0.11        | Sample ID               | YAMW-5                 | Sampled by              | Peter Argyakis |
| Purge Start                    | 13:45               | Gallons Purged             | 1.32        | Replicate/<br>Code No.  |                        | Color                   | Clear          |

Purge End 14:10

| Time     | Total<br>Elapsed<br>Minutes | Rate<br>(mL/min) | Depth to<br>Water<br>(ft) | pH<br>(standard<br>units) | Specific<br>Conductivity<br>(µS/cm) | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Temperature<br>°C | Redox<br>(mV) |
|----------|-----------------------------|------------------|---------------------------|---------------------------|-------------------------------------|--------------------|-------------------------------|-------------------|---------------|
| 13:45:32 | 00:00                       | 200              | 13.41                     | 4.90                      | 0.06                                | 0.28               | 8.21                          | 21.8              | 231.42        |
| 13:50:32 | 05:00                       | 200              | 13.55                     | 5.29                      | 821.37                              | 0.04               | 7.07                          | 21.6              | 238.12        |
| 13:55:32 | 10:00                       | 200              | 13.62                     | 5.29                      | 825.45                              | 0.00               | 6.69                          | 21.3              | 260.54        |
| 14:00:32 | 15:00                       | 200              | 13.7                      | 5.29                      | 827.79                              | 0.00               | 6.00                          | 22.7              | 267.99        |
| 14:05:32 | 20:00                       | 200              | 13.77                     | 5.31                      | 826.69                              | 0.00               | 6.18                          | 22.3              | 270.92        |
| 14:10:32 | 25:00                       | 200              | 13.86                     | 5.32                      | 833.39                              | 0.02               | 5.65                          | 24.1              | 266.64        |

| Constituent Sampled | Container      | Number | Preservative |
|---------------------|----------------|--------|--------------|
| Mercury, Metals     | 250 mL Plastic | 1      | HNO3         |
| RAD Chem            | 1L Plastic     | 2      | HNO3         |
| TDS                 | 500 mL Plastic | 1      | None         |
| Anions              | 250 mL Plastic | 1      | None         |

| Comments:         LaMotte turbidity rea           1345: 1.26         1350: 1.50           1355: 1.78         1400: 0.79           1405: 1.48         1410: 1.12           Well Casing Volume Conversion | dings (time:NTU)                                                                             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| Well diameter (inches) = gallons per foot                                                                                                                                                               | 1 = 0.04 1.5 = 0.09 2.5 = 0.26 3.5 = 0.50 6 = 1.47<br>1.25 = 0.06 2 = 0.16 3 = 0.37 4 = 0.65 |
| Well Information                                                                                                                                                                                        |                                                                                              |
| Well Location:                                                                                                                                                                                          | Well Locked at Arrival:                                                                      |

Condition of Well:

Well Completion: NA

Well Locked at Departure:

Key Number To Well: NA

ft-bmp = feet below measuring point in = inches ft = feet mL/min = milliliters per minute mS/cm = milliSiemens per centimeter NTU = Nephelometric Turbidity Unit mg/L = milligrams per liter $\mu S/cm = microSiemens per centimeters$ 



| Project Number                 | 30053438            | Well ID                    | YAMW-4      |                         |                        | Date                    | 03/03/2021     |
|--------------------------------|---------------------|----------------------------|-------------|-------------------------|------------------------|-------------------------|----------------|
| Project Location               | AMA R6 CCR Landfill |                            | Weather(°F) | 59.0 degrees F          | and Clear. The wind is | blowing N at 1          | 0.3 mph.       |
| Measuring Pt.<br>Description   | Top of Inner Casing | Screen<br>Setting (ft-bmp) | 86.59       | Casing<br>Diameter (in) | 2                      | Well Casing<br>Material | PVC            |
| Static Water<br>Level (ft-bmp) | 30.77               | Total Depth (ft-<br>bmp)   | 96.55       | Water<br>Column(ft)     | 65.78                  | Gallons in<br>Well      | 10.69          |
| MP Elevation                   | 805.59              | Pump Intake (ft-<br>bmp)   | 64          | Purge Method            | Low-Flow               | Sample<br>Method        | Low-Flow       |
| Sample Time                    | 13:05               | Well Volumes<br>Purged     | 0.07        | Sample ID               | YAMW-4                 | Sampled by              | Peter Argyakis |
| Purge Start                    | 12:40               | Gallons Purged             | 0.79        | Replicate/<br>Code No.  |                        | Color                   | Clear          |

Purge End 13:00

| Time     | Total<br>Elapsed<br>Minutes | Rate<br>(mL/min) | Depth to<br>Water<br>(ft) | pH<br>(standard<br>units) | Specific<br>Conductivity<br>(µS/cm) | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Temperature<br>°C | Redox<br>(mV) |
|----------|-----------------------------|------------------|---------------------------|---------------------------|-------------------------------------|--------------------|-------------------------------|-------------------|---------------|
| 12:40:15 | 00:00                       | 200              | 30.77                     | 6.83                      | 457.48                              | 1.29               | 4.62                          | 19.7              | -108.44       |
| 12:45:15 | 05:00                       | 100              | 30.98                     | 6.83                      | 450.29                              | 1.48               | 2.85                          | 20.3              | -113.87       |
| 12:50:15 | 10:00                       | 100              | 30.11                     | 6.82                      | 449.08                              | 0.80               | 2.44                          | 20.3              | -120.01       |
| 12:55:15 | 15:00                       | 100              | 30.15                     | 6.81                      | 449.07                              | 0.56               | 1.86                          | 20.1              | -124.66       |
| 13:00:15 | 20:00                       | 100              | 30.29                     | 6.80                      | 448.30                              | 0.57               | 1.87                          | 20.2              | -129.14       |

| Constituent Sampled | Container      | Number | Preservative |
|---------------------|----------------|--------|--------------|
| Anions              | 250 mL Plastic | 1      | SO4          |
| TDS                 | 500 mL Plastic | 1      | None         |
| RAD Chem            | 1L Plastic     | 2      | HNO3         |
| Mercury,Metals      | 250 mL Plastic | 1      | HNO3         |

| Comments:<br>Well Casing Volur | LaMotte turbidity readi<br>1240: 1.60<br>1245: 1.74<br>1250: 1.14<br>1255: 0.82<br>1300: 0.97<br>ne Conversion                                           | ngs (time:NTU)            |  |  |  |
|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--|--|--|
| Well diameter (inch            | Well diameter (inches) = gallons per foot $1 = 0.04 \ 1.5 = 0.09 \ 2.5 = 0.26 \ 3.5 = 0.50 \ 6 = 1.47$<br>$1.25 = 0.06 \ 2 = 0.16 \ 3 = 0.37 \ 4 = 0.65$ |                           |  |  |  |
| Well Information               |                                                                                                                                                          |                           |  |  |  |
| Well Location:                 |                                                                                                                                                          | Well Locked at Arrival:   |  |  |  |
| Condition of Well:             |                                                                                                                                                          | Well Locked at Departure: |  |  |  |

Well Completion: NA

Key Number To Well: NA

ft-bmp = feet below measuring point in = inches ft = feet mL/min = milliliters per minute mS/cm = milliSiemens per centimeter NTU = Nephelometric Turbidity Unit mg/L = milligrams per liter $\mu S/cm = microSiemens per centimeters$ 



| Project Numbe                  | er 30052922                 | 2                | Well ID                   | YGWA-4                    | 40                                  |                    |                               | Date                    | 03/04/2 | 2021          |
|--------------------------------|-----------------------------|------------------|---------------------------|---------------------------|-------------------------------------|--------------------|-------------------------------|-------------------------|---------|---------------|
| Project Locati                 | on AMA R6 (                 | CCR Landfill     |                           | Weathe                    | r(°F)                               |                    |                               |                         |         |               |
| Measuring Pt.<br>Description   | Top of Inr                  | er Casing        | Screen<br>Setting (ft-bmp | <b>)</b> 37.73            | Casing<br>Diameter                  | . (in) 2           |                               | Well Casing<br>Material | PVC     |               |
| Static Water<br>Level (ft-bmp) | 22.32                       |                  | Total Depth (ft-<br>bmp)  | 48.23                     | Water<br>Column(                    | ft) 25.91          |                               | Gallons in<br>Well      | 4.21    |               |
| MP Elevation                   | 815.73                      |                  | Pump Intake (f<br>bmp)    | <b>t-</b> 42              | Purge M                             | ethod Low-Fla      | W                             | Sample<br>Method        | Low-F   | low           |
| Sample Time                    | 10:10                       |                  | Well Volumes<br>Purged    | 0.37                      | Sample I                            | D YGWA-            | 40                            | Sampled by              | Katie F | Pupkiewicz    |
| Purge Start                    | 09:37                       |                  | Gallons Purge             | <b>d</b> 1.56             | Replicate<br>Code No                | e/                 |                               | Color                   | Clear   |               |
| Purge End                      | 10:08                       |                  |                           |                           |                                     |                    |                               |                         |         |               |
| Time                           | Total<br>Elapsed<br>Minutes | Rate<br>(mL/min) | Depth to<br>Water<br>(ft) | pH<br>(standard<br>units) | Specific<br>Conductivity<br>(µS/cm) | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Temperat<br>°C          | ture    | Redox<br>(mV) |
| 09:37:23                       | 00:00                       | 180              | 23                        | 5.38                      | 144.05                              | 0.00               | 5.44                          | 17.0                    |         | 210.82        |
| 09:42:23                       | 05:00                       | 180              | 23.13                     | 5.28                      | 138.52                              | 0.00               | 4.34                          | 17.3                    |         | 224.47        |
| 09:47:23                       | 10:00                       | 180              | 23.06                     | 5.24                      | 143.84                              | 0.00               | 3.93                          | 17.6                    |         | 227.41        |
| 09:52:23                       | 15:00                       | 180              | 23.14                     | 5.24                      | 148.10                              | 0.00               | 3.89                          | 17.8                    |         | 226.63        |

| Constituent Sampled       | Container      | Number | Preservative |
|---------------------------|----------------|--------|--------------|
| RAD Chem                  | 1L Plastic     | 2      | HNO3         |
| Metals                    | 250 mL Plastic | 1      | HNO3         |
| TDS                       | 500 mL Plastic | 1      | None         |
| Chloride,Fluoride and SO4 | 250 mL Plastic | 1      | None         |

140.85

141.20

138.12

0.00

0.00

0.00

3.83

3.79

3.74

17.9

17.9

17.9

224.06

230.38

232.86

Comments: LaMotte turbidity readings taken every five minutes in accordance with VuSitu purge log
0.45
0.63
0.38
0.42
0.40
0.44

23.11

23.12

23.11

5.23

5.22

5.23

### Well Casing Volume Conversion

0.36

09:57:23

10:02:23

10:07:23

20:00

25:00

30:00

180

180

180

| · · · · · · · · · · · · · · · · · · ·                                   |                 |                                                                                             |                                                                |                                                                    |  |
|-------------------------------------------------------------------------|-----------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------|--|
| Well diameter (inches) = gallons per foot                               |                 | 1 = 0.04 1.5 = 0.09 2.5<br>1.25 = 0.06 2 = 0.16 3                                           | 5 = 0.26 3.5 = 0.50 6 = 1.47<br>= 0.37 4 = 0.65                |                                                                    |  |
| Well Information                                                        |                 |                                                                                             |                                                                |                                                                    |  |
| Well Location:                                                          |                 |                                                                                             | Well Locked at Arrival:                                        |                                                                    |  |
| Condition of Well:                                                      |                 |                                                                                             | Well Locked at Departure:                                      |                                                                    |  |
| Well Completion:                                                        | : NA            |                                                                                             | Key Number To Well:                                            | NA                                                                 |  |
| ft-bmp = feet below<br>in = inches<br>ft = feet<br>mL/min = milliliters | measuring point | mS/cm = milliSiemens<br>NTU = Nephelometric<br>mg/L = milligrams per<br>µS/cm = microSiemen | per centimeter<br>Turbidity Unit<br>liter<br>s per centimeters | mV = millivolts<br>°F = degrees Fahrenheit<br>°C = degrees Celsius |  |



| Project Number                 | 30052922            | Well ID                    | YGWC-42     |                         |                         | Date                    | 03/04/2021       |
|--------------------------------|---------------------|----------------------------|-------------|-------------------------|-------------------------|-------------------------|------------------|
| Project Location               | AMA R6 CCR Landfill |                            | Weather(°F) | It is Clear. The        | wind is blowing N at 10 | ).3 mph.                |                  |
| Measuring Pt.<br>Description   | Top of Inner Casing | Screen<br>Setting (ft-bmp) | 49.36       | Casing<br>Diameter (in) | 2                       | Well Casing<br>Material | PVC              |
| Static Water<br>Level (ft-bmp) | 27.47               | Total Depth (ft-<br>bmp)   | 59.76       | Water<br>Column(ft)     | 32.29                   | Gallons in<br>Well      | 5.25             |
| MP Elevation                   | 797.86              | Pump Intake (ft-<br>bmp)   | 55          | Purge Method            | Low-Flow                | Sample<br>Method        | Low-Flow         |
| Sample Time                    | 08:45               | Well Volumes<br>Purged     | 0.12        | Sample ID               | YGWC-42                 | Sampled by              | Katie Pupkiewicz |
| Purge Start                    | 08:24               | Gallons Purged             | 0.63        | Replicate/<br>Code No.  |                         | Color                   | Clear            |

### Purge End 08:41

| Time     | Total<br>Elapsed<br>Minutes | Rate<br>(mL/min) | Depth to<br>Water<br>(ft) | pH<br>(standard<br>units) | Specific<br>Conductivity<br>(µS/cm) | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Temperature<br>°C | Redox<br>(mV) |
|----------|-----------------------------|------------------|---------------------------|---------------------------|-------------------------------------|--------------------|-------------------------------|-------------------|---------------|
| 08:24:57 | 00:00                       | 180              | 28.37                     | 5.83                      | 1666.83                             | 0.00               | 5.72                          | 13.8              | 224.90        |
| 08:29:57 | 05:00                       | 100              | 29.37                     | 5.59                      | 1660.04                             | 0.00               | 2.02                          | 15.8              | 222.94        |
| 08:34:57 | 10:00                       | 100              | 29.37                     | 5.59                      | 1652.86                             | 0.00               | 2.05                          | 15.6              | 226.71        |
| 08:39:57 | 15:00                       | 100              | 29.38                     | 5.59                      | 1651.55                             | 0.00               | 1.88                          | 15.9              | 227.39        |

| Constituent Sampled       | Container      | Number | Preservative |
|---------------------------|----------------|--------|--------------|
| RAD Chem                  | 1L Plastic     | 2      | HNO3         |
| Metals                    | 250 mL Plastic | 1      | HNO3         |
| TDS                       | 500 mL Plastic | 1      | None         |
| Chloride,Fluoride and SO4 | 250 mL Plastic | 1      | None         |

LaMotte turbidity readings taken every five minutes in accordance with VuSitu purge log 1.46 0.90

#### 1.01 0.81

#### Well Casing Volume Conversion

Comments:

| Well diameter (inches) = gallons per foot | t 1 = 0.04 1.5 = 0.09 2.5 = 0.26 3.5 = 0.50 6 = 1.47<br>1.25 = 0.06 2 = 0.16 3 = 0.37 4 = 0.65 |    |
|-------------------------------------------|------------------------------------------------------------------------------------------------|----|
| Well Information                          |                                                                                                |    |
| Well Location:                            | Well Locked at Arrival:                                                                        |    |
| Condition of Well:                        | Well Locked at Departure:                                                                      |    |
| Well Completion: NA                       | Key Number To Well:                                                                            | NA |

mS/cm = milliSiemens per centimeterNTU = Nephelometric Turbidity Unit mg/L = milligrams per liter  $\mu S/cm = microSiemens per centimeters$ 

......



| Project Number                 | 30052922            | Well ID                    | YGWC-41     |                         |                         | Date                    | 03/04/2021   |
|--------------------------------|---------------------|----------------------------|-------------|-------------------------|-------------------------|-------------------------|--------------|
| Project Location               | AMA R6 CCR Landfill |                            | Weather(°F) | It is Clear. The        | wind is blowing N at 11 | .4 mph. 40 F            |              |
| Measuring Pt.<br>Description   | Top of Inner Casing | Screen<br>Setting (ft-bmp) | 56.82       | Casing<br>Diameter (in) | 2                       | Well Casing<br>Material | PVC          |
| Static Water<br>Level (ft-bmp) | 26.81               | Total Depth (ft-<br>bmp)   | 67.32       | Water<br>Column(ft)     | 40.51                   | Gallons in<br>Well      | 6.58         |
| MP Elevation                   | 803.92              | Pump Intake (ft-<br>bmp)   | 62          | Purge Method            | Low-Flow                | Sample<br>Method        | Low-Flow     |
| Sample Time                    | 09:00               | Well Volumes<br>Purged     | 0.11        | Sample ID               | YGWC-41                 | Sampled by              | Jake Swanson |
| Purge Start                    | 08:25               | Gallons Purged             | 0.70        | Replicate/<br>Code No.  |                         | Color                   | Clear        |

#### Purge End 08:50

| Time     | Total<br>Elapsed<br>Minutes | Rate<br>(mL/min) | Depth to<br>Water<br>(ft) | pH<br>(standard<br>units) | Specific<br>Conductivity<br>(µS/cm) | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Temperature<br>°C | Redox<br>(mV) |
|----------|-----------------------------|------------------|---------------------------|---------------------------|-------------------------------------|--------------------|-------------------------------|-------------------|---------------|
| 08:25:52 | 00:00                       | 100              | 26.81                     | 4.68                      | 441.39                              | 0.00               | 9.75                          | 12.2              | 237.26        |
| 08:30:52 | 05:00                       | 100              | 27.48                     | 4.72                      | 361.87                              | 0.00               | 4.95                          | 14.8              | 230.97        |
| 08:35:52 | 10:00                       | 100              | 27.5                      | 4.68                      | 336.62                              | 0.00               | 4.53                          | 15.3              | 237.70        |
| 08:40:52 | 15:00                       | 100              | 27.51                     | 4.68                      | 320.54                              | 0.00               | 4.39                          | 15.7              | 239.87        |
| 08:45:52 | 20:00                       | 100              | 27.53                     | 4.70                      | 319.63                              | 0.00               | 4.28                          | 15.7              | 245.30        |
| 08:50:52 | 25:00                       | 100              | 27.55                     | 4.71                      | 322.09                              | 0.00               | 4.21                          | 16.0              | 248.43        |
| 08:52:30 | 26:38                       | 100              | 27.55                     | 4.69                      | 323.62                              | 0.00               | 4.22                          | 16.1              | 292.69        |

| Constituent Sampled   | Container      | Number | Preservative |
|-----------------------|----------------|--------|--------------|
| RAD Chem              | 1L Plastic     | 2      | HNO3         |
| Metals                | 250 mL Plastic | 1      | HNO3         |
| TDS                   | 500 mL Plastic | 1      | None         |
| Chloride,Fluoride SO4 | 250 mL Plastic | 1      | None         |

#### Comments: LaMotte turbidity readings (time elapsed=NTU) 15:00 = 0.26, 20:00 = 0.18, 25:00 = 0.15

### Well Casing Volume Conversion

Well diameter (inches) = gallons per foot 1 = 0.04 1.5 = 0.09 2.5 = 0.26 3.5 = 0.50 6 = 1.47 1.25 = 0.06 2 = 0.16 3 = 0.37 4 = 0.65

### Well Information

Well Location:

Condition of Well:

Well Completion: NA

Well Locked at Arrival: Well Locked at Departure:

Key Number To Well: NA

ft-bmp = feet below measuring point in = inches ft = feet mL/min = milliliters per minute

mS/cm = milliSiemens per centimeter NTU = Nephelometric Turbidity Unit mg/L = milligrams per liter µS/cm = microSiemens per centimeters



| Project Number                 | 30052922            | Well ID                    | YGWA-39     |                         |                        | Date                    | 03/04/2021   |
|--------------------------------|---------------------|----------------------------|-------------|-------------------------|------------------------|-------------------------|--------------|
| Project Location               | AMA R6 CCR Landfill |                            | Weather(°F) | 70.5 degrees F          | and Clear. The wind is | s blowing NW a          | at 8.1 mph.  |
| Measuring Pt.<br>Description   | Top of Inner Casing | Screen<br>Setting (ft-bmp) | 58.09       | Casing<br>Diameter (in) | 2                      | Well Casing<br>Material | PVC          |
| Static Water<br>Level (ft-bmp) | 16.59               | Total Depth (ft-<br>bmp)   | 68.59       | Water<br>Column(ft)     | 52                     | Gallons in<br>Well      | 8.45         |
| MP Elevation                   | 818.19              | Pump Intake (ft-<br>bmp)   | 63          | Purge Method            | Low-Flow               | Sample<br>Method        | Low-Flow     |
| Sample Time                    | 10:20               | Well Volumes<br>Purged     | 0.06        | Sample ID               | YGWA-39                | Sampled by              | Jake Swanson |
| Purge Start                    | 09:53               | Gallons Purged             | 0.53        | Replicate/<br>Code No.  |                        | Color                   | Clear        |

### Purge End 10:15

| Time     | Total<br>Elapsed<br>Minutes | Rate<br>(mL/min) | Depth to<br>Water<br>(ft) | pH<br>(standard<br>units) | Specific<br>Conductivity<br>(µS/cm) | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Temperature<br>°C | Redox<br>(mV) |
|----------|-----------------------------|------------------|---------------------------|---------------------------|-------------------------------------|--------------------|-------------------------------|-------------------|---------------|
| 09:53:02 | 00:00                       | 100              | 16.59                     | 6.25                      | 228.95                              | 0.00               | 6.98                          | 15.6              | 147.02        |
| 09:58:02 | 05:00                       | 100              | 16.79                     | 5.71                      | 244.96                              | 0.00               | 2.43                          | 16.5              | 67.77         |
| 10:03:02 | 10:00                       | 100              | 16.79                     | 5.63                      | 256.80                              | 0.00               | 1.38                          | 16.8              | 83.04         |
| 10:08:02 | 15:00                       | 100              | 16.79                     | 5.60                      | 259.73                              | 0.00               | 1.12                          | 17.2              | 91.98         |
| 10:13:02 | 20:00                       | 100              | 16.8                      | 5.54                      | 260.59                              | 0.00               | 1.05                          | 17.5              | 92.55         |

| Constituent Sampled | Container      | Number | Preservative |
|---------------------|----------------|--------|--------------|
| RAD Chem            | 1L Plastic     | 2      | HNO3         |
| Mercury,Metals      | 250 mL Plastic | 1      | HNO3         |
| TDS                 | 500 mL Plastic | 1      | None         |
| Anions              | 250 mL Plastic | 1      | None         |

| Comments: | LaMotte turbidity readings (time elapsed:NTU) |
|-----------|-----------------------------------------------|
|           | 10:00=0.21, 15:00=0.16, 20:00=0.11            |

### Well Casing Volume Conversion

| Well diameter (inches) = gallons per foot 1 = 0.04 1.5 = 0.09 2.5 = 0.26 3.5 = 0.50 6 = 1.47<br>1.25 = 0.06 2 = 0.16 3 = 0.37 4 = 0.65 |
|----------------------------------------------------------------------------------------------------------------------------------------|
|----------------------------------------------------------------------------------------------------------------------------------------|

#### Well Information

|    | Well Locked at Arrival:   | Well Location:      |
|----|---------------------------|---------------------|
|    | Well Locked at Departure: | Condition of Well:  |
| NA | Key Number To Well:       | Well Completion: NA |

mS/cm = milliSiemens per centimeterNTU = Nephelometric Turbidity Unit mg/L = milligrams per liter  $\mu S/cm = microSiemens per centimeters$ 



| Project Numbe                  | er 30053438                 |                  | Well ID                   | YGWC-3                    | 36A                                 |                    |                               | Date                    | 03/04/2021        |
|--------------------------------|-----------------------------|------------------|---------------------------|---------------------------|-------------------------------------|--------------------|-------------------------------|-------------------------|-------------------|
| Project Location               | on AMA R6 C                 | CR Landfill      |                           | Weathe                    | r(°F) 59.9 degre                    | es F and Clea      | r. The wind is                | blowing N at ?          | 13.9 mph.         |
| Measuring Pt.<br>Description   | Top of Inn                  | er Casing        | Screen<br>Setting (ft-bmp | 689.7                     | Casing<br>Diameter                  | (in) <sup>2</sup>  |                               | Well Casing<br>Material | PVC               |
| Static Water<br>Level (ft-bmp) | 9.94                        |                  | Total Depth (ft-<br>bmp)  | 51.2                      | Water<br>Column(ft                  | <b>)</b> 41.26     |                               | Gallons in<br>Well      | 6.7               |
| MP Elevation                   | 739.61                      |                  | Pump Intake (f<br>bmp)    | <b>t-</b> 46              | Purge Met                           | thod Low-Flor      | W                             | Sample<br>Method        | Low-Flow          |
| Sample Time                    | 12:35                       |                  | Well Volumes<br>Purged    | 0.45                      | Sample ID                           | YGWA-3             | 36A                           | Sampled by              | Peter Argyakis    |
| Purge Start                    | 10:43                       |                  | Gallons Purge             | <b>d</b> 3.04             | Replicate/<br>Code No.              | ,                  |                               | Color                   | Clear             |
| Purge End                      | 13:53                       |                  |                           |                           |                                     |                    |                               |                         |                   |
| Time                           | Total<br>Elapsed<br>Minutes | Rate<br>(mL/min) | Depth to<br>Water<br>(ft) | pH<br>(standard<br>units) | Specific<br>Conductivity<br>(µS/cm) | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Temperat<br>°C          | ure Redox<br>(mV) |
| 10:43:22                       | 00:00                       | 100              | 10.11                     | 5.54                      | 106.15                              | 31.57              | 6.06                          | 18.0                    | 206.13            |
| 10:48:22                       | 05:00                       | 100              | 10.11                     | 5.51                      | 102.44                              | 29.05              | 5.10                          | 17.7                    | 209.16            |
| 10:53:22                       | 10:00                       | 100              | 10.11                     | 5.51                      | 103.72                              | 21.35              | 4.63                          | 18.2                    | 211.18            |
| 10:58:22                       | 15:00                       | 100              | 10.11                     | 5.62                      | 106.68                              | 14.27              | 4.54                          | 18.7                    | 208.12            |
| 11:03:22                       | 20:00                       | 100              | 10.11                     | 5.70                      | 111.86                              | 30.39              | 4.47                          | 19.3                    | 204.71            |
| 11:08:22                       | 25:00                       | 100              | 10.11                     | 5.72                      | 107.54                              | 13.73              | 4.52                          | 19.3                    | 208.65            |
| 11:13:22                       | 30:00                       | 100              | 10.11                     | 5.75                      | 109.71                              | 15.14              | 4.48                          | 19.6                    | 208.35            |
| 11:18:22                       | 35:00                       | 100              | 10.11                     | 5.74                      | 109.80                              | 11.77              | 4.42                          | 19.7                    | 209.56            |
| 11:23:22                       | 40:00                       | 100              | 10.11                     | 5.73                      | 108.84                              | 14.67              | 4.44                          | 19.9                    | 210.09            |
| 11:28:22                       | 45:00                       | 100              | 10.11                     | 5.73                      | 104.67                              | 6.64               | 4.45                          | 20.1                    | 215.75            |
| 11:33:22                       | 50:00                       | 100              | 10.11                     | 5.73                      | 105.28                              | 13.87              | 4.43                          | 20.0                    | 217.80            |
| 11:38:22                       | 55:00                       | 100              | 10.11                     | 5.73                      | 103.70                              | 9.20               | 4.37                          | 20.4                    | 216.35            |
| 11:43:22                       | 00:00                       | 100              | 10.11                     | 5.71                      | 102.45                              | 11.45              | 4.36                          | 20.6                    | 211.38            |
| 11:48:22                       | 05:00                       | 100              | 10.11                     | 5.71                      | 102.11                              | 5.32               | 4.44                          | 20.6                    | 216.29            |
| 11:53:22                       | 10:00                       | 100              | 10.11                     | 5.70                      | 106.26                              | 5.35               | 4.47                          | 20.8                    | 219.59            |
| 11:58:22                       | 15:00                       | 100              | 10.11                     | 5.69                      | 101.21                              | 3.92               | 4.47                          | 20.5                    | 223.37            |
| 12:03:22                       | 20:00                       | 100              | 10.11                     | 5.70                      | 103.72                              | 8.98               | 4.48                          | 20.8                    | 226.44            |
| 12:08:22                       | 25:00                       | 100              | 10.11                     | 5.69                      | 101.33                              | 7.19               | 4.45                          | 20.9                    | 231.35            |
| 12:13:22                       | 30:00                       | 100              | 10.11                     | 5.69                      | 101.59                              | 3.58               | 4.45                          | 21.0                    | 232.52            |
| 12:18:22                       | 35:00                       | 100              | 10.11                     | 5.71                      | 72.15                               | 6.29               | 8.58                          | 21.8                    | 228.62            |
| 12:23:22                       | 40:00                       | 100              | 10.11                     | 5.68                      | 97.23                               | 3.47               | 7.93                          | 21.0                    | 233.00            |
| 12:28:22                       | 45:00                       | 100              | 10.11                     | 5.66                      | 96.73                               | 5.84               | 7.84                          | 20.8                    | 237.26            |
| 12:33:22                       | 50:00                       | 100              | 10.11                     | 5.67                      | 95.32                               | 3.24               | 7.76                          | 21.1                    | 237.67            |

ft-bmp = feet below measuring point in = inches ft = feet mL/min = milliliters per minute

mS/cm = milliSiemens per centimeter NTU = Nephelometric Turbidity Unit mg/L = milligrams per liter µS/cm = microSiemens per centimeters

mV = millivolts

°F = degrees Fahrenheit °C = degrees Celsius



| Constituent Sampled | Container      | Number | Preservative |  |
|---------------------|----------------|--------|--------------|--|
| Anions              | 250 mL Plastic | 1      | None         |  |
| RAD Chem            | 1L Plastic     | 2      | HNO3         |  |
| Mercury,Metals      | 250 mL Plastic | 1      | HNO3         |  |
| TDS                 | 500 mL Plastic | 1      | None         |  |

| Comments:                                 | LaMotte turbidity readia<br>1043: 22.8<br>1048: 26.8<br>1053: 20.3<br>1058: 18.4<br>1103: 17.9<br>1108: 15.6<br>1113: 12.6<br>1113: 9.19<br>1123: 9.34<br>1128: 8.49<br>1133: 7.13<br>1138: 7.14<br>1143: 7.13<br>1148: 6.44<br>1153: 5.25<br>1158: 4.88<br>1203: 4.67<br>1208: 4.79<br>1213: 5.73<br>1318: 4:25<br>1323: 4.97<br>1328: 4:53 | ngs (time:NTU)                                  |                                                   |    |  |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------|----|--|
|                                           | Mid sample: 4.33<br>End of sample: 4.29                                                                                                                                                                                                                                                                                                      |                                                 |                                                   |    |  |
| Well Casing Volum                         | ne Conversion                                                                                                                                                                                                                                                                                                                                |                                                 |                                                   |    |  |
| Well diameter (inches) = gallons per foot |                                                                                                                                                                                                                                                                                                                                              | 1 = 0.04 1.5 = 0.09 2<br>1.25 = 0.06 2 = 0.16 3 | 5 = 0.26 3.5 = 0.50 6 = 1.47<br>3 = 0.37 4 = 0.65 |    |  |
| Well Information                          |                                                                                                                                                                                                                                                                                                                                              |                                                 |                                                   |    |  |
| Well Location:                            |                                                                                                                                                                                                                                                                                                                                              |                                                 | Well Locked at Arrival:                           |    |  |
| Condition of Well:                        |                                                                                                                                                                                                                                                                                                                                              |                                                 | Well Locked at Departure:                         |    |  |
| Well Completion:                          | NA                                                                                                                                                                                                                                                                                                                                           |                                                 | Key Number To Well:                               | NA |  |



| Project Number                 | 30052922            | Well ID                    | YGWC-43     |                         |                        | Date                    | 03/04/2021     |
|--------------------------------|---------------------|----------------------------|-------------|-------------------------|------------------------|-------------------------|----------------|
| Project Location               | AMA R6 CCR Landfill |                            | Weather(°F) | 69.4 degrees F          | and Clear. The wind is | s blowing N/NW          | / at 13.9 mph. |
| Measuring Pt.<br>Description   | Top of Inner Casing | Screen<br>Setting (ft-bmp) | 69.16       | Casing<br>Diameter (in) | 2                      | Well Casing<br>Material | PVC            |
| Static Water<br>Level (ft-bmp) | 16.25               | Total Depth (ft-<br>bmp)   | 79.66       | Water<br>Column(ft)     | 63.41                  | Gallons in<br>Well      | 10.3           |
| MP Elevation                   | 744.96              | Pump Intake (ft-<br>bmp)   | 74          | Purge Method            | Low-Flow               | Sample<br>Method        | Low-Flow       |
| Sample Time                    | 14:50               | Well Volumes<br>Purged     | 0.04        | Sample ID               | YGWC-43                | Sampled by              | Jake Swanson   |
| Purge Start                    | 14:28               | Gallons Purged             | 0.40        | Replicate/<br>Code No.  | FB-01                  | Color                   | Clear          |

Purge End 14:43

| Time     | Total<br>Elapsed<br>Minutes | Rate<br>(mL/min) | Depth to<br>Water<br>(ft) | pH<br>(standard<br>units) | Specific<br>Conductivity<br>(µS/cm) | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Temperature<br>°C | Redox<br>(mV) |
|----------|-----------------------------|------------------|---------------------------|---------------------------|-------------------------------------|--------------------|-------------------------------|-------------------|---------------|
| 14:28:16 | 00:00                       | 100              | 16.25                     | 7.14                      | 687.49                              | 0.93               | 7.88                          | 24.2              | -95.82        |
| 14:33:16 | 05:00                       | 100              | 16.45                     | 5.80                      | 636.28                              | 5.16               | 8.89                          | 20.7              | -51.83        |
| 14:38:16 | 10:00                       | 100              | 16.47                     | 5.85                      | 644.46                              | 0.00               | 8.84                          | 20.4              | -31.71        |
| 14:43:16 | 15:00                       | 100              | 16.47                     | 5.88                      | 615.65                              | 0.00               | 8.69                          | 20.3              | -19.08        |

| Container      | Number                                                                        | Preservative                                                            |                                                                                                     |
|----------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| 1L Plastic     | 2                                                                             | HNO3                                                                    |                                                                                                     |
| 250 mL Plastic | 1                                                                             | HNO3                                                                    |                                                                                                     |
| 500 mL Plastic | 1                                                                             | None                                                                    |                                                                                                     |
| 250 mL Plastic | 1                                                                             | None                                                                    |                                                                                                     |
|                | Container<br>1L Plastic<br>250 mL Plastic<br>500 mL Plastic<br>250 mL Plastic | ContainerNumber1L Plastic2250 mL Plastic1500 mL Plastic1250 mL Plastic1 | ContainerNumberPreservative1L Plastic2HNO3250 mL Plastic1HNO3500 mL Plastic1None250 mL Plastic1None |

LaMotte turbidity readings (time elapsed=NTU) 5:00=1.47, 10:00=1.05, 15:00= 1.13 Comments:

#### Well Casing Volume Conversion

|                                           | $1.25 = 0.06\ 2 = 0.16\ 3 = 0.37\ 4 = 0.65$        |  |
|-------------------------------------------|----------------------------------------------------|--|
| Well diameter (inches) – gallons per foot | 1 = 0.04 1 5 = 0.09 2 5 = 0.26 3 5 = 0.50 6 = 1.47 |  |

#### Well Information

Well Location:

Well Locked at Arrival:

Condition of Well:

Well Completion: NA

Well Locked at Departure:

Key Number To Well: NA

mS/cm = milliSiemens per centimeter NTU = Nephelometric Turbidity Unit mg/L = milligrams per liter µS/cm = microSiemens per centimeters



| Project Number                 | 30052922             | Well ID                    | YGWA-18I    |                         |                        | Date                    | 03/03/2021    |
|--------------------------------|----------------------|----------------------------|-------------|-------------------------|------------------------|-------------------------|---------------|
| Project Location               | AMA AP-3, A, B and B |                            | Weather(°F) | 63.3 degrees F          | and Clear. The wind is | s blowing N/NW          | / at 3.4 mph. |
| Measuring Pt.<br>Description   | Top of Inner Casing  | Screen<br>Setting (ft-bmp) | 69.67       | Casing<br>Diameter (in) | 2                      | Well Casing<br>Material | PVC           |
| Static Water<br>Level (ft-bmp) | 22.33                | Total Depth (ft-<br>bmp)   | 79.97       | Water<br>Column(ft)     | 57.64                  | Gallons in<br>Well      | 9.37          |
| MP Elevation                   | 790.57               | Pump Intake (ft-<br>bmp)   | 75          | Purge Method            | Low-Flow               | Sample<br>Method        | Low-Flow      |
| Sample Time                    | 15:00                | Well Volumes<br>Purged     | 0.06        | Sample ID               | YGWA-18I               | Sampled by              | Jake Swanson  |
| Purge Start                    | 14:34                | Gallons Purged             | 0.53        | Replicate/<br>Code No.  |                        | Color                   | Clear         |

Purge End 14:54

| Time     | Total<br>Elapsed<br>Minutes | Rate<br>(mL/min) | Depth to<br>Water<br>(ft) | pH<br>(standard<br>units) | Specific<br>Conductivity<br>(µS/cm) | Turbidity<br>(NTU) | Dissolved<br>Oxygen<br>(mg/L) | Temperature<br>°C | Redox<br>(mV) |
|----------|-----------------------------|------------------|---------------------------|---------------------------|-------------------------------------|--------------------|-------------------------------|-------------------|---------------|
| 14:34:06 | 00:00                       | 100              | 22.33                     | 6.31                      | 125.81                              | 0.00               | 8.33                          | 17.1              | 193.76        |
| 14:39:06 | 05:00                       | 100              | 22.55                     | 6.03                      | 125.63                              | 0.00               | 4.08                          | 17.4              | 205.85        |
| 14:44:06 | 10:00                       | 100              | 22.55                     | 5.91                      | 124.14                              | 0.00               | 3.98                          | 17.0              | 210.15        |
| 14:49:06 | 15:00                       | 100              | 22.55                     | 5.88                      | 122.74                              | 0.00               | 3.87                          | 16.8              | 213.89        |
| 14:54:06 | 20:00                       | 100              | 22.55                     | 5.89                      | 123.01                              | 0.00               | 3.86                          | 16.8              | 211.83        |

| Constituent Sampled   | Container      | Number | Preservative |
|-----------------------|----------------|--------|--------------|
| RAD Chem              | 1L Plastic     | 2      | HNO3         |
| Metals                | 250 mL Plastic | 1      | HNO3         |
| TDS                   | 500 mL Plastic | 1      | None         |
| Chloride,Fluoride SO4 | 250 mL Plastic | 1      | None         |

**Comments:** La Motte turbidity reading (elapsed time=NTU) 10:00 = 0.43, 15:00 = 0.27, 20:00 = 0.25

### Well Casing Volume Conversion

#### Well Information

| Well Location:      | Well Locked at Arrival:   |    |
|---------------------|---------------------------|----|
| Condition of Well:  | Well Locked at Departure: |    |
| Well Completion: NA | A Key Number To Well:     | NA |

mS/cm = milliSiemens per centimeterNTU = Nephelometric Turbidity Unit mg/L = milligrams per liter  $\mu S/cm = microSiemens per centimeters$ 



| rmit Number    |                                                                                                                                                                 |     |    |   |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|---|
|                | P7-37                                                                                                                                                           | -   |    |   |
| rson Gauging:  | Katie Pupkiewicz                                                                                                                                                | -   |    |   |
| Date:          | 3/2/2021                                                                                                                                                        | 1   |    |   |
| Time:          | 08:49:00                                                                                                                                                        | 1   |    |   |
|                |                                                                                                                                                                 | Yes | No | 1 |
| 1 Location Ide | ntification:                                                                                                                                                    |     |    |   |
| а              | Is the well visible and accessible?                                                                                                                             | V   |    |   |
| b              | Is the well properly identified with the correct well ID?                                                                                                       | V   |    |   |
| с              | Is the well in a high traffic area and does the well require protection from traffic?                                                                           | V   |    |   |
| d              | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              | Ø   |    |   |
| 2 Protective C | asing:                                                                                                                                                          |     |    | _ |
| а              | Is the protective casing free from apparent damage and able to be secured?                                                                                      | V   |    |   |
| b              | Is the casing free of degradation or deterioration?                                                                                                             | V   |    |   |
| с              | Does the casing have a functioning weep hole?                                                                                                                   | Ø   |    |   |
| d              | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | V   |    |   |
| 3 Surface Pad  |                                                                                                                                                                 |     |    | - |
| а              | Is the well pad in good condition (not cracked or broken)?                                                                                                      | Ø   |    |   |
| b              | Is the well pad sloped away from the protective casing?                                                                                                         | Ø   |    |   |
| с              | Is the well pad in complete contact with the protective casing?                                                                                                 | V   |    |   |
| d              | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          | Ø   |    |   |
| e              | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 | V   |    |   |
| 4 Internal Cas | ing                                                                                                                                                             |     |    | - |
| а              | Does the cap prevent entry of foreign material into the well?                                                                                                   | V   |    |   |
| b              | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                               | V   |    |   |
| с              | Is the well properly vented for equilibration of air pressure?                                                                                                  | Ø   |    |   |
| d              | Is the survey point clearly marked on the inner casing?                                                                                                         | V   |    |   |
| e              | Is the depth of the well consistent with the original well log?                                                                                                 | Ø   |    |   |
| f              | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | Ø   |    |   |
| 5 Sampling: G  | roundwater Wells Only:                                                                                                                                          |     |    | - |
| a              | Does well recharge adequately when purged?                                                                                                                      | V   |    |   |
| b              | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             |     |    |   |
| с              | Does the well require redevelopment (low flow, turbid)?                                                                                                         |     | Ø  |   |
| 6 Based on yo  | ur professional judgement, is the well construction / location:                                                                                                 |     |    | - |
| ,              | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  | Ø   |    |   |
|                | and 2) comply with the applicable regulatory requirements?                                                                                                      | Ø   |    |   |
| 7 Corrective a | ctions as needed, by date:                                                                                                                                      | -   |    | - |
|                |                                                                                                                                                                 |     |    |   |



|     | ct Location:  | AMA AP-3, A, B and B                                                                                                                                   | -   |    |   |
|-----|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|---|
| rm  | it Number:    |                                                                                                                                                        | -   |    |   |
|     | Well ID:      | YGWA-18S                                                                                                                                               | -   |    |   |
| rso | on Gauging:   |                                                                                                                                                        | -   |    |   |
|     | Date:         | 08:16:00                                                                                                                                               | -   |    |   |
|     | Time:         | 00.10.00                                                                                                                                               | Voc | No | N |
| 1   | Location Ide  | ntification:                                                                                                                                           | 103 | NO |   |
| '   |               | Is the well visible and accessible?                                                                                                                    | ব   |    | _ |
|     | a<br>b        | Is the well preparty identified with the correct well ID?                                                                                              |     |    | + |
|     | D<br>C        | Is the well in a high traffic area and does the well require protection from traffic?                                                                  |     |    | - |
|     | ر<br>۲        | Is the drained a region of the well accepted and does the well require protection from traincy                                                         |     |    | - |
|     | a             | drainage flow path)                                                                                                                                    | Ø   |    |   |
| 2   | Protective C  | asing:                                                                                                                                                 |     |    | _ |
|     | а             | Is the protective casing free from apparent damage and able to be secured?                                                                             | V   |    |   |
|     | b             | Is the casing free of degradation or deterioration?                                                                                                    | Ø   |    |   |
|     | с             | Does the casing have a functioning weep hole?                                                                                                          | V   |    |   |
|     | d             | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                        | Ø   |    |   |
| 3   | Surface Pad   |                                                                                                                                                        |     |    |   |
|     | а             | Is the well pad in good condition (not cracked or broken)?                                                                                             | V   |    |   |
|     | b             | Is the well pad sloped away from the protective casing?                                                                                                | Ø   |    | T |
|     | с             | Is the well pad in complete contact with the protective casing?                                                                                        | V   |    | T |
|     | d             | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on) |     |    |   |
|     | е             | Is the pad surface clean (not covered with sediment or debris)?                                                                                        | V   |    | + |
| 4   | Internal Casi | inα                                                                                                                                                    |     |    | t |
|     | а             | Does the cap prevent entry of foreign material into the well?                                                                                          | V   |    | t |
|     | b             | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                      | V   |    | + |
|     | ~<br>C        | Is the well properly vented for equilibration of air pressure?                                                                                         |     |    | + |
|     | d             | Is the survey point clearly marked on the inner casing?                                                                                                |     | -  | + |
|     | u<br>0        | Is the depth of the well consistent with the original well log?                                                                                        |     |    | - |
|     | t             | Is the cacing stable? (or does the nuc move easily when touched or can it be taken apart by hand                                                       |     |    | + |
|     | I             | due to lack of grout or use of slip couplings in construction)                                                                                         |     |    |   |
| 5   | Sampling: G   | roundwater Wells Only:                                                                                                                                 |     |    |   |
|     | а             | Does well recharge adequately when purged?                                                                                                             | V   |    |   |
|     | b             | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                    | Ø   |    |   |
|     | с             | Does the well require redevelopment (low flow, turbid)?                                                                                                |     | V  |   |
| 6   | Based on yo   | ur professional judgement, is the well construction / location:                                                                                        |     |    | T |
|     |               | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                         | Ø   |    | T |
|     |               | and 2) comply with the applicable regulatory requirements?                                                                                             | V   |    | + |
|     |               | ctions as nooded by date:                                                                                                                              | -   |    | + |



| rmit Number:   |                                                                                                                                                                 | 1   |    |   |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|---|
| Well ID        | YGWA-18I                                                                                                                                                        | 1   |    |   |
| son Gauging    | Katie Pupkiewicz                                                                                                                                                | ]   |    |   |
| Date           | : 3/2/2021                                                                                                                                                      |     |    |   |
| Time           | : 08:17:00                                                                                                                                                      |     |    | _ |
|                |                                                                                                                                                                 | Yes | No |   |
| 1 Location Id  | entification:                                                                                                                                                   |     |    |   |
| а              | Is the well visible and accessible?                                                                                                                             | V   |    |   |
| b              | Is the well properly identified with the correct well ID?                                                                                                       | V   |    |   |
| с              | Is the well in a high traffic area and does the well require protection from traffic?                                                                           | Ø   |    |   |
| d              | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              | Ø   |    |   |
| 2 Protective 0 | Casing:                                                                                                                                                         |     |    |   |
| а              | Is the protective casing free from apparent damage and able to be secured?                                                                                      | Ø   |    |   |
| b              | Is the casing free of degradation or deterioration?                                                                                                             | V   |    |   |
| с              | Does the casing have a functioning weep hole?                                                                                                                   | V   |    |   |
| d              | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | V   |    |   |
| 3 Surface Pac  |                                                                                                                                                                 |     |    |   |
| а              | Is the well pad in good condition (not cracked or broken)?                                                                                                      | V   |    |   |
| b              | Is the well pad sloped away from the protective casing?                                                                                                         | Ø   |    |   |
| с              | Is the well pad in complete contact with the protective casing?                                                                                                 | V   |    |   |
| d              | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          | Ø   |    |   |
| е              | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 | V   |    |   |
| 4 Internal Cas | ing                                                                                                                                                             |     |    |   |
| а              | Does the cap prevent entry of foreign material into the well?                                                                                                   | V   |    |   |
| b              | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                               | Ø   |    |   |
| с              | Is the well properly vented for equilibration of air pressure?                                                                                                  | V   |    |   |
| d              | Is the survey point clearly marked on the inner casing?                                                                                                         | V   |    |   |
| е              | Is the depth of the well consistent with the original well log?                                                                                                 | V   |    |   |
| f              | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | Ø   |    |   |
| 5 Sampling: C  | Groundwater Wells Only:                                                                                                                                         |     |    |   |
| а              | Does well recharge adequately when purged?                                                                                                                      | Ø   |    |   |
| b              | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             | Ø   |    |   |
| с              | Does the well require redevelopment (low flow, turbid)?                                                                                                         |     | V  |   |
| 6 Based on ye  | our professional judgement, is the well construction / location:                                                                                                |     |    | - |
|                | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  | V   |    |   |
|                | and 2) comply with the applicable regulatory requirements?                                                                                                      | V   |    |   |
| 7 Corrective a | actions as needed, by date:                                                                                                                                     |     |    |   |
|                |                                                                                                                                                                 |     |    |   |
| 8 Date by wh   | en corrective actions are needed:                                                                                                                               |     |    |   |



| rmit Number   |                                                                                                                                                                 |     |    |   |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|---|
| Well ID       | : YGWC-23S                                                                                                                                                      | 1   |    |   |
| rson Gauging  | : Katie Pupkiewicz                                                                                                                                              | 1   |    |   |
| Date          | : 3/2/2021                                                                                                                                                      | ]   |    |   |
| Time          | : 08:52:00                                                                                                                                                      |     |    |   |
|               |                                                                                                                                                                 | Yes | No |   |
| 1 Location Id | entification:                                                                                                                                                   |     |    |   |
| а             | Is the well visible and accessible?                                                                                                                             | V   |    |   |
| b             | Is the well properly identified with the correct well ID?                                                                                                       | V   |    |   |
| с             | Is the well in a high traffic area and does the well require protection from traffic?                                                                           | V   |    |   |
| d             | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              | Ø   |    |   |
| 2 Protective  | Casing:                                                                                                                                                         |     |    |   |
| а             | Is the protective casing free from apparent damage and able to be secured?                                                                                      | V   |    |   |
| b             | Is the casing free of degradation or deterioration?                                                                                                             | V   |    |   |
| с             | Does the casing have a functioning weep hole?                                                                                                                   | V   |    |   |
| d             | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | V   |    |   |
| 3 Surface Pag | k                                                                                                                                                               |     |    |   |
| а             | Is the well pad in good condition (not cracked or broken)?                                                                                                      | V   |    |   |
| b             | Is the well pad sloped away from the protective casing?                                                                                                         | V   |    |   |
| с             | Is the well pad in complete contact with the protective casing?                                                                                                 | V   |    |   |
| d             | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          | Ø   |    |   |
| e             | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 | V   |    |   |
| 4 Internal Ca | sing                                                                                                                                                            |     |    |   |
| а             | Does the cap prevent entry of foreign material into the well?                                                                                                   | V   |    |   |
| b             | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                               | V   |    |   |
| с             | Is the well properly vented for equilibration of air pressure?                                                                                                  | V   |    |   |
| d             | Is the survey point clearly marked on the inner casing?                                                                                                         | Ø   |    |   |
| e             | Is the depth of the well consistent with the original well log?                                                                                                 | Ø   |    |   |
| f             | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | Ø   |    |   |
| 5 Sampling:   | Groundwater Wells Only:                                                                                                                                         |     |    |   |
| а             | Does well recharge adequately when purged?                                                                                                                      | Ø   |    |   |
| b             | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             | Ø   |    |   |
| с             | Does the well require redevelopment (low flow, turbid)?                                                                                                         |     | Ø  |   |
| 6 Based on y  | our professional judgement, is the well construction / location:                                                                                                |     |    | - |
|               | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  | V   |    |   |
|               | and 2) comply with the applicable regulatory requirements?                                                                                                      | V   |    |   |
| 7 Corrective  | actions as needed, by date:                                                                                                                                     |     |    |   |
|               |                                                                                                                                                                 |     |    |   |
| 8 Date by wh  | en corrective actions are needed                                                                                                                                |     |    | - |



| mit Number:    |                                                                                                                                                                 |     |    |   |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|---|
| Well ID:       | YGWC-38                                                                                                                                                         | ]   |    |   |
| son Gauging:   | Katie Pupkiewicz                                                                                                                                                |     |    |   |
| Date:          | 3/2/2021                                                                                                                                                        |     |    |   |
| Time:          | 08:43:00                                                                                                                                                        |     |    | _ |
|                |                                                                                                                                                                 | Yes | No | ) |
| 1 Location Ide | entification:                                                                                                                                                   |     |    |   |
| а              | Is the well visible and accessible?                                                                                                                             | V   |    |   |
| b              | Is the well properly identified with the correct well ID?                                                                                                       | V   |    |   |
| с              | Is the well in a high traffic area and does the well require protection from traffic?                                                                           | Ø   |    |   |
| d              | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              | Ø   |    |   |
| 2 Protective C | asing:                                                                                                                                                          |     |    |   |
| а              | Is the protective casing free from apparent damage and able to be secured?                                                                                      | V   |    |   |
| b              | Is the casing free of degradation or deterioration?                                                                                                             | V   |    |   |
| с              | Does the casing have a functioning weep hole?                                                                                                                   | V   |    |   |
| d              | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | Ø   |    |   |
| 3 Surface Pad  |                                                                                                                                                                 |     |    |   |
| а              | Is the well pad in good condition (not cracked or broken)?                                                                                                      | V   |    |   |
| b              | Is the well pad sloped away from the protective casing?                                                                                                         | V   |    |   |
| с              | Is the well pad in complete contact with the protective casing?                                                                                                 | V   |    |   |
| d              | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          | V   |    |   |
| е              | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 | V   |    |   |
| 4 Internal Cas | ing                                                                                                                                                             |     |    |   |
| а              | Does the cap prevent entry of foreign material into the well?                                                                                                   | V   |    |   |
| b              | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                               | V   |    |   |
| с              | Is the well properly vented for equilibration of air pressure?                                                                                                  | V   |    |   |
| d              | Is the survey point clearly marked on the inner casing?                                                                                                         | V   |    |   |
| е              | Is the depth of the well consistent with the original well log?                                                                                                 | V   |    |   |
| f              | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | V   |    |   |
| 5 Sampling: G  | roundwater Wells Only:                                                                                                                                          |     |    | - |
| а              | Does well recharge adequately when purged?                                                                                                                      | V   |    |   |
| b              | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             | V   |    |   |
| с              | Does the well require redevelopment (low flow, turbid)?                                                                                                         |     | V  |   |
| 6 Based on yo  | ur professional judgement, is the well construction / location:                                                                                                 |     |    | - |
| ,              | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  | V   |    |   |
|                | and 2) comply with the applicable regulatory requirements?                                                                                                      | V   |    |   |
| 7 Corrective a | ctions as needed, by date:                                                                                                                                      |     |    |   |
|                |                                                                                                                                                                 |     |    | _ |



| rmit Number   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1         |    |  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----|--|
| Well ID       | •<br>• YGWA-39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1         |    |  |
| rson Gauging  | : Katie Pupkiewicz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1         |    |  |
| Date          | : 3/2/2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1         |    |  |
| Time          | : 08:58:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1         |    |  |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes       | No |  |
| 1 Location lo | entification:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |    |  |
| а             | Is the well visible and accessible?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V         |    |  |
| b             | Is the well properly identified with the correct well ID?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ø         |    |  |
| с             | Is the well in a high traffic area and does the well require protection from traffic?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ø         |    |  |
| d             | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ø         |    |  |
| 2 Protective  | Casing:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |    |  |
| а             | Is the protective casing free from apparent damage and able to be secured?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V         |    |  |
| b             | Is the casing free of degradation or deterioration?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V         |    |  |
| с             | Does the casing have a functioning weep hole?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V         |    |  |
| d             | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ø         |    |  |
| 3 Surface Pa  | Let the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |           |    |  |
| а             | Is the well pad in good condition (not cracked or broken)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V         |    |  |
| b             | Is the well pad sloped away from the protective casing?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V         |    |  |
| с             | Is the well pad in complete contact with the protective casing?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V         |    |  |
| d             | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ø         |    |  |
| е             | Is the pad surface clean (not covered with sediment or debris)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V         |    |  |
| 4 Internal Ca | sing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |    |  |
| а             | Does the cap prevent entry of foreign material into the well?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V         |    |  |
| b             | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V         |    |  |
| с             | Is the well properly vented for equilibration of air pressure?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V         |    |  |
| d             | Is the survey point clearly marked on the inner casing?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V         |    |  |
| e             | Is the depth of the well consistent with the original well log?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V         |    |  |
| f             | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ø         |    |  |
| 5 Sampling:   | Groundwater Wells Only:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |    |  |
| а             | Does well recharge adequately when purged?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V         |    |  |
| b             | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ø         |    |  |
| с             | Does the well require redevelopment (low flow, turbid)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | Ø  |  |
| 6 Based on y  | our professional judgement, is the well construction / location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |    |  |
|               | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\square$ |    |  |
|               | and 2) comply with the applicable regulatory requirements?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V         |    |  |
| 7 Corrective  | actions as needed, by date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |    |  |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |    |  |



| rmit Numbe   | r.                                                                                                                                                              | 1   |    |  |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|--|
| Well I       | ••<br>• YGWA-40                                                                                                                                                 | -   |    |  |
| rson Gaugin  | a: Katie Pupkiewicz                                                                                                                                             | 1   |    |  |
| Dat          | e: 3/2/2021                                                                                                                                                     | 1   |    |  |
| Tim          | e: 09:05:00                                                                                                                                                     | 1   |    |  |
|              |                                                                                                                                                                 | Yes | No |  |
| 1 Location I | dentification:                                                                                                                                                  |     |    |  |
| а            | Is the well visible and accessible?                                                                                                                             | V   |    |  |
| b            | Is the well properly identified with the correct well ID?                                                                                                       | V   |    |  |
| с            | Is the well in a high traffic area and does the well require protection from traffic?                                                                           | V   |    |  |
| d            | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              | Ø   |    |  |
| 2 Protective | Casing:                                                                                                                                                         |     |    |  |
| а            | Is the protective casing free from apparent damage and able to be secured?                                                                                      | V   |    |  |
| b            | Is the casing free of degradation or deterioration?                                                                                                             | V   |    |  |
| с            | Does the casing have a functioning weep hole?                                                                                                                   | V   |    |  |
| d            | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | V   |    |  |
| 3 Surface Pa | ad                                                                                                                                                              |     |    |  |
| а            | Is the well pad in good condition (not cracked or broken)?                                                                                                      | V   |    |  |
| b            | Is the well pad sloped away from the protective casing?                                                                                                         | V   |    |  |
| с            | Is the well pad in complete contact with the protective casing?                                                                                                 | V   |    |  |
| d            | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          | Ø   |    |  |
| e            | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 | V   |    |  |
| 4 Internal C | asing                                                                                                                                                           |     |    |  |
| а            | Does the cap prevent entry of foreign material into the well?                                                                                                   | V   |    |  |
| b            | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                               | V   |    |  |
| с            | Is the well properly vented for equilibration of air pressure?                                                                                                  | V   |    |  |
| d            | Is the survey point clearly marked on the inner casing?                                                                                                         | V   |    |  |
| е            | Is the depth of the well consistent with the original well log?                                                                                                 | V   |    |  |
| f            | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | V   |    |  |
| 5 Sampling:  | Groundwater Wells Only:                                                                                                                                         |     |    |  |
| а            | Does well recharge adequately when purged?                                                                                                                      | Ø   |    |  |
| b            | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             | Ø   |    |  |
| с            | Does the well require redevelopment (low flow, turbid)?                                                                                                         |     | V  |  |
| 6 Based on   | your professional judgement, is the well construction / location:                                                                                               |     |    |  |
|              | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  | Ø   |    |  |
|              | and 2) comply with the applicable regulatory requirements?                                                                                                      | V   |    |  |
| 7 Corrective | actions as needed, by date:                                                                                                                                     |     |    |  |
|              |                                                                                                                                                                 |     |    |  |



| Well D:         YGWA-17S           son Gaudia;         Kale Pupliewicz           Date:         2/22021           Time:         082400           I         Location Identification:         Ves           a         Is the well properly identified with the correct well ID?         Z           b         Is the well properly identified with the correct well ID?         Z         I           c         Is the well properly identified with the correct well ID?         Z         I           d         Is the well properly identified with the correct well ID?         Z         I           d         Is the well properly identified with the correct well ID?         Z         I           d         Is the well padin good condition or deterioration?         Z         I           c         Does the casing free of degradation or deterioration?         Z         I           d         Is the entrotexic casing sclear of debris and water, or filled with pea gravel/sand?         I         I           a         Is the well pad in good condition (not cracked or broken)?         Z         I         I           a         Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)         I         I         I <td< th=""><th>mit Nu</th><th>mber:</th><th>_</th><th></th><th></th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mit Nu  | mber:                                                                                                                                                           | _         |    |   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----|---|
| Son Gaudine:         Sale Equiplewicz           Date:         3/2/2021           Time:         0.824.00           Vest         N           1         Location Identification:         Yes         N           a         Is the well visible and accessible?         Ø         I           b         Is the well roporely identified with the correct well ID?         Ø         I           c         Is the well in a high traffic area and does the well require protection from traffic?         Ø         I           c         Is the well in a high traffic area and does the well require protection from traffic?         Ø         I           d         Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)         Ø         I           2         Protective Casing:         Ø         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N       | /ell ID: YGWA-17S                                                                                                                                               | _         |    |   |
| Date:         3/2/2021           Time:         08224:00           Yes         N           1         Location Identification:         Yes           a         Is the well visible and accessible?         Image: Comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison of the comparison animparison of the comparison of the comparison of th                                                                                                                                                                      | son Ga  | uging: Katie Pupkiewicz                                                                                                                                         | _         |    |   |
| Time: U82-4300       Yes         1       Location Identification:       Image: Sthe well visible and accessible?       Image: Sthe well roperly identified with the correct well ID?       Image: Sthe well in a high traffic area and does the well require protection from traffic?       Image: Sthe well in a high traffic area and does the well require protection from traffic?       Image: Sthe well in a high traffic area and does the well require protection from traffic?       Image: Sthe well and accessible?         2       Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)       Image: Sthe protective casing free of degradation or deterioration?       Image: Sthe protective casing free of degradation or deterioration?       Image: Sthe protective casing free of degradation or deterioration?       Image: Sthe annular space between casings clear of debris and water, or filled with pea gravel/sand?       Image: Sthe well pad in good condition (not cracked or broken)?       Image: Sthe well pad in good condition (not cracked or broken)?       Image: Sthe well pad in complete contact with the protective casing?       Image: Sthe well pad in complete contact with the protective casing?       Image: Sthe well pad in complete contact with the ground surface and stable? (not undermined by easion, animal burrows, and does not move when stepped on)       Image: Sthe well pad in complete contact with the ground surface and stable? (not undermined by easion, animal burrows, and does not move when stepped on)       Image: Sthe well properly wented for equilibration of air pressure?       Image: Sthe well properly wented for equilibration of air pressure?       Image: Sthe well pad in comp                                                                                                                                                                                                                                                                 |         | Date: 3/2/2021                                                                                                                                                  | -         |    |   |
| 1       Location Identification:       Image: Construction of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the                         |         | <b>Time:</b>  08:24:00                                                                                                                                          | Voc       | No | - |
| a       Is the well visible and accessible?       Image: Construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the                          | 1 Loca  | ion Identification:                                                                                                                                             | 163       | NO | - |
| a       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       b       c       c       b       b       c       b       c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | a       | Is the well visible and accessible?                                                                                                                             |           |    |   |
| a the terp property increase and does the well require protection from traffic?       a         c       Is the well in a high traffic area and does the well require protection from traffic?       a         d       Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)       a         2       Protective Casing:       a       I         a       Is the protective casing free from apparent damage and able to be secured?       a       I         b       Is the casing free of degradation or deterioration?       a       I         c       Does the casing have a functioning weep hole?       a       I         d       Is the well pad in good condition (not cracked or broken)?       a       I         b       Is the well pad in good condition (not cracked or broken)?       a       I         d       Is the well pad in complete contact with the protective casing?       a       I         d       Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)       a       I         e       Is the pad surface clean (not covered with sediment or debris)?       a       I         d       Is the asing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?       I       I         b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | h       | Is the well properly identified with the correct well ID?                                                                                                       |           |    |   |
| a       b       b       b       b       b       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c       c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C C     | Is the well in a high traffic area and does the well require protection from traffic?                                                                           |           |    |   |
| 2       Protective Casing:       Is the protective casing free from apparent damage and able to be secured?       Image: Comparison of the casing free of degradation or deterioration?       Image: Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comparison of Comp                                           | d       | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              | V         |    |   |
| a       Is the protective casing free from apparent damage and able to be secured?       Image: Comparison of the casing free of degradation or deterioration?       Image: Comparison of the casing free of degradation or deterioration?       Image: Comparison of the casing free of degradation or deterioration?       Image: Comparison of the casing free of degradation or deterioration?       Image: Comparison of the casing free of degradation or deterioration?       Image: Comparison of the casing free of degradation or deterioration?       Image: Comparison of the casing free of degradation or deterioration?       Image: Comparison of the casing free of degradation or deterioration?       Image: Comparison of the casing free of degradation or deterioration?       Image: Comparison of the casing free of degradation or deterioration?       Image: Comparison of the casing free of degradation or deterioration?       Image: Comparison of the casing free of degradation or deterioration?       Image: Comparison of the casing free of degradation or deterioration?       Image: Comparison of the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?       Image: Comparison of the casing reperior degradation of air pressure?       Image: Comparison of the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?       Image: Comparison of the casing free of kinks or bends, or any obstruction?       Image: Comparison of the casing stable?       Image: Comparison of the casing sta                                                                                                                                                                                                                                        | 2 Prote | ctive Casing:                                                                                                                                                   |           |    |   |
| b       Is the casing free of degradation or deterioration?       Image: Comparison of the casing have a functioning weep hole?       Image: Comparison of the casing have a functioning weep hole?       Image: Comparison of the casing have a functioning weep hole?       Image: Comparison of the casing have a functioning weep hole?       Image: Comparison of the casing have a functioning weep hole?       Image: Comparison of the casing have a function of the casing have a function of the casing have a function of the casing have a function (not cracked or broken)?       Image: Comparison of the casing have a function of the casing?       Image: Comparison of the casing have a function of the casing?       Image: Comparison of the casing have a function of the casing?       Image: Comparison of the casing have a function of the casing?       Image: Comparison of the casing have a function of the casing?       Image: Comparison of the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?       Image: Comparison of the casing?       Image: Comparison of the casing                                                                                                                                                                                                                                                                                              | а       | Is the protective casing free from apparent damage and able to be secured?                                                                                      | V         |    |   |
| c       Does the casing have a functioning weep hole?       Image: Comparison of the casing have a functioning weep hole?       Image: Comparison of the casing have a functioning weep hole?       Image: Comparison of the casing have a functioning weep hole?       Image: Comparison of the casing have a functioning weep hole?       Image: Comparison of the casing have a functioning weep hole?       Image: Comparison of the casing have a function of the casing have a function of the casing have a function of the casing have a function of the casing?       Image: Comparison of the casing have a function of the casing?       Image: Comparison of the casing have a function of the casing?       Image: Comparison of the casing have a function of the casing?       Image: Comparison of the casing have a function of the casing?       Image: Comparison of the casing have a function of the casing?       Image: Comparison of the casing have a function of the casing?       Image: Comparison of the casing have a function of the casing?       Image: Comparison of the casing have a function of the casing?       Image: Comparison of the casing have a function of the casing?       Image: Comparison of the casing have a function of the casing?       Image: Comparison of the casing have a function of the casing?       Image: Comparison of the casing have a function of the casing?       Image: Comparison of the casing have a function of the casing?       Image: Comparison of the casing have a function of the casing?       Image: Comparison of the casing have a function of the casing?       Image: Comparison of the casing have a function of the casing?       Image: Comparison of the casing have a function of the casing?       Image: Comparison of the casing have a function have a fun                                                                                                                                                                                                                                        | b       | Is the casing free of degradation or deterioration?                                                                                                             | V         |    |   |
| d       Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?       Image: Comparison of the space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space sp                         | с       | Does the casing have a functioning weep hole?                                                                                                                   | V         |    |   |
| 3       Surface Pad       Is the well pad in good condition (not cracked or broken)?       Image: Construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second construction of the second                                   | d       | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | Ø         |    |   |
| a       Is the well pad in good condition (not cracked or broken)?       Image: Construct of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the sectin of the section of the section of the section of the section of                          | 3 Surfa | ce Pad                                                                                                                                                          |           |    |   |
| b       Is the well pad sloped away from the protective casing?       Image: Complete contact with the protective casing?       Image: Complete contact with the protective casing?       Image: Complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)       Image: Complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)       Image: Complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)       Image: Complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)       Image: Complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)       Image: Complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)       Image: Complete contact with the ground surface and stable? (not undermined by erosion ground surface and stable? (or does the surface and stable? (or does the protections from foreign objects (such as bailers)?       Image: Complete contact with the original well log?       Image: Complete contact well?       Image: Completee contact well?       Image: Completee contact well?       Image: Completee contact well consistent with the origina                                                                                                                                                                                                             | а       | Is the well pad in good condition (not cracked or broken)?                                                                                                      | V         |    |   |
| c       Is the well pad in complete contact with the protective casing?       I       I         d       Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)       I       I         e       Is the pad surface clean (not covered with sediment or debris)?       I       I       I         4       Internal Cast       I       I       I       I       I         a       Does the cap prevent entry of foreign material into the well?       I       I       I       I         b       Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?       I       I         c       Is the well properly vented for equilibration of air pressure?       I       I       I         c       Is the depth of the well consistent with the original well log?       I       I       I         e       Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand use to lack of grout or use of slip couplings in construction)       I       I       I         f       Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand use to lack of grout or use of slip couplings in construction)       I       I       I         f       Is the casing stable? (or does the pvc move easily when touched or can it be t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | b       | Is the well pad sloped away from the protective casing?                                                                                                         | Ø         |    |   |
| d       Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)       Image: Constant of the pad surface clean (not covered with sediment or debris)?       Image: Constant of the pad surface clean (not covered with sediment or debris)?       Image: Constant of the pad surface clean (not covered with sediment or debris)?       Image: Constant of the pad surface clean (not covered with sediment or debris)?       Image: Constant of the pad surface clean (not covered with sediment or debris)?       Image: Constant of the pad surface clean (not covered with sediment or debris)?       Image: Constant of the pad surface clean (not covered with sediment or debris)?       Image: Constant of the pad surface clean (not covered with sediment or debris)?       Image: Constant of the pad surface clean (not covered with sediment or debris)?       Image: Constant of the pad surface clean (not covered with sediment or debris)?       Image: Constant of the pad surface clean (not covered with sediment or debris)?       Image: Constant of the pad surface clean (not covered with sediment or debris)?       Image: Constant of the pad surface clean (not covered with sediment or debris)?       Image: Constant of the pad surface clean (not covered with sediment or debris)?       Image: Constant of the pad surface clean (not covered with sediment or debris)?       Image: Constant or debris (not covered with sediment or debris)?       Image: Constant or debris (not covered with sediment or debris)?       Image: Constant or debris (not covered with sediment or debris)?       Image: Constant or debris (not covered with sediment or debris)?       Image: Constant or debris (not covered with sediment or debris)?       Image:                                                                                                                                                                                                              | с       | Is the well pad in complete contact with the protective casing?                                                                                                 | Ø         |    |   |
| e       Is the pad surface clean (not covered with sediment or debris)?       Image: Comparison of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of the page of th                         | d       | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          | Ø         |    |   |
| 4       Internal Casses       Image: state cap prevent entry of foreign material into the well?       Image: state cap prevent entry of foreign material into the well?       Image: state cap prevent entry of foreign material into the well?       Image: state cap cap cap cap cap cap cap cap cap cap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | е       | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 | Ø         |    |   |
| a       Does the cap prevent entry of foreign material into the well?       Image: Comparison of the cap prevent entry of foreign material into the well?       Image: Comparison of the cap prevent entry of foreign material into the well?       Image: Comparison of the cap prevent entry of foreign material into the well?       Image: Comparison of the cap prevent entry of foreign material into the well?       Image: Comparison of the cap prevent entry of foreign material into the well?       Image: Comparison of the cap prevent entry of foreign material into the well?       Image: Comparison of the cap prevent entry of foreign material into the well?       Image: Comparison of the cap prevent entry of foreign material into the well?       Image: Comparison of the cap prevent entry of foreign material into the well?       Image: Comparison of the cap prevent entry of foreign material into the well?       Image: Comparison of the cap prevent entry of foreign material into the well?       Image: Comparison of the cap prevent entry of foreign material into the well?       Image: Comparison of the cap prevent entry of foreign material into the well?       Image: Comparison of the cap prevent entry of foreign material into the entry of foreign material into the well construction)       Image: Comparison of the cap prevent entry of foreign material well log?       Image: Comparison of the cap prevent entry of foreign material well log?       Image: Comparison of the cap prevent entry of foreign material well log?       Image: Comparison of the facility?       Image: Comparison of the facility?       Image: Comparison of the facility?       Image: Comparison of the cap prevent entry of foreign material well construction / location:       Image: Comparison of the cap prevent entry of for                                                                                                                                                                                                                      | 4 Inter | nal Casing                                                                                                                                                      |           |    |   |
| b       Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?       Image: Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost of Cost o                         | а       | Does the cap prevent entry of foreign material into the well?                                                                                                   | $\square$ |    |   |
| c       Is the well properly vented for equilibration of air pressure?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing marked on the inner casing marked on the inner casing marked on the inner casing marked on the inner casing marked on the inner casing marked on the inner casing marked on the inner casing marked on the inner casing marked on the inner casing marked?       Image: Comparison of the survey point clearly marked on the inner casing marked on the inner casing marked on the inner casing marked on the inner casing marked on the inner casing marked on the inner casing marked on the inner casing marked on t                                                                                                                                                                         | b       | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                               | Ø         |    |   |
| d       Is the survey point clearly marked on the inner casing?       Image: Comparison of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the sum of the                         | с       | Is the well properly vented for equilibration of air pressure?                                                                                                  | Ø         |    |   |
| e       Is the depth of the well consistent with the original well log?       Image: Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d       | Is the survey point clearly marked on the inner casing?                                                                                                         | $\square$ |    |   |
| f       Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand<br>due to lack of grout or use of slip couplings in construction)       Image: Construction       Ima                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | е       | Is the depth of the well consistent with the original well log?                                                                                                 | $\square$ |    |   |
| 5       Sampling: Groundwater Wells Only:       Image: Sampling: Groundwater Wells Only:       Image: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampling: Sampli                                  | f       | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | Ø         |    |   |
| a       Does well recharge adequately when purged?       Image: Complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex compl                         | 5 Sam   | ling: Groundwater Wells Only:                                                                                                                                   |           |    |   |
| b       If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?       Image: Construction of the facility?       Image: Construction of the facility?       Image: Construction of the facility?       Image: Construction of the facility?       Image: Construction of the facility?       Image: Construction of the facility?       Image: Construction of the facility?       Image: Construction of the facility?       Image: Construction of the facility?       Image: Construction of the facility?       Image: Construction of the facility?       Image: Construction of the facility?       Image: Construction of the facility?       Image: Construction of the facility?       Image: Construction of the facility?       Image: Construction of the facility?       Image: Construction of the facility?       Image: Construction of the facility?       Image: Construction of the facility?       Image: Construction of the facility?       Image: Construction of the facility?       Image: Construction of the facility?       Image: Construction of the facility?       Image: Construction of the facility?       Image: Construction of the facility?       Image: Construction of the facility?       Image: Construction of the facility?       Image: Construction of the facility?       Image: Construction of the facility?       Image: Construction of the facility?       Image: Construction of the facility?       Image: Construction of the facility?       Image: Construction of the facility?       Image: Construction of the facility?       Image: Constructity of the facility of the facility of the facility of the facility                                                                                                                                                                                                                                                                                                                                           | а       | Does well recharge adequately when purged?                                                                                                                      | Ø         |    |   |
| c       Does the well require redevelopment (low flow, turbid)?       □       I         6       Based on your professional judgement, is the well construction / location:       I         appropriate to 1) achieve the objectives of the Groundwater Monitoring Program       I         and 2) comply with the applicable regulatory requirements?       I         7       Corrective actions as needed, by date:       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | b       | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             | V         |    |   |
| 6     Based on your professional judgement, is the well construction / location:     Image: specific construction / location       appropriate to 1) achieve the objectives of the Groundwater Monitoring Program     Image: specific construction / location       and 2) comply with the applicable regulatory requirements?     Image: specific construction / location       7     Corrective actions as needed, by date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | с       | Does the well require redevelopment (low flow, turbid)?                                                                                                         |           | Ø  |   |
| appropriate to 1) achieve the objectives of the Groundwater Monitoring Program       Image: Complex of the applicable regulatory requirements?       Image: Complex of the a                                                                                                                                                                                                                                                          | 6 Base  | on your professional judgement, is the well construction / location:                                                                                            |           |    |   |
| and 2) comply with the applicable regulatory requirements?Image: Complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex comp |         | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  | Ø         |    |   |
| 7 Corrective actions as needed, by date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | and 2) comply with the applicable regulatory requirements?                                                                                                      | Ø         |    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7 Corre | ective actions as needed, by date:                                                                                                                              |           |    |   |



| rmi  | t Number     |                                                                                                                                                                 | 1   |    |
|------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
|      | Woll ID:     | P7-51                                                                                                                                                           | -   |    |
| sor  | Gauging:     | Katie Pupkiewicz                                                                                                                                                | 1   |    |
| 301  | Date:        | 3/2/2021                                                                                                                                                        | 1   |    |
|      | Time:        | 09:33:00                                                                                                                                                        | 1   |    |
|      |              |                                                                                                                                                                 | Yes | No |
| 1 L  | ocation Ide  | entification:                                                                                                                                                   |     |    |
| а    | 1            | Is the well visible and accessible?                                                                                                                             | V   |    |
| b    | )            | Is the well properly identified with the correct well ID?                                                                                                       | V   |    |
| с    |              | Is the well in a high traffic area and does the well require protection from traffic?                                                                           | V   |    |
| c    | ł            | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              | Ø   |    |
| 2 F  | Protective C | asing:                                                                                                                                                          |     |    |
| а    | 1            | Is the protective casing free from apparent damage and able to be secured?                                                                                      | V   |    |
| b    | )            | Is the casing free of degradation or deterioration?                                                                                                             | V   |    |
| с    |              | Does the casing have a functioning weep hole?                                                                                                                   | V   |    |
| с    | ł            | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | V   |    |
| 3 S  | Surface Pad  |                                                                                                                                                                 |     |    |
| a    | 1            | Is the well pad in good condition (not cracked or broken)?                                                                                                      | V   |    |
| b    | )            | Is the well pad sloped away from the protective casing?                                                                                                         | V   |    |
| с    | :            | Is the well pad in complete contact with the protective casing?                                                                                                 | V   |    |
| C    | ł            | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          | V   |    |
| е    | 2            | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 | Ø   |    |
| 4 II | nternal Cas  | ing                                                                                                                                                             |     |    |
| а    | 1            | Does the cap prevent entry of foreign material into the well?                                                                                                   | Ø   |    |
| b    | )            | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                               | V   |    |
| С    | :            | Is the well properly vented for equilibration of air pressure?                                                                                                  | V   |    |
| c    | ł            | Is the survey point clearly marked on the inner casing?                                                                                                         | V   |    |
| e    | 9            | Is the depth of the well consistent with the original well log?                                                                                                 | V   |    |
| f    |              | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | Ø   |    |
| 5 S  | Sampling: G  | roundwater Wells Only:                                                                                                                                          |     |    |
| а    | 1            | Does well recharge adequately when purged?                                                                                                                      |     |    |
| b    | )            | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             |     |    |
| с    |              | Does the well require redevelopment (low flow, turbid)?                                                                                                         |     |    |
| 6 B  | Based on yo  | ur professional judgement, is the well construction / location:                                                                                                 |     |    |
|      | ,            | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  | Ø   |    |
|      |              | and 2) comply with the applicable regulatory requirements?                                                                                                      | Ø   |    |
|      |              | ctions as needed by date:                                                                                                                                       |     |    |



| rmit N | Numbor      |                                                                                                                                                                 | 1   |    |   |
|--------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|---|
|        | Well ID:    | YGWC-43                                                                                                                                                         | 1   |    |   |
| son G  | Gauging:    | Katie Pupkiewicz                                                                                                                                                | 1   |    |   |
|        | Date:       | 3/2/2021                                                                                                                                                        | 1   |    |   |
|        | Time:       | 09:35:00                                                                                                                                                        | 1   |    |   |
|        |             |                                                                                                                                                                 | Yes | No | , |
| 1 Loc  | cation Ide  | ntification:                                                                                                                                                    |     |    |   |
| а      |             | Is the well visible and accessible?                                                                                                                             | V   |    |   |
| b      |             | Is the well properly identified with the correct well ID?                                                                                                       | V   |    |   |
| с      |             | Is the well in a high traffic area and does the well require protection from traffic?                                                                           | V   |    |   |
| d      |             | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              | Ø   |    |   |
| 2 Pro  | otective Ca | asing:                                                                                                                                                          |     |    |   |
| а      |             | Is the protective casing free from apparent damage and able to be secured?                                                                                      | V   |    |   |
| b      |             | Is the casing free of degradation or deterioration?                                                                                                             | V   |    |   |
| с      |             | Does the casing have a functioning weep hole?                                                                                                                   | V   |    |   |
| d      |             | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | V   |    |   |
| 3 Sur  | rface Pad   |                                                                                                                                                                 |     |    | - |
| а      |             | Is the well pad in good condition (not cracked or broken)?                                                                                                      | V   |    |   |
| b      |             | Is the well pad sloped away from the protective casing?                                                                                                         | V   |    |   |
| с      |             | Is the well pad in complete contact with the protective casing?                                                                                                 | V   |    |   |
| d      |             | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          | Ø   |    |   |
| е      |             | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 | V   |    |   |
| 4 Inte | ernal Casi  | ng                                                                                                                                                              |     |    | - |
| а      |             | Does the cap prevent entry of foreign material into the well?                                                                                                   | V   |    |   |
| b      |             | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                               | V   |    |   |
| с      |             | Is the well properly vented for equilibration of air pressure?                                                                                                  | V   |    |   |
| d      |             | Is the survey point clearly marked on the inner casing?                                                                                                         | V   |    |   |
| е      |             | Is the depth of the well consistent with the original well log?                                                                                                 | V   |    |   |
| f      |             | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | Ø   |    |   |
| 5 San  | mpling: Gi  | roundwater Wells Only:                                                                                                                                          |     |    |   |
| а      | . 5         | Does well recharge adequately when purged?                                                                                                                      | V   |    |   |
| b      |             | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             | Ø   |    |   |
| с      |             | Does the well require redevelopment (low flow, turbid)?                                                                                                         |     | Ø  |   |
| 6 Bas  | sed on vo   | ur professional judgement, is the well construction / location:                                                                                                 |     |    |   |
|        |             | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  | V   |    |   |
|        |             | and 2) comply with the applicable regulatory requirements?                                                                                                      | V   |    |   |
|        |             | , , , , , , , , , , , , , , , , , , ,                                                                                                                           |     |    | - |



| •    |                  |                                                                                                                                                                 | -   |    |   |
|------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|---|
| mi   | t Number:        |                                                                                                                                                                 | -   |    |   |
|      | Well ID:         | Katie Punkiewicz                                                                                                                                                | -   |    |   |
| SOI  | Date:            | 3/2/2021                                                                                                                                                        | 1   |    |   |
|      | Time             | 09:25:00                                                                                                                                                        | 1   |    |   |
|      | Thire.           |                                                                                                                                                                 | Yes | No | - |
| 1 L  | ocation Ide      | entification:                                                                                                                                                   |     |    |   |
| а    | 1                | Is the well visible and accessible?                                                                                                                             | V   |    |   |
| b    | )                | Is the well properly identified with the correct well ID?                                                                                                       | V   |    |   |
| с    | 2                | Is the well in a high traffic area and does the well require protection from traffic?                                                                           | V   |    |   |
| d    | ł                | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              | Ø   |    |   |
| 2 P  | Protective C     | asing:                                                                                                                                                          |     |    |   |
| a    | )                | Is the protective casing free from apparent damage and able to be secured?                                                                                      | V   |    |   |
| b    | )                | Is the casing free of degradation or deterioration?                                                                                                             | V   |    |   |
| с    | :                | Does the casing have a functioning weep hole?                                                                                                                   | V   |    |   |
| d    | k                | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | V   |    |   |
| 3 S  | Surface Pad      |                                                                                                                                                                 |     |    | - |
| а    | 1                | Is the well pad in good condition (not cracked or broken)?                                                                                                      | V   |    |   |
| b    | )                | Is the well pad sloped away from the protective casing?                                                                                                         | V   |    |   |
| с    | 2                | Is the well pad in complete contact with the protective casing?                                                                                                 | V   |    |   |
| d    | ł                | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          | Ø   |    |   |
| e    | 9                | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 | V   |    |   |
| 4 II | nternal Cas      | ing                                                                                                                                                             |     |    | - |
| а    | 3                | Does the cap prevent entry of foreign material into the well?                                                                                                   | V   |    |   |
| b    | )                | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                               | V   |    |   |
| с    | :                | Is the well properly vented for equilibration of air pressure?                                                                                                  | V   |    |   |
| d    | ł                | Is the survey point clearly marked on the inner casing?                                                                                                         | V   |    |   |
| e    | 9                | Is the depth of the well consistent with the original well log?                                                                                                 | V   |    |   |
| f    |                  | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | Ø   |    |   |
| 5 S  | Sampling: G      | roundwater Wells Only:                                                                                                                                          |     |    | - |
| а    | 1                | Does well recharge adequately when purged?                                                                                                                      |     |    |   |
| b    | )                | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             |     |    |   |
| с    | :                | Does the well require redevelopment (low flow, turbid)?                                                                                                         |     |    |   |
| 6 B  | Based on yo      | ur professional judgement, is the well construction / location:                                                                                                 |     |    | - |
|      | ,                | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  | V   |    |   |
|      |                  | and 2) comply with the applicable regulatory requirements?                                                                                                      | V   |    |   |
|      | -<br>orroctivo o | ctions as needed, by date:                                                                                                                                      |     |    | - |



| milli number.  |                                                                                                                                                                 |     |    |   |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|---|
| Well ID:       | YAMW-2                                                                                                                                                          | 1   |    |   |
| rson Gauging.  | Katie Pupkiewicz                                                                                                                                                | -   |    |   |
| Date:          | 3/2/2021                                                                                                                                                        | 1   |    |   |
| Time:          | 09:15:00                                                                                                                                                        | 1   |    |   |
|                |                                                                                                                                                                 | Yes | No | T |
| 1 Location Ide | entification:                                                                                                                                                   |     |    |   |
| а              | Is the well visible and accessible?                                                                                                                             | V   |    |   |
| b              | Is the well properly identified with the correct well ID?                                                                                                       | V   |    |   |
| с              | Is the well in a high traffic area and does the well require protection from traffic?                                                                           | V   |    |   |
| d              | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              | Ø   |    |   |
| 2 Protective C | asing:                                                                                                                                                          |     |    | - |
| а              | Is the protective casing free from apparent damage and able to be secured?                                                                                      | V   |    |   |
| b              | Is the casing free of degradation or deterioration?                                                                                                             | V   |    |   |
| с              | Does the casing have a functioning weep hole?                                                                                                                   | V   |    |   |
| d              | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | V   |    |   |
| 3 Surface Pad  |                                                                                                                                                                 |     |    | - |
| а              | Is the well pad in good condition (not cracked or broken)?                                                                                                      | V   |    |   |
| b              | Is the well pad sloped away from the protective casing?                                                                                                         | V   |    |   |
| с              | Is the well pad in complete contact with the protective casing?                                                                                                 | V   |    |   |
| d              | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          | Ø   |    |   |
| е              | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 | V   |    |   |
| 4 Internal Cas | ing                                                                                                                                                             |     |    | - |
| а              | Does the cap prevent entry of foreign material into the well?                                                                                                   | Ø   |    |   |
| b              | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                               | Ø   |    |   |
| с              | Is the well properly vented for equilibration of air pressure?                                                                                                  | V   |    |   |
| d              | Is the survey point clearly marked on the inner casing?                                                                                                         | V   |    |   |
| e              | Is the depth of the well consistent with the original well log?                                                                                                 | V   |    |   |
| f              | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | Ø   |    |   |
| 5 Sampling: G  | roundwater Wells Only:                                                                                                                                          |     |    | - |
| a              | Does well recharge adequately when purged?                                                                                                                      | V   |    |   |
| b              | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             |     |    |   |
| с              | Does the well require redevelopment (low flow, turbid)?                                                                                                         |     | Ø  |   |
| 6 Based on yc  | our professional judgement, is the well construction / location:                                                                                                |     |    |   |
|                | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  | V   |    |   |
|                | and 2) comply with the applicable regulatory requirements?                                                                                                      | V   |    |   |
| 7 Corrective a | ctions as needed, by date:                                                                                                                                      |     |    |   |
|                |                                                                                                                                                                 |     |    |   |



| ject Location |                                                                                                                                                                 | -      |    |   |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----|---|
| rmit Number   | •                                                                                                                                                               | -      |    |   |
| Well ID       | : YAMW-4                                                                                                                                                        | -      |    |   |
| son Gauging   |                                                                                                                                                                 | -      |    |   |
| Date          |                                                                                                                                                                 | -      |    |   |
| lime          | 03:03:00                                                                                                                                                        | Vac    | No | - |
| 1 Location Id | antification                                                                                                                                                    | res    | NO | + |
|               |                                                                                                                                                                 | EX.    |    | - |
| a             |                                                                                                                                                                 |        |    | + |
| b             | Is the well properly identified with the correct well ID?                                                                                                       |        |    | _ |
| C             | Is the well in a high traffic area and does the well require protection from traffic?                                                                           |        |    | _ |
| d             | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              | Ø      |    |   |
| 2 Protective  | Casing:                                                                                                                                                         |        |    |   |
| а             | Is the protective casing free from apparent damage and able to be secured?                                                                                      | Ø      |    |   |
| b             | Is the casing free of degradation or deterioration?                                                                                                             | V      |    |   |
| с             | Does the casing have a functioning weep hole?                                                                                                                   | Ø      |    |   |
| d             | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | V      |    |   |
| 3 Surface Pag | 1                                                                                                                                                               |        |    |   |
| а             | Is the well pad in good condition (not cracked or broken)?                                                                                                      | Ø      |    |   |
| b             | Is the well pad sloped away from the protective casing?                                                                                                         | V      |    |   |
| с             | Is the well pad in complete contact with the protective casing?                                                                                                 | V      |    |   |
| d             | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          | Ø      |    |   |
| ۹             | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 |        |    |   |
| 4 Internal Ca | sing                                                                                                                                                            |        |    | - |
| a             | Does the cap prevent entry of foreign material into the well?                                                                                                   | ম      |    |   |
| u<br>h        | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                               | _<br>_ |    |   |
| D<br>C        | Is the well properly vented for equilibration of air pressure?                                                                                                  |        |    |   |
| C             | Is the surgery sist clearly regulation of an pressure?                                                                                                          |        |    |   |
| a             | is the survey point clearly marked on the inner casing?                                                                                                         |        |    |   |
| e             | Is the depth of the well consistent with the original well log?                                                                                                 |        |    |   |
| t             | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | ☑      |    |   |
| 5 Sampling: ( | Groundwater Wells Only:                                                                                                                                         |        |    |   |
| а             | Does well recharge adequately when purged?                                                                                                                      | Ø      |    |   |
| b             | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             |        |    |   |
| с             | Does the well require redevelopment (low flow, turbid)?                                                                                                         |        | V  |   |
| 6 Based on y  | our professional judgement, is the well construction / location:                                                                                                |        |    |   |
|               | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  | V      |    |   |
|               | and 2) comply with the applicable regulatory requirements?                                                                                                      | V      |    |   |
| 7 Corrective  | actions as needed, by date:                                                                                                                                     | -      |    | 1 |
|               |                                                                                                                                                                 |        |    |   |
|               |                                                                                                                                                                 |        |    | _ |



| Well ID;       YAMW-5         son Gaudina;       Katte Pupkiewicz         Date:       3/2/221         Time:       08:40:00         I Location Identification:       Ø         a       Is the well visible and accessible?       Ø         b       Is the well properly identified with the correct well ID?       Ø         c       Is the well in a high traffic area and does the well require protection from traffic?       Ø         d       Is the order properly identified with the correct well ID?       Ø         c       Is the vell in a high traffic area and does the well require protection from traffic?       Ø         d       Is the protective casing free from apparent damage and able to be secured?       Ø         a       Is the protective casing free of degradation or deterioration?       Ø         c       Does the casing have a functioning weep hole?       Ø         d       Is the well pad in good condition (not cracked or broken)?       Ø       Ø         a       Is the well pad in complete contact with the protective casing?       Ø       Ø         c       Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)       Ø       Ø         e       Is the well pad in complete contact with the ground surface and sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                                                                                                                                 | -   |    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| Verter ID         INVERSE           Softward         Easier Pupkiewicz           Jaccian         12/22021           Time:         084000           I Location Identification:         Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image                                                                                                                                     |               |                                                                                                                                                                 | -   |    |
| Date:         Superiority and the property identified with the correct well ID?         Ves         No           a         Is the well visible and accessible?         a         a         a the dentification:         a         a         a         b         a the well visible and accessible?         a         a         a         a         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         b         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c         c <th>we<br/>con Gau</th> <th></th> <th>-</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | we<br>con Gau |                                                                                                                                                                 | -   |    |
| Time         Description           Time         084000         Yes         No           1         Location Identification:         Image: Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second S                                                                                          | son Gau       |                                                                                                                                                                 | -   |    |
| Yes       No.         1       Location Identification:       Image: Construction Identification:       Image: Construction Identification:         a       Is the well properly identified with the correct well ID?       Image: Construction Identified with the correct well ID?       Image: Construction Identified with the correct well ID?       Image: Construction Identified with the correct well ID?       Image: Construction Identified with the correct well ID?       Image: Construction Identified with the construction Identified with protective casing:       Image: Construction Identified with the construction Identified with protective casing:       Image: Construction Identified with the construction Identified with protective casing?       Image: Construction Identified with the construction Identified with protective casing?       Image: Construction Identified with the construction Identified with the construction Identified with the construction Identified with the construction Identified with the construction Identified with the construction Identified with the construction Identified with protective casing?       Image: Construction Identified with the construction Identified with protective casing?       Image: Construction Identified with the construction Identified with protect Identified with the construction Identified with the construction Identified with the construction Identified with the construction Identified with the construction Identified with the construction Identified with the construction Identified with the construction Identified with protective casing?       Image: Construction Identified with the construction Identified with protective Casing?       Image: Construction Identified with Identified with the constructide Identified with constru                                                                                                                                                                                                              |               | Time: 08:40:00                                                                                                                                                  | -   |    |
| 1       Location Identification:       Image: Control of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the           |               |                                                                                                                                                                 | Yes | No |
| a       Is the well visible and accessible?       III         b       Is the well properly identified with the correct well ID?       IIII         c       Is the well in a high traffic area and does the well require protection from traffic?       IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 Locatio     | on Identification:                                                                                                                                              |     |    |
| b       is the well properly identified with the correct well ID?       Image: Construct on the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of t          | а             | Is the well visible and accessible?                                                                                                                             | V   |    |
| c       is the well in a high traffic area and does the well require protection from traffic?       Image: Construct of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of t          | b             | Is the well properly identified with the correct well ID?                                                                                                       | V   |    |
| d       Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)       Image flow path)         2       Protective Casing:       Image flow path)         a       Is the protective casing free from apparent damage and able to be secured?       Image flow path)         b       Is the casing free of degradation or deterioration?       Image flow path)       Image flow path)         c       Does the casing have a functioning weep hole?       Image flow path)       Image flow path)       Image flow path)         d       Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?       Image flow path)       Image flow path)       Image flow path)         3       Surface Pad       Image flow path)         3       Surface Pad       Image flow path)       Image flow path       Image flow path       Image flow path       Image flow path)       Image flow path                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | с             | Is the well in a high traffic area and does the well require protection from traffic?                                                                           | V   |    |
| 2       Protective Casing:       Image: Casing free from apparent damage and able to be secured?       Image: Casing free of degradation or deterioration?       Image: Casing free of kinks or bends, or any obstructions from foreign objec                                                                                                                                                                                                                                                                      | d             | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              | V   |    |
| a       Is the protective casing free from apparent damage and able to be secured?       Image: Construction of the casing free of degradation or deterioration?       Image: Construction of the casing free of degradation or deterioration?       Image: Construction of the casing free of degradation or deterioration?       Image: Construction of the casing free of degradation or deterioration?       Image: Construction of the casing free of degradation or deterioration?       Image: Construction of the casing free of degradation or deterioration?       Image: Construction of the casing free of kinks or book of the casing?       Image: Construction of the casing?       Image: Construction of the casing?       Image: Construction of the casing?       Image: Construction of the casing?       Image: Construction of the casing?       Image: Construction of the casing?       Image: Construction of the casing?       Image: Construction of the casing?       Image: Construction of the casing?       Image: Construction of the casing?       Image: Construction of the casing?       Image: Construction of the casing?       Image: Construction of the casing?       Image: Construction of the casing?       Image: Construction of the casing?       Image: Construction of the casing?       Image: Construction of the casing?       Image: Construction of the casing?       Image: Construction of the casing?       Image: Construction of the casing?       Image: Construction of the casing?       Image: Construction of the casing?       Image: Construction of the casing?       Image: Construction of the casing?       Image: Construction of the casing?       Image: Construction of the casing?                                                                                                                                                                                                                                                                                                                          | 2 Protec      | tive Casing:                                                                                                                                                    |     |    |
| b       Is the casing free of degradation or deterioration?       Image: Comparison of the casing have a functioning weep hole?       Image: Comparison of the casing have a functioning weep hole?       Image: Comparison of the casing have a function of the casing sclear of debris and water, or filled with pea gravel/sand?       Image: Comparison of the casing free of kinks or book of the casing?       Image: Comparison of the casing free of kinks or book of the casing?       Image: Comparison of the casing free of kinks or book of the casing?       Image: Comparison of the casing free of kinks or book of the casing?       Image: Comparison of the casing free of kinks or book of the casing?       Image: Comparison of the casing free of kinks or book of the casing?       Image: Comparison of the casing free of kinks or book of the casing?       Image: Comparison of the casing free of kinks or book of the casing?       Image: Comparison of the casing free of kinks or book of the casing?       Image: Comparison of the casing free of kinks or book of the casing?       Image: Comparison of the casing free of kinks or book of the casing?       Image: Comparison of the casing free of kinks or book of the casing?       Image: Comparison of the casing free of kinks or book of the casing?       Image: Comparison of the casing free of kinks or book of the casing?       Image: Comparison of the casing free of kinks or book of the casing?       Image: Comparison of the casing free of kinks or book of the casing?       Image: Comparison of the casing free of kinks or book of the casing?       Image: Comparison of the casing free of kinks or book of the casing?       Image: Comparison of the casing free of kinks or book of the casing?       Image: Comparison of the casing free of kink                                                                                                                                                                                                                | а             | Is the protective casing free from apparent damage and able to be secured?                                                                                      | V   |    |
| c       Does the casing have a functioning weep hole?       Image: Comparison of the casing space between casings clear of debris and water, or filled with pea gravel/sand?       Image: Comparison of the casing space between casings clear of debris and water, or filled with pea gravel/sand?       Image: Comparison of the casing space between casings clear of debris and water, or filled with pea gravel/sand?       Image: Comparison of the casing space between casings clear of debris and water, or filled with pea gravel/sand?       Image: Comparison of the casing space between casings clear of debris and water, or filled with pea gravel/sand?       Image: Comparison of the casing space between casings clear of debris and water, or filled with pea gravel/sand?       Image: Comparison of the casing space between casings clear of debris and water, or filled with pea gravel/sand?       Image: Comparison of the casing space between casings clear of debris and water, or filled with pea gravel/sand?       Image: Comparison of the casing space between casing?       Image: Comparison of the casing frame of kinks or bends, or any obstructions from foreign objects (such as bailers)?       Image: Comparison of the casing frame of kinks or bends, or any obstructions from foreign objects (such as bailers)?       Image: Comparison of the casing frame of kinks or bends, or any obstructions from foreign objects (such as bailers)?       Image: Comparison of the casing frame of kinks or bends, or any obstructions from foreign objects (such as bailers)?       Image: Comparison of air pressure?       Image: Compariso                                                                                                                                                                                     | b             | Is the casing free of degradation or deterioration?                                                                                                             | V   |    |
| d       Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?       Image: Construct the space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space           | с             | Does the casing have a functioning weep hole?                                                                                                                   | V   |    |
| 3 Surface Pad       Image: Surface Pad       Image: Surface Pad         a       Is the well pad in good condition (not cracked or broken)?       Image: Surface Pad       Image: Surface Pad         b       Is the well pad sloped away from the protective casing?       Image: Surface Pad       Image: Surface Pad         c       Is the well pad in complete contact with the protective casing?       Image: Surface Pad       Image: Surface Pad         d       Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)       Image: Surface Pad         e       Is the pad surface clean (not covered with sediment or debris)?       Image: Surface Pad         4       Internal Casing       Image: Surface Pad       Image: Surface Pad         a       Does the cap prevent entry of foreign material into the well?       Image: Surface Pad       Image: Surface Pad         b       Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?       Image: Surface Pad       Image: Surface Pad         c       Is the well properly vented for equilibration of air pressure?       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface         d       Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of ground vater Wells Only:       Image: Surface Pad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | d             | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | V   |    |
| a       Is the well pad in good condition (not cracked or broken)?       Image: Constraint of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of          | 3 Surfac      | e Pad                                                                                                                                                           |     |    |
| b       Is the well pad sloped away from the protective casing?       Image: Comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison of the second comparison comparison comparison comparison comparison comparison of the second comparison of the second comparison comparison comparison of the second comparison compari          | а             | Is the well pad in good condition (not cracked or broken)?                                                                                                      | V   |    |
| c       Is the well pad in complete contact with the protective casing?       Image: Control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the second control of the secon          | b             | Is the well pad sloped away from the protective casing?                                                                                                         | V   |    |
| d       Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)       Image: Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Contrection Control of Control o          | с             | Is the well pad in complete contact with the protective casing?                                                                                                 | V   |    |
| e       Is the pad surface clean (not covered with sediment or debris)?       Image: Clean Clean Clean (not covered with sediment or debris)?       Image: Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Clean Cle                   | d             | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          | V   |    |
| 4       Internal Casing       Internal Casing       Image: Casing a Does the cap prevent entry of foreign material into the well?       Image: Casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?       Image: Casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?       Image: Casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?       Image: Casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?       Image: Casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?       Image: Casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?       Image: Casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?       Image: Casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?       Image: Casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?       Image: Casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?       Image: Casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?       Image: Casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?       Image: Casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?       Image: Casing free of kinks or bends, or any obstruction for casing free of kinks or bends, or any obstruction for such as proved and or use of slip couplings in construction)       Image: Casing free of kinks or bends, or any obstruction for for any obstruction for for any obstruction for for any obstructing free of foreign free of kinks or use of slip couplings                                                                                                                                                          | е             | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 | Ø   |    |
| a       Does the cap prevent entry of foreign material into the well?       Image: Comparison of the cap prevent entry of foreign material into the well?       Image: Comparison of the cap prevent entry of foreign material into the well?       Image: Comparison of the cap prevent entry of foreign material into the well?       Image: Comparison of the cap prevent entry of foreign material into the well?       Image: Comparison of the cap prevent entry of foreign material into the well?       Image: Comparison of the cap prevent entry of foreign material into the well?       Image: Comparison of the cap prevent entry of foreign material into the well?       Image: Comparison of the cap prevent entry of foreign material into the well?       Image: Comparison of the cap prevent entry of foreign material into the well?       Image: Comparison of the cap prevent entry of foreign material into the well?       Image: Comparison of the cap prevent entry of foreign material into the well?       Image: Comparison of the cap prevent entry of foreign material into the well?       Image: Comparison of the cap prevent entry of foreign material into the well?       Image: Comparison of the cap prevent entry of foreign objects (such as bailers)?       Image: Comparison of the cap prevent entry of foreign objects (such as bailers)?       Image: Comparison of the cap prevent entry of foreign objects (such as bailes)?       Image: Comparison of the cap prevent entry of foreign objects (such as bailes)?       Image: Comparison of the cap prevent entry of foreign objects (such as bailes)?       Image: Comparison of the cap prevent entry of foreign objects (such as bailes)?       Image: Comparison of the cap prevent entry of foreign objects (such as bailes)?       Image: Comparison of the cap prevent entry of                                                                                                                                                                                              | 4 Interna     | al Casing                                                                                                                                                       |     |    |
| b       Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?       Image: Comparison of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of th          | а             | Does the cap prevent entry of foreign material into the well?                                                                                                   | Ø   |    |
| c       Is the well properly vented for equilibration of air pressure?       Image: Comparison of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the secti          | b             | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                               | V   |    |
| d       Is the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing marked on the inner casing marked on the inner casing marked on the inner casing marked on the inner casing marked on the inner casing marked on the inner casing marked on the inner casing marked on the inner casing marked on the inner casing marked on the inner casing marked on the inner casing marked on the inner casing marked on the inner casing marked on the inner casing marked on the inner casing marked on the inner casing marked on the inner casing marked on the inner casing marked on the inner casing marked on the inner casing marked on the inner casing marked on the inner casing marked on the                                                                                                                                         | с             | Is the well properly vented for equilibration of air pressure?                                                                                                  | Ø   |    |
| e       Is the depth of the well consistent with the original well log?       Image: Construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construct of the construc          | d             | Is the survey point clearly marked on the inner casing?                                                                                                         | Ø   |    |
| f       Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction)       Image: Coupling in construction         5       Sampling: Groundwater Wells Only:       Image: Coupling in construction       Image: Coupling in construction         a       Does well recharge adequately when purged?       Image: Coupling in coupling in construction       Image: Coupling in coupling in coupling in construction       Image: Coupling in coupling in coupling in construction       Image: Coupling in coupling in coupling in coupling in coupling in coupling in coupling in coupling in coupling in coupling in coupling in coupling in coupling in coupling in coupling in coupling in coupling in coupling in coupling in coupling in coupling in coupling in coupling in coupling in coupling in coupling in coupling in coupling in coupling in coupling in coupling in coupling in coupling in coupling in coupling in coupling in coupling in coupling in coupling in coupling in coupling in coupling in coupling in coupling in coupling in coupling in coupling in coupling in coupling in coupling in coupling in coupling in coupling in coupling i                                                                                                                                                                                                                                         | e             | Is the depth of the well consistent with the original well log?                                                                                                 | Ø   |    |
| 5       Sampling: Groundwater Wells Only:       Image: Constant of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s          | f             | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | Ø   |    |
| a       Does well recharge adequately when purged?       Image: Comparison of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the sectin of the section of the section of the section of the section of           | 5 Sampl       | ing: Groundwater Wells Only:                                                                                                                                    |     |    |
| b       If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?       □       □         c       Does the well require redevelopment (low flow, turbid)?       □       □       □         6       Based on y=r professional judgement, is the well construction / location:       □       □       □         7       Corrective actions as needed, by date:       □       □       □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | а             | Does well recharge adequately when purged?                                                                                                                      | V   |    |
| c       Does the well require redevelopment (low flow, turbid)?       □       ☑         6       Based on your professional judgement, is the well construction / location:       □       □         appropriate to 1) achieve the objectives of the Groundwater Monitoring Program       ☑       □         and 2) comply with the applicable regulatory requirements?       ☑       □         7       Corrective actions as needed, by date:       ✓       □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | b             | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             |     |    |
| 6       Based on your professional judgement, is the well construction / location:       Image: style="text-align: center;">Image: style="text-align: center;"/>Image: style="text-align: center;"///////Image: style="text-align: center;"//////////////Image: styl          | с             | Does the well require redevelopment (low flow, turbid)?                                                                                                         |     | Ø  |
| appropriate to 1) achieve the objectives of the Groundwater Monitoring Program       Image: Complex of the Groundwater Monitoring Program         and 2) comply with the applicable regulatory requirements?       Image: Complex of the Groundwater Monitoring Program         7       Corrective actions as needed, by date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6 Based       | on your professional judgement, is the well construction / location:                                                                                            |     |    |
| and 2) comply with the applicable regulatory requirements?       Image: Complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex complex comple |               | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  | V   |    |
| 7 Corrective actions as needed, by date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | and 2) comply with the applicable regulatory requirements?                                                                                                      | V   |    |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7 Correc      | tive actions as needed, by date:                                                                                                                                |     |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 Data k      | www.when.corrective.actions.are.needed                                                                                                                          |     |    |



|     |               |                                                                                                                                                                 | -      |    |   |
|-----|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----|---|
| rm  | it Number:    |                                                                                                                                                                 | -      |    |   |
|     | Well ID:      | YGWC-42                                                                                                                                                         | -      |    |   |
| rsc | on Gauging:   | 2/2/2021                                                                                                                                                        | -      |    |   |
|     | Date:         | 09.26.00                                                                                                                                                        | -      |    |   |
|     | Time:         | 03.20.00                                                                                                                                                        | Vac    | No |   |
| 1   | Location Ide  | ntification:                                                                                                                                                    | 103    | NO | + |
| 1   |               | Is the well visible and accessible?                                                                                                                             | নি     |    | + |
|     | d<br>h        |                                                                                                                                                                 |        |    | _ |
|     | D             | Is the well properly identified with the correct well ID?                                                                                                       |        |    | _ |
|     | c             | Is the well in a high traffic area and does the well require protection from traffic?                                                                           | M      |    | _ |
|     | d             | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              | Ø      |    |   |
| 2   | Protective C  | asing:                                                                                                                                                          |        |    |   |
|     | а             | Is the protective casing free from apparent damage and able to be secured?                                                                                      | Ø      |    |   |
|     | b             | Is the casing free of degradation or deterioration?                                                                                                             | V      |    |   |
|     | с             | Does the casing have a functioning weep hole?                                                                                                                   | V      |    |   |
|     | d             | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | V      |    |   |
| 3   | Surface Pad   |                                                                                                                                                                 |        |    |   |
|     | а             | Is the well pad in good condition (not cracked or broken)?                                                                                                      | V      |    |   |
|     | b             | Is the well pad sloped away from the protective casing?                                                                                                         | V      |    |   |
|     | с             | Is the well pad in complete contact with the protective casing?                                                                                                 | V      |    |   |
|     | d             | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          | V      |    |   |
|     | e             | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 |        |    |   |
| 4   | Internal Casi |                                                                                                                                                                 |        |    | - |
|     |               | Does the cap prevent entry of foreign material into the well?                                                                                                   | ম      |    |   |
|     | u<br>b        | Is the casing free of kinks or bonds, or any obstructions from foreign objects (such as bailers)?                                                               |        |    |   |
|     | 0             | Is the well preperly wented for equilibration of air pressure?                                                                                                  | L<br>L |    |   |
|     | C<br>al       | Is the surgeous sint clearly reached on the inner assign?                                                                                                       |        |    |   |
|     | a             | is the survey point clearly marked on the inner casing?                                                                                                         |        |    |   |
|     | e             | Is the depth of the well consistent with the original well log?                                                                                                 |        | Ц  |   |
|     | f             | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | Ø      |    |   |
| 5   | Sampling: G   | roundwater Wells Only:                                                                                                                                          |        |    |   |
|     | а             | Does well recharge adequately when purged?                                                                                                                      | Ø      |    |   |
|     | b             | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             | Ø      |    |   |
|     | с             | Does the well require redevelopment (low flow, turbid)?                                                                                                         |        | V  |   |
| 6   | Based on yo   | ur professional judgement, is the well construction / location:                                                                                                 |        |    |   |
|     | -             | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  | V      |    |   |
|     |               | and 2) comply with the applicable regulatory requirements?                                                                                                      | V      |    |   |
| 7   | Corrective a  | ctions as needed, by date:                                                                                                                                      |        |    | + |
|     |               |                                                                                                                                                                 |        |    |   |


| Mit Num<br>Wisson Gau<br>i Locati<br>a<br>b<br>c<br>d<br>d<br>c<br>d<br>a<br>b<br>c<br>c<br>a<br>b<br>c<br>c<br>a<br>b<br>c<br>c<br>a<br>b<br>b<br>c<br>c<br>d<br>a<br>b<br>c<br>c<br>d<br>a<br>b<br>c<br>c<br>a<br>b<br>b<br>c<br>c<br>d<br>a<br>b<br>b<br>c<br>c<br>a<br>a<br>b<br>b<br>c<br>c<br>a<br>a<br>b<br>b<br>c<br>c<br>a<br>a<br>b<br>b<br>c<br>c<br>a<br>a<br>b<br>b<br>c<br>c<br>a<br>a<br>b<br>b<br>c<br>c<br>a<br>a<br>b<br>b<br>c<br>c<br>a<br>a<br>b<br>b<br>c<br>c<br>a<br>a<br>b<br>b<br>c<br>c<br>a<br>a<br>b<br>b<br>c<br>c<br>a<br>a<br>b<br>b<br>c<br>c<br>a<br>a<br>b<br>b<br>c<br>c<br>a<br>a<br>b<br>b<br>c<br>c<br>a<br>a<br>b<br>b<br>c<br>c<br>a<br>a<br>b<br>b<br>c<br>c<br>a<br>a<br>b<br>b<br>c<br>c<br>a<br>a<br>b<br>b<br>c<br>c<br>a<br>a<br>b<br>b<br>c<br>c<br>a<br>a<br>b<br>b<br>c<br>c<br>a<br>a<br>b<br>b<br>c<br>c<br>a<br>a<br>b<br>b<br>c<br>c<br>a<br>a<br>b<br>b<br>c<br>c<br>a<br>a<br>b<br>b<br>c<br>c<br>a<br>a<br>b<br>b<br>c<br>c<br>a<br>a<br>b<br>b<br>c<br>c<br>a<br>a<br>b<br>b<br>c<br>c<br>a<br>a<br>b<br>b<br>c<br>c<br>a<br>a<br>b<br>b<br>c<br>c<br>a<br>a<br>b<br>b<br>c<br>c<br>a<br>a<br>b<br>b<br>c<br>c<br>a<br>a<br>b<br>b<br>c<br>c<br>a<br>a<br>b<br>b<br>c<br>c<br>a<br>a<br>b<br>b<br>c<br>c<br>a<br>a<br>b<br>b<br>c<br>c<br>a<br>a<br>b<br>b<br>c<br>c<br>a<br>a<br>b<br>b<br>c<br>c<br>a<br>a<br>b<br>b<br>c<br>c<br>a<br>a<br>b<br>b<br>c<br>c<br>c<br>a<br>a<br>b<br>b<br>c<br>c<br>c<br>a<br>a<br>b<br>b<br>c<br>c<br>c<br>a<br>a<br>b<br>b<br>c<br>c<br>c<br>a<br>a<br>b<br>b<br>c<br>c<br>c<br>a<br>a<br>b<br>b<br>c<br>c<br>c<br>a<br>a<br>b<br>b<br>c<br>c<br>c<br>a<br>a<br>b<br>b<br>c<br>c<br>c<br>a<br>a<br>b<br>b<br>c<br>c<br>c<br>a<br>a<br>b<br>b<br>c<br>c<br>c<br>a<br>a<br>b<br>b<br>c<br>c<br>c<br>a<br>c<br>a | Imber:       VGWC-41         Vell ID:       YGWC-41         variance       Xatie Pupkiewicz         J2/2021       Jate:                                                                                                                                                                                                      | Yes<br>Ves<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V<br>V                        | No |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----|
| kon Gau<br>b<br>c<br>d<br>b<br>c<br>d<br>b<br>c<br>d<br>b<br>c<br>d<br>b<br>c<br>d<br>b<br>c<br>d<br>b<br>c<br>d<br>b<br>c<br>d<br>b<br>c<br>d<br>b<br>c<br>d<br>b<br>c<br>d<br>b<br>c<br>c<br>d<br>b<br>b<br>c<br>c<br>d<br>b<br>b<br>c<br>c<br>d<br>b<br>b<br>c<br>c<br>d<br>b<br>b<br>c<br>c<br>d<br>b<br>b<br>c<br>c<br>d<br>b<br>b<br>c<br>c<br>d<br>b<br>b<br>c<br>c<br>d<br>b<br>b<br>c<br>c<br>d<br>b<br>b<br>c<br>c<br>d<br>b<br>b<br>c<br>c<br>d<br>b<br>b<br>c<br>c<br>d<br>b<br>b<br>c<br>c<br>d<br>b<br>b<br>c<br>c<br>d<br>b<br>b<br>c<br>c<br>d<br>b<br>b<br>c<br>c<br>d<br>b<br>b<br>c<br>c<br>d<br>b<br>b<br>c<br>c<br>d<br>b<br>b<br>c<br>c<br>d<br>b<br>b<br>c<br>c<br>d<br>b<br>b<br>c<br>c<br>d<br>b<br>b<br>c<br>c<br>d<br>b<br>b<br>c<br>c<br>d<br>b<br>b<br>c<br>c<br>d<br>b<br>b<br>c<br>c<br>d<br>b<br>b<br>c<br>c<br>d<br>d<br>b<br>b<br>c<br>c<br>d<br>d<br>b<br>b<br>c<br>c<br>d<br>d<br>b<br>b<br>c<br>c<br>d<br>d<br>b<br>b<br>c<br>c<br>d<br>d<br>b<br>b<br>c<br>c<br>d<br>d<br>b<br>b<br>c<br>c<br>d<br>d<br>b<br>b<br>c<br>c<br>d<br>d<br>b<br>b<br>c<br>c<br>d<br>d<br>b<br>b<br>c<br>c<br>d<br>d<br>b<br>b<br>c<br>c<br>d<br>d<br>b<br>b<br>c<br>c<br>d<br>d<br>b<br>b<br>c<br>c<br>d<br>d<br>b<br>b<br>c<br>c<br>d<br>d<br>b<br>b<br>c<br>c<br>d<br>d<br>b<br>b<br>c<br>c<br>d<br>d<br>b<br>b<br>c<br>c<br>d<br>d<br>b<br>b<br>c<br>c<br>d<br>d<br>b<br>b<br>c<br>c<br>d<br>d<br>b<br>b<br>c<br>c<br>d<br>d<br>b<br>b<br>c<br>c<br>d<br>d<br>d<br>b<br>b<br>c<br>c<br>d<br>d<br>d<br>b<br>b<br>c<br>c<br>d<br>d<br>d<br>b<br>b<br>c<br>c<br>d<br>d<br>d<br>b<br>b<br>c<br>c<br>d<br>d<br>d<br>d                                                                                                                                                                       | Fell ID:       VewC-41         ugina:       Katie Pupkiewicz         J2/2021       9:10:00         Time:       09:10:00         tion Idertification:       Is the well visible and accessible?         Is the well properly identified with the correct well ID?       Is the well in a high traffic area and does the well require protection from traffic?         Is the well in a high traffic area and does the well require protection from traffic?       Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)         ective Casing:       Is the protective casing free from apparent damage and able to be secured?         Is the casing free of degradation or deterioration?       Does the casing have a functioning weep hole?         Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?         ice Pad       Is the well pad in good condition (not cracked or broken)?         Is the well pad sloped away from the protective casing?         Is the well pad in complete contact with the protective casing? | Yes<br>Ø<br>Ø<br>Ø<br>Ø<br>Ø<br>Ø<br>Ø<br>Ø<br>Ø<br>Ø<br>Ø<br>Ø<br>Ø<br>Ø<br>Ø<br>Ø<br>Ø<br>Ø<br>Ø | No |
| Locati<br>a<br>b<br>c<br>d<br>b<br>c<br>d<br>b<br>c<br>d<br>b<br>c<br>d<br>b<br>c<br>d<br>b<br>c<br>d<br>b<br>c<br>d<br>b<br>c<br>d<br>b<br>c<br>d<br>b<br>c<br>d<br>b<br>c<br>d<br>b<br>c<br>d<br>d<br>b<br>c<br>d<br>d<br>b<br>c<br>d<br>d<br>b<br>c<br>d<br>d<br>b<br>c<br>d<br>d<br>b<br>c<br>d<br>d<br>b<br>c<br>d<br>d<br>b<br>c<br>d<br>d<br>b<br>c<br>d<br>d<br>b<br>c<br>d<br>d<br>b<br>c<br>d<br>d<br>b<br>c<br>d<br>d<br>b<br>c<br>d<br>d<br>b<br>c<br>d<br>d<br>b<br>c<br>d<br>d<br>b<br>c<br>d<br>d<br>b<br>c<br>d<br>d<br>b<br>c<br>d<br>d<br>b<br>c<br>d<br>d<br>b<br>c<br>d<br>d<br>b<br>c<br>d<br>d<br>b<br>c<br>d<br>d<br>b<br>b<br>c<br>d<br>d<br>b<br>b<br>c<br>d<br>d<br>d<br>b<br>b<br>c<br>d<br>d<br>d<br>d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | unance       Kattle Publicewicz         Jate:       3/2/2021         Time:       09:10:00         Image:       Image:         tion Identification:       Is the well visible and accessible?         Is the well properly identified with the correct well ID?       Is the well properly identified with the correct well ID?         Is the well in a high traffic area and does the well require protection from traffic?       Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)         extive Casing:       Is the protective casing free from apparent damage and able to be secured?         Is the casing free of degradation or deterioration?       Does the casing have a functioning weep hole?         Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?         Ince Pad       Is the well pad in good condition (not cracked or broken)?         Is the well pad sloped away from the protective casing?         Is the well pad in complete contact with the protective casing?                              | Yes<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                               | No |
| Locati<br>a<br>b<br>c<br>d<br>2 Protec<br>a<br>b<br>c<br>d<br>3 Surfac<br>a<br>b<br>c<br>d<br>4 Intern<br>a<br>b<br>c<br>c<br>d<br>4 Intern<br>a<br>b<br>c<br>c<br>d<br>2 Protec<br>a<br>b<br>c<br>c<br>d<br>b<br>c<br>c<br>d<br>b<br>c<br>c<br>c<br>c<br>c<br>c<br>c<br>c<br>c<br>c<br>c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Time:       99:10:00         tion Identification:       Is the well visible and accessible?         Is the well properly identified with the correct well ID?       Is the well in a high traffic area and does the well require protection from traffic?         Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)         ective Casing:         Is the protective casing free from apparent damage and able to be secured?         Is the casing free of degradation or deterioration?         Does the casing have a functioning weep hole?         Is the well pad in good condition (not cracked or broken)?         Is the well pad sloped away from the protective casing?         Is the well pad in complete contact with the protective casing?                                                                                                                                                                                                                                                                                                                  | Yes                                                                                                | No |
| Locati<br>a<br>b<br>c<br>d<br>2 Protee<br>a<br>b<br>c<br>d<br>3 Surfac<br>a<br>b<br>c<br>d<br>b<br>c<br>d<br>c<br>d<br>b<br>c<br>c<br>d<br>b<br>c<br>c<br>d<br>b<br>c<br>c<br>d<br>b<br>c<br>c<br>d<br>b<br>c<br>c<br>d<br>c<br>d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tion Identification:<br>Is the well visible and accessible?<br>Is the well properly identified with the correct well ID?<br>Is the well in a high traffic area and does the well require protection from traffic?<br>Is the drainage around the well acceptable? (no standing water, nor is well located in obvious<br>drainage flow path)<br>ective Casing:<br>Is the protective casing free from apparent damage and able to be secured?<br>Is the casing free of degradation or deterioration?<br>Does the casing have a functioning weep hole?<br>Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?<br>Is the well pad in good condition (not cracked or broken)?<br>Is the well pad in complete contact with the protective casing?                                                                                                                                                                                                                                                                                                                                                       | Yes<br>✓<br>✓<br>✓<br>✓<br>✓<br>✓<br>✓<br>✓<br>✓<br>✓<br>✓<br>✓<br>✓                               | No |
| Locati<br>a<br>b<br>c<br>d<br>Protect<br>a<br>b<br>c<br>d<br>b<br>c<br>d<br>b<br>c<br>d<br>b<br>c<br>d<br>d<br>l<br>h<br>t<br>c<br>d<br>c<br>d<br>c<br>d<br>c<br>d<br>c<br>d<br>c<br>d<br>c<br>d<br>c<br>d<br>c<br>d<br>c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tion Idertification:<br>Is the well visible and accessible?<br>Is the well properly identified with the correct well ID?<br>Is the well in a high traffic area and does the well require protection from traffic?<br>Is the drainage around the well acceptable? (no standing water, nor is well located in obvious<br>drainage flow path)<br>ective Casing:<br>Is the protective casing free from apparent damage and able to be secured?<br>Is the casing free of degradation or deterioration?<br>Does the casing have a functioning weep hole?<br>Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?<br>Is the well pad in good condition (not cracked or broken)?<br>Is the well pad in good condition (not cracked or broken)?<br>Is the well pad sloped away from the protective casing?                                                                                                                                                                                                                                                                                                 |                                                                                                    |    |
| <ul> <li>Locati</li> <li>a</li> <li>b</li> <li>c</li> <li>d</li> <li>2</li> <li>Protect</li> <li>a</li> <li>b</li> <li>c</li> <li>d</li> <li>a</li> <li>b</li> <li>c</li> <li>d</li> <li>a</li> <li>b</li> <li>c</li> <li>d</li> <li>a</li> <li>b</li> <li>c</li> <li>d</li> <li>a</li> <li>b</li> <li>c</li> <li>d</li> <li>a</li> <li>b</li> <li>c</li> <li>d</li> <li>a</li> <li>b</li> <li>c</li> <li>d</li> <li>a</li> <li>b</li> <li>c</li> <li>d</li> <li>a</li> <li>b</li> <li>c</li> <li>d</li> <li>c</li> <li>d</li> <li>c</li> <li>d</li> <li>c</li> <li>d</li> <li>c</li> <li>d</li> <li>c</li> <li>d</li> <li>e</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Is the well visible and accessible?         Is the well properly identified with the correct well ID?         Is the well in a high traffic area and does the well require protection from traffic?         Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)         ective Casing:         Is the protective casing free from apparent damage and able to be secured?         Is the protective casing free from apparent damage and able to be secured?         Is the casing free of degradation or deterioration?         Does the casing have a functioning weep hole?         Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?         ince Pad         Is the well pad in good condition (not cracked or broken)?         Is the well pad sloped away from the protective casing?         Is the well pad in complete contact with the protective casing?                                                                                                                                                            |                                                                                                    |    |
| <ul> <li>a</li> <li>b</li> <li>c</li> <li>d</li> <li>a</li> <li>b</li> <li>c</li> <li>a</li> <li>b</li> <li>c</li> <li>d</li> <li>a</li> <li>b</li> <li>c</li> <li>d</li> <li>a</li> <li>b</li> <li>c</li> <li>d</li> <li>a</li> <li>b</li> <li>c</li> <li>d</li> <li>a</li> <li>b</li> <li>c</li> <li>d</li> <li>a</li> <li>b</li> <li>c</li> <li>d</li> <li>a</li> <li>b</li> <li>c</li> <li>d</li> <li>a</li> <li>b</li> <li>c</li> <li>d</li> <li>a</li> <li>b</li> <li>c</li> <li>d</li> <li>a</li> <li>b</li> <li>c</li> <li>d</li> <li>c</li> <li>d</li> <li>c</li> <li>d</li> <li>c</li> <li>d</li> <li>e</li> <li>e</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Is the well visible and accessible?<br>Is the well properly identified with the correct well ID?<br>Is the well in a high traffic area and does the well require protection from traffic?<br>Is the drainage around the well acceptable? (no standing water, nor is well located in obvious<br>drainage flow path)<br>ective Casing:<br>Is the protective casing free from apparent damage and able to be secured?<br>Is the casing free of degradation or deterioration?<br>Does the casing have a functioning weep hole?<br>Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?<br>Is the well pad in good condition (not cracked or broken)?<br>Is the well pad sloped away from the protective casing?<br>Is the well pad in complete contact with the protective casing?                                                                                                                                                                                                                                                                                                                    |                                                                                                    |    |
| <ul> <li>D</li> <li>C</li> <li>d</li> <li>Protect</li> <li>a</li> <li>b</li> <li>c</li> <li>d</li> <li>3 Surfact</li> <li>a</li> <li>b</li> <li>c</li> <li>d</li> <li>a</li> <li>b</li> <li>c</li> <li>d</li> <li>e</li> <li>a</li> <li>b</li> <li>c</li> <li>d</li> <li>a</li> <li>b</li> <li>c</li> <li>d</li> <li>a</li> <li>b</li> <li>c</li> <li>d</li> <li>a</li> <li>b</li> <li>c</li> <li>d</li> <li>a</li> <li>b</li> <li>c</li> <li>d</li> <li>a</li> <li>b</li> <li>c</li> <li>d</li> <li>c</li> <li>d</li> <li>c</li> <li>d</li> <li>c</li> <li>d</li> <li>c</li> <li>d</li> <li>e</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Is the well properly identified with the correct well D?<br>Is the well in a high traffic area and does the well require protection from traffic?<br>Is the drainage around the well acceptable? (no standing water, nor is well located in obvious<br>drainage flow path)<br>ective Casing:<br>Is the protective casing free from apparent damage and able to be secured?<br>Is the casing free of degradation or deterioration?<br>Does the casing have a functioning weep hole?<br>Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?<br>Is the well pad in good condition (not cracked or broken)?<br>Is the well pad in good condition (not cracked or broken)?<br>Is the well pad in complete contact with the protective casing?                                                                                                                                                                                                                                                                                                                                                         |                                                                                                    |    |
| <ul> <li>c</li> <li>d</li> <li>Protect</li> <li>a</li> <li>b</li> <li>c</li> <li>d</li> <li>Surfact</li> <li>a</li> <li>b</li> <li>c</li> <li>d</li> <li>c</li> <li>d</li> <li>a</li> <li>b</li> <li>c</li> <li>d</li> <li>a</li> <li>b</li> <li>c</li> <li>d</li> <li>c</li> <li>d</li> <li>a</li> <li>b</li> <li>c</li> <li>d</li> <li>a</li> <li>b</li> <li>c</li> <li>d</li> <li>a</li> <li>b</li> <li>c</li> <li>d</li> <li>a</li> <li>b</li> <li>c</li> <li>d</li> <li>a</li> <li>b</li> <li>c</li> <li>d</li> <li>a</li> <li>b</li> <li>c</li> <li>d</li> <li>c</li> <li>d</li> <li>c</li> <li>d</li> <li>e</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Is the well in a high traffic area and does the well require protection from traffic?<br>Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)<br>ective Casing:<br>Is the protective casing free from apparent damage and able to be secured?<br>Is the casing free of degradation or deterioration?<br>Does the casing have a functioning weep hole?<br>Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?<br>Is the well pad in good condition (not cracked or broken)?<br>Is the well pad in good condition (not cracked or broken)?<br>Is the well pad sloped away from the protective casing?<br>Is the well pad in complete contact with the protective casing?                                                                                                                                                                                                                                                                                                                                                             |                                                                                                    |    |
| d<br>Protect<br>a<br>b<br>c<br>d<br>a<br>Surfact<br>a<br>b<br>c<br>d<br>c<br>d<br>d<br>l<br>nterm<br>a<br>b<br>c<br>c<br>d<br>c<br>d<br>c<br>d<br>d<br>c<br>c<br>d<br>d<br>c<br>d<br>d<br>c<br>d<br>c<br>d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path) ective Casing: Is the protective casing free from apparent damage and able to be secured? Is the casing free of degradation or deterioration? Does the casing have a functioning weep hole? Is the annular space between casings clear of debris and water, or filled with pea gravel/sand? Is the well pad in good condition (not cracked or broken)? Is the well pad sloped away from the protective casing? Is the well pad in complete contact with the protective casing?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                    |    |
| <ul> <li>Protect</li> <li>a</li> <li>b</li> <li>c</li> <li>d</li> <li>3 Surfact</li> <li>a</li> <li>b</li> <li>c</li> <li>d</li> <li>c</li> <li>d</li> <li>e</li> <li>t</li> <li>Intern</li> <li>a</li> <li>b</li> <li>c</li> <li>d</li> <li>e</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ective Casing:         Is the protective casing free from apparent damage and able to be secured?         Is the casing free of degradation or deterioration?         Does the casing have a functioning weep hole?         Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?         Is the well pad in good condition (not cracked or broken)?         Is the well pad sloped away from the protective casing?         Is the well pad in complete contact with the protective casing?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                    |    |
| a<br>b<br>c<br>d<br>Surfac<br>a<br>b<br>c<br>d<br>c<br>d<br>l<br>ntern<br>a<br>b<br>c<br>c<br>d<br>c<br>d<br>e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Is the protective casing free from apparent damage and able to be secured?Is the casing free of degradation or deterioration?Does the casing have a functioning weep hole?Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?Ice PadIs the well pad in good condition (not cracked or broken)?Is the well pad sloped away from the protective casing?Is the well pad in complete contact with the protective casing?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                    |    |
| b<br>c<br>d<br>Surfac<br>a<br>b<br>c<br>d<br>c<br>d<br>l<br>ntern<br>a<br>b<br>c<br>c<br>d<br>c<br>d<br>e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Is the casing free of degradation or deterioration?Does the casing have a functioning weep hole?Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?Ice PadIs the well pad in good condition (not cracked or broken)?Is the well pad sloped away from the protective casing?Is the well pad in complete contact with the protective casing?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ø       Ø       Ø       Ø                                                                          |    |
| c<br>d<br>Surfac<br>a<br>b<br>c<br>d<br>c<br>d<br>l<br>ntern<br>a<br>b<br>c<br>c<br>d<br>e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Does the casing have a functioning weep hole?         Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?         Ice Pad         Is the well pad in good condition (not cracked or broken)?         Is the well pad sloped away from the protective casing?         Is the well pad in complete contact with the protective casing?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Image: Control                                                                                     |    |
| d<br>Surfac<br>a<br>b<br>c<br>d<br>d<br>e<br>l<br>ntern<br>a<br>b<br>c<br>c<br>d<br>e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?         Is the well pad in good condition (not cracked or broken)?         Is the well pad sloped away from the protective casing?         Is the well pad in complete contact with the protective casing?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Image: Control                                                                                     |    |
| <ul> <li>Surface</li> <li>a</li> <li>b</li> <li>c</li> <li>d</li> <li>e</li> <li>Intern</li> <li>a</li> <li>b</li> <li>c</li> <li>d</li> <li>d</li> <li>e</li> <li>e</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Is the well pad in good condition (not cracked or broken)?<br>Is the well pad sloped away from the protective casing?<br>Is the well pad in complete contact with the protective casing?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Q                                                                                                  |    |
| a<br>b<br>c<br>d<br>e<br>Intern<br>a<br>b<br>c<br>d<br>e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Is the well pad in good condition (not cracked or broken)?Is the well pad sloped away from the protective casing?Is the well pad in complete contact with the protective casing?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2<br>2                                                                                             |    |
| b<br>c<br>d<br>e<br>Intern<br>a<br>b<br>c<br>d<br>e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Is the well pad sloped away from the protective casing?<br>Is the well pad in complete contact with the protective casing?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V                                                                                                  |    |
| c<br>d<br>e<br>Intern<br>a<br>b<br>c<br>d<br>e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Is the well pad in complete contact with the protective casing?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                    |    |
| d<br>e<br>Intern<br>a<br>b<br>c<br>d<br>e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V                                                                                                  |    |
| e<br>Intern<br>a<br>b<br>c<br>d<br>e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ø                                                                                                  |    |
| Intern<br>a<br>b<br>c<br>d<br>e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Is the pad surface clean (not covered with sediment or debris)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V                                                                                                  |    |
| a<br>b<br>c<br>d<br>e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nal Casing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                    |    |
| b<br>c<br>d<br>e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Does the cap prevent entry of foreign material into the well?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V                                                                                                  |    |
| c<br>d<br>e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V                                                                                                  |    |
| d<br>e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Is the well properly vented for equilibration of air pressure?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V                                                                                                  |    |
| e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Is the survey point clearly marked on the inner casing?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -<br>-                                                                                             |    |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Is the depth of the well consistent with the original well log?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                    | _  |
| f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Is the casing stable? (or does the pyc move easily when touched or can it be taken apart by hand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                    |    |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | due to lack of grout or use of slip couplings in construction)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u>                                                                                           |    |
| 5 Samp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | pling: Groundwater Wells Only:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                    |    |
| а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Does well recharge adequately when purged?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ø                                                                                                  |    |
| b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ø                                                                                                  |    |
| с                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Does the well require redevelopment (low flow, turbid)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                    | V  |
| 6 Based                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                    |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d on your professional judgement, is the well construction / location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V                                                                                                  |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | d on your professional judgement, is the well construction / location:<br>appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V                                                                                                  |    |
| 7 Corre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d on your professional judgement, is the well construction / location:<br>appropriate to 1) achieve the objectives of the Groundwater Monitoring Program<br>and 2) comply with the applicable regulatory requirements?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                    |    |



|    | ct Location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | AMA AP-3, A, B and B                                                                                                                                            | -   |    |   |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|---|
| m  | t Location:AMA AP-3, jt Number:YGWA-51Mell ID:YGWA-51n Gauging:Peter ArgyalDate:3/2/2021Time:08:09:00.ocation Id=tification:aIs the welloIs the wellcIs the wellcIs the welldIs the welldIs the welldIs the welldIs the drain<br>drainage flProtective Casing:IsaIs the protectivebIs the casincDoes the cdIs the wellcDoes the cdIs the wellcIs the welldIs the welldIs the welldIs the welldIs the welldIs the welldIs the welldIs the welldIs the welldIs the casincIs the welldIs the casincIs the casindIs the casindIs the casindIs the casindIs the casindIs the casindIs the casindIs the casindIs the casindIs the casindIs the casindIs the casindIs the casindIs the casindIs the casindIs the casind |                                                                                                                                                                 | -   |    |   |
|    | well ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Poter Arguskir                                                                                                                                                  | -   |    |   |
| SO | on Gauging:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2/2/2021                                                                                                                                                        | -   |    |   |
|    | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 08:09:00                                                                                                                                                        | -   |    |   |
|    | Time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                 | Ves | No | N |
| 1  | Location Ide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ntification                                                                                                                                                     | 163 | NU |   |
| '  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Is the well visible and accessible?                                                                                                                             | ব   |    | Г |
|    | d<br>h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Is the well preperty identified with the correct well ID?                                                                                                       |     |    |   |
|    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Is the well properly identified with the correct well require protection from traffic?                                                                          |     |    |   |
|    | c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | is the well in a high traffic area and does the well require protection from traffic?                                                                           |     | V  |   |
|    | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              | Ø   |    |   |
| 2  | Protective C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | asing:                                                                                                                                                          |     |    |   |
|    | а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Is the protective casing free from apparent damage and able to be secured?                                                                                      | V   |    |   |
|    | b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Is the casing free of degradation or deterioration?                                                                                                             | V   |    |   |
|    | с                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Does the casing have a functioning weep hole?                                                                                                                   | Ø   |    |   |
|    | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | V   |    |   |
| 3  | Surface Pad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                 |     |    |   |
|    | а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Is the well pad in good condition (not cracked or broken)?                                                                                                      | Ø   |    | [ |
|    | b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Is the well pad sloped away from the protective casing?                                                                                                         | V   |    |   |
|    | с                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Is the well pad in complete contact with the protective casing?                                                                                                 | V   |    | [ |
|    | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          | Ø   |    | [ |
|    | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 | Ø   |    | [ |
| -  | <br>Internal Casi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                 |     |    |   |
|    | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Does the cap prevent entry of foreign material into the well?                                                                                                   | ন   | П  | ſ |
|    | h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Is the casing free of kinks or hends, or any obstructions from foreign objects (such as bailers)?                                                               |     | -  |   |
|    | c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Is the well preperly vented for equilibration of air pressure?                                                                                                  |     |    | - |
|    | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Is the survey point clearly marked on the inner casing?                                                                                                         |     |    | - |
|    | u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                 |     |    |   |
|    | e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Is the depth of the well consistent with the original well log?                                                                                                 |     |    |   |
| _  | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) |     |    | 1 |
| 5  | Sampling: G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | roundwater Wells Only:                                                                                                                                          |     |    |   |
|    | а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Does well recharge adequately when purged?                                                                                                                      | Ø   |    | [ |
|    | b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             | Ø   |    | 1 |
|    | с                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Does the well require redevelopment (low flow, turbid)?                                                                                                         |     | V  | 1 |
| 5  | Based on yo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ur professional judgement, is the well construction / location:                                                                                                 |     |    |   |
|    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  | V   |    | 1 |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | and 2) comply with the applicable regulatory requirements?                                                                                                      | V   |    | [ |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                 |     |    |   |



|        |             |                                                                                                                                                                 | -      |    |   |
|--------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----|---|
| rmit I | Number:     |                                                                                                                                                                 | -      |    |   |
|        | Well ID:    | PZ-USS                                                                                                                                                          | -      |    |   |
| son    | Gauging:    | 3/2/2021                                                                                                                                                        | -      |    |   |
|        | Timo:       | 08:11:00                                                                                                                                                        | 1      |    |   |
|        | Time.       |                                                                                                                                                                 | νρς    | No |   |
| 110    | cation Ide  | ntification                                                                                                                                                     | 163    | NO |   |
| 1 200  |             | Is the well visible and accessible?                                                                                                                             | নি     |    |   |
| a<br>h |             | Is the well preparty identified with the correct well ID?                                                                                                       |        |    |   |
| D      |             | Is the well properly identified with the correct well by                                                                                                        |        |    |   |
| c      |             | is the well in a high traffic area and does the well require protection from traffic?                                                                           |        | M  |   |
| d      |             | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              | Ø      |    |   |
| 2 Pro  | otective C  | asing:                                                                                                                                                          |        |    |   |
| а      |             | Is the protective casing free from apparent damage and able to be secured?                                                                                      | V      |    |   |
| b      |             | Is the casing free of degradation or deterioration?                                                                                                             | Ø      |    |   |
| с      |             | Does the casing have a functioning weep hole?                                                                                                                   | Ø      |    |   |
| d      |             | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | V      |    |   |
| 3 Su   | Irface Pad  |                                                                                                                                                                 |        |    |   |
| а      |             | Is the well pad in good condition (not cracked or broken)?                                                                                                      | V      |    |   |
| b      |             | Is the well pad sloped away from the protective casing?                                                                                                         | V      |    |   |
| с      |             | Is the well pad in complete contact with the protective casing?                                                                                                 | V      |    |   |
| d      |             | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          | Ø      |    |   |
| ٩      |             | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 |        |    |   |
| 4 Int  | ternal Casi |                                                                                                                                                                 |        |    | - |
| 2      |             | Does the cap prevent entry of foreign material into the well?                                                                                                   | ম      |    |   |
| u<br>h |             | Is the casing free of kinks or hends, or any obstructions from foreign objects (such as bailers)?                                                               | _<br>_ |    |   |
| 0      |             | Is the well preperly vented for equilibration of air pressure?                                                                                                  |        |    |   |
| C al   |             | Is the surgery vented for equilibration of all pressure?                                                                                                        |        |    |   |
| a      |             | is the survey point clearly marked on the inner casing?                                                                                                         |        |    |   |
| e      |             | Is the depth of the well consistent with the original well log?                                                                                                 |        | Ш  |   |
| t      |             | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | Ø      |    |   |
| 5 Sai  | mpling: G   | roundwater Wells Only:                                                                                                                                          |        |    |   |
| а      |             | Does well recharge adequately when purged?                                                                                                                      | Ø      |    |   |
| b      |             | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             | Ø      |    |   |
| с      |             | Does the well require redevelopment (low flow, turbid)?                                                                                                         |        | Ø  |   |
| 6 Ba   | sed on yo   | ur professional judgement, is the well construction / location:                                                                                                 |        |    |   |
|        |             | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  | Ø      |    |   |
|        |             | and 2) comply with the applicable regulatory requirements?                                                                                                      | V      |    |   |
| 7 Co   | orrective a | ctions as needed, by date:                                                                                                                                      |        |    |   |
|        |             |                                                                                                                                                                 | 1      |    |   |



| ecτ  | Location:                                            | AIVIA AP-3, A, B and B                                                                                                                                             | -   |    |    |
|------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|----|
| mιτ  | ocation:       AMA AP-3, A, B and B'         Number: | P7 0/S                                                                                                                                                             | -   |    |    |
| on   | Gauging:                                             | Peter Arovakis                                                                                                                                                     | -   |    |    |
|      | Date:                                                | 3/2/2021                                                                                                                                                           | -   |    |    |
|      | Time:                                                | 08:19:00                                                                                                                                                           | -   |    |    |
|      |                                                      |                                                                                                                                                                    | Yes | No | N/ |
| l Lo | ocation Ide                                          | ntification:                                                                                                                                                       |     |    |    |
| а    |                                                      | Is the well visible and accessible?                                                                                                                                | Ø   |    | C  |
| b    |                                                      | Is the well properly identified with the correct well ID?                                                                                                          | V   |    |    |
| с    |                                                      | Is the well in a high traffic area and does the well require protection from traffic?                                                                              |     | V  |    |
| d    |                                                      | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                                 | Ø   |    | C  |
| 2 Pr | rotective C                                          | asing:                                                                                                                                                             |     |    |    |
| а    |                                                      | Is the protective casing free from apparent damage and able to be secured?                                                                                         | V   |    | C  |
| b    |                                                      | Is the casing free of degradation or deterioration?                                                                                                                | V   |    | E  |
| с    |                                                      | Does the casing have a functioning weep hole?                                                                                                                      | V   |    | C  |
| d    |                                                      | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                    | Ø   |    |    |
| 3 Si | urface Pad                                           |                                                                                                                                                                    |     |    |    |
| а    |                                                      | Is the well pad in good condition (not cracked or broken)?                                                                                                         | Ø   |    | 0  |
| b    |                                                      | Is the well pad sloped away from the protective casing?                                                                                                            | Ø   |    | 1  |
| с    |                                                      | Is the well pad in complete contact with the protective casing?                                                                                                    | Ø   |    | 1  |
| d    |                                                      | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)             |     |    | C  |
| e    |                                                      | Is the pad surface clean (not covered with sediment or debris)?                                                                                                    | V   |    | 0  |
| In   | nternal Casi                                         | ng                                                                                                                                                                 |     |    |    |
| а    |                                                      | Does the cap prevent entry of foreign material into the well?                                                                                                      | Ø   |    | 1  |
| b    |                                                      | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                                  | V   |    | 1  |
| с    |                                                      | Is the well properly vented for equilibration of air pressure?                                                                                                     | Ø   |    | [  |
| d    |                                                      | Is the survey point clearly marked on the inner casing?                                                                                                            | Ø   |    | [  |
| e    |                                                      | Is the depth of the well consistent with the original well log?                                                                                                    | V   |    | 0  |
| f    |                                                      | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand<br>due to lack of grout or use of slip couplings in construction) | Ø   |    | [  |
| 5 Sa | ampling: G                                           | roundwater Wells Only:                                                                                                                                             |     |    |    |
| а    |                                                      | Does well recharge adequately when purged?                                                                                                                         | V   |    | [  |
| b    |                                                      | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                                | Ø   |    | [  |
| с    |                                                      | Does the well require redevelopment (low flow, turbid)?                                                                                                            |     | V  | [  |
| 5 Ba | ased on yo                                           | ur professional judgement, is the well construction / location:                                                                                                    |     |    |    |
|      | ,                                                    | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                     | Ø   |    | 1  |
|      |                                                      | and 2) comply with the applicable regulatory requirements?                                                                                                         | Ø   |    | [  |
| 7 C  | orrective a                                          | ctions as needed, by date:                                                                                                                                         |     |    | +  |
|      |                                                      |                                                                                                                                                                    |     |    |    |
|      |                                                      |                                                                                                                                                                    |     |    |    |



|     | ct Location:  | AMA AP-3, A, B and B                                                                                                                                            | -      |        |   |
|-----|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|---|
| rm  | it Number:    |                                                                                                                                                                 | -      |        |   |
|     | Well ID:      | YGWA-4I                                                                                                                                                         | -      |        |   |
| rso | on Gauging:   |                                                                                                                                                                 | -      |        |   |
|     | Date:         | 08:21:00                                                                                                                                                        |        |        |   |
|     | Time:         | 00.21.00                                                                                                                                                        | Voc    | No     | N |
| 1   | Location Ide  | ntification:                                                                                                                                                    | 103    | NO     |   |
|     | 2             | Is the well visible and accessible?                                                                                                                             | ম      | п      | + |
|     | h             | Is the well properly identified with the correct well ID?                                                                                                       | -<br>- |        | _ |
|     | c             | Is the well in a high traffic area and does the well require protection from traffic?                                                                           |        | -<br>- | - |
|     | d             | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious                                                                  |        |        | + |
|     | u             | drainage flow path)                                                                                                                                             | Ø      |        |   |
| 2   | Protective C  | asing:                                                                                                                                                          |        |        |   |
|     | а             | Is the protective casing free from apparent damage and able to be secured?                                                                                      | V      |        |   |
|     | b             | Is the casing free of degradation or deterioration?                                                                                                             | V      |        |   |
|     | с             | Does the casing have a functioning weep hole?                                                                                                                   | Ø      |        |   |
|     | d             | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | Ø      |        |   |
| 3   | Surface Pad   |                                                                                                                                                                 |        |        |   |
|     | а             | Is the well pad in good condition (not cracked or broken)?                                                                                                      | Ø      |        |   |
|     | b             | Is the well pad sloped away from the protective casing?                                                                                                         | Ø      |        |   |
|     | с             | Is the well pad in complete contact with the protective casing?                                                                                                 | V      |        |   |
|     | d             | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          | Ø      |        |   |
|     | е             | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 | V      |        |   |
| 4   | Internal Casi | ing                                                                                                                                                             |        |        | T |
|     | а             | Does the cap prevent entry of foreign material into the well?                                                                                                   | V      |        |   |
|     | b             | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                               |        |        |   |
|     | с             | Is the well properly vented for equilibration of air pressure?                                                                                                  | V      |        |   |
|     | d             | Is the survey point clearly marked on the inner casing?                                                                                                         | Ø      |        | 1 |
|     | е             | Is the depth of the well consistent with the original well log?                                                                                                 | Ø      |        |   |
|     | f             | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | Ø      |        |   |
| 5   | Sampling: G   | roundwater Wells Only:                                                                                                                                          |        |        |   |
|     | a             | Does well recharge adequately when purged?                                                                                                                      | V      |        | - |
|     | b             | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             | Ø      |        |   |
|     | с             | Does the well require redevelopment (low flow, turbid)?                                                                                                         |        | V      | 1 |
| 6   | Based on vo   | ur professional judgement, is the well construction / location:                                                                                                 |        |        | + |
|     | ,-            | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  | V      |        | t |
|     |               | and 2) comply with the applicable regulatory requirements?                                                                                                      | V      |        | ╈ |
|     |               |                                                                                                                                                                 |        |        | + |



|     |                     |                                                                                                                                                        | -      |    |   |
|-----|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----|---|
| rm  | It Number:          |                                                                                                                                                        | -      |    |   |
|     | well ID:            | Poter Arguskir                                                                                                                                         | -      |    |   |
| rso | n Gauging:<br>Date: | 3/2/2021                                                                                                                                               | -      |    |   |
|     | Date.<br>Timo:      | 08:32:00                                                                                                                                               | -      |    |   |
|     | Time.               |                                                                                                                                                        | Yes    | No | T |
| 1   | l ocation Ide       | ntification                                                                                                                                            | 103    | NO | + |
|     | 2                   | Is the well visible and accessible?                                                                                                                    | নি     |    | - |
|     | a<br>h              | Is the well preperty identified with the correct well ID?                                                                                              |        |    | - |
| -   |                     | Is the well properly identified with the correct well require protoction from troffic?                                                                 |        |    |   |
| -   | C                   | is the well in a high traffic area and does the well require protection from traffic?                                                                  |        | V  |   |
| _   | d                   | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                     | Ø      |    |   |
| 2   | Protective C        | asing:                                                                                                                                                 |        |    |   |
|     | а                   | Is the protective casing free from apparent damage and able to be secured?                                                                             | Ø      |    |   |
|     | b                   | Is the casing free of degradation or deterioration?                                                                                                    | V      |    |   |
|     | с                   | Does the casing have a functioning weep hole?                                                                                                          | V      |    |   |
|     | d                   | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                        | V      |    |   |
| 3   | Surface Pad         |                                                                                                                                                        |        |    |   |
|     | а                   | Is the well pad in good condition (not cracked or broken)?                                                                                             | V      |    |   |
|     | b                   | Is the well pad sloped away from the protective casing?                                                                                                | V      |    |   |
|     | с                   | Is the well pad in complete contact with the protective casing?                                                                                        | V      |    |   |
|     | d                   | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on) | V      |    |   |
|     | e                   | Is the pad surface clean (not covered with sediment or debris)?                                                                                        | V      |    |   |
| 4   | -<br>Internal Casi  |                                                                                                                                                        |        |    | - |
|     | a                   | Does the cap prevent entry of foreign material into the well?                                                                                          | 1      |    |   |
|     | h                   | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                      | -<br>- |    |   |
|     | с<br>с              | Is the well properly vented for equilibration of air prossure?                                                                                         |        | -  |   |
|     | ر<br>ط              | Is the survey poperty vented of equilibration of an pressure:                                                                                          |        |    |   |
| -   | u                   |                                                                                                                                                        |        |    |   |
| -   | e<br>C              | is the depth of the well consistent with the original well log?                                                                                        | V      |    |   |
|     | T                   | due to lack of grout or use of slip couplings in construction)                                                                                         | Ø      |    |   |
| 5   | Sampling: G         | roundwater Wells Only:                                                                                                                                 |        |    |   |
|     | а                   | Does well recharge adequately when purged?                                                                                                             | V      |    |   |
|     | b                   | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                    | Ø      |    |   |
|     | с                   | Does the well require redevelopment (low flow, turbid)?                                                                                                |        | V  |   |
| 6   | Based on yo         | ur professional judgement, is the well construction / location:                                                                                        |        |    |   |
|     | -                   | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                         | V      |    |   |
|     |                     | and 2) comply with the applicable regulatory requirements?                                                                                             | V      |    |   |
| 7   | Corrective a        | ctions as needed, by date:                                                                                                                             |        |    | - |
|     |                     |                                                                                                                                                        |        |    |   |



|      | Location:    |                                                                                                                                                                 | -        |    |   |
|------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----|---|
| rmit | Number:      |                                                                                                                                                                 | -        |    |   |
|      | Well ID:     | YGWA-21I                                                                                                                                                        | -        |    |   |
| rson | Gauging:     | Peter Argyakis                                                                                                                                                  | -        |    |   |
|      | Date:        | 3/2/2021                                                                                                                                                        | -        |    |   |
|      | Time:        | 08.59.00                                                                                                                                                        | Voc      | No |   |
| 1 1  | acation Ida  | ntification                                                                                                                                                     | Tes      | NU | _ |
|      |              |                                                                                                                                                                 |          | _  | _ |
| a    |              | Is the well visible and accessible?                                                                                                                             |          |    |   |
| b    |              | Is the well properly identified with the correct well ID?                                                                                                       |          |    |   |
| с    |              | Is the well in a high traffic area and does the well require protection from traffic?                                                                           |          | Ø  |   |
| d    |              | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              | Ø        |    |   |
| 2 Pr | rotective C  | asing:                                                                                                                                                          |          |    |   |
| а    |              | Is the protective casing free from apparent damage and able to be secured?                                                                                      | Ø        |    |   |
| b    |              | Is the casing free of degradation or deterioration?                                                                                                             | V        |    |   |
| с    |              | Does the casing have a functioning weep hole?                                                                                                                   | Ø        |    |   |
| d    |              | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | V        |    |   |
| 3 Sı | urface Pad   |                                                                                                                                                                 |          |    | - |
| а    |              | Is the well pad in good condition (not cracked or broken)?                                                                                                      | Ø        |    |   |
| b    |              | Is the well pad sloped away from the protective casing?                                                                                                         | Ø        |    |   |
| с    |              | Is the well pad in complete contact with the protective casing?                                                                                                 | V        |    |   |
| d    |              | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          | Ø        |    |   |
| •    |              | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 | ম        |    |   |
| 4 In | tornal Casi  |                                                                                                                                                                 |          |    | - |
|      | iternai Casi | Door the cap provent entry of foreign material into the well?                                                                                                   | لکا<br>ا |    |   |
| a    |              | Le the series free of light or her de or envie between free forcing chiests (such as beilers)?                                                                  |          |    |   |
| D    |              | is the casing free of kinks or bends, or any obstructions from foreign objects (such as ballers)?                                                               |          |    |   |
| C    |              | Is the well properly vented for equilibration of air pressure?                                                                                                  |          |    |   |
| d    |              | Is the survey point clearly marked on the inner casing?                                                                                                         |          |    |   |
| е    |              | Is the depth of the well consistent with the original well log?                                                                                                 |          |    |   |
| f    |              | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | Ø        |    |   |
| 5 Sa | ampling: G   | roundwater Wells Only:                                                                                                                                          |          |    |   |
| а    |              | Does well recharge adequately when purged?                                                                                                                      | Ø        |    |   |
| b    |              | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             | Ø        |    |   |
| с    |              | Does the well require redevelopment (low flow, turbid)?                                                                                                         |          | V  |   |
| 6 Ba | ased on yo   | ur professional judgement, is the well construction / location:                                                                                                 |          |    |   |
|      | -            | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  | V        |    |   |
|      |              | and 2) comply with the applicable regulatory requirements?                                                                                                      | V        |    |   |
| 7 C  | orrective a  | ctions as needed, by date:                                                                                                                                      | -        |    | - |
| -    |              |                                                                                                                                                                 |          |    |   |



| mit N       | imher                                                                                                                                                           | -   |    |        |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|--------|
| MIL N       | (ell ID: YGWA-5D                                                                                                                                                | -   |    |        |
| v<br>son Ga | uning: Peter Argyakis                                                                                                                                           | -   |    |        |
|             | Date: 3/2/2021                                                                                                                                                  | -   |    |        |
|             | Time: 08:05:00                                                                                                                                                  | -   |    |        |
|             |                                                                                                                                                                 | Yes | No | -<br>) |
| 1 Loca      | tion Identification:                                                                                                                                            |     |    |        |
| а           | Is the well visible and accessible?                                                                                                                             | V   |    |        |
| b           | Is the well properly identified with the correct well ID?                                                                                                       | Ø   |    |        |
| с           | Is the well in a high traffic area and does the well require protection from traffic?                                                                           |     | V  |        |
| d           | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              | Q   |    |        |
| 2 Prot      | ective Casing:                                                                                                                                                  |     |    |        |
| а           | Is the protective casing free from apparent damage and able to be secured?                                                                                      | V   |    |        |
| b           | Is the casing free of degradation or deterioration?                                                                                                             | V   |    |        |
| с           | Does the casing have a functioning weep hole?                                                                                                                   | V   |    |        |
| d           | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | V   |    |        |
| 3 Surfa     | ice Pad                                                                                                                                                         |     |    |        |
| а           | Is the well pad in good condition (not cracked or broken)?                                                                                                      | V   |    |        |
| b           | Is the well pad sloped away from the protective casing?                                                                                                         | V   |    |        |
| с           | Is the well pad in complete contact with the protective casing?                                                                                                 | V   |    |        |
| d           | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          | Q   |    |        |
| е           | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 | V   |    |        |
| 4 Inter     | nal Casing                                                                                                                                                      |     |    |        |
| а           | Does the cap prevent entry of foreign material into the well?                                                                                                   | V   |    |        |
| b           | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                               | Ø   |    |        |
| с           | Is the well properly vented for equilibration of air pressure?                                                                                                  | V   |    |        |
| d           | Is the survey point clearly marked on the inner casing?                                                                                                         | V   |    |        |
| е           | Is the depth of the well consistent with the original well log?                                                                                                 | V   |    |        |
| f           | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | Q   |    |        |
| 5 Sam       | oling: Groundwater Wells Only:                                                                                                                                  |     |    |        |
| а           | Does well recharge adequately when purged?                                                                                                                      | V   |    |        |
| b           | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             | Q   |    |        |
| с           | Does the well require redevelopment (low flow, turbid)?                                                                                                         |     | V  |        |
| 6 Base      | d on your professional judgement, is the well construction / location:                                                                                          |     |    |        |
|             | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  | V   |    |        |
|             | and 2) comply with the applicable regulatory requirements?                                                                                                      | Ø   |    |        |
| 7 Corr      | ective actions as needed, by date:                                                                                                                              |     |    | -      |
|             |                                                                                                                                                                 |     |    |        |



|                |                                                                                                                                                                 | -   |     |   |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|---|
| Well ID:       | YGWA-6S                                                                                                                                                         | -   |     |   |
| son Gauging:   | Peter Argyakis                                                                                                                                                  | -   |     |   |
| Date           | 0005-00                                                                                                                                                         | -   |     |   |
| Time:          | 09.03.00                                                                                                                                                        | Voc | No  | - |
| 1 Location Ide | antification                                                                                                                                                    | Tes | INU |   |
|                | le the well visible and accessible?                                                                                                                             | L.  | _   |   |
| d<br>h         | Is the well visible and accessible:                                                                                                                             |     |     |   |
| d<br>c         | Is the well properly identified with the correct well to:                                                                                                       |     |     |   |
| C              | Is the well in a high traffic area and does the well require protection from traffic?                                                                           |     | M   |   |
| d              | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              | Ø   |     |   |
| 2 Protective C | Casing:                                                                                                                                                         |     |     |   |
| а              | Is the protective casing free from apparent damage and able to be secured?                                                                                      | V   |     |   |
| b              | Is the casing free of degradation or deterioration?                                                                                                             | Ø   |     |   |
| с              | Does the casing have a functioning weep hole?                                                                                                                   | Ø   |     |   |
| d              | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | Ø   |     |   |
| 3 Surface Pad  |                                                                                                                                                                 |     |     |   |
| а              | Is the well pad in good condition (not cracked or broken)?                                                                                                      | V   |     |   |
| b              | Is the well pad sloped away from the protective casing?                                                                                                         | V   |     |   |
| с              | Is the well pad in complete contact with the protective casing?                                                                                                 | V   |     |   |
| d              | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          | Ø   |     |   |
| е              | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 | V   |     |   |
| 4 Internal Cas | ing                                                                                                                                                             |     |     |   |
| а              | Does the cap prevent entry of foreign material into the well?                                                                                                   | V   |     |   |
| b              | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                               | V   |     |   |
| с              | Is the well properly vented for equilibration of air pressure?                                                                                                  | V   |     |   |
| d              | Is the survey point clearly marked on the inner casing?                                                                                                         | Ø   |     |   |
| e              | Is the depth of the well consistent with the original well log?                                                                                                 | Ø   |     |   |
| f              | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | Ø   |     |   |
| 5 Sampling: G  | Froundwater Wells Only:                                                                                                                                         |     |     | - |
| а              | Does well recharge adequately when purged?                                                                                                                      | V   |     |   |
| b              | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             | Ø   |     |   |
| с              | Does the well require redevelopment (low flow, turbid)?                                                                                                         |     | Ø   |   |
| 6 Based on vo  | pur professional judgement is the well construction / location:                                                                                                 | -   |     | - |
|                | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  |     |     |   |
|                | and 2) comply with the applicable regulatory requirements?                                                                                                      |     |     |   |
| 7 Corrective a | actions as needed, by date:                                                                                                                                     |     |     | - |
|                | ,                                                                                                                                                               |     |     |   |
|                |                                                                                                                                                                 |     |     | - |



| lect Location  |                                                                                                                                                                 | -      |    |   |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----|---|
| rmit Number:   |                                                                                                                                                                 | -      |    |   |
| Well ID        | YGWA-6I                                                                                                                                                         | -      |    |   |
| rson Gauging   |                                                                                                                                                                 | -      |    |   |
| Date           | 00.02.00                                                                                                                                                        | -      |    |   |
| Time           | 05.05.00                                                                                                                                                        | Voc    | No | Т |
| 1 Location Id  | antification                                                                                                                                                    | Tes    | NU | + |
|                | le the well visible and essessible?                                                                                                                             | EX.    |    | + |
| a              |                                                                                                                                                                 |        |    |   |
| D              | Is the well properly identified with the correct well ID?                                                                                                       |        |    |   |
| С              | Is the well in a high traffic area and does the well require protection from traffic?                                                                           |        |    |   |
| d              | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              | Ø      |    |   |
| 2 Protective C | Casing:                                                                                                                                                         |        |    |   |
| а              | Is the protective casing free from apparent damage and able to be secured?                                                                                      | V      |    |   |
| b              | Is the casing free of degradation or deterioration?                                                                                                             | Ø      |    |   |
| с              | Does the casing have a functioning weep hole?                                                                                                                   | V      |    |   |
| d              | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | V      |    |   |
| 3 Surface Pac  |                                                                                                                                                                 |        |    | - |
| а              | Is the well pad in good condition (not cracked or broken)?                                                                                                      | V      |    |   |
| b              | Is the well pad sloped away from the protective casing?                                                                                                         | V      |    |   |
| с<br>С         | Is the well had in complete contact with the protective casing?                                                                                                 |        |    |   |
| d              | Is the well pad in complete contact with the ground surface and stable? (not undermined by                                                                      | V      |    |   |
|                | erosion, animal burrows, and does not move when stepped on)                                                                                                     |        | _  |   |
| e              | is the pad surface clean (not covered with sediment or debris)?                                                                                                 | M      |    | _ |
| 4 Internal Cas |                                                                                                                                                                 |        |    |   |
| а              | Does the cap prevent entry of foreign material into the well?                                                                                                   |        |    |   |
| b              | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                               | Ø      |    |   |
| С              | Is the well properly vented for equilibration of air pressure?                                                                                                  | Ø      |    |   |
| d              | Is the survey point clearly marked on the inner casing?                                                                                                         | Ø      |    |   |
| е              | Is the depth of the well consistent with the original well log?                                                                                                 | V      |    |   |
| f              | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | Ø      |    |   |
| 5 Sampling: G  | Groundwater Wells Only:                                                                                                                                         |        |    |   |
| а              | Does well recharge adequately when purged?                                                                                                                      | V      |    |   |
| b              | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             | Ø      |    |   |
| C              | Does the well require redevelopment (low flow, turbid)?                                                                                                         |        | V  |   |
| 6 Based on v   | pur professional judgement is the well construction / location:                                                                                                 |        |    | - |
| o based on ye  | appropriate to 1) achieve the objectives of the Groundwater Menitoring Program                                                                                  | ম      |    |   |
|                | and 2) comply with the applicable regulatory requirements?                                                                                                      | L<br>L |    |   |
| 7 Correction   | and 2) comply with the applicable regulatory requirements:                                                                                                      |        |    | + |
| / Corrective a | actions as needed, by date:                                                                                                                                     |        |    |   |
|                |                                                                                                                                                                 |        |    |   |



| rm  | it Number     |                                                                                                                                                                 | 1   |    |   |
|-----|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|---|
|     | Well ID:      | PZ-06D                                                                                                                                                          | 1   |    |   |
| rso | n Gauging:    | Peter Argyakis                                                                                                                                                  | 1   |    |   |
|     | Date:         | 3/2/2021                                                                                                                                                        | 1   |    |   |
|     | Time:         | 09:07:00                                                                                                                                                        | 1   |    |   |
|     |               |                                                                                                                                                                 | Yes | No |   |
| 1   | Location Ide  | ntification:                                                                                                                                                    |     |    |   |
|     | а             | Is the well visible and accessible?                                                                                                                             | V   |    |   |
|     | b             | Is the well properly identified with the correct well ID?                                                                                                       | V   |    |   |
|     | с             | Is the well in a high traffic area and does the well require protection from traffic?                                                                           |     | V  |   |
|     | d             | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              | Ø   |    |   |
| 2   | Protective C  | asing:                                                                                                                                                          |     |    | - |
|     | а             | Is the protective casing free from apparent damage and able to be secured?                                                                                      | V   |    |   |
|     | b             | Is the casing free of degradation or deterioration?                                                                                                             | V   |    |   |
|     | с             | Does the casing have a functioning weep hole?                                                                                                                   | V   |    |   |
|     | d             | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | Ø   |    |   |
| 3   | Surface Pad   |                                                                                                                                                                 |     |    |   |
|     | а             | Is the well pad in good condition (not cracked or broken)?                                                                                                      | V   |    |   |
|     | b             | Is the well pad sloped away from the protective casing?                                                                                                         | Ø   |    |   |
|     | с             | Is the well pad in complete contact with the protective casing?                                                                                                 | Ø   |    |   |
|     | d             | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          | Ø   |    |   |
|     | е             | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 | V   |    |   |
| 4   | Internal Casi | ing                                                                                                                                                             |     |    |   |
|     | а             | Does the cap prevent entry of foreign material into the well?                                                                                                   | V   |    |   |
|     | b             | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                               | Ø   |    |   |
|     | с             | Is the well properly vented for equilibration of air pressure?                                                                                                  | V   |    |   |
|     | d             | Is the survey point clearly marked on the inner casing?                                                                                                         | V   |    |   |
|     | e             | Is the depth of the well consistent with the original well log?                                                                                                 | V   |    |   |
|     | f             | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | Ø   |    |   |
| 5   | Sampling: G   | roundwater Wells Only:                                                                                                                                          |     |    | - |
|     | a             | Does well recharge adequately when purged?                                                                                                                      | V   |    |   |
|     | b             | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             | Ø   |    |   |
|     | с             | Does the well require redevelopment (low flow, turbid)?                                                                                                         |     | V  |   |
| 6   | Based on yo   | ur professional judgement, is the well construction / location:                                                                                                 |     |    | - |
|     | ,             | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  | Ø   |    |   |
|     |               | and 2) comply with the applicable regulatory requirements?                                                                                                      | Ø   |    |   |
| 7   | Corrective a  | ctions as needed, by date:                                                                                                                                      |     |    | - |
|     |               |                                                                                                                                                                 | 1   |    |   |



| Verifie         Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Sec | 1 Lou<br>a<br>b<br>c<br>d<br>2 Prc<br>a | Number:<br>Well ID:<br>Gauging:<br>Date:<br>Time: | PZ-48<br>Peter Argyakis<br>3/2/2021                                                                                                                             | -   |    |   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|---|
| Vert ID:         IZ-48           Son Gaucian:         Peter Argonis:           Date:         3/2/2021           Time:         ID:           I Location Identification:         Yes         No           a         Is the well properly identified with the correct well ID?         ID:           c         Is the well an a high traffic area and does the well require protection from traffic?         ID:           d         Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)         ID:           2         Protective Casing:         ID:         ID: </th <th>1 Lou<br/>a<br/>b<br/>c<br/>d<br/>2 Prc<br/>a</th> <th>Well ID:<br/>Gauging:<br/>Date:<br/>Time:</th> <th>P2-48 Peter Argyakis 3/2/2021</th> <th>-</th> <th></th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 Lou<br>a<br>b<br>c<br>d<br>2 Prc<br>a | Well ID:<br>Gauging:<br>Date:<br>Time:            | P2-48 Peter Argyakis 3/2/2021                                                                                                                                   | -   |    |   |
| Bate: 3/2/2021           Time:         99:11:00           Ves         No           1         Location Identification:         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 Lou<br>a<br>b<br>c<br>d<br>2 Prc<br>a | Gauging:<br>Date:<br>Time:                        | 3/2/2021                                                                                                                                                        |     |    |   |
| Time:         [92:11:0           Yes         No           1         Location Identification:         Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: I                                                                                                                                | 1 Loo<br>a<br>b<br>c<br>d<br>2 Prc<br>a | Time:                                             |                                                                                                                                                                 | 1   |    |   |
| 1       Location Identification:       Yes       No         1       Location Identification:       Image: Instruction Identification:       Image: Instruction Identification:       Image: Instruction Identification:       Image: Instruction Identification:       Image: Instruction Identification:       Image: Instruction Identification:       Image: Instruction Identification:       Image: Instruction Identification:       Image: Instruction:       Image: Ins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 Lou<br>a<br>b<br>c<br>d<br>2 Pro      | rime:                                             | 09.11.00                                                                                                                                                        | -   |    |   |
| 1       Location Identification:       Image: Section Identification:       Image: Section Identification:         a       Is the well visible and accessible?       Image: Section Identification:                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 Lo<br>a<br>b<br>c<br>d<br>2 Pro       |                                                   | 05.11.00                                                                                                                                                        | Vac | No | T |
| a       Is the well visible and accessible?       Image: Constraint of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the se                  | a<br>b<br>c<br>d<br>2 Prc<br>a          | ocation Ide                                       | ntification                                                                                                                                                     | 163 | NO | - |
| a       is the well visible and accessible?       a       a         b       is the well properly identified with the correct well ID?       a       a         c       is the well in a high traffic area and does the well require protection from traffic?       a       a         c       is the trainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)       a       a         2       Protective Casing:       a       b       is the protective casing free of degradation or deterioration?       a       a         a       is the examp free of degradation or deterioration?       a       a       a       a       a       b       b       the null ar space between casings clear of debris and water, or filled with pea gravel/sand?       a       a         a       is the well pad in good condition (not cracked or broken)?       a       a       a       a       b       is the well pad in complete contact with the protective casing?       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a       a<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | a<br>b<br>c<br>d<br>2 Prc<br>a          |                                                   | Is the well visible and accessible?                                                                                                                             | D   | _  | + |
| b       is the weil properly identified with the correct weil 10?       iiii       iiiiii         c       is the weil properly identified with the correct weil 10?       iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d<br>2 Pro                              |                                                   |                                                                                                                                                                 |     |    | + |
| c       Is the well in a high traffic area and does the well require protection from traffic?       Image: Construction of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o                  | c<br>d<br>2 Pro                         |                                                   | Is the well properly identified with the correct well ID?                                                                                                       |     |    |   |
| d       Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)       Image: Comparison of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of the trainage of trainage of trainage of trainage of trainage of trainage of trainage of trainage of trainage of trainage of trainage of trainage of trainage of trainage of trainage of trainage of trainage of trainage of trainage of trainage of trainage of trainage of trainage of trainage of trainage of trainage of trainage of trainage of trainage of trainage of trainage of trainage of trainage of trainage of trainage of trainage of trainage of trainag                  | d<br>2 Pro                              |                                                   | Is the well in a high traffic area and does the well require protection from traffic?                                                                           |     |    |   |
| 2       Protective Casing:       Image: Casing free from apparent damage and able to be secured?       Image: Casing free from apparent damage and able to be secured?       Image: Casing free from apparent damage and able to be secured?       Image: Casing free from apparent damage and able to be secured?       Image: Casing free from apparent damage and able to be secured?       Image: Casing free from apparent damage and able to be secured?       Image: Casing free from apparent damage and able to be secured?       Image: Casing free from apparent damage and able to be secured?       Image: Casing free from apparent damage and able to be secured?       Image: Casing free from apparent damage and able to be secured?       Image: Casing free from apparent damage and able to be secured?       Image: Casing free from apparent damage and able to be secured?       Image: Casing free from apparent damage and able to be secured?       Image: Casing free from apparent damage and able to be secured?       Image: Casing free from apparent damage and able to be secured?       Image: Casing free from apparent damage and able to be secured?       Image: Casing free from apparent damage and able to be secured?       Image: Casing free from apparent damage and able to be secured?       Image: Casing free from apparent damage and able to be secured?       Image: Casing free from apparent damage and able to be secured?       Image: Casing free from apparent damage and able to be secured?       Image: Casing free from apparent damage and able to be secured?       Image: Casing free from apparent damage and be proteo to casing?       Image: Casing free from apparent damage and be proteo to casing?       Image: Casing free from apparent damage and be proteo to damage an                                                                                                                                                                                                                                          | 2 Pro                                   |                                                   | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              | Ø   |    |   |
| a       Is the protective casing free from apparent damage and able to be secured?       I         b       Is the casing free of degradation or deterioration?       I         c       Does the casing have a functioning weep hole?       I         d       Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?       I         3       Surface Pathers       I       I         a       Is the well pad in good condition (not cracked or broken)?       I       I         b       Is the well pad in complete contact with the protective casing?       I       I         c       Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)       I       I         e       Is the pad surface clean (not covered with sediment or debris)?       I       I         a       Does the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?       I       I         b       Is the well properly vented for equilibration of air pressure?       I       I       I         c       Is the exaing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?       I       I         b       Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?       I       I <td>а</td> <td>otective Ca</td> <td>asing:</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | а                                       | otective Ca                                       | asing:                                                                                                                                                          |     |    |   |
| b       Is the casing free of degradation or deterioration?       Image: Comparison of the casing have a functioning weep hole?       Image: Comparison of the casing have a functioning weep hole?       Image: Comparison of the casing have a functioning weep hole?       Image: Comparison of the casing have a functioning weep hole?       Image: Comparison of the casing have a functioning weep hole?       Image: Comparison of the casing have a function of the casing case of debris and water, or filled with pea gravel/sand?       Image: Comparison of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case of the case o                                                                        | u u                                     |                                                   | Is the protective casing free from apparent damage and able to be secured?                                                                                      | V   |    |   |
| c       Does the casing have a functioning weep hole?       Image: Comparison of the casing have a functioning weep hole?       Image: Comparison of the casing have a functioning weep hole?       Image: Comparison of the casing have a functioning weep hole?       Image: Comparison of the casing have a function for cacked or broken)?       Image: Comparison of the casing have a function for cacked or broken)?       Image: Comparison of the casing have a function for cacked or broken)?       Image: Comparison of the casing have a function for cacked or broken)?       Image: Comparison of the casing have a function for cacked or broken)?       Image: Comparison of the casing for comparison of the casing?       Image: Comparison of the casing for comparison of the casing?       Image: Comparison of the casing for comparison of the casing?       Image: Comparison of the casing for comparison of the casing?       Image: Comparison of the casing for comparison of the casing?       Image: Comparison of the casing for comparison of the casing?       Image: Comparison of the casing for comparison of the casing?       Image: Comparison of the casing for comparison of the casing?       Image: Comparison of the casing for comparison of the casing?       Image: Comparison of the casing for comparison of the casing?       Image: Comparison of the casing for comparison of the casing?       Image: Comparison of the casing for comparison of the casing?       Image: Comparison of the casing for comparison of the casing?       Image: Comparison of the casing for comparison of the casing?       Image: Comparison of the casing for comparison of the casing?       Image: Comparison of the casing for comparison of the casing?       Image: Comparison of the casing for comparis                                                                                                                                                                                                                                          | b                                       |                                                   | Is the casing free of degradation or deterioration?                                                                                                             | Ø   |    |   |
| d       Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?       Image: Comparison of the space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space sp                  | с                                       |                                                   | Does the casing have a functioning weep hole?                                                                                                                   | V   |    |   |
| 3       Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad       Image: Surface Pad <td< td=""><td>d</td><td></td><td>Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?</td><td>V</td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                         | d                                       |                                                   | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | V   |    |   |
| a       Is the well pad in good condition (not cracked or broken)?       Image: Construction of the well pad sloped away from the protective casing?       Image: Construction of the well pad in complete contact with the protective casing?       Image: Construction of the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)       Image: Construction of the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)       Image: Construction of the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)       Image: Construction of the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)       Image: Construction of the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)       Image: Construction of the well property well for equilibration of air pressure?       Image: Construction of the well property well for equilibration of air pressure?       Image: Construction of the well property well for equilibration of air pressure?       Image: Construction of the well property well for equilibration of air pressure?       Image: Construction of the well property well for equilibration of air pressure?       Image: Construction of the well construction of air pressure?       Image: Construction of the well property well for equilibration of air pressure?       Image: Construction of the well property well for equilibration of air pressure?       Image: Consthe well require construction of air pressur                                                                                                                                                         | 3 Su                                    | urface Pad                                        |                                                                                                                                                                 |     |    | - |
| b       Is the well pad sloped away from the protective casing?       Image: Comparison of the well pad in complete contact with the protective casing?       Image: Comparison of the well pad in complete contact with the protective casing?       Image: Comparison of the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)       Image: Comparison of the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)       Image: Comparison of the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)       Image: Comparison of the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)       Image: Comparison of the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)       Image: Comparison of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of the group of                                                                                 | а                                       |                                                   | Is the well pad in good condition (not cracked or broken)?                                                                                                      | V   |    |   |
| c       Is the well pad in complete contact with the protective casing?       Image: complete contact with the protective casing?       Image: complete contact with the protective casing?       Image: complete contact with the protective casing?       Image: complete contact with the protective casing?       Image: complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)       Image: complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)       Image: complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)       Image: complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)       Image: complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)       Image: complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)       Image: complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)       Image: complete contact with the ground surface and stable?       Image: complete contact with stable?       Image: complete contact with stable?       Image: complete contact with stable?       Image: complete contact with stable?       Image: complete contact with stable?       Image: complete contact with stable?       Image: complete contact with stable?       Image: complete contact with stable?       Image: complete contact with stable?       Image: complete contact with s                                                                                                                                                                                                               | b                                       |                                                   | Is the well pad sloped away from the protective casing?                                                                                                         | V   |    |   |
| c       Is the well pad in complete contact with the protective tasing:       Image: Contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)       Image: Contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)       Image: Contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)       Image: Contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)       Image: Contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)       Image: Contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)       Image: Contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)       Image: Contact with the ground surface and stable? (not undermined by erosion)       Image: Contact with the ground surface and stable?       Image: Contact with the ground water plan for the facility?       Image: Contact with the ground water plan for the facility?       Image: Contact with the ground water plan for the facility?       Image: Contact with the ground water plan for the facility?       Image: Contact with the ground water plan for th                                                                                                                                                                                             | c                                       |                                                   | Is the well had in complete contact with the protective casing?                                                                                                 |     | п  |   |
| a       a bit ween pad in complete contact with the ground standed and stable! (not didentified by erosion, animal burrows, and does not move when stepped on)       a       a         e       Is the pad surface clean (not covered with sediment or debris)?       Image: Contact with reground standed and stable! (not didentified by erosion, animal burrows, and does not move when stepped on)       Image: Contact with reground standed and stable! (not didentified by erosion, animal burrows, and does not move when stepped on)       Image: Contact with reground standed and stable! (not didentified by erosion, animal burrows, and does not move when stepped on)       Image: Contact with reground standed and stable! (not didentified by erosion, animal burrows, and does not move when stepped on)       Image: Contact with reground standed and stable! (not didentified by erosion, animal burrows, and does not move when stepped on)       Image: Contact with reground stable?       Image: Contact with regroun                                                                                                                                                                                                                                                                                      | d                                       |                                                   | Is the well pad in complete contact with the ground surface and stable? (not undermined by                                                                      |     | -  |   |
| e       Is the pad surface clean (not covered with sediment or debris)?       Image: Comparison of the pad surface clean (not covered with sediment or debris)?       Image: Comparison of the pad surface clean (not covered with sediment or debris)?       Image: Comparison of the pad surface clean (not covered with sediment or debris)?       Image: Comparison of the pad surface clean (not covered with sediment or debris)?       Image: Comparison of the pad surface clean (not covered with sediment or debris)?       Image: Comparison of the pad surface clean (not covered with sediment or debris)?       Image: Comparison of the pad surface clean (not covered with sediment or debris)?       Image: Comparison of the pad surface clean (not covered with sediment or debris)?       Image: Comparison of the pad surface clean (not covered with sediment or debris)?       Image: Comparison of the pad surface clean (not covered with sediment or debris)?       Image: Comparison of the pad surface clean (not covered with sediment or debris)?       Image: Comparison of the pad surface clean (not covered with sediment or debris)?       Image: Comparison of the pad surface clean (not covered with sediment or debris)?       Image: Comparison of the pad surface clean (not covered with sediment or debris)?       Image: Comparison of the pad surface clean (not covered with sediment or debris)?       Image: Comparison of the pad surface clean (not covered with sediment or debris)?       Image: Comparison of the pad surface clean (not covered with sediment cosing?       Image: Comparison of the pad surface clean (not covered with sediment cosing?       Image: Comparison clean (not covered with sediment cosing?       Image: Comparison clean (not covered with sediment cosing?       Image: Comparison clean (not cove                                                                                                                                                                                                      | u                                       |                                                   | erosion, animal burrows, and does not move when stepped on)                                                                                                     | Ø   |    |   |
| Internal Casing       Image: Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Sec         | е                                       |                                                   | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 | Ø   |    | _ |
| a       Does the cap prevent entry of foreign material into the well?       Image: Comparison of the cap prevent entry of foreign material into the well?       Image: Comparison of the cap prevent entry of foreign material into the well?       Image: Comparison of the cap prevent entry of foreign material into the well?       Image: Comparison of the cap prevent entry of foreign material into the well?       Image: Comparison of the cap prevent entry of foreign material into the well?       Image: Comparison of the cap prevent entry of foreign material into the well?       Image: Comparison of the cap prevent entry of foreign objects (such as bailers)?       Image: Comparison of the cap prevent entry of foreign objects (such as bailers)?       Image: Comparison of the cap prevent entry of foreign objects (such as bailers)?       Image: Comparison of the cap prevent entry of foreign objects (such as bailers)?       Image: Comparison of the cap prevent entry of foreign objects (such as bailers)?       Image: Comparison of the cap prevent entry of foreign objects (such as bailers)?       Image: Comparison of the cap prevent entry of foreign objects (such as bailers)?       Image: Comparison of the foreign objects (such as bailers)?       Image: Comparison of the foreign objects (such as bailers)?       Image: Comparison of the foreign objects (such as bailers)?       Image: Comparison of the foreign objects (such as bailers)?       Image: Comparison of the foreign objects (such as bailers)?       Image: Comparison of the foreign objects (such as bailers)?       Image: Comparison of the foreign objects (such as bailers)?       Image: Comparison of the foreign objects (such as bailers)?       Image: Comparison of the foreign object (such as foreign object (such as foreign object (su                                                                                                                                                                                                               | 4 Int                                   | ternal Casi                                       | ng                                                                                                                                                              |     |    |   |
| b       Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?       I         c       Is the well properly vented for equilibration of air pressure?       I         d       Is the survey point clearly marked on the inner casing?       I         e       Is the depth of the well consistent with the original well log?       I         f       Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction)       I         5       Sampling: Under Wells Only:       I       I         a       Does well recharge adequately when purged?       I       I         b       If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?       I       I         c       Does the well require redevelopment (low flow, turbid)?       I       I       I         6       Based on yurperiset to 1) achieve the objectives of the Groundwater Monitoring Program       I       I         and 2) comply with the applicable regulatory requirements?       I       I       I         and 2) comply with the applicable regulatory requirements?       I       I       I         d       Ind 2) comply with the applicable regulatory requirements?       I       I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | а                                       |                                                   | Does the cap prevent entry of foreign material into the well?                                                                                                   | Ø   |    |   |
| c       Is the well properly vented for equilibration of air pressure?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing?       Image: Comparison of the survey point clearly marked on the inner casing when touched or can it be taken apart by hand of the survey point clearly marked on the inner casing when touched or can it be taken apart by hand of the survey point clearly marked on the inner casing when touched or can it be taken apart by hand of the facility?       Image: Comparison of the facility?       Imag                                                                                                                                                                                             | b                                       |                                                   | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                               | V   |    |   |
| d       Is the survey point clearly marked on the inner casing?       Image: Comparison of the set of the well consistent with the original well log?       Image: Comparison of the set of the well consistent with the original well log?       Image: Comparison of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of                                     | с                                       |                                                   | Is the well properly vented for equilibration of air pressure?                                                                                                  | Ø   |    |   |
| e       Is the depth of the well consistent with the original well log?       Image: Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d                                       |                                                   | Is the survey point clearly marked on the inner casing?                                                                                                         | V   |    |   |
| fIs the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand<br>due to lack of grout or use of slip couplings in construction)Image: Image:                                        |                                                   | Is the depth of the well consistent with the original well log?                                                                                                 | Ø   |    |   |
| 5       Sampling: Groundwater Wells Only:       Image: Construction of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco                  | f                                       |                                                   | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | V   |    |   |
| a       Does well recharge adequately when purged?       Image: Comparison of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco                  | 5 Sa                                    | ampling: Gr                                       | roundwater Wells Only:                                                                                                                                          |     |    | - |
| b       If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?       □         c       Does the well require redevelopment (low flow, turbid)?       □       ∅         6       Based on your professional judgement, is the well construction / location:       □       ∅         appropriate to 1) achieve the objectives of the Groundwater Monitoring Program       ∅       □         and 2) comply with the applicable regulatory requirements?       ∅       □         7       Corrective actions as needed, by date:       ✓       □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | а                                       | 1. 2                                              | Does well recharge adequately when purged?                                                                                                                      | V   |    |   |
| c       Does the well require redevelopment (low flow, turbid)?       □       ∅         6       Based on your professional judgement, is the well construction / location:       □       ∅         appropriate to 1) achieve the objectives of the Groundwater Monitoring Program       ∅       □         and 2) comply with the applicable regulatory requirements?       ∅       □         7       Corrective actions as needed, by date:       ✓       □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | b                                       |                                                   | If dedicated sampling equipment installed, is it in good condition and specified in the approved aroundwater plan for the facility?                             | Ø   |    |   |
| 6       Based on your professional judgement, is the well construction / location:       Image: Construction / location:       Image: Construction / location:         6       Based on your professional judgement, is the well construction / location:       Image: Construction / location:       Image: Construction / location:         1       Image: Construction / location:       Image: Construction / location:       Image: Construction / location:       Image: Construction / location:         1       Image: Construction / location:       Image: Construction / location:       Image: Construction / location:       Image: Construction / location:         1       Image: Construction / location:       Image: Construction / location:       Image: Construction / location:       Image: Construction / location:         1       Image: Construction / location:       Image: Construction / location:       Image: Construction / location:       Image: Construction / location:         1       Image: Construction / location:       Image: Construction / location:       Image: Construction / location:       Image: Construction / location:         2       Image: Construction / location:       Image: Construction / location:       Image: Construction / location:       Image: Construction / location:         3       Corrective actions as needed, by date:       Image: Construction / location:       Image: Construction / location:       Image: Construction / location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u>                                |                                                   | Door the well require redevelopment (low flow, turbid)?                                                                                                         | -   | ম  |   |
| appropriate to 1) achieve the objectives of the Groundwater Monitoring Program       I         and 2) comply with the applicable regulatory requirements?       I         7       Corrective actions as needed, by date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                                                   | ur professional judgement is the well construction (location:                                                                                                   |     |    | - |
| and 2) comply with the applicable regulatory requirements?     Image: Comply and the applicable regulatory requirements?       7     Corrective actions as needed, by date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 Dd                                    | ased on yo                                        | ar professional judgement, is the well construction / location.                                                                                                 |     | _  |   |
| and 2) comply with the applicable regulatory requirements?     Image: Complexity of the applicable regulatory requirements?       7     Corrective actions as needed, by date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |                                                   | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  |     |    |   |
| 7 Corrective actions as needed, by date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                                                   | and 2) comply with the applicable regulatory requirements?                                                                                                      | M   |    | + |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 Co                                    | orrective ad                                      | ctions as needed, by date:                                                                                                                                      |     |    |   |



|      | Location:    |                                                                                                                                                                 | -        |    |   |
|------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----|---|
| rmit | t Number:    |                                                                                                                                                                 | -        |    |   |
|      | Well ID:     | YGWC-49                                                                                                                                                         | -        |    |   |
| rson | Gauging:     | Peter Argyakis                                                                                                                                                  | -        |    |   |
|      | Date:        | 3/2/2021                                                                                                                                                        | -        |    |   |
|      | Time:        | 03.18.00                                                                                                                                                        | Voc      | No |   |
| 1 1  | ocation Ido  | ntification                                                                                                                                                     | Tes      | NU | _ |
|      |              |                                                                                                                                                                 |          | _  | _ |
| a    |              | Is the well visible and accessible?                                                                                                                             |          |    | _ |
| b    | )            | Is the well properly identified with the correct well ID?                                                                                                       |          |    |   |
| c    |              | Is the well in a high traffic area and does the well require protection from traffic?                                                                           |          | Ø  |   |
| d    |              | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              | Ø        |    |   |
| 2 P  | Protective C | asing:                                                                                                                                                          |          |    |   |
| а    |              | Is the protective casing free from apparent damage and able to be secured?                                                                                      | Ø        |    |   |
| b    | )            | Is the casing free of degradation or deterioration?                                                                                                             | V        |    |   |
| с    |              | Does the casing have a functioning weep hole?                                                                                                                   | Ø        |    |   |
| d    |              | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | V        |    |   |
| 3 S  | urface Pad   |                                                                                                                                                                 |          |    | - |
| а    |              | Is the well pad in good condition (not cracked or broken)?                                                                                                      | Ø        |    |   |
| b    | )            | Is the well pad sloped away from the protective casing?                                                                                                         | Ø        |    |   |
| с    |              | Is the well pad in complete contact with the protective casing?                                                                                                 | V        |    |   |
| d    | l            | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          | Ø        |    |   |
| 0    | •            | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 | ম        |    |   |
| 4 Ir | ntornal Casi |                                                                                                                                                                 |          |    | - |
|      | itemai casi  | Door the cap provent entry of foreign material into the well?                                                                                                   | لکا<br>ا |    |   |
| a    |              | Le the series free of light or her de or envie between free forcing chiests (such as beilers)?                                                                  |          |    |   |
| D    | )            | is the casing free of kinks or bends, or any obstructions from foreign objects (such as ballers)?                                                               |          |    |   |
| c    |              | Is the well properly vented for equilibration of air pressure?                                                                                                  |          |    |   |
| d    |              | Is the survey point clearly marked on the inner casing?                                                                                                         |          |    |   |
| e    |              | Is the depth of the well consistent with the original well log?                                                                                                 |          |    |   |
| f    |              | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | Ø        |    |   |
| 5 S  | ampling: G   | roundwater Wells Only:                                                                                                                                          |          |    |   |
| а    |              | Does well recharge adequately when purged?                                                                                                                      | Ø        |    |   |
| b    | )            | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             | Ø        |    |   |
| с    |              | Does the well require redevelopment (low flow, turbid)?                                                                                                         |          | V  |   |
| 6 B  | ased on yo   | ur professional judgement, is the well construction / location:                                                                                                 |          |    |   |
|      | _            | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  | V        |    |   |
|      |              | and 2) comply with the applicable regulatory requirements?                                                                                                      | V        |    |   |
| 7 C  | Corrective a | ctions as needed, by date:                                                                                                                                      | -        |    | - |
|      |              |                                                                                                                                                                 |          |    |   |



| m  | it Numbor    |                                                                                                                                                                 | 1   |    |        |
|----|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|--------|
|    |              | Ρ7-24ΙΔ                                                                                                                                                         | 1   |    |        |
| 50 | n Gauging:   | Peter Argyakis                                                                                                                                                  | 1   |    |        |
| 30 | Date:        | 3/2/2021                                                                                                                                                        | 1   |    |        |
|    | Time:        | 09:27:00                                                                                                                                                        | 1   |    |        |
|    |              |                                                                                                                                                                 | Yes | No | -<br>) |
| 1  | Location Ide | ntification:                                                                                                                                                    |     |    |        |
|    | а            | Is the well visible and accessible?                                                                                                                             | V   |    |        |
|    | b            | Is the well properly identified with the correct well ID?                                                                                                       | Ø   |    |        |
|    | с            | Is the well in a high traffic area and does the well require protection from traffic?                                                                           | Ø   |    |        |
|    | d            | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              | Ø   |    |        |
| 2  | Protective C | asing:                                                                                                                                                          |     |    |        |
|    | а            | Is the protective casing free from apparent damage and able to be secured?                                                                                      | V   |    |        |
|    | b            | Is the casing free of degradation or deterioration?                                                                                                             | Ø   |    |        |
|    | с            | Does the casing have a functioning weep hole?                                                                                                                   | Ø   |    |        |
|    | d            | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | Ø   |    |        |
| 3  | Surface Pad  |                                                                                                                                                                 |     |    |        |
|    | а            | Is the well pad in good condition (not cracked or broken)?                                                                                                      | Ø   |    |        |
|    | b            | Is the well pad sloped away from the protective casing?                                                                                                         | V   |    |        |
|    | с            | Is the well pad in complete contact with the protective casing?                                                                                                 | V   |    |        |
|    | d            | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          |     |    |        |
|    | е            | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 | V   |    |        |
| 4  | Internal Cas | ing                                                                                                                                                             |     |    |        |
|    | а            | Does the cap prevent entry of foreign material into the well?                                                                                                   | V   |    |        |
|    | b            | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                               | Ø   |    |        |
|    | с            | Is the well properly vented for equilibration of air pressure?                                                                                                  | V   |    |        |
|    | d            | Is the survey point clearly marked on the inner casing?                                                                                                         | V   |    |        |
|    | e            | Is the depth of the well consistent with the original well log?                                                                                                 | V   |    |        |
|    | f            | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) |     |    |        |
| 5  | Sampling: G  | roundwater Wells Only:                                                                                                                                          |     |    |        |
|    | а            | Does well recharge adequately when purged?                                                                                                                      | V   |    |        |
|    | b            | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             | Ø   |    |        |
|    | с            | Does the well require redevelopment (low flow, turbid)?                                                                                                         |     | V  |        |
| 6  | Based on yo  | ur professional judgement, is the well construction / location:                                                                                                 |     |    | -      |
|    | -            | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  | Ø   |    |        |
|    |              | and 2) comply with the applicable regulatory requirements?                                                                                                      | Ø   |    |        |
|    | C            | ctions as needed, by date:                                                                                                                                      |     |    |        |



| mit Number    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -   |    |   |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|---|
| Well ID       | : YGWC-24SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -   |    |   |
| son Gauging   | : Peter Argyakis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -   |    |   |
| Date          | 00:20:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -   |    |   |
| IIme          | : 03.23.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Voc | No | - |
| 1 Location Id | entification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 163 | NO |   |
| 2             | Is the well visible and accessible?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ম   |    |   |
| a<br>h        | Is the well properly identified with the correct well ID?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |    |   |
| 0             | Is the well in a high traffic area and does the well require protection from traffic?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | N  |   |
| d             | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ø   |    |   |
| 2 Protective  | Casing:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |    |   |
| а             | Is the protective casing free from apparent damage and able to be secured?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V   |    |   |
| b             | Is the casing free of degradation or deterioration?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ø   |    |   |
| с             | Does the casing have a functioning weep hole?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V   |    |   |
| d             | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V   |    |   |
| 3 Surface Pac | Let the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |     |    |   |
| а             | Is the well pad in good condition (not cracked or broken)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V   |    |   |
| b             | Is the well pad sloped away from the protective casing?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ø   |    |   |
| с             | Is the well pad in complete contact with the protective casing?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V   |    |   |
| d             | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ø   |    |   |
| е             | Is the pad surface clean (not covered with sediment or debris)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V   |    |   |
| 4 Internal Ca | sing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |    |   |
| а             | Does the cap prevent entry of foreign material into the well?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V   |    |   |
| b             | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V   |    |   |
| с             | Is the well properly vented for equilibration of air pressure?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V   |    |   |
| d             | Is the survey point clearly marked on the inner casing?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V   |    |   |
| e             | Is the depth of the well consistent with the original well log?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V   |    |   |
| f             | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ø   |    |   |
| 5 Sampling: ( | Groundwater Wells Only:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |    |   |
| а             | Does well recharge adequately when purged?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V   |    |   |
| b             | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |    |   |
| с             | Does the well require redevelopment (low flow, turbid)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | Ø  |   |
| 6 Based on y  | our professional judgement, is the well construction / location:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |    |   |
|               | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | V   |    |   |
|               | and 2) comply with the applicable regulatory requirements?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | V   |    |   |
| 7 Corrective  | actions as needed, by date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |    |   |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |    |   |



|    | ct Location:  |                                                                                                                                                        | -      |    |   |
|----|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----|---|
| rm | it Number:    |                                                                                                                                                        | -      |    |   |
|    | well ID:      | Poter Argyskir                                                                                                                                         | -      |    |   |
| 50 | Date:         | 3/2/2021                                                                                                                                               | -      |    |   |
|    | Time:         | 09:31:00                                                                                                                                               | -      |    |   |
|    | Time.         |                                                                                                                                                        | Yes    | No | N |
| 1  | Location Ide  | ntification:                                                                                                                                           |        |    | , |
|    | а             | Is the well visible and accessible?                                                                                                                    |        |    |   |
|    | h             | Is the well properly identified with the correct well ID?                                                                                              |        |    |   |
| 0  | c<br>c        | Is the well in a high traffic area and does the well require protection from traffic?                                                                  | -<br>- |    | 1 |
|    | d             | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious                                                         |        | -  |   |
|    | u             | drainage flow path)                                                                                                                                    |        |    |   |
| 2  | Protective C  | asing:                                                                                                                                                 |        |    |   |
|    | а             | Is the protective casing free from apparent damage and able to be secured?                                                                             | Ø      |    |   |
|    | b             | Is the casing free of degradation or deterioration?                                                                                                    | V      |    |   |
|    | с             | Does the casing have a functioning weep hole?                                                                                                          | Ø      |    |   |
|    | d             | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                        | V      |    |   |
| 3  | Surface Pad   |                                                                                                                                                        |        |    |   |
|    | а             | Is the well pad in good condition (not cracked or broken)?                                                                                             | Ø      |    |   |
|    | b             | Is the well pad sloped away from the protective casing?                                                                                                | Ø      |    |   |
|    | с             | Is the well pad in complete contact with the protective casing?                                                                                        | V      |    |   |
|    | d             | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on) | Ø      |    |   |
|    | e             | Is the pad surface clean (not covered with sediment or debris)?                                                                                        | V      |    | - |
| 1  | Internal Casi |                                                                                                                                                        |        |    | + |
|    | a             | Does the cap prevent entry of foreign material into the well?                                                                                          |        |    | - |
|    | h             | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                      |        |    | + |
|    | c c           | Is the well properly vented for equilibration of air pressure?                                                                                         |        |    | + |
|    | d             | Is the survey point clearly marked on the inper casing?                                                                                                |        | -  | - |
|    | u             | Is the depth of the well experience with the original well log?                                                                                        |        |    | _ |
|    | e             | Is the depth of the well consistent with the original well log?                                                                                        |        |    | _ |
|    | Ţ             | due to lack of grout or use of slip couplings in construction)                                                                                         | Ø      |    |   |
| 5  | Sampling: G   | roundwater Wells Only:                                                                                                                                 |        |    |   |
|    | а             | Does well recharge adequately when purged?                                                                                                             | Ø      |    |   |
|    | b             | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                    |        |    |   |
|    | с             | Does the well require redevelopment (low flow, turbid)?                                                                                                |        | V  |   |
| 5  | Based on yo   | ur professional judgement, is the well construction / location:                                                                                        |        |    |   |
|    |               | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                         | V      |    |   |
|    |               | and 2) comply with the applicable regulatory requirements?                                                                                             | Ø      |    | - |
|    |               |                                                                                                                                                        |        |    | + |



|        |             |                                                                                                                                                                 | 1   |    |   |
|--------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|---|
| mit    | Woll ID:    | P7-35                                                                                                                                                           | -   |    |   |
| con (  | Gauging:    | Peter Aravakis                                                                                                                                                  | 1   |    |   |
| 5011 4 | Date:       | 3/2/2021                                                                                                                                                        | 1   |    |   |
|        | Time:       | 09:35:00                                                                                                                                                        | 1   |    |   |
|        |             |                                                                                                                                                                 | Yes | No | , |
| 1 Lo   | cation Ide  | entification:                                                                                                                                                   |     |    |   |
| а      |             | Is the well visible and accessible?                                                                                                                             | V   |    |   |
| b      |             | Is the well properly identified with the correct well ID?                                                                                                       | V   |    |   |
| с      |             | Is the well in a high traffic area and does the well require protection from traffic?                                                                           | V   |    |   |
| d      |             | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              | V   |    |   |
| 2 Pro  | otective C  | asing:                                                                                                                                                          |     |    |   |
| а      |             | Is the protective casing free from apparent damage and able to be secured?                                                                                      | V   |    |   |
| b      |             | Is the casing free of degradation or deterioration?                                                                                                             | V   |    |   |
| с      |             | Does the casing have a functioning weep hole?                                                                                                                   | V   |    |   |
| d      |             | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | V   |    |   |
| 3 Su   | Irface Pad  |                                                                                                                                                                 |     |    |   |
| а      |             | Is the well pad in good condition (not cracked or broken)?                                                                                                      | V   |    |   |
| b      |             | Is the well pad sloped away from the protective casing?                                                                                                         | Ø   |    |   |
| с      |             | Is the well pad in complete contact with the protective casing?                                                                                                 | Ø   |    |   |
| d      |             | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          | V   |    |   |
| е      |             | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 | Ø   |    |   |
| 4 Int  | ternal Casi | ing                                                                                                                                                             |     |    |   |
| а      |             | Does the cap prevent entry of foreign material into the well?                                                                                                   | Ø   |    |   |
| b      |             | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                               | V   |    |   |
| с      |             | Is the well properly vented for equilibration of air pressure?                                                                                                  | Ø   |    |   |
| d      |             | Is the survey point clearly marked on the inner casing?                                                                                                         | Ø   |    |   |
| е      |             | Is the depth of the well consistent with the original well log?                                                                                                 | V   |    |   |
| f      |             | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | Ø   |    |   |
| 5 Sa   | mpling: G   | roundwater Wells Only:                                                                                                                                          |     |    |   |
| а      |             | Does well recharge adequately when purged?                                                                                                                      | Ø   |    |   |
| b      |             | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             |     |    |   |
| с      |             | Does the well require redevelopment (low flow, turbid)?                                                                                                         |     | Ø  |   |
| 6 Ba   | ised on yo  | ur professional judgement, is the well construction / location:                                                                                                 |     |    |   |
|        |             | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  | Ø   |    |   |
|        |             | and 2) comply with the applicable regulatory requirements?                                                                                                      | Ø   |    |   |
| _      | orrective a | ctions as needed, by date:                                                                                                                                      |     |    | - |



| rmit Number    |                                                                                                                                                                 | 1   |    |   |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|---|
| Well ID:       | YGWC-36A                                                                                                                                                        | 1   |    |   |
| son Gauging:   | Peter Argyakis                                                                                                                                                  | 1   |    |   |
| Date:          | 3/2/2021                                                                                                                                                        | 1   |    |   |
| Time:          | 09:37:00                                                                                                                                                        | 1   |    |   |
|                |                                                                                                                                                                 | Yes | No |   |
| 1 Location Ide | entification:                                                                                                                                                   |     |    |   |
| а              | Is the well visible and accessible?                                                                                                                             | V   |    |   |
| b              | Is the well properly identified with the correct well ID?                                                                                                       | V   |    |   |
| с              | Is the well in a high traffic area and does the well require protection from traffic?                                                                           | V   |    |   |
| d              | Is the drainage around the well acceptable? (no standing water, nor is well located in obvious drainage flow path)                                              | Ø   |    |   |
| 2 Protective C | Casing:                                                                                                                                                         |     |    |   |
| а              | Is the protective casing free from apparent damage and able to be secured?                                                                                      | V   |    |   |
| b              | Is the casing free of degradation or deterioration?                                                                                                             | V   |    |   |
| с              | Does the casing have a functioning weep hole?                                                                                                                   | V   |    |   |
| d              | Is the annular space between casings clear of debris and water, or filled with pea gravel/sand?                                                                 | V   |    |   |
| 3 Surface Pad  |                                                                                                                                                                 |     |    |   |
| а              | Is the well pad in good condition (not cracked or broken)?                                                                                                      | V   |    |   |
| b              | Is the well pad sloped away from the protective casing?                                                                                                         | V   |    |   |
| с              | Is the well pad in complete contact with the protective casing?                                                                                                 | V   |    |   |
| d              | Is the well pad in complete contact with the ground surface and stable? (not undermined by erosion, animal burrows, and does not move when stepped on)          | Ø   |    |   |
| е              | Is the pad surface clean (not covered with sediment or debris)?                                                                                                 | V   |    |   |
| 4 Internal Cas | ing                                                                                                                                                             |     |    |   |
| а              | Does the cap prevent entry of foreign material into the well?                                                                                                   | V   |    |   |
| b              | Is the casing free of kinks or bends, or any obstructions from foreign objects (such as bailers)?                                                               | V   |    |   |
| с              | Is the well properly vented for equilibration of air pressure?                                                                                                  | V   |    |   |
| d              | Is the survey point clearly marked on the inner casing?                                                                                                         | V   |    |   |
| е              | Is the depth of the well consistent with the original well log?                                                                                                 | V   |    |   |
| f              | Is the casing stable? (or does the pvc move easily when touched or can it be taken apart by hand due to lack of grout or use of slip couplings in construction) | Ø   |    |   |
| 5 Sampling: G  | roundwater Wells Only:                                                                                                                                          |     |    |   |
| а              | Does well recharge adequately when purged?                                                                                                                      | Ø   |    |   |
| b              | If dedicated sampling equipment installed, is it in good condition and specified in the approved groundwater plan for the facility?                             | Ø   |    |   |
| с              | Does the well require redevelopment (low flow, turbid)?                                                                                                         | Ø   |    |   |
| 6 Based on yo  | pur professional judgement, is the well construction / location:                                                                                                |     |    |   |
|                | appropriate to 1) achieve the objectives of the Groundwater Monitoring Program                                                                                  | V   |    |   |
|                | and 2) comply with the applicable regulatory requirements?                                                                                                      | V   |    |   |
| 7 Corrective a | ictions as needed, by date:                                                                                                                                     |     |    |   |
|                |                                                                                                                                                                 |     |    | _ |

# May 2021

PZ-37D

#### **Groundwater Sampling Form**



| Project Number                 |                     | Well ID                    | PZ-37D      |                         |                | Date                    | 5/13/21       |
|--------------------------------|---------------------|----------------------------|-------------|-------------------------|----------------|-------------------------|---------------|
| Project Location               |                     |                            | Weather(°F) | Sunny, and war          | m              |                         |               |
| Measuring Pt.<br>Description   | Top of Inner Casing | Screen<br>Setting (ft-bmp) |             | Casing<br>Diameter (in) | 2              | Well Casing<br>Material | PVC           |
| Static Water<br>Level (ft-bmp) | 5.95                | Total Depth (ft-bmp)       | 202.85      | Water<br>Column(ft)     | 197.23         | Gallons in<br>Well      | 31.56         |
| MP Elevation                   |                     | Pump Intake (ft-<br>bmp)   | 197.8       | Purge Method            | Low-Flow       | Sample<br>Method        | Low-Flow      |
| Sample Time                    | 12:30               | Well Volumes<br>Purged     |             | Sample ID               | PZ-37D(051421) | Sampled by              | Becky Steever |
| Purge Start                    | 10:53               | Gallons Purged             | 2.75        | Replicate/<br>Code No.  | DUP-01         | Color                   | Clear         |

Purge End 12:26

| Time  | Total Elapsed<br>Minutes | Rate<br>(mL/min) | Depth to<br>Water | pH<br>(standard | Specific<br>Conductivity | Turbidity<br>(NTU) | Dissolved<br>Oxygen | Temperature<br>°C | Redox<br>(mV) |
|-------|--------------------------|------------------|-------------------|-----------------|--------------------------|--------------------|---------------------|-------------------|---------------|
| 10:53 | 0                        | 200              | 5.95              | units)          | (µ3/cm)                  |                    | Start               |                   |               |
| 11:07 | 14                       | 150              | 12.58             | 8.02            | 794                      | 3.06               | 0.89                | 18.04             | -293.8        |
| 11:12 | 19                       | 150              | 13.03             | 7.92            | 791                      | 3.08               | 0.78                | 18.18             | -341.7        |
| 11:17 | 24                       | 125              | 13.41             | 7.86            | 777                      | 2.99               | 0.23                | 18.43             | -333.7        |
| 11:22 | 29                       | 100              | 13.88             | 7.8             | 765                      | 2.87               | 0.03                | 18.65             | -325.2        |
| 11:27 | 34                       | 100              | 13.95             | 7.77            | 765                      | 2.11               | 0.01                | 18.57             | -325.7        |
| 11:32 | 39                       | 100              | 14.59             | 7.77            | 770                      | 2.54               | 0.01                | 18.57             | -323.3        |
| 11:37 | 44                       | 100              | 15.38             | 7.74            | 748                      | 2.34               | 0.01                | 18.56             | -307.5        |
| 11:42 | 49                       | 100              | 15.96             | 7.72            | 716                      | 2.08               | 0.02                | 18.56             | -316.8        |
| 11:47 | 54                       | 100              | 16.40             | 7.74            | 702                      | 2.01               | 0                   | 18.55             | -323.6        |
| 11:52 | 59                       | 100              | 16.58             | 7.75            | 693                      | 1.95               | 0.01                | 18.54             | -325.5        |
| 11:57 | 64                       | 100              | 16.80             | 7.77            | 671                      | 1.87               | 0.01                | 18.55             | -324.9        |
| 12:02 | 69                       | 100              | 17.21             | 7.78            | 657                      | 1.76               | 0.02                | 18.54             | -321.6        |
| 12:07 | 74                       | 100              | 17.64             | 7.78            | 651                      | 1.77               | 0.01                | 18.53             | -320.4        |
| 12:12 | 79                       | 80               |                   |                 | misse                    | ed reading while   | adjusting pump      | flow rate         |               |
| 12:16 | 84                       | 80               | 18.95             | 7.77            | 644                      | 1.22               | 0.01                | 18.53             | -327.1        |
| 12:21 | 89                       | 80               | 19.07             | 7.78            | 637                      | 1.35               | 0.01                | 18.51             | -323.7        |
| 12:26 | 94                       | 80               | 19.18             | 7.79            | 634                      | 1.36               | 0.01                | 18.49             | -319.8        |
|       |                          |                  |                   |                 |                          |                    |                     |                   |               |
|       |                          |                  |                   |                 |                          |                    |                     |                   |               |
|       |                          |                  |                   |                 |                          |                    |                     |                   |               |
|       |                          |                  |                   |                 |                          |                    |                     |                   |               |
|       |                          |                  |                   |                 |                          |                    |                     |                   |               |
|       |                          |                  |                   |                 | 1                        |                    |                     |                   |               |

| Constituent Sampled | Container      | Number | Preservative |
|---------------------|----------------|--------|--------------|
| Metals              | 250 mL Plastic | 1      | HNO3         |
| RAD Chem            | 1L Plastic     | 2      | HNO3         |
| Anions              | 250 mL Plastic | 1      | None         |
| TDS                 | 500 mL Plastic | 1      | None         |
|                     |                |        |              |

#### Comments:

#### Well Casing Volume Conversion

Well diameter (inches) = gallons per foot

 $1 = 0.04 \ 1.5 = 0.09 \ 2.5 = 0.26 \ 3.5 = 0.50 \ 6 = 1.47$ 

Well Information

Well Location:

Condition of Well:

Well Completion: NA

Well Locked at Arrival: Well Locked at Departure:

Key Number To Well: NA

 $\begin{array}{l} ft\text{-bmp} = \text{feet below measuring point} \\ in = \text{inches} \\ ft = \text{feet} \\ mL/min = milliliters per minute \\ mS/cm = millilisiemens per centimeter \\ NTU = Nephelometric Turbidity Unit \\ mg/L = milligrams per liter \\ \muS/cm = \text{microSiemens per centimete} \end{array}$ 

# **APPENDIX C**

Well Installation Report

2021 Semiannual Groundwater and Corrective Action Report Plant Yates AP-3, A, B, B' and R6 CCR Landfill Newnan, GA





# GEORGIA POWER COMPANY PLANT YATES - AP-3/A/B/B' AND R6 LANDFILL

Groundwater Monitoring Well Installation Report

June 7, 2021

Anant a Willgord

Grant Willford Geologist II

Celfun Ca

Geoffrey Gay, P.E. Technical Expert / Project Manager

# GEORGIA POWER COMPANY PLANT YATES - AP-3/A/B/B' AND R6 LANDFILL

Groundwater Monitoring Well Installation Report

#### Prepared for:

Georgia Power Company Newnan, Georgia Coweta County

#### Prepared by:

Arcadis U.S., Inc. 2839 Paces Ferry Road Suite 900 Atlanta Georgia 30339 Tel 770 431 8666 Fax 770 435 2666

Our Ref: 30086734

Date: June 7, 2021

# **CONTENTS**

| Pro | fessio | nal Engineer Certificationi | i |
|-----|--------|-----------------------------|---|
| 1   | Intro  | duction                     | 1 |
| 2   | Drilli | ng and Well Installation    | 1 |
| 2   | .1 [   | Drilling Method             | 1 |
| 2   | .2 5   | Screened Interval           | 1 |
| 2   | .3 V   | Vell Construction Materials | 2 |
|     | 2.3.1  | Filter Pack                 | 2 |
|     | 2.3.2  | Annular Seal                | 2 |
|     | 2.3.3  | Cap and Protective Casing2  | 2 |
| 3   | Well   | Development                 | 3 |
| 4   | Surv   | еу                          | 3 |
| 5   | Refe   | rences                      | 3 |

# TABLE

Table 1. Well Survey Data

## **FIGURE**

Figure 1. Well Location Map

# **APPENDICES**

- A Well Driller Performance Bond
- B Well Construction & Development Logs
- C Well Survey Report

Groundwater Monitoring Well Installation Report - AP-3/A/B/B' and R6 CCR Landfill

# Professional Engineer Certification

I certify that I am a qualified groundwater scientist who has received a baccalaureate or post-graduate degree in the natural sciences or engineering and have sufficient training and experience in groundwater hydrology and related fields as demonstrated by state registration and completion of accredited university courses that enable me to make sound professional judgments regarding groundwater monitoring and contaminant fate and transport. I further certify that this report was prepared by me or by a subordinate working under my direction.



J. Geoffrey Gay, P.E. Technical Expert Georgia Registration No. 27801

Date

# **1** INTRODUCTION

Plant Yates is located at 708 Dyer Road on the east bank of the Chattahoochee River in Coweta County, Georgia near the Coweta and Carroll County line. Plant Yates (the Site) is approximately eight miles northwest of the city of Newnan and 13 miles southeast of the city of Carrollton. Plant Yates, once a coal-fired power generation facility converted to natural gas combustion turbines, occupies approximately 2,400 acres.

The objective of this report is to document the installation of a deep bedrock groundwater monitoring well (PZ-37D) adjacent to the existing shallow bedrock well (PZ-37). **Figure 1** depicts the configuration of ash ponds AP-A, AP-B, AP-B', AP-3, and the R6 CCR Landfill and the location of the monitoring wells. PZ-37D was installed on April 16, 2021. Well construction activities were performed in general accordance with the standards described in the RCRA Technical Enforcement Guidance Document (1986) and the Georgia Water Wells Standards Act of 1985.

## 2 DRILLING AND WELL INSTALLATION

The groundwater monitoring system is designed and installed according to accepted industry standards and following guidelines within the Manual for Groundwater Monitoring (GA EPD 1991). The location and depths of the monitoring wells were selected based on the characterization of site-specific hydrogeologic conditions by a qualified professional engineer and geologist. Groundwater monitoring location PZ-37D was designed to monitor the portion of the bedrock aquifer below PZ-37. The installation date, location, elevation, screen interval, and designation for PZ-37D is provided in the following sections. A copy of the Cascade Drilling Bond is included in **Appendix A**. Boring and Well Construction logs are provided in **Appendix B**. **Table 1** provides a summary of well construction.

#### 2.1 Drilling Method

The piezometer was installed by Cascade Environmental under contract with Southern Company Services (SCS) Field Services. Cascade had a current and valid bond with the Water Wells Standards Advisory Council for the state of Georgia at the time of drilling and well installation.

The piezometer installation was performed under the oversight and direction of a Georgia Registered Professional Engineer with Arcadis. Borehole advancement drilling was completed using rotosonic drilling techniques. The drilling equipment consisted of a 150CC compact track mounted rotasonic drill rig equipped with four-inch sonic core rods with a six-inch outer-casing sleeve. During the drilling, continuous core samples were logged in the field for lithologic properties.

#### 2.2 Screened Interval

Piezometer PZ-37D was screened in the bedrock zone. The monitoring well is constructed with ten feet of prepacked well screen. The screen was placed near the bottom of the borehole with a flush-threaded PVC end cap placed on the bottom of each well to provide a 0.4-foot sump/sediment trap.

#### 2.3 Well Construction Materials

The piezometer well was designed and constructed to: (1) allow sufficient groundwater flow to the well for sampling; (2) minimize the passage of formation materials (turbidity) into the wells; and (3) ensure sufficient structural integrity to prevent collapse of the well. The well was constructed of 2-inch inside diameter Schedule 40 polyvinyl chloride (PVC) casing affixed to a dual-wall slotted 10-foot U-Pack<sup>®</sup> PVC screen. The U-Pack<sup>®</sup> well screens consist of a 3-inch diameter outer PVC well screen and a 2-inch centralized inner PVC well screen in one integrated unit. Factory slotted 0.010-inch screens were used. Southern Products and Silica filter pack sand size #1 (approximate 16-40 sieve size) was placed within the void space. The construction materials are ink-free, National Science Foundation (NSF) approved, and do not contain glues or solvents. Casing and screen sections are flush-threaded (ASTM-F-480).

#### 2.3.1 Filter Pack

Following placement of the well screen and casing, the annular space adjacent to the well screen was filled with Southern Products and Silica filter pack sand size #1. This size sand is an approximately 16-40 sieve range, medium fine well-rounded quartz (silica) sand. Filter pack material was placed within the void space of the U-Pack<sup>®</sup> well screen and the annular space outside of the well screen extended approximately two feet above the top of the well screen. The depth of top of filter pack was measured and recorded in the well construction log provided in **Appendix A**.

After placing the filter pack and prior to installing the annular seal, the well was pumped for at least 30 minutes to ensure proper settlement of the filter pack. Prior to installing the annular seal, the depth to the filter pack was remeasured to ensure a minimum of two feet was present above the screen.

#### 2.3.2 Annular Seal

An annular seal composed of approximately three feet of hydrated bentonite pellets was placed on top of the filter pack by slowly pouring the material down the borehole and tamping it into place with a tremie pipe. The bentonite was hydrated and allowed to cure prior to grouting the well.

Following hydration of the bentonite, the remaining annular space was tremie-grouted with a 30% solids bentonite grout (AQUAGARD<sup>®</sup>). The monitoring well surface completion consists of a locked, aluminum protective casing and a four-foot by four-foot by four-inch concrete pad.

#### 2.3.3 Cap and Protective Casing

The well riser was fitted with a locking cap and a lockable cover. A one-quarter inch vent hole in the PVC riser pipe provides an avenue for the escape of gas. The protective cap guards the casing from damage and the locking cap serves as a security device to prevent well tampering. Bollards were installed around the four corners of the concrete pad to protect the well.

A weep hole was drilled in the outer protective casing near the bottom above the concrete pad. Pea gravel was placed inside the protective casing between the riser pipe and the outer casing. The well is marked with the proper well identification number on the stand-up casing.

# 3 WELL DEVELOPMENT

The monitoring well was initially developed using a combination of surging with a weighted bailer (1.6 inches x 36 inches) and pumping with a Grundfos Redi-Flo 2 submersible pump to minimize turbidity during groundwater sampling. The well was surged in 10-inch strokes across the well screen five times. Turbidity, pH, temperature, and conductivity measurements ensured that the well was fully developed. Final turbidity measurements following development were less than 5 NTUs before the well was developed dry. The development forms are included in **Appendix B**.

# 4 SURVEY

The monitoring well location and top of casing (TOC) elevations were surveyed by Arcadis. Horizontal survey locations are relative to the Georgia State Plane Coordinate System, West Zone, NAD83, US Survey Feet. All horizontal locations meet or exceed an accuracy of 0.50 foot. Vertical elevations are referenced to NAVD1988, US Survey Feet and meet an accuracy standard of 0.01 foot. A detailed survey report is included in **Appendix C**.

#### **5 REFERENCES**

Georgia Environmental Protection Division, Georgia Department of Natural Resources. Manual for Groundwater Monitoring, September 1991.

# TABLE





| Monument | Installation Date | Northing   | Easting    | Ground Elevation | Top of Casing<br>Elevation (TOC) | Top of Screen<br>Elevation | Bottom of Screen<br>Elevation | Total Depth<br>(ft bTOC) |
|----------|-------------------|------------|------------|------------------|----------------------------------|----------------------------|-------------------------------|--------------------------|
| PZ-37D   | 4/16/2021         | 1256478.32 | 2074688.08 | 758.8            | 761.12                           | 568.8                      | 558.8                         | 202.3                    |

Notes: Elevation in U.S. Survey Feet (NAVD88) Northing and Easting Georgia State Plane West, NAD83 Latitude and Longitude, WGS84

# **FIGURE**





#### LEGEND

- SAPROLITE NETWORK MONITORING  $\bullet$ WELL LOCATION
- TRANSITION NETWORK MONITORING  $\bullet$ WELL LOCATION
- BEDROCK NETWORK MONITORING • WELL LOCATION
- SAPROLITE NON-NETWORK WELL/PIEZOMETER ۲
- TRANSITION NON-NETWORK  $\bigcirc$ WELL/PIEZOMETER
- BEDROCK NON-NETWORK WELL/PIEZOMETER ۲
- PERMITTED UNIT BOUNDARY

#### NOTE:

1. PZ-37D WAS INSTALLED AS A VERTICAL DELINEATION WELL FOR PZ-37 IN APRIL 2021.

2. AERIAL IMAGE SOURCES: NOVEMBER 11, 2020 IMAGERY FLOWN AND PROCESSED BY SAM LLC; NATIONAL AGRICULTURE IMAGERY PROGRAM (NAIP) 2019 IMAGERY.



COORDINATE SYSTEM: NAD 1983 STATEPLANE GEORGIA WEST FIPS 1002 FEET





FIGURE

1



84°52'40"W

# **APPENDIX A**

Well Driller Performance Bond





#### CONTINUATION CERTIFICATE

| Atlantic Specialty In                                                                                                                  | surance Company , Surety upon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| a certain Bond No.                                                                                                                     | 800031223                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| dated effective                                                                                                                        | June 30, 2017<br>(MONTH-DAY-YEAR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| on behalf of                                                                                                                           | Michael C. Rice and Cascade Drilling, L.P., any and all employees, officers and partners (PRINCIPAL)                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| and in favor of                                                                                                                        | State of Georgia<br>(OBLIGEE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| does hereby continue                                                                                                                   | said bond in force for the further period                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| beginning on                                                                                                                           | June 30, 2019<br>(MONTH-DAY-YEAR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| and ending on                                                                                                                          | June 30, 2021<br>(MONTH-DAY-YEAR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Amount of bond                                                                                                                         | Thirty Thousand and Zero/100 (\$30,000.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Description of bond                                                                                                                    | Water Well Contractor Performance Bond                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Premium:                                                                                                                               | \$1,200.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <b>PROVIDED:</b> That the provision that the Sunot be cumulative and account of all default shall not in any event Signed and dated on | his continuation certificate does not create a new obligation and is executed upon the express condition and<br>arety's liability under said bond and this and all Continuation Certificates issued in connection therewith shall<br>and that the said Surety's aggregate liability under said bond and this and all such Continuation Certificates on<br>its committed during the period (regardless of the number of years) said bond had been and shall be in force,<br>t exceed the amount of said bond as hereinbefore set forth.<br>May 9, 2019 |
|                                                                                                                                        | (MONTH-DAY-YEAR)<br>Atlantic Specialty Insurance Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                        | ByAttorney-in-Fact Elizabeth R. Hahn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                        | Parker, Smith & Feek, Inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                        | 2233 112th Ave NE Bellevue, WA 98004<br>Address of Agent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                        | (425) 709-3600<br>Telephone Number of Agent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |



#### **Power of Attorney**

KNOW ALL MEN BY THESE PRESENTS, that ATLANTIC SPECIALTY INSURANCE COMPANY, a New York corporation with its principal office in Plymouth, Minnesota, does hereby constitute and appoint: **Deanna M. French, Susan B. Larson, Elizabeth R. Hahn, Jana M. Roy, Scott McGilvray, Mindee L. Rankin, Ronald J. Lange, John R. Claeys, Roger Kaltenbach, Guy Armfield, Scott Fisher, Andrew P. Larsen, Nicholas Fredrickson**, each individually if there be more than one named, its true and lawful Attorney-in-Fact, to make, execute, seal and deliver, for and on its behalf as surety, any and all bonds, recognizances, contracts of indemnity, and all other writings obligatory in the nature thereof; provided that no bond or undertaking executed under this authority shall exceed in amount the sum of: sixty million **dollars (\$60,000,000)** and the execution of such bonds, recognizances, contracts of indemnity, and all other writings obligatory in the nature thereof in pursuance of these presents, shall be as binding upon said Company as if they had been fully signed by an authorized officer of the Company and sealed with the Company seal. This Power of Attorney is made and executed by authority of the following resolutions adopted by the Board of Directors of ATLANTIC SPECIALTY INSURANCE COMPANY on the

Resolved: That the President, any Senior Vice President or Vice-President (each an "Authorized Officer") may execute for and in behalf of the Company any and all bonds, recognizances, contracts of indemnity, and all other writings obligatory in the nature thereof, and affix the seal of the Company thereto; and that the Authorized Officer may appoint and authorize an Attorney-in-Fact to execute on behalf of the Company any and all such instruments and to affix the Company seal thereto; and that the Authorized Officer may at any time remove any such Attorney-in-Fact and revoke all power and authority given to any such Attorney-in-Fact.

Resolved: That the Attorney-in-Fact may be given full power and authority to execute for and in the name and on behalf of the Company any and all bonds, recognizances, contracts of indemnity, and all other writings obligatory in the nature thereof, and any such instrument executed by any such Attorney-in-Fact shall be as binding upon the Company as if signed and sealed by an Authorized Officer and, further, the Attorney-in-Fact is hereby authorized to verify any affidavit required to be attached to bonds, recognizances, contracts of indemnity, and all other writings obligatory in the nature thereof.

This power of attorney is signed and sealed by facsimile under the authority of the following Resolution adopted by the Board of Directors of ATLANTIC SPECIALTY INSURANCE COMPANY on the twenty-fifth day of September, 2012:

Resolved: That the signature of an Authorized Officer, the signature of the Secretary or the Assistant Secretary, and the Company seal may be affixed by facsimile to any power of attorney or to any certificate relating thereto appointing an Attorney-in-Fact for purposes only of executing and sealing any bond, undertaking, recognizance or other written obligation in the nature thereof, and any such signature and seal where so used, being hereby adopted by the Company as the original signature of such officer and the original seal of the Company, to be valid and binding upon the Company with the same force and effect as though manually affixed.

Bv

IN WITNESS WHEREOF, ATLANTIC SPECIALTY INSURANCE COMPANY has caused these presents to be signed by an Authorized Officer and the seal of the Company to be affixed this twenty-sixth day of October, 2017.



STATE OF MINNESOTA HENNEPIN COUNTY

On this twenty-sixth day of October, 2017, before me personally came Paul J. Brehm, Senior Vice President of ATLANTIC SPECIALTY INSURANCE COMPANY, to me personally known to be the individual and officer described in and who executed the preceding instrument, and he acknowledged the execution of the same, and being by me duly sworn, that he is the said officer of the Company aforesaid, and that the seal affixed to the preceding instrument is the seal of said Company and that the said seal and the signature as such officer was duly affixed and subscribed to the said instrument by the authority and at the direction of the Company.



Notary Public

Paul J. Brehm, Senior Vice President

I, the undersigned, Secretary of ATLANTIC SPECIALTY INSURANCE COMPANY, a New York Corporation, do hereby certify that the foregoing power of attorney is in full force and has not been revoked, and the resolutions set for a bove are now in force.

day of MAIN 2019 Signed and sealed. Dated HPOR+ SFAL This Power of Attorney expires 986 October 1, 2019

12

Christopher V. Jerry, Secretary

# **APPENDIX B**

Well Construction & Development Logs


| AR                                                                                                    | CAD                 | S for restur          | alardi<br>eti                   |                       |         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Boring                                                                  | No.: PZ-37D                                                                                                                                                                                                                                                                                                                                               |    |     |
|-------------------------------------------------------------------------------------------------------|---------------------|-----------------------|---------------------------------|-----------------------|---------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|
| Borin                                                                                                 | a Lo                | a/W                   | ell Co                          | nstruction l          | _oa     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                         | Sheet: 1 of                                                                                                                                                                                                                                                                                                                                               | 11 |     |
| Project N                                                                                             | Name:               | Plant                 | Yates                           |                       |         |             | Date Started: 04/05/2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _Logger: <u>Grant</u>                                                   | Willford                                                                                                                                                                                                                                                                                                                                                  |    |     |
| Project N<br>Project L                                                                                | lumber:<br>.ocation | <u>30080</u><br>Newn: | <u>6734</u><br>nan. GA          |                       |         | D           | ate Completed: <u>04/16/2021</u><br>Weather C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _ Editor: <u>Grant</u><br>conditions: -                                 | Willford                                                                                                                                                                                                                                                                                                                                                  |    |     |
| Denth                                                                                                 | Commun              | Diam                  | Deserver                        |                       |         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                         | Construction                                                                                                                                                                                                                                                                                                                                              |    |     |
| (feet)                                                                                                | Interval            | Counts                | (in.)                           | Photo Log             | (ppm)   | Log         | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                         | Details                                                                                                                                                                                                                                                                                                                                                   | W  | ell |
| (feet)<br>0<br>1<br>2<br>3<br>-<br>4<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                     | Counts                | (in.)                           |                       | (ppm)   |             | Sandy clay (CL); 2.5YR 5/8; some silt; I<br>grained to fine grained sand; angular to<br>plasticity; dry.<br>Silty sand (SM); 2.5Y 8/3 (pale brown) 1<br>7/1 (light gray); very fine grained to mer<br>angular to sub angular; little silt; trace c<br>granules; angular; granules composed of<br>micaceous; dry.<br>Silty sand (SM); 2.5Y 6/4 (light yellowis<br>2.5Y 7/1 (light gray) and GLEY1 10GY<br>gray) mottled through out; very fine grai<br>grained sand; angular to sub angular; s<br>micaceous; saprolitic; moist. | h brown) with<br>5/1 (greenish<br>ned to fine<br>ome silt; little clay; | Details         Surface<br>completion<br>consists of a<br>locking<br>monument<br>2.32 ft. above<br>ground surface<br>with a weep<br>hole, vent hole<br>in well casing;<br>4'x4'x4' concrete<br>pad; four<br>bollards         ✓         30% solids<br>bentonite grout<br>(AQUAGUARD)<br>3-in. outer dia. —<br>with 2-in inner<br>dia. Sch 40<br>PVC riser. |    |     |
|                                                                                                       |                     |                       | 120                             | -                     |         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                         |                                                                                                                                                                                                                                                                                                                                                           |    |     |
| Drilling C                                                                                            | <u> </u>            | <u>Ca</u> sca         | ade                             | 1000                  |         | <u> .: </u> | Sampling Method: Core Ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | arrel                                                                   |                                                                                                                                                                                                                                                                                                                                                           |    |     |
| Driller:                                                                                              |                     | David                 | Wilcox                          |                       |         |             | Sampling Interval: <u>Contine</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ous                                                                     |                                                                                                                                                                                                                                                                                                                                                           |    |     |
| Drilling N                                                                                            | lethod:             | Rotos                 | sonic                           |                       |         |             | Water Level Start (ft. bgs.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | :                                                                       |                                                                                                                                                                                                                                                                                                                                                           |    |     |
| Bemarke                                                                                               | iuid:               | <u>vvate</u><br>'/ft= | r<br>feet <sup>.</sup> " / in : | = inch: bas = below a | ound su | rface:      | water Level ⊢inish (tt. btoo<br>Converted to Well·                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | :.): <u>5.98</u><br>Yes Γ                                               | No                                                                                                                                                                                                                                                                                                                                                        |    |     |
| NA = not                                                                                              | ,<br>applicable     | / availal             | ble.                            |                       |         |             | Surface Elev.: <u>758.8</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                         |                                                                                                                                                                                                                                                                                                                                                           |    |     |
|                                                                                                       |                     |                       |                                 |                       |         |             | North Coor: 1256478.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                                       |                                                                                                                                                                                                                                                                                                                                                           |    |     |
|                                                                                                       |                     |                       |                                 |                       |         |             | East Coor: 2074688.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3                                                                       |                                                                                                                                                                                                                                                                                                                                                           |    |     |

| Boring Log/Well Construction Log         Date Started:         U.dge: Starting         Coget: V.mime           Project Name:         End Started:         0.405/2021         Editor:         Centre Villad           Project Name:         Editor:         Centre Villad         Editor:         Centre Villad         Villad           Project Name:         Editor:         Remain:         Centre Villad         Viel         Viel         Viel           Project Name:         Editor:         Remain:         Centre Villad         Viel                                                                                                                                                              | AR        | CADIS      | for notice<br>boilt inse | landi<br>Hi |              |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Boring                                                                                                                                                                                                                   | No.: PZ-37D                                                                                                      |    |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|--------------------------|-------------|--------------|-------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|----|--|
| Pojest Wumer Pint Yales Date Starte: 0405/2021 Logge: Crant Wilford Project Location: Newnan, GA Weather Conditions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Borin     | ig Log     | /We                      | ell Co      | nstruction l | _og   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                          | Sheet: 2 of                                                                                                      | 11 |  |
| Indext Number         Source/Source         Date Complexity         Example         Complexity           Depth         Standal         Records         Image: Source Source         Weether Conditions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Project I | Name:      | Plant                    | Yates       |              |       |         | Date Started: 04/05/2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Logger: <u>Grant</u>                                                                                                                                                                                                     | Willford                                                                                                         |    |  |
| Depth (rest)     Sample Blow (n)     Penoto Log (pm)     PLD Craphic (pm)     Description     Construction (penol)     Well       17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Project I | ocation:   | <u>Newn</u>              | an, GA      |              |       | D       | Weather C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | onditions: -                                                                                                                                                                                                             | VVIIIIOI a                                                                                                       |    |  |
| Interval         Courts         (n)         Proto Log         (n)         Log         Description         Descrint         Descrint         Desc | Depth     | Sample     | Blow                     | Recovery    |              | PID   | Graphic |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                          | Construction                                                                                                     |    |  |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (feet)    | Interval C | ounts                    | (in.)       | Photo Log    | (ppm) | Log     | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                          | Details                                                                                                          | W  |  |
| Remarks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |            |                          | 30          |              |       |         | <ul> <li>Well-graded sand (SW); 2.5Y 8/1 (white grained to very coarse grained sand; tracomposed of quartz.</li> <li>Silty sand (SM); 2.5Y 6/4 (light yellowisi 2.5Y 7/1 (light gray) and GLEY1 10GY gray) mottled through out; very fine grai grained sand; angular to sub angular; so micaceous; saprolitic; moist.</li> <li>Pulverized rock composed of quartz.</li> <li>Gneiss (Partially Weathered Rock); blac some greenish gray mineral grains; fine coarse mineral grains; gneissic rock tex very strong rock strength; partially weat cobbles range from 0.2 to 0.4 ft in leng red staining on majority of rock cobble crystals observed.</li> <li>Decrease in mineral grains; dark to light oral rock cobbles; slight increase in cobble s</li> </ul> | e); very fine<br>ce gravel; gravel<br>h brown) with<br>5/1 (greenish<br>ned to fine<br>ome silt; little clay;<br>ck, white and<br>grained to very<br>ture; strong to<br>athered; rock<br>gth;some dark<br>s; some pyrite | 30% solids<br>bentonite grout<br>(AQUAGUARD)<br>3-in. outer dia.<br>with 2-in inner<br>dia. Sch 40<br>PVC riser. |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Remark    | 3:         |                          |             |              |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                          |                                                                                                                  |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |            |                          |             |              |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                          |                                                                                                                  |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |            |                          |             |              |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                          |                                                                                                                  |    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |            |                          |             |              |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                          |                                                                                                                  |    |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |                |                                                                                                                                                                                                                          | Boring                                                                           | No.: PZ-37D                                                                                                        |    |     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----|-----|
| Boring Log/Well Construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Loa          |                |                                                                                                                                                                                                                          |                                                                                  | Shoot: 2 of                                                                                                        | 11 |     |
| Project Name: <u>Plant Yates</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3            |                | Date Started: 04/05/2021                                                                                                                                                                                                 | Logger: <u>Grant</u>                                                             | Willford                                                                                                           |    |     |
| Project Number: <u>30086734</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              | D              | ate Completed: <u>04/16/2021</u>                                                                                                                                                                                         | _ Editor: <u>Grant</u>                                                           | Willford                                                                                                           |    |     |
| Project Location: <u>Newnan, GA</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |                | Weather C                                                                                                                                                                                                                | onditions: <u>-</u>                                                              |                                                                                                                    |    |     |
| Depth Sample Blow Recovery (feet) Interval Counts (in.) Photo Log                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PID<br>(ppm) | Graphic<br>Log | Description                                                                                                                                                                                                              |                                                                                  | Construction<br>Details                                                                                            | We | ell |
| 36       37       38         39       39       39         40       40       40         41       42       41         42       43       96         44       96       96         44       96       96         50       53       53         54       53       54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                | Cneiss (Bedrock); black and white with<br>minerals grains; geissic rock texture; ve<br>strength; fresh rock; trace partially weat<br>cobbles; little to trace red staining on<br>cobbles; some pyrite crystals observed. | little greenish gray<br>y coarse grained<br>ry strong rock<br>hered rock<br>rock | 30% solids<br>bentonite grout<br>(AQUAGUARD)<br>3-in. outer dia.<br>with 2-in inner —<br>dia. Sch 40<br>PVC riser. |    |     |
| De la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la constancia de la |              |                |                                                                                                                                                                                                                          |                                                                                  |                                                                                                                    |    |     |

| AP              | RCADI              | S to name      | at arcti          |              |              |                |                                                                                                                                                                                                                                                                         |                    | Boring               | No.: PZ-                                                                    | 37D                                                                  |    |     |
|-----------------|--------------------|----------------|-------------------|--------------|--------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------|----|-----|
| Borir           | ng Loo             | a/We           | ell Co            | nstruction l | _oq          |                |                                                                                                                                                                                                                                                                         |                    |                      | Sheet <sup>.</sup>                                                          | 4 of                                                                 | 11 |     |
| Project         | Name:              | <u>Plant</u>   | Yates             |              |              |                | Date Started: 04/05/2021                                                                                                                                                                                                                                                | _Logger:           | Grant                | Willford                                                                    |                                                                      |    |     |
| Project         | Number:            | 30086          | 6734              |              |              | D              | ate Completed: 04/16/2021                                                                                                                                                                                                                                               | _ Editor:          | <u>Grant</u>         | Willford                                                                    |                                                                      |    |     |
| Project         | Location:          | <u>Newn</u>    | ian, GA           |              |              |                | Weather C                                                                                                                                                                                                                                                               | onditions:         | -                    |                                                                             |                                                                      |    |     |
| Depth<br>(feet) | Sample<br>Interval | Blow<br>Counts | Recovery<br>(in.) | Photo Log    | PID<br>(ppm) | Graphic<br>Log | Description                                                                                                                                                                                                                                                             |                    |                      | Const<br>De                                                                 | ruction<br>tails                                                     | We | ell |
|                 |                    |                | 120               |              |              |                | Gneiss (Bedrock); black and white with<br>minerals grains; very fine grained to ver<br>mineral grains; gneissic rock texture; ve<br>strength; fresh rock; trace partially weat<br>cobbles; little to trace red staining on r<br>cobbles; some pyrite crystals observed. | ame composed zone. | h gray<br>ined<br>ck | 30% so<br>bentoni<br>(AQUAt<br>3-in. ou<br>with 2-in<br>dia. Sch<br>PVC ris | lids<br>lids re grout<br>GUARD)<br>ter dia<br>n inner<br>h 40<br>er. |    |     |
|                 |                    |                |                   |              |              |                |                                                                                                                                                                                                                                                                         |                    |                      |                                                                             |                                                                      |    |     |

|                                                                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Boring                 | No.: PZ-37D             |    |     |
|------------------------------------------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------|----|-----|
| Boring Log/Well Construction I                                   | _og                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | Sheet: 5 of             | 11 |     |
| Project Name: Plant Yates                                        |                    | Date Started: 04/05/2021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Logger: <u>Grant</u>   | Willford                |    |     |
| Project Number: <u>30080734</u><br>Project Location: Newnan, GA  | U                  | Weather C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | onditions: -           | vviillora               |    |     |
| Danth Samula Plau Pagayany                                       | DID Craphia        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        | Construction            |    |     |
| (feet) Interval Counts (in.) Photo Log                           | (ppm) Log          | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                        | Details                 | We | ell |
| Depth Sample Blow Recovery Photo Log  75 108 108  76 108  77 108 | PID Graphic<br>Log | Description         Gneiss (Bedrock); same composition above; trace to no staining on rock co         78.0-79.0 ft bgs; some staining on rock         Gneiss (Partially Weathered Rock); sate described above; partially weathered abundant red staining on rock cobbles         Gneiss (Bedrock); same composition above; trace to no red staining on rock         Gneiss (Partially Weathered Rock); sate as described above; partially weathered Rock); sate composition above; trace to no red staining on rock ables         Gneiss (Bedrock); same composition above; trace red staining on rock cobbles | as described<br>bbles. | Construction<br>Details |    |     |
|                                                                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                         |    |     |
| Remarks:                                                         |                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                        |                         |    |     |
|                                                                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                         |    |     |
|                                                                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                         |    |     |
|                                                                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                         |    |     |
|                                                                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |                         |    |     |

|                                                                                                                                                                                               |              |                |                                                                              | Borir                 | ng No.: PZ-37D                                                                                                  |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|------------------------------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------|------|
| Boring Log/Well Construction                                                                                                                                                                  | Loa          |                |                                                                              |                       | Sheet: 6 of                                                                                                     | 11   |
| Project Name: Plant Yates                                                                                                                                                                     |              |                | Date Started: 04/05/2021                                                     | _Logger: <u>Gra</u>   | nt Willford                                                                                                     |      |
| Project Number: <u>30086734</u>                                                                                                                                                               |              | D              | ate Completed: 04/16/2021                                                    | _ Editor: <u>Grai</u> | nt Willford                                                                                                     |      |
| Project Location: <u>Newnan, GA</u>                                                                                                                                                           |              | _              | Weather C                                                                    | onditions: <u>-</u>   |                                                                                                                 |      |
| Depth<br>(feet)         Sample<br>Interval         Blow<br>Counts         Recovery<br>(in.)         Photo Log                                                                                 | PID<br>(ppm) | Graphic<br>Log | Description                                                                  |                       | Construction<br>Details                                                                                         | Well |
| 94<br>95<br>96<br>97<br>98<br>98<br>99<br>98<br>102<br>98<br>99<br>100<br>100<br>100<br>101<br>102<br>103<br>104<br>104<br>104<br>105<br>108<br>108<br>108<br>108<br>108<br>108<br>108<br>108 |              |                | Gneiss (Bedrock); same composition<br>above; trace red staining on rock cobb | as described<br>ples. | 30% solids<br>bentonite grout<br>(AQUAGUARD)<br>3-in. outer dia<br>with 2-in inner<br>dia. Sch 40<br>PVC riser. |      |
|                                                                                                                                                                                               |              |                |                                                                              |                       |                                                                                                                 |      |
|                                                                                                                                                                                               |              |                |                                                                              |                       |                                                                                                                 |      |

|                                                                                                                                                                               | 12012                   |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------|
| Boring Log/Well Construction Log                                                                                                                                              | Sheet 7 of              | 11   |
| Project Name: Plant Yates Date Started: 04/05/2021 Logger: Grant                                                                                                              | t Willford              |      |
| Project Number: <u>30086734</u> Date Completed: <u>04/16/2021</u> Editor: <u>Grant</u>                                                                                        | t Willford              |      |
| Project Location: <u>Newnan, GA</u> Weather Conditions:                                                                                                                       |                         |      |
| Depth<br>(feet)         Sample<br>Interval         Blow<br>Counts         Recovery<br>(in.)         Photo Log         PID<br>(ppm)         Graphic<br>Log         Description | Construction<br>Details | Well |
| (ree)     Interval Counts     (in.)     Pindo Usig     (ppm)     Log     Log       113.                                                                                       | Details                 |      |
| Remarks:                                                                                                                                                                      |                         |      |
|                                                                                                                                                                               |                         |      |
|                                                                                                                                                                               |                         |      |
|                                                                                                                                                                               |                         |      |

|                                                                                                                                                                                                                                                               |              |                |                                                                                          | Boring                           | No.: PZ-37D                                                                                                      |      | _ |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------|------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------|------|---|
| Boring Log/Well Construction                                                                                                                                                                                                                                  | Log          |                |                                                                                          |                                  | Sheet: 8 of                                                                                                      | 11   |   |
| Project Name: <u>Plant Yates</u>                                                                                                                                                                                                                              | 0            |                | Date Started: 04/05/2021                                                                 | Logger: Grant                    | t Willford                                                                                                       |      | _ |
| Project Number: <u>30086734</u><br>Project Location: Newnan, GA                                                                                                                                                                                               |              | D              | ate Completed: <u>04/16/2021</u><br>Weather C                                            | _ Editor: <u>Grant</u>           | t Willford                                                                                                       |      | _ |
|                                                                                                                                                                                                                                                               | 1            |                |                                                                                          |                                  |                                                                                                                  |      | _ |
| Depth<br>(feet)         Sample<br>Interval         Blow<br>Counts         Recovery<br>(in.)         Photo Log                                                                                                                                                 | PID<br>(ppm) | Graphic<br>Log | Description                                                                              |                                  | Construction<br>Details                                                                                          | Well |   |
| 132     42       133     42       134     54       135     54       136     54       137     54       138     54       139     54       140     6       141     102       144     102       144     102       148     102       148     102       151     102 |              |                | Gneiss (Bedrock); same composition<br>above; little to trace red-orangish red<br>cobbles | as described<br>staining on rock | 30% solids<br>bentonite grout<br>(AQUAGUARD)<br>3-in. outer dia.<br>with 2-in inner<br>dia. Sch 40<br>PVC riser. |      |   |
|                                                                                                                                                                                                                                                               |              |                |                                                                                          |                                  |                                                                                                                  |      | _ |
|                                                                                                                                                                                                                                                               |              |                |                                                                                          |                                  |                                                                                                                  |      | - |

| AP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RCAD                |                | interestion of the second second second second second second second second second second second second second s |              |              |                |                                                                                          | Borinç                                | g No.:PZ-37D                                                                                                    |          |     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------------|-----------------------------------------------------------------------------------------------------------------|--------------|--------------|----------------|------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------|-----|
| Borir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ng Lo               | g/W            | ell Co                                                                                                          | nstruction L | _og          |                |                                                                                          |                                       | Sheet: 9 of                                                                                                     | 11       |     |
| Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Name:               | Plant          | Yates                                                                                                           |              |              |                | Date Started: 04/05/2021                                                                 | Logger: <u>Gran</u>                   | t Willford                                                                                                      |          |     |
| Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Number:<br>Location | : Newr         | <u>6734</u><br>nan, GA                                                                                          |              |              | D              | ate Completed: <u>04/16/2021</u><br>Weather C                                            | _ Editor: <u>Gran</u><br>onditions: - | t vv ilitora                                                                                                    |          |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     | Di             | -                                                                                                               |              |              |                |                                                                                          |                                       | 0 1 1                                                                                                           | <u> </u> |     |
| (feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sample              | Blow<br>Counts | Recovery<br>(in.)                                                                                               | Photo Log    | PID<br>(ppm) | Graphic<br>Log | Description                                                                              |                                       | Details                                                                                                         | We       | əll |
| (1601)<br>(1601)<br>(1601)<br>(1501)<br>(151)<br>(153)<br>(153)<br>(154)<br>(155)<br>(156)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157)<br>(157) | s:                  |                | 96                                                                                                              |              |              |                | Gneiss (Bedrock); same composition<br>above; little to trace red-orangish red<br>cobbles | very fine<br>orphyblast               | 30% solids<br>bentonite grout<br>(AQUAGUARD)<br>3-in. outer dia<br>with 2-in inner<br>dia. Sch 40<br>PVC riser. |          |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |                |                                                                                                                 |              |              |                |                                                                                          |                                       |                                                                                                                 |          |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |                |                                                                                                                 |              |              |                |                                                                                          |                                       |                                                                                                                 |          |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |                |                                                                                                                 |              |              |                |                                                                                          |                                       |                                                                                                                 |          |     |

|                   | RCAD               | IS tor note    | na artí           |              |              |                |                                                                                          | Borir                            | ng N | o.: PZ-3                                                                                                                   | 7D                                  |      |     |
|-------------------|--------------------|----------------|-------------------|--------------|--------------|----------------|------------------------------------------------------------------------------------------|----------------------------------|------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------|-----|
| Borir             | ng Lo              | a/W            | ell Co            | nstruction l | _oq          |                |                                                                                          |                                  | Sh   | leet 1                                                                                                                     | ) o                                 | f 11 |     |
| Project           | Name:              | Plant          | Yates             |              | U            |                | Date Started: 04/05/2021                                                                 | _Logger: <u>Gra</u>              | nt V | Villford                                                                                                                   |                                     |      |     |
| Project           | Number:            | <u>3008</u>    | 6734              |              |              | Da             | ate Completed: <u>04/16/2021</u>                                                         | _ Editor: <u>Gra</u>             | nt V | Villford                                                                                                                   |                                     |      |     |
| Project           | Location           | : <u>Newr</u>  | nan, GA           |              |              |                | Weather C                                                                                | onditions: <u>-</u>              |      |                                                                                                                            |                                     |      |     |
| Depth<br>(feet)   | Sample<br>Interval | Blow<br>Counts | Recovery<br>(in.) | Photo Log    | PID<br>(ppm) | Graphic<br>Log | Description                                                                              |                                  |      | Constru<br>Deta                                                                                                            | iction<br>ils                       | We   | ell |
|                   |                    | Counts         | 120<br>120        | Photo Log    | (ppm)        |                | Gniess (Bedrock); same composition<br>above; little to trace red-orangish red<br>cobbles | as described<br>staining on rock |      | 30% solid<br>bentonite<br>(AQUAG<br>3-in. oute<br>with 2-in<br>dia. Sch 4<br>PVC rised<br>Bentonit<br>(Pel-Plu<br>inch pel | e seal<br>grout JARD<br>r dia<br>r. |      |     |
| 188<br>188<br>189 |                    |                |                   |              |              |                |                                                                                          |                                  |      | Filter Pa<br>No.1 (1)                                                                                                      | ack _<br>6-40)                      |      |     |
| Remark            | s:                 |                |                   |              |              |                |                                                                                          |                                  |      |                                                                                                                            |                                     |      |     |
| 2                 |                    |                |                   |              |              |                |                                                                                          |                                  | _    |                                                                                                                            |                                     |      | _   |
|                   |                    |                |                   |              |              |                |                                                                                          |                                  |      |                                                                                                                            |                                     |      |     |
|                   |                    |                |                   |              |              |                |                                                                                          |                                  |      |                                                                                                                            |                                     |      |     |
|                   |                    |                |                   |              |              |                |                                                                                          |                                  |      |                                                                                                                            |                                     |      |     |

|                                         | RCAD               | S for name     | na andi<br>astardi |              |              |                |                                                                                          | Boring                           | No.: PZ-37D                                                                                                   |      |
|-----------------------------------------|--------------------|----------------|--------------------|--------------|--------------|----------------|------------------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------------------|------|
| Borir                                   | na Lo              | a/W            | ell Co             | nstruction L | _oa          |                |                                                                                          |                                  | Sheet: 11 of                                                                                                  | 11   |
| Project                                 | Name:              | Plant          | Yates              |              | 9            |                | Date Started: 04/05/2021                                                                 | _Logger: <u>Gran</u> t           | t Willford                                                                                                    |      |
| Project                                 | Number:            | <u>3008</u>    | 6734               |              |              | D              | ate Completed: 04/16/2021                                                                | _ Editor: <u>Grant</u>           | t Willford                                                                                                    |      |
| Project                                 | Location           | : <u>Newr</u>  | nan, GA            |              |              |                | Weather C                                                                                | onditions: <u>-</u>              |                                                                                                               |      |
| Depth<br>(feet)                         | Sample<br>Interval | Blow<br>Counts | Recovery<br>(in.)  | Photo Log    | PID<br>(ppm) | Graphic<br>Log | Description                                                                              |                                  | Construction<br>Details                                                                                       | Well |
|                                         |                    |                | 114                |              |              |                | Gneiss (Bedrock); same composition<br>above; little to trace red-orangish red<br>cobbles | as described<br>staining on rock | 3-inch outer dia.<br>with 2 inch inner<br>dia U-Pack Sch.<br>40 PVC, —<br>0.010-in slot;<br>16-40 filter pack |      |
| Remark                                  | S:                 |                |                    |              |              |                |                                                                                          |                                  |                                                                                                               |      |
|                                         |                    |                |                    |              |              |                |                                                                                          |                                  |                                                                                                               |      |
|                                         |                    |                |                    |              |              |                |                                                                                          |                                  |                                                                                                               |      |
|                                         |                    |                |                    |              |              |                |                                                                                          |                                  |                                                                                                               |      |
| · • • • • • • • • • • • • • • • • • • • |                    |                |                    |              |              |                |                                                                                          |                                  |                                                                                                               |      |

|                   |                      |                |                     | W                     | ELL DEVELOPMENT LO     |
|-------------------|----------------------|----------------|---------------------|-----------------------|------------------------|
| Project No.       |                      |                |                     |                       | Well 1D P2-370         |
| Site Location     | lant Yates           |                |                     |                       |                        |
| Evacuation Dat    | a:                   |                |                     |                       |                        |
| Depth to bottom   | of well (ft bls      | , 200, 2       | 8 Casi              | ng stick-up above     | e concrete (feet) 2.44 |
| Depth to water t  | from top of cas      | sing 5.906+    | oc(ft) Scre         | ened Interval (ft     | bls) 140-200           |
| Water Column      | 194.3 (ft) G         | allons in well | 31.09 Casi          | ing Diameter:         | 2`                     |
| Casing Volume     | <u>1"=0.04 gal g</u> | al/ft, 2"=0.16 | gal/ft              |                       |                        |
| pit i cup o       | n porsing a          |                | <u></u>             | Specific              | i                      |
| Date/Time         | Gallons<br>Removed   | pH/cap         | Temperature<br>(°C) | Conductance           | Appearance/            |
| 4/2010224<br>08AD | 0.1                  | 7.97/1761      | 15.44.99            | (µ11110s/cm)<br>195.1 | Indial inster amilian  |
| 1008              | ~0.5                 | /              | /                   | /                     | WL after instilling    |
| 1015              | 1.25                 | 7.71/70.7      | 169                 | 461.2                 | Clear /0.25            |
| PLOI              | 3.5                  | /              | /                   | /                     | Incrused 1. 56th       |
| 1030              | 12.5                 | 7.91/-17:0     | 17.5/0.54           | 411.5                 | Clear/1.5GPM           |
| 1035              | 20                   | 7.987-33.3     | 17.7/0.69           | 350.7                 | Clear /1. St. Pm       |
| 1042              | 27                   | 301/23.1       | 10.2/0.71           | 297.6                 | Clear 1.06PM           |
| 1050              | 30                   | 804/10.0       | 185/0.63            | 329.7                 | Clear Superiodo D.     |
| 1055              | 32-5312              | 7.93/13.0      | 10.6/0.59           | 380.9                 | Clear 10 5500          |
| 1120              | 37.50                | 7.87/41.0      | 19.1/0.47           | 478.3                 | Clear/ 0.25G           |
| 1125              | 38.75                | 7.88/45.9      | 19.3/0.43           | 477.5                 | clear/0.2561           |
| 1130              | 40                   | 7.86/520       | 19.3/0.42           | 485.9                 | Ueur/0.256A            |
| -1135             |                      |                | /                   |                       | Increased they         |
| 1154              | NSD.79               |                |                     |                       | Punport                |
| Prepared By       | 60 0                 | irmt Wi        | llcord              | Date                  | 4/20/2021              |
|                   |                      |                |                     |                       |                        |

|                 |                         |              |                      |                           | WELL DEWELUPMENT       |
|-----------------|-------------------------|--------------|----------------------|---------------------------|------------------------|
| Project No      |                         |              |                      |                           | Well ID 12-370         |
| Site Location   | Plant YA                | 45           |                      |                           |                        |
| Evacuation D    | ata:                    |              |                      |                           |                        |
| Depth to botto  | m of well (ft bls       | )_200.       | 18 Cas               | sing stick-up abov        | e concrete (feet) _2.4 |
| Depth to water  | from top of cas         | ing 5.91     | 36 for Scr           | eened Interval (ft        | bls) 190-200           |
| Water Column    | <u>194-3</u> (ft) G     | allons in we | 11_ <u>31.09</u> Cas | ing Diameter:             | 2"                     |
| Casing Volume   | e <u>1"=0.04 gal ga</u> | 1/ft, 2"=0.1 | 6 gal/ft             |                           |                        |
|                 |                         |              | 1_                   | Specific                  | 1                      |
| Date/Time       | Gallons<br>Removed      | рН           | Temperature<br>(°C)  | Conductance<br>(µmhos/cm) | Appearance             |
| 1200            | ~50.79                  | 1            |                      | /                         | monitor recharge       |
| 1205            |                         | /            | 1                    | /                         | ł                      |
| 1210            |                         | 1            |                      | /                         |                        |
| 1215            |                         | /            |                      | /                         |                        |
| 1312            | /                       | /            |                      | /                         |                        |
|                 |                         | /            |                      | ~                         |                        |
|                 |                         |              | -in                  |                           |                        |
|                 | X                       | 10           |                      |                           | ÷                      |
|                 | 900                     |              | 1/2 2                |                           |                        |
|                 | /                       |              | 1/ 20120             | 21                        |                        |
|                 |                         |              |                      |                           |                        |
|                 |                         |              |                      |                           |                        |
| $\neg \uparrow$ |                         |              |                      |                           |                        |
|                 |                         |              |                      |                           |                        |
|                 |                         |              |                      |                           |                        |
| red By G        | rant W?                 | Ilford       |                      | Date                      | 4/20/2021              |

C:\Users\blovgren\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Outlook\9ATF5P3H\Well development\_log.doc



Well Survey Report





Ms. Lauren Coker Southern Company Environmental Solutions 241 Ralph McGill Blvd, NE Atlanta, GA 30308

<sup>Subject:</sup> Piezometer Survey – PZ-37D Plant Yates, 708 Dyer Road, Newnan, Georgia

Dear Ms. Coker:

Attached is a copy of the survey report for Piezometer PZ-37D at Plant Yates.

We appreciate the opportunity to work with Georgia Power and look forward to working with you in the future. If you need additional information, please feel free to contact me.

Sincerely,

Arcadis U.S., Inc.

SW-

A. Cory Williams, RLS Survey Department Manager

Attachments

Copies: Geoffrey Gay, PE Arcadis U.S., Inc. 1210 Premier Drive Suite 200 Chattanooga Tennessee 37421 Tel 423 756 7193 Fax 423 756 7197 www.arcadis-us.com

<sup>Date:</sup> May 11, 2021

Contact: Cory Williams, RLS

Phone: 919.415.2348

Email: cory.williams@arcadis.com

Our ref: 30086734

## **DESCRIPTION AND SCOPE**

Arcadis performed horizontal and vertical field survey locations of the existing well networks, including all monitoring wells and piezometers. The Arcadis field survey team obtained horizontal and vertical locations for the top of the well casing (TOC) and surveyed the nail located on the concrete pad around the well. Where no nail was present, the field crew surveyed the top of the concrete well pad.

The Arcadis field team utilized a combination of Leica GS16 Global Positioning System (GPS) with traditional Leica MS60 Robotic Total Station field survey equipment and methods to obtain horizontal locations of the TOC and/or nail or top of the concrete well pad. All horizontal field survey locations are relative to the Georgia State Plane Coordinate System, West Zone, NAD1983, US Survey Feet. All horizontal locations meet or exceed an accuracy level of 0.50 foot. All vertical field survey locations were obtained from a level loop, performed with the Leica DNA03 digital level.

Next, we began from a benchmark set by utilizing GPS Static Session with an OPUS solution and subsequently verified via the eGPS RTN Network and ran through all well and piezometer locations to close on the beginning benchmark to confirm accuracy. All vertical elevations are referenced to NAVD1988, US Survey Feet and meet an accuracy standard of 0.01 foot.

See the attached exhibit detailing the surveyed location for Piezometer PZ-37D.

## CERTIFICATION

I, A. Cory Williams, being a Georgia Licensed Professional Land Surveyor, in accordance with the Georgia Board of Professional Engineers and Land Surveyors do hereby certify that the information contained herein is true and correct and has been prepared in accordance with generally accepted good land survey practices under my supervision, and the data is reliable to a horizontal accuracy of 0.5 foot and an elevational accuracy of 0.01 foot for each surveyed point.

FINAL REVIEW:

A. Cory Williams, RLS

DATE: May 11, 2021

ORG

A. Cory Williams, RLS 1210 Premier Drive, Suite 200 Chattanooga, TN 37421 919.415.2348



#### **EXHIBIT 1**

## Plant Yates – AMA Monitoring Well and Piezometer Surveys

|            | Concrete   |           | Georgia State Plane Grid<br>(NAD83), West Zone |            |                   |                   |
|------------|------------|-----------|------------------------------------------------|------------|-------------------|-------------------|
| Monument   | Base Point | Elevation | Northing                                       | Easting    | WGS84 Latitude    | Longitude         |
| PZ-37D     | Casing     | 761.12    | 1256478.32                                     | 2074688.08 | 33° 27' 07.578" N | 84° 53' 39.058" W |
| (added May | Disk       | 758.87    | 1256479.07                                     | 2074688.90 |                   |                   |
| 2021)      | Ground     | 758.8     |                                                |            |                   |                   |

Notes:

NAD83(2011) coordinates established by utilizing eGPS VRS & OPUS Solutions

Elevations derived from Arcadis BM#1 (El. 758.24)

Elevations & coordinates are U.S. Survey feet



Arcadis U.S., Inc.

2839 Paces Ferry Road Suite 900 Atlanta, Georgia 30339 Tel 770 431 8666 Fax 770 435 2666

www.arcadis.com

## **APPENDIX D**

Analytical Laboratory Data and Validation Reports (February and March 2021)

2021 Semiannual Groundwater and Corrective Action Report Plant Yates AP-3, A, B, B' and R6 CCR Landfill Newnan, GA

# February 2021

Annual Assessment Event





## Georgia Power Co. – Plant Yates

## **DATA REVIEW**

Metals, Radium, and General Chemistry Analyses SDGs # 92521564, 92521572, 92521574 and 92521583

Analyses Performed By: Pace Analytical Services – Asheville, North Carolina Pace Analytical Services – Peachtree Corners, Georgia Pace Analytical Services – Greensburg, Pennsylvania

Report #41026R Review Level: Tier II Project: 30052922.00004

## **SUMMARY**

This data quality assessment summarizes the review of Sample Delivery Groups (SDGs) # 92521564, 92521572, 92521574 and 92521583 for samples collected in association with the Georgia Power Company – Plant Yates. The review was conducted as a Tier II evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the chain of custody form and a table summarizing the data validation qualifiers. Analyses were performed on the following samples:

|          |           |                            |        | Sample             |               | Analysis |     |             |
|----------|-----------|----------------------------|--------|--------------------|---------------|----------|-----|-------------|
| SDG      | Sample ID | Lab ID                     | Matrix | Collection<br>Date | Parent Sample | RAD      | MET | GEN<br>CHEM |
|          | YGWC-38   | 92521564-1<br>92521574-1   | Water  | 02/09/21           |               | х        | Х   | Х           |
|          | YGWC-41   | 92521564-2<br>92521574-2   | Water  | 02/10/21           |               | х        | Х   | Х           |
|          | YGWC-42   | 92521564-3<br>92521574-3   | Water  | 02/10/21           |               | х        | Х   | х           |
|          | YGWC-43   | 92521564-4<br>92521574-4   | Water  | 02/09/21           |               | x        | х   | х           |
| 92521564 | EB-01     | 92521564-5<br>92521574-5   | Water  | 02/10/21           |               | x        | х   | х           |
| 92521574 | YGWC-23S  | 92521564-6<br>92521574-6   | Water  | 02/09/21           |               | x        | Х   | х           |
|          | YGWC-49   | 92521564-7<br>92521574-7   | Water  | 02/09/21           |               | х        | Х   | Х           |
|          | YGWC-24SA | 92521564-8<br>92521574-8   | Water  | 02/09/21           |               | х        | Х   | Х           |
|          | DUP-02    | 92521564-9<br>92521574-9   | Water  | 02/09/21           | YGWC-24SA     | х        | Х   | х           |
|          | YGWC-36A  | 92521564-10<br>92521574-10 | Water  | 02/10/21           |               | х        | Х   | х           |
|          | PZ-37     | 92521572-1<br>92521583-1   | Water  | 02/09/21           |               | х        | Х   | х           |
| 92521572 | YAMW-2    | 92521572-3<br>92521583-3   | Water  | 02/09/21           |               | x        | х   | х           |
| 92521583 | YAMW-4    | 92521572-4<br>92521583-4   | Water  | 02/09/21           |               | x        | х   | х           |
|          | YAMW-5    | 92521572-5<br>92521583-5   | Water  | 02/09/21           |               | x        | х   | х           |
| 92521572 | YAMW-1    | 92521572-6                 | Water  | 02/09/21           |               | х        | х   | Х           |

|          |           |                          |        | Sample             |               | Analysis |     |             |
|----------|-----------|--------------------------|--------|--------------------|---------------|----------|-----|-------------|
| SDG      | Sample ID | Lab ID                   | Matrix | Collection<br>Date | Parent Sample | RAD      | MET | GEN<br>CHEM |
| 92521583 |           | 92521583-6               |        |                    |               |          |     |             |
|          | PZ-35     | 92521572-7<br>92521583-7 | Water  | 02/10/21           |               | х        | х   | х           |

Notes:

- 1. Metals were performed by Pace Analytical Services Peachtree Corners, Georgia.
- 2. Anions (fluoride) analysis performed by Pace Analytical Services Asheville, North Carolina.
- 3. Radium analysis performed by Pace Analytical Services Greensburg, Pennsylvania.
- 4. pH analysis performed as a field measurement.

#### ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

|     |                                                     | Reported |     | Performance<br>Acceptable |     | Not      |  |
|-----|-----------------------------------------------------|----------|-----|---------------------------|-----|----------|--|
|     | Items Reviewed                                      | No       | Yes | No                        | Yes | Required |  |
| 1.  | Sample receipt condition                            |          | Х   |                           | Х   |          |  |
| 2.  | Requested analyses and sample results               |          | Х   |                           | Х   |          |  |
| 3.  | Master tracking list                                |          | Х   |                           | Х   |          |  |
| 4.  | Methods of analysis                                 |          | Х   |                           | Х   |          |  |
| 5.  | Reporting limits                                    |          | Х   |                           | Х   |          |  |
| 6.  | Sample collection date                              |          | Х   |                           | Х   |          |  |
| 7.  | Laboratory sample received date                     |          | Х   |                           | Х   |          |  |
| 8.  | Sample preservation verification (as applicable)    |          | Х   |                           | Х   |          |  |
| 9.  | Sample preparation/extraction/analysis dates        |          | Х   |                           | Х   |          |  |
| 10. | Fully executed Chain-of-Custody (COC) form          |          | Х   |                           | Х   |          |  |
| 11. | Narrative summary of QA or sample problems provided |          | Х   |                           | Х   |          |  |
| 12. | Data Package Completeness and Compliance            |          | Х   |                           | Х   |          |  |

Note:

QA - Quality Assurance

#### **INORGANIC ANALYSIS INTRODUCTION**

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Methods 6010D, 6020B, 9315, and 9320; Standard Method (SM) SM4500-H+ B and USEPA Method 300.0. Data were reviewed in accordance with USEPA Region IV Data Validation Standard Operating Procedures for Contract Laboratory Program Inorganic Data by Inductively Coupled Plasma–Atomic Emission Spectroscopy and Inductively Coupled Plasma–Mass Spectroscopy (September 2011, Rev. 2), USEPA Region IV Data Validation Standard Operating Procedures for Contract Laboratory Program Mercury Data by Cold Vapor Atomic Absorption (September 2011, Rev. 2), and the National Functional Guidelines for Inorganic Superfund Methods Data Review (January2017).

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and that it was already subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with the USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
  - U The analyte was analyzed for but not detected. The associated value is the analyte instrument detection limit.
  - J The reported value was obtained from a reading less than the reporting limit (RL), but greater than or equal to the method detection limit (MDL).
- Quantitation (Q) Qualifiers
  - E The reported value is estimated due to the presence of interference.
  - N Spiked sample recovery is not within control limits.
  - \* Duplicate analysis is not within control limits.
- Validation Qualifiers
  - J The analyte was positively identified; however, the associated numerical value is an estimated concentration only.
  - UJ The analyte was not detected above the reported sample detection limit. However, the reported limit is approximate and may or may not represent the actual limit of detection.
  - UB Analyte considered non-detect at the listed value due to associated blank contamination.
  - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

#### METALS ANALYSES

## 1. Holding Times

The specified holding times for the following methods are presented in the following table.

| Method                | Matrix | Holding Time                         | Preservation                                        |
|-----------------------|--------|--------------------------------------|-----------------------------------------------------|
| SW-846<br>6010D/6020B | Water  | 180 days from collection to analysis | Cool to <6°C; preserved to a pH of less than 2 s.u. |
| SW-846 7470A          | Water  | 28 days from collection to analysis  | Cool to <6°C; preserved to a pH of less than 2 s.u. |

Note:

s.u. = Standard units

All samples were analyzed within the specified holding times.

## 2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

All compounds associated with the QA blanks exhibited a concentration less than the MDL, with the exception of the compounds listed in the following table. Sample results associated with QA blank contamination that were greater than the BAL resulted in the removal of the laboratory qualifier (B) of data. Sample results less than the BAL associated with the following sample locations were qualified as listed in the following table.

| Sample<br>Locations | Analytes  | Sample Result                                                                  | Qualification  |
|---------------------|-----------|--------------------------------------------------------------------------------|----------------|
| YGWC-41             |           |                                                                                |                |
| YGWC-42             | Lead (EB) | Detected sample results <rl <bal<="" and="" td=""><td>"UB" at the RL</td></rl> | "UB" at the RL |
| YGWC-36A            |           |                                                                                |                |

Note:

EB = Equipment blank

RL = Reporting limit

MB = Method Blank

## 3. Matrix Spike/Matrix Spike Duplicate (MS/MSD)/Laboratory Duplicate Analysis

MS/MSD and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

## 3.1 MS/MSD Analysis

All metal analytes must exhibit a percent recovery within the established acceptance limits of 75% to 125%. The MS recovery control limits do not apply for MS performed on sample locations where the analyte's concentration detected in the parent sample exceeds the MS concentration by a factor of four or greater.

The MS/MSD performed on samples YGWC-38 and PZ-37 exhibited recoveries and RPDs within the control limits.

## 3.2 Laboratory Duplicate Analysis

The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the RL. A control limit of 20% for water matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of one times the RL is applied for water matrices.

MS/MSD analysis was performed in replacement of the laboratory duplicate analysis. The MS/MSD recoveries exhibited acceptable RPD.

## 4. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 35% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

| Sample ID/Duplicate ID | Analyte   | Sample<br>Result | Duplicate<br>Result | RPD |
|------------------------|-----------|------------------|---------------------|-----|
|                        | Barium    | 0.031            | 0.030               | AC  |
|                        | Beryllium | 0.00013 J        | 0.00014 J           | AC  |
| YGWC-24SA / DUP-02     | Chromium  | 0.0011 J         | 0.0013 J            | AC  |
|                        | Lead      | 0.00036 J        | 0.00036 J           | AC  |

Results for duplicate samples are summarized in the following table.

Note:

AC = Acceptable

The RPD between the parent samples and the field duplicate samples were acceptable.

## 5. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The analytes associated with the LCS analysis must exhibit a percent recovery between the control limits of 80% and 120%.

The LCS analysis exhibited recoveries within the control limits.

## 6. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

## DATA VALIDATION CHECKLIST FOR METALS

| METALS: SW-846 6010D/6020B/7470A                        |            | Reported |    | mance<br>ptable | Not      |  |
|---------------------------------------------------------|------------|----------|----|-----------------|----------|--|
|                                                         |            | Yes      | No | Yes             | Required |  |
| Inductively Coupled Plasma-Atomic Emission Spectrometer | ry (ICP-AE | S)       |    |                 |          |  |
| Inductively Coupled Plasma-Mass Spectrometry (ICP-MS)   | 1          |          |    |                 |          |  |
| Atomic Absorption – Manual Cold Vapor (CV)              |            |          |    |                 |          |  |
| Tier II Validation                                      |            |          |    |                 |          |  |
| Holding Times                                           |            | Х        |    | Х               |          |  |
| Reporting limits (units)                                |            | Х        |    | Х               |          |  |
| Blanks                                                  |            |          |    |                 |          |  |
| A. Method Blanks                                        |            | Х        |    | Х               |          |  |
| B. Equipment/Field Blanks                               |            | Х        | Х  |                 |          |  |
| Laboratory Control Sample (LCS) %R                      |            | Х        |    | Х               |          |  |
| Matrix Spike (MS) %R                                    |            | Х        |    | Х               |          |  |
| Matrix Spike Duplicate (MSD) %R                         |            | Х        |    | Х               |          |  |
| MS/MSD Precision (RPD)                                  |            | х        |    | х               |          |  |
| Field/Lab Duplicate (RPD)                               |            | Х        |    | Х               |          |  |
| Reporting Limit Verification                            |            | Х        |    | Х               |          |  |
| Notes:                                                  |            |          |    |                 |          |  |

%R Percent recovery

RPD Relative percent difference

#### GENERAL CHEMISTRY ANALYSES

## 1. Holding Times

The specified holding times for the following methods are presented in the following table.

| Method                  | Matrix | Holding Time                        | Preservation |
|-------------------------|--------|-------------------------------------|--------------|
| pH by SM4500-H+ B       | Water  | ASAP                                | Cool to <6°C |
| Fluoride by USEPA 300.0 | Water  | 28 days from collection to analysis | Cool to <6°C |

All samples were analyzed within the specified holding times.

## 2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Analytes were not detected above the MDL in the associated blanks; therefore, detected sample results were not associated with blank contamination.

## 3. Matrix Spike/Matrix Spike Duplicate (MS/MSD)/Laboratory Duplicate Analysis

MS/MSD and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

#### 3.1 MS/MSD Analysis

All analytes must exhibit a percent recovery within the established acceptance limits of 75% to 125%. The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the analyte's concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater. In instance where this is true, the data will not be qualified even if the percent recovery does not meet the control limits and the laboratory flag will be removed.

The MS/MSD performed on sample DUP-02 for the fluoride analysis exhibited recoveries and RPDs within the control limits.

All analytes associated with MS/MSD recoveries were within control limits with the exception of the following analyte present in the table below.

| Sample Location | Analyte  | MS Recovery | MSD Recovery |
|-----------------|----------|-------------|--------------|
| YGWC-38         | Fluoride | 146%        | 142%         |

The criteria used to evaluate the MS/MSD recoveries are presented in the following table. In the case of an MS/MSD deviation, the sample results are qualified as documented in the table below.

| Control limit                      | Sample Result | Qualification |  |
|------------------------------------|---------------|---------------|--|
|                                    | Non-detect    | UJ            |  |
| MS/MSD percent recovery 30% to 74% | Detect        | J             |  |
|                                    | Non-detect    | R             |  |
| MS/MSD percent recovery <30%       | Detect        | J             |  |
|                                    | Non-detect    | No Action     |  |
| MS/MSD percent recovery >125%      | Detect        | J             |  |

## 3.2 Laboratory Duplicate Analysis

The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the RL. A control limit of 20% for water matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of one times the RL is applied for water matrices.

Laboratory duplicate analysis was not performed using a sample from this SDG.

## 4. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 35% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

Results for duplicate samples are summarized in the following table.

| Sample ID/Duplicate ID | Analyte  | Sample Duplicate<br>Result Result |        | RPD |
|------------------------|----------|-----------------------------------|--------|-----|
| YGWC-24SA / DUP-02     | Fluoride | 0.10 U                            | 0.10 U | AC  |

Notes:

AC = Acceptable

The RPD between the parent samples and the field duplicate samples were acceptable.

## 5. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The analytes associated with the LCS analysis must exhibit a percent recovery between the control limits of 80% and 120%.

The LCS analysis exhibited recoveries within the control limits.

## 6. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

### DATA VALIDATION CHECKLIST FOR GENERAL CHEMISTRY

| General Chemistry: SM4500-H+ B and | Reported |     | Performance<br>Acceptable |     | Not      |
|------------------------------------|----------|-----|---------------------------|-----|----------|
| USEPA 300.0                        | No       | Yes | No                        | Yes | Required |
| Miscellaneous Instrumentation      |          |     |                           |     |          |
| Tier II Validation                 |          |     |                           |     |          |
| Holding times                      |          | х   |                           | Х   |          |
| Reporting limits (units)           |          | х   |                           | Х   |          |
| Blanks                             |          |     |                           |     |          |
| A. Method Blanks                   |          | х   |                           | x   |          |
| B. Equipment blanks                |          | Х   |                           | Х   |          |
| Laboratory Control Sample (LCS) %R |          | Х   |                           | Х   |          |
| Matrix Spike (MS) %R               |          | Х   | Х                         |     |          |
| Matrix Spike Duplicate (MSD) %R    |          | Х   | Х                         |     |          |
| MS/MSD Precision (RPD)             |          | Х   |                           | Х   |          |
| Field/Lab Duplicate (RPD)          |          | Х   |                           | Х   |          |
| Dilution Factor                    |          | Х   |                           | Х   |          |
| Moisture Content                   | Х        |     |                           |     | Х        |
| Notes:                             |          |     |                           |     |          |

%R Percent recovery

RPD Relative percent difference

#### RADIOLOGICAL ANALYSES

## 1. Holding Times

The specified holding times for the following methods are presented in the following table.

| Method                       | Matrix | Holding Time                         | Preservation                          |
|------------------------------|--------|--------------------------------------|---------------------------------------|
| Radium-226 by SW-846<br>9315 | Water  | 180 days from collection to analysis | Preserved to a pH of less than 2 s.u. |
| Radium-228 by SW-846<br>9320 | Water  | 180 days from collection to analysis | Preserved to a pH of less than 2 s.u. |

Note:

s.u. = Standard units

All samples were analyzed within the specified holding times.

## 2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and field/rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Field/rinse blanks measure contamination of samples during field operations.

Blank results should be verified to be accurately reported and that tolerance limits (+/- 2 sigma or standard deviation) were not exceeded; and blank results verified to be less than the reporting limit (RL) of 1 pCi/L.

For blanks to be considered not applicable, verify net blank results are less than the associated uncertainty by evaluating the blank results based on the following three criteria. If either of these criteria is true, the blank is considered not suspect of contamination (or non-detect).

- 1. Is the blank result less than the uncertainty and less than the minimum detectable concentration (MDC)?
- 2. Does the blank have an uncertainty greater than the result (or indistinguishable from background) or does the blank result fall between its uncertainty and its MDC?

If the blank QC results fall outside the appropriate tolerance limits or if the net blank results are not less than the associated uncertainty, the following equation for normalized absolute difference (NAD) should be used in determining the effect of possible blank contamination on the sample results:

Normalized absolute difference  $_{MethodBlank} = \frac{|Sample - Blank|}{\sqrt{(U_{Sample})^2 + (U_{Blank})^2}}$ 

Where:

 $U_{Sample}$  = uncertainty of the sample  $U_{Blank}$  = uncertainty of the blank Sample = concentration of isotope in sample Blank = concentration of isotope in blank

| Normalized Absolute Difference | Qualification |
|--------------------------------|---------------|
| > 2.58                         | None          |
| 1.96 > x < 2.58                | J             |
| x < 1.96                       | J*            |

\*= Minimally the result should be qualified as estimated, J; however, if other quality indicators are deficient the validator may determine the result should be qualified as rejected, R

Radium-228, Radium-226, and total Radium were detected in the QA blanks, however, the activities were measured as less than the uncertainty and MDC or between the uncertainty and MDC as described above. Hence, the blank results are considered non-detect and no qualification of the results was required.

## 3. Matrix Spike (MS)/Laboratory Duplicate Analysis

MS and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

## 3.1 MS Analysis

MS samples are not typically analyzed for gamma spectral content due to the inability of the laboratory to homogenize spike material with the sample.

If performed, the spike analysis must exhibit a percent recovery within the control limits of 70% to 130%. The MS recovery control limits do not apply for MS performed on sample locations where the analyte's concentration detected in the parent sample exceeds the MS concentration by a factor of four or greater. In instance where this is true, the data will not be qualified even if the percent recovery does not meet the control limits.

In the event the recovery is outside of this limit, a numerical indicator to make assessments is calculated, with a limit of < +/-3 sigma for either.

The numerical performance indicator for a matrix spike sample is calculated by:

$$Z_{MS} = \frac{x - x_0 - c}{\sqrt{u^2(x) + u^2(x_0) + u^2(c)}}$$

Where:

x = measured concentration of the spiked sample.

 $x_0$  = measured concentration of the unspiked sample.

c = spike concentration added.

 $u^{2}(x)$ ,  $u^{2}(x0)$ ,  $u^{2}(c)$  = the squares of the respective standard uncertainties of these values.

MS performance for all matrices is acceptable when the numerical performance indicator calculation yields a value between +/-3 sigma. Warning limits have been established as +/- 2 sigma.

The MS/MSD performed on sample YGWC-38 exhibited recoveries and RPDs within the control limits.

## 3.2 Laboratory Duplicate Analysis

Duplicate analyses are indicators of laboratory precision based on each sample matrix. For replicate analysis results to be considered in agreement the duplicate error ratio (DER) must be less than 2.13. In the event the DER is outside of the limit of 2.13, a numerical indicator to make assessments is calculated, with a limit of +/- 3 sigma or standard deviation.

The numerical performance indicator for laboratory duplicates is calculated by:

$$Z_{\text{Dup}} = \frac{x_1 - x_2}{\sqrt{u^2(x_1) + u^2(x_2)}}$$

Where:

 $x_1$ ,  $x_2$  = two measured activity concentrations.

 $u^{2}(x_{1})$ ,  $u^{2}(x_{2})$  = the combined standard uncertainty of each measurement squared.

Duplicate sample performance is acceptable when the numerical performance indicator calculation yields a value between +/- 3 sigma. Warning limits have been established as +/- 2 sigma.

A laboratory duplicate was not included in the data package.

## 4. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. There are no specific review criteria for radiological field replicate analyses comparability. The degree of agreement between these replicates is to be used in conjunction with all of the remaining quality control results as an aid in the decision as to the overall quality of the data. Data are not to be qualified due to field replicates alone. To determine the level of agreement between the replicates, the following guidelines have been established:

For all analyses in soil matrices, data should be considered in agreement if results are within a factor of four of each other. Data between a factor of four and five of each other should be considered as a minor discrepancy and data greater than a factor of five should be considered a major discrepancy.

The field duplicate sample analysis is used to assess the overall precision of the field sampling procedures and analytical method. For results greater than five times the MDC, a control limit of 35 percent for water matrices is applied to the RPD between the parent and field duplicate sample results. If the parent and field duplicate sample results are less than five times the MDC, for water matrices a control limit of two times the MDC is applied to the difference between the results.

The field duplicate sample results are summarized in the following table.

| Sample ID/Duplicate ID | Analyte      | Sample Result   | Duplicate Result | RPD |  |
|------------------------|--------------|-----------------|------------------|-----|--|
| YGWC-24SA / DUP-02     | Radium-226   | 0.100 +/-0.114  | 0.153 +/-0.130   |     |  |
|                        | Radium-228   | 0.578 +/- 0.379 | 0.310 +/- 0.321  | AC  |  |
|                        | Total Radium | 0.678 +/- 0.493 | 0.463 +/- 0.451  |     |  |

Notes:
#### DATA REVIEW REPORT

| Sample ID/Duplicate ID | Analyte | Sample Result | Duplicate Result | RPD |
|------------------------|---------|---------------|------------------|-----|
|------------------------|---------|---------------|------------------|-----|

AC = Acceptable

The RPD between the parent samples and the field duplicate samples were acceptable.

# 5. Tracer or Carrier

Tracers and carriers are used in radiological separation methods to provide evaluation of chemical separation. Chemical yield is evaluated through the recovery of chemical species spiked into samples. Yield is evaluated radiometrically with a tracer and gravimetrically with a carrier. A control limit of 30% to110% is applied to each sample spiked with either a carrier and/or a tracer.

The tracer and carrier analyses exhibited recoveries within the control limits.

# 6. Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) Analysis

The LCS/LCSD analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The analytes associated with the LCS/LCSD analysis must exhibit a percent recovery between the control limits of 60% to 135%. In the event the recovery is outside of this limit, a numerical indicator to make assessments is calculated, with a limit of +/- 3 sigma.

The numerical performance indicator for a laboratory control sample is calculated

by:

$$Z_{LCS} = \frac{x-c}{\sqrt{u^2(x) + u^2(c)}}$$

Where:

x = Analytical result of the LCS

c = Known concentration of the LCS

 $u^{2}(x)$  = combined standard uncertainty of the result squared.

 $u^{2}(c)$  = combined standard uncertainty of the LCS value squared.

LCS performance is acceptable when the numerical performance indicator calculation yields a value between +/- 3 sigma. Warning limits have been established as +/- 2 sigma.

The LCS/LCSD analysis exhibited recoveries within the control limits.

## 7. Isotope Identification

For sample results to be considered "non-detect", evaluate data based on the following two criteria. If either one of these criteria is true, the sample result is considered "non-detect".

- 1. Sample result is less than the uncertainty and less than the MDC/MDA; or
- 2. Sample has an uncertainty greater than the result (or indistinguishable from background) or result falls between its uncertainty and its MDC/MDA.

Based on the above criteria sample results should be considered non-detect as follows:

#### DATA REVIEW REPORT

- YGWC-38 Radium 228 and Total Radium
- YGWC-41 Radium 226, Radium 228 and Total Radium
- YGWC-42 Radium 226, Radium 228 and Total Radium
- EB-01 Radium 226, Radium 228 and Total Radium
- YGWC-23S Radium 226, Radium 228 and Total Radium
- YGWC-49 Radium 226, Radium 228 and Total Radium
- YGWC-24SA Radium 226, Radium 228 and Total Radium
- DUP-02 Radium 226, Radium 228 and Total Radium
- YGWC-36A Radium 226, Radium 228 and Total Radium
- YAMW-2 Radium 226, Radium 228 and Total Radium
- YAMW-4 Radium 226, Radium 228 and Total Radium
- YAMW-5 Radium 228 and Total Radium
- YAMW-1 Radium 226, Radium 228 and Total Radium
- PZ-35 Radium 226, Radium 228 and Total Radium

## 8. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

# DATA REVIEW REPORT

# DATA VALIDATION CHECKLIST FOR RADIOLOGICALS

| RADIOLOGICALS: SW-846 9315/9320            | Repo | orted | Perfor<br>Acce | mance<br>ptable | Not      |
|--------------------------------------------|------|-------|----------------|-----------------|----------|
|                                            | No   | Yes   | No             | Yes             | Required |
| Gas-Flow Proportional System               |      |       |                |                 |          |
| Tier II Validation                         |      |       |                |                 |          |
| Holding Times                              |      | Х     |                | Х               |          |
| Activity, +/- uncertainty, MDC/MDA         |      | Х     |                | Х               |          |
| Blanks                                     |      |       |                |                 |          |
| A. Method Blanks                           |      | Х     |                | Х               |          |
| B. Equipment/Field Blanks                  |      | Х     |                | Х               |          |
| Carrier (Surrogate) %R                     |      | Х     |                | Х               |          |
| Tracer (Surrogate) %R                      |      | Х     |                | Х               |          |
| Laboratory Control Sample (LCS)            |      | Х     |                | Х               |          |
| Laboratory Control Sample Duplicate (LCSD) |      | Х     |                | Х               |          |
| LCS/LCSD Precision (RPD)                   |      | Х     |                | Х               |          |
| Matrix Spike (MS) %R                       |      | Х     |                | Х               |          |
| Matrix Spike Duplicate (MSD) %R            |      | Х     |                | Х               |          |
| MS/MSD Precision (RPD)                     |      | Х     |                | Х               |          |
| Field/Lab Duplicate (RPD)                  |      | X     |                | Х               |          |

Notes:

%R Percent recovery

RPD Relative percent difference

VALIDATION PERFORMED BY: Rachelle Borne

SIGNATURE:

Jachule Band

DATE: May 14, 2021

PEER REVIEW: Jennifer Singer

DATE: May 18, 2021

# CHAIN OF CUSTODY / DATA QUALIFIER SUMMARY TABLE



|                                                                                        |                 | YANC-235  | FR-01/12/1021) | VGWC-43       | S YGWC-12      | YGWC41        | YGWC-38       | Year I I              | The vourse of the state | SAMPLE ID<br>One Character per box.<br>(AZ, 049 /,-          |               |              | Sheard Dive Date:              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Aress: 1070 Bridge Mitt Ave<br>nton. GA 30114 | mpany: Georgia Power     | guined Client Information:                  | / Pace Analytical  |
|----------------------------------------------------------------------------------------|-----------------|-----------|----------------|---------------|----------------|---------------|---------------|-----------------------|-------------------------|--------------------------------------------------------------|---------------|--------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------|---------------------------------------------|--------------------|
| s, -                                                                                   | Kate Apprenc    | 2.4.21 HI |                | WT 2.7.11 153 | M 1012 M       | WT (2102) 132 | WT 2-9-41 139 | ک <del>ررا</del> پر ک | WT 2+0-1-04-            | MATRIX CODE (see valid cod<br>SAMPLE TYPE (G=GRAB C<br>D)    | Second        | jrojeca s:   | Project Name: Yates R6         | Purchase Order #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Copy To:                                      | Report To: Becky Steever | Section B<br>Bactional Breaker Informations |                    |
| SER RAME AND BRANTINE AND REAL THAN OF SAMPLER: Y (H)                                  | 2 2:10:21 11512 |           |                | 4/1           | <u>И</u> Н И/И | S<br>F        |               | 6                     |                         | AMPLE TEMP AT COLLECTIC<br># OF CONTAINERS<br>Unpreserved    |               | Pace Profi   | Page Proje                     | Address:<br>Pace Quo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Company                                       | Attention:               | Ine Charlon-Custody is a 1                  |                    |
| herine Puptier                                                                         | Cluber Ho       |           |                |               |                |               |               |                       |                         | H2SO4<br>HNO3<br>HCI<br>NaOH<br>Na2S2O3<br>Methanol<br>Other | Preservatives | fie #: 10840 | lect Manager: kevin beningiaga | Mer:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Name:                                         | Romun                    | LEGAL DOCUMENT, AJ REK<br>2                 | UDY / Analytical M |
| U)(2<br>DATE Signed: 2/9/20                                                            | nt dial         |           |                | X X X         | x x x x        | × × × ×       |               |                       |                         | App IV Metals<br>Fluoride<br>RAD 9315/9320                   |               |              | ioekaba com                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               |                          | evant fields must be comple                 | tequest Document   |
| TEMP in C<br>Received on                                                               | 1/0             |           |                |               |                |               |               |                       |                         | Residual Chiorine (Y/N)                                      |               | 0            |                                | No. of Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Str | 6<br>6                                        | Page ;                   | ted accurately.                             |                    |
| IceD<br>(Y/N)<br>Cuslody<br>SealedD<br>CoolerD<br>(Y/N)<br>Semples<br>IntectD<br>(Y/N) |                 | NS @      | 1              | 1:5.80        | H- Sal S H     | Mayon Lorrin  |               |                       |                         | 92521564                                                     |               |              |                                | Marriel and a second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                               | - 01 - 3                 |                                             |                    |

Page 27 of 34

| •                                                                                                                       |                   |                | <u>W</u> |   |   |       |     |         |     | 12020 040 020021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ITEM # (A-C (-91,                                                                                  | Cree Character per bort, when | MATRIXE<br>University<br>Without |                                    | Tuesded Over Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   | non, GA 30114 | incany: Georgia Power             | Arithmed Cillerid Informations       | ( Assertation )         | 2 |
|-------------------------------------------------------------------------------------------------------------------------|-------------------|----------------|----------|---|---|-------|-----|---------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------------|-----------------------------------|--------------------------------------|-------------------------|---|
| PRINT NAME AND A                                                                                                        |                   | BStern Acuto d |          |   | 5 |       |     |         |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 경 음 등<br>MATRIX CODE<br>SAMPLE TYPE                                                                | START                         |                                  | Project #:                         | Project Name: Yates AMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Purchase Order #: | Copy To:      | Required Project information:     | The C                                | CHA                     |   |
| Silety Stern                                                                                                            | Curren 1          |                |          |   |   |       |     |         |     | TINAT<br>SJ<br>HI<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H2<br>H1<br>H1<br>H1<br>H1<br>H1<br>H1<br>H1<br>H1<br>H1<br>H1<br>H1<br>H1<br>H1 | AMPLE TEMP AT<br>OF CONTAINER<br>INDIFESERVED<br>ISO4<br>NO3<br>CI<br>OH<br>28203<br>Ithanoi<br>er | COLLEGT<br>S                  | Preservatives                    | Page Project Manager; Kevin herrin | Pace Quote:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Address:          | Attention:    | Section C<br>Anvoice Information: | hain-of-Custody is a LEGAL DOCUMENT. | NN-OF-CUSTONY / Amature |   |
|                                                                                                                         | The rate - The 20 |                |          | X |   | X X X | XXX |         | xxx | App<br>Filing<br>RAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Attalyage T                                                                                        |                               |                                  | 9@pacetabs.com                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |               |                                   | al Kequest Document                  |                         |   |
| TEMP in C<br>Received on<br>loet:<br>(Y/N)<br>Custody<br>Seated()<br>Cooler()<br>(Y/N)<br>Samples<br>(httact()<br>(Y/N) |                   |                |          |   |   |       |     | 12.5 40 |     | N9512524 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ual Chlorine (Y                                                                                    | (N)                           |                                  |                                    | State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of State of Sta | 0                 |               |                                   | xualely.                             |                         |   |

Page 28 of

|              |                     | Í.       | ľ |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2           | 28               | 6             |          |         |          |          | 3        |          | 14                  | P        |          | ITEM#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       | I            | ă                 | 削             |          | I                |                       | :                                     |
|--------------|---------------------|----------|---|------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------|---------------|----------|---------|----------|----------|----------|----------|---------------------|----------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------------|-------------------|---------------|----------|------------------|-----------------------|---------------------------------------|
| · · · · · ·  |                     |          |   |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Komen YGWC- | NONCON DUP - 02. | HOMEZASA YGWL | VGWC238  | YCHA 3H | COTAMON  | KOMA-NI- | XGW2-166 |          | Vannao - Yichah - S |          | -XGWA-4I | SAMPLE ID<br>One Chemader per box.<br>(A-2, 64 ), -<br>Sample Ids must be unique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       | in the term  | (770)384-6526 Fax |               | GA 30114 | V. Georgia Power | 6 Client information: | Pace Arabical                         |
|              | :                   |          |   | -<br>-<br>-<br>- |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36A VON     |                  | -1454 605/    |          |         |          |          |          |          | 0.000 3             |          |          | Water<br>Water<br>Water<br>Water<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>With<br>Wi | MATRIXO . COORD       | te trained   | Project Name:     | Purchase Orde | Copy To: | Report To:       | Section 8             | · · · · · · · · · · · · · · · · · · · |
|              |                     |          |   |                  |                  | Succession of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the local distribution of the | WT          | WT               | MT.           | N7       | N.      | WT       | 5        | Ϋ́.      | F        | S.                  | MT       | NT       | MATRIX CODE (see valid cod<br>SAMPLE TYPE (G=GRAB C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | es to tell)<br>:COMP) |              | Ya                | 7             |          | Secky St         |                       |                                       |
|              |                     |          |   |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 pilta     | 2.66             | 12 John       |          |         |          |          |          |          | 200                 |          |          | SI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |              | es AMA            |               |          | CEVER            |                       |                                       |
|              |                     |          |   |                  |                  | NEER!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ٤hl         | 1                | 1610          |          |         |          |          |          |          | ē                   |          |          | TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8                     |              |                   |               |          |                  |                       |                                       |
|              |                     |          |   |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>o</u>    |                  |               |          |         |          |          |          |          | Ĩ                   |          |          | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LECTE                 |              |                   |               |          |                  |                       | 鸟 권                                   |
|              | RE of SJ            |          |   | _                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                  |               |          |         |          |          |          |          | ┼╉                  |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |              |                   |               |          |                  |                       | Chain                                 |
|              | MPLE                |          |   |                  |                  | DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                  | ,<br>,        |          |         | `        |          |          | ļ        | H                   |          | -        | SAMPLE TEMP AT COLLECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |              |                   |               |          |                  | :                     |                                       |
|              |                     |          |   | ~~~~             | -                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Σ           | 2                | 4             |          |         |          |          |          |          | Ŧ                   |          |          | * OF CONTAINERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       | 13           | 3                 | 33            | 8        | À                |                       | n de la                               |
| . ~          | 2G                  |          |   |                  |                  | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                  |               |          |         |          |          | ·        |          | 1                   |          |          | Unpreserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       | 8            | 8                 | 8 8<br>8 8    | neqm     | entior           |                       |                                       |
| 4            |                     |          |   |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                  |               |          |         |          |          |          |          | []                  |          |          | H2504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |              | ŝ                 | <u>8</u> .    | y Nar    | π                | ſ                     | ŭ Ū                                   |
| Ç            | PB                  | 2        |   | (                | 8                | S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                  |               |          |         |          |          |          |          | 1                   | ļ        | <b></b>  | HNO3 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pre                   |              | Mana              |               | Ř        |                  |                       | ୁ ନୁ                                  |
| 4.1          | <u>\$</u>           |          |   |                  | $\mathbb{Z}$     | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                  | <b></b>       |          |         |          | <b></b>  |          |          | ₽                   |          |          | HCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | er i                  | 100          | <b>2</b> 97       |               |          |                  | ŧ                     | Ø D                                   |
|              | 6                   |          |   |                  | Ź                | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                  |               |          |         |          |          |          |          | ╫—                  |          |          | Na28203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ative                 | ſ            | a                 |               |          |                  |                       | Cuna                                  |
|              | <u> </u>            |          |   |                  | Z                | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                  |               |          |         |          |          |          |          |                     |          |          | Methano)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ø.                    |              | Ž                 |               |          |                  |                       |                                       |
|              |                     |          |   |                  | <b>(</b>         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                  |               |          |         |          |          |          |          | 1                   |          |          | Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |              | ening             |               |          |                  |                       | <u>ି</u> ରୁ                           |
| · · ·        | 14                  |          |   | 7                | $\mathcal{T}$    | i i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | · · · · ·   |                  |               |          |         |          |          |          |          | ]                   |          |          | Analyses Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | YAN                   |              |                   |               |          |                  |                       |                                       |
|              |                     |          |   |                  | 5                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×           | ×                | ×             | <u>1</u> | 1       | ×        | 1        | 1        | ×        | 1_                  | <b>*</b> | <b>*</b> | App IV Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |              |                   |               |          |                  |                       | a eq                                  |
|              | ATE S               |          |   |                  | È.               | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ×           | X                | ×             | 7        | 7       | ×.       | 7        | <u>7</u> | <u>×</u> | 1                   | 1        | Ť.       | Fluoride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       | 1<br>1<br>1  | 3.00m             |               |          |                  |                       | field                                 |
|              |                     |          |   |                  | $\left  \right $ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                  | <b>۲</b>      | 7-       | 1_      | <u> </u> | <u> </u> |          |          | •                   | <b>^</b> | -        | PAU 9310/9320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |              |                   |               |          |                  |                       | 3 <b>6</b>                            |
|              | Ă                   |          |   | _                | Y                | en e (<br>en el c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                  |               |          |         |          |          |          |          |                     |          |          | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |              |                   |               |          | 1                |                       | E O                                   |
|              | 3                   |          |   |                  | Ì                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                  |               |          |         |          |          |          |          |                     |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6                     | 21.1 million |                   |               |          |                  |                       | 8 1                                   |
| 1            | 110                 |          |   |                  | $\Sigma$         | ŝ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                  |               |          |         |          |          |          |          |                     |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |              |                   |               |          |                  |                       |                                       |
|              | 02                  |          |   |                  | _                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                  |               |          |         |          | <u> </u> |          |          |                     |          |          | ۰.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |              |                   | 10000         | 27       | : *              |                       | ad 🗯                                  |
|              | 2                   |          |   | 1                | $\geq$           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u></u>     |                  |               |          |         |          |          |          |          |                     |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |              |                   | 2012440       | \$<br>   | ¢                |                       | 8                                     |
|              |                     |          |   | ĺ                | ୍ୱ               | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                  |               |          |         |          |          |          |          |                     |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |              |                   | A. M.         | Jike     |                  | -                     | Irale                                 |
|              |                     |          |   |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                  |               |          |         |          |          |          |          |                     |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |              |                   |               |          |                  |                       | Ϋ́,                                   |
|              | TEMP IN C           |          |   |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                  | ,             |          |         |          |          |          |          |                     | •        |          | Residual Chiorine (Y/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |              | Ű                 |               |          | ŀ                | ۲.                    |                                       |
| •            | Received on<br>IceC | .<br>    |   |                  |                  | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9           | 1 -              |               | C        | ۱.      | l        | 1        | 1        | c        | 1                   | 1        |          | 29 - Carlor 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       | 8            |                   |               |          |                  | 5                     |                                       |
|              | (Y/N)               |          |   |                  |                  | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>x</b>    | \$               | 1             |          |         | Ĺ        | <b> </b> |          |          |                     |          |          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |              |                   |               |          | ſ                | '"                    |                                       |
| . <u>.</u> 1 | SealedD             |          |   |                  |                  | ġ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5           |                  | S             |          |         |          |          |          |          |                     |          |          | ン                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |              |                   | (and a second |          | d                | ,                     |                                       |
| · · .        | (Y/N)               | <b>_</b> |   |                  |                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3           |                  | 12            |          |         |          |          |          |          |                     |          |          | i.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |              | 100               |               |          | ľ                | •                     | 12                                    |
|              | Samples             | [        |   |                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                  |               |          |         |          |          |          |          |                     |          |          | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |              |                   | 1             | Ι.       | . [.             | ,                     | ••                                    |
|              | (Y/N)               | <b>I</b> |   |                  | 1                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                  |               |          |         |          |          |          |          |                     |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |              |                   |               | ١š       |                  | ▼                     |                                       |

Page 29 of 34

|                                                                                  |                                                                                                                 | The second second second second second second second second second second second second second second second se | and a second second second second second second second second second second second second second second second |                      | Likenic) motion       |  |  |  |    |          | A PZ.37   |    |                       |     | Sample Ids must be unique                                                             |                   | prested Due Date:                                                                                              | Me: (770)384-6526 Fax |                             | non, GA 30114 | Ther Info Balan Little And | quired Client Information: | Face Analytical<br>menuncum                 |
|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------|-----------------------|--|--|--|----|----------|-----------|----|-----------------------|-----|---------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------|---------------|----------------------------|----------------------------|---------------------------------------------|
| j <b>u</b>                                                                       |                                                                                                                 |                                                                                                                 |                                                                                                                | Yone V               |                       |  |  |  | WT | WT       |           | WT | WT                    | WT. | THE TYPE GREAT C                                                                      | Connecting waters | Project #                                                                                                      | Project Name: Y       | Purchase Order #:           | Cathy to:     | Report To: Becky           | Required Project in        |                                             |
| PRINT Mame of S<br>SNGHATURE of S                                                | A THE AND A THE AND A THE AND A THE AND A THE AND A THE AND A THE AND A THE AND A THE AND A THE AND A THE AND A |                                                                                                                 |                                                                                                                | Coccemical Micades 2 | and the second second |  |  |  |    |          | 19/11/930 |    |                       |     | START END                                                                             | COLLECTED         |                                                                                                                | ates AMA-R6           |                             |               | Siever                     | formation;                 | CHAIN<br>The Chai                           |
| meres: Kate F                                                                    | Sacranda Carlos                                                                                                 |                                                                                                                 |                                                                                                                | 1212121              |                       |  |  |  |    |          | 4/1/      |    |                       |     | E<br>SAMPLE TEMP AT COLLECT<br># OF CONTAINERS<br>Unpreserved<br>H2SO4<br>HNO3<br>HCI |                   | Pace Profile # 10                                                                                              | Pace Project Manage   | Page Quole:                 | Company Name: | Anerdoo:                   | Invoice Information:       | 4-OF-CUSTODY /<br>h-of-Custody is a LEGAL C |
| ptimicz                                                                          |                                                                                                                 |                                                                                                                 |                                                                                                                | KANDI AL             | ALVERNA AND ACCOUNTS  |  |  |  |    | <b>Ť</b> | ×××       |    |                       |     | NaOH<br>Na28203<br>Methanol<br>Other<br>App IV Metala<br>Elupídie                     | ivalives<br>y/Na  |                                                                                                                | C. Include Sciences   |                             |               |                            |                            | Analytical Reque                            |
| TE Symot: 2-9-202                                                                |                                                                                                                 |                                                                                                                 |                                                                                                                | HALFE W              |                       |  |  |  |    | 3        | ×         |    |                       |     | RAD 9315/8320                                                                         |                   |                                                                                                                |                       |                             |               |                            |                            | lest Document<br>fields must be completed   |
| TEMP In C<br>Received on<br>Iced                                                 |                                                                                                                 |                                                                                                                 |                                                                                                                | 17/10                |                       |  |  |  |    |          | <u>इ</u>  | 1  | :<br>:<br>:<br>:<br>: |     | Residual Chlorine (Y/N)                                                               |                   | The state of the second second second second second second second second second second second second second se |                       | Vicensis and a subscription | 60            |                            |                            | accurately.                                 |
| (Y/N)<br>Custody<br>Seated:<br>Cooler()<br>(Y/N)<br>Samples<br>intact()<br>(Y/N) |                                                                                                                 |                                                                                                                 | -<br>                                                                                                          |                      |                       |  |  |  |    |          | 542       |    |                       |     | 2521572                                                                               |                   |                                                                                                                |                       | ACCESSION NO.               | n. u          | 4                          | 2<br>A                     |                                             |

Page 19 of 25

| Hon  | Pace Analytical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | • *            |          | · ·         |              | THO CHA                                                                                                         | NN-0     | Ş. H       | jä 🗋     | S<br>S<br>S      | 2                                     | h N    | ĭ×ĭ   | <b>v</b> ~   | -8≥                                       | E B   | j<br>Ģ₹         | 글루              | ≧ 🎽         | ē 7                 | S Q              | <u> 동</u> -월 | <u>a</u> .   | ិត 🙀     | 30       | ₩ Q                | 8 <u>H</u>   | 8 3      | 문 🖸        | - <b>g t</b> | Å.                                                                                                              | 8                                         | 5           | Ē                                                                                                               | 7         |            |          |       |          | ·       |        | 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 - |         |          |       |                                              |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------|----------|-------------|--------------|-----------------------------------------------------------------------------------------------------------------|----------|------------|----------|------------------|---------------------------------------|--------|-------|--------------|-------------------------------------------|-------|-----------------|-----------------|-------------|---------------------|------------------|--------------|--------------|----------|----------|--------------------|--------------|----------|------------|--------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------|-----------|------------|----------|-------|----------|---------|--------|-----------------------------------------|---------|----------|-------|----------------------------------------------|
| ğh   | N7 (Géoria: Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Required Pro  |                | 100 H    | <b>G</b> on |              |                                                                                                                 |          |            | 17       | 8                | Ē                                     | đ      | Į     | Ā            |                                           | ŀ     |                 |                 | . ÷         |                     |                  |              |              |          |          |                    |              | · .      |            |              |                                                                                                                 |                                           |             | -                                                                                                               | Š         | ē          | -        | •     | ج -      | 1       | _      | 9                                       |         |          | R.    |                                              |
| 1    | E 1070 Bridge WII Ave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Capy To:      |                |          |             |              |                                                                                                                 |          |            | 81       |                  | ž i s                                 | S.     | R .   |              |                                           |       | ·   ·           |                 |             |                     | 100              |              |              |          |          |                    |              | ÷.       |            |              |                                                                                                                 |                                           |             |                                                                                                                 |           |            |          |       |          |         |        |                                         | ·       |          | 1     |                                              |
| R    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Purpase Ord   |                |          |             |              |                                                                                                                 |          |            | 2 2      |                  | 18                                    | 4      |       |              |                                           |       |                 |                 | 11          | 11                  |                  | 11           | 11           |          |          |                    | 11           | 11       |            | 瀫            |                                                                                                                 |                                           | 嬼           |                                                                                                                 | 1         |            |          |       | Ą.       |         |        | 瀏                                       |         | <b>8</b> |       | 2578 E 7                                     |
| Ì    | (770)384-8528  Fac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Project Name: |                |          | 5           |              |                                                                                                                 |          | ľ          | 7        | 8                | ş.                                    | 21     | S.    | 8            | 2                                         |       | 5               | Ĩ               |             |                     |                  |              |              | 1        | 1        |                    |              |          |            | 20           |                                                                                                                 |                                           | Ű.          | 1                                                                                                               |           |            | í.       |       |          | 1       | 1.     |                                         |         |          |       | 1                                            |
| Ĩ    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Project #:    |                |          |             |              |                                                                                                                 |          |            | 7        | 2                | ğ,                                    | 2      |       | ŝ,           | ā                                         |       | - li            | l               | - B         |                     |                  | 2            | - 1          | . 6      |          |                    |              |          | ć.         |              | 1000                                                                                                            | ĥ                                         | No.         |                                                                                                                 | 1 and 1   | P          |          | 1     | l        | 1       |        | 100                                     |         |          | B     | - 1 ()                                       |
| ľ    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                |          |             |              |                                                                                                                 |          |            | ł        |                  |                                       |        |       | ,            | ł                                         |       | 1               |                 |             | 灦                   | ġ.               |              | N.           | Ň.       |          | 2                  |              | ň.,      | ũ.         | 4            | ý                                                                                                               | Ń                                         | đ           | 頿                                                                                                               | a l       |            | <b>.</b> | Ø\$   |          | 1       | )      |                                         | 1       | á        |       | <i>6</i>                                     |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8<br>0005     | s to left)     | <b></b>  |             |              | CIED                                                                                                            |          |            |          |                  |                                       | _      | 2     | 6            | <u>a</u>                                  | ř.    | ^               |                 |             | YN                  |                  |              |              | <u> </u> |          | diama and a second |              |          |            |              |                                                                                                                 | [j                                        | _           |                                                                                                                 |           |            | 治力的      |       |          |         |        |                                         |         |          |       | 11 A. B. B. B. B. B. B. B. B. B. B. B. B. B. |
|      | SAMPLE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | (see valid cod |          | STAR        |              | £                                                                                                               | 5        | TCOLLECTIC | IS       | -                |                                       |        |       |              |                                           | ····· | <u> </u>        |                 | 5 - F<br>20 | CTR See             | 1 <sup>1</sup> 1 |              |              |          |          |                    |              |          | 1          |              | in the second second second second second second second second second second second second second second second |                                           |             | <u> </u>                                                                                                        |           | (YA)       |          |       |          |         |        |                                         | · · [   |          |       | 19                                           |
| €M # | Array Commission per box. Wight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | LE TYPE        |          |             |              | · .                                                                                                             |          | E TEMP A   | ONTAINER | served           | 4                                     |        |       |              | 4-10-10-10-10-10-10-10-10-10-10-10-10-10- | 203   |                 |                 |             | $\mathbf{y}_{2}$ th | Metals           | -            | -            | 316/9520 | i        |                    |              |          | 7          |              |                                                                                                                 |                                           |             | · .                                                                                                             |           | I Chiorin  |          |       |          |         |        |                                         |         |          |       |                                              |
| ITI  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | MATE           | Q        |             | Ā            |                                                                                                                 | <b>F</b> | SAMP       | # OF C   | Unpre            | H290                                  |        | MNO3  | HCI          | NaOH                                      | Na282 | faiba           |                 | Other       | -60                 | Noo IV           |              |              | AD 8     |          |                    |              |          |            |              |                                                                                                                 | N. M. M. M. M. M. M. M. M. M. M. M. M. M. |             |                                                                                                                 |           | (initial)  |          |       |          |         |        |                                         |         |          |       |                                              |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | <b>V</b> T     |          |             |              |                                                                                                                 |          |            | Ť        | t and the second | - 1                                   |        |       |              |                                           | 1     | - t             |                 | 1           |                     | 4                |              | ╋            | 11       |          |                    |              | -        |            | - T          | ľ                                                                                                               | -t                                        |             |                                                                                                                 |           | F          |          | 1     |          | • 1     | 1      | . ( <b> </b> *                          |         |          |       |                                              |
|      | <b>Vertical</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | N.             |          |             |              |                                                                                                                 |          |            | ·        |                  |                                       |        |       |              |                                           |       | نىيىنى <u>ت</u> |                 |             |                     | 4                | 1            |              | 21       | .        | . 1                |              |          |            |              | T                                                                                                               | ÷                                         | ÷           |                                                                                                                 |           |            | . 1      | ·     |          |         |        |                                         | ľ       |          |       |                                              |
|      | YEMAZ (MIDEI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | S              | Þ        |             | 0H2          |                                                                                                                 |          |            | 4        |                  | £                                     |        | 1     |              | - C.,                                     |       |                 | in in i         | ÷           |                     | ×                | ×            |              |          |          |                    |              |          |            |              | · · · T                                                                                                         |                                           |             |                                                                                                                 |           |            |          |       | <b>5</b> |         |        |                                         | NI      | ונ       |       |                                              |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | S              | 1        |             |              |                                                                                                                 |          |            | 54<br>1  |                  | <u> </u>                              |        |       |              |                                           |       |                 |                 |             |                     | ŧ                | 1            | <u> </u>     | 1        |          |                    |              |          |            |              |                                                                                                                 |                                           |             |                                                                                                                 |           |            | T        | -     | 1        | ſ       |        |                                         |         |          | ſ     | :                                            |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | Ę              | ļ        |             |              |                                                                                                                 |          |            |          |                  |                                       |        |       |              | • • • • • (<br>}                          |       |                 |                 | 1           | c                   | Ŧ                |              |              | 11       |          | I                  | - 1          |          |            |              |                                                                                                                 |                                           |             |                                                                                                                 |           |            |          | T     | ŀ        | ľ       |        |                                         | 1       |          | . 1   |                                              |
|      | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | 3              |          |             |              |                                                                                                                 |          |            |          |                  | wakitiyay                             |        |       |              |                                           |       |                 | <u> </u>        |             |                     | 1                | 1            | $\mathbf{H}$ | 14       |          | Ĩ                  |              | i        |            |              | ···· [                                                                                                          |                                           |             |                                                                                                                 |           |            |          | 1     |          |         |        |                                         | 1       | ŀ        |       |                                              |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | 3              | İ –      |             |              |                                                                                                                 |          |            |          | -                | i i i i i i i i i i i i i i i i i i i | ł      |       | <u>i - i</u> | [                                         |       |                 | in l            |             |                     | <b>t</b>         | 1            | 1-1          | 3        |          |                    |              |          | <u> </u>   |              | ·                                                                                                               | 1                                         | -+          |                                                                                                                 |           |            | 1        | 1     | 1        |         |        |                                         |         | ŧ.       |       | · 1                                          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | 3              | <b> </b> |             |              |                                                                                                                 | Y        |            | 1        | .,               |                                       |        |       |              |                                           |       |                 |                 |             |                     | ł                | 1            |              |          |          |                    |              | <u>.</u> | <u> </u>   | <u> </u>     |                                                                                                                 |                                           |             | -                                                                                                               |           |            |          |       |          | 1       | -      | . ]                                     | -1      |          | . 1   |                                              |
|      | Now-28-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | 3              |          |             |              |                                                                                                                 |          |            |          | -                |                                       |        |       | ÷.           | ··· · ]                                   |       |                 | ÷               |             |                     | ¥                |              | $\pm$        | 1        |          |                    |              |          |            |              |                                                                                                                 |                                           |             |                                                                                                                 | -         |            | Ĩ        |       |          | 4       | 1      |                                         |         |          |       |                                              |
| 0    | Your ore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | 3              |          |             | -            |                                                                                                                 |          |            |          |                  |                                       |        | ~~~·{ |              |                                           |       |                 |                 | l           |                     |                  | ¢            |              | <u> </u> |          | T                  | 1            |          |            |              |                                                                                                                 | Ţ.                                        | <u> </u>    |                                                                                                                 | . I       |            | 1        |       |          |         |        |                                         |         |          |       |                                              |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | 3              |          |             | :            |                                                                                                                 |          |            | 1        |                  | ionennen<br>1                         |        |       | ч.<br>       |                                           | 1 A 1 |                 |                 | l           |                     | ₿. ľ             |              | <b>1</b>     | 3        | ľ        |                    | - T          |          |            |              |                                                                                                                 | 1                                         |             | tin and the second second second second second second second second second second second second second second s | L         |            | i i      |       | 1        | . I     |        |                                         | ļ       | l        |       |                                              |
|      | *CW0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | Ĩ.             |          |             |              |                                                                                                                 |          |            |          | -                |                                       |        |       |              |                                           |       |                 | <u>in quur</u>  |             | ;                   | r I              |              |              | 14       |          |                    |              |          | _          |              |                                                                                                                 | 1                                         |             |                                                                                                                 |           |            | T        |       |          |         | 1      | - 1                                     |         |          |       | anni I.                                      |
|      | A State of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se                                       |               |                |          |             | <b>COLVE</b> |                                                                                                                 | L. A. S. |            | 74462    |                  | 8 PU<br>10 PU                         | Peters |       |              |                                           |       |                 |                 |             |                     | <b>N</b> •1      |              | And .        |          |          | CNN                |              |          |            |              |                                                                                                                 |                                           | <b>1</b> 11 |                                                                                                                 |           |            | 調子       |       |          |         | 5      |                                         |         |          |       | - X - WHILE                                  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.51          | Ŷ              | L        | A           | CC.          | M                                                                                                               | Ê        | B          | ~        |                  | Ĭč                                    | †× i   | 50    |              |                                           | P-I   |                 | $ \mathcal{L} $ |             | ĸ                   |                  | F            | 1.           | Γ Ι      |          |                    | N            | Č        | <b>A</b> _ |              |                                                                                                                 |                                           | ۲ · ۱       | <b>  </b>                                                                                                       |           |            |          |       |          |         |        |                                         |         | ſ        |       | la se a di                                   |
|      | NAMES AND ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF |               |                |          |             |              |                                                                                                                 | -        |            |          |                  | 2                                     |        | 3     | 50           | 8                                         | 6     | Υ.              | 1               | 0           | d T                 | $\mathbf{x}$     | \$           | 57           |          | <u>.</u> | ${\bf r}$          | $\mathbf{x}$ |          | <b>.</b> . |              | J                                                                                                               | Sec. Sec.                                 | Nin Y       |                                                                                                                 |           | : ]        | - 1      | l     |          |         |        | 4                                       |         |          |       | -                                            |
| Í    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | н<br>2.        |          |             |              |                                                                                                                 |          |            |          |                  |                                       |        |       |              |                                           |       |                 |                 |             | - Xter              |                  |              |              |          |          |                    | Ē            | T.       | ļ.         |              |                                                                                                                 | t                                         | - N         |                                                                                                                 | ľ         | . <b>.</b> |          | : I   |          | ÷       |        | .:                                      |         |          | ÷     | - North                                      |
| 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                |          |             |              |                                                                                                                 |          | :<br>      | et 1     |                  |                                       |        | •     |              |                                           |       |                 |                 |             |                     |                  |              |              |          |          |                    |              |          |            |              |                                                                                                                 | -                                         |             | ļ                                                                                                               |           | . [        |          |       | . 1      |         | I      | _ I.                                    | -       |          |       |                                              |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                |          | 142         | PROF         |                                                                                                                 |          |            | Ŕ        |                  | 124                                   |        |       | 055          | 1965                                      | 32    | 80              |                 |             |                     |                  | 12.2         |              | 43       |          |                    |              |          |            |              |                                                                                                                 |                                           |             |                                                                                                                 | c i       | -          | OP       | - 419 |          |         |        | Ĩ                                       |         |          |       |                                              |
|      | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,             |                |          |             | NE .         | X                                                                                                               | Sup      | 186        |          |                  | N                                     |        |       | 8<br>1       |                                           | 2 - C | ÷.              | · [             |             |                     |                  |              |              |          |          |                    | Ne l         |          | Ĩ.         |              |                                                                                                                 |                                           |             | l                                                                                                               | TEMP in C |            | Received | Cell  | (Y/N)    | Custody | Sealed |                                         | Samples | niactC   | (Y/N) |                                              |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •             |                |          |             |              | the second second second second second second second second second second second second second second second se |          | l          |          | l                | l                                     |        | ľ     |              |                                           | ŀ     | ł               |                 |             | Ļ                   | ł.               | Ê            | Ľ            | Ľ        | L,       | ľ                  | 1            |          |            |              |                                                                                                                 |                                           |             |                                                                                                                 | -         |            | ,<br>T   | k     | (        | ł       | S      | ř                                       | *       | b        | Ç     |                                              |

Page 20 of 25

~

|                             |   |   |               |                                                   |      | ō |   |      | and a    |            |          |        | ۴.      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 3         | 18                | ,              |                                | 19                      |                         |                                                               |
|-----------------------------|---|---|---------------|---------------------------------------------------|------|---|---|------|----------|------------|----------|--------|---------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|-------------------|----------------|--------------------------------|-------------------------|-------------------------|---------------------------------------------------------------|
|                             |   |   |               | Service (Linearch Invention) of Service (Service) |      |   |   |      | Pater    | YAMW-1 ··· |          | YAMN-5 | YAMWA . | YANM-2  | SAMPLE ID<br>One Churacter per bor.<br>(A-Z, 0-0 /,-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |           | (770)384-6526 Fax |                | 1070 Bridge M# Ave<br>24 30114 | Georgia Porrer          | Cilent information:     | Prace Arabytical                                              |
|                             |   |   |               | のないの                                              |      |   |   |      |          |            |          |        |         |         | ama the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |          | is menual | Project Nan       | Purchase O     | Copy To:                       | Report To:              | Section B<br>Required F | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |
|                             |   |   |               | CHEEN                                             |      |   |   | <br> | WT       | WT         | W        | WT     | WT      | M.      | MATRIX CODE (see valid code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | to jell) |           | Y                 | nder #:        |                                | Becky                   | noject in               |                                                               |
| •                           |   |   |               | 19191 B                                           |      | • |   |      |          | 01.04      |          | palad  | ndos.   | patonli |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           | abas AW           |                |                                | Sleever                 | Tormadio                | •<br>• • •                                                    |
|                             |   |   |               | A LAND                                            | <br> |   | 1 | <br> |          | n lut      |          | u  094 | rol R   | mi h    | START<br>E TIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8        |           |                   |                |                                |                         | <b>3</b>                | . *                                                           |
| PLER NA                     |   |   |               | and a                                             | <br> |   |   | <br> |          | 1          |          | 5      | 0       | Un      | e <u>ekter</u><br>B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | LECTE    |           |                   |                |                                |                         |                         | 불유                                                            |
| RE 9 84                     |   |   | <u>.</u>      |                                                   | <br> |   |   |      |          |            |          |        |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |                   |                |                                | ľ                       |                         | Chain-o                                                       |
| MPLER                       |   |   |               | NIE .                                             |      |   |   | <br> |          |            |          |        |         |         | RAMPLE TEMP AT COLLECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -        |           |                   |                |                                |                         | ?                       |                                                               |
| 22                          |   |   |               | 1.4.4<br>1.4.4<br>1.5.5                           |      |   |   | <br> |          | 4          | ¥        | 2      | 4       | c       | # OF CONTAINERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 206-1     | ş                 | P              | ß                              | Anen                    |                         |                                                               |
| Do                          |   |   |               | R                                                 |      |   |   | <br> |          |            |          |        |         |         | Unpreserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | PION      | Page              |                | any N                          |                         | 5 9<br>9 9              | STC                                                           |
| #                           |   |   |               |                                                   | <br> |   |   |      |          |            |          |        |         |         | HNO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | y        |           | XMan              | 'n             | ame:                           |                         | Denad                   |                                                               |
| 궁                           | : |   | 2             |                                                   |      |   |   |      |          |            |          | ь,     |         |         | HCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | esen     | Į         | lager:            |                |                                |                         |                         | 8                                                             |
| E.                          |   |   | 24            |                                                   | <br> |   |   | <br> |          |            |          | ·      |         |         | NaOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ativ     | ľ         | -                 |                |                                |                         |                         |                                                               |
| ۲.                          |   |   | 2             |                                                   | <br> |   |   | <br> |          |            |          |        |         |         | Na2S203<br>Methapol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |           | 2                 |                |                                |                         |                         |                                                               |
|                             |   |   | 2             |                                                   | <br> |   |   |      |          |            |          |        |         |         | Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |           | Non Ing           |                |                                |                         |                         |                                                               |
|                             |   | İ |               |                                                   |      |   |   |      |          |            |          |        |         |         | Analyses Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | YN       |           |                   |                |                                |                         |                         | 문<br>문                                                        |
|                             |   |   | $\mathcal{K}$ | Nu z                                              |      |   |   | <br> | Ĭ        | ×          | <b>X</b> | ×      | ×       | ×       | App IV Metala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |           | Š.                |                |                                |                         | •                       | and B                                                         |
| AR A                        |   |   | 3             | 2                                                 | <br> |   |   | <br> | 1        | ××         | 7        | ×××    | ××      | ××      | Fluoride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |           | 8                 |                |                                |                         | ÷                       | Tied In the second                                            |
| sign (                      |   |   |               |                                                   |      |   | — | <br> | <b>1</b> |            | 1        |        |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |                   |                |                                |                         |                         |                                                               |
| Ă                           |   |   |               |                                                   | <br> |   |   |      |          |            |          |        |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |                   |                |                                |                         |                         | 8 0 · · ·                                                     |
| Ë                           |   |   |               |                                                   |      |   |   |      |          |            |          |        |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |                   |                |                                |                         |                         |                                                               |
| 8                           |   |   | R             |                                                   |      |   |   | -    |          |            |          |        |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |                   |                |                                |                         |                         | n ên                                                          |
| S I                         |   |   |               |                                                   |      |   |   |      |          |            |          |        |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.81     |           |                   | No.            |                                |                         |                         |                                                               |
|                             |   | - | 1             |                                                   |      |   |   | <br> |          |            |          |        |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |                   | distant.       |                                |                         |                         |                                                               |
|                             |   |   | 6             |                                                   |      |   |   |      |          |            |          |        |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |                   | 1000           |                                | ſ                       |                         | ate                                                           |
|                             |   |   |               |                                                   |      |   |   |      |          |            |          |        |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |                   |                |                                |                         | ğ                       | <b>Y</b>                                                      |
| TEMPING                     |   |   |               |                                                   |      |   |   | <br> |          |            |          |        |         |         | Residual Chlorine (Y/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | ř.        | 20                |                | 2                              |                         |                         |                                                               |
| Received on<br>iceO         |   |   |               | ŝ                                                 |      |   |   |      | 1        | È          | ۱ 1      | Ŧ      | 2       | 3       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 8         | 8 N               | 1.5            | L                              | $\overline{\mathbf{A}}$ | à                       |                                                               |
| (Y/N)                       |   |   |               | j,                                                |      |   |   |      | ۱        | v          | 1        | ž      | オジ      | - 11    | ŕ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |           |                   | in a           | K                              |                         | -                       |                                                               |
| Sealed0                     |   |   | 1             | i i                                               |      |   |   |      |          | <u>_</u>   |          | َ عِن  | 6       | 5       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |                   | 1000           | P                              |                         | 0                       |                                                               |
|                             |   |   | <b>_</b>      |                                                   |      |   |   |      |          | 5          |          |        | 36      | <br>    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |                   | and the second | 2                              |                         |                         |                                                               |
|                             |   |   |               | 1988                                              |      |   |   |      |          |            |          |        |         |         | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |           |                   |                |                                | · [                     | •                       |                                                               |
| Samples<br>IntactC          |   |   | 1             | 21.24                                             |      |   |   |      |          |            |          |        |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | ŧ.        |                   |                | 1                              |                         | N                       |                                                               |
| Samples<br>IntaclC<br>(Y/N) |   |   |               |                                                   |      |   |   | _    |          |            |          |        |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |                   |                |                                |                         | Ņ                       |                                                               |

•

•

| Ρ | age | 21 | of | 25 |
|---|-----|----|----|----|
|   |     |    |    |    |

| •                      |                | The second second second second second second second second second second second second second second second s |     |             | P        |              | N.       |                                            |           |          |                     |                   |          | 5        |           | e.             | ITEM #                                            |                                                                                                   |                                     |         | pessed    |            | nton, GJ  | inpany:                               | ) participation   |                  |
|------------------------|----------------|----------------------------------------------------------------------------------------------------------------|-----|-------------|----------|--------------|----------|--------------------------------------------|-----------|----------|---------------------|-------------------|----------|----------|-----------|----------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------|---------|-----------|------------|-----------|---------------------------------------|-------------------|------------------|
| •<br>•                 |                |                                                                                                                |     |             |          |              |          | ALAN AND AND AND AND AND AND AND AND AND A |           |          |                     |                   | т        |          |           | Maral CC-21    | (A-Z, G-P / , .<br>}<br>Sample kis must be unique | SAMPLE ID                                                                                         |                                     |         | Due Date: |            | 130114    | Georgia Power<br>1070 Sector Mill Ave | Hent Information: | Faits Analytical |
| •                      |                |                                                                                                                | 9   |             |          |              |          |                                            |           |          |                     |                   |          |          |           |                | Auto<br>Official<br>Transver<br>TS<br>TS          | Water Water With<br>Water Water With<br>Statistical With<br>Statistical Statistics<br>OUD OLD OLD | NATHOR: CODED<br>Driving Wangit DWD |         | Project # | Puralase ( |           | Report To:                            | Required (        |                  |
|                        |                |                                                                                                                | (A) |             |          | 1            |          |                                            | 1         | \$       | 5                   | 5                 | 3        | ¥.       | ¥         | 5              | MATRIX CODE                                       | (see valid co                                                                                     | des lo iel)                         |         | 1         | order a:   |           | Bed                                   | noject            |                  |
|                        |                | l.                                                                                                             | T   | 1           |          |              | +        |                                            |           |          |                     | _                 |          |          |           |                | SAMPLE TYPE                                       | (G=GRAB (                                                                                         | C=COMP)                             |         | Take      |            |           | ry Ste                                | lator:            |                  |
|                        |                | ſ                                                                                                              |     |             |          |              |          | -                                          |           |          | ]                   |                   |          |          |           | 10             | DATE                                              | S                                                                                                 |                                     |         | Ň         |            |           | BVBC                                  | natice            | ·                |
| 2 3                    |                |                                                                                                                |     |             |          |              |          | ľ                                          |           |          | 1                   |                   |          |          | 1         | 141            | T                                                 | TART                                                                                              | 8                                   |         |           |            |           |                                       | R                 |                  |
| UNT NE                 |                |                                                                                                                |     |             |          | 1            | 1        |                                            | ┼─        |          |                     |                   |          |          |           | 5              | 0                                                 | 1                                                                                                 |                                     |         | 1         |            |           |                                       |                   | ₹ 2              |
| Re of SJ               |                |                                                                                                                |     |             |          |              |          |                                            |           |          | -                   |                   | ļ        |          |           |                | a<br>1                                            | <b>B</b>                                                                                          | a                                   |         |           |            |           |                                       |                   | : Chain          |
|                        |                |                                                                                                                |     |             |          |              | -        | Į.                                         |           |          |                     |                   | <u> </u> |          | L         |                | Ā                                                 |                                                                                                   |                                     |         |           |            |           |                                       |                   | - Å              |
| * *                    |                | _                                                                                                              | _   | and<br>Anna |          | -            |          |                                            | ┣—        |          | ļ                   | ļ                 |          | <u> </u> | <u> </u>  |                | SAMPLETEMP                                        | AT COLLECT                                                                                        | ON                                  | L       |           |            |           |                                       |                   |                  |
| 719                    |                |                                                                                                                |     |             |          | -            |          |                                            | ┢         | ┼──      |                     |                   |          |          |           | R              | # OF CONTAINE                                     | :RS                                                                                               | <b>T</b>                            | 100     | 8         | 8          |           | <b>Amend</b>                          | invoic            | ्र दे<br>संदे    |
| がな                     |                |                                                                                                                |     |             |          | $\mathbf{T}$ | -        | ŀ                                          | ┢──       | -        |                     |                   |          |          | <u> </u>  |                | H2SO4                                             |                                                                                                   | -                                   | 10      | đ         | NOR.       |           | 8                                     | 8 3<br>5 0        |                  |
|                        |                |                                                                                                                | n   |             |          |              | L        | 1                                          |           |          |                     |                   |          |          |           |                | HNO3                                              |                                                                                                   | P                                   | . 8     | May       |            | 1.<br>No. |                                       |                   | Ģ                |
| No.                    |                |                                                                                                                | A   |             |          | -            | <u>.</u> | :<br>                                      |           |          |                     |                   |          |          |           |                | HCI                                               |                                                                                                   |                                     | Į       | 900       |            |           |                                       | 2                 | 5                |
| 175                    |                |                                                                                                                | Å   |             |          | 1            | <b> </b> | <u> </u>                                   | _         | <u> </u> | en en el<br>Regione |                   |          |          |           |                | NaOH                                              |                                                                                                   |                                     | Ģ       | L         |            |           |                                       |                   | ğ                |
|                        |                |                                                                                                                | R   |             |          | 1            | 1        | <u> </u>                                   |           |          |                     |                   |          |          |           |                | N#2S2D3                                           |                                                                                                   | - 8                                 |         | EV.       |            |           |                                       |                   |                  |
| 2                      |                |                                                                                                                | K   |             | 1        | t            | 1        |                                            |           |          |                     |                   |          |          | - <u></u> |                | Other                                             |                                                                                                   | -                                   |         | henda     |            | ŀ         |                                       |                   |                  |
|                        |                |                                                                                                                | 1   |             |          |              |          |                                            |           | 3        |                     |                   |          |          |           |                | Analyse                                           | Test                                                                                              | 1.<br>Market                        |         | 8         |            |           |                                       |                   |                  |
| الم اع                 |                |                                                                                                                | S   |             |          |              |          |                                            | ×         | ×        | ×                   | ×                 | X        | ×        | ×         | ×              | App IV Metala                                     |                                                                                                   |                                     |         | (interest |            |           |                                       |                   | Para             |
| H K                    |                |                                                                                                                | 8   |             |          | <u> </u>     |          |                                            | ×         | ×        | X                   | ×                 | C X      | X        | ×         | ×              | Fluoride                                          |                                                                                                   |                                     | 湖<br>3. | 5.00      |            |           |                                       |                   |                  |
| <b>ğ</b>               |                |                                                                                                                |     |             |          | -            |          |                                            |           | <u> </u> | <b>2</b>            | <u></u>           | <u> </u> |          | <u>.</u>  | <u> </u>       | RAD 9315/932                                      | )                                                                                                 |                                     |         | r I       |            |           |                                       |                   | 87               |
|                        |                |                                                                                                                | Ň   |             |          | t -          |          |                                            |           |          |                     |                   |          |          |           |                |                                                   |                                                                                                   | 1                                   |         |           |            |           |                                       |                   | Es s             |
|                        |                |                                                                                                                | Æ   |             |          |              |          |                                            |           |          |                     |                   |          |          |           |                |                                                   |                                                                                                   |                                     |         |           |            |           |                                       |                   | - Se F           |
| TI 📓                   |                |                                                                                                                | P   |             |          | L            |          |                                            |           |          |                     |                   |          |          |           | ,<br>,         |                                                   | 1<br>.41                                                                                          |                                     |         |           |            |           |                                       |                   |                  |
|                        |                | _                                                                                                              |     |             |          | <u> </u>     |          |                                            |           |          |                     |                   |          |          |           |                | -                                                 |                                                                                                   |                                     |         |           |            | 1         | t                                     |                   |                  |
|                        |                |                                                                                                                | R   |             | <u> </u> | <u></u>      |          |                                            |           |          |                     |                   |          |          |           | _              |                                                   |                                                                                                   |                                     |         | 10.00     |            |           |                                       |                   |                  |
|                        |                |                                                                                                                |     |             | <u> </u> |              |          |                                            | ्र<br>स्ट |          |                     | ****              | ,        |          | <u></u>   | -+             |                                                   |                                                                                                   | ļ.                                  | 83      |           | 1          | i tree to | -                                     |                   | 비감               |
| TEMPING                |                | 1                                                                                                              |     |             |          |              |          |                                            |           |          |                     | <u>Ryb</u> anie   |          |          |           | -              |                                                   |                                                                                                   |                                     |         | 122.17    |            |           | j                                     | <b>P</b>          | et.              |
| • estant nr <i>C</i> 4 |                | Ļ                                                                                                              |     |             |          |              |          |                                            |           |          |                     | er and<br>animasi |          |          | <u> </u>  |                | Residual Chlori                                   | ne (Y/N)                                                                                          |                                     |         | 1         |            |           | ŀ                                     | :                 |                  |
| Received on<br>cet)    |                |                                                                                                                |     |             |          |              |          |                                            |           |          |                     |                   |          |          | -         | D.             |                                                   |                                                                                                   |                                     | 8       | 110       |            |           |                                       | ·                 |                  |
| (Y/N)                  |                | _                                                                                                              |     |             |          |              |          |                                            |           |          |                     |                   |          |          |           | <u> </u>       |                                                   |                                                                                                   |                                     |         | No.       | h          |           | ľ                                     | ,                 |                  |
|                        |                |                                                                                                                |     |             |          |              |          |                                            |           |          |                     |                   |          | 1        |           | <b>n</b>       |                                                   |                                                                                                   |                                     |         |           | B          | C         |                                       |                   |                  |
| (Y/N)                  |                |                                                                                                                |     |             |          |              |          | 1                                          | 9<br>11   |          | Ì                   |                   |          |          |           | ហ្គ            |                                                   |                                                                                                   |                                     |         |           |            |           | 5  S                                  | <b>،</b>          |                  |
|                        | - <b>1</b> - 1 | 1                                                                                                              | 1   |             | 1        |              |          |                                            |           |          | 1                   | - 1               | 1        | 1        | - f-      | $(\mathbf{N})$ |                                                   |                                                                                                   | 2. B. C.                            |         |           | 8          |           | -1                                    |                   |                  |
| Samples<br>IntactO     |                |                                                                                                                | 1   | COLOR.      |          |              |          |                                            |           |          | 1                   | ALC: N            |          |          |           | 21             |                                                   |                                                                                                   | 6.                                  |         |           | 8          |           | -1                                    |                   |                  |

÷.,

Page 22 of 25

- ÷.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | YANC-23S         | FR-01/12/1021) | YGWC43        | ST ACMC-15  | A YOWCAN      |            | Vennoe       | TEM #<br>One Character per boz.<br>(A-Z, 0-97,-<br>)<br>Seempte lets must be unique          |            |                                                                                                                 | present Due Date:           |                   | nion, GA 30114 | Inpany: Georgia Power<br>Inner: 4077 Brites Luit Ava | quired Client Information:       | And Antipation                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------|----------------|---------------|-------------|---------------|------------|--------------|----------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------|----------------|------------------------------------------------------|----------------------------------|--------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Kine Klanewer | 2.1.21 11.16     | Star Wes       | WT 2.7.1 1530 | WT 2102 H30 | WT 2-7-11/222 | Wr 2.11/20 | WT 240-04-54 | MATRIX CODE (see veid cod<br>SAMPLE TYPE (G-GRAB C<br>DATRIX CODE (see veid cod              | et to hit) | in the provide the second second second second second second second second second second second second second s | Project Name: Vates Rs      | Purchase Order #: | With Io:       | Report To: Becky Sizever                             | Required Project information:    |                                                                    |
| AR MANE AND SHOULTUPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 210/11/212    | 4//              |                |               |             |               |            |              | SAMPLE TEMP AT COLLECTIC<br># OF CONTAINERS<br>Unpreserved<br>H2SO4<br>HNO3<br>HCI<br>NaOH   | LECTED     | Pace Profile #: 10840                                                                                           | Pace Project Manager:       | Page Quote:       | Company Name:  | Attention:                                           | Section C<br>hwoles information: | CHAIN-OF-CUSTODY / A<br>The Chain-of-Custody is a LEGAL DOC        |
| Puptiewicz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | le fint dip   | 8<br>8<br>7<br>7 |                | × ^           | < × × × × × | X X X         |            |              | Na28203<br>Methanol<br>Other<br>Analyage Teats<br>App IV Metals<br>Fluoride<br>RAD 9315/9320 |            |                                                                                                                 | hevin herring@paceiabs.com, |                   |                |                                                      |                                  | <b>nalytical Request Docu</b><br>XMENT. Al relevant fields must be |
| Image: state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state | a)/1 K        | 2:Ha             |                |               | pH:         |               |            |              | Residual Chiorine (Y/N)                                                                      |            | 6A                                                                                                              |                             |                   |                | Fage : 1                                             |                                  | ment<br>completed accurately.                                      |
| SealedD<br>CoolerD<br>(Y/N)<br>Samples<br>IntectD<br>(Y/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | 6)               |                | Se le         | 2010<br>Rhi | 04 MS/MSD     |            |              | 21774                                                                                        |            |                                                                                                                 | and the second second       |                   | 60             | 2                                                    |                                  |                                                                    |

Page 25 of 27

|                                                      |         |            |  |     |     |     |        |     |     |     |             |          |                                               | #                                     |                   |           | -                    | Juested         | Ř                 | 8. IS            | 1.<br>I              |                    | -tion A                               |       |
|------------------------------------------------------|---------|------------|--|-----|-----|-----|--------|-----|-----|-----|-------------|----------|-----------------------------------------------|---------------------------------------|-------------------|-----------|----------------------|-----------------|-------------------|------------------|----------------------|--------------------|---------------------------------------|-------|
| <b>.</b>                                             |         |            |  |     |     |     |        |     |     |     |             | 26020 21 | Sample lds must be unique                     | SAMPLE ID                             |                   |           |                      | Due Dale        | (770)394 6526 Fax |                  | 1070 Bridge Mill Ave | Clent Information: | Para Analytica                        | S.    |
| 4                                                    |         | PS4        |  |     |     | Ę   |        | W   | ×   | E   | 8           | 4        | 2 3 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4       |                                       | WATER WATER WATER |           |                      | Project Name:   | Purchase Ord      |                  | Report To:           | Required Processor | •<br>•<br>•<br>•                      | 5<br> |
| 83                                                   |         | en / Arcai |  |     |     |     |        |     |     |     |             | 3164     |                                               |                                       | AB C=COM          | nt)<br>>) |                      | Yates AMA       |                   |                  | Bedy Sterver         | ject information:  |                                       |       |
| A Internet Statement                                 |         |            |  |     |     |     | -+     |     | -   |     |             | S        | ME DATE TIME                                  | E E E E E E E E E E E E E E E E E E E | COLLECTED         |           |                      |                 |                   |                  |                      |                    | CHAIN<br>The Chain                    |       |
| Line -                                               |         | 1 000      |  |     |     |     |        |     |     |     |             | 4        | SAMPLE TEMP                                   | AT COLLEG                             | GTION             |           | Pace Profile         | Page Protection | Address:          | Company A        | Attention.           | Section C          | -OF-CUST(                             |       |
| <b>F</b>                                             | Levez   | Str hope   |  |     |     |     |        |     |     |     |             |          | HN03<br>HGI<br>NaOH<br>Va28203                |                                       | Preservatives     |           | 10840 Kevi           | 1 Manatur       |                   | lame:            | ormation:            | -                  | DDY / Anal<br>LEGAL DOCUME            | • • • |
| 12112                                                | Hart    | trafficial |  | ××× | XXX | XXX | ×<br>× | ××× | ××× | ××× |             | A<br>Fi  | Dither<br>Alialysee<br>Pp IV Metals<br>workde | (76%)                                 |                   |           | n.herring@pacelabs.c |                 |                   |                  |                      | :                  | <b>ytical Regu</b><br>NT. Al relevant |       |
| 12                                                   | tothe - | 4          |  |     | ^   |     |        |     |     |     |             | R        | AD 9315/9320                                  |                                       |                   |           | δm<br>I              |                 |                   |                  | -                    |                    | lest Docun                            | 1     |
| TEMP In C                                            | 120     | 1          |  |     |     |     |        |     |     |     |             |          |                                               |                                       |                   |           |                      |                 |                   | <u> </u> ]<br>-1 |                      | femore parameters  | lent                                  |       |
| Raceived on<br>loeci<br>(Y/N)<br>CUslody<br>Sealed() |         |            |  |     |     |     |        |     |     |     | L<br>J<br>J | Res      | idual Chlorine (                              | Y/N)                                  |                   | A0        | Shirt Figure         | Sector Sector   |                   | 1.ade: *         | 2                    |                    |                                       |       |
| Cooler[]<br>(Y/N)<br>Samples<br>Intect[]<br>(Y/N)    |         |            |  |     |     |     |        |     |     |     | 5 79        |          |                                               |                                       |                   |           |                      |                 | 0                 | 0                | 1-<br>V4             |                    | •                                     |       |

Page 26 of

|                  | l            |    | ľ |     |                        |                        | 2               |                 | <b>S</b>        |                                                                                                                  |          | 17         |           |           |            |                    | P                |          | 11EM #                                                                          |                |    | Tueste      | X                 |              | Ă                   | A line du     | Hon J     |
|------------------|--------------|----|---|-----|------------------------|------------------------|-----------------|-----------------|-----------------|------------------------------------------------------------------------------------------------------------------|----------|------------|-----------|-----------|------------|--------------------|------------------|----------|---------------------------------------------------------------------------------|----------------|----|-------------|-------------------|--------------|---------------------|---------------|-----------|
|                  |              |    |   |     |                        | ADDITIONAL COMPARING A | ****** YGWC-361 | xameson DUP-GA. | XAMCZASA YGWC-1 | YEWCES                                                                                                           | YCHA 34  | YGRIFADS . | Yomr Ist- | Yown-106  | KSWITCHTO. | Venno YE WIR - SD- | KOWA             | XOWA-I   | SAMPLE ID<br>One Character per box.<br>(A-Z, 0+37,<br>Sample Ids must be unique |                |    | d Due Date: | (770)334-6526 Fax |              | 1070 Bridge Mil Ave | Georgia Power |           |
|                  |              |    |   |     |                        | 「「「「「「「」」」」            | 4 / 405 1       |                 | ASA PSK         | and the second second second second second second second second second second second second second second second |          |            |           | -         |            |                    | a statement of a |          | None Manual And                                                                 | MATTRIXE CODED |    | Project #:  | Project Name:     | Puntase Orde | Copy To:            | Report To:    | Section R |
|                  |              |    |   |     |                        |                        | 4               | 1               | 5               | 3                                                                                                                | 3        | 1          | 3         | 3         | 3          | 3                  | 3                | 3        | SAMPLE TYPE (G=GRAB C:                                                          | COMP)          |    |             |                   |              |                     |               |           |
|                  |              |    |   |     |                        |                        | 2               | 25              | 210             |                                                                                                                  |          |            |           | $\square$ | 1          | ष्ट्र              | $\mathbf{T}$     |          | 8                                                                               |                |    |             |                   |              |                     | Sicere        |           |
|                  | 1855         |    |   |     |                        | INTRE                  |                 | 125             | 2               |                                                                                                                  |          |            | <u> </u>  |           |            | þ                  | ·                | <u> </u> | E S                                                                             |                |    |             | \$                | Ì            |                     | Ĩ             |           |
| 똜                | <b>J</b> as  |    |   |     |                        | <b>UVT</b>             | بکر<br>پېر      |                 | 6.0             |                                                                                                                  |          |            |           |           |            | A                  |                  |          |                                                                                 | 8              |    |             |                   |              |                     |               | ÷         |
|                  |              |    |   |     |                        |                        |                 | ┢               | <u> </u>        |                                                                                                                  |          |            | <u> </u>  | [         | ┢          | Ť                  |                  |          | 8                                                                               | LECTE          |    |             |                   |              |                     |               |           |
|                  |              |    |   |     |                        |                        | <b> </b>        |                 | <b> </b>        |                                                                                                                  |          |            |           |           | ļ          | $\square$          | <b> </b>         |          | Ħ g                                                                             | Ö.             |    |             |                   |              |                     |               |           |
| SAND             | 5            |    |   |     |                        |                        |                 |                 | [               |                                                                                                                  |          |            |           |           |            |                    |                  |          |                                                                                 |                |    |             |                   |              |                     |               |           |
|                  | Ē            |    |   |     |                        |                        |                 |                 | · ·             |                                                                                                                  |          |            |           |           |            | \$                 |                  |          | SAMPLE TEMP AT COLLECTIC                                                        | N '            |    |             |                   |              |                     | 100           |           |
| 3                | Ä            |    |   |     |                        |                        | 2               | 7               | 4               |                                                                                                                  |          |            |           |           |            | $\square$          |                  |          | # OF CONTAINERS                                                                 |                | ľ  | 2           |                   | ŝ            | 8                   |               | 50<br>01  |
| KC I             |              |    |   |     |                        |                        |                 |                 | <b> </b>        |                                                                                                                  |          | <u> </u>   | <b> </b>  | ·         | ļ          | <b> </b>           |                  |          | Unpreserved                                                                     |                |    | a l         |                   | 0<br>9:      | pany                |               | lon c     |
|                  |              | -+ |   |     | ~                      |                        |                 |                 |                 |                                                                                                                  |          | ļ          |           |           |            | ╢                  |                  |          | H2804 .                                                                         | -11            |    | 5           |                   |              | Name                | 1011          |           |
| P                |              |    |   | , A | 1                      |                        |                 |                 |                 |                                                                                                                  |          |            |           | ⊢         |            |                    |                  |          | HGI                                                                             | rese           |    | 3           |                   |              | 26                  | mon           |           |
| 彩                |              |    |   |     | $\mathcal{L}$          | 2                      |                 |                 |                 |                                                                                                                  |          |            |           |           | <b></b>    | 11-                |                  |          | NaOH                                                                            | wat            |    | 8 :         | 5                 |              |                     | <b>_</b>      |           |
| 0                |              |    |   |     | 6                      |                        |                 |                 |                 |                                                                                                                  |          |            |           |           |            |                    |                  |          | Na28203                                                                         | ives           |    | No.         |                   |              |                     |               |           |
| اختر             |              |    |   |     | 5                      | 1.1                    |                 |                 |                 |                                                                                                                  |          |            |           | ·         |            | 2                  |                  |          | Methanol                                                                        |                |    |             |                   |              |                     |               |           |
|                  |              |    |   |     | $\left  \right\rangle$ | o By                   |                 |                 |                 |                                                                                                                  |          |            |           | ļ.        |            | ų                  |                  |          | Other                                                                           |                | 2  | <b>B</b> 6m |                   |              |                     |               |           |
| 4                | 1015         |    |   | 1   | 14                     |                        |                 | 1               |                 |                                                                                                                  | é        | 1.4        | 3         |           |            | <u> </u>           | 1                |          | Analyses Test                                                                   | YA             |    | 2040        |                   |              |                     |               |           |
|                  |              | Į. |   |     | ž                      | 1                      | <u>~</u>        | ×               | x               | ]                                                                                                                | <b>]</b> | 7          | 1         | 1         |            | Į—                 | <b>]</b>         | H        | App IV Motels                                                                   |                |    | aos.        |                   |              |                     |               |           |
|                  | 100          |    |   |     | S                      |                        | ×               | ×               | ×               | 7                                                                                                                | 7        | ×          | ×         | <b>,</b>  | ×          | *                  | *                | *        | RAD 9315/9320                                                                   |                |    | çom,        |                   |              |                     |               |           |
|                  |              | l  |   | 1   |                        |                        |                 |                 |                 |                                                                                                                  |          |            |           |           |            |                    |                  |          |                                                                                 |                |    |             |                   |              |                     |               |           |
| "                | 5968<br>5968 |    | : | "   | $\mathcal{X}$          |                        |                 |                 |                 |                                                                                                                  |          |            |           |           |            |                    |                  |          |                                                                                 |                | Ē  |             |                   |              |                     |               |           |
| 3                |              |    |   | -9- | 10                     | 5                      |                 |                 | <b>_</b>        |                                                                                                                  |          |            |           |           | <b> </b>   |                    |                  |          |                                                                                 |                |    |             |                   |              |                     |               |           |
|                  |              |    |   |     | Σ.                     |                        | _               | <b> </b>        |                 |                                                                                                                  |          |            |           | <u> </u>  | <b></b>    |                    |                  |          | · · ·                                                                           |                |    | -           |                   |              |                     |               |           |
|                  |              | -+ |   |     |                        |                        |                 |                 |                 |                                                                                                                  |          | —          |           |           |            |                    | ·                |          | <u> </u>                                                                        |                |    |             |                   |              | n                   |               |           |
| ;                |              |    |   |     | 2                      | ÷.                     |                 |                 | <del> </del>    |                                                                                                                  |          |            | ÷         |           |            |                    |                  |          | ·····                                                                           |                |    |             |                   | 1            | 194<br>1            |               |           |
|                  |              |    |   |     | $\sim$                 |                        |                 |                 |                 |                                                                                                                  |          |            |           |           |            |                    |                  |          |                                                                                 |                |    |             |                   |              | ,#¥1145             | Ē             | ٦         |
| CMR in (         |              |    |   |     |                        |                        |                 |                 |                 |                                                                                                                  |          |            |           |           |            |                    |                  |          |                                                                                 | ·              |    |             |                   |              |                     | Pag           |           |
| 5mm 10 U         |              |    |   | _   |                        | 4.                     |                 |                 | 7               |                                                                                                                  |          |            |           |           |            |                    |                  |          | Residual Chlorine (Y/N)                                                         |                |    |             |                   |              |                     |               |           |
| eceived :<br>eCl | on           |    | ſ |     |                        | 1                      | ø               | 1               | <b>*</b>        | (                                                                                                                | 1        | (          |           | t         |            |                    |                  | 11       |                                                                                 |                | 1  |             |                   |              |                     | 5             |           |
| Y/N)             |              |    |   |     |                        | N.R.C                  | <b>—</b>        | •               |                 |                                                                                                                  |          | ĺ          | •         |           | ľ          |                    |                  | '        | $\overline{\sim}$                                                               | фц.            |    |             | 100               | 15           | · .                 | 141           |           |
| usiouy<br>aled0  |              |    |   |     |                        | 8                      | ÷.              |                 | 5               |                                                                                                                  |          |            |           |           |            |                    |                  |          | 3                                                                               |                |    | 1000        |                   |              |                     | 0             |           |
| ooler()<br>(/N)  |              |    |   |     |                        |                        | 5               |                 | 3               |                                                                                                                  |          |            |           |           |            |                    |                  |          |                                                                                 | 19.55          |    |             |                   | 10.00        |                     | ľ             |           |
| amples           | T            | T  | Ţ |     |                        |                        |                 |                 |                 |                                                                                                                  |          |            |           |           |            |                    |                  |          | シー                                                                              |                |    |             |                   |              | -                   |               |           |
| "hhe             |              |    |   |     |                        | 1000                   | 1               | •               | •               |                                                                                                                  | E 1      |            | r         |           | 1          |                    | l Í              |          | 2                                                                               | at negatives   | 20 |             | 24                | - C 28       | - 8                 | 197           |           |

Page 27 of 27

|                                                        |          |                | Ĩ |          |                  |                 | <b>N</b>               |                                         | P           |       | 193      |    |     |      |       |     | 12             |              | ITEM#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                               | 1       | tex          | X                       | ₽             |          |                 | 5                     |                                       |
|--------------------------------------------------------|----------|----------------|---|----------|------------------|-----------------|------------------------|-----------------------------------------|-------------|-------|----------|----|-----|------|-------|-----|----------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------|--------------|-------------------------|---------------|----------|-----------------|-----------------------|---------------------------------------|
|                                                        |          |                |   |          |                  | Literas mainter |                        |                                         |             |       |          |    |     |      | P7_37 |     |                |              | Sample Ms must be unique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                 |         | ed Due Date: | (770)384.6526 Fac       |               | A 20144  | Y Georgia Power | d Citent Information: | Face Analytical                       |
|                                                        |          | <b>mpeters</b> |   |          |                  |                 |                        |                                         |             |       |          |    |     |      |       |     |                |              | Heading Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andrea |                                                                                 |         | Project #:   | Project Name;           | Purchase Orde | Copy To: | Report To: p    | Required Proj         |                                       |
|                                                        | :        |                |   |          | Ľ.               |                 |                        |                                         | ļ           | -     | 1        |    | 3   | 3    | 3     | 3   | 3              | 7            | MATRIX CODE (SOUVARD CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | as to tell<br>=COMP}                                                            |         |              | 3                       | 3             |          | lector S        |                       |                                       |
|                                                        |          |                |   | 1.       | Ŕ                |                 | l –                    |                                         |             | İ     | Î        |    |     |      | 17    |     |                | $\mathbf{T}$ | lg l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T                                                                               | 1       |              | tes Δ                   |               |          | Nores           | ormal                 |                                       |
| T                                                      |          | <b>i</b>       |   |          | Ren              |                 |                        |                                         |             |       | ļ        | ļ, |     | ļ    | 2     |     | Ļ              | -            | ITE STAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                 |         | ł            | N R                     |               |          |                 | Ř                     |                                       |
| 8                                                      | 3        | ĺ              |   | 100      | Colle            |                 | n<br>di<br>zanizi      |                                         |             |       | 2.4      |    |     |      | S     |     |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8                                                                               |         |              |                         |               |          |                 |                       |                                       |
|                                                        |          |                |   |          | <b>M</b>         |                 |                        |                                         |             |       |          |    |     |      |       |     | Γ              |              | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 |         |              |                         | 2             |          |                 |                       | 쿻                                     |
| 8                                                      | 2 2 S    |                |   |          | 24               |                 | -                      |                                         |             |       |          | 11 |     |      |       |     | ł, se          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ľ                                                                               |         |              |                         |               |          |                 |                       | 유                                     |
| ANPL                                                   | -AND     |                |   |          | ō                |                 |                        |                                         |             |       |          |    |     |      |       |     |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 |         |              |                         |               |          |                 |                       | 2                                     |
| 7                                                      |          |                |   |          | $\frac{2}{2}$    |                 |                        |                                         |             |       | -        |    |     |      |       |     |                |              | SAMPLE TEMP AT COLLECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DN                                                                              |         |              |                         |               |          |                 | - 4                   |                                       |
| -3                                                     | $\Sigma$ |                |   | <u>ь</u> | Ø                | 1<br>1<br>1     |                        |                                         |             | -     |          |    |     |      | 1     |     | <b> </b>       |              | # OF CONTAINERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T                                                                               |         | Page 1       | 8                       |               |          | Athene          | <b>Envoic</b>         | 9 C                                   |
| ŝ.                                                     | 7        |                |   |          | N                |                 |                        |                                         |             |       |          | ]  | ·   |      |       |     | ┢              |              | H2504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |         |              |                         | í ÷           | N K      | 24              | * 3                   |                                       |
| $\mathbb{N}$                                           |          | - History      |   | İ.       |                  |                 |                        |                                         |             |       |          |    |     |      | Same. |     |                |              | HNO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                               |         | *            |                         |               | Ř        | ľ               |                       | i i i i i i i i i i i i i i i i i i i |
| M                                                      |          |                |   |          | $\mathbf{C}$     |                 |                        |                                         |             | فتستب |          |    |     |      |       |     |                |              | HCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ]8                                                                              | 14      | Į.           |                         |               |          |                 | <b>8</b> .            | 8:                                    |
| NY IS                                                  | 2 👯      |                |   |          | 5                | С.<br>Ц         |                        |                                         | <u></u>     | ::. s | :        |    | ·   |      |       |     | <u> </u>       |              | Naoh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                 | ŀľ      |              |                         |               |          |                 |                       | <u>Š</u>                              |
| 11 1                                                   |          |                |   |          | E.               |                 |                        |                                         | i.<br>Grade |       | ÷        |    |     |      |       |     | <u> </u>       |              | Na2S2O3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18                                                                              |         |              | i                       |               |          |                 |                       |                                       |
| 1 19                                                   | Ē.       |                |   | 3        | $\mathbb{R}^{3}$ |                 |                        |                                         |             | ×     |          |    |     |      |       |     |                | ļ            | Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |         |              |                         |               |          |                 | , .                   |                                       |
|                                                        | <b>5</b> |                |   |          | N I              |                 |                        |                                         |             |       |          |    | L I |      |       |     | 1              | 8<br>• · ·   | Amilyion was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1. | 靀       |              | ş                       |               |          |                 |                       |                                       |
| ľ                                                      | 100      |                |   | -        |                  |                 |                        |                                         |             |       |          |    | X.  | ۲    | ×     | ŧ   | 17             | 1            | App IV Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                 |         |              |                         |               |          |                 |                       | eval                                  |
| <b>T</b>                                               |          |                |   |          |                  |                 |                        |                                         |             |       | · -,     |    | X   |      | ×     | 1   | R              | М            | Fluoride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | l.                                                                              |         |              |                         |               |          |                 | ÷                     |                                       |
| 9                                                      |          | ý.             |   |          | $\sim$           |                 |                        |                                         | بر.<br>ت    |       |          |    | ×   | 2    | ×     | 1   | <b>×</b>       | ×            | RAD 9315/9320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                 | ł.      |              | 1                       |               |          | ľ               | :                     | <u> </u>                              |
|                                                        |          |                |   | ·        |                  |                 | *                      |                                         |             |       |          |    |     | ), k |       |     | <b> </b>       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 |         |              |                         |               |          |                 |                       |                                       |
| $\left  \begin{array}{c} \\ \\ \\ \end{array} \right $ |          |                |   | ·        | 1<br>C           |                 | <u>) 34</u><br>11 - 14 |                                         |             |       |          |    |     |      | -     | .,  | ) <sup>-</sup> |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 |         | :            |                         |               |          |                 |                       | 8 6                                   |
| 9                                                      |          |                |   |          | 6                |                 |                        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | eiji man    |       |          |    | ,,  |      |       |     |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 |         |              |                         |               |          | 1               |                       |                                       |
| 8                                                      |          |                |   | ŝ        | H                |                 |                        |                                         |             |       |          |    |     |      |       |     |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 |         |              |                         |               | a, 1     | <b></b> .       |                       |                                       |
| Ñ                                                      |          |                | 2 |          |                  |                 |                        |                                         |             |       |          |    |     |      |       |     |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 |         |              | ALC: NO                 | 1000          |          |                 |                       | a                                     |
|                                                        |          |                |   |          | $\mathbb{E}$     |                 |                        |                                         |             |       |          |    |     |      |       |     | :              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 |         |              |                         |               |          | ~               |                       | 23                                    |
|                                                        |          |                |   |          | $\sim$           |                 |                        |                                         |             |       |          |    |     |      |       |     |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 | 190 (A) |              | No. of Concession, Name |               |          | ŀ               | 2                     | tery.                                 |
| TEMP                                                   | in C     |                |   |          |                  |                 |                        |                                         |             |       | <u> </u> |    |     |      | ليسيا |     | Ļ              |              | Residual Chiorine (Y/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18346                                                                           |         |              |                         |               |          |                 |                       | - 1.                                  |
| Receiv                                                 | ved on   |                |   | <u> </u> |                  |                 | 1                      |                                         | Ì           |       |          |    |     | j.   | 3     |     | È,             | 1            | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 |         |              |                         |               | -        |                 |                       |                                       |
| (Y/N)                                                  |          |                |   |          |                  |                 |                        |                                         |             |       |          |    | V   |      | ات    | . • |                |              | <i>5k</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                 |         |              |                         |               | 0        | ŀ               | •                     |                                       |
| Cusio                                                  | ay<br>D  |                |   | l.       |                  | 4<br>4<br>4     |                        |                                         |             |       |          |    |     | - A  | 4     |     |                |              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 |         |              |                         | 3             |          |                 |                       |                                       |
| Cooter<br>(Y/N)                                        | ıÖ       |                |   |          |                  |                 |                        |                                         |             |       |          |    |     |      | 17    |     |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 | 63      |              |                         |               | F        | 1               | 2                     |                                       |
| Sampl                                                  | ês.      |                | - | [<br>    |                  |                 |                        |                                         |             |       |          |    |     |      |       |     | ŀ              |              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 |         |              | 1                       |               | .:       |                 |                       |                                       |
| (Y/N)                                                  | e        |                |   |          |                  |                 |                        |                                         |             |       |          |    |     |      |       |     |                |              | V.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                 |         |              |                         |               |          |                 | N                     |                                       |

Page 20 of 23

|                   |                   |                |                           | Í                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |          | ð          |             |           |              | <b>1</b> 05 y    |         |     |                | R                                                                  |          | ITEM#                                                                                                          |                                     |               |                | 8 ₽                |          |                  | 1                         | 8               |
|-------------------|-------------------|----------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|------------|-------------|-----------|--------------|------------------|---------|-----|----------------|--------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------|-------------------------------------|---------------|----------------|--------------------|----------|------------------|---------------------------|-----------------|
|                   |                   |                |                           | an an an an an an an an an an an an an a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |              | A STATE OF A DIVISION OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE | +cwents- |          |            |             | YG40 889- |              | <b>WSTR7-H0-</b> | ALLER . |     | NONYA (DITOIT) | NONY-TO                                                            |          | SAMPLE ID<br>One Character per box.<br>(A-Z, 0-8/;-<br>Sample lets must be unique                              |                                     |               | of Due Date:   |                    | GA 30114 | Y: Georgia Power | d Cfient information:     | Face Analytical |
| •                 |                   |                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | 13.25        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |          |            |             |           |              |                  |         |     |                | 2 - 2<br>- 2<br>- 2<br>- 2<br>- 2<br>- 2<br>- 2<br>- 2<br>- 2<br>- |          | Named<br>Name<br>Name<br>Name<br>Name<br>Name<br>Name<br>Name<br>Name                                          | NATRICE CODES<br>Driving Waters DWC |               | Project Warne  | Puratase On        | Capy To: | Steport To:      | Section is<br>Required Pr |                 |
|                   |                   |                |                           | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WT       | ×,       | M          | 5           | WT        | ¥.           | M                | TW      | WT  | WT             | ¥1                                                                 | ¥        | MATRIX CODE (see valid co<br>SAMPLE TYPE (G=GRAB (                                                             | des to left)<br>=COMP)              |               | " Yak          | 997 <del>*</del> * |          | Becky St         | oject info                | •* •            |
| <b>1</b> 11       |                   | 1 1000         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | b            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |          |            |             |           |              |                  |         |     | -              |                                                                    |          | DATE                                                                                                           |                                     |               | SAP-2          |                    |          | <b>38A2</b> :    | unadon:                   |                 |
|                   | 1                 | PRA            |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | Tr.d         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |          |            |             |           |              |                  |         |     | 1240           | 1                                                                  |          |                                                                                                                | со<br>1100                          |               |                |                    |          |                  |                           | · ·             |
|                   |                   | Chanse of      |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | ¢.           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |          | :          |             | <br>      |              |                  |         |     |                |                                                                    |          | MIE g                                                                                                          | Î                                   |               |                |                    |          |                  |                           |                 |
|                   | SHA               |                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | Ê            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |          |            |             |           | · .          |                  | :       |     |                |                                                                    |          | T BAR                                                                                                          |                                     | 1 - 2 - 1<br> |                |                    |          |                  |                           | ain-of          |
|                   | RY C              |                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .  .<br> | 2            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |          |            |             |           |              |                  |         |     |                |                                                                    | ļ        | SAMPLE TEMP AT COLLECT                                                                                         | ON                                  |               |                |                    | 2<br>    |                  |                           |                 |
|                   | F                 | 6 <b>16</b>    | b.                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | 15           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |          |            | ļ.,,        |           |              |                  |         |     |                |                                                                    | -        | # OF CONTAINERS                                                                                                | . <u></u>                           | 205-1         | Page           | Page               |          | Àter             |                           | 4 ÜS            |
|                   | ſ                 | 12             |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | N<br>V       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | 1        |            |             |           |              |                  | 8       |     | Z              | <u>in i</u>                                                        | <u> </u> | H2SO4                                                                                                          |                                     | . IOR         | Projec         |                    | any N    | ō,               |                           | ů,              |
|                   |                   |                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | L        |            |             |           |              |                  |         |     | 1              |                                                                    |          | HNO3                                                                                                           | Pa                                  | 2             | t Man          |                    | ane:     |                  |                           | EGA             |
|                   | a when the second |                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50       | Ľ            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -        |          | 1          | н.<br>11 г. |           | Harjania     |                  |         |     |                |                                                                    |          | HCI                                                                                                            |                                     | 1084          | ager:          | · · · ·            |          |                  | 2                         | g               |
|                   |                   |                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Z.       | A            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |          |            |             | :         |              |                  |         |     |                |                                                                    |          | N80H                                                                                                           | afy.                                | ſ             | z              |                    |          |                  |                           |                 |
|                   |                   |                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S        | Ы            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |          |            |             |           |              |                  |         |     |                | <u> </u>                                                           |          | Methanol                                                                                                       | 105                                 |               | Nh.h           |                    |          |                  |                           | ₹R              |
|                   |                   |                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C        | P            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | Ľ        |            |             |           |              |                  | <       |     |                |                                                                    |          | Other                                                                                                          |                                     | ┛             | <b>Manual</b>  | :                  |          |                  |                           | ≥a              |
|                   |                   | A LOCAL        |                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ₹        | Ğ,           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ĸ        | <b>R</b> | k          | 8           | F         | ŧ            | <b>a</b> (       | े.<br>¥ | *   | ×              | *                                                                  |          | ADD IV Metate                                                                                                  | Yns                                 |               |                |                    |          |                  |                           | Rev             |
| Þ                 | S.                |                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2        | [ <b>٢</b> ] | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | ł        | ŀ          | *           |           | $\mathbf{k}$ | 2                | 4       |     | ×              | ×                                                                  | 2        | Fluoride                                                                                                       |                                     |               | 20 845         |                    |          |                  |                           | ž.              |
| E                 |                   |                | 100 Million (100 million) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2        | ٢            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1        | 4        | ×          | Ż.          | *         | <u>}</u>     | X                | 1       | ŧ   | ×              | ×1                                                                 | ×        | RAD 8316/8320                                                                                                  |                                     | , v           | Ĭ              |                    |          |                  |                           | ă X             |
| ł                 | Ā                 |                |                           | -<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ÷.       |          |            |             |           |              |                  |         |     | -              |                                                                    |          |                                                                                                                |                                     | a the second  |                |                    |          |                  | : -                       |                 |
| Γ                 |                   |                | ľ                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2        | N            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |          |            |             |           |              |                  |         |     |                | <u></u>                                                            |          |                                                                                                                |                                     | land the      |                |                    |          |                  | . •                       |                 |
|                   |                   | and the second |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |          |            |             |           |              |                  |         |     | [              |                                                                    |          |                                                                                                                |                                     |               |                |                    |          |                  |                           |                 |
|                   |                   |                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7        | a si         | Stora<br>Acci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |          | :<br>:••.: |             | _         |              |                  | -       |     |                |                                                                    | :.<br>   | tions of the second second second second second second second second second second second second second second |                                     | 5 C           |                |                    |          |                  |                           | ved a           |
|                   |                   |                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |          |            |             |           |              |                  |         |     |                |                                                                    |          |                                                                                                                |                                     |               | and the second |                    |          |                  |                           |                 |
| -                 |                   | 193            | ļ.,                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |          |            |             |           |              |                  |         |     |                |                                                                    | · .      |                                                                                                                |                                     | 2020          | 2.000          | Ĩ                  |          |                  | ,                         | ately           |
| TE                | MP In             | C              |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ч.,      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |          |            | l           | 1         | <u> </u>     |                  |         |     | <u> </u>       | <u> </u>                                                           | <u> </u> | Residual Chlorine (Y/N)                                                                                        |                                     | 27 F.         |                |                    |          |                  |                           |                 |
| Re                | icelved<br>ti     | on             |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |          |            |             |           | I            |                  |         | 7   | 5              | •                                                                  |          | ~                                                                                                              |                                     | A DA          | 5              | J                  |          |                  |                           |                 |
| (Y)<br>C1         | N)<br>Blody       |                | <b>[</b>                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |              | <b>F</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |          | :          | -           |           |              |                  |         | ŧ   | 5              |                                                                    |          | j,                                                                                                             |                                     |               |                |                    |          | K                | ·                         | ·               |
| Sez<br>Co         | lied))<br>olerU   |                | -                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |          |            |             |           |              |                  |         |     | 1              |                                                                    |          | Ś                                                                                                              |                                     |               |                |                    | ľ        |                  | , [                       |                 |
| ( <u>//</u><br>s. | Nj<br>mplas       |                |                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |          |            |             |           |              |                  |         |     | N              |                                                                    | · •      | 21.                                                                                                            |                                     |               |                |                    | Ι.       |                  |                           | · .             |
| lnta<br>(Y/       | N)                |                |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -        |          |            |             |           |              |                  |         |     | ٩              |                                                                    |          | 5                                                                                                              |                                     |               |                |                    | 5        | $\frac{1}{2}$    | 1                         |                 |
| <b>L</b>          |                   |                |                           | اا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | an si i  |              | 470.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |          |            | 1           | <u> </u>  |              |                  |         | . L | <u>. 1</u>     |                                                                    |          |                                                                                                                | 3-07A.P                             | ð -           | 鑃              |                    | RI       | Ē                |                           | 1.1             |

Page 21 of 23

|    | •                   | 1                                         | l. | ľ      | P 3                     |                              |          | 12    |          |   |          | 33             | 14           |          |            |          | [          | tiem #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ļ             |        | āļi                                       | <b>}</b>  ₽   | 3          | <u>i</u>              | I                   | 5                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----|---------------------|-------------------------------------------|----|--------|-------------------------|------------------------------|----------|-------|----------|---|----------|----------------|--------------|----------|------------|----------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------|-------------------------------------------|---------------|------------|-----------------------|---------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                     |                                           |    |        |                         | ADDUDANU COMINENTES          |          |       |          |   |          | P2007          | YAMW-1       |          | YAMW-5     | YAMW-4 - | YAMW-2     | SAMPLE ID<br>One Character per boz.<br>(A-Z, 0-6 / , -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |        | ed Due Date                               |               | GA 30114   | 1070 Bistice Mill Ave |                     | A Minut Information | Face Areintia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -  |                     |                                           |    |        |                         | のななのないの                      |          |       |          |   |          |                |              |          |            |          |            | Chundra Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Chur | MATRIAL CODED |        | Friday Indiana,                           | Puichase Onde |            | Copy To:              |                     | Section 8           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                     |                                           |    |        |                         |                              | <u> </u> | <br>  |          |   |          | A,             | A.           | 3        | 13         | 3        | 3          | MATRIX CODE (\$60 VARIA CON<br>SAMPLE TYPE (G=GRAB C=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | COMP)         |        |                                           |               |            | ecity.                |                     | í<br>E              | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    |                     |                                           |    |        |                         |                              | <b> </b> | <br>- | $\vdash$ |   |          |                | 9            | <u> </u> | B          | 18.      | Ę.         | <b>B</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |        | ates ,                                    |               |            | Sleev                 | <b>NN</b>           | Į                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ſ  |                     |                                           |    |        |                         | DBLINE                       |          | <br>  | 3        |   |          |                | Ma Iu        |          | विधि व्य   | odu lor  | 07/21   TU |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0             |        | NWA-K6                                    |               |            | a                     |                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | PRINT Na<br>SKOWATU | -                                         |    |        |                         | MIN                          |          | <br>  |          |   |          |                | <del>o</del> |          | 5          | δ        | ቻ          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OLLECTEI      |        |                                           |               |            |                       | and the strend mode |                     | 불운                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | RE of SAM           |                                           |    | -<br>- |                         | P                            |          | <br>  |          |   |          |                |              | -        |            |          |            | END<br>TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ĭ             |        |                                           |               | 1          |                       |                     |                     | Chain-of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|    |                     |                                           |    |        |                         | E.                           |          |       |          |   |          |                |              |          |            |          |            | SAMPLE TEMP AT COLLECTIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N N           |        |                                           |               |            |                       |                     |                     | S T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    |                     |                                           |    |        |                         |                              |          |       |          |   |          |                | 2            | ¥        | ٦          | 2        | ¢          | # OF CONTAINERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |        | ₫₹                                        | Ţ             | Σ          | <u>8</u>              | 3                   |                     | <sup>†</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| đ  | 78                  |                                           |    |        |                         |                              |          |       |          |   |          |                |              |          |            |          |            | Unpressived                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | 2      | 13                                        | 8             |            |                       |                     | 3                   | E S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| A  |                     | 1                                         |    |        |                         |                              |          |       |          |   |          |                |              |          |            |          |            | H2904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | Xae #  | 1<br>N                                    | 8             |            | N.                    |                     | 0                   | E C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    | -                   |                                           |    |        |                         |                              |          |       |          |   |          |                |              |          |            |          |            | HNO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pres          | Ĺ      | Aana                                      |               | 1          | ۶Į                    | <b>NEGO</b>         | ł                   | ž×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | J.                  |                                           |    |        | 1                       | <b>.</b>                     |          |       |          |   |          |                |              |          | Ъ.         |          |            | HCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ierva         | 0840   | 1                                         |               |            |                       | 2                   |                     | × ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|    | 16                  | 244 10001                                 |    |        | di                      | 3                            |          | <br>  |          |   |          |                |              |          |            |          |            | Na25203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | live          |        | ह                                         |               |            |                       | l                   |                     | Na Na                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|    | F.                  |                                           |    |        | \$                      | -                            |          | <br>  |          |   |          |                |              |          |            |          |            | Methanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | "             |        | 1 State                                   |               |            |                       |                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | M                   |                                           |    |        | 2                       | 808                          |          |       |          |   |          |                |              |          |            |          |            | Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |        | Quine                                     |               |            |                       |                     |                     | ≧ 🔓                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| L  |                     |                                           |    | ç      | 1                       | 11.65                        |          |       |          |   |          |                |              |          |            | •        |            | Analyses Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | YN            |        |                                           |               |            |                       |                     |                     | i de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de la compañía de l |
|    |                     | 1                                         |    |        | $\langle \cdot \rangle$ |                              |          |       |          |   |          | 1_             | ×            | <b>X</b> | ×          | ×        | ×          | App IV Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | 8      | ġ.                                        |               |            |                       |                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | ATE ST              |                                           |    |        | 3                       | <b>1</b>                     |          |       |          |   |          | <u>1</u> _     | X            | Ž_       | X          | ×.       | ×          | Fluoride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |        | 18                                        |               |            |                       |                     | -                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | Sign Sign           |                                           |    |        | ľ                       |                              |          |       |          | _ | <u> </u> | <del>1</del> - | Ê            | 1        | ~          | <u> </u> |            | KAD 9310/8320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1             |        | ľ                                         |               |            |                       |                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | <u>A</u>            | ч.                                        |    |        |                         | Argaite<br>Ka <sup>n</sup> a |          | <br>  |          |   |          |                |              |          |            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |        |                                           |               |            |                       | ·                   |                     | S O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| E. | 2                   | in an an an an an an an an an an an an an |    |        | 2                       | ÷.,                          |          |       |          |   |          |                |              |          |            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |        |                                           |               |            |                       |                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ĺ  | 2                   |                                           |    | -      | ζŻ                      |                              |          |       |          |   |          |                |              |          |            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | -<br>- |                                           | Ц             |            | ⊥                     |                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ī  | 3 0                 |                                           |    |        | ų                       |                              |          | <br>  |          |   |          |                |              |          |            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |        |                                           | 1000          |            |                       |                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                     |                                           |    | ~      |                         |                              |          |       |          |   |          | \<br>\         |              |          |            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |        | 1. S. S. S. S. S. S. S. S. S. S. S. S. S. |               |            |                       |                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    |                     |                                           |    | -      | 0                       | 1                            |          |       |          |   |          |                |              |          |            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |        |                                           |               |            |                       | Г                   | -                   | hate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ł  | - COSK              |                                           |    |        |                         | 1000                         |          |       |          |   |          |                |              |          |            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |        |                                           | 1000076v      |            |                       | Pag                 | '                   | ¥.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | TEMP in C           |                                           |    |        |                         |                              |          |       |          |   |          |                |              |          |            |          |            | Residual Chiorine (Y/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |        | i a                                       |               |            |                       |                     | ľ                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ī  | Received on         |                                           |    |        |                         | ŝ                            |          |       |          |   |          | 1              |              | 1        | ţ¢         | 8        | ţð .       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 8      | 5                                         |               |            | •                     | 5                   | <u>.</u>            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ľ  | (Y/N)               |                                           |    |        |                         |                              |          |       |          |   |          | ۱              | <b>,</b>     |          | 1:5        | H2       | 1,         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |        |                                           |               | <b>A</b>   | }                     | ſ                   | •                   | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Į. | Cusiody<br>SealedD  |                                           |    |        |                         |                              |          |       |          |   |          |                | o_           |          | کن         | 6        | Š          | $\mathcal{S}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |        |                                           |               | ľ          | \$                    | 0                   | , I                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|    | Cooler0<br>(Y/N)    |                                           |    |        |                         |                              |          |       |          |   |          |                | 2            |          | <i>ع</i> د | 3        | చ          | ۲<br>۲                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |        |                                           |               | ļ          | 6                     | ľ                   | '                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ī  | Samples             |                                           |    |        |                         |                              |          |       |          |   |          |                |              |          |            |          |            | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |        | 200                                       |               |            | ÷                     | L                   | j                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ſ  | (YAN)               |                                           |    |        |                         |                              |          |       |          |   |          |                |              |          |            |          |            | لب                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |        |                                           | Ш             | <b>§</b> . |                       | Ľ                   |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Page 22 of 23

|                    | Ì   |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X        |         | S S      | 18        |                         |          | 0          | 2<br>2<br>2 |          | 6 S      |          |             | ITEM#                                                                            |                        |                                          | <b>Treste</b> | ğ                 |       | ines:               | Aubdul       | permit              | 5004/28                                |
|--------------------|-----|----------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|----------|-----------|-------------------------|----------|------------|-------------|----------|----------|----------|-------------|----------------------------------------------------------------------------------|------------------------|------------------------------------------|---------------|-------------------|-------|---------------------|--------------|---------------------|----------------------------------------|
| .•                 |     |          |     | ALC: NO REPORT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT O |          |         |          |           |                         |          |            |             |          |          |          | Maran CC-71 | SAMPLE ID<br>One Character per box.<br>(AZ 5-9 / ,-<br>Semple kts must be unique | ·<br>·                 |                                          | d Due Date:   | (770)384-5528 Fax |       | 1070 Broge Mill Ave | Ceorda Power | Client Information: | (_PaceAnalytical<br>www.veituences     |
|                    |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |          |           |                         |          |            |             |          |          |          |             | Hannahari<br>Froduced<br>Otto<br>Mayel<br>Mayel<br>Dokenti<br>Dokenti            | Deterting Version()    |                                          | P             | - Part            |       |                     | Reb          | 20 Sec              |                                        |
| 2 <b>8</b><br>     |     |          | St. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |          |           |                         |          |            |             |          | -        |          |             | *39965999                                                                        | DWC<br>CODEL           |                                          | A             | ed Nam            | 5     | 7.7                 | ort To:      | Wined Pr            | · · ·                                  |
|                    |     |          | B   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |          |           | 1                       | WT       | WT         | M           | N.       | M        | WT       | T           | MATRIX CODE (see valid co<br>SAMPLE TYPE (G-SPAR)                                | des lo jañ)<br>CeCOMEI |                                          |               |                   | *     |                     | Bedy         | Diacx in            |                                        |
|                    |     | ÷        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | ĺ       |          |           |                         |          | $\uparrow$ |             |          | ╈        | +        | 17          | g                                                                                |                        |                                          |               | STIME N           |       |                     | Steeve       | dormali             |                                        |
|                    |     |          |     | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | -       |          | <b>.</b>  |                         | +        | +          |             | +        | +        | ╉┈       | 22          | TE STAR                                                                          |                        |                                          |               |                   | Ľ     |                     |              | 5                   |                                        |
| NOIS<br>NULL       |     |          | 1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Į.      | ļ        |           |                         |          |            |             |          | _        |          | ้จั         |                                                                                  | 2001                   |                                          |               |                   |       |                     |              |                     |                                        |
| Nume               |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |          |           |                         | -        |            | ł           |          |          |          |             |                                                                                  | CTED                   |                                          |               |                   |       |                     |              |                     |                                        |
| of SAN             |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |          |           |                         | 1        |            | 1-          | T        |          | 1        |             | ž Š                                                                              |                        |                                          |               |                   |       |                     |              |                     | Yain -                                 |
|                    |     |          |     | Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u> |         |          |           |                         |          | -          | ┼╍          | ╀        | ╀        | ┦╌       |             | M<br>SAMPLE TEMP AT COLLECT                                                      |                        |                                          |               |                   |       |                     |              |                     |                                        |
|                    |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |          |           |                         |          |            |             |          |          |          | 2           | # OF CONTAINERS                                                                  |                        |                                          | ġ.            | 2 2               | ě     | 8                   | 2            | ĨĨ                  | Š Č                                    |
| BB                 |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |          |           | <u> </u>                |          | ļ          | _           | <u> </u> |          |          |             | Unpreserved                                                                      | _                      |                                          |               |                   | TEXS: | npany               |              |                     | ଅ<br>ଜ<br>ଜ                            |
| Rts I              |     | -        | h   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |          |           | ┝──                     |          | -          |             | -        |          | +        |             | H2SO4                                                                            | - <b>[</b>             |                                          | 5             |                   |       | Nam                 |              | 1                   |                                        |
|                    |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·        |         |          |           |                         |          | -          |             |          | -        |          |             | HCL                                                                              | - I                    |                                          |               |                   |       | 8                   |              |                     | 27                                     |
| NZ                 |     | ľ        | R.  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |          | -         |                         |          |            | 1           |          |          | T        |             | NaOH                                                                             | Tat                    | Ş                                        |               |                   |       |                     | ľ            | •                   | 8 Z                                    |
| N R                |     |          | Ċ   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |          | -         |                         |          | Į          | <u> </u>    |          |          |          |             | Na28203                                                                          |                        |                                          | No.           |                   |       |                     | 1            |                     |                                        |
| 1 is B             |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         | -<br>    |           |                         | <u> </u> | <u> </u>   | <u> </u>    | <u> </u> | <b> </b> |          |             | Methanol                                                                         | ]                      |                                          | R             |                   |       |                     |              |                     | NIC                                    |
| 1 2                |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         | ļ        | 3<br>     | ÷.                      | Larry    | 1          | <u> </u>    |          | <u> </u> | L        | .l          | Other                                                                            | * ANY 1988             |                                          | Sector 1      |                   |       |                     |              |                     | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|                    |     |          | R   | 1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |         |          |           | ×                       | ×        | ×          | ×           | ×        | ×        | ×        | ×           | App IV Metals                                                                    |                        |                                          | No.           |                   |       |                     |              |                     | lieva <b>Ke</b> va                     |
| I TA               | i   |          | R   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |          |           | ×                       | ×        | ×          | ×           | ×        | ×        | ×        | ×           | Fluoride                                                                         |                        |                                          | 105.00        |                   |       |                     |              |                     | at fie                                 |
|                    |     |          | N   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |          |           | ×                       | ×        | ×          | ×           | ×        | ×        | ×        | ×           | RAD 9316/9320                                                                    |                        |                                          | P             |                   |       |                     |              |                     | ŝ                                      |
| Ă                  |     |          | K,  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |          |           |                         |          |            |             | -        |          |          |             |                                                                                  |                        | 100                                      |               |                   | Í     |                     |              |                     |                                        |
|                    | · · |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |          | 2<br>1    |                         |          | :          |             | ┢        |          |          | -           |                                                                                  | <b> </b>               |                                          |               |                   |       | ŀ                   |              |                     | S C                                    |
| <b>F</b>           |     |          | R   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |          |           |                         |          |            |             | İ        |          |          |             |                                                                                  |                        |                                          |               |                   |       |                     | I.           |                     | ă E                                    |
|                    |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |          |           |                         |          |            |             |          |          | 1        |             |                                                                                  |                        |                                          | 臣             |                   |       | li                  |              |                     | ă R                                    |
|                    |     |          | R   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | <u></u> | ainmin - | un antica |                         |          |            |             |          |          |          |             |                                                                                  |                        | 1                                        | 201030        |                   | 200   |                     |              |                     | lac                                    |
|                    |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _        |         |          |           | $(x^{n},y) \in \{0,1\}$ |          |            | -           | <u> </u> |          |          |             |                                                                                  | [                      | an an an an an an an an an an an an an a | 1000          |                   |       |                     | _            | <b></b> ,           | ਮਾਹ                                    |
| TEMOLO             |     | 1        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |          |           |                         |          |            |             |          |          | <u>.</u> | <b> </b>    |                                                                                  |                        | 5                                        |               |                   |       |                     | J            | '                   | e,                                     |
| TEMPING            |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         | ,        | innen i   |                         |          |            |             | £        |          |          | ť.<br>      | Residual Chiorine (Y/N)                                                          |                        |                                          |               |                   |       |                     | 8            |                     |                                        |
| Received on liceO  |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |          | :         |                         | ~        |            |             |          | ·        | ,        | σ           | 2                                                                                |                        | 9                                        | <b>B</b>      |                   | N     |                     |              |                     | -                                      |
| (Y/N)              |     | -        |     | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |         |          |           |                         |          |            |             | ŀ        |          |          |             | Ŝ,                                                                               | A DEST                 |                                          |               |                   |       |                     | N            |                     |                                        |
| Sealed D           |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · :]     |         | : - i    |           |                         |          |            |             |          | :        |          | Ŋ1          | ù vy                                                                             |                        |                                          |               |                   |       | P                   |              |                     |                                        |
|                    |     | <u> </u> |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |          |           | 1                       |          |            |             |          |          | ÷.       | N           | <u>C</u>                                                                         |                        |                                          |               |                   |       | å                   | <u>۹</u>     |                     |                                        |
| Samples<br>IntactO |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         | 1        |           |                         |          | :          |             |          |          |          | 3           | N                                                                                |                        |                                          | 1000          |                   |       | عٰ                  |              |                     |                                        |
|                    |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . I      |         | I        |           | ·                       | ,<br>    | :          |             |          |          |          |             | 2                                                                                | sone di<br>Desta       |                                          | (Tester       |                   |       | :                   | ~            |                     |                                        |

......

Page 23 of 23

5.08



| SDG      | Sample ID | Method              | Analyte | Result | Units   | Validation Qualifier | Reason for Validation Qualifier |  |  |  |  |  |  |
|----------|-----------|---------------------|---------|--------|---------|----------------------|---------------------------------|--|--|--|--|--|--|
|          | YGWC-41   | 6020                | Lead    | 0.005  | mg/L    | UB                   | EB Contamination                |  |  |  |  |  |  |
| 92521574 | YGWC-42   | 6020                | Lead    | 0.005  | mg/L    | UB                   | EB Contamination                |  |  |  |  |  |  |
|          | YGWC-36A  | 6020                | Lead    | 0.005  | mg/L    | UB                   | EB Contamination                |  |  |  |  |  |  |
| 92521564 |           |                     |         | Nc     | Qualifi | ers Added            |                                 |  |  |  |  |  |  |
| 92521572 |           | No Qualifiers Added |         |        |         |                      |                                 |  |  |  |  |  |  |
| 92521583 |           |                     |         | No     | Qualifi | ers Added            |                                 |  |  |  |  |  |  |

Abbreviations:

mg/L = milligrams per liter

Qualifiers:

UB = not detected due to blank contamination J/UJ = Estimated



Pace Analytical Services, LLC 110 Technology Parkway Peachtree Corners, GA 30092 (770)734-4200

February 23, 2021

Ms. Lauren Petty Southern Co. Services 42 Inverness Center Parkway Birmingham, AL 35242

RE: Project: YATES R6/AMA Pace Project No.: 92521574

Dear Ms. Petty:

Enclosed are the analytical results for sample(s) received by the laboratory on February 10, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Asheville
- Pace Analytical Services Charlotte
- Pace Analytical Services Peachtree Corners, GA

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kandony

Kevin Herring kevin.herring@pacelabs.com 1(704)875-9092 HORIZON Database Administrator

Enclosures

cc: Joju Abraham, Georgia Power-CCR Geoffrey Gay, ARCADIS - Atlanta Kristen Jurinko Kelley Sharpe, ARCADIS - Atlanta Alex Simpson, Arcadis Samantha Thomas Maribel Vital





Pace Analytical Services, LLC 110 Technology Parkway Peachtree Corners, GA 30092 (770)734-4200

#### CERTIFICATIONS

Project: YATES R6/AMA

Pace Project No.: 92521574

#### Pace Analytical Services Charlotte

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12

#### Pace Analytical Services Asheville

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648 North Carolina Drinking Water Certification #: 37712

#### Pace Analytical Services Peachtree Corners

110 Technology Pkwy, Peachtree Corners, GA 30092 Florida DOH Certification #: E87315 Georgia DW Inorganics Certification #: 812 South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221

North Carolina Wastewater Certification #: 40 South Carolina Certification #: 99030001 Virginia/VELAP Certification #: 460222

North Carolina Certification #: 381 South Carolina Certification #: 98011001



Pace Analytical Services, LLC 110 Technology Parkway Peachtree Corners, GA 30092 (770)734-4200

#### SAMPLE SUMMARY

Project:YATES R6/AMAPace Project No.:92521574

| Lab ID      | Sample ID          | Matrix | Date Collected | Date Received  |
|-------------|--------------------|--------|----------------|----------------|
| 92521574001 | YGWC-38 (020921)   | Water  | 02/09/21 13:50 | 02/10/21 17:10 |
| 92521574002 | YGWC-41 (021021)   | Water  | 02/10/21 13:25 | 02/10/21 17:10 |
| 92521574003 | YGWC-42 (021021)   | Water  | 02/10/21 14:30 | 02/10/21 17:10 |
| 92521574004 | YGWC-43 (020921)   | Water  | 02/09/21 15:30 | 02/10/21 17:10 |
| 92521574005 | EB-01(021021)      | Water  | 02/10/21 13:30 | 02/10/21 17:10 |
| 92521574006 | YGWC-23S (020921)  | Water  | 02/09/21 11:10 | 02/10/21 17:10 |
| 92521574007 | YGWC-49(020921)    | Water  | 02/09/21 15:15 | 02/10/21 17:10 |
| 92521574008 | YGWC-24SA (020921) | Water  | 02/09/21 16:10 | 02/10/21 17:10 |
| 92521574009 | DUP-02 (020921)    | Water  | 02/09/21 00:00 | 02/10/21 17:10 |
| 92521574010 | YGWC-36A (021021)  | Water  | 02/10/21 14:30 | 02/10/21 17:10 |



#### SAMPLE ANALYTE COUNT

Project:YATES R6/AMAPace Project No.:92521574

| Lab ID      | Sample ID          | Method                 | Analysts | Analytes<br>Reported |
|-------------|--------------------|------------------------|----------|----------------------|
| 92521574001 | YGWC-38 (020921)   | EPA 6020B              | CW1      | 12                   |
|             |                    | EPA 7470A              | VB       | 1                    |
|             |                    | EPA 300.0 Rev 2.1 1993 | CDC      | 1                    |
| 92521574002 | YGWC-41 (021021)   | EPA 6020B              | CW1      | 12                   |
|             |                    | EPA 7470A              | VB       | 1                    |
|             |                    | EPA 300.0 Rev 2.1 1993 | CDC      | 1                    |
| 92521574003 | YGWC-42 (021021)   | EPA 6020B              | CW1      | 12                   |
|             |                    | EPA 7470A              | VB       | 1                    |
|             |                    | EPA 300.0 Rev 2.1 1993 | CDC      | 1                    |
| 92521574004 | YGWC-43 (020921)   | EPA 6020B              | CW1      | 12                   |
|             |                    | EPA 7470A              | VB       | 1                    |
|             |                    | EPA 300.0 Rev 2.1 1993 | CDC      | 1                    |
| 92521574005 | EB-01(021021)      | EPA 6020B              | CW1      | 12                   |
|             |                    | EPA 7470A              | VB       | 1                    |
|             |                    | EPA 300.0 Rev 2.1 1993 | CDC      | 1                    |
| 92521574006 | YGWC-23S (020921)  | EPA 6020B              | CW1      | 12                   |
|             |                    | EPA 7470A              | VB       | 1                    |
|             |                    | EPA 300.0 Rev 2.1 1993 | CDC      | 1                    |
| 92521574007 | YGWC-49(020921)    | EPA 6020B              | CW1      | 12                   |
|             |                    | EPA 7470A              | VB       | 1                    |
|             |                    | EPA 300.0 Rev 2.1 1993 | CDC      | 1                    |
| 92521574008 | YGWC-24SA (020921) | EPA 6020B              | CW1      | 12                   |
|             |                    | EPA 7470A              | VB       | 1                    |
|             |                    | EPA 300.0 Rev 2.1 1993 | CDC      | 1                    |
| 92521574009 | DUP-02 (020921)    | EPA 6020B              | CW1      | 12                   |
|             |                    | EPA 7470A              | VB       | 1                    |
|             |                    | EPA 300.0 Rev 2.1 1993 | CDC      | 1                    |
| 92521574010 | YGWC-36A (021021)  | EPA 6020B              | CW1      | 12                   |
|             |                    | EPA 7470A              | VB       | 1                    |
|             |                    | EPA 300.0 Rev 2.1 1993 | CDC      | 1                    |
|             |                    |                        |          |                      |

PASI-A = Pace Analytical Services - Asheville

PASI-C = Pace Analytical Services - Charlotte

PASI-GA = Pace Analytical Services - Peachtree Corners, GA



#### SUMMARY OF DETECTION

Project: YATES R6/AMA

Pace Project No.: 92521574

| Lab Sample ID          | Client Sample ID |              |            |              |                |            |
|------------------------|------------------|--------------|------------|--------------|----------------|------------|
| Method                 | Parameters       | Result       | Units      | Report Limit | Analyzed       | Qualifiers |
| 92521574001            | YGWC-38 (020921) |              |            |              |                |            |
|                        | Performed by     | CUSTOME<br>R |            |              | 02/23/21 08:10 |            |
|                        | рН               | 5.04         | Std. Units |              | 02/23/21 08:10 |            |
| EPA 6020B              | Antimony         | 0.00031J     | mg/L       | 0.0030       | 02/18/21 19:41 |            |
| EPA 6020B              | Arsenic          | 0.00098J     | mg/L       | 0.0050       | 02/18/21 19:41 |            |
| EPA 6020B              | Barium           | 0.016        | mg/L       | 0.010        | 02/18/21 19:41 |            |
| EPA 6020B              | Beryllium        | 0.0029J      | mg/L       | 0.0030       | 02/18/21 19:41 |            |
| EPA 6020B              | Cadmium          | 0.0014J      | ma/L       | 0.0025       | 02/18/21 19:41 |            |
| EPA 6020B              | Lithium          | 0.0067J      | ma/L       | 0.030        | 02/18/21 19:41 |            |
| EPA 6020B              | Selenium         | 0.073        | mg/L       | 0.010        | 02/18/21 19:41 |            |
| 92521574002            | YGWC-41 (021021) |              |            |              |                |            |
|                        | Performed by     | CUSTOME      |            |              | 02/23/21 08:10 |            |
|                        | На               | R<br>4.98    | Std. Units |              | 02/23/21 08:10 |            |
| EPA 6020B              | Antimony         | 0.0014J      | ma/L       | 0.0030       | 02/18/21 20:03 |            |
| EPA 6020B              | Barium           | 0.017        | ma/L       | 0.010        | 02/18/21 20:03 |            |
| EPA 6020B              | Bervllium        | 0.0015J      | ma/l       | 0.0030       | 02/18/21 20:03 |            |
| EPA 6020B              | Lead             | 0.00020J     | ma/L       | 0.0050       | 02/18/21 20:03 |            |
| EPA 6020B              | Lithium          | 0.0021J      | ma/L       | 0.030        | 02/18/21 20:03 |            |
| EPA 6020B              | Selenium         | 0.033        | mg/L       | 0.010        | 02/18/21 20:03 |            |
| 92521574003            | YGWC-42 (021021) |              |            |              |                |            |
|                        | Performed by     | CUSTOME<br>R |            |              | 02/23/21 08:10 |            |
|                        | рН               | 5.65         | Std. Units |              | 02/23/21 08:10 |            |
| EPA 6020B              | Antimony         | 0.00053J     | mg/L       | 0.0030       | 02/18/21 20:09 |            |
| EPA 6020B              | Arsenic          | 0.0016J      | mg/L       | 0.0050       | 02/18/21 20:09 |            |
| EPA 6020B              | Barium           | 0.031        | mg/L       | 0.010        | 02/18/21 20:09 |            |
| EPA 6020B              | Beryllium        | 0.000057J    | mg/L       | 0.0030       | 02/18/21 20:09 |            |
| EPA 6020B              | Cobalt           | 0.0019J      | mg/L       | 0.0050       | 02/18/21 20:09 |            |
| EPA 6020B              | Lead             | 0.000054J    | mg/L       | 0.0050       | 02/18/21 20:09 |            |
| EPA 6020B              | Lithium          | 0.058        | mg/L       | 0.030        | 02/18/21 20:09 |            |
| EPA 6020B              | Molybdenum       | 0.00094J     | mg/L       | 0.010        | 02/18/21 20:09 |            |
| EPA 6020B              | Selenium         | 0.043        | mg/L       | 0.010        | 02/18/21 20:09 |            |
| 92521574004            | YGWC-43 (020921) |              |            |              |                |            |
|                        | Performed by     | CUSTOME<br>R |            |              | 02/23/21 08:10 |            |
|                        | рН               | 5.86         | Std. Units |              | 02/23/21 08:10 |            |
| EPA 6020B              | Barium           | 0.041        | mg/L       | 0.010        | 02/18/21 20:15 |            |
| EPA 6020B              | Beryllium        | 0.00053J     | mg/L       | 0.0030       | 02/18/21 20:15 |            |
| EPA 6020B              | Cobalt           | 0.0017J      | mg/L       | 0.0050       | 02/18/21 20:15 |            |
| EPA 6020B              | Lithium          | 0.024J       | mg/L       | 0.030        | 02/18/21 20:15 |            |
| EPA 6020B              | Molybdenum       | 0.0012J      | mg/L       | 0.010        | 02/18/21 20:15 |            |
| EPA 300.0 Rev 2.1 1993 | Fluoride         | 0.058J       | mg/L       | 0.10         | 02/12/21 19:04 |            |
| 92521574005            | EB-01(021021)    |              |            |              |                |            |
| EPA 6020B              | Lead             | 0.00055J     | mg/L       | 0.0050       | 02/18/21 20:21 |            |



#### SUMMARY OF DETECTION

Project: YATES R6/AMA

Pace Project No.: 92521574

| Lab Sample ID | Client Sample ID   |              |            |              |                |            |
|---------------|--------------------|--------------|------------|--------------|----------------|------------|
| Method        | Parameters         | Result       | Units      | Report Limit | Analyzed       | Qualifiers |
| 92521574006   | YGWC-23S (020921)  |              |            |              |                |            |
|               | Performed by       | CUSTOME<br>R |            |              | 02/23/21 08:10 |            |
|               | рН                 | 5.61         | Std. Units |              | 02/23/21 08:10 |            |
| EPA 6020B     | Antimony           | 0.00052J     | mg/L       | 0.0030       | 02/18/21 20:38 |            |
| EPA 6020B     | Barium             | 0.042        | mg/L       | 0.010        | 02/18/21 20:38 |            |
| EPA 6020B     | Beryllium          | 0.00015J     | mg/L       | 0.0030       | 02/18/21 20:38 |            |
| EPA 6020B     | Chromium           | 0.00086J     | mg/L       | 0.010        | 02/18/21 20:38 |            |
| EPA 6020B     | Lithium            | 0.0026J      | mg/L       | 0.030        | 02/18/21 20:38 |            |
| EPA 6020B     | Selenium           | 0.032        | mg/L       | 0.010        | 02/18/21 20:38 |            |
| EPA 7470A     | Mercury            | 0.00015J     | mg/L       | 0.00050      | 02/16/21 11:06 |            |
| 92521574007   | YGWC-49(020921)    |              |            |              |                |            |
|               | Performed by       | CUSTOME      |            |              | 02/23/21 08:10 |            |
|               | рН                 | к<br>5.79    | Std. Units |              | 02/23/21 08:10 |            |
| EPA 6020B     | Barium             | 0.071        | mg/L       | 0.010        | 02/18/21 20:44 |            |
| EPA 6020B     | Beryllium          | 0.00013J     | mg/L       | 0.0030       | 02/18/21 20:44 |            |
| EPA 6020B     | Chromium           | 0.0020J      | mg/L       | 0.010        | 02/18/21 20:44 |            |
| EPA 6020B     | Lithium            | 0.0038J      | mg/L       | 0.030        | 02/18/21 20:44 |            |
| EPA 6020B     | Selenium           | 0.0079J      | mg/L       | 0.010        | 02/18/21 20:44 |            |
| EPA 7470A     | Mercury            | 0.00014J     | mg/L       | 0.00050      | 02/16/21 11:09 |            |
| 92521574008   | YGWC-24SA (020921) |              |            |              |                |            |
|               | Performed by       | CUSTOME<br>R |            |              | 02/23/21 08:10 |            |
|               | рН                 | 5.69         | Std. Units |              | 02/23/21 08:10 |            |
| EPA 6020B     | Barium             | 0.031        | mg/L       | 0.010        | 02/18/21 20:49 |            |
| EPA 6020B     | Beryllium          | 0.00013J     | mg/L       | 0.0030       | 02/18/21 20:49 |            |
| EPA 6020B     | Chromium           | 0.0011J      | mg/L       | 0.010        | 02/18/21 20:49 |            |
| EPA 6020B     | Lead               | 0.00036J     | mg/L       | 0.0050       | 02/18/21 20:49 |            |
| 92521574009   | DUP-02 (020921)    |              |            |              |                |            |
| EPA 6020B     | Barium             | 0.030        | mg/L       | 0.010        | 02/18/21 20:55 |            |
| EPA 6020B     | Beryllium          | 0.00014J     | mg/L       | 0.0030       | 02/18/21 20:55 |            |
| EPA 6020B     | Chromium           | 0.0013J      | mg/L       | 0.010        | 02/18/21 20:55 |            |
| EPA 6020B     | Lead               | 0.00036J     | mg/L       | 0.0050       | 02/18/21 20:55 |            |
| 92521574010   | YGWC-36A (021021)  |              |            |              |                |            |
|               | Performed by       | CUSTOME<br>R |            |              | 02/23/21 08:10 |            |
|               | рН                 | 6.31         | Std. Units |              | 02/23/21 08:10 |            |
| EPA 6020B     | Antimony           | 0.028        | mg/L       | 0.0030       | 02/18/21 21:01 |            |
| EPA 6020B     | Arsenic            | 0.00088J     | mg/L       | 0.0050       | 02/18/21 21:01 |            |
| EPA 6020B     | Barium             | 0.035        | mg/L       | 0.010        | 02/18/21 21:01 |            |
| EPA 6020B     | Beryllium          | 0.000099J    | mg/L       | 0.0030       | 02/18/21 21:01 |            |
| EPA 6020B     | Chromium           | 0.00094J     | mg/L       | 0.010        | 02/18/21 21:01 |            |
| EPA 6020B     | Cobalt             | 0.00038J     | mg/L       | 0.0050       | 02/18/21 21:01 |            |
| EPA 6020B     | Lead               | 0.00051J     | mg/L       | 0.0050       | 02/18/21 21:01 |            |
| EPA 6020B     | Lithium            | 0.0011J      | mg/L       | 0.030        | 02/18/21 21:01 |            |



### Project: YATES R6/AMA

Pace Project No.: 92521574

| Sample: YGWC-38 (020921) | Lab ID:      | 9252157400      | 1 Collecte     | ed: 02/09/2   | 1 13:50 | Received: 02/  | 10/21 17:10 Ma | atrix: Water |      |
|--------------------------|--------------|-----------------|----------------|---------------|---------|----------------|----------------|--------------|------|
|                          |              |                 | Report         |               |         |                |                |              |      |
| Parameters               | Results      | Units           | Limit          | MDL           | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| Field Data               | Analytical   | Method:         |                |               |         |                |                |              |      |
|                          | Pace Ana     | lytical Service | es - Charlotte | e             |         |                |                |              |      |
| Performed by             | CUSTOME<br>R |                 |                |               | 1       |                | 02/23/21 08:10 |              |      |
| рН                       | 5.04         | Std. Units      |                |               | 1       |                | 02/23/21 08:10 |              |      |
| 6020 MET ICPMS           | Analytical   | Method: EPA     | 6020B Pre      | paration Met  | hod: El | PA 3005A       |                |              |      |
|                          | Pace Ana     | lytical Service | es - Peachtre  | ee Corners, C | θA      |                |                |              |      |
| Antimony                 | 0.00031J     | mg/L            | 0.0030         | 0.00028       | 1       | 02/17/21 09:52 | 02/18/21 19:41 | 7440-36-0    |      |
| Arsenic                  | 0.00098J     | mg/L            | 0.0050         | 0.00078       | 1       | 02/17/21 09:52 | 02/18/21 19:41 | 7440-38-2    |      |
| Barium                   | 0.016        | mg/L            | 0.010          | 0.00071       | 1       | 02/17/21 09:52 | 02/18/21 19:41 | 7440-39-3    |      |
| Beryllium                | 0.0029J      | mg/L            | 0.0030         | 0.000046      | 1       | 02/17/21 09:52 | 02/18/21 19:41 | 7440-41-7    |      |
| Cadmium                  | 0.0014J      | mg/L            | 0.0025         | 0.00012       | 1       | 02/17/21 09:52 | 02/18/21 19:41 | 7440-43-9    |      |
| Chromium                 | ND           | mg/L            | 0.010          | 0.00055       | 1       | 02/17/21 09:52 | 02/18/21 19:41 | 7440-47-3    |      |
| Cobalt                   | ND           | mg/L            | 0.0050         | 0.00038       | 1       | 02/17/21 09:52 | 02/18/21 19:41 | 7440-48-4    |      |
| Lead                     | ND           | mg/L            | 0.0050         | 0.000036      | 1       | 02/17/21 09:52 | 02/18/21 19:41 | 7439-92-1    |      |
| Lithium                  | 0.0067J      | mg/L            | 0.030          | 0.00081       | 1       | 02/17/21 09:52 | 02/18/21 19:41 | 7439-93-2    |      |
| Molybdenum               | ND           | mg/L            | 0.010          | 0.00069       | 1       | 02/17/21 09:52 | 02/18/21 19:41 | 7439-98-7    |      |
| Selenium                 | 0.073        | mg/L            | 0.010          | 0.0016        | 1       | 02/17/21 09:52 | 02/18/21 19:41 | 7782-49-2    |      |
| Thallium                 | ND           | mg/L            | 0.0010         | 0.00014       | 1       | 02/17/21 09:52 | 02/18/21 19:41 | 7440-28-0    |      |
| 7470 Mercury             | Analytical   | Method: EPA     | 7470A Pre      | paration Met  | hod: El | PA 7470A       |                |              |      |
|                          | Pace Ana     | lytical Service | es - Peachtre  | e Corners, C  | βA      |                |                |              |      |
| Mercury                  | ND           | mg/L            | 0.00050        | 0.000078      | 1       | 02/15/21 15:30 | 02/16/21 10:43 | 7439-97-6    |      |
| 300.0 IC Anions 28 Days  | Analytical   | Method: EPA     | 300.0 Rev 2    | 2.1 1993      |         |                |                |              |      |
|                          | Pace Ana     | lytical Service | es - Asheville | ;             |         |                |                |              |      |
| Fluoride                 | ND           | mg/L            | 0.10           | 0.050         | 1       |                | 02/12/21 17:08 | 16984-48-8   | M1   |



#### Project: YATES R6/AMA

Pace Project No.: 92521574

| Sample: YGWC-41 (021021) | Lab ID:      | 9252157400      | 2 Collecte    | ed: 02/10/21 | 1 13:25   | Received: 02/  | 10/21 17:10 Ma | atrix: Water |      |
|--------------------------|--------------|-----------------|---------------|--------------|-----------|----------------|----------------|--------------|------|
|                          |              |                 | Report        |              |           |                |                |              |      |
| Parameters               | Results      | Units           | Limit         | MDL          | DF        | Prepared       | Analyzed       | CAS No.      | Qual |
| Field Data               | Analytical   | Method:         |               |              |           |                |                |              |      |
|                          | Pace Ana     | lytical Service | s - Charlotte | ;            |           |                |                |              |      |
| Performed by             | CUSTOME<br>R |                 |               |              | 1         |                | 02/23/21 08:10 |              |      |
| рН                       | 4.98         | Std. Units      |               |              | 1         |                | 02/23/21 08:10 |              |      |
| 6020 MET ICPMS           | Analytical   | Method: EPA     | 6020B Pre     | paration Met | hod: El   | PA 3005A       |                |              |      |
|                          | Pace Ana     | lytical Service | s - Peachtre  | e Corners, G | βA        |                |                |              |      |
| Antimony                 | 0.0014J      | mg/L            | 0.0030        | 0.00028      | 1         | 02/17/21 09:52 | 02/18/21 20:03 | 7440-36-0    |      |
| Arsenic                  | ND           | mg/L            | 0.0050        | 0.00078      | 1         | 02/17/21 09:52 | 02/18/21 20:03 | 7440-38-2    |      |
| Barium                   | 0.017        | mg/L            | 0.010         | 0.00071      | 1         | 02/17/21 09:52 | 02/18/21 20:03 | 7440-39-3    |      |
| Beryllium                | 0.0015J      | mg/L            | 0.0030        | 0.000046     | 1         | 02/17/21 09:52 | 02/18/21 20:03 | 7440-41-7    |      |
| Cadmium                  | ND           | mg/L            | 0.0025        | 0.00012      | 1         | 02/17/21 09:52 | 02/18/21 20:03 | 7440-43-9    |      |
| Chromium                 | ND           | mg/L            | 0.010         | 0.00055      | 1         | 02/17/21 09:52 | 02/18/21 20:03 | 7440-47-3    |      |
| Cobalt                   | ND           | mg/L            | 0.0050        | 0.00038      | 1         | 02/17/21 09:52 | 02/18/21 20:03 | 7440-48-4    |      |
| Lead                     | 0.00020J     | mg/L            | 0.0050        | 0.000036     | 1         | 02/17/21 09:52 | 02/18/21 20:03 | 7439-92-1    |      |
| Lithium                  | 0.0021J      | mg/L            | 0.030         | 0.00081      | 1         | 02/17/21 09:52 | 02/18/21 20:03 | 7439-93-2    |      |
| Molybdenum               | ND           | mg/L            | 0.010         | 0.00069      | 1         | 02/17/21 09:52 | 02/18/21 20:03 | 7439-98-7    |      |
| Selenium                 | 0.033        | mg/L            | 0.010         | 0.0016       | 1         | 02/17/21 09:52 | 02/18/21 20:03 | 7782-49-2    |      |
| Thallium                 | ND           | mg/L            | 0.0010        | 0.00014      | 1         | 02/17/21 09:52 | 02/18/21 20:03 | 7440-28-0    |      |
| 7470 Mercury             | Analytical   | Method: EPA     | 7470A Pre     | paration Met | hod: El   | PA 7470A       |                |              |      |
|                          | Pace Ana     | lytical Service | s - Peachtre  | e Corners, G | <b>SA</b> |                |                |              |      |
| Mercury                  | ND           | mg/L            | 0.00050       | 0.000078     | 1         | 02/15/21 15:30 | 02/16/21 10:57 | 7439-97-6    |      |
| 300.0 IC Anions 28 Days  | Analytical   | Method: EPA     | 300.0 Rev 2   | 2.1 1993     |           |                |                |              |      |
|                          | Pace Ana     | lytical Service | s - Asheville |              |           |                |                |              |      |
| Fluoride                 | ND           | mg/L            | 0.10          | 0.050        | 1         |                | 02/12/21 17:51 | 16984-48-8   |      |



#### Project: YATES R6/AMA

Pace Project No.: 92521574

| Sample: YGWC-42 (021021) | Lab ID: 92521574003 Collected: 02/10/21 14:30 Received: 02/10/21 17:10 Matrix: Water |                 |               |              |         |                |                |            |      |
|--------------------------|--------------------------------------------------------------------------------------|-----------------|---------------|--------------|---------|----------------|----------------|------------|------|
|                          |                                                                                      |                 | Report        |              |         |                |                |            |      |
| Parameters               | Results                                                                              | Units           | Limit         | MDL          | DF      | Prepared       | Analyzed       | CAS No.    | Qual |
| Field Data               | Analytical                                                                           | Method:         |               |              |         |                |                |            |      |
|                          | Pace Ana                                                                             | lytical Service | s - Charlotte | 9            |         |                |                |            |      |
| Performed by             | CUSTOME<br>R                                                                         |                 |               |              | 1       |                | 02/23/21 08:10 |            |      |
| рН                       | 5.65                                                                                 | Std. Units      |               |              | 1       |                | 02/23/21 08:10 |            |      |
| 6020 MET ICPMS           | Analytical                                                                           | Method: EPA     | 6020B Pre     | paration Met | hod: E  | PA 3005A       |                |            |      |
|                          | Pace Ana                                                                             | lytical Service | s - Peachtre  | e Corners, C | βA      |                |                |            |      |
| Antimony                 | 0.00053J                                                                             | mg/L            | 0.0030        | 0.00028      | 1       | 02/17/21 09:52 | 02/18/21 20:09 | 7440-36-0  |      |
| Arsenic                  | 0.0016J                                                                              | mg/L            | 0.0050        | 0.00078      | 1       | 02/17/21 09:52 | 02/18/21 20:09 | 7440-38-2  |      |
| Barium                   | 0.031                                                                                | mg/L            | 0.010         | 0.00071      | 1       | 02/17/21 09:52 | 02/18/21 20:09 | 7440-39-3  |      |
| Beryllium                | 0.000057J                                                                            | mg/L            | 0.0030        | 0.000046     | 1       | 02/17/21 09:52 | 02/18/21 20:09 | 7440-41-7  |      |
| Cadmium                  | ND                                                                                   | mg/L            | 0.0025        | 0.00012      | 1       | 02/17/21 09:52 | 02/18/21 20:09 | 7440-43-9  |      |
| Chromium                 | ND                                                                                   | mg/L            | 0.010         | 0.00055      | 1       | 02/17/21 09:52 | 02/18/21 20:09 | 7440-47-3  |      |
| Cobalt                   | 0.0019J                                                                              | mg/L            | 0.0050        | 0.00038      | 1       | 02/17/21 09:52 | 02/18/21 20:09 | 7440-48-4  |      |
| Lead                     | 0.000054J                                                                            | mg/L            | 0.0050        | 0.000036     | 1       | 02/17/21 09:52 | 02/18/21 20:09 | 7439-92-1  |      |
| Lithium                  | 0.058                                                                                | mg/L            | 0.030         | 0.00081      | 1       | 02/17/21 09:52 | 02/18/21 20:09 | 7439-93-2  |      |
| Molybdenum               | 0.00094J                                                                             | mg/L            | 0.010         | 0.00069      | 1       | 02/17/21 09:52 | 02/18/21 20:09 | 7439-98-7  |      |
| Selenium                 | 0.043                                                                                | mg/L            | 0.010         | 0.0016       | 1       | 02/17/21 09:52 | 02/18/21 20:09 | 7782-49-2  |      |
| Thallium                 | ND                                                                                   | mg/L            | 0.0010        | 0.00014      | 1       | 02/17/21 09:52 | 02/18/21 20:09 | 7440-28-0  |      |
| 7470 Mercury             | Analytical                                                                           | Method: EPA     | 7470A Pre     | paration Met | hod: El | PA 7470A       |                |            |      |
|                          | Pace Ana                                                                             | lytical Service | s - Peachtre  | e Corners, C | βA      |                |                |            |      |
| Mercury                  | ND                                                                                   | mg/L            | 0.00050       | 0.000078     | 1       | 02/15/21 15:30 | 02/16/21 10:59 | 7439-97-6  |      |
| 300.0 IC Anions 28 Days  | Analytical                                                                           | Method: EPA     | 300.0 Rev 2   | 2.1 1993     |         |                |                |            |      |
|                          | Pace Ana                                                                             | lytical Service | s - Asheville | •            |         |                |                |            |      |
| Fluoride                 | ND                                                                                   | mg/L            | 0.10          | 0.050        | 1       |                | 02/12/21 18:49 | 16984-48-8 |      |



#### Project: YATES R6/AMA

Pace Project No.: 92521574

| Sample: YGWC-43 (020921) | Lab ID:      | 9252157400      | 4 Collecte    | ed: 02/09/21 | 5:30 Received: 02/10/21 17:10 Matrix: Water |                |                |            |      |
|--------------------------|--------------|-----------------|---------------|--------------|---------------------------------------------|----------------|----------------|------------|------|
|                          |              |                 | Report        |              |                                             |                |                |            |      |
| Parameters               | Results      | Units           | Limit         | MDL          | DF                                          | Prepared       | Analyzed       | CAS No.    | Qual |
| Field Data               | Analytical   | Method:         |               |              |                                             |                |                |            |      |
|                          | Pace Ana     | lytical Service | s - Charlotte | 9            |                                             |                |                |            |      |
| Performed by             | CUSTOME<br>R |                 |               |              | 1                                           |                | 02/23/21 08:10 |            |      |
| рН                       | 5.86         | Std. Units      |               |              | 1                                           |                | 02/23/21 08:10 |            |      |
| 6020 MET ICPMS           | Analytical   | Method: EPA     | 6020B Pre     | paration Met | hod: E                                      | PA 3005A       |                |            |      |
|                          | Pace Ana     | lytical Service | s - Peachtre  | e Corners, C | βA                                          |                |                |            |      |
| Antimony                 | ND           | mg/L            | 0.0030        | 0.00028      | 1                                           | 02/17/21 09:52 | 02/18/21 20:15 | 7440-36-0  |      |
| Arsenic                  | ND           | mg/L            | 0.0050        | 0.00078      | 1                                           | 02/17/21 09:52 | 02/18/21 20:15 | 7440-38-2  |      |
| Barium                   | 0.041        | mg/L            | 0.010         | 0.00071      | 1                                           | 02/17/21 09:52 | 02/18/21 20:15 | 7440-39-3  |      |
| Beryllium                | 0.00053J     | mg/L            | 0.0030        | 0.000046     | 1                                           | 02/17/21 09:52 | 02/18/21 20:15 | 7440-41-7  |      |
| Cadmium                  | ND           | mg/L            | 0.0025        | 0.00012      | 1                                           | 02/17/21 09:52 | 02/18/21 20:15 | 7440-43-9  |      |
| Chromium                 | ND           | mg/L            | 0.010         | 0.00055      | 1                                           | 02/17/21 09:52 | 02/18/21 20:15 | 7440-47-3  |      |
| Cobalt                   | 0.0017J      | mg/L            | 0.0050        | 0.00038      | 1                                           | 02/17/21 09:52 | 02/18/21 20:15 | 7440-48-4  |      |
| Lead                     | ND           | mg/L            | 0.0050        | 0.000036     | 1                                           | 02/17/21 09:52 | 02/18/21 20:15 | 7439-92-1  |      |
| Lithium                  | 0.024J       | mg/L            | 0.030         | 0.00081      | 1                                           | 02/17/21 09:52 | 02/18/21 20:15 | 7439-93-2  |      |
| Molybdenum               | 0.0012J      | mg/L            | 0.010         | 0.00069      | 1                                           | 02/17/21 09:52 | 02/18/21 20:15 | 7439-98-7  |      |
| Selenium                 | ND           | mg/L            | 0.010         | 0.0016       | 1                                           | 02/17/21 09:52 | 02/18/21 20:15 | 7782-49-2  |      |
| Thallium                 | ND           | mg/L            | 0.0010        | 0.00014      | 1                                           | 02/17/21 09:52 | 02/18/21 20:15 | 7440-28-0  |      |
| 7470 Mercury             | Analytical   | Method: EPA     | 7470A Pre     | paration Met | hod: El                                     | PA 7470A       |                |            |      |
|                          | Pace Ana     | lytical Service | s - Peachtre  | e Corners, C | <b>A</b>                                    |                |                |            |      |
| Mercury                  | ND           | mg/L            | 0.00050       | 0.000078     | 1                                           | 02/15/21 15:30 | 02/16/21 11:02 | 7439-97-6  |      |
| 300.0 IC Anions 28 Days  | Analytical   | Method: EPA     | 300.0 Rev 2   | 2.1 1993     |                                             |                |                |            |      |
|                          | Pace Ana     | lytical Service | s - Asheville |              |                                             |                |                |            |      |
| Fluoride                 | 0.058J       | mg/L            | 0.10          | 0.050        | 1                                           |                | 02/12/21 19:04 | 16984-48-8 |      |



#### Project: YATES R6/AMA

Pace Project No.: 92521574

| Sample: EB-01(021021)   | Lab ID:    | 92521574005      | Collecte        | ed: 02/10/2  | 1 13:30  | 13:30 Received: 02/10/21 17:10 Matrix: Water |                |            |      |  |
|-------------------------|------------|------------------|-----------------|--------------|----------|----------------------------------------------|----------------|------------|------|--|
| Parameters              | Results    | Units            | Report<br>Limit | MDL          | DF       | Prepared                                     | Analyzed       | CAS No.    | Qual |  |
| 6020 MET ICPMS          | Analytical | Method: EPA 6    | 6020B Pre       | paration Met | thod: EF | PA 3005A                                     |                |            |      |  |
|                         | Pace Anal  | lytical Services | - Peachtre      | e Corners, C | GΑ       |                                              |                |            |      |  |
| Antimony                | ND         | mg/L             | 0.0030          | 0.00028      | 1        | 02/17/21 09:52                               | 02/18/21 20:21 | 7440-36-0  |      |  |
| Arsenic                 | ND         | mg/L             | 0.0050          | 0.00078      | 1        | 02/17/21 09:52                               | 02/18/21 20:21 | 7440-38-2  |      |  |
| Barium                  | ND         | mg/L             | 0.010           | 0.00071      | 1        | 02/17/21 09:52                               | 02/18/21 20:21 | 7440-39-3  |      |  |
| Beryllium               | ND         | mg/L             | 0.0030          | 0.000046     | 1        | 02/17/21 09:52                               | 02/18/21 20:21 | 7440-41-7  |      |  |
| Cadmium                 | ND         | mg/L             | 0.0025          | 0.00012      | 1        | 02/17/21 09:52                               | 02/18/21 20:21 | 7440-43-9  |      |  |
| Chromium                | ND         | mg/L             | 0.010           | 0.00055      | 1        | 02/17/21 09:52                               | 02/18/21 20:21 | 7440-47-3  |      |  |
| Cobalt                  | ND         | mg/L             | 0.0050          | 0.00038      | 1        | 02/17/21 09:52                               | 02/18/21 20:21 | 7440-48-4  |      |  |
| Lead                    | 0.00055J   | mg/L             | 0.0050          | 0.000036     | 1        | 02/17/21 09:52                               | 02/18/21 20:21 | 7439-92-1  |      |  |
| Lithium                 | ND         | mg/L             | 0.030           | 0.00081      | 1        | 02/17/21 09:52                               | 02/18/21 20:21 | 7439-93-2  |      |  |
| Molybdenum              | ND         | mg/L             | 0.010           | 0.00069      | 1        | 02/17/21 09:52                               | 02/18/21 20:21 | 7439-98-7  |      |  |
| Selenium                | ND         | mg/L             | 0.010           | 0.0016       | 1        | 02/17/21 09:52                               | 02/18/21 20:21 | 7782-49-2  |      |  |
| Thallium                | ND         | mg/L             | 0.0010          | 0.00014      | 1        | 02/17/21 09:52                               | 02/18/21 20:21 | 7440-28-0  |      |  |
| 7470 Mercury            | Analytical | Method: EPA 7    | 470A Pre        | paration Met | hod: EF  | PA 7470A                                     |                |            |      |  |
|                         | Pace Anal  | lytical Services | - Peachtre      | e Corners, C | GΑ       |                                              |                |            |      |  |
| Mercury                 | ND         | mg/L             | 0.00050         | 0.000078     | 1        | 02/15/21 15:30                               | 02/16/21 11:04 | 7439-97-6  |      |  |
| 300.0 IC Anions 28 Days | Analytical | Method: EPA 3    | 300.0 Rev 2     | 2.1 1993     |          |                                              |                |            |      |  |
| -                       | Pace Anal  | lytical Services | - Asheville     | •            |          |                                              |                |            |      |  |
| Fluoride                | ND         | mg/L             | 0.10            | 0.050        | 1        |                                              | 02/12/21 19:18 | 16984-48-8 |      |  |



#### Project: YATES R6/AMA

Pace Project No.: 92521574

| Sample: YGWC-23S (020921) | Lab ID: 92521574006 Collected: 02/09/21 11:10 Received: 02/10/21 17:10 Matrix: Water |                 |               |              |            |                |                |            |      |  |
|---------------------------|--------------------------------------------------------------------------------------|-----------------|---------------|--------------|------------|----------------|----------------|------------|------|--|
|                           |                                                                                      |                 | Report        |              |            |                |                |            |      |  |
| Parameters                | Results                                                                              | Units           | Limit         | MDL          | DF         | Prepared       | Analyzed       | CAS No.    | Qual |  |
| Field Data                | Analytical                                                                           | Method:         |               |              |            |                |                |            |      |  |
|                           | Pace Ana                                                                             | lytical Service | s - Charlotte | ;            |            |                |                |            |      |  |
| Performed by              | CUSTOME<br>R                                                                         |                 |               |              | 1          |                | 02/23/21 08:10 |            |      |  |
| рН                        | 5.61                                                                                 | Std. Units      |               |              | 1          |                | 02/23/21 08:10 |            |      |  |
| 6020 MET ICPMS            | Analytical                                                                           | Method: EPA     | 6020B Pre     | paration Met | hod: E     | PA 3005A       |                |            |      |  |
|                           | Pace Ana                                                                             | lytical Service | s - Peachtre  | e Corners, G | <b>S</b> A |                |                |            |      |  |
| Antimony                  | 0.00052J                                                                             | mg/L            | 0.0030        | 0.00028      | 1          | 02/17/21 09:52 | 02/18/21 20:38 | 7440-36-0  |      |  |
| Arsenic                   | ND                                                                                   | mg/L            | 0.0050        | 0.00078      | 1          | 02/17/21 09:52 | 02/18/21 20:38 | 7440-38-2  |      |  |
| Barium                    | 0.042                                                                                | mg/L            | 0.010         | 0.00071      | 1          | 02/17/21 09:52 | 02/18/21 20:38 | 7440-39-3  |      |  |
| Beryllium                 | 0.00015J                                                                             | mg/L            | 0.0030        | 0.000046     | 1          | 02/17/21 09:52 | 02/18/21 20:38 | 7440-41-7  |      |  |
| Cadmium                   | ND                                                                                   | mg/L            | 0.0025        | 0.00012      | 1          | 02/17/21 09:52 | 02/18/21 20:38 | 7440-43-9  |      |  |
| Chromium                  | 0.00086J                                                                             | mg/L            | 0.010         | 0.00055      | 1          | 02/17/21 09:52 | 02/18/21 20:38 | 7440-47-3  |      |  |
| Cobalt                    | ND                                                                                   | mg/L            | 0.0050        | 0.00038      | 1          | 02/17/21 09:52 | 02/18/21 20:38 | 7440-48-4  |      |  |
| Lead                      | ND                                                                                   | mg/L            | 0.0050        | 0.000036     | 1          | 02/17/21 09:52 | 02/18/21 20:38 | 7439-92-1  |      |  |
| Lithium                   | 0.0026J                                                                              | mg/L            | 0.030         | 0.00081      | 1          | 02/17/21 09:52 | 02/18/21 20:38 | 7439-93-2  |      |  |
| Molybdenum                | ND                                                                                   | mg/L            | 0.010         | 0.00069      | 1          | 02/17/21 09:52 | 02/18/21 20:38 | 7439-98-7  |      |  |
| Selenium                  | 0.032                                                                                | mg/L            | 0.010         | 0.0016       | 1          | 02/17/21 09:52 | 02/18/21 20:38 | 7782-49-2  |      |  |
| Thallium                  | ND                                                                                   | mg/L            | 0.0010        | 0.00014      | 1          | 02/17/21 09:52 | 02/18/21 20:38 | 7440-28-0  |      |  |
| 7470 Mercury              | Analytical                                                                           | Method: EPA     | 7470A Pre     | paration Met | hod: E     | PA 7470A       |                |            |      |  |
|                           | Pace Ana                                                                             | lytical Service | s - Peachtre  | e Corners, G | <b>S</b> A |                |                |            |      |  |
| Mercury                   | 0.00015J                                                                             | mg/L            | 0.00050       | 0.000078     | 1          | 02/15/21 15:30 | 02/16/21 11:06 | 7439-97-6  |      |  |
| 300.0 IC Anions 28 Days   | Analytical                                                                           | Method: EPA     | 300.0 Rev 2   | 2.1 1993     |            |                |                |            |      |  |
|                           | Pace Ana                                                                             | lytical Service | s - Asheville |              |            |                |                |            |      |  |
| Fluoride                  | ND                                                                                   | mg/L            | 0.10          | 0.050        | 1          |                | 02/12/21 19:33 | 16984-48-8 |      |  |



#### Project: YATES R6/AMA

Pace Project No.: 92521574

| Sample: YGWC-49(020921) | Lab ID: 92521574007 Collected: 02/09/21 15:15 Received: 02/10/21 17:10 Matrix: Water |                 |               |              |           |                |                |            |      |
|-------------------------|--------------------------------------------------------------------------------------|-----------------|---------------|--------------|-----------|----------------|----------------|------------|------|
|                         |                                                                                      |                 | Report        |              |           |                |                |            |      |
| Parameters              | Results                                                                              | Units           | Limit         | MDL          | DF        | Prepared       | Analyzed       | CAS No.    | Qual |
| Field Data              | Analytical                                                                           | Method:         |               |              |           |                |                |            |      |
|                         | Pace Ana                                                                             | lytical Service | s - Charlotte | 9            |           |                |                |            |      |
| Performed by            | CUSTOME<br>R                                                                         |                 |               |              | 1         |                | 02/23/21 08:10 |            |      |
| рН                      | 5.79                                                                                 | Std. Units      |               |              | 1         |                | 02/23/21 08:10 |            |      |
| 6020 MET ICPMS          | Analytical                                                                           | Method: EPA     | 6020B Pre     | paration Met | hod: E    | PA 3005A       |                |            |      |
|                         | Pace Ana                                                                             | lytical Service | s - Peachtre  | e Corners, C | βA        |                |                |            |      |
| Antimony                | ND                                                                                   | mg/L            | 0.0030        | 0.00028      | 1         | 02/17/21 09:52 | 02/18/21 20:44 | 7440-36-0  |      |
| Arsenic                 | ND                                                                                   | mg/L            | 0.0050        | 0.00078      | 1         | 02/17/21 09:52 | 02/18/21 20:44 | 7440-38-2  |      |
| Barium                  | 0.071                                                                                | mg/L            | 0.010         | 0.00071      | 1         | 02/17/21 09:52 | 02/18/21 20:44 | 7440-39-3  |      |
| Beryllium               | 0.00013J                                                                             | mg/L            | 0.0030        | 0.000046     | 1         | 02/17/21 09:52 | 02/18/21 20:44 | 7440-41-7  |      |
| Cadmium                 | ND                                                                                   | mg/L            | 0.0025        | 0.00012      | 1         | 02/17/21 09:52 | 02/18/21 20:44 | 7440-43-9  |      |
| Chromium                | 0.0020J                                                                              | mg/L            | 0.010         | 0.00055      | 1         | 02/17/21 09:52 | 02/18/21 20:44 | 7440-47-3  |      |
| Cobalt                  | ND                                                                                   | mg/L            | 0.0050        | 0.00038      | 1         | 02/17/21 09:52 | 02/18/21 20:44 | 7440-48-4  |      |
| Lead                    | ND                                                                                   | mg/L            | 0.0050        | 0.000036     | 1         | 02/17/21 09:52 | 02/18/21 20:44 | 7439-92-1  |      |
| Lithium                 | 0.0038J                                                                              | mg/L            | 0.030         | 0.00081      | 1         | 02/17/21 09:52 | 02/18/21 20:44 | 7439-93-2  |      |
| Molybdenum              | ND                                                                                   | mg/L            | 0.010         | 0.00069      | 1         | 02/17/21 09:52 | 02/18/21 20:44 | 7439-98-7  |      |
| Selenium                | 0.0079J                                                                              | mg/L            | 0.010         | 0.0016       | 1         | 02/17/21 09:52 | 02/18/21 20:44 | 7782-49-2  |      |
| Thallium                | ND                                                                                   | mg/L            | 0.0010        | 0.00014      | 1         | 02/17/21 09:52 | 02/18/21 20:44 | 7440-28-0  |      |
| 7470 Mercury            | Analytical                                                                           | Method: EPA     | 7470A Pre     | paration Met | hod: El   | PA 7470A       |                |            |      |
|                         | Pace Ana                                                                             | lytical Service | s - Peachtre  | e Corners, C | <b>SA</b> |                |                |            |      |
| Mercury                 | 0.00014J                                                                             | mg/L            | 0.00050       | 0.000078     | 1         | 02/15/21 15:30 | 02/16/21 11:09 | 7439-97-6  |      |
| 300.0 IC Anions 28 Days | Analytical                                                                           | Method: EPA     | 300.0 Rev 2   | 2.1 1993     |           |                |                |            |      |
|                         | Pace Ana                                                                             | lytical Service | s - Asheville | •            |           |                |                |            |      |
| Fluoride                | ND                                                                                   | mg/L            | 0.10          | 0.050        | 1         |                | 02/12/21 19:47 | 16984-48-8 |      |



#### Project: YATES R6/AMA

Pace Project No.: 92521574

| Sample: YGWC-24SA (020921) | Lab ID: 92521574008 Collected: 02/09/21 16:10 Received: 02/10/21 17:10 Matrix: Water |                 |               |              |          |                |                |            |      |  |
|----------------------------|--------------------------------------------------------------------------------------|-----------------|---------------|--------------|----------|----------------|----------------|------------|------|--|
|                            |                                                                                      |                 | Report        |              |          |                |                |            |      |  |
| Parameters                 | Results                                                                              | Units           | Limit         | MDL          | DF       | Prepared       | Analyzed       | CAS No.    | Qual |  |
| Field Data                 | Analytical                                                                           | Method:         |               |              |          |                |                |            |      |  |
|                            | Pace Ana                                                                             | lytical Service | s - Charlotte | e            |          |                |                |            |      |  |
| Performed by               | CUSTOME<br>R                                                                         |                 |               |              | 1        |                | 02/23/21 08:10 |            |      |  |
| рН                         | 5.69                                                                                 | Std. Units      |               |              | 1        |                | 02/23/21 08:10 |            |      |  |
| 6020 MET ICPMS             | Analytical Method: EPA 6020B Preparation Method: EPA 3005A                           |                 |               |              |          |                |                |            |      |  |
|                            | Pace Ana                                                                             | lytical Service | s - Peachtre  | e Corners, C | <b>A</b> |                |                |            |      |  |
| Antimony                   | ND                                                                                   | mg/L            | 0.0030        | 0.00028      | 1        | 02/17/21 09:52 | 02/18/21 20:49 | 7440-36-0  |      |  |
| Arsenic                    | ND                                                                                   | mg/L            | 0.0050        | 0.00078      | 1        | 02/17/21 09:52 | 02/18/21 20:49 | 7440-38-2  |      |  |
| Barium                     | 0.031                                                                                | mg/L            | 0.010         | 0.00071      | 1        | 02/17/21 09:52 | 02/18/21 20:49 | 7440-39-3  |      |  |
| Beryllium                  | 0.00013J                                                                             | mg/L            | 0.0030        | 0.000046     | 1        | 02/17/21 09:52 | 02/18/21 20:49 | 7440-41-7  |      |  |
| Cadmium                    | ND                                                                                   | mg/L            | 0.0025        | 0.00012      | 1        | 02/17/21 09:52 | 02/18/21 20:49 | 7440-43-9  |      |  |
| Chromium                   | 0.0011J                                                                              | mg/L            | 0.010         | 0.00055      | 1        | 02/17/21 09:52 | 02/18/21 20:49 | 7440-47-3  |      |  |
| Cobalt                     | ND                                                                                   | mg/L            | 0.0050        | 0.00038      | 1        | 02/17/21 09:52 | 02/18/21 20:49 | 7440-48-4  |      |  |
| Lead                       | 0.00036J                                                                             | mg/L            | 0.0050        | 0.000036     | 1        | 02/17/21 09:52 | 02/18/21 20:49 | 7439-92-1  |      |  |
| Lithium                    | ND                                                                                   | mg/L            | 0.030         | 0.00081      | 1        | 02/17/21 09:52 | 02/18/21 20:49 | 7439-93-2  |      |  |
| Molybdenum                 | ND                                                                                   | mg/L            | 0.010         | 0.00069      | 1        | 02/17/21 09:52 | 02/18/21 20:49 | 7439-98-7  |      |  |
| Selenium                   | ND                                                                                   | mg/L            | 0.010         | 0.0016       | 1        | 02/17/21 09:52 | 02/18/21 20:49 | 7782-49-2  |      |  |
| Thallium                   | ND                                                                                   | mg/L            | 0.0010        | 0.00014      | 1        | 02/17/21 09:52 | 02/18/21 20:49 | 7440-28-0  |      |  |
| 7470 Mercury               | Analytical                                                                           | Method: EPA     | 7470A Pre     | paration Met | hod: E   | PA 7470A       |                |            |      |  |
|                            | Pace Ana                                                                             | lytical Service | s - Peachtre  | e Corners, G | βA       |                |                |            |      |  |
| Mercury                    | ND                                                                                   | mg/L            | 0.00050       | 0.000078     | 1        | 02/15/21 15:30 | 02/16/21 11:11 | 7439-97-6  |      |  |
| 300.0 IC Anions 28 Days    | Analytical                                                                           | Method: EPA     | 300.0 Rev 2   | 2.1 1993     |          |                |                |            |      |  |
|                            | Pace Ana                                                                             | lytical Service | s - Asheville | ;            |          |                |                |            |      |  |
| Fluoride                   | ND                                                                                   | mg/L            | 0.10          | 0.050        | 1        |                | 02/12/21 20:01 | 16984-48-8 |      |  |



#### Project: YATES R6/AMA

Pace Project No.: 92521574

| Sample: DUP-02 (020921) | Lab ID:    | 92521574009     | Collecte        | ed: 02/09/2   | 00 Received: 02/10/21 17:10 Matrix: Water |                |                |            |      |
|-------------------------|------------|-----------------|-----------------|---------------|-------------------------------------------|----------------|----------------|------------|------|
| Parameters              | Results    | Units           | Report<br>Limit | MDL           | DF                                        | Prepared       | Analyzed       | CAS No.    | Qual |
| 6020 MET ICPMS          | Analytical | Method: EPA 6   | 020B Pre        | paration Met  | hod: EF                                   | PA 3005A       |                |            |      |
|                         | Pace Anal  | ytical Services | - Peachtre      | ee Corners, C | GΑ                                        |                |                |            |      |
| Antimony                | ND         | mg/L            | 0.0030          | 0.00028       | 1                                         | 02/17/21 09:52 | 02/18/21 20:55 | 7440-36-0  |      |
| Arsenic                 | ND         | mg/L            | 0.0050          | 0.00078       | 1                                         | 02/17/21 09:52 | 02/18/21 20:55 | 7440-38-2  |      |
| Barium                  | 0.030      | mg/L            | 0.010           | 0.00071       | 1                                         | 02/17/21 09:52 | 02/18/21 20:55 | 7440-39-3  |      |
| Beryllium               | 0.00014J   | mg/L            | 0.0030          | 0.000046      | 1                                         | 02/17/21 09:52 | 02/18/21 20:55 | 7440-41-7  |      |
| Cadmium                 | ND         | mg/L            | 0.0025          | 0.00012       | 1                                         | 02/17/21 09:52 | 02/18/21 20:55 | 7440-43-9  |      |
| Chromium                | 0.0013J    | mg/L            | 0.010           | 0.00055       | 1                                         | 02/17/21 09:52 | 02/18/21 20:55 | 7440-47-3  |      |
| Cobalt                  | ND         | mg/L            | 0.0050          | 0.00038       | 1                                         | 02/17/21 09:52 | 02/18/21 20:55 | 7440-48-4  |      |
| Lead                    | 0.00036J   | mg/L            | 0.0050          | 0.000036      | 1                                         | 02/17/21 09:52 | 02/18/21 20:55 | 7439-92-1  |      |
| Lithium                 | ND         | mg/L            | 0.030           | 0.00081       | 1                                         | 02/17/21 09:52 | 02/18/21 20:55 | 7439-93-2  |      |
| Molybdenum              | ND         | mg/L            | 0.010           | 0.00069       | 1                                         | 02/17/21 09:52 | 02/18/21 20:55 | 7439-98-7  |      |
| Selenium                | ND         | mg/L            | 0.010           | 0.0016        | 1                                         | 02/17/21 09:52 | 02/18/21 20:55 | 7782-49-2  |      |
| Thallium                | ND         | mg/L            | 0.0010          | 0.00014       | 1                                         | 02/17/21 09:52 | 02/18/21 20:55 | 7440-28-0  |      |
| 7470 Mercury            | Analytical | Method: EPA 7   | 470A Pre        | paration Met  | hod: EF                                   | PA 7470A       |                |            |      |
|                         | Pace Anal  | ytical Services | - Peachtre      | e Corners, C  | ЗA                                        |                |                |            |      |
| Mercury                 | ND         | mg/L            | 0.00050         | 0.000078      | 1                                         | 02/15/21 15:30 | 02/16/21 11:18 | 7439-97-6  |      |
| 300.0 IC Anions 28 Days | Analytical | Method: EPA 3   | 300.0 Rev 2     | 2.1 1993      |                                           |                |                |            |      |
|                         | Pace Anal  | ytical Services | - Asheville     | )             |                                           |                |                |            |      |
| Fluoride                | ND         | mg/L            | 0.10            | 0.050         | 1                                         |                | 02/12/21 20:45 | 16984-48-8 |      |



#### Project: YATES R6/AMA

Pace Project No.: 92521574

| Sample: YGWC-36A (021021) | Lab ID: 92521574010 Collected: 02/10/21 14:30 Received: 02/10/21 17:10 Matrix: Water |                 |               |              |         |                |                |            |      |  |
|---------------------------|--------------------------------------------------------------------------------------|-----------------|---------------|--------------|---------|----------------|----------------|------------|------|--|
|                           |                                                                                      |                 | Report        |              |         |                |                |            |      |  |
| Parameters                | Results                                                                              | Units           | Limit         | MDL          | DF      | Prepared       | Analyzed       | CAS No.    | Qual |  |
| Field Data                | Analytical                                                                           | Method:         |               |              |         |                |                |            |      |  |
|                           | Pace Ana                                                                             | lytical Service | s - Charlotte | 9            |         |                |                |            |      |  |
| Performed by              | CUSTOME<br>R                                                                         |                 |               |              | 1       |                | 02/23/21 08:10 |            |      |  |
| рН                        | 6.31                                                                                 | Std. Units      |               |              | 1       |                | 02/23/21 08:10 |            |      |  |
| 6020 MET ICPMS            | Analytical                                                                           | Method: EPA     | 6020B Pre     | paration Met | hod: E  | PA 3005A       |                |            |      |  |
|                           | Pace Ana                                                                             | lytical Service | s - Peachtre  | e Corners, C | βA      |                |                |            |      |  |
| Antimony                  | 0.028                                                                                | mg/L            | 0.0030        | 0.00028      | 1       | 02/17/21 09:52 | 02/18/21 21:01 | 7440-36-0  |      |  |
| Arsenic                   | 0.00088J                                                                             | mg/L            | 0.0050        | 0.00078      | 1       | 02/17/21 09:52 | 02/18/21 21:01 | 7440-38-2  |      |  |
| Barium                    | 0.035                                                                                | mg/L            | 0.010         | 0.00071      | 1       | 02/17/21 09:52 | 02/18/21 21:01 | 7440-39-3  |      |  |
| Beryllium                 | 0.000099J                                                                            | mg/L            | 0.0030        | 0.000046     | 1       | 02/17/21 09:52 | 02/18/21 21:01 | 7440-41-7  |      |  |
| Cadmium                   | ND                                                                                   | mg/L            | 0.0025        | 0.00012      | 1       | 02/17/21 09:52 | 02/18/21 21:01 | 7440-43-9  |      |  |
| Chromium                  | 0.00094J                                                                             | mg/L            | 0.010         | 0.00055      | 1       | 02/17/21 09:52 | 02/18/21 21:01 | 7440-47-3  |      |  |
| Cobalt                    | 0.00038J                                                                             | mg/L            | 0.0050        | 0.00038      | 1       | 02/17/21 09:52 | 02/18/21 21:01 | 7440-48-4  |      |  |
| Lead                      | 0.00051J                                                                             | mg/L            | 0.0050        | 0.000036     | 1       | 02/17/21 09:52 | 02/18/21 21:01 | 7439-92-1  |      |  |
| Lithium                   | 0.0011J                                                                              | mg/L            | 0.030         | 0.00081      | 1       | 02/17/21 09:52 | 02/18/21 21:01 | 7439-93-2  |      |  |
| Molybdenum                | ND                                                                                   | mg/L            | 0.010         | 0.00069      | 1       | 02/17/21 09:52 | 02/18/21 21:01 | 7439-98-7  |      |  |
| Selenium                  | ND                                                                                   | mg/L            | 0.010         | 0.0016       | 1       | 02/17/21 09:52 | 02/18/21 21:01 | 7782-49-2  |      |  |
| Thallium                  | ND                                                                                   | mg/L            | 0.0010        | 0.00014      | 1       | 02/17/21 09:52 | 02/18/21 21:01 | 7440-28-0  |      |  |
| 7470 Mercury              | Analytical                                                                           | Method: EPA     | 7470A Pre     | paration Met | hod: El | PA 7470A       |                |            |      |  |
|                           | Pace Ana                                                                             | lytical Service | s - Peachtre  | e Corners, C | βA      |                |                |            |      |  |
| Mercury                   | ND                                                                                   | mg/L            | 0.00050       | 0.000078     | 1       | 02/15/21 15:30 | 02/16/21 11:21 | 7439-97-6  |      |  |
| 300.0 IC Anions 28 Days   | Analytical                                                                           | Method: EPA     | 300.0 Rev 2   | 2.1 1993     |         |                |                |            |      |  |
|                           | Pace Ana                                                                             | lytical Service | s - Asheville | ;            |         |                |                |            |      |  |
| Fluoride                  | ND                                                                                   | mg/L            | 0.10          | 0.050        | 1       |                | 02/12/21 21:57 | 16984-48-8 |      |  |


| Project:           | YATES  | S R6/AMA                                                         |                                    |           |                    |                    |             |
|--------------------|--------|------------------------------------------------------------------|------------------------------------|-----------|--------------------|--------------------|-------------|
| Pace Project No.:  | 92521  | 574                                                              |                                    |           |                    |                    |             |
| QC Batch:          | 6006   | 02                                                               | Analysis Meth                      | od:       | EPA 6020B          |                    |             |
| QC Batch Method:   | EPA    | 3005A                                                            | Analysis Desc                      | ription:  | 6020 MET           |                    |             |
|                    |        |                                                                  | Laboratory:                        |           | Pace Analytical Se | rvices - Peachtree | Corners, GA |
| Associated Lab Sar | mples: | 92521574001, 92521574002,<br>92521574008, 92521574009,           | , 92521574003, 92<br>, 92521574010 | 521574004 | 92521574005, 925   | 521574006, 925215  | 74007,      |
| METHOD BLANK:      | 316549 | 98                                                               | Matrix: \                          | Water     |                    |                    |             |
| Associated Lab Sar | mples: | 92521574001, 92521574002, 92521574009, 92521574008, 92521574009, | , 92521574003, 92<br>, 92521574010 | 521574004 | 92521574005, 925   | 521574006, 925215  | 74007,      |
|                    |        |                                                                  | Blank                              | Reporting |                    |                    |             |
| Parar              | neter  | Units                                                            | Result                             | Limit     | MDL                | Analyzed           | Qualifiers  |
| Antimony           |        | mg/L                                                             | ND                                 | 0.00      | 30 0.00028         | 02/18/21 19:29     |             |
| Arsenic            |        | mg/L                                                             | ND                                 | 0.00      | 50 0.00078         | 02/18/21 19:29     |             |
| Barium             |        | mg/L                                                             | ND                                 | 0.0       | 0.00071            | 02/18/21 19:29     |             |
| Beryllium          |        | mg/L                                                             | ND                                 | 0.00      | 0.000046           | 02/18/21 19:29     |             |
| Cadmium            |        | mg/L                                                             | ND                                 | 0.00      | 0.00012            | 02/18/21 19:29     |             |
| Chromium           |        | mg/L                                                             | ND                                 | 0.0       | 0.00055            | 02/18/21 19:29     |             |
| Cobalt             |        | mg/L                                                             | ND                                 | 0.00      | 0.00038            | 02/18/21 19:29     |             |
| Lead               |        | mg/L                                                             | ND                                 | 0.00      | 50 0.000036        | 02/18/21 19:29     |             |
| Lithium            |        | mg/L                                                             | ND                                 | 0.0       | 0.00081            | 02/18/21 19:29     |             |
| Molybdenum         |        | mg/L                                                             | ND                                 | 0.0       | 0.00069            | 02/18/21 19:29     |             |
| Selenium           |        | mg/L                                                             | ND                                 | 0.0       | 0.0016             | 02/18/21 19:29     |             |
| Thallium           |        | mg/L                                                             | ND                                 | 0.00      | 0.00014            | 02/18/21 19:29     |             |

### LABORATORY CONTROL SAMPLE: 3165499

|            |       | Spike | LCS    | LCS   | % Rec  |            |
|------------|-------|-------|--------|-------|--------|------------|
| Parameter  | Units | Conc. | Result | % Rec | Limits | Qualifiers |
| Antimony   | mg/L  | 0.1   | 0.10   | 101   | 80-120 |            |
| Arsenic    | mg/L  | 0.1   | 0.093  | 93    | 80-120 |            |
| Barium     | mg/L  | 0.1   | 0.094  | 94    | 80-120 |            |
| Beryllium  | mg/L  | 0.1   | 0.092  | 92    | 80-120 |            |
| Cadmium    | mg/L  | 0.1   | 0.091  | 91    | 80-120 |            |
| Chromium   | mg/L  | 0.1   | 0.093  | 93    | 80-120 |            |
| Cobalt     | mg/L  | 0.1   | 0.093  | 93    | 80-120 |            |
| Lead       | mg/L  | 0.1   | 0.094  | 94    | 80-120 |            |
| Lithium    | mg/L  | 0.1   | 0.093  | 93    | 80-120 |            |
| Molybdenum | mg/L  | 0.1   | 0.093  | 93    | 80-120 |            |
| Selenium   | mg/L  | 0.1   | 0.090  | 90    | 80-120 |            |
| Thallium   | mg/L  | 0.1   | 0.091  | 91    | 80-120 |            |

| MATRIX SPIKE & MATRIX SPI | KE DUPL | ICATE: 3165 | 500   |       | 3165501 |        |       |       |        |     |     |      |
|---------------------------|---------|-------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                           |         |             | MS    | MSD   |         |        |       |       |        |     |     |      |
|                           |         | 92521574001 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter                 | Units   | Result      | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Antimony                  | mg/L    | 0.00031J    | 0.1   | 0.1   | 0.11    | 0.10   | 109   | 102   | 75-125 | 6   | 20  |      |
| Arsenic                   | mg/L    | 0.00098J    | 0.1   | 0.1   | 0.10    | 0.10   | 101   | 100   | 75-125 | 1   | 20  |      |
| Barium                    | mg/L    | 0.016       | 0.1   | 0.1   | 0.11    | 0.11   | 99    | 94    | 75-125 | 4   | 20  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



Project: YATES R6/AMA Pace Project No.: 92521574

| MATRIX SPIKE & MATRIX SP | IKE DUPI | LICATE: 3165          | 500                  |                       | 3165501      |               |             |              |                 |     |            |      |
|--------------------------|----------|-----------------------|----------------------|-----------------------|--------------|---------------|-------------|--------------|-----------------|-----|------------|------|
| Parameter                | Units    | 92521574001<br>Result | MS<br>Spike<br>Conc. | MSD<br>Spike<br>Conc. | MS<br>Result | MSD<br>Result | MS<br>% Rec | MSD<br>% Rec | % Rec<br>Limits | RPD | Max<br>RPD | Qual |
| Beryllium                | mg/L     |                       | 0.1                  | 0.1                   | 0.092        | 0.089         | 89          | 86           | 75-125          | 3   | 20         |      |
| Cadmium                  | mg/L     | 0.0014J               | 0.1                  | 0.1                   | 0.096        | 0.096         | 95          | 95           | 75-125          | 0   | 20         |      |
| Chromium                 | mg/L     | ND                    | 0.1                  | 0.1                   | 0.098        | 0.098         | 98          | 98           | 75-125          | 0   | 20         |      |
| Cobalt                   | mg/L     | ND                    | 0.1                  | 0.1                   | 0.095        | 0.097         | 95          | 97           | 75-125          | 2   | 20         |      |
| Lead                     | mg/L     | ND                    | 0.1                  | 0.1                   | 0.093        | 0.091         | 93          | 91           | 75-125          | 2   | 20         |      |
| Lithium                  | mg/L     | 0.0067J               | 0.1                  | 0.1                   | 0.098        | 0.094         | 91          | 87           | 75-125          | 4   | 20         |      |
| Molybdenum               | mg/L     | ND                    | 0.1                  | 0.1                   | 0.10         | 0.099         | 101         | 99           | 75-125          | 3   | 20         |      |
| Selenium                 | mg/L     | 0.073                 | 0.1                  | 0.1                   | 0.17         | 0.17          | 94          | 94           | 75-125          | 0   | 20         |      |
| Thallium                 | mg/L     | ND                    | 0.1                  | 0.1                   | 0.092        | 0.091         | 92          | 91           | 75-125          | 1   | 20         |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:          | YATES  | 6 R6/AMA               |                                    |                            |                   |            |             |             |                   |             |           |     |      |
|-------------------|--------|------------------------|------------------------------------|----------------------------|-------------------|------------|-------------|-------------|-------------------|-------------|-----------|-----|------|
| Pace Project No.: | 92521  | 574                    |                                    |                            |                   |            |             |             |                   |             |           |     |      |
| QC Batch:         | 6000   | 20                     |                                    | Analy                      | sis Metho         | od:        | EPA 7470A   | ۹           |                   |             |           |     |      |
| QC Batch Method:  | EPA    | 7470A                  |                                    | Analy                      | sis Desci         | ription:   | 7470 Merc   | ury         |                   |             |           |     |      |
|                   |        |                        |                                    | Labo                       | ratory:           |            | Pace Analy  | tical Servi | ces - Peacl       | ntree Corne | rs, GA    |     |      |
| Associated Lab Sa | mples: | 925215740<br>925215740 | 001, 9252157400<br>008, 9252157400 | 12, 9252157<br>19, 9252157 | 4003, 929<br>4010 | 521574004, | , 925215740 | 005, 92521  | 1574006, 92       | 2521574007  | 7,        |     |      |
| METHOD BLANK:     | 31632  | 26                     |                                    |                            | Matrix: V         | Vater      |             |             |                   |             |           |     |      |
| Associated Lab Sa | mples: | 925215740<br>925215740 | )01, 9252157400<br>)08, 9252157400 | 2, 9252157<br>9, 9252157   | 4003, 92:<br>4010 | 521574004, | , 925215740 | 005, 92521  | 1574006, 92       | 2521574007  | 7,        |     |      |
|                   |        |                        |                                    | Blan                       | ık                | Reporting  |             |             |                   |             |           |     |      |
| Para              | meter  |                        | Units                              | Resu                       | ult               | Limit      | ME          | DL          | Analyzeo          | d Qi        | ualifiers |     |      |
| Mercury           |        |                        | mg/L                               |                            | ND                | 0.0005     | 50 0.0      | 000078      | 02/16/21 10       | ):21        |           |     |      |
| LABORATORY CO     | NTROL  | SAMPLE:                | 3163227                            |                            |                   |            |             |             |                   |             |           |     |      |
|                   |        |                        |                                    | Spike                      | L                 | CS         | LCS         | %           | Rec               |             |           |     |      |
| Para              | meter  |                        | Units                              | Conc.                      | Re                | esult      | % Rec       | Lin         | nits              | Qualifiers  |           |     |      |
| Mercury           |        |                        | mg/L                               | 0.002                      | 5                 | 0.0024     | ę           | 96          | 80-120            |             |           |     |      |
| MATRIX SPIKE & M  | MATRIX | SPIKE DUP              | LICATE: 3163                       | 228                        |                   | 316322     | 9           |             |                   |             |           |     |      |
|                   |        |                        |                                    | MS                         | MSD               |            |             |             |                   |             |           |     |      |
| _                 |        |                        | 92521574001                        | Spike                      | Spike             | MS         | MSD         | MS          | MSD               | % Rec       |           | Max |      |
| Paramete          | r      | Units                  | Result                             | Conc.                      | Conc.             | Result     | Result      | % Rec       | % Rec             | Limits      | RPD       | RPD | Qual |
| Mercury           |        | mg/L                   | ND                                 | 0.0025                     | 0.0025            | 0.0024     | 0.0025      | 96          | 5 10 <sup>.</sup> | 1 75-125    | 5         | 20  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:          | YATES  | 6 R6/AMA               |                        |                |                |              |               |               |              |                 |           |            |      |
|-------------------|--------|------------------------|------------------------|----------------|----------------|--------------|---------------|---------------|--------------|-----------------|-----------|------------|------|
| Pace Project No.: | 92521  | 574                    |                        |                |                |              |               |               |              |                 |           |            |      |
| QC Batch:         | 5996   | 53                     |                        | Analy          | sis Metho      | d:           | EPA 300.0     | Rev 2.1 199   | 93           |                 |           |            |      |
| QC Batch Method:  | EPA    | 300.0 Rev 2            | .1 1993                | Analy          | /sis Descri    | ption:       | 300.0 IC Ar   | nions         |              |                 |           |            |      |
|                   |        |                        |                        | Labo           | ratory:        |              | Pace Analy    | tical Service | es - Ashevi  | lle             |           |            |      |
| Associated Lab Sa | mples: | 925215740<br>925215740 | 001, 9252157400<br>008 | )2, 9252157    | 4003, 925      | 21574004,    | 925215740     | 05, 925215    | 74006, 92    | 521574007       | ζ,        |            |      |
| METHOD BLANK:     | 31612  | 18                     |                        |                | Matrix: W      | ater         |               |               |              |                 |           |            |      |
| Associated Lab Sa | mples: | 925215740<br>925215740 | 001, 9252157400<br>008 | 02, 9252157    | 4003, 925      | 21574004,    | 925215740     | 05, 925215    | 74006, 92    | 521574007       | 7,        |            |      |
|                   |        |                        |                        | Blar           | nk             | Reporting    |               |               |              |                 |           |            |      |
| Para              | meter  |                        | Units                  | Res            | ult            | Limit        | MD            | L             | Analyzed     | Qu              | Jalifiers |            |      |
| Fluoride          |        |                        | mg/L                   |                | ND             | 0.1          | 0             | 0.050 02      | 2/12/21 12:  | 49              |           |            |      |
| LABORATORY CO     | NTROL  | SAMPLE:                | 3161219                |                |                |              |               |               |              |                 |           |            |      |
| Para              | meter  |                        | Units                  | Spike<br>Conc. | LC<br>Res      | :S<br>sult   | LCS<br>% Rec  | % Re<br>Limi  | ec<br>ts (   | Qualifiers      |           |            |      |
| Fluoride          |        |                        | mg/L                   | 2.             | .5             | 2.7          | 10            | 6 9           | 90-110       |                 | _         |            |      |
| MATRIX SPIKE & M  | MATRIX | SPIKE DUP              | LICATE: 3161           | 220            |                | 3161221      |               |               |              |                 |           |            |      |
|                   |        |                        | 00504 470004           | MS             | MSD            | MC           | MCD           | MO            | MOD          | 0/ D = =        |           | Mari       |      |
| Paramete          | r      | Units                  | 92521478001<br>Result  | Spike<br>Conc. | Spike<br>Conc. | Result       | Result        | % Rec         | % Rec        | % Rec<br>Limits | RPD       | RPD        | Qual |
| Fluoride          |        | mg/L                   | ND                     | 2.5            | 2.5            | 2.8          | 2.7           | 109           | 104          | 90-110          | 5         | 10         |      |
| MATRIX SPIKE & M  | MATRIX | SPIKE DUP              | LICATE: 3161           | 241            |                | 3161242      | 2             |               |              |                 |           |            |      |
|                   |        |                        |                        | MS             | MSD            |              |               |               |              |                 |           |            |      |
| Paramete          | r      | Units                  | 92521574001<br>Result  | Spike<br>Conc. | Spike<br>Conc. | MS<br>Result | MSD<br>Result | MS<br>% Rec   | MSD<br>% Rec | % Rec<br>Limits | RPD       | Max<br>RPD | Qual |
| Fluoride          |        | ma/L                   | ND                     | 2.5            | 2.5            | 3.7          | 3.6           | 146           | 142          | 90-110          | 3         | 10         | M1   |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:           | YATES R6/AMA     |                 |       |              |           |             |              |              |            |           |     |          |
|--------------------|------------------|-----------------|-------|--------------|-----------|-------------|--------------|--------------|------------|-----------|-----|----------|
| Pace Project No.:  | 92521574         |                 |       |              |           |             |              |              |            |           |     |          |
| QC Batch:          | 599663           |                 | Analy | sis Metho    | d:        | EPA 300.0   | Rev 2.1 19   | 93           |            |           |     |          |
| QC Batch Method:   | EPA 300.0 Rev 2  | 2.1 1993        | Analy | ysis Descrij | ption:    | 300.0 IC Ar | ions         |              |            |           |     |          |
|                    |                  |                 | Labo  | ratory:      |           | Pace Analy  | tical Servic | es - Ashevil | le         |           |     |          |
| Associated Lab Sar | nples: 92521574  | 009, 9252157401 | 0     |              |           |             |              |              |            |           |     |          |
| METHOD BLANK:      | 3161251          |                 |       | Matrix: W    | ater      |             |              |              |            |           |     |          |
| Associated Lab Sar | nples: 92521574  | 009, 9252157401 | 0     |              |           |             |              |              |            |           |     |          |
|                    |                  |                 | Blai  | nk l         | Reporting |             |              |              |            |           |     |          |
| Parar              | neter            | Units           | Res   | ult          | Limit     | MD          | L            | Analyzed     | Qu         | ualifiers |     |          |
| Fluoride           |                  | mg/L            |       | ND           | 0.1       | 10          | 0.050 02     | 2/12/21 20:  | 16         |           |     |          |
|                    |                  |                 |       |              |           |             |              |              |            |           |     |          |
| LABORATORY CO      | NTROL SAMPLE:    | 3161252         |       |              |           |             |              |              |            |           |     |          |
|                    |                  |                 | Spike | LC           | S         | LCS         | % R          | ec           |            |           |     |          |
| Parar              | neter            | Units           | Conc. | Res          | sult      | % Rec       | Lim          | its C        | Qualifiers | _         |     |          |
| Fluoride           |                  | mg/L            | 2     | .5           | 2.6       | 10          | 5            | 90-110       |            |           |     |          |
| MATRIX SPIKE & M   | IATRIX SPIKE DUF | PLICATE: 3161   | 253   |              | 3161254   | 4           |              |              |            |           |     |          |
|                    |                  |                 | MS    | MSD          |           |             |              |              |            |           |     |          |
|                    |                  | 92521574009     | Spike | Spike        | MS        | MSD         | MS           | MSD          | % Rec      |           | Max | <u> </u> |
| Paramete           | r Units          | Result          | Conc. | Conc.        | Result    | Result      | % Rec        | % Rec        | Limits     | RPD       |     | Qual     |
| Fluoride           | mg/L             | . ND            | 2.5   | 2.5          | 2.7       | 2.7         | 109          | 108          | 90-110     | 1         | 10  |          |
| MATRIX SPIKE & N   | IATRIX SPIKE DUF | PLICATE: 3161   | 255   |              | 316125    | 6           |              |              |            |           |     |          |
|                    |                  |                 | MS    | MSD          |           |             |              |              |            |           |     |          |
|                    |                  | 92521581005     | Spike | Spike        | MS        | MSD         | MS           | MSD          | % Rec      |           | Max |          |
| Paramete           | r Units          | Result          | Conc. | Conc.        | Result    | Result      | % Rec        | % Rec        | Limits     | RPD       | RPD | Qual     |
| Fluoride           | mg/L             | . ND            | 2.5   | 2.5          | 2.5       | 2.7         | 100          | 108          | 90-110     | 8         | 10  |          |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### QUALIFIERS

# Project: YATES R6/AMA

Pace Project No.: 92521574

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### ANALYTE QUALIFIERS

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.



# QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: YATES R6/AMA Pace Project No.: 92521574

| Lab ID      | Sample ID          | QC Batch Method        | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|--------------------|------------------------|----------|-------------------|---------------------|
| 92521574001 | YGWC-38 (020921)   |                        |          |                   |                     |
| 92521574002 | YGWC-41 (021021)   |                        |          |                   |                     |
| 92521574003 | YGWC-42 (021021)   |                        |          |                   |                     |
| 92521574004 | YGWC-43 (020921)   |                        |          |                   |                     |
| 92521574006 | YGWC-23S (020921)  |                        |          |                   |                     |
| 92521574007 | YGWC-49(020921)    |                        |          |                   |                     |
| 92521574008 | YGWC-24SA (020921) |                        |          |                   |                     |
| 92521574010 | YGWC-36A (021021)  |                        |          |                   |                     |
| 92521574001 | YGWC-38 (020921)   | EPA 3005A              | 600602   | EPA 6020B         | 600714              |
| 92521574002 | YGWC-41 (021021)   | EPA 3005A              | 600602   | EPA 6020B         | 600714              |
| 92521574003 | YGWC-42 (021021)   | EPA 3005A              | 600602   | EPA 6020B         | 600714              |
| 92521574004 | YGWC-43 (020921)   | EPA 3005A              | 600602   | EPA 6020B         | 600714              |
| 92521574005 | EB-01(021021)      | EPA 3005A              | 600602   | EPA 6020B         | 600714              |
| 92521574006 | YGWC-23S (020921)  | EPA 3005A              | 600602   | EPA 6020B         | 600714              |
| 92521574007 | YGWC-49(020921)    | EPA 3005A              | 600602   | EPA 6020B         | 600714              |
| 92521574008 | YGWC-24SA (020921) | EPA 3005A              | 600602   | EPA 6020B         | 600714              |
| 92521574009 | DUP-02 (020921)    | EPA 3005A              | 600602   | EPA 6020B         | 600714              |
| 92521574010 | YGWC-36A (021021)  | EPA 3005A              | 600602   | EPA 6020B         | 600714              |
| 92521574001 | YGWC-38 (020921)   | EPA 7470A              | 600020   | EPA 7470A         | 600225              |
| 92521574002 | YGWC-41 (021021)   | EPA 7470A              | 600020   | EPA 7470A         | 600225              |
| 92521574003 | YGWC-42 (021021)   | EPA 7470A              | 600020   | EPA 7470A         | 600225              |
| 92521574004 | YGWC-43 (020921)   | EPA 7470A              | 600020   | EPA 7470A         | 600225              |
| 92521574005 | EB-01(021021)      | EPA 7470A              | 600020   | EPA 7470A         | 600225              |
| 92521574006 | YGWC-23S (020921)  | EPA 7470A              | 600020   | EPA 7470A         | 600225              |
| 92521574007 | YGWC-49(020921)    | EPA 7470A              | 600020   | EPA 7470A         | 600225              |
| 92521574008 | YGWC-24SA (020921) | EPA 7470A              | 600020   | EPA 7470A         | 600225              |
| 92521574009 | DUP-02 (020921)    | EPA 7470A              | 600020   | EPA 7470A         | 600225              |
| 92521574010 | YGWC-36A (021021)  | EPA 7470A              | 600020   | EPA 7470A         | 600225              |
| 92521574001 | YGWC-38 (020921)   | EPA 300.0 Rev 2.1 1993 | 599653   |                   |                     |
| 92521574002 | YGWC-41 (021021)   | EPA 300.0 Rev 2.1 1993 | 599653   |                   |                     |
| 92521574003 | YGWC-42 (021021)   | EPA 300.0 Rev 2.1 1993 | 599653   |                   |                     |
| 92521574004 | YGWC-43 (020921)   | EPA 300.0 Rev 2.1 1993 | 599653   |                   |                     |
| 92521574005 | EB-01(021021)      | EPA 300.0 Rev 2.1 1993 | 599653   |                   |                     |
| 92521574006 | YGWC-23S (020921)  | EPA 300.0 Rev 2.1 1993 | 599653   |                   |                     |
| 92521574007 | YGWC-49(020921)    | EPA 300.0 Rev 2.1 1993 | 599653   |                   |                     |
| 92521574008 | YGWC-24SA (020921) | EPA 300.0 Rev 2.1 1993 | 599653   |                   |                     |
| 92521574009 | DUP-02 (020921)    | EPA 300.0 Rev 2.1 1993 | 599663   |                   |                     |
| 92521574010 | YGWC-36A (021021)  | EPA 300.0 Rev 2.1 1993 | 599663   |                   |                     |

|                                                                                                           | Docume                                 | nt Name:               | ·<br>.           | Document Revised: October 28,                                                  | 2020                      |
|-----------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------|------------------|--------------------------------------------------------------------------------|---------------------------|
| Pace Analytical*                                                                                          | Sample Condition L                     | Jpon Receipt(S         | CUR)             | Page 1 of 2                                                                    |                           |
| A woor built total                                                                                        | Docum<br>F-CAR-CS-                     | ent No.:<br>033.8ev.07 |                  | Pace Carolinas Quality Offic                                                   | e                         |
|                                                                                                           |                                        | vvv                    |                  |                                                                                |                           |
| aboratory receiving samples:                                                                              | · · · · · · · ·                        |                        | <u> </u>         | · · · · · · · · · · · · · · · · · · ·                                          |                           |
| Asheville Eden Greenwood                                                                                  | Huntersville                           | Raleigi                | י∐ M             | echanicsville Atlant                                                           | Kernersville              |
| Sample Condition Client Name:                                                                             | 0                                      | P                      | roject #:        | WO#:92521                                                                      | 574                       |
| Courier: Fed Ex UU                                                                                        | PS USPS                                |                        | int              |                                                                                |                           |
| ustody Seal Present? Yes 4No                                                                              | Seals Intact? 👘 🗍 Ye                   | IS _ 🔲 NO              |                  | 92521574                                                                       | 2/10/21                   |
| ан <u>—</u> Эн                                                                                            |                                        | ~                      |                  | ndel under L'elsvii rystailinê gaut                                            | 2.103                     |
| acking Material: Bubble Wrap [                                                                            | Bubble Bags                            | one 🗌 Ot               | her              | Biological Tissue Fr                                                           | ozen?                     |
| hermometer:                                                                                               |                                        |                        | ue 🔲             | None                                                                           | A                         |
|                                                                                                           | Type of Ice:                           |                        | _                |                                                                                |                           |
| cooler Temp: 24 Correction<br>Add/Subtra                                                                  | Factor:<br>act (°C) <u>0-0</u>         |                        | Tem              | np should be above freezing to 6°C<br>Samples out of temp criteria. Sample     | s on ice, cooling process |
| ISDA Regulated Soil ( N/A, water sample)<br>id samples originate in a quarantine zone within th<br>Yes No | e United States: CA, NY, c             | or SC (check ma        | ps)? Did<br>incl | samples originate from a foreign source<br>uding Hawaii and Puerto Rico)?  Yes | e (internationally,       |
|                                                                                                           | ······································ |                        |                  | Comments/Discrepanc                                                            | y:                        |
| Chain of Custody Present?                                                                                 | Yes IN                                 | o 🗍 N/A                | 1.               |                                                                                |                           |
| Samples Arrived within Hold Time?                                                                         |                                        | loN/A                  | 2.               |                                                                                | <b></b>                   |
| Short Hold Time Analysis (<72 hr.)?                                                                       | Yes 🖂                                  | 16 <u> </u>            | 3.               | <u> </u>                                                                       |                           |
| Rush Turn Around Time Requested?                                                                          |                                        |                        | 4.               |                                                                                |                           |
| Sufficient Volume?                                                                                        |                                        | Io 🗍N/A                | s.               |                                                                                |                           |
| Correct Containers Used?                                                                                  |                                        |                        | 6.               |                                                                                |                           |
| -Pace Containers Used?                                                                                    | Pres DM                                | io 🗍N/A                | <u> </u>         |                                                                                |                           |
| Containers Intact?                                                                                        | Fires Th                               | ta ⊡N/A                | 7.               | · .                                                                            |                           |
| Dissolved analysis: Samples Field Filtered?                                                               |                                        |                        | 8.               |                                                                                |                           |
| Sample Labels Match COC?                                                                                  | Gres Dr                                |                        | 9.               |                                                                                |                           |
| -Includes Date/Time/ID/Analysis Matrix:                                                                   | $\sim$                                 |                        |                  |                                                                                | 4                         |
| Headspace in VOA Vials (>5-6mm)?                                                                          | Tyes Fit                               |                        | 10.              |                                                                                |                           |
| Trip Blank Present?                                                                                       | Yes I                                  | No ZN/A                | 11.              |                                                                                |                           |
| Trin Blank Custody Seals Present?                                                                         |                                        |                        |                  |                                                                                |                           |
| COMMENTS/SAMPLE DISCREPANCY                                                                               |                                        |                        |                  | field Data Rec                                                                 | Įuíred? ∐Yes ∐No          |
| ······                                                                                                    |                                        |                        |                  | · · ·                                                                          | ·                         |
|                                                                                                           | ·····                                  |                        | Lot ID           | of split containers:                                                           | -                         |
| CLIENT NOTIFICATION/RESOLUTION                                                                            |                                        |                        |                  |                                                                                |                           |
|                                                                                                           | · · · · · · · · · · · · · · · · · · ·  |                        |                  |                                                                                |                           |
| Person contacted:                                                                                         |                                        | Date/T                 | ime:             |                                                                                | N                         |
|                                                                                                           |                                        |                        |                  |                                                                                |                           |
| Project Manager SCURF Review:                                                                             |                                        |                        |                  | Date:                                                                          | <u></u>                   |
| Project Manager SRF Review:                                                                               |                                        |                        |                  | Date:                                                                          |                           |
|                                                                                                           | · .                                    | •                      |                  |                                                                                | Page 24                   |

÷,

· •

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | YANC-23S         | FR-01/12/1021) | YGWC43        | ST ACMC-15  | A YOWCAN      |            | Vennoe       | TEM #<br>One Character per boz.<br>(A-Z, 0-97,-<br>)<br>Seempte lets must be unique          |            |                       | present Due Date:           |                   | nion, GA 30114 | Inpany: Georgia Power<br>Inner: 4077 Brites Luit Ava | quired Client Information:       | And Antipation                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------|----------------|---------------|-------------|---------------|------------|--------------|----------------------------------------------------------------------------------------------|------------|-----------------------|-----------------------------|-------------------|----------------|------------------------------------------------------|----------------------------------|--------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Kine Klanewer | 2.1.21 11.16     | Star Wes       | WT 2.7.1 1530 | WT 2102 H30 | WT 2-7-11/222 | Wr 2.11/20 | WT 240-04-54 | MATRIX CODE (see veid cod<br>SAMPLE TYPE (G-GRAB C<br>DATRIX CODE (see veid cod              | et to hit) | le tellene et         | Project Name: Vates Rs      | Purchase Order #: | With Io:       | Report To: Becky Sizever                             | Required Project information:    |                                                                    |
| AR MANE AND SHOULTUPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 210/11/212    | 4//              |                |               |             |               |            |              | SAMPLE TEMP AT COLLECTIC<br># OF CONTAINERS<br>Unpreserved<br>H2SO4<br>HNO3<br>HCI<br>NaOH   | LECTED     | Pace Profile #: 10840 | Pace Project Manager:       | Page Quote:       | Company Name:  | Attention:                                           | Section C<br>hwoles information: | CHAIN-OF-CUSTODY / A<br>The Chain-of-Custody is a LEGAL DOC        |
| Puptiewicz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | le fint dip   | 8<br>8<br>7<br>7 |                | × ^           | < × × × × × | xxx           |            |              | Na28203<br>Methanol<br>Other<br>Analyage Teats<br>App IV Metals<br>Fluoride<br>RAD 9315/9320 |            |                       | hevin herring@paceiabs.com, |                   |                |                                                      |                                  | <b>nalytical Request Docu</b><br>XMENT. Al relevant fields must be |
| Image: state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state | a)/1 K        | 2:Ha             |                |               | pH:         |               |            |              | Residual Chiorine (Y/N)                                                                      |            | 6A                    |                             |                   |                | Fage : 1                                             |                                  | ment<br>completed accurately.                                      |
| SealedD<br>CoolerD<br>(Y/N)<br>Semples<br>IntectD<br>(Y/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | 6)               |                | Se L          | 2010<br>Rhi | 04 MS/MSD     |            |              | 21774                                                                                        |            |                       | and the second second       |                   | 60             | 2                                                    |                                  |                                                                    |

Page 25 of 27

|                                                      |         |            |  |     |     |     |        |     |     |     |             |          |                                               | #                                     |                   |           | -                    | Juested         | Ř                 | 8. O             | 1.                   |                     | -tion A                               |       |
|------------------------------------------------------|---------|------------|--|-----|-----|-----|--------|-----|-----|-----|-------------|----------|-----------------------------------------------|---------------------------------------|-------------------|-----------|----------------------|-----------------|-------------------|------------------|----------------------|---------------------|---------------------------------------|-------|
| <b>.</b>                                             |         |            |  |     |     |     |        |     |     |     |             | 26020 21 | Sample lds must be unique                     | SAMPLE ID                             |                   |           |                      | Due Dale        | (770)394 6526 Fax |                  | 1070 Bridge Mill Ave | Clent Information:  | Para Analytical                       | S.    |
| 4                                                    |         | PS4        |  |     |     | Ę   |        | W   | ×   | E   | 8           | 4        | 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4       |                                       | WATER WATER WATER |           |                      | Project Name:   | Purchase Ord      |                  | Report To:           | Required Procession | •<br>•<br>•<br>•                      | 5<br> |
| 83                                                   |         | en / Arcai |  |     |     |     |        |     |     |     |             | 3162     |                                               |                                       | AB C=COM          | nt)<br>>) |                      | Yates AMA       | 12 N.             |                  | Bedy Sterver         | ject information:   |                                       |       |
| A Internet Statement                                 |         |            |  |     |     |     | -+     |     | -   |     |             | S        | ME DATE TIME                                  | E E E E E E E E E E E E E E E E E E E | COLLECTED         |           |                      |                 |                   |                  |                      |                     | CHAIN<br>The Chain                    |       |
| Line -                                               |         | 1 000      |  |     |     |     |        |     |     |     |             | 4        | SAMPLE TEMP                                   | AT COLLEG                             | GTION             |           | Page Profile         | Page Protection | Address:          | Company A        | Attention.           | Section C           | -OF-CUST(                             |       |
| <b>F</b>                                             | Levez   | Str hope   |  |     |     |     |        |     |     |     |             |          | HN03<br>HGI<br>NaOH<br>Va28203                |                                       | Preservatives     |           | 10840 Kevi           | 1 Manatur       |                   | lame:            | ormation:            | -                   | DDY / Anal<br>LEGAL DOCUME            | • •   |
| 12112                                                | Hart    | trafficial |  | ××× | XXX | XXX | ×<br>× | ××× | ××× | ××× |             | A<br>Fi  | Dither<br>Alialysee<br>Pp IV Metals<br>workde | (76%)                                 |                   |           | n.herring@pacelabs.c |                 |                   |                  |                      | :                   | <b>ytical Regu</b><br>NT. Al relevant |       |
| 12                                                   | tothe - | 4          |  |     | ^   |     |        |     |     |     |             | R        | AD 9315/9320                                  |                                       |                   |           | δm<br>I              |                 |                   |                  | -                    |                     | lest Docun                            | 1     |
| TEMP In C                                            | 120     | 1          |  |     |     |     |        |     |     |     |             |          |                                               |                                       |                   |           |                      |                 |                   | <u> </u> ]<br>-1 |                      | femore parameters   | lent                                  |       |
| Raceived on<br>loeci<br>(Y/N)<br>CUstody<br>Sealed() |         |            |  |     |     |     |        |     |     |     | L<br>J<br>J | Res      | idual Chlorine (                              | Y/N)                                  |                   | A0        | State / Local        | Sector Sector   |                   | 1.ade: *         | 2                    |                     |                                       |       |
| Cooler[]<br>(Y/N)<br>Samples<br>Intect]<br>(Y/N)     |         |            |  |     |     |     |        |     |     |     | 5 79        |          |                                               |                                       |                   |           |                      |                 | 0                 | 0                | 1-<br>V4             |                     | •                                     |       |

Page 26 of

|                  | l            |    | ľ |     |                        |                        | 2               |                 | <b>S</b>        |                                                                                                                  |          | 17         |           |           |            |                    | P                |          | ITEM#                                                                           |                |    | Tueste      | X                 |              | Ă                   | A line du     | Hon J     |
|------------------|--------------|----|---|-----|------------------------|------------------------|-----------------|-----------------|-----------------|------------------------------------------------------------------------------------------------------------------|----------|------------|-----------|-----------|------------|--------------------|------------------|----------|---------------------------------------------------------------------------------|----------------|----|-------------|-------------------|--------------|---------------------|---------------|-----------|
|                  |              |    |   |     |                        | ADDITIONAL COMPARING A | ****** YGWC-361 | xameson DUP-GA. | XAMCZASA YGWC-1 | YEWCES                                                                                                           | YCHA 34  | YGRIFADS . | Yomr Ist- | YOWA-106  | KSWITCHTO. | Venno YE WIR - SD- | KOWA             | XOWA-I   | SAMPLE ID<br>One Character per box.<br>(A-Z, 0+37,<br>Sample Ids must be unique |                |    | d Due Date: | (770)334-6526 Fax |              | 1070 Bridge Mil Ave | Georgia Power |           |
|                  |              |    |   |     |                        | 「「「「「「「」」」」            | 4 / 405 +       |                 | ASA PSK         | and the second second second second second second second second second second second second second second second |          |            |           | -         |            |                    | a statement of a |          | None Manual And                                                                 | MATTRIXE CODED |    | Project #:  | Project Name:     | Puntase Orde | Copy To:            | Report To:    | Section R |
|                  |              |    |   |     |                        |                        | 4               | 1               | 5               | 3                                                                                                                | 3        | 1          | 3         | 3         | 3          | 3                  | 3                | 3        | SAMPLE TYPE (G=GRAB C:                                                          | COMP)          |    |             |                   |              |                     |               |           |
|                  |              |    |   |     |                        |                        | 2               | 25              | 210             |                                                                                                                  |          |            |           | $\square$ | 1          | ष्ट्र              | $\mathbf{T}$     |          | 8                                                                               |                |    |             |                   |              |                     | Sicere        |           |
|                  | 1855         |    |   |     |                        | INTRE                  |                 | 125             | 2               |                                                                                                                  |          |            | <u> </u>  |           |            | þ                  | ·                | <u> </u> | E S                                                                             |                |    |             | \$                | Ì            |                     | Ĩ             |           |
| 똜                | <b>J</b> as  |    |   |     |                        | <b>UVT</b>             | بکر<br>پېر      |                 | 6.0             |                                                                                                                  |          |            |           |           |            | A                  |                  |          |                                                                                 | 8              |    |             |                   |              |                     |               | ÷         |
|                  |              |    |   |     |                        |                        |                 | ┢               | <u> </u>        |                                                                                                                  |          |            | <u> </u>  | [         | ┢          | Ť                  |                  |          | 8                                                                               | LECTE          |    |             |                   |              |                     |               |           |
|                  |              |    |   |     |                        |                        | <b> </b>        |                 | <b> </b>        |                                                                                                                  |          |            |           |           | ļ          | $\square$          | <b> </b>         |          | Ħ g                                                                             | Ö.             |    |             |                   |              |                     |               |           |
| SAND             | 5            |    |   |     |                        |                        |                 |                 | [               |                                                                                                                  |          |            |           |           |            |                    |                  |          |                                                                                 |                |    |             |                   |              |                     |               |           |
|                  | Ē            |    |   |     |                        |                        |                 |                 | · ·             |                                                                                                                  |          |            |           |           |            | \$                 |                  |          | SAMPLE TEMP AT COLLECTIC                                                        | N '            |    |             |                   |              |                     | 100           |           |
| 3                | Ä            |    |   |     |                        |                        | 2               | 7               | 4               |                                                                                                                  |          |            |           |           |            | $\square$          |                  |          | # OF CONTAINERS                                                                 |                | ľ  | 8           |                   | ŝ            | 8                   |               | 50<br>00  |
| Ke l             |              |    |   |     |                        |                        |                 |                 | <b> </b>        |                                                                                                                  |          | <u> </u>   | <b> </b>  | ·         | ļ          | <b> </b>           |                  |          | Unpreserved                                                                     |                |    | a l         |                   | 0<br>9:      | pany                |               | lon c     |
|                  |              | -+ |   |     | ~                      |                        |                 |                 |                 |                                                                                                                  |          | ļ          |           |           |            | ╢                  |                  |          | H2804 .                                                                         | -11            |    | 5           |                   |              | Name                | 1011          |           |
| P                |              |    |   | , A | 1                      |                        |                 |                 |                 |                                                                                                                  |          |            |           | ⊢         |            |                    |                  |          | HGI                                                                             | rese           |    | 3           |                   |              | 26                  | mon           |           |
| 彩                |              |    |   |     | $\mathcal{L}$          | 2                      |                 |                 |                 |                                                                                                                  |          |            |           |           | <b></b>    | 11-                |                  |          | NaOH                                                                            | wat            |    | 8 :         | 5                 |              |                     | <b>_</b>      |           |
| 0                |              |    |   |     | 6                      |                        |                 |                 |                 |                                                                                                                  |          |            |           |           |            |                    |                  |          | Na28203                                                                         | ives           |    | No.         |                   |              |                     |               |           |
| اختر ا           |              |    |   |     | 5                      | 1.1                    |                 |                 |                 |                                                                                                                  |          |            |           | ·         |            | 2                  |                  |          | Methanol                                                                        |                |    |             |                   |              |                     |               |           |
|                  |              |    |   |     | $\left  \right\rangle$ | o By                   |                 |                 |                 |                                                                                                                  |          |            |           | ļ.        |            | ų                  |                  |          | Other                                                                           |                | 2  | <b>B</b> 6m |                   |              |                     |               |           |
| 4                | 1015         |    |   | 1   | 14                     |                        |                 | 1               |                 |                                                                                                                  | é        | 1.4        | 3         |           |            | <u> </u>           | 1                |          | Analyses Test                                                                   | YA             |    | 2040        |                   |              |                     |               |           |
|                  |              | Į. |   |     | ž                      | 1                      | <u>~</u>        | ×               | x               | ]                                                                                                                | <b>]</b> | 7          | 1         | 1         |            | Į–                 | <b>]</b>         | H        | App IV Motels                                                                   |                |    | aos.        |                   |              |                     |               |           |
|                  | 197          |    |   |     | S                      |                        | ×               | ×               | ×               | 7                                                                                                                | 7        | ×          | ×         | <b>,</b>  | ×          | *                  | *                | *        | RAD 9315/9320                                                                   |                |    | çom,        |                   |              |                     |               |           |
|                  |              | l  |   | 1   |                        |                        |                 |                 |                 |                                                                                                                  |          | <u> </u>   |           |           |            |                    |                  |          |                                                                                 |                |    |             |                   |              |                     |               |           |
| "                | 5969<br>5969 |    | : | "   | $\mathcal{X}$          |                        |                 |                 |                 |                                                                                                                  |          |            |           |           |            |                    |                  |          |                                                                                 |                | Ē  |             |                   |              |                     |               |           |
| 3                |              |    |   | -9- | 10                     | -                      |                 |                 | <b>_</b>        |                                                                                                                  |          |            |           |           | <b> </b>   |                    |                  |          |                                                                                 |                |    |             |                   |              |                     |               |           |
|                  |              |    |   |     | Σ.                     |                        | _               | <b> </b>        |                 |                                                                                                                  |          |            |           | <u> </u>  | <b></b>    |                    |                  |          | · · ·                                                                           |                |    | -           |                   |              |                     |               |           |
|                  |              | -+ |   |     |                        |                        |                 |                 |                 |                                                                                                                  |          | —          |           |           |            |                    | ·                |          | <u> </u>                                                                        |                |    |             |                   |              | n                   |               |           |
|                  |              |    |   |     | 2                      | ÷.                     |                 |                 | <del> </del>    |                                                                                                                  |          |            | ÷         |           |            |                    |                  |          | ·····                                                                           |                |    |             |                   | 1            | 194<br>1            |               |           |
|                  |              |    |   |     | $\sim$                 |                        |                 |                 |                 |                                                                                                                  |          |            |           |           |            |                    |                  |          |                                                                                 |                |    |             |                   |              | ,#¥1145             | Ē             | ٦         |
| CMR in (         |              |    |   |     |                        |                        |                 |                 |                 |                                                                                                                  |          |            |           |           |            |                    |                  |          |                                                                                 | ·              |    |             |                   |              |                     | Pag           |           |
| 5.005° (U U      |              |    |   | _   |                        | 4.                     |                 |                 | 7               |                                                                                                                  |          |            |           |           |            |                    |                  |          | Residual Chlorine (Y/N)                                                         |                |    |             |                   |              |                     |               |           |
| eceived :<br>eCl | on           |    | ſ |     |                        | 1                      | ø               | 1               | <b>*</b>        | (                                                                                                                | 1        | (          |           | t         |            |                    |                  | 11       |                                                                                 |                | 1  |             |                   |              |                     | 5             |           |
| Y/N)             |              |    |   |     |                        | N.R.C                  | <b>—</b>        | •               |                 |                                                                                                                  |          | ĺ          | •         |           | ľ          |                    |                  | '        | $\overline{\sim}$                                                               | фц.            |    |             | 100               | 15           | · .                 | 141           |           |
| usiouy<br>aled0  |              |    |   |     |                        | 8                      | ÷.              |                 | 5               |                                                                                                                  |          |            |           |           |            |                    |                  |          | 3                                                                               |                |    | 1000        |                   |              |                     | 0             |           |
| ooler()<br>(/N)  |              |    |   |     |                        |                        | 5               |                 | 3               |                                                                                                                  |          |            |           |           |            |                    |                  |          |                                                                                 | 19.55          |    |             |                   | 10.00        |                     | ľ             |           |
| amples           | T            | T  | Ţ |     |                        |                        |                 |                 |                 |                                                                                                                  |          |            |           |           |            |                    |                  |          | シー                                                                              |                |    |             |                   |              | -                   |               |           |
| "hhe             |              |    |   |     |                        | 1000                   | 1               | •               | •               |                                                                                                                  | E 1      |            |           |           | 1          |                    | l Í              |          | 2                                                                               | at negatives   | 20 |             | 24                | - C 28       | - 8                 | 197           |           |

Page 27 of 27



February 25, 2021

Ms. Lauren Petty Southern Co. Services 42 Inverness Center Parkway Birmingham, AL 35242

RE: Project: YATES AMA Pace Project No.: 92521581

Dear Ms. Petty:

Enclosed are the analytical results for sample(s) received by the laboratory between February 10, 2021 and February 12, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Asheville
- Pace Analytical Services Charlotte
- Pace Analytical Services Peachtree Corners, GA

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kardoniy

Kevin Herring kevin.herring@pacelabs.com 1(704)875-9092 HORIZON Database Administrator

Enclosures

cc: Joju Abraham, Georgia Power-CCR Lauren Coker, Georgia Pwer Geoffrey Gay, ARCADIS - Atlanta Kristen Jurinko Kelley Sharpe, ARCADIS - Atlanta Alex Simpson, Arcadis Samantha Thomas Maribel Vital





Pace Analytical Services, LLC 110 Technology Parkway Peachtree Corners, GA 30092 (770)734-4200

#### CERTIFICATIONS

Project: YATES AMA Pace Project No.: 92521581

#### Pace Analytical Services Charlotte

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12

#### Pace Analytical Services Asheville

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648 North Carolina Drinking Water Certification #: 37712

#### Pace Analytical Services Peachtree Corners

110 Technology Pkwy, Peachtree Corners, GA 30092 Florida DOH Certification #: E87315 Georgia DW Inorganics Certification #: 812 South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221

North Carolina Wastewater Certification #: 40 South Carolina Certification #: 99030001 Virginia/VELAP Certification #: 460222

North Carolina Certification #: 381 South Carolina Certification #: 98011001



Pace Analytical Services, LLC 110 Technology Parkway Peachtree Corners, GA 30092 (770)734-4200

### SAMPLE SUMMARY

Project: YATES AMA Pace Project No.: 92521581

| Lab ID      | Sample ID         | Matrix | Date Collected | Date Received  |
|-------------|-------------------|--------|----------------|----------------|
| 92521581001 | YGWA-5D (020821)  | Water  | 02/08/21 16:45 | 02/10/21 17:10 |
| 92521581002 | DUP-01(020821)    | Water  | 02/08/21 00:00 | 02/10/21 17:10 |
| 92521581003 | YGWA-5I (020821)  | Water  | 02/08/21 16:20 | 02/10/21 17:10 |
| 92521581004 | YGWA-39 (021021)  | Water  | 02/10/21 09:30 | 02/10/21 17:10 |
| 92521581005 | YGWA-40 (021021)  | Water  | 02/10/21 10:50 | 02/10/21 17:10 |
| 92521581006 | FB-01(021021)     | Water  | 02/10/21 11:05 | 02/10/21 17:10 |
| 92521581007 | YGWA-20S (020921) | Water  | 02/09/21 16:50 | 02/10/21 17:10 |
| 92521581008 | YGWA-4I(020921)   | Water  | 02/09/21 09:50 | 02/10/21 17:10 |
| 92521581009 | YGWA-17S(020921)  | Water  | 02/09/21 11:15 | 02/10/21 17:10 |
| 92521581010 | YGWA-18S(020921)  | Water  | 02/09/21 13:25 | 02/10/21 17:10 |
| 92521581011 | YGWA-18I(020921)  | Water  | 02/09/21 14:00 | 02/10/21 17:10 |
| 92521581012 | YGWA-21I(020921)  | Water  | 02/09/21 16:10 | 02/10/21 17:10 |
| 92521581013 | YGWA-3I(021021)   | Water  | 02/10/21 16:40 | 02/11/21 13:03 |
| 92521581014 | YGWA-3D(021021)   | Water  | 02/10/21 17:25 | 02/11/21 13:03 |
| 92521581015 | YGWA-30I(021121)  | Water  | 02/11/21 09:50 | 02/11/21 13:03 |
| 92521581016 | FB-01(021121)     | Water  | 02/11/21 10:00 | 02/11/21 13:03 |
| 92521581017 | EB-01(021121)     | Water  | 02/11/21 12:05 | 02/11/21 13:03 |
| 92521578002 | YGWA-14S (021021) | Water  | 02/10/21 08:50 | 02/10/21 17:10 |
| 92521578010 | YGWA-1I (021221)  | Water  | 02/12/21 13:20 | 02/12/21 17:10 |
| 92521578011 | YGWA-1D (021221)  | Water  | 02/12/21 11:55 | 02/12/21 17:10 |
| 92521578001 | EB-02 (021021)    | Water  | 02/10/21 11:30 | 02/10/21 17:10 |
| 92521578003 | DUP-1 (021021)    | Water  | 02/10/21 00:00 | 02/10/21 17:10 |



# SAMPLE ANALYTE COUNT

Project: YATES AMA Pace Project No.: 92521581

| Lab ID                  | D         Sample ID           1581001         YGWA-5D (020821)           1581002         DUP-01(020821)           1581003         YGWA-5I (020821)           1581004         YGWA-39 (021021)           1581005         YGWA-40 (021021)           1581006         FB-01(021021)           1581007         YGWA-20S (020921)           1581008         YGWA-44(020921)           1581009         YGWA-17S(020921)           1581010         YGWA-18S(020921) | Method                 | Analysts | Analytes<br>Reported |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------|----------------------|
| 92521581001             | YGWA-5D (020821)                                                                                                                                                                                                                                                                                                                                                                                                                                             | EPA 6020B              | <br>CW1  | 12                   |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA 7470A              | VB       | 1                    |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA 300.0 Rev 2.1 1993 | CDC      | 1                    |
| 92521581002             | DUP-01(020821)                                                                                                                                                                                                                                                                                                                                                                                                                                               | EPA 6020B              | CW1      | 12                   |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA 7470A              | VB       | 1                    |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA 300.0 Rev 2.1 1993 | CDC      | 1                    |
| 2521581003              | YGWA-5I (020821)                                                                                                                                                                                                                                                                                                                                                                                                                                             | EPA 6020B              | CW1      | 12                   |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA 7470A              | VB       | 1                    |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA 300.0 Rev 2.1 1993 | CDC      | 1                    |
| 92521581004             | YGWA-39 (021021)                                                                                                                                                                                                                                                                                                                                                                                                                                             | EPA 6020B              | CW1      | 12                   |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA 7470A              | VB       | 1                    |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA 300.0 Rev 2.1 1993 | CDC      | 1                    |
| 92521581005             | YGWA-40 (021021)                                                                                                                                                                                                                                                                                                                                                                                                                                             | EPA 6020B              | CW1      | 12                   |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA 7470A              | VB       | 1                    |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA 300.0 Rev 2.1 1993 | CDC      | 1                    |
| 92521581006             | FB-01(021021)                                                                                                                                                                                                                                                                                                                                                                                                                                                | EPA 6020B              | CW1      | 12                   |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA 7470A              | VB       | 1                    |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA 300.0 Rev 2.1 1993 | CDC      | 1                    |
| 2521581007              | YGWA-20S (020921)                                                                                                                                                                                                                                                                                                                                                                                                                                            | EPA 6020B              | CW1      | 12                   |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA 7470A              | VB       | 1                    |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA 300.0 Rev 2.1 1993 | CDC      | 1                    |
| 2521581008              | YGWA-4I(020921)                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA 6020B              | CW1      | 12                   |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA 7470A              | VB       | 1                    |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA 300.0 Rev 2.1 1993 | CDC      | 1                    |
| <del>)</del> 2521581009 | YGWA-17S(020921)                                                                                                                                                                                                                                                                                                                                                                                                                                             | EPA 6020B              | CW1      | 12                   |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA 7470A              | VB       | 1                    |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA 300.0 Rev 2.1 1993 | CDC      | 1                    |
| 92521581010             | YGWA-18S(020921)                                                                                                                                                                                                                                                                                                                                                                                                                                             | EPA 6020B              | CW1      | 12                   |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA 7470A              | VB       | 1                    |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA 300.0 Rev 2.1 1993 | CDC      | 1                    |
| 2521581011              | YGWA-18I(020921)                                                                                                                                                                                                                                                                                                                                                                                                                                             | EPA 6020B              | CW1      | 12                   |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA 7470A              | VB       | 1                    |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA 300.0 Rev 2.1 1993 | CDC      | 1                    |
| 92521581012             | YGWA-21I(020921)                                                                                                                                                                                                                                                                                                                                                                                                                                             | EPA 6020B              | CW1      | 12                   |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA 7470A              | VB       | 1                    |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA 300.0 Rev 2.1 1993 | CDC      | 1                    |
| 92521581013             | YGWA-3I(021021)                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA 6020B              | CW1      | 12                   |



## SAMPLE ANALYTE COUNT

| abe ID         Sample ID         Method         Analytes<br>Reported           2521581014         YGWA-3D(021021)         EPA 7470A         VB         1           2521581014         YGWA-3D(021021)         EPA 6020B         CW1         12           2521581014         YGWA-3D(021021)         EPA 6020B         CW1         12           2521581015         YGWA-3D(021121)         EPA 6020B         CW1         12           2521581015         YGWA-30(021121)         EPA 6020B         CW1         12           2521581015         YGWA-30(021121)         EPA 300.0 Rev 2.1 1993         CDC         1           2521581016         FB-01(021121)         EPA 6020B         CW1         12           2521581017         EB-01(021121)         EPA 300.0 Rev 2.1 1993         CDC         1           2521581017         EB-01(021121)         EPA 300.0 Rev 2.1 1993         CDC         1           2521581017         EB-01(021121)         EPA 300.0 Rev 2.1 1993         CDC         1           2521581017         EB-01(021121)         EPA 300.0 Rev 2.1 1993         CDC         1           2521578002         YGWA-14S (021021)         EPA 400.0 Rev 2.1 1993         CDC         1           2521578001         YGWA-11 (021221)                                                                                                | Project:        | YATES AMA         |                        |          |                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------|------------------------|----------|----------------------|
| Analytes         Analytes         Analytes         Analytes         Analytes         Analytes         Analytes         Analytes         Analytes         Analytes         Analytes         Analytes         Reported           2521581014         YGWA-3D(021021)         EPA 300.0 Rev 2.1 1993         CDC         1           2521581015         YGWA-3D(021021)         EPA 6020B         CW11         12           2521581015         YGWA-3D(021121)         EPA 6020B         CW1         12           2521581015         YGWA-3D(021121)         EPA 7470A         VB         1           2521581015         YGWA-3D(021121)         EPA 6020B         CW1         12           2521581016         FB-01(021121)         EPA 6020B         CW1         12           2521581017         EB-01(021121)         EPA 300.0 Rev 2.1 1993         CDC         1           2521581017         EB-01(021121)         EPA 300.0 Rev 2.1 1993         CDC         1           2521581017         EB-01(021121)         EPA 300.0 Rev 2.1 1993         CDC         1           2521581017         EB-01(021121)         EPA 300.0 Rev 2.1 1993         CDC         1           2521578002         YGWA-14S (021021)         EPA 300.0 Rev 2.1 1993         CDC         1 </th <th>Pace Project No</th> <th>o.: 92521581</th> <th></th> <th></th> <th></th> | Pace Project No | o.: 92521581      |                        |          |                      |
| EPA 7470A         VB         1           2521581014         YGWA-3D(021021)         EPA 300.0 Rev 2.1 1993         CDC         1           2521581014         YGWA-3D(021021)         EPA 6020B         CW1         12           2521581015         YGWA-30(021121)         EPA 6020B         CW1         12           2521581015         YGWA-30(021121)         EPA 6020B         CW1         12           2521581016         FB-01(021121)         EPA 300.0 Rev 2.1 1993         CDC         1           2521581016         FB-01(021121)         EPA 300.0 Rev 2.1 1993         CDC         1           2521581017         EB-01(021121)         EPA 6020B         CW1         12           2521581017         EB-01(021121)         EPA 6020B         CW1         12           2521581017         EB-01(021121)         EPA 6020B         CW1         12           2521581017         EB-01(021121)         EPA 6020B         CW1         12           2521581017         EB-01(021121)         EPA 6020B         CW1         12           2521578002         YGWA-14S (021021)         EPA 6020B         CW1         12           2521578010         YGWA-11 (021221)         EPA 6020B         CW1         12                                                                                                                                   | Lab ID          | Sample ID         | Method                 | Analysts | Analytes<br>Reported |
| 2521581014         YGWA-3D(021021)         EPA 300.0 Rev 2.1 1993         CDC         1           2521581014         YGWA-3D(021021)         EPA 6020B         CW1         12           2521581015         YGWA-30l(021121)         EPA 300.0 Rev 2.1 1993         CDC         11           2521581015         YGWA-30l(021121)         EPA 7470A         VB         11           2521581015         YGWA-30l(021121)         EPA 6020B         CW1         12           2521581016         FB-01(021121)         EPA 6020B         CW1         12           2521581017         EB-01(021121)         EPA 6020B         CW1         12           2521581017         EB-01(021121)         EPA 6020B         CW1         12           2521581017         EB-01(021121)         EPA 300.0 Rev 2.1 1993         CDC         1           2521578002         YGWA-145 (021021)         EPA 6020B         CW1         12           2521578001         YGWA-11 (021221)         EPA 300.0 Rev 2.1 1993         CDC         1           2521578001         YGWA-10 (021221)         EPA 300.0 Rev 2.1 1993         JLH         1           2521578001         YGWA-10 (021221)         EPA 300.0 Rev 2.1 1993         JLH         1           2521578001 <td< td=""><td></td><td></td><td>EPA 7470A</td><td>VB</td><td>1</td></td<>                             |                 |                   | EPA 7470A              | VB       | 1                    |
| 2521581014       YGWA-3D(021021)       EPA 6020B       CW1       12         EPA 7470A       VB       1         2521581015       YGWA-30(021121)       EPA 6020B       CW1       12         2521581015       YGWA-30(021121)       EPA 6020B       CW1       12         2521581015       YGWA-30(021121)       EPA 6020B       CW1       12         2521581016       FB-01(021121)       EPA 6020B       CW1       12         2521581017       FB-01(021121)       EPA 6020B       CW1       12         2521581017       EB-01(021121)       EPA 6020B       CW1       12         2521581017       EB-01(021121)       EPA 6020B       CW1       12         2521581017       EB-01(021121)       EPA 6020B       CW1       12         2521578002       YGWA-145 (021021)       EPA 6020B       CW1       12         2521578010       YGWA-11 (021221)       EPA 6020B       CW1       12         2521578011       YGWA-10 (021221)       EPA 6020B       CW1       12         2521578011       YGWA-10 (021221)       EPA 6020B       CW1       12         2521578011       YGWA-10 (021221)       EPA 6020B       CW1       12         25215780                                                                                                                                                                                                         |                 |                   | EPA 300.0 Rev 2.1 1993 | CDC      | 1                    |
| EPA 7470A         VB         1           EPA 300.0 Rev 2.1 1993         CDC         1           2521581015         YGWA-301(021121)         EPA 6020B         CW1         12           EPA 300.0 Rev 2.1 1993         CDC         1           2521581016         FB-01(021121)         EPA 300.0 Rev 2.1 1993         CDC         1           2521581016         FB-01(021121)         EPA 6020B         CW1         12           2521581017         FB-01(021121)         EPA 6020B         CW1         12           2521581017         EB-01(021121)         EPA 6020B         CW1         12           2521581017         EB-01(021121)         EPA 6020B         CW1         12           252158002         YGWA-14S (021021)         EPA 6020B         CW1         12           2521578002         YGWA-14S (021021)         EPA 6020B         CW1         12           2521578010         YGWA-11 (021221)         EPA 6020B         CW1         12           2521578010         YGWA-1D (021221)         EPA 6020B         CW1         12           2521578011         YGWA-1D (021221)         EPA 6020B         CW1         12           2521578001         EB-02 (021021)         EPA 300.0 Rev 2.1 1993         JLH                                                                                                                          | 92521581014     | YGWA-3D(021021)   | EPA 6020B              | CW1      | 12                   |
| 2521581015         YGWA-30(021121)         EPA 300.0 Rev 2.1 1993         CDC         1           2521581015         YGWA-30(021121)         EPA 6020B         CW1         12           2521581016         FB-01(021121)         EPA 300.0 Rev 2.1 1993         CDC         1           2521581016         FB-01(021121)         EPA 6020B         CW1         12           2521581017         EB-01(021121)         EPA 7470A         VB         1           2521581017         EB-01(021121)         EPA 300.0 Rev 2.1 1993         CDC         1           2521581017         EB-01(021121)         EPA 300.0 Rev 2.1 1993         CDC         1           2521578002         YGWA-14S (021021)         EPA 300.0 Rev 2.1 1993         CDC         1           2521578010         YGWA-14S (021021)         EPA 300.0 Rev 2.1 1993         CDC         1           2521578010         YGWA-11 (021221)         EPA 300.0 Rev 2.1 1993         CDC         1           2521578011         YGWA-1D (021221)         EPA 300.0 Rev 2.1 1993         JLH         1           2521578011         YGWA-1D (021221)         EPA 300.0 Rev 2.1 1993         JLH         1           2521578003         DUP-1 (021021)         EPA 300.0 Rev 2.1 1993         JLH         1 <t< td=""><td></td><td></td><td>EPA 7470A</td><td>VB</td><td>1</td></t<>          |                 |                   | EPA 7470A              | VB       | 1                    |
| 2521581015         YGWA-301(021121)         EPA 6020B         CW1         12           EPA 7470A         VB         1           EPA 300.0 Rev 2.1 1993         CDC         1           2521581016         FB-01(021121)         EPA 6020B         CW1         12           2521581017         EB-01(021121)         EPA 6020B         CW1         12           2521581017         EB-01(021121)         EPA 6020B         CW1         12           2521581017         EB-01(021121)         EPA 300.0 Rev 2.1 1993         CDC         1           2521581017         EB-01(021121)         EPA 300.0 Rev 2.1 1993         CDC         1           2521578002         YGWA-14S (021021)         EPA 300.0 Rev 2.1 1993         CDC         1           2521578010         YGWA-14S (021021)         EPA 300.0 Rev 2.1 1993         CDC         1           2521578010         YGWA-11 (021221)         EPA 6020B         CW1         12           2521578011         YGWA-10 (021221)         EPA 6020B         CW1         12           2521578003         PGP-1 (021021)         EPA 300.0 Rev 2.1 1993         JLH         1           2521578003         DUP-1 (021021)         EPA 300.0 Rev 2.1 1993         CDC         1                                                                                                                        |                 |                   | EPA 300.0 Rev 2.1 1993 | CDC      | 1                    |
| EPA 7470A         VB         1           EPA 300.0 Rev 2.1 1993         CDC         1           2521581016         FB-01(021121)         EPA 6020B         CW1         12           EPA 300.0 Rev 2.1 1993         CDC         1           2521581017         EB-01(021121)         EPA 6020B         CW1         12           2521581017         EB-01(021121)         EPA 6020B         CW1         12           2521578002         YGWA-145 (021021)         EPA 6020B         CW1         12           2521578002         YGWA-145 (021021)         EPA 6020B         CW1         12           2521578002         YGWA-145 (021021)         EPA 6020B         CW1         12           2521578010         YGWA-145 (021021)         EPA 6020B         CW1         12           2521578010         YGWA-11 (021221)         EPA 6020B         CW1         12           2521578011         YGWA-10 (021221)         EPA 6020B         CW1         12           2521578001         EB-02 (021021)         EPA 6020B         CW1         12           2521578001         EB-02 (021021)         EPA 6020B         CW1         12           2521578003         DUP-1 (021021)         EPA 6020B         CW1         12                                                                                                                                   | 92521581015     | YGWA-30I(021121)  | EPA 6020B              | CW1      | 12                   |
| 2521581016         FB-01(021121)         EPA 300.0 Rev 2.1 1993         CDC         1           2521581016         FB-01(021121)         EPA 6020B         CW1         12           2521581017         EB-01(021121)         EPA 300.0 Rev 2.1 1993         CDC         1           2521581017         EB-01(021121)         EPA 6020B         CW1         12           252158002         YGWA-14S (021021)         EPA 6020B         CW1         12           2521578002         YGWA-14S (021021)         EPA 6020B         CW1         12           2521578002         YGWA-14S (021021)         EPA 6020B         CW1         12           2521578001         YGWA-14S (021021)         EPA 6020B         CW1         12           2521578010         YGWA-11 (021221)         EPA 6020B         CW1         12           2521578011         YGWA-1D (021221)         EPA 6020B         CW1         12           2521578001         EB-02 (021021)         EPA 6020B         CW1         12           2521578001         EB-02 (021021)         EPA 6020B         CW1         12           2521578003         DUP-1 (021021)         EPA 6020B         CW1         12           2521578003         DUP-1 (021021)         EPA 6020B                                                                                                                 |                 |                   | EPA 7470A              | VB       | 1                    |
| 2521581016         FB-01(021121)         EPA 6020B         CW1         12           EPA 7470A         VB         1           EPA 300.0 Rev 2.1 1993         CDC         1           2521581017         EB-01(021121)         EPA 6020B         CW1         12           2521581017         EB-01(021121)         EPA 6020B         CW1         12           2521578002         YGWA-14S (021021)         EPA 6020B         CW1         12           2521578002         YGWA-14S (021021)         EPA 6020B         CW1         12           2521578010         YGWA-14S (021021)         EPA 6020B         CW1         12           2521578010         YGWA-11 (021221)         EPA 6020B         CW1         12           2521578011         YGWA-1D (021221)         EPA 300.0 Rev 2.1 1993         JLH         1           2521578011         YGWA-1D (021221)         EPA 300.0 Rev 2.1 1993         JLH         1           2521578001         EB-02 (021021)         EPA 300.0 Rev 2.1 1993         JLH         1           2521578003         DUP-1 (021021)         EPA 300.0 Rev 2.1 1993         JLH         1           2521578003         DUP-1 (021021)         EPA 6020B         CW1         12           EPA 300.0 Rev 2                                                                                                                 |                 |                   | EPA 300.0 Rev 2.1 1993 | CDC      | 1                    |
| EPA 7470A         VB         1           EPA 300.0 Rev 2.1 1993         CDC         1           2521581017         EB-01(021121)         EPA 6020B         CW1         12           EPA 7470A         VB         1         1         12           EPA 7470A         VB         1         12         12           EPA 7470A         VB         1         12         12           EPA 7470A         VB         1         12         12           2521578002         YGWA-145 (021021)         EPA 6020B         CW1         12           2521578010         YGWA-145 (021021)         EPA 6020B         CW1         12           2521578010         YGWA-11 (021221)         EPA 6020B         CW1         12           2521578011         YGWA-1D (021221)         EPA 6020B         CW1         12           2521578011         YGWA-1D (021221)         EPA 6020B         CW1         12           2521578001         EB-02 (021021)         EPA 6020B         CW1         12           2521578001         EB-02 (021021)         EPA 6020B         CW1         12           2521578003         DUP-1 (021021)         EPA 6020B         CW1         12           252157                                                                                                                                                                               | 92521581016     | FB-01(021121)     | EPA 6020B              | CW1      | 12                   |
| 2521581017         EB-01(021121)         EPA 300.0 Rev 2.1 1993         CDC         1           2521581017         EB-01(021121)         EPA 6020B         CW1         12           2521578002         YGWA-14S (021021)         EPA 300.0 Rev 2.1 1993         CDC         1           2521578002         YGWA-14S (021021)         EPA 6020B         CW1         12           2521578002         YGWA-14S (021021)         EPA 6020B         CW1         12           2521578010         YGWA-11 (021221)         EPA 300.0 Rev 2.1 1993         CDC         1           2521578011         YGWA-1D (021221)         EPA 300.0 Rev 2.1 1993         JLH         1           2521578011         YGWA-1D (021221)         EPA 6020B         CW1         12           2521578011         YGWA-1D (021221)         EPA 300.0 Rev 2.1 1993         JLH         1           2521578001         EB-02 (021021)         EPA 300.0 Rev 2.1 1993         JLH         1           2521578003         DUP-1 (021021)         EPA 300.0 Rev 2.1 1993         CDC         1           2521578003         DUP-1 (021021)         EPA 6020B         CW1         12           EPA 300.0 Rev 2.1 1993         CDC         1         1           EPA 300.0 Rev 2.1 1993         CD                                                                                       |                 |                   | EPA 7470A              | VB       | 1                    |
| 2521581017         EB-01(021121)         EPA 6020B         CW1         12           EPA 7470A         VB         1           EPA 300.0 Rev 2.1 1993         CDC         1           2521578002         YGWA-14S (021021)         EPA 6020B         CW1         12           2521578002         YGWA-14S (021021)         EPA 6020B         CW1         12           2521578010         YGWA-11 (021221)         EPA 6020B         CW1         12           2521578010         YGWA-11 (021221)         EPA 6020B         CW1         12           2521578011         YGWA-10 (021221)         EPA 6020B         CW1         12           2521578011         YGWA-10 (021221)         EPA 6020B         CW1         12           2521578011         YGWA-10 (021221)         EPA 6020B         CW1         12           2521578001         EB-02 (021021)         EPA 6020B         CW1         12           2521578001         EB-02 (021021)         EPA 6020B         CW1         12           2521578003         DUP-1 (021021)         EPA 300.0 Rev 2.1 1993         CDC         1           2521578003         DUP-1 (021021)         EPA 7470A         VB         1           2521578003         DUP-1 (021021)                                                                                                                                  |                 |                   | EPA 300.0 Rev 2.1 1993 | CDC      | 1                    |
| EPA 7470A       VB       1         EPA 300.0 Rev 2.1 1993       CDC       1         2521578002       YGWA-14S (021021)       EPA 6020B       CW1       12         EPA 7470A       VB       1       1       1         2521578002       YGWA-14S (021021)       EPA 6020B       CW1       12         EPA 300.0 Rev 2.1 1993       CDC       1       1         2521578010       YGWA-11 (021221)       EPA 6020B       CW1       12         EPA 300.0 Rev 2.1 1993       JLH       1       1         2521578011       YGWA-1D (021221)       EPA 6020B       CW1       12         EPA 300.0 Rev 2.1 1993       JLH       1       1         2521578001       EB-02 (021021)       EPA 6020B       CW1       12         EPA 300.0 Rev 2.1 1993       JLH       1       1         2521578001       EB-02 (021021)       EPA 6020B       CW1       12         EPA 300.0 Rev 2.1 1993       JLH       1       1         2521578003       DUP-1 (021021)       EPA 6020B       CW1       12         EPA 300.0 Rev 2.1 1993       CDC       1       1         EPA 300.0 Rev 2.1 1993       CDC       1       1                                                                                                                                                                                                                                                    | 92521581017     | EB-01(021121)     | EPA 6020B              | CW1      | 12                   |
| EPA 300.0 Rev 2.1 1993         CDC         1           2521578002         YGWA-14S (021021)         EPA 6020B         CW1         12           EPA 7470A         VB         1           2521578010         YGWA-11 (021221)         EPA 300.0 Rev 2.1 1993         CDC         1           2521578010         YGWA-11 (021221)         EPA 6020B         CW1         12           2521578011         YGWA-10 (021221)         EPA 300.0 Rev 2.1 1993         JLH         1           2521578011         YGWA-1D (021221)         EPA 6020B         CW1         12           2521578011         YGWA-1D (021221)         EPA 6020B         CW1         12           2521578001         EB-02 (021021)         EPA 6020B         CW1         12           2521578001         EB-02 (021021)         EPA 6020B         CW1         12           2521578003         DUP-1 (021021)         EPA 6020B         CW1         12           2521578003         DUP-1 (021021)         EPA 6020B         CW1         12           EPA 300.0 Rev 2.1 1993         CDC         1         12           EPA 300.0 Rev 2.1 1993         CDC         1         12           EPA 300.0 Rev 2.1 1993         CDC         1         1 <td></td> <td></td> <td>EPA 7470A</td> <td>VB</td> <td>1</td>                                                                         |                 |                   | EPA 7470A              | VB       | 1                    |
| 2521578002       YGWA-14S (021021)       EPA 6020B       CW1       12         EPA 7470A       VB       1         EPA 300.0 Rev 2.1 1993       CDC       1         2521578010       YGWA-11 (021221)       EPA 6020B       CW1       12         EPA 7470A       VB       1       1         2521578010       YGWA-11 (021221)       EPA 6020B       CW1       12         EPA 7470A       VB       1       1         2521578011       YGWA-1D (021221)       EPA 6020B       CW1       12         EPA 300.0 Rev 2.1 1993       JLH       1       1         2521578011       YGWA-1D (021221)       EPA 6020B       CW1       12         EPA 300.0 Rev 2.1 1993       JLH       1       1         2521578001       EB-02 (021021)       EPA 6020B       CW1       12         EPA 7470A       VB       1       1         EPA 300.0 Rev 2.1 1993       CDC       1       1         2521578003       DUP-1 (021021)       EPA 6020B       CW1       12         EPA 300.0 Rev 2.1 1993       CDC       1       1         EPA 300.0 Rev 2.1 1993       CDC       1       1         EPA 300.0 Rev 2.1 1993       <                                                                                                                                                                                                                                                |                 |                   | EPA 300.0 Rev 2.1 1993 | CDC      | 1                    |
| EPA 7470A       VB       1         EPA 300.0 Rev 2.1 1993       CDC       1         2521578010       YGWA-11 (021221)       EPA 6020B       CW1       12         EPA 7470A       VB       1       1         2521578011       YGWA-1D (021221)       EPA 300.0 Rev 2.1 1993       JLH       1         2521578011       YGWA-1D (021221)       EPA 6020B       CW1       12         2521578011       YGWA-1D (021221)       EPA 6020B       CW1       12         2521578001       EB-02 (021021)       EPA 300.0 Rev 2.1 1993       JLH       1         2521578001       EB-02 (021021)       EPA 6020B       CW1       12         2521578003       DUP-1 (021021)       EPA 300.0 Rev 2.1 1993       CDC       1         2521578003       DUP-1 (021021)       EPA 6020B       CW1       12         EPA 300.0 Rev 2.1 1993       CDC       1       1         EPA 300.0 Rev 2.1 1993       CDC       1       1         EPA 300.0 Rev 2.1 1993       CDC       1       1         EPA 300.0 Rev 2.1 1993       CDC       1       1         EPA 300.0 Rev 2.1 1993       CDC       1       1         EPA 300.0 Rev 2.1 1993       CDC                                                                                                                                                                                                                        | 92521578002     | YGWA-14S (021021) | EPA 6020B              | CW1      | 12                   |
| EPA 300.0 Rev 2.1 1993       CDC       1         2521578010       YGWA-11 (021221)       EPA 6020B       CW1       12         EPA 7470A       VB       1         2521578011       YGWA-1D (021221)       EPA 300.0 Rev 2.1 1993       JLH       1         2521578011       YGWA-1D (021221)       EPA 6020B       CW1       12         2521578011       YGWA-1D (021221)       EPA 6020B       CW1       12         2521578001       EB-02 (021021)       EPA 300.0 Rev 2.1 1993       JLH       1         2521578001       EB-02 (021021)       EPA 6020B       CW1       12         2521578003       DUP-1 (021021)       EPA 300.0 Rev 2.1 1993       JLH       1         2521578003       DUP-1 (021021)       EPA 6020B       CW1       12         EPA 300.0 Rev 2.1 1993       CDC       1       1         EPA 300.0 Rev 2.1 1993       CDC       1       1         EPA 300.0 Rev 2.1 1993       CDC       1       1         EPA 300.0 Rev 2.1 1993       CDC       1       1         EPA 300.0 Rev 2.1 1993       CDC       1       1         EPA 300.0 Rev 2.1 1993       CDC       1       1                                                                                                                                                                                                                                                   |                 |                   | EPA 7470A              | VB       | 1                    |
| 2521578010       YGWA-11 (021221)       EPA 6020B       CW1       12         EPA 7470A       VB       1         EPA 300.0 Rev 2.1 1993       JLH       1         2521578011       YGWA-1D (021221)       EPA 6020B       CW1       12         2521578011       YGWA-1D (021221)       EPA 6020B       CW1       12         2521578001       YGWA-1D (021021)       EPA 300.0 Rev 2.1 1993       JLH       1         2521578001       EB-02 (021021)       EPA 6020B       CW1       12         EPA 300.0 Rev 2.1 1993       JLH       1       1         2521578003       DUP-1 (021021)       EPA 6020B       CW1       12         EPA 6020B       CW1       12       1       1         EPA 300.0 Rev 2.1 1993       CDC       1       1         EPA 6020B       CW1       12       1       1         EPA 6020B       CW1       12       1       1       1         2521578003       DUP-1 (021021)       EPA 6020B       CW1       1       1         EPA 300.0 Rev 2.1 1993       CDC       1       1       1       1       1         EPA 300.0 Rev 2.1 1993       CDC       1       1       1       <                                                                                                                                                                                                                                                  |                 |                   | EPA 300.0 Rev 2.1 1993 | CDC      | 1                    |
| EPA 7470A       VB       1         EPA 300.0 Rev 2.1 1993       JLH       1         2521578011       YGWA-1D (021221)       EPA 6020B       CW1       12         EPA 7470A       VB       1       1         252157801       EPA 6020B       CW1       12         EPA 300.0 Rev 2.1 1993       JLH       1         2521578001       EB-02 (021021)       EPA 6020B       CW1       12         EPA 7470A       VB       1       1       1         2521578001       EB-02 (021021)       EPA 6020B       CW1       12         EPA 300.0 Rev 2.1 1993       CDC       1       1         2521578003       DUP-1 (021021)       EPA 6020B       CW1       12         EPA 7470A       VB       1       1       1         EPA 300.0 Rev 2.1 1993       CDC       1       1         EPA 300.0 Rev 2.1 1993       CDC       1       1         EPA 300.0 Rev 2.1 1993       CDC       1       1         EPA 300.0 Rev 2.1 1993       CDC       1       1                                                                                                                                                                                                                                                                                                                                                                                                           | 92521578010     | YGWA-1I (021221)  | EPA 6020B              | CW1      | 12                   |
| EPA 300.0 Rev 2.1 1993       JLH       1         2521578011       YGWA-1D (021221)       EPA 6020B       CW1       12         EPA 7470A       VB       1         EPA 300.0 Rev 2.1 1993       JLH       1         2521578001       EB-02 (021021)       EPA 6020B       CW1       12         EPA 7470A       VB       1       1         2521578001       EB-02 (021021)       EPA 6020B       CW1       12         EPA 7470A       VB       1       1         2521578003       DUP-1 (021021)       EPA 6020B       CW1       12         EPA 6020B       CW1       12       1       1         EPA 6020B       CW1       12       1       1         EPA 6020B       CW1       12       1       1         EPA 6020B       CW1       12       1       1         EPA 6020B       CW1       12       1       1       1         EPA 7470A       VB       1       1       1       1       1         EPA 300.0 Rev 2.1 1993       CDC       1       1       1       1       1         EPA 300.0 Rev 2.1 1993       CDC       1       1       1                                                                                                                                                                                                                                                                                                                  |                 |                   | EPA 7470A              | VB       | 1                    |
| 2521578011       YGWA-1D (021221)       EPA 6020B       CW1       12         EPA 7470A       VB       1         EPA 300.0 Rev 2.1 1993       JLH       1         2521578001       EB-02 (021021)       EPA 6020B       CW1       12         EPA 7470A       VB       1       1         2521578001       EB-02 (021021)       EPA 6020B       CW1       12         EPA 7470A       VB       1       1         2521578003       DUP-1 (021021)       EPA 6020B       CW1       12         EPA 7470A       VB       1       1         EPA 6020B       CW1       12       1         EPA 300.0 Rev 2.1 1993       CDC       1         EPA 300.0 Rev 2.1 1993       CDC       1         EPA 300.0 Rev 2.1 1993       CDC       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                   | EPA 300.0 Rev 2.1 1993 | JLH      | 1                    |
| EPA 7470A       VB       1         EPA 300.0 Rev 2.1 1993       JLH       1         2521578001       EB-02 (021021)       EPA 6020B       CW1       12         EPA 7470A       VB       1         EPA 300.0 Rev 2.1 1993       CDC       1         2521578003       DUP-1 (021021)       EPA 6020B       CW1       12         EPA 6020B       CW1       12         EPA 6020B       CW1       12         EPA 7470A       VB       1         EPA 7470A       VB       1         EPA 300.0 Rev 2.1 1993       CDC       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 92521578011     | YGWA-1D (021221)  | EPA 6020B              | CW1      | 12                   |
| EPA 300.0 Rev 2.1 1993       JLH       1         2521578001       EB-02 (021021)       EPA 6020B       CW1       12         EPA 7470A       VB       1         EPA 300.0 Rev 2.1 1993       CDC       1         2521578003       DUP-1 (021021)       EPA 6020B       CW1       12         EPA 7470A       VB       1       1         EPA 6020B       CW1       12         EPA 7470A       VB       1         EPA 7470A       VB       1         EPA 300.0 Rev 2.1 1993       CDC       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                   | EPA 7470A              | VB       | 1                    |
| 2521578001         EB-02 (021021)         EPA 6020B         CW1         12           EPA 7470A         VB         1           EPA 300.0 Rev 2.1 1993         CDC         1           2521578003         DUP-1 (021021)         EPA 6020B         CW1         12           EPA 7470A         VB         1         1           EPA 300.0 Rev 2.1 1993         CDC         1           EPA 300.0 Rev 2.1 1993         CDC         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                   | EPA 300.0 Rev 2.1 1993 | JLH      | 1                    |
| EPA 7470A         VB         1           EPA 300.0 Rev 2.1 1993         CDC         1           2521578003         DUP-1 (021021)         EPA 6020B         CW1         12           EPA 7470A         VB         1         12           EPA 300.0 Rev 2.1 1993         CDC         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 92521578001     | EB-02 (021021)    | EPA 6020B              | CW1      | 12                   |
| EPA 300.0 Rev 2.1 1993         CDC         1           2521578003         DUP-1 (021021)         EPA 6020B         CW1         12           EPA 7470A         VB         1           EPA 300.0 Rev 2.1 1993         CDC         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |                   | EPA 7470A              | VB       | 1                    |
| 2521578003         DUP-1 (021021)         EPA 6020B         CW1         12           EPA 7470A         VB         1           EPA 300.0 Rev 2.1 1993         CDC         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |                   | EPA 300.0 Rev 2.1 1993 | CDC      | 1                    |
| EPA 7470A         VB         1           EPA 300.0 Rev 2.1 1993         CDC         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 92521578003     | DUP-1 (021021)    | EPA 6020B              | CW1      | 12                   |
| EPA 300.0 Rev 2.1 1993 CDC 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |                   | EPA 7470A              | VB       | 1                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                   | EPA 300.0 Rev 2.1 1993 | CDC      | 1                    |

PASI-A = Pace Analytical Services - Asheville

PASI-C = Pace Analytical Services - Charlotte

PASI-GA = Pace Analytical Services - Peachtree Corners, GA



Project: YATES AMA

Pace Project No.: 92521581

| Lab Sample ID<br>Method | Client Sample ID<br>Parameters | Result       | Units      | Report Limit | Analvzed       | Qualifiers |
|-------------------------|--------------------------------|--------------|------------|--------------|----------------|------------|
| 02521581001             | <br>XGW/A_5D (020821)          |              |            |              |                |            |
|                         | Barium                         | 0.0070       | ma/l       | 0.010        | 02/17/21 10.42 |            |
| EPA 6020B               |                                | 0.00793      | mg/L       | 0.010        | 02/17/21 19:42 |            |
| EPA 6020B               | Lithium                        | 0.000133     | mg/L       | 0.0030       | 02/17/21 19:42 |            |
| EPA 6020B               | Molybdenum                     | 0.00055      | mg/L       | 0.030        | 02/17/21 19:42 |            |
| EPA 300.0 Rev 2.1 1993  | Fluoride                       | 0.055J       | mg/L       | 0.10         | 02/13/21 00:35 |            |
| 92521581002             | DUP-01(020821)                 |              |            |              |                |            |
| EPA 6020B               | Barium                         | 0.020        | mg/L       | 0.010        | 02/17/21 19:47 |            |
| EPA 6020B               | Lithium                        | 0.0031J      | mg/L       | 0.030        | 02/17/21 19:47 |            |
| 92521581003             | YGWA-5I (020821)               |              |            |              |                |            |
|                         | Performed by                   | CUSTOME<br>R |            |              | 02/23/21 08:11 |            |
|                         | рН                             | 5.67         | Std. Units |              | 02/23/21 08:11 |            |
| EPA 6020B               | Barium                         | 0.020        | mg/L       | 0.010        | 02/17/21 19:53 |            |
| EPA 6020B               | Lead                           | 0.000037J    | mg/L       | 0.0050       | 02/17/21 19:53 |            |
| EPA 6020B               | Lithium                        | 0.0032J      | mg/L       | 0.030        | 02/17/21 19:53 |            |
| 92521581004             | YGWA-39 (021021)               |              |            |              |                |            |
|                         | Performed by                   | CUSTOME<br>R |            |              | 02/23/21 08:11 |            |
|                         | рН                             | 5.80         | Std. Units |              | 02/23/21 08:11 |            |
| EPA 6020B               | Barium                         | 0.027        | mg/L       | 0.010        | 02/17/21 19:59 |            |
| EPA 6020B               | Beryllium                      | 0.000051J    | mg/L       | 0.0030       | 02/17/21 19:59 |            |
| EPA 6020B               | Cadmium                        | 0.00019J     | mg/L       | 0.0025       | 02/17/21 19:59 |            |
| EPA 6020B               | Cobalt                         | 0.00098J     | mg/L       | 0.0050       | 02/17/21 19:59 |            |
| EPA 6020B               | Lithium                        | 0.0071J      | mg/L       | 0.030        | 02/17/21 19:59 |            |
| EPA 6020B               | Molybdenum                     | 0.0013J      | mg/L       | 0.010        | 02/17/21 19:59 |            |
| 92521581005             | YGWA-40 (021021)               |              |            |              |                |            |
|                         | Performed by                   | CUSTOME<br>R |            |              | 02/23/21 08:11 |            |
|                         | рН                             | 5.19         | Std. Units |              | 02/23/21 08:11 |            |
| EPA 6020B               | Barium                         | 0.032        | mg/L       | 0.010        | 02/17/21 20:05 |            |
| EPA 6020B               | Beryllium                      | 0.00021J     | mg/L       | 0.0030       | 02/17/21 20:05 |            |
| 92521581006             | FB-01(021021)                  |              |            |              |                |            |
| EPA 6020B               | Antimony                       | 0.00052J     | mg/L       | 0.0030       | 02/17/21 20:39 | В          |
| 92521581007             | YGWA-20S (020921)              |              |            |              |                |            |
|                         | Performed by                   | CUSTOME<br>R |            |              | 02/23/21 08:11 |            |
|                         | рН                             | 5.86         | Std. Units |              | 02/23/21 08:11 |            |
| EPA 6020B               | Antimony                       | 0.00032J     | mg/L       | 0.0030       | 02/17/21 20:45 | В          |
| EPA 6020B               | Barium                         | 0.015        | mg/L       | 0.010        | 02/17/21 20:45 |            |
| EPA 6020B               | Beryllium                      | 0.000068J    | mg/L       | 0.0030       | 02/17/21 20:45 |            |
| EPA 6020B               | Chromium                       | 0.00056J     | mg/L       | 0.010        | 02/17/21 20:45 |            |
| EPA 6020B               | Lead                           | 0.000063J    | mg/L       | 0.0050       | 02/17/21 20:45 |            |



Project: YATES AMA

Pace Project No.: 92521581

| Lab Sample ID          | Client Sample ID |           |            |              |                |            |
|------------------------|------------------|-----------|------------|--------------|----------------|------------|
| Method                 | Parameters       | Result    | Units      | Report Limit | Analyzed       | Qualifiers |
| 92521581008            | YGWA-4I(020921)  |           |            |              |                |            |
|                        | Performed by     | CUSTOME   |            |              | 02/23/21 08:11 |            |
|                        | На               | к<br>6.06 | Std. Units |              | 02/23/21 08:11 |            |
| EPA 6020B              | Barium           | 0.013     | ma/l       | 0.010        | 02/17/21 20:50 |            |
| EPA 6020B              | Lithium          | 0.011J    | mg/L       | 0.030        | 02/17/21 20:50 |            |
| 92521581009            | YGWA-17S(020921) |           |            |              |                |            |
|                        | Performed by     | CUSTOME   |            |              | 02/23/21 08:11 |            |
|                        | рH               | 5.62      | Std. Units |              | 02/23/21 08:11 |            |
| EPA 6020B              | Barium           | 0.016     | ma/L       | 0.010        | 02/17/21 20:56 |            |
| EPA 6020B              | Bervllium        | 0.000094J | ma/L       | 0.0030       | 02/17/21 20:56 |            |
| EPA 6020B              | Chromium         | 0.00098J  | mg/L       | 0.010        | 02/17/21 20:56 |            |
| 92521581010            | YGWA-18S(020921) |           |            |              |                |            |
|                        | Performed by     | CUSTOME   |            |              | 02/23/21 08:11 |            |
|                        | рН               | R<br>5.43 | Std Units  |              | 02/23/21 08.11 |            |
| EPA 6020B              | Barium           | 0.40      | ma/l       | 0.010        | 02/17/21 21:02 |            |
| EPA 6020B              | Bervillium       | 0.017     | mg/L       | 0.010        | 02/17/21 21:02 |            |
| EPA 6020B              | Chromium         | 0.0000505 | mg/L       | 0.0030       | 02/17/21 21:02 |            |
| EPA 6020B              | Lood             | 0.00133   | mg/L       | 0.010        | 02/17/21 21:02 |            |
| EPA 6020B              | Lithium          | 0.0000943 | mg/L       | 0.0030       | 02/17/21 21:02 |            |
| 02521581011            | VGWA-18/(020021) | 0.00100   | ilig/L     | 0.000        | 02/11/21 21:02 |            |
| 32321301011            | Performed by     | CUSTOME   |            |              | 02/23/21 08:11 |            |
|                        | Fenomed by       | R         |            |              | 02/23/21 00.11 |            |
|                        | рН               | 6.12      | Std. Units |              | 02/23/21 08:11 |            |
| EPA 6020B              | Barium           | 0.023     | mg/L       | 0.010        | 02/17/21 21:07 |            |
| EPA 6020B              | Chromium         | 0.00083J  | mg/L       | 0.010        | 02/17/21 21:07 |            |
| EPA 6020B              | Lead             | 0.000050J | mg/L       | 0.0050       | 02/17/21 21:07 |            |
| EPA 6020B              | Lithium          | 0.0031J   | mg/L       | 0.030        | 02/17/21 21:07 |            |
| 92521581012            | YGWA-21I(020921) |           |            |              |                |            |
|                        | Performed by     | CUSTOME   |            |              | 02/23/21 08:11 |            |
|                        | На               | 6.95      | Std. Units |              | 02/23/21 08:11 |            |
| EPA 6020B              | Antimony         | 0.0013.   | ma/l       | 0.0030       | 02/17/21 21:13 | В          |
| EPA 6020B              | Arsenic          | 0.0010.1  | ma/l       | 0.0050       | 02/17/21 21:13 | -          |
| EPA 6020B              | Barium           | 0.0011    | mg/L       | 0.010        | 02/17/21 21:13 |            |
| EPA 6020B              | Cadmium          | 0.000411  | mg/L       | 0.0025       | 02/17/21 21:10 |            |
| EPA 6020B              | Cobalt           | 0.000410  | mg/L       | 0.0020       | 02/17/21 21:13 |            |
| EPA 6020B              | Lithium          | 0.0000    | mg/L       | 0.0000       | 02/17/21 21:10 |            |
| EPA 300.0 Rev 2.1 1993 | Fluoride         | 0.092J    | mg/L       | 0.030        | 02/12/21 16:12 |            |
| 92521581013            | YGWA-3I(021021)  | 0.0020    | <u></u>    | 0.10         | 0_,,           |            |
|                        | Performed by     |           |            |              | 02/23/21 08:11 |            |
|                        | На               | 7.58      | Std. Units |              | 02/23/21 08:11 |            |
| EPA 6020B              | Arsenic          | 0.00078.1 | ma/l       | 0.0050       | 02/17/21 21:19 |            |
| EPA 6020B              | Barium           | 0.0029J   | mg/L       | 0.010        | 02/17/21 21:19 |            |



Project: YATES AMA

Pace Project No.: 92521581

| Lab Sample ID          | Client Sample ID  |              |            |              |                |            |
|------------------------|-------------------|--------------|------------|--------------|----------------|------------|
| Method                 | Parameters        | Result       | Units      | Report Limit | Analyzed       | Qualifiers |
| 92521581013            | YGWA-3I(021021)   |              |            |              |                |            |
| EPA 6020B              | Lithium           | 0.015J       | mg/L       | 0.030        | 02/17/21 21:19 |            |
| EPA 6020B              | Molybdenum        | 0.0038J      | mg/L       | 0.010        | 02/17/21 21:19 |            |
| 92521581014            | YGWA-3D(021021)   |              |            |              |                |            |
|                        | Performed by      | CUSTOME<br>R |            |              | 02/23/21 08:11 |            |
|                        | pH                | 7.81         | Std. Units |              | 02/23/21 08:11 |            |
| EPA 6020B              | Arsenic           | 0.00094J     | mg/L       | 0.0050       | 02/17/21 21:25 |            |
| EPA 6020B              | Barium            | 0.0059J      | mg/L       | 0.010        | 02/17/21 21:25 |            |
| EPA 6020B              | Lithium           | 0.023J       | mg/L       | 0.030        | 02/17/21 21:25 |            |
| EPA 6020B              | Molybdenum        | 0.014        | mg/L       | 0.010        | 02/17/21 21:25 |            |
| EPA 300.0 Rev 2.1 1993 | Fluoride          | 0.43         | mg/L       | 0.10         | 02/12/21 20:11 |            |
| 92521581015            | YGWA-30I(021121)  |              |            |              |                |            |
|                        | Performed by      | CUSTOME      |            |              | 02/23/21 08:11 |            |
|                        | рН                | 5.73         | Std. Units |              | 02/23/21 08:11 |            |
| EPA 6020B              | Barium            | 0.0077J      | mg/L       | 0.010        | 02/17/21 21:30 |            |
| EPA 6020B              | Beryllium         | 0.000047J    | mg/L       | 0.0030       | 02/17/21 21:30 |            |
| EPA 6020B              | Cobalt            | 0.0078       | mg/L       | 0.0050       | 02/17/21 21:30 |            |
| EPA 6020B              | Lead              | 0.000046J    | mg/L       | 0.0050       | 02/17/21 21:30 |            |
| EPA 6020B              | Lithium           | 0.0012J      | mg/L       | 0.030        | 02/17/21 21:30 |            |
| 92521581016            | FB-01(021121)     |              |            |              |                |            |
| EPA 6020B              | Lead              | 0.00013J     | mg/L       | 0.0050       | 02/17/21 21:53 |            |
| 92521578002            | YGWA-14S (021021) |              |            |              |                |            |
|                        | Performed by      | CUSTOME      |            |              | 02/23/21 08:11 |            |
|                        | nH                | 5 35         | Std Unite  |              | 02/23/21 08.11 |            |
| EPA 6020B              | Barium            | 0.00781      | ma/l       | 0.010        | 02/23/21 00.11 |            |
| EPA 6020B              | Benyllium         | 0.00703      | mg/L       | 0.010        | 02/23/21 20.47 |            |
| EPA 6020B              | Lead              | 0.000048J    | mg/L       | 0.0050       | 02/23/21 20:47 |            |
| 92521578010            | YGWA-1I (021221)  |              | C C        |              |                |            |
|                        | Performed by      | CUSTOME      |            |              | 02/23/21 08:11 |            |
|                        | рН                | R<br>6 21    | Std Units  |              | 02/23/21 08:11 |            |
| EPA 6020B              | Barium            | 0.0090.1     | ma/l       | 0.010        | 02/23/21 22:01 |            |
| EPA 6020B              | Cobalt            | 0.0028.1     | mg/L       | 0.0050       | 02/23/21 22:01 |            |
| EPA 6020B              | Lead              | 0.00280      | mg/L       | 0.0050       | 02/23/21 22:01 |            |
| EPA 6020B              | Lithium           | 0.000303     | mg/L       | 0.0000       | 02/23/21 22:01 |            |
| EPA 6020B              | Molybdenum        | 0.00255      | mg/L       | 0.000        | 02/23/21 22:01 |            |
| 02521578011            | VGWA-1D (021221)  | 0.00000      | ing/L      | 0.010        | 02/20/21 22:01 |            |
| 52521576011            | Performed by      | CUSTOME      |            |              | 02/23/21 08.11 |            |
|                        | r ononnoù by      | R            |            |              | 02/20/21 00.11 |            |
|                        | рН                | 7.14         | Std. Units |              | 02/23/21 08:11 |            |
| EPA 6020B              | Barium            | 0.0057J      | mg/L       | 0.010        | 02/23/21 22:07 |            |
| EPA 6020B              | Cobalt            | 0.00086J     | mg/L       | 0.0050       | 02/23/21 22:07 |            |
| EPA 6020B              | Lead              | 0.000044J    | mg/L       | 0.0050       | 02/23/21 22:07 |            |

# **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



Project: YATES AMA

Pace Project No.: 92521581

| Lab Sample ID          | Client Sample ID |          |       |              |                |            |
|------------------------|------------------|----------|-------|--------------|----------------|------------|
| Method                 | Parameters       | Result   | Units | Report Limit | Analyzed       | Qualifiers |
| 92521578011            | YGWA-1D (021221) |          |       |              |                |            |
| EPA 6020B              | Lithium          | 0.010J   | mg/L  | 0.030        | 02/23/21 22:07 |            |
| EPA 6020B              | Molybdenum       | 0.0080J  | mg/L  | 0.010        | 02/23/21 22:07 |            |
| EPA 300.0 Rev 2.1 1993 | Fluoride         | 0.068J   | mg/L  | 0.10         | 02/16/21 19:01 |            |
| 92521578003            | DUP-1 (021021)   |          |       |              |                |            |
| EPA 6020B              | Barium           | 0.0078J  | mg/L  | 0.010        | 02/23/21 20:52 |            |
| EPA 6020B              | Beryllium        | 0.00019J | mg/L  | 0.0030       | 02/23/21 20:52 |            |



Project: YATES AMA

Pace Project No.: 92521581

| Sample: YGWA-5D (020821) | Lab ID:    | 92521581001     | Collecte        | ed: 02/08/2  | 1 16:45 | Received: 02/  | 10/21 17:10 Ma | atrix: Water |      |
|--------------------------|------------|-----------------|-----------------|--------------|---------|----------------|----------------|--------------|------|
| Parameters               | Results    | Units           | Report<br>Limit | MDL          | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| 6020 MET ICPMS           | Analytical | Method: EPA     | 6020B Pre       | paration Met | hod: El | PA 3005A       |                |              |      |
|                          | Pace Anal  | ytical Services | - Peachtre      | e Corners, C | ЗA      |                |                |              |      |
| Antimony                 | ND         | mg/L            | 0.0030          | 0.00028      | 1       | 02/17/21 12:10 | 02/17/21 19:42 | 7440-36-0    |      |
| Arsenic                  | ND         | mg/L            | 0.0050          | 0.00078      | 1       | 02/17/21 12:10 | 02/17/21 19:42 | 7440-38-2    |      |
| Barium                   | 0.0079J    | mg/L            | 0.010           | 0.00071      | 1       | 02/17/21 12:10 | 02/17/21 19:42 | 7440-39-3    |      |
| Beryllium                | ND         | mg/L            | 0.0030          | 0.000046     | 1       | 02/17/21 12:10 | 02/17/21 19:42 | 7440-41-7    |      |
| Cadmium                  | ND         | mg/L            | 0.0025          | 0.00012      | 1       | 02/17/21 12:10 | 02/17/21 19:42 | 7440-43-9    |      |
| Chromium                 | ND         | mg/L            | 0.010           | 0.00055      | 1       | 02/17/21 12:10 | 02/17/21 19:42 | 7440-47-3    |      |
| Cobalt                   | ND         | mg/L            | 0.0050          | 0.00038      | 1       | 02/17/21 12:10 | 02/17/21 19:42 | 7440-48-4    |      |
| Lead                     | 0.00013J   | mg/L            | 0.0050          | 0.000036     | 1       | 02/17/21 12:10 | 02/17/21 19:42 | 7439-92-1    |      |
| Lithium                  | 0.0063J    | mg/L            | 0.030           | 0.00081      | 1       | 02/17/21 12:10 | 02/17/21 19:42 | 7439-93-2    |      |
| Molybdenum               | 0.0011J    | mg/L            | 0.010           | 0.00069      | 1       | 02/17/21 12:10 | 02/17/21 19:42 | 7439-98-7    |      |
| Selenium                 | ND         | mg/L            | 0.010           | 0.0016       | 1       | 02/17/21 12:10 | 02/17/21 19:42 | 7782-49-2    |      |
| Thallium                 | ND         | mg/L            | 0.0010          | 0.00014      | 1       | 02/17/21 12:10 | 02/17/21 19:42 | 7440-28-0    |      |
| 7470 Mercury             | Analytical | Method: EPA     | 7470A Pre       | paration Met | hod: El | PA 7470A       |                |              |      |
|                          | Pace Anal  | ytical Services | - Peachtre      | e Corners, C | βA      |                |                |              |      |
| Mercury                  | ND         | mg/L            | 0.00050         | 0.000078     | 1       | 02/17/21 15:30 | 02/18/21 11:29 | 7439-97-6    |      |
| 300.0 IC Anions 28 Days  | Analytical | Method: EPA     | 300.0 Rev 2     | 2.1 1993     |         |                |                |              |      |
|                          | Pace Anal  | ytical Services | s - Asheville   | •            |         |                |                |              |      |
| Fluoride                 | 0.055J     | mg/L            | 0.10            | 0.050        | 1       |                | 02/13/21 00:35 | 16984-48-8   |      |



Project: YATES AMA

Pace Project No.: 92521581

| Sample: DUP-01(020821)  | Lab ID:                 | 9252158100                    | 2 Collecte                   | ed: 02/08/2   | 1 00:00  | Received: 02/  | 10/21 17:10 Ma | atrix: Water |      |
|-------------------------|-------------------------|-------------------------------|------------------------------|---------------|----------|----------------|----------------|--------------|------|
| Parameters              | Results                 | Units                         | Report<br>Limit              | MDL           | DF       | Prepared       | Analyzed       | CAS No.      | Qual |
| 6020 MET ICPMS          | Analytical              | Method: EPA                   | 6020B Pre                    | paration Me   | thod: E  | PA 3005A       |                |              |      |
|                         | Pace Anal               | ytical Service                | s - Peachtre                 | e Corners, (  | GA       |                |                |              |      |
| Antimony                | ND                      | mg/L                          | 0.0030                       | 0.00028       | 1        | 02/17/21 12:10 | 02/17/21 19:47 | 7440-36-0    |      |
| Arsenic                 | ND                      | mg/L                          | 0.0050                       | 0.00078       | 1        | 02/17/21 12:10 | 02/17/21 19:47 | 7440-38-2    |      |
| Barium                  | 0.020                   | mg/L                          | 0.010                        | 0.00071       | 1        | 02/17/21 12:10 | 02/17/21 19:47 | 7440-39-3    |      |
| Beryllium               | ND                      | mg/L                          | 0.0030                       | 0.000046      | 1        | 02/17/21 12:10 | 02/17/21 19:47 | 7440-41-7    |      |
| Cadmium                 | ND                      | mg/L                          | 0.0025                       | 0.00012       | 1        | 02/17/21 12:10 | 02/17/21 19:47 | 7440-43-9    |      |
| Chromium                | ND                      | mg/L                          | 0.010                        | 0.00055       | 1        | 02/17/21 12:10 | 02/17/21 19:47 | 7440-47-3    |      |
| Cobalt                  | ND                      | mg/L                          | 0.0050                       | 0.00038       | 1        | 02/17/21 12:10 | 02/17/21 19:47 | 7440-48-4    |      |
| Lead                    | ND                      | mg/L                          | 0.0050                       | 0.000036      | 1        | 02/17/21 12:10 | 02/17/21 19:47 | 7439-92-1    |      |
| Lithium                 | 0.0031J                 | mg/L                          | 0.030                        | 0.00081       | 1        | 02/17/21 12:10 | 02/17/21 19:47 | 7439-93-2    |      |
| Molybdenum              | ND                      | mg/L                          | 0.010                        | 0.00069       | 1        | 02/17/21 12:10 | 02/17/21 19:47 | 7439-98-7    |      |
| Selenium                | ND                      | mg/L                          | 0.010                        | 0.0016        | 1        | 02/17/21 12:10 | 02/17/21 19:47 | 7782-49-2    |      |
| Thallium                | ND                      | mg/L                          | 0.0010                       | 0.00014       | 1        | 02/17/21 12:10 | 02/17/21 19:47 | 7440-28-0    |      |
| 7470 Mercury            | Analytical              | Method: EPA                   | 7470A Pre                    | paration Met  | thod: El | PA 7470A       |                |              |      |
|                         | Pace Anal               | ytical Service                | s - Peachtre                 | e Corners, (  | ЗA       |                |                |              |      |
| Mercury                 | ND                      | mg/L                          | 0.00050                      | 0.000078      | 1        | 02/17/21 15:30 | 02/18/21 11:31 | 7439-97-6    |      |
| 300.0 IC Anions 28 Days | Analytical<br>Pace Anal | Method: EPA<br>ytical Service | 300.0 Rev 2<br>s - Asheville | 2.1 1993<br>9 |          |                |                |              |      |
| Fluoride                | ND                      | mg/L                          | 0.10                         | 0.050         | 1        |                | 02/13/21 00:50 | 16984-48-8   |      |



Project: YATES AMA

Pace Project No.: 92521581

| Sample: YGWA-5I (020821) | Lab ID:      | 92521581003      | Collecte    | ed: 02/08/2' | 1 16:20 | Received: 02/  | 10/21 17:10 Ma | atrix: Water |      |
|--------------------------|--------------|------------------|-------------|--------------|---------|----------------|----------------|--------------|------|
|                          |              |                  | Report      |              |         |                |                |              |      |
| Parameters               | Results      | Units            | Limit       | MDL          | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| Field Data               | Analytical   | Method:          |             |              |         |                |                |              |      |
|                          | Pace Ana     | lytical Services | - Charlotte | e            |         |                |                |              |      |
| Performed by             | CUSTOME<br>R |                  |             |              | 1       |                | 02/23/21 08:11 |              |      |
| рН                       | 5.67         | Std. Units       |             |              | 1       |                | 02/23/21 08:11 |              |      |
| 6020 MET ICPMS           | Analytical   | Method: EPA      | 6020B Pre   | paration Met | hod: El | PA 3005A       |                |              |      |
|                          | Pace Ana     | lytical Services | - Peachtre  | e Corners, C | GΑ      |                |                |              |      |
| Antimony                 | ND           | mg/L             | 0.0030      | 0.00028      | 1       | 02/17/21 12:10 | 02/17/21 19:53 | 7440-36-0    |      |
| Arsenic                  | ND           | mg/L             | 0.0050      | 0.00078      | 1       | 02/17/21 12:10 | 02/17/21 19:53 | 7440-38-2    |      |
| Barium                   | 0.020        | mg/L             | 0.010       | 0.00071      | 1       | 02/17/21 12:10 | 02/17/21 19:53 | 7440-39-3    |      |
| Beryllium                | ND           | mg/L             | 0.0030      | 0.000046     | 1       | 02/17/21 12:10 | 02/17/21 19:53 | 7440-41-7    |      |
| Cadmium                  | ND           | mg/L             | 0.0025      | 0.00012      | 1       | 02/17/21 12:10 | 02/17/21 19:53 | 7440-43-9    |      |
| Chromium                 | ND           | mg/L             | 0.010       | 0.00055      | 1       | 02/17/21 12:10 | 02/17/21 19:53 | 7440-47-3    |      |
| Cobalt                   | ND           | mg/L             | 0.0050      | 0.00038      | 1       | 02/17/21 12:10 | 02/17/21 19:53 | 7440-48-4    |      |
| Lead                     | 0.000037J    | mg/L             | 0.0050      | 0.000036     | 1       | 02/17/21 12:10 | 02/17/21 19:53 | 7439-92-1    |      |
| Lithium                  | 0.0032J      | mg/L             | 0.030       | 0.00081      | 1       | 02/17/21 12:10 | 02/17/21 19:53 | 7439-93-2    |      |
| Molybdenum               | ND           | mg/L             | 0.010       | 0.00069      | 1       | 02/17/21 12:10 | 02/17/21 19:53 | 7439-98-7    |      |
| Selenium                 | ND           | mg/L             | 0.010       | 0.0016       | 1       | 02/17/21 12:10 | 02/17/21 19:53 | 7782-49-2    |      |
| Thallium                 | ND           | mg/L             | 0.0010      | 0.00014      | 1       | 02/17/21 12:10 | 02/17/21 19:53 | 7440-28-0    |      |
| 7470 Mercury             | Analytical   | Method: EPA      | 7470A Pre   | paration Met | hod: El | PA 7470A       |                |              |      |
|                          | Pace Ana     | lytical Services | - Peachtre  | e Corners, C | GΑ      |                |                |              |      |
| Mercury                  | ND           | mg/L             | 0.00050     | 0.000078     | 1       | 02/17/21 15:30 | 02/18/21 11:34 | 7439-97-6    |      |
| 300.0 IC Anions 28 Days  | Analytical   | Method: EPA      | 300.0 Rev 2 | 2.1 1993     |         |                |                |              |      |
|                          | Pace Ana     | lytical Services | - Asheville | ;            |         |                |                |              |      |
| Fluoride                 | ND           | mg/L             | 0.10        | 0.050        | 1       |                | 02/13/21 01:04 | 16984-48-8   |      |



Project: YATES AMA

Pace Project No.: 92521581

| Sample: YGWA-39 (021021) | Lab ID:      | 92521581004     | 4 Collecte    | ed: 02/10/2  | 1 09:30  | Received: 02/  | 10/21 17:10 Ma | atrix: Water |      |
|--------------------------|--------------|-----------------|---------------|--------------|----------|----------------|----------------|--------------|------|
|                          |              |                 | Report        |              |          |                |                |              |      |
| Parameters               | Results      | Units           | Limit         | MDL          | DF       | Prepared       | Analyzed       | CAS No.      | Qual |
| Field Data               | Analytical   | Method:         |               |              |          |                |                |              |      |
|                          | Pace Ana     | lytical Service | s - Charlotte | e            |          |                |                |              |      |
| Performed by             | CUSTOME<br>R |                 |               |              | 1        |                | 02/23/21 08:11 |              |      |
| рН                       | 5.80         | Std. Units      |               |              | 1        |                | 02/23/21 08:11 |              |      |
| 6020 MET ICPMS           | Analytical   | Method: EPA     | 6020B Pre     | paration Met | thod: El | PA 3005A       |                |              |      |
|                          | Pace Ana     | lytical Service | s - Peachtre  | e Corners, O | GΑ       |                |                |              |      |
| Antimony                 | ND           | mg/L            | 0.0030        | 0.00028      | 1        | 02/17/21 12:10 | 02/17/21 19:59 | 7440-36-0    |      |
| Arsenic                  | ND           | mg/L            | 0.0050        | 0.00078      | 1        | 02/17/21 12:10 | 02/17/21 19:59 | 7440-38-2    |      |
| Barium                   | 0.027        | mg/L            | 0.010         | 0.00071      | 1        | 02/17/21 12:10 | 02/17/21 19:59 | 7440-39-3    |      |
| Beryllium                | 0.000051J    | mg/L            | 0.0030        | 0.000046     | 1        | 02/17/21 12:10 | 02/17/21 19:59 | 7440-41-7    |      |
| Cadmium                  | 0.00019J     | mg/L            | 0.0025        | 0.00012      | 1        | 02/17/21 12:10 | 02/17/21 19:59 | 7440-43-9    |      |
| Chromium                 | ND           | mg/L            | 0.010         | 0.00055      | 1        | 02/17/21 12:10 | 02/17/21 19:59 | 7440-47-3    |      |
| Cobalt                   | 0.00098J     | mg/L            | 0.0050        | 0.00038      | 1        | 02/17/21 12:10 | 02/17/21 19:59 | 7440-48-4    |      |
| Lead                     | ND           | mg/L            | 0.0050        | 0.000036     | 1        | 02/17/21 12:10 | 02/17/21 19:59 | 7439-92-1    |      |
| Lithium                  | 0.0071J      | mg/L            | 0.030         | 0.00081      | 1        | 02/17/21 12:10 | 02/17/21 19:59 | 7439-93-2    |      |
| Molybdenum               | 0.0013J      | mg/L            | 0.010         | 0.00069      | 1        | 02/17/21 12:10 | 02/17/21 19:59 | 7439-98-7    |      |
| Selenium                 | ND           | mg/L            | 0.010         | 0.0016       | 1        | 02/17/21 12:10 | 02/17/21 19:59 | 7782-49-2    |      |
| Thallium                 | ND           | mg/L            | 0.0010        | 0.00014      | 1        | 02/17/21 12:10 | 02/17/21 19:59 | 7440-28-0    |      |
| 7470 Mercury             | Analytical   | Method: EPA     | 7470A Pre     | paration Met | hod: EF  | PA 7470A       |                |              |      |
|                          | Pace Ana     | lytical Service | s - Peachtre  | e Corners, C | GA       |                |                |              |      |
| Mercury                  | ND           | mg/L            | 0.00050       | 0.000078     | 1        | 02/17/21 15:30 | 02/18/21 11:36 | 7439-97-6    |      |
| 300.0 IC Anions 28 Days  | Analytical   | Method: EPA     | 300.0 Rev 2   | 2.1 1993     |          |                |                |              |      |
|                          | Pace Ana     | lytical Service | s - Asheville | ;            |          |                |                |              |      |
| Fluoride                 | ND           | mg/L            | 0.10          | 0.050        | 1        |                | 02/13/21 01:19 | 16984-48-8   |      |



Project: YATES AMA

Pace Project No.: 92521581

| Sample: YGWA-40 (021021) | Lab ID:      | 92521581005      | Collecte    | ed: 02/10/2  | 1 10:50  | Received: 02/  | 10/21 17:10 Ma | atrix: Water |      |
|--------------------------|--------------|------------------|-------------|--------------|----------|----------------|----------------|--------------|------|
|                          |              |                  | Report      |              |          |                |                |              |      |
| Parameters               | Results      | Units            | Limit       | MDL          | DF       | Prepared       | Analyzed       | CAS No.      | Qual |
| Field Data               | Analytical   | Method:          |             |              |          |                |                |              |      |
|                          | Pace Ana     | lytical Services | - Charlotte | e            |          |                |                |              |      |
| Performed by             | CUSTOME<br>R |                  |             |              | 1        |                | 02/23/21 08:11 |              |      |
| рН                       | 5.19         | Std. Units       |             |              | 1        |                | 02/23/21 08:11 |              |      |
| 6020 MET ICPMS           | Analytical   | Method: EPA 6    | 020B Pre    | paration Met | thod: EF | PA 3005A       |                |              |      |
|                          | Pace Ana     | lytical Services | - Peachtre  | e Corners, C | GΑ       |                |                |              |      |
| Antimony                 | ND           | mg/L             | 0.0030      | 0.00028      | 1        | 02/17/21 12:10 | 02/17/21 20:05 | 7440-36-0    |      |
| Arsenic                  | ND           | mg/L             | 0.0050      | 0.00078      | 1        | 02/17/21 12:10 | 02/17/21 20:05 | 7440-38-2    |      |
| Barium                   | 0.032        | mg/L             | 0.010       | 0.00071      | 1        | 02/17/21 12:10 | 02/17/21 20:05 | 7440-39-3    |      |
| Beryllium                | 0.00021J     | mg/L             | 0.0030      | 0.000046     | 1        | 02/17/21 12:10 | 02/17/21 20:05 | 7440-41-7    |      |
| Cadmium                  | ND           | mg/L             | 0.0025      | 0.00012      | 1        | 02/17/21 12:10 | 02/17/21 20:05 | 7440-43-9    |      |
| Chromium                 | ND           | mg/L             | 0.010       | 0.00055      | 1        | 02/17/21 12:10 | 02/17/21 20:05 | 7440-47-3    |      |
| Cobalt                   | ND           | mg/L             | 0.0050      | 0.00038      | 1        | 02/17/21 12:10 | 02/17/21 20:05 | 7440-48-4    |      |
| Lead                     | ND           | mg/L             | 0.0050      | 0.000036     | 1        | 02/17/21 12:10 | 02/17/21 20:05 | 7439-92-1    |      |
| Lithium                  | ND           | mg/L             | 0.030       | 0.00081      | 1        | 02/17/21 12:10 | 02/17/21 20:05 | 7439-93-2    |      |
| Molybdenum               | ND           | mg/L             | 0.010       | 0.00069      | 1        | 02/17/21 12:10 | 02/17/21 20:05 | 7439-98-7    |      |
| Selenium                 | ND           | mg/L             | 0.010       | 0.0016       | 1        | 02/17/21 12:10 | 02/17/21 20:05 | 7782-49-2    |      |
| Thallium                 | ND           | mg/L             | 0.0010      | 0.00014      | 1        | 02/17/21 12:10 | 02/17/21 20:05 | 7440-28-0    |      |
| 7470 Mercury             | Analytical   | Method: EPA 7    | '470A Pre   | paration Met | hod: EP  | PA 7470A       |                |              |      |
|                          | Pace Ana     | lytical Services | - Peachtre  | e Corners, C | GA       |                |                |              |      |
| Mercury                  | ND           | mg/L             | 0.00050     | 0.000078     | 1        | 02/17/21 15:30 | 02/18/21 11:38 | 7439-97-6    |      |
| 300.0 IC Anions 28 Days  | Analytical   | Method: EPA 3    | 300.0 Rev 2 | 2.1 1993     |          |                |                |              |      |
|                          | Pace Ana     | lytical Services | - Asheville | ;            |          |                |                |              |      |
| Fluoride                 | ND           | mg/L             | 0.10        | 0.050        | 1        |                | 02/13/21 01:33 | 16984-48-8   |      |



Project: YATES AMA

Pace Project No.: 92521581

| Sample: FB-01(021021)   | Lab ID: 92521581006 Collected: 02/10/21 11:05 Received: 02/10/21 17:10 Matrix: Wa |                                   |                           |               |          |                |                |            |      |
|-------------------------|-----------------------------------------------------------------------------------|-----------------------------------|---------------------------|---------------|----------|----------------|----------------|------------|------|
| Parameters              | Results                                                                           | Units                             | Report<br>Limit           | MDL           | DF       | Prepared       | Analyzed       | CAS No.    | Qual |
| 6020 MET ICPMS          | Analytical                                                                        | Method: EPA 6                     | 020B Pre                  | paration Met  | thod: EF | PA 3005A       |                |            |      |
|                         | Pace Ana                                                                          | lytical Services                  | - Peachtre                | e Corners, C  | Αc       |                |                |            |      |
| Antimony                | 0.00052J                                                                          | mg/L                              | 0.0030                    | 0.00028       | 1        | 02/17/21 12:10 | 02/17/21 20:39 | 7440-36-0  | В    |
| Arsenic                 | ND                                                                                | mg/L                              | 0.0050                    | 0.00078       | 1        | 02/17/21 12:10 | 02/17/21 20:39 | 7440-38-2  |      |
| Barium                  | ND                                                                                | mg/L                              | 0.010                     | 0.00071       | 1        | 02/17/21 12:10 | 02/17/21 20:39 | 7440-39-3  |      |
| Beryllium               | ND                                                                                | mg/L                              | 0.0030                    | 0.000046      | 1        | 02/17/21 12:10 | 02/17/21 20:39 | 7440-41-7  |      |
| Cadmium                 | ND                                                                                | mg/L                              | 0.0025                    | 0.00012       | 1        | 02/17/21 12:10 | 02/17/21 20:39 | 7440-43-9  |      |
| Chromium                | ND                                                                                | mg/L                              | 0.010                     | 0.00055       | 1        | 02/17/21 12:10 | 02/17/21 20:39 | 7440-47-3  |      |
| Cobalt                  | ND                                                                                | mg/L                              | 0.0050                    | 0.00038       | 1        | 02/17/21 12:10 | 02/17/21 20:39 | 7440-48-4  |      |
| Lead                    | ND                                                                                | mg/L                              | 0.0050                    | 0.000036      | 1        | 02/17/21 12:10 | 02/17/21 20:39 | 7439-92-1  |      |
| Lithium                 | ND                                                                                | mg/L                              | 0.030                     | 0.00081       | 1        | 02/17/21 12:10 | 02/17/21 20:39 | 7439-93-2  |      |
| Molybdenum              | ND                                                                                | mg/L                              | 0.010                     | 0.00069       | 1        | 02/17/21 12:10 | 02/17/21 20:39 | 7439-98-7  |      |
| Selenium                | ND                                                                                | mg/L                              | 0.010                     | 0.0016        | 1        | 02/17/21 12:10 | 02/17/21 20:39 | 7782-49-2  |      |
| Thallium                | ND                                                                                | mg/L                              | 0.0010                    | 0.00014       | 1        | 02/17/21 12:10 | 02/17/21 20:39 | 7440-28-0  |      |
| 7470 Mercury            | Analytical                                                                        | Method: EPA 7                     | 470A Pre                  | paration Met  | thod: EP | PA 7470A       |                |            |      |
|                         | Pace Ana                                                                          | lytical Services                  | - Peachtre                | e Corners, 0  | GA       |                |                |            |      |
| Mercury                 | ND                                                                                | mg/L                              | 0.00050                   | 0.000078      | 1        | 02/17/21 15:30 | 02/18/21 11:53 | 7439-97-6  |      |
| 300.0 IC Anions 28 Days | Analytical<br>Pace Ana                                                            | Method: EPA 3<br>lytical Services | 00.0 Rev 2<br>- Asheville | 2.1 1993<br>9 |          |                |                |            |      |
| Fluoride                | ND                                                                                | mg/L                              | 0.10                      | 0.050         | 1        |                | 02/13/21 02:16 | 16984-48-8 |      |



Project: YATES AMA

Pace Project No.: 92521581

| Sample: YGWA-20S (020921) | Lab ID: 92521581007 Collected: 02/09/21 16:50 Received: 02/10/21 17:10 Matrix: Water |                 |               |              |          |                |                |            |      |
|---------------------------|--------------------------------------------------------------------------------------|-----------------|---------------|--------------|----------|----------------|----------------|------------|------|
|                           |                                                                                      |                 | Report        |              |          |                |                |            |      |
| Parameters                | Results                                                                              | Units           | Limit         | MDL          | DF       | Prepared       | Analyzed       | CAS No.    | Qual |
| Field Data                | Analytical                                                                           | Method:         |               |              |          |                |                |            |      |
|                           | Pace Ana                                                                             | lytical Service | s - Charlotte | 9            |          |                |                |            |      |
| Performed by              | CUSTOME<br>R                                                                         |                 |               |              | 1        |                | 02/23/21 08:11 |            |      |
| рН                        | 5.86                                                                                 | Std. Units      |               |              | 1        |                | 02/23/21 08:11 |            |      |
| 6020 MET ICPMS            | Analytical                                                                           | Method: EPA     | 6020B Pre     | paration Met | thod: El | PA 3005A       |                |            |      |
|                           | Pace Ana                                                                             | lytical Service | s - Peachtre  | e Corners, O | GΑ       |                |                |            |      |
| Antimony                  | 0.00032J                                                                             | mg/L            | 0.0030        | 0.00028      | 1        | 02/17/21 12:10 | 02/17/21 20:45 | 7440-36-0  | В    |
| Arsenic                   | ND                                                                                   | mg/L            | 0.0050        | 0.00078      | 1        | 02/17/21 12:10 | 02/17/21 20:45 | 7440-38-2  |      |
| Barium                    | 0.015                                                                                | mg/L            | 0.010         | 0.00071      | 1        | 02/17/21 12:10 | 02/17/21 20:45 | 7440-39-3  |      |
| Beryllium                 | 0.000068J                                                                            | mg/L            | 0.0030        | 0.000046     | 1        | 02/17/21 12:10 | 02/17/21 20:45 | 7440-41-7  |      |
| Cadmium                   | ND                                                                                   | mg/L            | 0.0025        | 0.00012      | 1        | 02/17/21 12:10 | 02/17/21 20:45 | 7440-43-9  |      |
| Chromium                  | 0.00056J                                                                             | mg/L            | 0.010         | 0.00055      | 1        | 02/17/21 12:10 | 02/17/21 20:45 | 7440-47-3  |      |
| Cobalt                    | ND                                                                                   | mg/L            | 0.0050        | 0.00038      | 1        | 02/17/21 12:10 | 02/17/21 20:45 | 7440-48-4  |      |
| Lead                      | 0.000063J                                                                            | mg/L            | 0.0050        | 0.000036     | 1        | 02/17/21 12:10 | 02/17/21 20:45 | 7439-92-1  |      |
| Lithium                   | ND                                                                                   | mg/L            | 0.030         | 0.00081      | 1        | 02/17/21 12:10 | 02/17/21 20:45 | 7439-93-2  |      |
| Molybdenum                | ND                                                                                   | mg/L            | 0.010         | 0.00069      | 1        | 02/17/21 12:10 | 02/17/21 20:45 | 7439-98-7  |      |
| Selenium                  | ND                                                                                   | mg/L            | 0.010         | 0.0016       | 1        | 02/17/21 12:10 | 02/17/21 20:45 | 7782-49-2  |      |
| Thallium                  | ND                                                                                   | mg/L            | 0.0010        | 0.00014      | 1        | 02/17/21 12:10 | 02/17/21 20:45 | 7440-28-0  |      |
| 7470 Mercury              | Analytical                                                                           | Method: EPA     | 7470A Pre     | paration Met | hod: El  | PA 7470A       |                |            |      |
|                           | Pace Ana                                                                             | lytical Service | s - Peachtre  | e Corners, O | GΑ       |                |                |            |      |
| Mercury                   | ND                                                                                   | mg/L            | 0.00050       | 0.000078     | 1        | 02/17/21 15:30 | 02/18/21 11:55 | 7439-97-6  |      |
| 300.0 IC Anions 28 Days   | Analytical                                                                           | Method: EPA     | 300.0 Rev 2   | 2.1 1993     |          |                |                |            |      |
|                           | Pace Ana                                                                             | lytical Service | s - Asheville | ;            |          |                |                |            |      |
| Fluoride                  | ND                                                                                   | mg/L            | 0.10          | 0.050        | 1        |                | 02/13/21 02:31 | 16984-48-8 |      |



Project: YATES AMA

Pace Project No.: 92521581

| Sample: YGWA-4I(020921) | Lab ID:      | Lab ID: 92521581008 Collected: 02/09/21 09:50 Received: 02/10/21 17:10 Matrix: Water |               |              |          |                |                |            |      |  |  |
|-------------------------|--------------|--------------------------------------------------------------------------------------|---------------|--------------|----------|----------------|----------------|------------|------|--|--|
|                         |              |                                                                                      | Report        |              |          |                |                |            |      |  |  |
| Parameters              | Results      | Units                                                                                | Limit         | MDL          | DF       | Prepared       | Analyzed       | CAS No.    | Qual |  |  |
| Field Data              | Analytical   | Method:                                                                              |               |              |          |                |                |            |      |  |  |
|                         | Pace Ana     | lytical Service                                                                      | s - Charlotte | 9            |          |                |                |            |      |  |  |
| Performed by            | CUSTOME<br>R |                                                                                      |               |              | 1        |                | 02/23/21 08:11 |            |      |  |  |
| рН                      | 6.06         | Std. Units                                                                           |               |              | 1        |                | 02/23/21 08:11 |            |      |  |  |
| 6020 MET ICPMS          | Analytical   | Method: EPA                                                                          | 6020B Pre     | paration Met | hod: E   | PA 3005A       |                |            |      |  |  |
|                         | Pace Ana     | lytical Service                                                                      | s - Peachtre  | e Corners, G | βA       |                |                |            |      |  |  |
| Antimony                | ND           | mg/L                                                                                 | 0.0030        | 0.00028      | 1        | 02/17/21 12:10 | 02/17/21 20:50 | 7440-36-0  |      |  |  |
| Arsenic                 | ND           | mg/L                                                                                 | 0.0050        | 0.00078      | 1        | 02/17/21 12:10 | 02/17/21 20:50 | 7440-38-2  |      |  |  |
| Barium                  | 0.013        | mg/L                                                                                 | 0.010         | 0.00071      | 1        | 02/17/21 12:10 | 02/17/21 20:50 | 7440-39-3  |      |  |  |
| Beryllium               | ND           | mg/L                                                                                 | 0.0030        | 0.000046     | 1        | 02/17/21 12:10 | 02/17/21 20:50 | 7440-41-7  |      |  |  |
| Cadmium                 | ND           | mg/L                                                                                 | 0.0025        | 0.00012      | 1        | 02/17/21 12:10 | 02/17/21 20:50 | 7440-43-9  |      |  |  |
| Chromium                | ND           | mg/L                                                                                 | 0.010         | 0.00055      | 1        | 02/17/21 12:10 | 02/17/21 20:50 | 7440-47-3  |      |  |  |
| Cobalt                  | ND           | mg/L                                                                                 | 0.0050        | 0.00038      | 1        | 02/17/21 12:10 | 02/17/21 20:50 | 7440-48-4  |      |  |  |
| Lead                    | ND           | mg/L                                                                                 | 0.0050        | 0.000036     | 1        | 02/17/21 12:10 | 02/17/21 20:50 | 7439-92-1  |      |  |  |
| Lithium                 | 0.011J       | mg/L                                                                                 | 0.030         | 0.00081      | 1        | 02/17/21 12:10 | 02/17/21 20:50 | 7439-93-2  |      |  |  |
| Molybdenum              | ND           | mg/L                                                                                 | 0.010         | 0.00069      | 1        | 02/17/21 12:10 | 02/17/21 20:50 | 7439-98-7  |      |  |  |
| Selenium                | ND           | mg/L                                                                                 | 0.010         | 0.0016       | 1        | 02/17/21 12:10 | 02/17/21 20:50 | 7782-49-2  |      |  |  |
| Thallium                | ND           | mg/L                                                                                 | 0.0010        | 0.00014      | 1        | 02/17/21 12:10 | 02/17/21 20:50 | 7440-28-0  |      |  |  |
| 7470 Mercury            | Analytical   | Method: EPA                                                                          | 7470A Pre     | paration Met | hod: El  | PA 7470A       |                |            |      |  |  |
|                         | Pace Ana     | lytical Service                                                                      | s - Peachtre  | e Corners, C | <b>A</b> |                |                |            |      |  |  |
| Mercury                 | ND           | mg/L                                                                                 | 0.00050       | 0.000078     | 1        | 02/17/21 15:30 | 02/18/21 11:57 | 7439-97-6  |      |  |  |
| 300.0 IC Anions 28 Days | Analytical   | Method: EPA                                                                          | 300.0 Rev 2   | 2.1 1993     |          |                |                |            |      |  |  |
|                         | Pace Ana     | lytical Service                                                                      | s - Asheville | ;            |          |                |                |            |      |  |  |
| Fluoride                | ND           | mg/L                                                                                 | 0.10          | 0.050        | 1        |                | 02/13/21 02:45 | 16984-48-8 |      |  |  |



Project: YATES AMA

Pace Project No.: 92521581

| Sample: YGWA-17S(020921) | Lab ID: 92521581009 Collected: 02/09/21 11:15 Received: 02/10/21 17:10 Matrix: Water |                 |               |              |         |                |                |            |      |  |
|--------------------------|--------------------------------------------------------------------------------------|-----------------|---------------|--------------|---------|----------------|----------------|------------|------|--|
|                          |                                                                                      |                 | Report        |              |         |                |                |            |      |  |
| Parameters               | Results                                                                              | Units           | Limit         | MDL          | DF      | Prepared       | Analyzed       | CAS No.    | Qual |  |
| Field Data               | Analytical                                                                           | Method:         |               |              |         |                |                |            |      |  |
|                          | Pace Ana                                                                             | lytical Service | s - Charlotte | )            |         |                |                |            |      |  |
| Performed by             | CUSTOME<br>R                                                                         |                 |               |              | 1       |                | 02/23/21 08:11 |            |      |  |
| рН                       | 5.62                                                                                 | Std. Units      |               |              | 1       |                | 02/23/21 08:11 |            |      |  |
| 6020 MET ICPMS           | Analytical                                                                           | Method: EPA     | 6020B Pre     | paration Met | hod: E  | PA 3005A       |                |            |      |  |
|                          | Pace Ana                                                                             | lytical Service | s - Peachtre  | e Corners, G | βA      |                |                |            |      |  |
| Antimony                 | ND                                                                                   | mg/L            | 0.0030        | 0.00028      | 1       | 02/17/21 12:10 | 02/17/21 20:56 | 7440-36-0  |      |  |
| Arsenic                  | ND                                                                                   | mg/L            | 0.0050        | 0.00078      | 1       | 02/17/21 12:10 | 02/17/21 20:56 | 7440-38-2  |      |  |
| Barium                   | 0.016                                                                                | mg/L            | 0.010         | 0.00071      | 1       | 02/17/21 12:10 | 02/17/21 20:56 | 7440-39-3  |      |  |
| Beryllium                | 0.000094J                                                                            | mg/L            | 0.0030        | 0.000046     | 1       | 02/17/21 12:10 | 02/17/21 20:56 | 7440-41-7  |      |  |
| Cadmium                  | ND                                                                                   | mg/L            | 0.0025        | 0.00012      | 1       | 02/17/21 12:10 | 02/17/21 20:56 | 7440-43-9  |      |  |
| Chromium                 | 0.00098J                                                                             | mg/L            | 0.010         | 0.00055      | 1       | 02/17/21 12:10 | 02/17/21 20:56 | 7440-47-3  |      |  |
| Cobalt                   | ND                                                                                   | mg/L            | 0.0050        | 0.00038      | 1       | 02/17/21 12:10 | 02/17/21 20:56 | 7440-48-4  |      |  |
| Lead                     | ND                                                                                   | mg/L            | 0.0050        | 0.000036     | 1       | 02/17/21 12:10 | 02/17/21 20:56 | 7439-92-1  |      |  |
| Lithium                  | ND                                                                                   | mg/L            | 0.030         | 0.00081      | 1       | 02/17/21 12:10 | 02/17/21 20:56 | 7439-93-2  |      |  |
| Molybdenum               | ND                                                                                   | mg/L            | 0.010         | 0.00069      | 1       | 02/17/21 12:10 | 02/17/21 20:56 | 7439-98-7  |      |  |
| Selenium                 | ND                                                                                   | mg/L            | 0.010         | 0.0016       | 1       | 02/17/21 12:10 | 02/17/21 20:56 | 7782-49-2  |      |  |
| Thallium                 | ND                                                                                   | mg/L            | 0.0010        | 0.00014      | 1       | 02/17/21 12:10 | 02/17/21 20:56 | 7440-28-0  |      |  |
| 7470 Mercury             | Analytical                                                                           | Method: EPA     | 7470A Pre     | paration Met | hod: El | PA 7470A       |                |            |      |  |
|                          | Pace Ana                                                                             | lytical Service | s - Peachtre  | e Corners, G | βA      |                |                |            |      |  |
| Mercury                  | ND                                                                                   | mg/L            | 0.00050       | 0.000078     | 1       | 02/17/21 15:30 | 02/18/21 12:00 | 7439-97-6  |      |  |
| 300.0 IC Anions 28 Days  | Analytical                                                                           | Method: EPA     | 300.0 Rev 2   | 2.1 1993     |         |                |                |            |      |  |
|                          | Pace Ana                                                                             | lytical Service | s - Asheville |              |         |                |                |            |      |  |
| Fluoride                 | ND                                                                                   | mg/L            | 0.10          | 0.050        | 1       |                | 02/13/21 03:29 | 16984-48-8 |      |  |



Project: YATES AMA

Pace Project No.: 92521581

| Sample: YGWA-18S(020921) | Lab ID: 92521581010 Collected: 02/09/21 13:25 Received: 02/10/21 17:10 Matrix: Water |                 |               |              |         |                |                |            |      |  |
|--------------------------|--------------------------------------------------------------------------------------|-----------------|---------------|--------------|---------|----------------|----------------|------------|------|--|
|                          |                                                                                      |                 | Report        |              |         |                |                |            |      |  |
| Parameters               | Results                                                                              | Units           | Limit         | MDL          | DF      | Prepared       | Analyzed       | CAS No.    | Qual |  |
| Field Data               | Analytical                                                                           | Method:         |               |              |         |                |                |            |      |  |
|                          | Pace Ana                                                                             | lytical Service | s - Charlotte | ;            |         |                |                |            |      |  |
| Performed by             | CUSTOME<br>R                                                                         |                 |               |              | 1       |                | 02/23/21 08:11 |            |      |  |
| рН                       | 5.43                                                                                 | Std. Units      |               |              | 1       |                | 02/23/21 08:11 |            |      |  |
| 6020 MET ICPMS           | Analytical                                                                           | Method: EPA     | 6020B Pre     | paration Met | hod: El | PA 3005A       |                |            |      |  |
|                          | Pace Ana                                                                             | lytical Service | s - Peachtre  | e Corners, G | βA      |                |                |            |      |  |
| Antimony                 | ND                                                                                   | mg/L            | 0.0030        | 0.00028      | 1       | 02/17/21 12:10 | 02/17/21 21:02 | 7440-36-0  |      |  |
| Arsenic                  | ND                                                                                   | mg/L            | 0.0050        | 0.00078      | 1       | 02/17/21 12:10 | 02/17/21 21:02 | 7440-38-2  |      |  |
| Barium                   | 0.017                                                                                | mg/L            | 0.010         | 0.00071      | 1       | 02/17/21 12:10 | 02/17/21 21:02 | 7440-39-3  |      |  |
| Beryllium                | 0.000098J                                                                            | mg/L            | 0.0030        | 0.000046     | 1       | 02/17/21 12:10 | 02/17/21 21:02 | 7440-41-7  |      |  |
| Cadmium                  | ND                                                                                   | mg/L            | 0.0025        | 0.00012      | 1       | 02/17/21 12:10 | 02/17/21 21:02 | 7440-43-9  |      |  |
| Chromium                 | 0.0013J                                                                              | mg/L            | 0.010         | 0.00055      | 1       | 02/17/21 12:10 | 02/17/21 21:02 | 7440-47-3  |      |  |
| Cobalt                   | ND                                                                                   | mg/L            | 0.0050        | 0.00038      | 1       | 02/17/21 12:10 | 02/17/21 21:02 | 7440-48-4  |      |  |
| Lead                     | 0.000094J                                                                            | mg/L            | 0.0050        | 0.000036     | 1       | 02/17/21 12:10 | 02/17/21 21:02 | 7439-92-1  |      |  |
| Lithium                  | 0.0019J                                                                              | mg/L            | 0.030         | 0.00081      | 1       | 02/17/21 12:10 | 02/17/21 21:02 | 7439-93-2  |      |  |
| Molybdenum               | ND                                                                                   | mg/L            | 0.010         | 0.00069      | 1       | 02/17/21 12:10 | 02/17/21 21:02 | 7439-98-7  |      |  |
| Selenium                 | ND                                                                                   | mg/L            | 0.010         | 0.0016       | 1       | 02/17/21 12:10 | 02/17/21 21:02 | 7782-49-2  |      |  |
| Thallium                 | ND                                                                                   | mg/L            | 0.0010        | 0.00014      | 1       | 02/17/21 12:10 | 02/17/21 21:02 | 7440-28-0  |      |  |
| 7470 Mercury             | Analytical                                                                           | Method: EPA     | 7470A Pre     | paration Met | hod: El | PA 7470A       |                |            |      |  |
|                          | Pace Ana                                                                             | lytical Service | s - Peachtre  | e Corners, C | A       |                |                |            |      |  |
| Mercury                  | ND                                                                                   | mg/L            | 0.00050       | 0.000078     | 1       | 02/17/21 15:30 | 02/18/21 12:02 | 7439-97-6  |      |  |
| 300.0 IC Anions 28 Days  | Analytical                                                                           | Method: EPA     | 300.0 Rev 2   | 2.1 1993     |         |                |                |            |      |  |
|                          | Pace Ana                                                                             | lytical Service | s - Asheville |              |         |                |                |            |      |  |
| Fluoride                 | ND                                                                                   | mg/L            | 0.10          | 0.050        | 1       |                | 02/13/21 03:43 | 16984-48-8 |      |  |



Project: YATES AMA

Pace Project No.: 92521581

| Sample: YGWA-18I(020921) | Lab ID: 92521581011 Collected: 02/09/21 14:00 Received: 02/10/21 17:10 Matrix: Water |                  |             |              |          |                |                |            |      |  |
|--------------------------|--------------------------------------------------------------------------------------|------------------|-------------|--------------|----------|----------------|----------------|------------|------|--|
|                          |                                                                                      |                  | Report      |              |          |                |                |            |      |  |
| Parameters               | Results                                                                              | Units            | Limit       | MDL          | DF       | Prepared       | Analyzed       | CAS No.    | Qual |  |
| Field Data               | Analytical                                                                           | Method:          |             |              |          |                |                |            |      |  |
|                          | Pace Ana                                                                             | lytical Services | - Charlotte | 9            |          |                |                |            |      |  |
| Performed by             | CUSTOME<br>R                                                                         |                  |             |              | 1        |                | 02/23/21 08:11 |            |      |  |
| рН                       | 6.12                                                                                 | Std. Units       |             |              | 1        |                | 02/23/21 08:11 |            |      |  |
| 6020 MET ICPMS           | Analytical                                                                           | Method: EPA 6    | 6020B Pre   | paration Met | hod: E   | PA 3005A       |                |            |      |  |
|                          | Pace Ana                                                                             | lytical Services | - Peachtre  | e Corners, G | βA       |                |                |            |      |  |
| Antimony                 | ND                                                                                   | mg/L             | 0.0030      | 0.00028      | 1        | 02/17/21 12:10 | 02/17/21 21:07 | 7440-36-0  |      |  |
| Arsenic                  | ND                                                                                   | mg/L             | 0.0050      | 0.00078      | 1        | 02/17/21 12:10 | 02/17/21 21:07 | 7440-38-2  |      |  |
| Barium                   | 0.023                                                                                | mg/L             | 0.010       | 0.00071      | 1        | 02/17/21 12:10 | 02/17/21 21:07 | 7440-39-3  |      |  |
| Beryllium                | ND                                                                                   | mg/L             | 0.0030      | 0.000046     | 1        | 02/17/21 12:10 | 02/17/21 21:07 | 7440-41-7  |      |  |
| Cadmium                  | ND                                                                                   | mg/L             | 0.0025      | 0.00012      | 1        | 02/17/21 12:10 | 02/17/21 21:07 | 7440-43-9  |      |  |
| Chromium                 | 0.00083J                                                                             | mg/L             | 0.010       | 0.00055      | 1        | 02/17/21 12:10 | 02/17/21 21:07 | 7440-47-3  |      |  |
| Cobalt                   | ND                                                                                   | mg/L             | 0.0050      | 0.00038      | 1        | 02/17/21 12:10 | 02/17/21 21:07 | 7440-48-4  |      |  |
| Lead                     | 0.000050J                                                                            | mg/L             | 0.0050      | 0.000036     | 1        | 02/17/21 12:10 | 02/17/21 21:07 | 7439-92-1  |      |  |
| Lithium                  | 0.0031J                                                                              | mg/L             | 0.030       | 0.00081      | 1        | 02/17/21 12:10 | 02/17/21 21:07 | 7439-93-2  |      |  |
| Molybdenum               | ND                                                                                   | mg/L             | 0.010       | 0.00069      | 1        | 02/17/21 12:10 | 02/17/21 21:07 | 7439-98-7  |      |  |
| Selenium                 | ND                                                                                   | mg/L             | 0.010       | 0.0016       | 1        | 02/17/21 12:10 | 02/17/21 21:07 | 7782-49-2  |      |  |
| Thallium                 | ND                                                                                   | mg/L             | 0.0010      | 0.00014      | 1        | 02/17/21 12:10 | 02/17/21 21:07 | 7440-28-0  |      |  |
| 7470 Mercury             | Analytical                                                                           | Method: EPA 7    | 7470A Pre   | paration Met | hod: El  | PA 7470A       |                |            |      |  |
|                          | Pace Ana                                                                             | lytical Services | - Peachtre  | e Corners, C | <b>A</b> |                |                |            |      |  |
| Mercury                  | ND                                                                                   | mg/L             | 0.00050     | 0.000078     | 1        | 02/17/21 15:30 | 02/18/21 12:05 | 7439-97-6  |      |  |
| 300.0 IC Anions 28 Days  | Analytical                                                                           | Method: EPA 3    | 300.0 Rev 2 | 2.1 1993     |          |                |                |            |      |  |
|                          | Pace Ana                                                                             | lytical Services | - Asheville | !            |          |                |                |            |      |  |
| Fluoride                 | ND                                                                                   | mg/L             | 0.10        | 0.050        | 1        |                | 02/12/21 15:56 | 16984-48-8 |      |  |



Project: YATES AMA

Pace Project No.: 92521581

| Sample: YGWA-21I(020921) | Lab ID: 92521581012 Collected: 02/09/21 16:10 Received: 02/10/21 17:10 Matrix: Wa |                  |             |              |          |                |                |            |      |  |
|--------------------------|-----------------------------------------------------------------------------------|------------------|-------------|--------------|----------|----------------|----------------|------------|------|--|
|                          |                                                                                   |                  | Report      |              |          |                |                |            |      |  |
| Parameters               | Results                                                                           | Units            | Limit       | MDL          | DF       | Prepared       | Analyzed       | CAS No.    | Qual |  |
| Field Data               | Analytical                                                                        | Method:          |             |              |          |                |                |            |      |  |
|                          | Pace Ana                                                                          | lytical Services | - Charlotte | 9            |          |                |                |            |      |  |
| Performed by             | CUSTOME<br>R                                                                      |                  |             |              | 1        |                | 02/23/21 08:11 |            |      |  |
| рН                       | 6.95                                                                              | Std. Units       |             |              | 1        |                | 02/23/21 08:11 |            |      |  |
| 6020 MET ICPMS           | Analytical                                                                        | Method: EPA      | 6020B Pre   | paration Met | thod: EP | A 3005A        |                |            |      |  |
|                          | Pace Ana                                                                          | lytical Services | - Peachtre  | e Corners, O | GΑ       |                |                |            |      |  |
| Antimony                 | 0.0013J                                                                           | mg/L             | 0.0030      | 0.00028      | 1        | 02/17/21 12:10 | 02/17/21 21:13 | 7440-36-0  | В    |  |
| Arsenic                  | 0.0010J                                                                           | mg/L             | 0.0050      | 0.00078      | 1        | 02/17/21 12:10 | 02/17/21 21:13 | 7440-38-2  |      |  |
| Barium                   | 0.011                                                                             | mg/L             | 0.010       | 0.00071      | 1        | 02/17/21 12:10 | 02/17/21 21:13 | 7440-39-3  |      |  |
| Beryllium                | ND                                                                                | mg/L             | 0.0030      | 0.000046     | 1        | 02/17/21 12:10 | 02/17/21 21:13 | 7440-41-7  |      |  |
| Cadmium                  | 0.00041J                                                                          | mg/L             | 0.0025      | 0.00012      | 1        | 02/17/21 12:10 | 02/17/21 21:13 | 7440-43-9  |      |  |
| Chromium                 | ND                                                                                | mg/L             | 0.010       | 0.00055      | 1        | 02/17/21 12:10 | 02/17/21 21:13 | 7440-47-3  |      |  |
| Cobalt                   | 0.0090                                                                            | mg/L             | 0.0050      | 0.00038      | 1        | 02/17/21 12:10 | 02/17/21 21:13 | 7440-48-4  |      |  |
| Lead                     | ND                                                                                | mg/L             | 0.0050      | 0.000036     | 1        | 02/17/21 12:10 | 02/17/21 21:13 | 7439-92-1  |      |  |
| Lithium                  | 0.0060J                                                                           | mg/L             | 0.030       | 0.00081      | 1        | 02/17/21 12:10 | 02/17/21 21:13 | 7439-93-2  |      |  |
| Molybdenum               | ND                                                                                | mg/L             | 0.010       | 0.00069      | 1        | 02/17/21 12:10 | 02/17/21 21:13 | 7439-98-7  |      |  |
| Selenium                 | ND                                                                                | mg/L             | 0.010       | 0.0016       | 1        | 02/17/21 12:10 | 02/17/21 21:13 | 7782-49-2  |      |  |
| Thallium                 | ND                                                                                | mg/L             | 0.0010      | 0.00014      | 1        | 02/17/21 12:10 | 02/17/21 21:13 | 7440-28-0  |      |  |
| 7470 Mercury             | Analytical                                                                        | Method: EPA      | 7470A Pre   | paration Met | hod: EP  | A 7470A        |                |            |      |  |
|                          | Pace Ana                                                                          | lytical Services | - Peachtre  | e Corners, C | GΑ       |                |                |            |      |  |
| Mercury                  | ND                                                                                | mg/L             | 0.00050     | 0.000078     | 1        | 02/17/21 15:30 | 02/18/21 12:07 | 7439-97-6  |      |  |
| 300.0 IC Anions 28 Days  | Analytical                                                                        | Method: EPA      | 300.0 Rev 2 | 2.1 1993     |          |                |                |            |      |  |
|                          | Pace Ana                                                                          | lytical Services | - Asheville | •            |          |                |                |            |      |  |
| Fluoride                 | 0.092J                                                                            | mg/L             | 0.10        | 0.050        | 1        |                | 02/12/21 16:12 | 16984-48-8 |      |  |



Project: YATES AMA

Pace Project No.: 92521581

| Sample: YGWA-3I(021021) | Lab ID:                                   | 92521581013      | Collecte    | ed: 02/10/2  | 1 16:40  | Received: 02/  | 11/21 13:03 Ma | atrix: Water |      |  |  |
|-------------------------|-------------------------------------------|------------------|-------------|--------------|----------|----------------|----------------|--------------|------|--|--|
|                         |                                           |                  | Report      |              |          |                |                |              |      |  |  |
| Parameters              | Results                                   | Units            | Limit       | MDL          | DF       | Prepared       | Analyzed       | CAS No.      | Qual |  |  |
| Field Data              | Analytical                                | Method:          |             |              |          |                |                |              |      |  |  |
|                         | Pace Ana                                  | lytical Services | - Charlotte | 9            |          |                |                |              |      |  |  |
| Performed by            | CUSTOME<br>R                              |                  |             |              | 1        |                | 02/23/21 08:11 |              |      |  |  |
| рН                      | 7.58                                      | Std. Units       |             |              | 1        |                | 02/23/21 08:11 |              |      |  |  |
| 6020 MET ICPMS          | Analytical                                | Method: EPA 6    | 020B Pre    | paration Me  | thod: EF | PA 3005A       |                |              |      |  |  |
|                         | Pace Ana                                  | lytical Services | - Peachtre  | e Corners, ( | GA       |                |                |              |      |  |  |
| Antimony                | ND                                        | mg/L             | 0.0030      | 0.00028      | 1        | 02/17/21 12:10 | 02/17/21 21:19 | 7440-36-0    |      |  |  |
| Arsenic                 | 0.00078J                                  | mg/L             | 0.0050      | 0.00078      | 1        | 02/17/21 12:10 | 02/17/21 21:19 | 7440-38-2    |      |  |  |
| Barium                  | 0.0029J                                   | mg/L             | 0.010       | 0.00071      | 1        | 02/17/21 12:10 | 02/17/21 21:19 | 7440-39-3    |      |  |  |
| Beryllium               | ND                                        | mg/L             | 0.0030      | 0.000046     | 1        | 02/17/21 12:10 | 02/17/21 21:19 | 7440-41-7    |      |  |  |
| Cadmium                 | ND                                        | mg/L             | 0.0025      | 0.00012      | 1        | 02/17/21 12:10 | 02/17/21 21:19 | 7440-43-9    |      |  |  |
| Chromium                | ND                                        | mg/L             | 0.010       | 0.00055      | 1        | 02/17/21 12:10 | 02/17/21 21:19 | 7440-47-3    |      |  |  |
| Cobalt                  | ND                                        | mg/L             | 0.0050      | 0.00038      | 1        | 02/17/21 12:10 | 02/17/21 21:19 | 7440-48-4    |      |  |  |
| Lead                    | ND                                        | mg/L             | 0.0050      | 0.000036     | 1        | 02/17/21 12:10 | 02/17/21 21:19 | 7439-92-1    |      |  |  |
| Lithium                 | 0.015J                                    | mg/L             | 0.030       | 0.00081      | 1        | 02/17/21 12:10 | 02/17/21 21:19 | 7439-93-2    |      |  |  |
| Molybdenum              | 0.0038J                                   | mg/L             | 0.010       | 0.00069      | 1        | 02/17/21 12:10 | 02/17/21 21:19 | 7439-98-7    |      |  |  |
| Selenium                | ND                                        | mg/L             | 0.010       | 0.0016       | 1        | 02/17/21 12:10 | 02/17/21 21:19 | 7782-49-2    |      |  |  |
| Thallium                | ND                                        | mg/L             | 0.0010      | 0.00014      | 1        | 02/17/21 12:10 | 02/17/21 21:19 | 7440-28-0    |      |  |  |
| 7470 Mercury            | Analytical                                | Method: EPA 7    | 470A Pre    | paration Met | thod: EP | A 7470A        |                |              |      |  |  |
|                         | Pace Ana                                  | lytical Services | - Peachtre  | e Corners, 0 | GΑ       |                |                |              |      |  |  |
| Mercury                 | ND                                        | mg/L             | 0.00050     | 0.000078     | 1        | 02/17/21 15:30 | 02/18/21 12:09 | 7439-97-6    |      |  |  |
| 300.0 IC Anions 28 Days | Analytical Method: EPA 300.0 Rev 2.1 1993 |                  |             |              |          |                |                |              |      |  |  |
|                         | Pace Ana                                  | lytical Services | - Asheville | •            |          |                |                |              |      |  |  |
| Fluoride                | ND                                        | mg/L             | 0.10        | 0.050        | 1        |                | 02/12/21 19:55 | 16984-48-8   |      |  |  |



Project: YATES AMA

Pace Project No.: 92521581

| Sample: YGWA-3D(021021) | Lab ID:                                   | 92521581014      | Collect     | ed: 02/10/2  | 1 17:25  | Received: 02/  | 11/21 13:03 Ma | atrix: Water |      |  |  |
|-------------------------|-------------------------------------------|------------------|-------------|--------------|----------|----------------|----------------|--------------|------|--|--|
|                         |                                           |                  | Report      |              |          |                |                |              |      |  |  |
| Parameters              | Results                                   | Units            | Limit       | MDL          | DF       | Prepared       | Analyzed       | CAS No.      | Qual |  |  |
| Field Data              | Analytical                                | Method:          |             |              |          |                |                |              |      |  |  |
|                         | Pace Ana                                  | lytical Services | - Charlotte | e            |          |                |                |              |      |  |  |
| Performed by            | CUSTOME<br>R                              |                  |             |              | 1        |                | 02/23/21 08:11 |              |      |  |  |
| рН                      | 7.81                                      | Std. Units       |             |              | 1        |                | 02/23/21 08:11 |              |      |  |  |
| 6020 MET ICPMS          | Analytical                                | Method: EPA 6    | 020B Pre    | paration Me  | thod: EF | PA 3005A       |                |              |      |  |  |
|                         | Pace Ana                                  | lytical Services | - Peachtre  | e Corners, ( | GA       |                |                |              |      |  |  |
| Antimony                | ND                                        | mg/L             | 0.0030      | 0.00028      | 1        | 02/17/21 12:10 | 02/17/21 21:25 | 7440-36-0    |      |  |  |
| Arsenic                 | 0.00094J                                  | mg/L             | 0.0050      | 0.00078      | 1        | 02/17/21 12:10 | 02/17/21 21:25 | 7440-38-2    |      |  |  |
| Barium                  | 0.0059J                                   | mg/L             | 0.010       | 0.00071      | 1        | 02/17/21 12:10 | 02/17/21 21:25 | 7440-39-3    |      |  |  |
| Beryllium               | ND                                        | mg/L             | 0.0030      | 0.000046     | 1        | 02/17/21 12:10 | 02/17/21 21:25 | 7440-41-7    |      |  |  |
| Cadmium                 | ND                                        | mg/L             | 0.0025      | 0.00012      | 1        | 02/17/21 12:10 | 02/17/21 21:25 | 7440-43-9    |      |  |  |
| Chromium                | ND                                        | mg/L             | 0.010       | 0.00055      | 1        | 02/17/21 12:10 | 02/17/21 21:25 | 7440-47-3    |      |  |  |
| Cobalt                  | ND                                        | mg/L             | 0.0050      | 0.00038      | 1        | 02/17/21 12:10 | 02/17/21 21:25 | 7440-48-4    |      |  |  |
| Lead                    | ND                                        | mg/L             | 0.0050      | 0.000036     | 1        | 02/17/21 12:10 | 02/17/21 21:25 | 7439-92-1    |      |  |  |
| Lithium                 | 0.023J                                    | mg/L             | 0.030       | 0.00081      | 1        | 02/17/21 12:10 | 02/17/21 21:25 | 7439-93-2    |      |  |  |
| Molybdenum              | 0.014                                     | mg/L             | 0.010       | 0.00069      | 1        | 02/17/21 12:10 | 02/17/21 21:25 | 7439-98-7    |      |  |  |
| Selenium                | ND                                        | mg/L             | 0.010       | 0.0016       | 1        | 02/17/21 12:10 | 02/17/21 21:25 | 7782-49-2    |      |  |  |
| Thallium                | ND                                        | mg/L             | 0.0010      | 0.00014      | 1        | 02/17/21 12:10 | 02/17/21 21:25 | 7440-28-0    |      |  |  |
| 7470 Mercury            | Analytical                                | Method: EPA 7    | 470A Pre    | paration Met | thod: EP | PA 7470A       |                |              |      |  |  |
|                         | Pace Ana                                  | lytical Services | - Peachtre  | e Corners, ( | GΑ       |                |                |              |      |  |  |
| Mercury                 | ND                                        | mg/L             | 0.00050     | 0.000078     | 1        | 02/17/21 15:30 | 02/18/21 12:12 | 7439-97-6    |      |  |  |
| 300.0 IC Anions 28 Days | Analytical Method: EPA 300.0 Rev 2.1 1993 |                  |             |              |          |                |                |              |      |  |  |
|                         | Pace Ana                                  | lytical Services | - Asheville | )            |          |                |                |              |      |  |  |
| Fluoride                | 0.43                                      | mg/L             | 0.10        | 0.050        | 1        |                | 02/12/21 20:11 | 16984-48-8   |      |  |  |



Project: YATES AMA

Pace Project No.: 92521581

| Sample: YGWA-30I(021121) | Lab ID: 92521581015 Collected: 02/11/21 09:50 Received: 02/11/21 13:03 Matrix: Water |                  |             |              |         |                |                |            |      |  |
|--------------------------|--------------------------------------------------------------------------------------|------------------|-------------|--------------|---------|----------------|----------------|------------|------|--|
|                          |                                                                                      |                  | Report      |              |         |                |                |            |      |  |
| Parameters               | Results                                                                              | Units            | Limit       | MDL          | DF      | Prepared       | Analyzed       | CAS No.    | Qual |  |
| Field Data               | Analytical                                                                           | Method:          |             |              |         |                |                |            |      |  |
|                          | Pace Ana                                                                             | lytical Services | - Charlotte | 9            |         |                |                |            |      |  |
| Performed by             | CUSTOME<br>R                                                                         |                  |             |              | 1       |                | 02/23/21 08:11 |            |      |  |
| рН                       | 5.73                                                                                 | Std. Units       |             |              | 1       |                | 02/23/21 08:11 |            |      |  |
| 6020 MET ICPMS           | Analytical                                                                           | Method: EPA 6    | 020B Pre    | paration Met | hod: El | PA 3005A       |                |            |      |  |
|                          | Pace Ana                                                                             | lytical Services | - Peachtre  | e Corners, C | GΑ      |                |                |            |      |  |
| Antimony                 | ND                                                                                   | mg/L             | 0.0030      | 0.00028      | 1       | 02/17/21 12:10 | 02/17/21 21:30 | 7440-36-0  |      |  |
| Arsenic                  | ND                                                                                   | mg/L             | 0.0050      | 0.00078      | 1       | 02/17/21 12:10 | 02/17/21 21:30 | 7440-38-2  |      |  |
| Barium                   | 0.0077J                                                                              | mg/L             | 0.010       | 0.00071      | 1       | 02/17/21 12:10 | 02/17/21 21:30 | 7440-39-3  |      |  |
| Beryllium                | 0.000047J                                                                            | mg/L             | 0.0030      | 0.000046     | 1       | 02/17/21 12:10 | 02/17/21 21:30 | 7440-41-7  |      |  |
| Cadmium                  | ND                                                                                   | mg/L             | 0.0025      | 0.00012      | 1       | 02/17/21 12:10 | 02/17/21 21:30 | 7440-43-9  |      |  |
| Chromium                 | ND                                                                                   | mg/L             | 0.010       | 0.00055      | 1       | 02/17/21 12:10 | 02/17/21 21:30 | 7440-47-3  |      |  |
| Cobalt                   | 0.0078                                                                               | mg/L             | 0.0050      | 0.00038      | 1       | 02/17/21 12:10 | 02/17/21 21:30 | 7440-48-4  |      |  |
| Lead                     | 0.000046J                                                                            | mg/L             | 0.0050      | 0.000036     | 1       | 02/17/21 12:10 | 02/17/21 21:30 | 7439-92-1  |      |  |
| Lithium                  | 0.0012J                                                                              | mg/L             | 0.030       | 0.00081      | 1       | 02/17/21 12:10 | 02/17/21 21:30 | 7439-93-2  |      |  |
| Molybdenum               | ND                                                                                   | mg/L             | 0.010       | 0.00069      | 1       | 02/17/21 12:10 | 02/17/21 21:30 | 7439-98-7  |      |  |
| Selenium                 | ND                                                                                   | mg/L             | 0.010       | 0.0016       | 1       | 02/17/21 12:10 | 02/17/21 21:30 | 7782-49-2  |      |  |
| Thallium                 | ND                                                                                   | mg/L             | 0.0010      | 0.00014      | 1       | 02/17/21 12:10 | 02/17/21 21:30 | 7440-28-0  |      |  |
| 7470 Mercury             | Analytical                                                                           | Method: EPA 7    | 470A Pre    | paration Met | hod: EF | PA 7470A       |                |            |      |  |
|                          | Pace Ana                                                                             | lytical Services | - Peachtre  | e Corners, C | ЗA      |                |                |            |      |  |
| Mercury                  | ND                                                                                   | mg/L             | 0.00050     | 0.000078     | 1       | 02/17/21 15:30 | 02/18/21 12:14 | 7439-97-6  |      |  |
| 300.0 IC Anions 28 Days  | Analytical                                                                           | Method: EPA 3    | 00.0 Rev 2  | 2.1 1993     |         |                |                |            |      |  |
|                          | Pace Ana                                                                             | lytical Services | - Asheville |              |         |                |                |            |      |  |
| Fluoride                 | ND                                                                                   | mg/L             | 0.10        | 0.050        | 1       |                | 02/12/21 20:27 | 16984-48-8 |      |  |



Project: YATES AMA

Pace Project No.: 92521581

| Sample: FB-01(021121)   | Lab ID:                                                    | Lab ID: 92521581016 Collected: 02/11/21 10:00 Received: 02/11/21 13:03 Matrix: Water |                 |              |         |                |                |            |      |  |  |
|-------------------------|------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------|--------------|---------|----------------|----------------|------------|------|--|--|
| Parameters              | Results                                                    | Units                                                                                | Report<br>Limit | MDL          | DF      | Prepared       | Analyzed       | CAS No.    | Qual |  |  |
| 6020 MET ICPMS          | Analytical Method: EPA 6020B Preparation Method: EPA 3005A |                                                                                      |                 |              |         |                |                |            |      |  |  |
|                         | Pace Anal                                                  | ytical Service                                                                       | s - Peachtre    | e Corners, C | GA      |                |                |            |      |  |  |
| Antimony                | ND                                                         | mg/L                                                                                 | 0.0030          | 0.00028      | 1       | 02/17/21 12:10 | 02/17/21 21:53 | 7440-36-0  |      |  |  |
| Arsenic                 | ND                                                         | mg/L                                                                                 | 0.0050          | 0.00078      | 1       | 02/17/21 12:10 | 02/17/21 21:53 | 7440-38-2  |      |  |  |
| Barium                  | ND                                                         | mg/L                                                                                 | 0.010           | 0.00071      | 1       | 02/17/21 12:10 | 02/17/21 21:53 | 7440-39-3  |      |  |  |
| Beryllium               | ND                                                         | mg/L                                                                                 | 0.0030          | 0.000046     | 1       | 02/17/21 12:10 | 02/17/21 21:53 | 7440-41-7  |      |  |  |
| Cadmium                 | ND                                                         | mg/L                                                                                 | 0.0025          | 0.00012      | 1       | 02/17/21 12:10 | 02/17/21 21:53 | 7440-43-9  |      |  |  |
| Chromium                | ND                                                         | mg/L                                                                                 | 0.010           | 0.00055      | 1       | 02/17/21 12:10 | 02/17/21 21:53 | 7440-47-3  |      |  |  |
| Cobalt                  | ND                                                         | mg/L                                                                                 | 0.0050          | 0.00038      | 1       | 02/17/21 12:10 | 02/17/21 21:53 | 7440-48-4  |      |  |  |
| Lead                    | 0.00013J                                                   | mg/L                                                                                 | 0.0050          | 0.000036     | 1       | 02/17/21 12:10 | 02/17/21 21:53 | 7439-92-1  |      |  |  |
| Lithium                 | ND                                                         | mg/L                                                                                 | 0.030           | 0.00081      | 1       | 02/17/21 12:10 | 02/17/21 21:53 | 7439-93-2  |      |  |  |
| Molybdenum              | ND                                                         | mg/L                                                                                 | 0.010           | 0.00069      | 1       | 02/17/21 12:10 | 02/17/21 21:53 | 7439-98-7  |      |  |  |
| Selenium                | ND                                                         | mg/L                                                                                 | 0.010           | 0.0016       | 1       | 02/17/21 12:10 | 02/17/21 21:53 | 7782-49-2  |      |  |  |
| Thallium                | ND                                                         | mg/L                                                                                 | 0.0010          | 0.00014      | 1       | 02/17/21 12:10 | 02/17/21 21:53 | 7440-28-0  |      |  |  |
| 7470 Mercury            | Analytical                                                 | Method: EPA                                                                          | 7470A Pre       | paration Met | hod: El | PA 7470A       |                |            |      |  |  |
|                         | Pace Anal                                                  | ytical Service                                                                       | s - Peachtre    | e Corners, C | GΑ      |                |                |            |      |  |  |
| Mercury                 | ND                                                         | mg/L                                                                                 | 0.00050         | 0.000078     | 1       | 02/17/21 15:30 | 02/18/21 12:21 | 7439-97-6  |      |  |  |
| 300.0 IC Anions 28 Days | Analytical                                                 | Method: EPA                                                                          | 300.0 Rev 2     | 2.1 1993     |         |                |                |            |      |  |  |
|                         | Pace Analytical Services - Asheville                       |                                                                                      |                 |              |         |                |                |            |      |  |  |
| Fluoride                | ND                                                         | mg/L                                                                                 | 0.10            | 0.050        | 1       |                | 02/12/21 20:43 | 16984-48-8 |      |  |  |


Project: YATES AMA

Pace Project No.: 92521581

| Sample: EB-01(021121)   | Lab ID:                | 92521581017      | Collect                   | ed: 02/11/2   | 1 12:05  | Received: 02/  | 11/21 13:03 Ma | atrix: Water |      |
|-------------------------|------------------------|------------------|---------------------------|---------------|----------|----------------|----------------|--------------|------|
| Parameters              | Results                | Units            | Report<br>Limit           | MDL           | DF       | Prepared       | Analyzed       | CAS No.      | Qual |
| 6020 MET ICPMS          | Analytical             | Method: EPA 6    | 020B Pre                  | paration Met  | thod: EF | PA 3005A       |                |              |      |
|                         | Pace Ana               | lytical Services | - Peachtre                | e Corners, (  | ЗA       |                |                |              |      |
| Antimony                | ND                     | mg/L             | 0.0030                    | 0.00028       | 1        | 02/17/21 12:10 | 02/17/21 21:59 | 7440-36-0    |      |
| Arsenic                 | ND                     | mg/L             | 0.0050                    | 0.00078       | 1        | 02/17/21 12:10 | 02/17/21 21:59 | 7440-38-2    |      |
| Barium                  | ND                     | mg/L             | 0.010                     | 0.00071       | 1        | 02/17/21 12:10 | 02/17/21 21:59 | 7440-39-3    |      |
| Beryllium               | ND                     | mg/L             | 0.0030                    | 0.000046      | 1        | 02/17/21 12:10 | 02/17/21 21:59 | 7440-41-7    |      |
| Cadmium                 | ND                     | mg/L             | 0.0025                    | 0.00012       | 1        | 02/17/21 12:10 | 02/17/21 21:59 | 7440-43-9    |      |
| Chromium                | ND                     | mg/L             | 0.010                     | 0.00055       | 1        | 02/17/21 12:10 | 02/17/21 21:59 | 7440-47-3    |      |
| Cobalt                  | ND                     | mg/L             | 0.0050                    | 0.00038       | 1        | 02/17/21 12:10 | 02/17/21 21:59 | 7440-48-4    |      |
| Lead                    | ND                     | mg/L             | 0.0050                    | 0.000036      | 1        | 02/17/21 12:10 | 02/17/21 21:59 | 7439-92-1    |      |
| Lithium                 | ND                     | mg/L             | 0.030                     | 0.00081       | 1        | 02/17/21 12:10 | 02/17/21 21:59 | 7439-93-2    |      |
| Molybdenum              | ND                     | mg/L             | 0.010                     | 0.00069       | 1        | 02/17/21 12:10 | 02/17/21 21:59 | 7439-98-7    |      |
| Selenium                | ND                     | mg/L             | 0.010                     | 0.0016        | 1        | 02/17/21 12:10 | 02/17/21 21:59 | 7782-49-2    |      |
| Thallium                | ND                     | mg/L             | 0.0010                    | 0.00014       | 1        | 02/17/21 12:10 | 02/17/21 21:59 | 7440-28-0    |      |
| 7470 Mercury            | Analytical             | Method: EPA 7    | 470A Pre                  | paration Met  | thod: EP | PA 7470A       |                |              |      |
|                         | Pace Ana               | lytical Services | - Peachtre                | e Corners, 0  | GΑ       |                |                |              |      |
| Mercury                 | ND                     | mg/L             | 0.00050                   | 0.000078      | 1        | 02/17/21 15:30 | 02/18/21 12:24 | 7439-97-6    |      |
| 300.0 IC Anions 28 Days | Analytical<br>Pace Ana | Method: EPA 3    | 00.0 Rev 2<br>- Asheville | 2.1 1993<br>9 |          |                |                |              |      |
| Fluoride                | ND                     | mg/L             | 0.10                      | 0.050         | 1        |                | 02/12/21 20:59 | 16984-48-8   |      |



Project: YATES AMA

Pace Project No.: 92521581

| Sample: YGWA-14S (021021) | Lab ID:      | 9252157800      | 2 Collecte    | ed: 02/10/21 | 08:50    | Received: 02/  | 10/21 17:10 Ma | atrix: Water |      |
|---------------------------|--------------|-----------------|---------------|--------------|----------|----------------|----------------|--------------|------|
|                           |              |                 | Report        |              |          |                |                |              |      |
| Parameters                | Results      | Units           | Limit         | MDL          | DF       | Prepared       | Analyzed       | CAS No.      | Qual |
| Field Data                | Analytical   | Method:         |               |              |          |                |                |              |      |
|                           | Pace Ana     | lytical Service | s - Charlotte | 9            |          |                |                |              |      |
| Performed by              | CUSTOME<br>R |                 |               |              | 1        |                | 02/23/21 08:11 |              |      |
| рН                        | 5.35         | Std. Units      |               |              | 1        |                | 02/23/21 08:11 |              |      |
| 6020 MET ICPMS            | Analytical   | Method: EPA     | 6020B Pre     | paration Met | hod: E   | PA 3005A       |                |              |      |
|                           | Pace Ana     | lytical Service | s - Peachtre  | e Corners, C | <b>A</b> |                |                |              |      |
| Antimony                  | ND           | mg/L            | 0.0030        | 0.00028      | 1        | 02/23/21 10:38 | 02/23/21 20:47 | 7440-36-0    |      |
| Arsenic                   | ND           | mg/L            | 0.0050        | 0.00078      | 1        | 02/23/21 10:38 | 02/23/21 20:47 | 7440-38-2    |      |
| Barium                    | 0.0078J      | mg/L            | 0.010         | 0.00071      | 1        | 02/23/21 10:38 | 02/23/21 20:47 | 7440-39-3    |      |
| Beryllium                 | 0.00019J     | mg/L            | 0.0030        | 0.000046     | 1        | 02/23/21 10:38 | 02/23/21 20:47 | 7440-41-7    |      |
| Cadmium                   | ND           | mg/L            | 0.0025        | 0.00012      | 1        | 02/23/21 10:38 | 02/23/21 20:47 | 7440-43-9    |      |
| Chromium                  | ND           | mg/L            | 0.010         | 0.00055      | 1        | 02/23/21 10:38 | 02/23/21 20:47 | 7440-47-3    |      |
| Cobalt                    | ND           | mg/L            | 0.0050        | 0.00038      | 1        | 02/23/21 10:38 | 02/23/21 20:47 | 7440-48-4    |      |
| Lead                      | 0.000048J    | mg/L            | 0.0050        | 0.000036     | 1        | 02/23/21 10:38 | 02/23/21 20:47 | 7439-92-1    |      |
| Lithium                   | ND           | mg/L            | 0.030         | 0.00081      | 1        | 02/23/21 10:38 | 02/23/21 20:47 | 7439-93-2    |      |
| Molybdenum                | ND           | mg/L            | 0.010         | 0.00069      | 1        | 02/23/21 10:38 | 02/23/21 20:47 | 7439-98-7    |      |
| Selenium                  | ND           | mg/L            | 0.010         | 0.0016       | 1        | 02/23/21 10:38 | 02/23/21 20:47 | 7782-49-2    |      |
| Thallium                  | ND           | mg/L            | 0.0010        | 0.00014      | 1        | 02/23/21 10:38 | 02/23/21 20:47 | 7440-28-0    |      |
| 7470 Mercury              | Analytical   | Method: EPA     | 7470A Pre     | paration Met | hod: El  | PA 7470A       |                |              |      |
|                           | Pace Ana     | lytical Service | s - Peachtre  | e Corners, C | βA       |                |                |              |      |
| Mercury                   | ND           | mg/L            | 0.00050       | 0.000078     | 1        | 02/15/21 15:30 | 02/16/21 11:40 | 7439-97-6    |      |
| 300.0 IC Anions 28 Days   | Analytical   | Method: EPA     | 300.0 Rev 2   | 2.1 1993     |          |                |                |              |      |
|                           | Pace Ana     | lytical Service | s - Asheville | ;            |          |                |                |              |      |
| Fluoride                  | ND           | mg/L            | 0.10          | 0.050        | 1        |                | 02/12/21 22:26 | 16984-48-8   |      |



Project: YATES AMA

Pace Project No.: 92521581

| Sample: YGWA-1I (021221) | Lab ID:      | 92521578010      | Collecte    | ed: 02/12/2  | 1 13:20  | Received: 02/  | 12/21 17:10 Ma | atrix: Water |      |
|--------------------------|--------------|------------------|-------------|--------------|----------|----------------|----------------|--------------|------|
|                          |              |                  | Report      |              |          |                |                |              |      |
| Parameters               | Results      | Units            | Limit       | MDL          | DF       | Prepared       | Analyzed       | CAS No.      | Qual |
| Field Data               | Analytical   | Method:          |             |              |          |                |                |              |      |
|                          | Pace Ana     | lytical Services | - Charlotte | 9            |          |                |                |              |      |
| Performed by             | CUSTOME<br>R |                  |             |              | 1        |                | 02/23/21 08:11 |              |      |
| рН                       | 6.21         | Std. Units       |             |              | 1        |                | 02/23/21 08:11 |              |      |
| 6020 MET ICPMS           | Analytical   | Method: EPA 6    | 020B Pre    | paration Me  | thod: EP | A 3005A        |                |              |      |
|                          | Pace Ana     | lytical Services | - Peachtre  | e Corners, 0 | ЗA       |                |                |              |      |
| Antimony                 | ND           | mg/L             | 0.0030      | 0.00028      | 1        | 02/23/21 10:38 | 02/23/21 22:01 | 7440-36-0    |      |
| Arsenic                  | ND           | mg/L             | 0.0050      | 0.00078      | 1        | 02/23/21 10:38 | 02/23/21 22:01 | 7440-38-2    |      |
| Barium                   | 0.0090J      | mg/L             | 0.010       | 0.00071      | 1        | 02/23/21 10:38 | 02/23/21 22:01 | 7440-39-3    |      |
| Beryllium                | ND           | mg/L             | 0.0030      | 0.000046     | 1        | 02/23/21 10:38 | 02/23/21 22:01 | 7440-41-7    |      |
| Cadmium                  | ND           | mg/L             | 0.0025      | 0.00012      | 1        | 02/23/21 10:38 | 02/23/21 22:01 | 7440-43-9    |      |
| Chromium                 | ND           | mg/L             | 0.010       | 0.00055      | 1        | 02/23/21 10:38 | 02/23/21 22:01 | 7440-47-3    |      |
| Cobalt                   | 0.0028J      | mg/L             | 0.0050      | 0.00038      | 1        | 02/23/21 10:38 | 02/23/21 22:01 | 7440-48-4    |      |
| Lead                     | 0.00038J     | mg/L             | 0.0050      | 0.000036     | 1        | 02/23/21 10:38 | 02/23/21 22:01 | 7439-92-1    |      |
| Lithium                  | 0.0025J      | mg/L             | 0.030       | 0.00081      | 1        | 02/23/21 10:38 | 02/23/21 22:01 | 7439-93-2    |      |
| Molybdenum               | 0.0056J      | mg/L             | 0.010       | 0.00069      | 1        | 02/23/21 10:38 | 02/23/21 22:01 | 7439-98-7    |      |
| Selenium                 | ND           | mg/L             | 0.010       | 0.0016       | 1        | 02/23/21 10:38 | 02/23/21 22:01 | 7782-49-2    |      |
| Thallium                 | ND           | mg/L             | 0.0010      | 0.00014      | 1        | 02/23/21 10:38 | 02/23/21 22:01 | 7440-28-0    |      |
| 7470 Mercury             | Analytical   | Method: EPA 7    | 470A Pre    | paration Met | hod: EP  | A 7470A        |                |              |      |
|                          | Pace Ana     | lytical Services | - Peachtre  | e Corners, ( | GΑ       |                |                |              |      |
| Mercury                  | ND           | mg/L             | 0.00050     | 0.000078     | 1        | 02/22/21 02:15 | 02/23/21 13:48 | 7439-97-6    |      |
| 300.0 IC Anions 28 Days  | Analytical   | Method: EPA 3    | 00.0 Rev 2  | 2.1 1993     |          |                |                |              |      |
|                          | Pace Ana     | lytical Services | - Asheville | •            |          |                |                |              |      |
| Fluoride                 | ND           | mg/L             | 0.10        | 0.050        | 1        |                | 02/16/21 18:16 | 16984-48-8   |      |



Project: YATES AMA

Pace Project No.: 92521581

| Sample: YGWA-1D (021221) | Lab ID:      | 9252157801      | Collecte      | ed: 02/12/21 | 11:55   | Received: 02/  | 12/21 17:10 Ma | atrix: Water |      |
|--------------------------|--------------|-----------------|---------------|--------------|---------|----------------|----------------|--------------|------|
|                          |              |                 | Report        |              |         |                |                |              |      |
| Parameters               | Results      | Units           | Limit         | MDL          | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| Field Data               | Analytical   | Method:         |               |              |         |                |                |              |      |
|                          | Pace Ana     | lytical Service | s - Charlotte | 9            |         |                |                |              |      |
| Performed by             | CUSTOME<br>R |                 |               |              | 1       |                | 02/23/21 08:11 |              |      |
| рН                       | 7.14         | Std. Units      |               |              | 1       |                | 02/23/21 08:11 |              |      |
| 6020 MET ICPMS           | Analytical   | Method: EPA     | 6020B Pre     | paration Met | hod: El | PA 3005A       |                |              |      |
|                          | Pace Ana     | lytical Service | s - Peachtre  | e Corners, G | βA      |                |                |              |      |
| Antimony                 | ND           | mg/L            | 0.0030        | 0.00028      | 1       | 02/23/21 10:38 | 02/23/21 22:07 | 7440-36-0    |      |
| Arsenic                  | ND           | mg/L            | 0.0050        | 0.00078      | 1       | 02/23/21 10:38 | 02/23/21 22:07 | 7440-38-2    |      |
| Barium                   | 0.0057J      | mg/L            | 0.010         | 0.00071      | 1       | 02/23/21 10:38 | 02/23/21 22:07 | 7440-39-3    |      |
| Beryllium                | ND           | mg/L            | 0.0030        | 0.000046     | 1       | 02/23/21 10:38 | 02/23/21 22:07 | 7440-41-7    |      |
| Cadmium                  | ND           | mg/L            | 0.0025        | 0.00012      | 1       | 02/23/21 10:38 | 02/23/21 22:07 | 7440-43-9    |      |
| Chromium                 | ND           | mg/L            | 0.010         | 0.00055      | 1       | 02/23/21 10:38 | 02/23/21 22:07 | 7440-47-3    |      |
| Cobalt                   | 0.00086J     | mg/L            | 0.0050        | 0.00038      | 1       | 02/23/21 10:38 | 02/23/21 22:07 | 7440-48-4    |      |
| Lead                     | 0.000044J    | mg/L            | 0.0050        | 0.000036     | 1       | 02/23/21 10:38 | 02/23/21 22:07 | 7439-92-1    |      |
| Lithium                  | 0.010J       | mg/L            | 0.030         | 0.00081      | 1       | 02/23/21 10:38 | 02/23/21 22:07 | 7439-93-2    |      |
| Molybdenum               | 0.0080J      | mg/L            | 0.010         | 0.00069      | 1       | 02/23/21 10:38 | 02/23/21 22:07 | 7439-98-7    |      |
| Selenium                 | ND           | mg/L            | 0.010         | 0.0016       | 1       | 02/23/21 10:38 | 02/23/21 22:07 | 7782-49-2    |      |
| Thallium                 | ND           | mg/L            | 0.0010        | 0.00014      | 1       | 02/23/21 10:38 | 02/23/21 22:07 | 7440-28-0    |      |
| 7470 Mercury             | Analytical   | Method: EPA     | 7470A Pre     | paration Met | hod: El | PA 7470A       |                |              |      |
|                          | Pace Ana     | lytical Service | s - Peachtre  | e Corners, G | βA      |                |                |              |      |
| Mercury                  | ND           | mg/L            | 0.00050       | 0.000078     | 1       | 02/22/21 02:15 | 02/23/21 13:50 | 7439-97-6    |      |
| 300.0 IC Anions 28 Days  | Analytical   | Method: EPA     | 300.0 Rev 2   | 2.1 1993     |         |                |                |              |      |
|                          | Pace Ana     | lytical Service | s - Asheville |              |         |                |                |              |      |
| Fluoride                 | 0.068J       | mg/L            | 0.10          | 0.050        | 1       |                | 02/16/21 19:01 | 16984-48-8   |      |



Project: YATES AMA

Pace Project No.: 92521581

| Sample: EB-02 (021021)  | Lab ID:                 | 92521578001                       | Collecte                   | ed: 02/10/2   | 1 11:30  | Received: 02/  | 10/21 17:10 Ma | atrix: Water |      |
|-------------------------|-------------------------|-----------------------------------|----------------------------|---------------|----------|----------------|----------------|--------------|------|
| Parameters              | Results                 | Units                             | Report<br>Limit            | MDL           | DF       | Prepared       | Analyzed       | CAS No.      | Qual |
| 6020 MET ICPMS          | Analytical              | Method: EPA 6                     | 6020B Pre                  | paration Met  | thod: EF | PA 3005A       |                |              |      |
|                         | Pace Anal               | ytical Services                   | - Peachtre                 | ee Corners, ( | GΑ       |                |                |              |      |
| Antimony                | ND                      | mg/L                              | 0.0030                     | 0.00028       | 1        | 02/23/21 10:38 | 02/23/21 20:41 | 7440-36-0    |      |
| Arsenic                 | ND                      | mg/L                              | 0.0050                     | 0.00078       | 1        | 02/23/21 10:38 | 02/23/21 20:41 | 7440-38-2    |      |
| Barium                  | ND                      | mg/L                              | 0.010                      | 0.00071       | 1        | 02/23/21 10:38 | 02/23/21 20:41 | 7440-39-3    |      |
| Beryllium               | ND                      | mg/L                              | 0.0030                     | 0.000046      | 1        | 02/23/21 10:38 | 02/23/21 20:41 | 7440-41-7    |      |
| Cadmium                 | ND                      | mg/L                              | 0.0025                     | 0.00012       | 1        | 02/23/21 10:38 | 02/23/21 20:41 | 7440-43-9    |      |
| Chromium                | ND                      | mg/L                              | 0.010                      | 0.00055       | 1        | 02/23/21 10:38 | 02/23/21 20:41 | 7440-47-3    |      |
| Cobalt                  | ND                      | mg/L                              | 0.0050                     | 0.00038       | 1        | 02/23/21 10:38 | 02/23/21 20:41 | 7440-48-4    |      |
| Lead                    | ND                      | mg/L                              | 0.0050                     | 0.000036      | 1        | 02/23/21 10:38 | 02/23/21 20:41 | 7439-92-1    |      |
| Lithium                 | ND                      | mg/L                              | 0.030                      | 0.00081       | 1        | 02/23/21 10:38 | 02/23/21 20:41 | 7439-93-2    |      |
| Molybdenum              | ND                      | mg/L                              | 0.010                      | 0.00069       | 1        | 02/23/21 10:38 | 02/23/21 20:41 | 7439-98-7    |      |
| Selenium                | ND                      | mg/L                              | 0.010                      | 0.0016        | 1        | 02/23/21 10:38 | 02/23/21 20:41 | 7782-49-2    |      |
| Thallium                | ND                      | mg/L                              | 0.0010                     | 0.00014       | 1        | 02/23/21 10:38 | 02/23/21 20:41 | 7440-28-0    |      |
| 7470 Mercury            | Analytical              | Method: EPA 7                     | 7470A Pre                  | paration Met  | hod: EF  | PA 7470A       |                |              |      |
|                         | Pace Anal               | ytical Services                   | - Peachtre                 | ee Corners, 0 | GΑ       |                |                |              |      |
| Mercury                 | ND                      | mg/L                              | 0.00050                    | 0.000078      | 1        | 02/15/21 15:30 | 02/16/21 11:37 | 7439-97-6    |      |
| 300.0 IC Anions 28 Days | Analytical<br>Pace Anal | Method: EPA 3<br>lytical Services | 300.0 Rev 2<br>- Asheville | 2.1 1993<br>e |          |                |                |              |      |
| Fluoride                | ND                      | mg/L                              | 0.10                       | 0.050         | 1        |                | 02/12/21 22:11 | 16984-48-8   |      |



Project: YATES AMA

Pace Project No.: 92521581

| Sample: DUP-1 (021021)  | Lab ID:                 | 9252157800                    | 3 Collecte                   | ed: 02/10/2  | 1 00:00 | Received: 02/  | 10/21 17:10 Ma | atrix: Water |      |
|-------------------------|-------------------------|-------------------------------|------------------------------|--------------|---------|----------------|----------------|--------------|------|
| Parameters              | Results                 | Units                         | Report<br>Limit              | MDL          | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| 6020 MET ICPMS          | Analytical              | Method: EPA                   | 6020B Pre                    | paration Met | thod: E | PA 3005A       |                |              |      |
|                         | Pace Anal               | ytical Service                | es - Peachtre                | e Corners, C | GA      |                |                |              |      |
| Antimony                | ND                      | mg/L                          | 0.0030                       | 0.00028      | 1       | 02/23/21 10:38 | 02/23/21 20:52 | 7440-36-0    |      |
| Arsenic                 | ND                      | mg/L                          | 0.0050                       | 0.00078      | 1       | 02/23/21 10:38 | 02/23/21 20:52 | 7440-38-2    |      |
| Barium                  | 0.0078J                 | mg/L                          | 0.010                        | 0.00071      | 1       | 02/23/21 10:38 | 02/23/21 20:52 | 7440-39-3    |      |
| Beryllium               | 0.00019J                | mg/L                          | 0.0030                       | 0.000046     | 1       | 02/23/21 10:38 | 02/23/21 20:52 | 7440-41-7    |      |
| Cadmium                 | ND                      | mg/L                          | 0.0025                       | 0.00012      | 1       | 02/23/21 10:38 | 02/23/21 20:52 | 7440-43-9    |      |
| Chromium                | ND                      | mg/L                          | 0.010                        | 0.00055      | 1       | 02/23/21 10:38 | 02/23/21 20:52 | 7440-47-3    |      |
| Cobalt                  | ND                      | mg/L                          | 0.0050                       | 0.00038      | 1       | 02/23/21 10:38 | 02/23/21 20:52 | 7440-48-4    |      |
| Lead                    | ND                      | mg/L                          | 0.0050                       | 0.000036     | 1       | 02/23/21 10:38 | 02/23/21 20:52 | 7439-92-1    |      |
| Lithium                 | ND                      | mg/L                          | 0.030                        | 0.00081      | 1       | 02/23/21 10:38 | 02/23/21 20:52 | 7439-93-2    |      |
| Molybdenum              | ND                      | mg/L                          | 0.010                        | 0.00069      | 1       | 02/23/21 10:38 | 02/23/21 20:52 | 7439-98-7    |      |
| Selenium                | ND                      | mg/L                          | 0.010                        | 0.0016       | 1       | 02/23/21 10:38 | 02/23/21 20:52 | 7782-49-2    |      |
| Thallium                | ND                      | mg/L                          | 0.0010                       | 0.00014      | 1       | 02/23/21 10:38 | 02/23/21 20:52 | 7440-28-0    |      |
| 7470 Mercury            | Analytical              | Method: EPA                   | 7470A Pre                    | paration Met | hod: El | PA 7470A       |                |              |      |
|                         | Pace Anal               | ytical Service                | es - Peachtre                | e Corners, C | GΑ      |                |                |              |      |
| Mercury                 | ND                      | mg/L                          | 0.00050                      | 0.000078     | 1       | 02/15/21 15:30 | 02/16/21 11:47 | 7439-97-6    |      |
| 300.0 IC Anions 28 Days | Analytical<br>Pace Anal | Method: EPA<br>ytical Service | 300.0 Rev 2<br>s - Asheville | 2.1 1993     |         |                |                |              |      |
| Fluoride                | ND                      | mg/L                          | 0.10                         | 0.050        | 1       |                | 02/12/21 22:40 | 16984-48-8   |      |



| Project:           | YATES  | AMA                                          |                                              |                                                   |                        |                                      |                                        |                    |
|--------------------|--------|----------------------------------------------|----------------------------------------------|---------------------------------------------------|------------------------|--------------------------------------|----------------------------------------|--------------------|
| Pace Project No.:  | 925215 | 81                                           |                                              |                                                   |                        |                                      |                                        |                    |
| QC Batch:          | 60063  | 3                                            |                                              | Analysis Meth                                     | od:                    | EPA 6020B                            |                                        |                    |
| QC Batch Method:   | EPA 3  | 005A                                         |                                              | Analysis Desc                                     | ription:               | 6020 MET                             |                                        |                    |
|                    |        |                                              |                                              | Laboratory:                                       |                        | Pace Analytical Se                   | rvices - Peachtree                     | Corners, GA        |
| Associated Lab Sar | nples: | 92521581001,<br>92521581008,<br>92521581015, | 92521581002,<br>92521581009,<br>92521581016, | 92521581003, 92<br>92521581010, 92<br>92521581017 | 521581004<br>521581011 | 92521581005, 925<br>92521581012, 925 | 21581006, 925215<br>21581013, 925215   | 581007,<br>581014, |
| METHOD BLANK:      | 316560 | 5                                            |                                              | Matrix:                                           | Nater                  |                                      |                                        |                    |
| Associated Lab Sar | mples: | 92521581001,<br>92521581008,<br>92521581015, | 92521581002,<br>92521581009,<br>92521581016, | 92521581003, 92<br>92521581010, 92<br>92521581017 | 521581004<br>521581011 | 92521581005, 925<br>92521581012, 925 | 521581006, 925215<br>521581013, 925215 | 581007,<br>581014, |
|                    |        |                                              |                                              | Blank                                             | Reporting              |                                      |                                        |                    |
| Parar              | neter  |                                              | Units                                        | Result                                            | Limit                  | MDL                                  | Analyzed                               | Qualifiers         |
| Antimony           |        |                                              | mg/L                                         | 0.00031J                                          | 0.00                   | 0.00028                              | 02/17/21 19:30                         |                    |
| Arsenic            |        |                                              | mg/L                                         | ND                                                | 0.00                   | 0.00078                              | 02/17/21 19:30                         |                    |
| Barium             |        |                                              | mg/L                                         | ND                                                | 0.0                    | 0.00071                              | 02/17/21 19:30                         |                    |
| Beryllium          |        |                                              | mg/L                                         | ND                                                | 0.00                   | 0.000046                             | 02/17/21 19:30                         |                    |
| Cadmium            |        |                                              | mg/L                                         | ND                                                | 0.00                   | 0.00012                              | 02/17/21 19:30                         |                    |
| Chromium           |        |                                              | mg/L                                         | ND                                                | 0.0                    | 0.00055                              | 02/17/21 19:30                         |                    |
| Cobalt             |        |                                              | mg/L                                         | ND                                                | 0.00                   | 0.00038                              | 02/17/21 19:30                         |                    |
| Lead               |        |                                              | mg/L                                         | ND                                                | 0.00                   | 0.000036                             | 02/17/21 19:30                         |                    |
| Lithium            |        |                                              | mg/L                                         | ND                                                | 0.0                    | 0.00081                              | 02/17/21 19:30                         |                    |
| Molybdenum         |        |                                              | mg/L                                         | ND                                                | 0.0                    | 0.00069                              | 02/17/21 19:30                         |                    |
| Selenium           |        |                                              | mg/L                                         | ND                                                | 0.0                    | 0.0016                               | 02/17/21 19:30                         |                    |
| Thallium           |        |                                              | mg/L                                         | ND                                                | 0.00                   | 0.00014                              | 02/17/21 19:30                         |                    |
|                    |        |                                              |                                              |                                                   |                        |                                      |                                        |                    |
| LABORATORY CO      | NTROLS | SAMPLE: 316                                  | 65606                                        |                                                   |                        |                                      |                                        |                    |

|            |       | Spike | LCS    | LCS   | % Rec  |            |
|------------|-------|-------|--------|-------|--------|------------|
| Parameter  | Units | Conc. | Result | % Rec | Limits | Qualifiers |
| Antimony   | mg/L  | 0.1   | 0.11   | 109   | 80-120 |            |
| Arsenic    | mg/L  | 0.1   | 0.10   | 100   | 80-120 |            |
| Barium     | mg/L  | 0.1   | 0.098  | 98    | 80-120 |            |
| Beryllium  | mg/L  | 0.1   | 0.098  | 98    | 80-120 |            |
| Cadmium    | mg/L  | 0.1   | 0.10   | 101   | 80-120 |            |
| Chromium   | mg/L  | 0.1   | 0.10   | 102   | 80-120 |            |
| Cobalt     | mg/L  | 0.1   | 0.099  | 99    | 80-120 |            |
| Lead       | mg/L  | 0.1   | 0.10   | 100   | 80-120 |            |
| Lithium    | mg/L  | 0.1   | 0.10   | 101   | 80-120 |            |
| Molybdenum | mg/L  | 0.1   | 0.10   | 104   | 80-120 |            |
| Selenium   | mg/L  | 0.1   | 0.095  | 95    | 80-120 |            |
| Thallium   | mg/L  | 0.1   | 0.096  | 96    | 80-120 |            |

| MATRIX SPIKE & MATRIX SP | IKE DUPL | CATE: 3165  | 608         |              | 3165611 |        |       |       |        |     |     |      |
|--------------------------|----------|-------------|-------------|--------------|---------|--------|-------|-------|--------|-----|-----|------|
|                          |          | 92521581005 | MS<br>Spike | MSD<br>Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter                | Units    | Result      | Conc.       | Conc.        | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Antimony                 | mg/L     | ND          | 0.1         | 0.1          | 0.11    | 0.11   | 111   | 109   | 75-125 | 2   | 20  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

# **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



Project: YATES AMA Pace Project No.: 92521581

| MATRIX SPIKE & MATRIX SPIK | 608<br>MS | MSD         | 3165611 |       |        |        |       |       |        |     |     |      |
|----------------------------|-----------|-------------|---------|-------|--------|--------|-------|-------|--------|-----|-----|------|
|                            |           | 92521581005 | Spike   | Spike | MS     | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter                  | Units     | Result      | Conc.   | Conc. | Result | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Arsenic                    | mg/L      | <br>ND      | 0.1     | 0.1   | 0.10   | 0.098  | 101   | 98    | 75-125 | 3   | 20  |      |
| Barium                     | mg/L      | 0.032       | 0.1     | 0.1   | 0.14   | 0.13   | 103   | 98    | 75-125 | 4   | 20  |      |
| Beryllium                  | mg/L      | 0.00021J    | 0.1     | 0.1   | 0.092  | 0.093  | 92    | 93    | 75-125 | 1   | 20  |      |
| Cadmium                    | mg/L      | ND          | 0.1     | 0.1   | 0.10   | 0.10   | 102   | 100   | 75-125 | 2   | 20  |      |
| Chromium                   | mg/L      | ND          | 0.1     | 0.1   | 0.11   | 0.10   | 105   | 103   | 75-125 | 2   | 20  |      |
| Cobalt                     | mg/L      | ND          | 0.1     | 0.1   | 0.10   | 0.099  | 103   | 99    | 75-125 | 4   | 20  |      |
| Lead                       | mg/L      | ND          | 0.1     | 0.1   | 0.10   | 0.099  | 101   | 99    | 75-125 | 2   | 20  |      |
| Lithium                    | mg/L      | ND          | 0.1     | 0.1   | 0.092  | 0.096  | 92    | 96    | 75-125 | 4   | 20  |      |
| Molybdenum                 | mg/L      | ND          | 0.1     | 0.1   | 0.10   | 0.10   | 104   | 102   | 75-125 | 2   | 20  |      |
| Selenium                   | mg/L      | ND          | 0.1     | 0.1   | 0.098  | 0.095  | 96    | 94    | 75-125 | 2   | 20  |      |
| Thallium                   | mg/L      | ND          | 0.1     | 0.1   | 0.099  | 0.097  | 99    | 97    | 75-125 | 3   | 20  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:           | YATES AMA        |                 |                   |               |                     |                   |             |   |
|--------------------|------------------|-----------------|-------------------|---------------|---------------------|-------------------|-------------|---|
| Pace Project No .: | 92521581         |                 |                   |               |                     |                   |             |   |
| QC Batch:          | 601867           |                 | Analysis Meth     | nod: E        | PA 6020B            |                   |             |   |
| QC Batch Method:   | EPA 3005A        |                 | Analysis Desc     | cription: 6   | 6020 MET            |                   |             |   |
|                    |                  |                 | Laboratory:       | F             | Pace Analytical Ser | vices - Peachtree | Corners, GA |   |
| Associated Lab Sar | mples: 925215780 | 01, 92521578002 | , 92521578003, 92 | 2521578010, 9 | 92521578011         |                   |             |   |
| METHOD BLANK:      | 3171184          |                 | Matrix:           | Water         |                     |                   |             |   |
| Associated Lab Sar | mples: 925215780 | 01, 92521578002 | , 92521578003, 92 | 2521578010, 9 | 92521578011         |                   |             |   |
|                    |                  |                 | Blank             | Reporting     |                     |                   |             |   |
| Parar              | neter            | Units           | Result            | Limit         | MDL                 | Analyzed          | Qualifiers  |   |
| Antimony           |                  | mg/L            | ND                | 0.0030        | 0.00028             | 02/23/21 20:30    |             | • |
| Arsenic            |                  | mg/L            | ND                | 0.0050        | 0.00078             | 02/23/21 20:30    |             |   |
| Barium             |                  | mg/L            | ND                | 0.010         | 0.00071             | 02/23/21 20:30    |             |   |
| Beryllium          |                  | mg/L            | ND                | 0.0030        | 0.000046            | 02/23/21 20:30    |             |   |
| Cadmium            |                  | mg/L            | ND                | 0.002         | 5 0.00012           | 02/23/21 20:30    |             |   |
| Chromium           |                  | mg/L            | ND                | 0.010         | 0.00055             | 02/23/21 20:30    |             |   |
| Cobalt             |                  | mg/L            | ND                | 0.0050        | 0.00038             | 02/23/21 20:30    |             |   |
| Lead               |                  | mg/L            | ND                | 0.0050        | 0.000036            | 02/23/21 20:30    |             |   |
| Lithium            |                  | mg/L            | ND                | 0.030         | 0.00081             | 02/23/21 20:30    |             |   |
| Molybdenum         |                  | mg/L            | ND                | 0.010         | 0.00069             | 02/23/21 20:30    |             |   |
| Selenium           |                  | mg/L            | ND                | 0.010         | 0.0016              | 02/23/21 20:30    |             |   |
| Thallium           |                  | mg/L            | ND                | 0.0010        | 0.00014             | 02/23/21 20:30    |             |   |

#### LABORATORY CONTROL SAMPLE: 3171185

|            |       | Spike | LCS    | LCS   | % Rec  |            |
|------------|-------|-------|--------|-------|--------|------------|
| Parameter  | Units | Conc. | Result | % Rec | Limits | Qualifiers |
| Antimony   | mg/L  | 0.1   | 0.11   | 108   | 80-120 |            |
| Arsenic    | mg/L  | 0.1   | 0.096  | 96    | 80-120 |            |
| Barium     | mg/L  | 0.1   | 0.099  | 99    | 80-120 |            |
| Beryllium  | mg/L  | 0.1   | 0.10   | 101   | 80-120 |            |
| Cadmium    | mg/L  | 0.1   | 0.10   | 103   | 80-120 |            |
| Chromium   | mg/L  | 0.1   | 0.10   | 100   | 80-120 |            |
| Cobalt     | mg/L  | 0.1   | 0.097  | 97    | 80-120 |            |
| Lead       | mg/L  | 0.1   | 0.099  | 99    | 80-120 |            |
| Lithium    | mg/L  | 0.1   | 0.10   | 101   | 80-120 |            |
| Molybdenum | mg/L  | 0.1   | 0.10   | 100   | 80-120 |            |
| Selenium   | mg/L  | 0.1   | 0.090  | 90    | 80-120 |            |
| Thallium   | mg/L  | 0.1   | 0.095  | 95    | 80-120 |            |

| MATRIX SPIKE & MATRIX SP | IKE DUPL | ICATE: 3171 | 186         |              | 3171187 |        |       |       |        |     |     |      |
|--------------------------|----------|-------------|-------------|--------------|---------|--------|-------|-------|--------|-----|-----|------|
|                          |          | 92521578009 | MS<br>Spike | MSD<br>Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Мах |      |
| Parameter                | Units    | Result      | Conc.       | Conc.        | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Antimony                 | mg/L     | ND          | 0.1         | 0.1          | 0.11    | 0.11   | 110   | 108   | 75-125 | 2   | 20  |      |
| Arsenic                  | mg/L     | ND          | 0.1         | 0.1          | 0.099   | 0.099  | 99    | 99    | 75-125 | 0   | 20  |      |
| Barium                   | mg/L     | 0.078       | 0.1         | 0.1          | 0.18    | 0.18   | 105   | 99    | 75-125 | 3   | 20  |      |
| Beryllium                | mg/L     | ND          | 0.1         | 0.1          | 0.093   | 0.096  | 93    | 96    | 75-125 | 2   | 20  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



| Project:           | YATES AMA |
|--------------------|-----------|
| Pace Project No .: | 92521581  |

| MATRIX SPIKE & MATRIX SPI | KE DUPI | LICATE: 3171          | 186                  |                       | 3171187      |               |             |              |                 |     |            |      |
|---------------------------|---------|-----------------------|----------------------|-----------------------|--------------|---------------|-------------|--------------|-----------------|-----|------------|------|
| Parameter                 | Units   | 92521578009<br>Result | MS<br>Spike<br>Conc. | MSD<br>Spike<br>Conc. | MS<br>Result | MSD<br>Result | MS<br>% Rec | MSD<br>% Rec | % Rec<br>Limits | RPD | Max<br>RPD | Qual |
| Cadmium                   | mg/L    | 0.00052J              | 0.1                  | 0.1                   | 0.10         | 0.10          | 103         | 104          | 75-125          | 0   | 20         |      |
| Chromium                  | mg/L    | ND                    | 0.1                  | 0.1                   | 0.10         | 0.10          | 102         | 102          | 75-125          | 0   | 20         |      |
| Cobalt                    | mg/L    | ND                    | 0.1                  | 0.1                   | 0.099        | 0.098         | 99          | 98           | 75-125          | 1   | 20         |      |
| Lead                      | mg/L    | ND                    | 0.1                  | 0.1                   | 0.10         | 0.097         | 100         | 97           | 75-125          | 2   | 20         |      |
| Lithium                   | mg/L    | 0.0070J               | 0.1                  | 0.1                   | 0.10         | 0.10          | 93          | 93           | 75-125          | 1   | 20         |      |
| Molybdenum                | mg/L    | 0.0012J               | 0.1                  | 0.1                   | 0.10         | 0.10          | 102         | 102          | 75-125          | 0   | 20         |      |
| Selenium                  | mg/L    | ND                    | 0.1                  | 0.1                   | 0.092        | 0.091         | 92          | 91           | 75-125          | 1   | 20         |      |
| Thallium                  | mg/L    | ND                    | 0.1                  | 0.1                   | 0.097        | 0.095         | 97          | 95           | 75-125          | 2   | 20         |      |

#### MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3171188

3171189

|            |       |             | MS    | MSD   |        |        |       |       |        |     |     |      |
|------------|-------|-------------|-------|-------|--------|--------|-------|-------|--------|-----|-----|------|
|            |       | 92521578011 | Spike | Spike | MS     | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter  | Units | Result      | Conc. | Conc. | Result | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Antimony   | mg/L  | ND          | 0.1   | 0.1   | 0.10   | 0.11   | 103   | 106   | 75-125 | 2   | 20  |      |
| Arsenic    | mg/L  | ND          | 0.1   | 0.1   | 0.093  | 0.096  | 93    | 96    | 75-125 | 3   | 20  |      |
| Barium     | mg/L  | 0.0057J     | 0.1   | 0.1   | 0.10   | 0.10   | 95    | 97    | 75-125 | 1   | 20  |      |
| Beryllium  | mg/L  | ND          | 0.1   | 0.1   | 0.090  | 0.093  | 90    | 93    | 75-125 | 4   | 20  |      |
| Cadmium    | mg/L  | ND          | 0.1   | 0.1   | 0.098  | 0.10   | 98    | 103   | 75-125 | 5   | 20  |      |
| Chromium   | mg/L  | ND          | 0.1   | 0.1   | 0.096  | 0.099  | 96    | 98    | 75-125 | 3   | 20  |      |
| Cobalt     | mg/L  | 0.00086J    | 0.1   | 0.1   | 0.093  | 0.097  | 92    | 96    | 75-125 | 4   | 20  |      |
| Lead       | mg/L  | 0.000044J   | 0.1   | 0.1   | 0.094  | 0.098  | 94    | 98    | 75-125 | 3   | 20  |      |
| Lithium    | mg/L  | 0.010J      | 0.1   | 0.1   | 0.10   | 0.11   | 90    | 96    | 75-125 | 5   | 20  |      |
| Molybdenum | mg/L  | 0.0080J     | 0.1   | 0.1   | 0.10   | 0.11   | 95    | 99    | 75-125 | 3   | 20  |      |
| Selenium   | mg/L  | ND          | 0.1   | 0.1   | 0.086  | 0.089  | 86    | 89    | 75-125 | 3   | 20  |      |
| Thallium   | mg/L  | ND          | 0.1   | 0.1   | 0.092  | 0.095  | 92    | 95    | 75-125 | 3   | 20  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:                                                                       | YATES AMA                                             |                                                                           |                                                          |                                               |                                                     |                                      |                     |                       |                               |           |            |      |
|--------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------|--------------------------------------|---------------------|-----------------------|-------------------------------|-----------|------------|------|
| Pace Project No.:                                                              | 92521581                                              |                                                                           |                                                          |                                               |                                                     |                                      |                     |                       |                               |           |            |      |
| QC Batch:                                                                      | 600023                                                |                                                                           | Analy                                                    | sis Method                                    | d:                                                  | EPA 7470A                            |                     |                       |                               |           |            |      |
| QC Batch Method:                                                               | EPA 7470A                                             |                                                                           | Analy                                                    | sis Descri                                    | ption:                                              | 7470 Mercu                           | ry                  |                       |                               |           |            |      |
|                                                                                |                                                       |                                                                           | Labor                                                    | ratory:                                       |                                                     | Pace Analyt                          | ical Serv           | ices - Peacl          | htree Corne                   | ers, GA   |            |      |
| Associated Lab Sar                                                             | mples: 92521578                                       | 001, 9252157800                                                           | 02, 92521578                                             | 8003                                          |                                                     |                                      |                     |                       |                               |           |            |      |
| METHOD BLANK:                                                                  | 3163248                                               |                                                                           |                                                          | Matrix: W                                     | ater                                                |                                      |                     |                       |                               |           |            |      |
| Associated Lab Sar                                                             | nples: 92521578                                       | 001, 9252157800                                                           | 02, 92521578                                             | 8003                                          |                                                     |                                      |                     |                       |                               |           |            |      |
|                                                                                |                                                       |                                                                           | Blan                                                     | k l                                           | Reporting                                           |                                      |                     |                       |                               |           |            |      |
| Parar                                                                          | neter                                                 | Units                                                                     | Resu                                                     | ult                                           | Limit                                               | MDI                                  | -                   | Analyzed              | d Q                           | ualifiers |            |      |
|                                                                                |                                                       |                                                                           |                                                          |                                               |                                                     |                                      |                     | 00/40/04 44           |                               |           |            |      |
| Mercury                                                                        |                                                       | mg/L                                                                      |                                                          | ND                                            | 0.0005                                              | 0 0.0                                | 0018                | 02/16/21 11           | :30                           |           |            |      |
| Mercury                                                                        |                                                       | mg/L                                                                      |                                                          | ND                                            | 0.0005                                              | 0 0.0                                | 0078                | 02/16/21 11           | :30                           |           |            |      |
| Mercury<br>LABORATORY COI                                                      | NTROL SAMPLE:                                         | mg/L<br>3163249                                                           |                                                          | ND                                            | 0.0005                                              | 0 0.00                               | J0078               | 02/16/21 11           | .30                           |           |            |      |
| Mercury<br>LABORATORY COI                                                      | NTROL SAMPLE:                                         | mg/L<br>3163249                                                           | Spike                                                    | ND<br>LC                                      | 0.0005                                              | LCS                                  |                     | Rec                   |                               |           |            |      |
| Mercury<br>LABORATORY COI<br>Parar                                             | NTROL SAMPLE:                                         | mg/L<br>3163249<br>Units                                                  | Spike<br>Conc.                                           | ND<br>LC<br>Res                               | 0.0005<br>:S<br>sult                                | LCS<br>% Rec                         | 00078<br>%<br>Lir   | Rec<br>mits           | Qualifiers                    |           |            |      |
| Mercury<br>LABORATORY COI<br>Parar<br>Mercury                                  | NTROL SAMPLE:                                         | mg/L<br>3163249<br>Units<br>mg/L                                          | Spike<br>Conc.                                           | ND<br>LC<br>Res<br>5                          | 0.0005<br>S<br>Sult<br>0.0025                       | LCS<br>% Rec<br>100                  | 00078<br>%<br><br>) | Rec<br>mits<br>80-120 | Qualifiers                    |           |            |      |
| Mercury<br>LABORATORY COI<br>Parar<br>Mercury                                  | NTROL SAMPLE:                                         | mg/L<br>3163249<br>Units<br>mg/L                                          | Spike<br>Conc.<br>0.002                                  | LC<br>Res<br>5                                | 0.0005<br>S<br>sult<br>0.0025                       | LCS<br>% Rec<br>100                  | 00078<br>%<br><br>) | Rec<br>mits<br>80-120 | Qualifiers                    |           |            |      |
| Mercury<br>LABORATORY COL<br>Parar<br>Mercury<br>MATRIX SPIKE & M              | NTROL SAMPLE:<br>neter<br>MATRIX SPIKE DUP            | mg/L<br>3163249<br>                                                       | Spike<br>Conc.<br>0.0025                                 | ND<br>LC<br>5                                 | 0.0005<br>S<br>Sult<br>0.0025<br>3163251            | LCS<br>% Rec<br>100                  | %<br>               | Rec<br>mits<br>80-120 | Qualifiers                    |           |            |      |
| Mercury<br>LABORATORY COI<br>Parar<br>Mercury<br>MATRIX SPIKE & M              | NTROL SAMPLE:<br>neter<br>MATRIX SPIKE DUP            | mg/L<br>3163249<br>                                                       | Spike<br>Conc.<br>0.002<br>250<br>MS                     | ND<br>LC<br>Res<br>5<br>MSD                   | 0.0005<br>Sault<br>0.0025<br>3163251                | LCS<br>% Rec<br>100                  | %<br>Lir            | Rec<br>mits<br>80-120 | Qualifiers                    |           |            |      |
| Mercury<br>LABORATORY COI<br>Parar<br>Mercury<br>MATRIX SPIKE & N              | NTROL SAMPLE:<br>neter<br>MATRIX SPIKE DUP            | mg/L<br>3163249<br>Units<br>mg/L<br>LICATE: 3163<br>92521578009           | Spike<br>Conc.<br>0.0025<br>3250<br>MS<br>Spike          | ND<br>LC<br>Res<br>5<br>MSD<br>Spike          | 0.0005<br>Sult<br>0.0025<br>3163251<br>MS           | LCS<br>% Rec<br>100                  |                     | MSD                   | Qualifiers<br>% Rec           |           | Мах        |      |
| Mercury<br>LABORATORY COL<br>Parar<br>Mercury<br>MATRIX SPIKE & M<br>Parameter | NTROL SAMPLE:<br>neter<br>MATRIX SPIKE DUP<br>r Units | mg/L<br>3163249<br>Units<br>mg/L<br>LICATE: 3163<br>92521578009<br>Result | Spike<br>Conc.<br>0.0029<br>0250<br>MS<br>Spike<br>Conc. | ND<br>LC<br>Res<br>5<br>MSD<br>Spike<br>Conc. | 0.0005<br>Sult<br>0.0025<br>3163251<br>MS<br>Result | LCS<br>% Rec<br>100<br>MSD<br>Result |                     | MSD<br>% Rec          | Qualifiers<br>% Rec<br>Limits | RPD       | Max<br>RPD | Qual |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:           | YATES AMA                               |                                                          |                                                                            |                                |                        |                          |                                   |                            |                        |           |     |      |
|--------------------|-----------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------|------------------------|--------------------------|-----------------------------------|----------------------------|------------------------|-----------|-----|------|
| Pace Project No.:  | 92521581                                |                                                          |                                                                            |                                |                        |                          |                                   |                            |                        |           |     |      |
| QC Batch:          | 600356                                  |                                                          | Analy                                                                      | sis Metho                      | d:                     | EPA 7470A                |                                   |                            |                        |           |     |      |
| QC Batch Method:   | EPA 7470A                               |                                                          | Analys                                                                     | sis Descri                     | ption:                 | 7470 Mercu               | ry                                |                            |                        |           |     |      |
|                    |                                         |                                                          | Labor                                                                      | atory:                         | I                      | Pace Analyt              | ical Serv                         | ices - Peach               | tree Corne             | rs, GA    |     |      |
| Associated Lab Sar | nples: 92521581<br>92521581<br>92521581 | 001, 92521581002<br>008, 92521581009<br>015, 92521581016 | , 9252158′<br>, 9252158′<br>, 9252158′                                     | 1003, 925<br>1010, 925<br>1017 | 21581004,<br>21581011, | 9252158100<br>9252158107 | 05, 9252<br>12, 9252 <sup>-</sup> | 1581006, 92<br>1581013, 92 | 521581007<br>521581014 | 7,<br>ŀ,  |     |      |
| METHOD BLANK:      | 3164655                                 |                                                          | I                                                                          | Matrix: W                      | /ater                  |                          |                                   |                            |                        |           |     |      |
| Associated Lab Sar | nples: 92521581<br>92521581<br>92521581 | 001, 92521581002<br>008, 92521581009<br>015, 92521581016 | , 9252158 <sup>2</sup><br>, 9252158 <sup>2</sup><br>, 9252158 <sup>2</sup> | 1003, 925<br>1010, 925<br>1017 | 21581004,<br>21581011, | 9252158100<br>9252158107 | 05, 9252<br>12, 9252 <sup>-</sup> | 1581006, 92<br>1581013, 92 | 521581007<br>521581014 | 7,<br>ŀ,  |     |      |
|                    |                                         |                                                          | Blan                                                                       | k                              | Reporting              |                          |                                   |                            |                        |           |     |      |
| Parar              | neter                                   | Units                                                    | Resu                                                                       | ılt                            | Limit                  | MDI                      |                                   | Analyzed                   | Qı                     | ualifiers |     |      |
| Mercury            |                                         | mg/L                                                     |                                                                            | ND                             | 0.0005                 | 0 0.0                    | 00078                             | 02/18/21 11:               | 24                     |           |     |      |
| LABORATORY CO      | NTROL SAMPLE:                           | 3164656                                                  |                                                                            |                                |                        |                          |                                   |                            |                        |           |     |      |
| Parar              | neter                                   | Units                                                    | Spike<br>Conc.                                                             | LC<br>Res                      | S<br>Sult              | LCS<br>% Rec             | %<br>Lir                          | Rec<br>mits                | Qualifiers             |           |     |      |
| Mercury            |                                         | mg/L                                                     | 0.0025                                                                     | 5                              | 0.0024                 | 94                       | 1                                 | 80-120                     |                        |           |     |      |
| MATRIX SPIKE & N   | ATRIX SPIKE DUP                         | LICATE: 31646                                            | 57                                                                         |                                | 3164658                | 3                        |                                   |                            |                        |           |     |      |
|                    |                                         |                                                          | MS                                                                         | MSD                            |                        |                          |                                   |                            |                        |           |     |      |
|                    |                                         | 92521581005                                              | Spike                                                                      | Spike                          | MS                     | MSD                      | MS                                | MSD                        | % Rec                  |           | Max |      |
| Paramete           | r Units                                 | Result                                                   | Conc.                                                                      | Conc.                          | Result                 | Result                   | % Rec                             | % Rec                      | Limits                 | RPD       | RPD | Qual |
| Mercury            | mg/L                                    | ND                                                       | 0.0025                                                                     | 0.0025                         | 0.0024                 | 0.0024                   | 9                                 | 7 96                       | 75-125                 | 1         | 20  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Pace Project No.:                                               | 92521581                                  |                                                                         |                                                         |                       |                                                     |                                          |            |                                       |                               |           |            |      |
|-----------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------|-----------------------|-----------------------------------------------------|------------------------------------------|------------|---------------------------------------|-------------------------------|-----------|------------|------|
| QC Batch:                                                       | 601295                                    |                                                                         | Analys                                                  | sis Metho             | d:                                                  | EPA 7470A                                |            |                                       |                               |           |            |      |
| QC Batch Method:                                                | EPA 7470A                                 |                                                                         | Analys                                                  | sis Descri            | ption:                                              | 7470 Mercu                               | ry         |                                       |                               |           |            |      |
|                                                                 |                                           |                                                                         | Labor                                                   | atory:                |                                                     | Pace Analyt                              | ical Serv  | vices - Peac                          | htree Corne                   | ers, GA   |            |      |
| Associated Lab Sa                                               | mples: 9252157                            | 8010, 9252157801                                                        | 1                                                       |                       |                                                     |                                          |            |                                       |                               |           |            |      |
| METHOD BLANK:                                                   | 3168813                                   |                                                                         | I                                                       | Matrix: W             | /ater                                               |                                          |            |                                       |                               |           |            |      |
| Associated Lab Sa                                               | mples: 9252157                            | 8010, 9252157801 <sup>,</sup>                                           | 1                                                       |                       |                                                     |                                          |            |                                       |                               |           |            |      |
|                                                                 |                                           |                                                                         | Blan                                                    | k                     | Reporting                                           |                                          |            |                                       |                               |           |            |      |
| Para                                                            | meter                                     | Units                                                                   | Resu                                                    | lt                    | Limit                                               | MD                                       | _          | Analyze                               | d Q                           | ualifiers |            |      |
| N.4                                                             |                                           |                                                                         |                                                         |                       | 0.0005                                              | 0 00                                     | 00079      | 02/22/21 1                            | 2.1/                          |           |            |      |
| Mercury                                                         |                                           | ing/∟                                                                   |                                                         | ND                    | 0.0005                                              | 0.0                                      | 00078      | 02/23/21 1                            | 5.14                          |           |            |      |
| Mercury                                                         |                                           | IIIg/L                                                                  |                                                         | ND                    | 0.0000                                              | 0.0                                      | 00078      | 02/23/21 1                            | 5.14                          |           |            |      |
| LABORATORY CO                                                   | NTROL SAMPLE:                             | 3168814                                                                 |                                                         |                       | 0.0003                                              |                                          |            | 02/23/21 1                            | . 14                          |           |            |      |
| LABORATORY CO                                                   | NTROL SAMPLE:                             | 3168814                                                                 | Spike                                                   | LC                    | 0.0003                                              | LCS                                      | %          | Rec                                   | . 14                          |           |            |      |
| LABORATORY CO<br>Para                                           | NTROL SAMPLE:                             | 3168814<br>Units                                                        | Spike<br>Conc.                                          | LC                    | CS<br>sult                                          | LCS<br>% Rec                             | %<br>Lin   | Rec                                   | Qualifiers                    |           |            |      |
| LABORATORY CO<br>Para<br>Mercury                                | NTROL SAMPLE:                             | 3168814<br>                                                             | Spike<br>Conc.<br>0.0025                                |                       | CS<br>sult<br>0.0023                                | LCS<br>% Rec<br>9                        | %<br>2     | Rec<br>mits<br>80-120                 | Qualifiers                    |           |            |      |
| Mercury<br>LABORATORY CO<br>Para<br>Mercury<br>MATRIX SPIKE & I | NTROL SAMPLE:<br>meter<br>MATRIX SPIKE DU | 3168814<br>                                                             | Spike<br>Conc.<br>0.0025                                |                       | 2:S<br>sult<br>0.0023<br>3168816                    | LCS<br>% Rec<br>9.                       | %<br><br>2 | Rec<br>mits<br>80-120                 | Qualifiers                    | _         |            |      |
| Mercury LABORATORY CO Para Mercury MATRIX SPIKE & N             | NTROL SAMPLE:<br>meter<br>MATRIX SPIKE DU | 3168814<br>                                                             | Spike<br>Conc.<br>0.0025<br>315<br>MS                   | LC<br>Res<br>MSD      | 0.0003<br>sult<br>0.0023<br>3168816                 | LCS<br>% Rec<br>9:                       |            | Rec<br>mits<br>80-120                 | Qualifiers                    | _         |            |      |
| Mercury LABORATORY CO Para Mercury MATRIX SPIKE & N             | NTROL SAMPLE:<br>meter<br>MATRIX SPIKE DU | Ing/L<br>3168814<br>Units<br><br>mg/L<br>IPLICATE: 31688<br>92521578011 | Spike<br>Conc.<br>0.0025<br>315<br>MS<br>Spike          | MSD<br>Spike          | 0.0003<br>sult<br>0.0023<br>3168816<br>MS           | LCS<br>% Rec<br>9:<br>3<br>MSD           |            | Rec<br>mits<br>80-120<br>MSD          | Qualifiers<br>% Rec           | _         | Max        |      |
| Mercury LABORATORY CO Para Mercury MATRIX SPIKE & M Paramete    | MTROL SAMPLE:<br>meter<br>MATRIX SPIKE DU | Ing/L<br>3168814<br>                                                    | Spike<br>Conc.<br>0.0025<br>315<br>MS<br>Spike<br>Conc. | MSD<br>Spike<br>Conc. | 0.0003<br>sult<br>0.0023<br>3168816<br>MS<br>Result | LCS<br>% Rec<br>9:<br>3<br>MSD<br>Result | %<br>2<br> | Rec<br>mits<br>80-120<br>MSD<br>% Rec | Qualifiers<br>% Rec<br>Limits | RPD       | Max<br>RPD | Qual |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:           | YATES    | AMA                    |                                    |                            |                        |                        |                        |                         |                       |                 |         |            |      |
|--------------------|----------|------------------------|------------------------------------|----------------------------|------------------------|------------------------|------------------------|-------------------------|-----------------------|-----------------|---------|------------|------|
| Pace Project No.:  | 925215   | 81                     |                                    |                            |                        |                        |                        |                         |                       |                 |         |            |      |
| QC Batch:          | 59966    | 3                      |                                    | Analy                      | sis Metho              | d:                     | EPA 300.0              | Rev 2.1 19              | 93                    |                 |         |            |      |
| QC Batch Method:   | EPA 3    | 00.0 Rev 2             | .1 1993                            | Anal                       | /sis Descri            | ption:                 | 300.0 IC Ar            | nions                   |                       |                 |         |            |      |
|                    |          |                        |                                    | Labo                       | ratory:                |                        | Pace Analy             | tical Servic            | es - Ashevi           | lle             |         |            |      |
| Associated Lab Sar | mples:   | 925215780<br>925215810 | 001, 9252157800<br>005, 9252158100 | 12, 9252157<br>16, 9252158 | 8003, 925<br>1007, 925 | 21581001,<br>21581008, | 925215810<br>925215810 | 02, 92521<br>009, 92521 | 581003, 929<br>581010 | 521581004       | ŀ,      |            |      |
| METHOD BLANK:      | 316125   | 1                      |                                    |                            | Matrix: W              | /ater                  |                        |                         |                       |                 |         |            |      |
| Associated Lab Sar | mples:   | 925215780<br>925215810 | 001, 9252157800<br>005, 9252158100 | 2, 9252157<br>6, 9252158   | 8003, 925<br>1007, 925 | 21581001,<br>21581008, | 925215810<br>925215810 | 02, 92521<br>09, 92521  | 581003, 929<br>581010 | 521581004       | ŀ,      |            |      |
| Darra              |          |                        | Linita                             | Blai                       | nk<br>tr               | Reporting              |                        |                         | A see how and         | 0               |         |            |      |
| Para               | neter    |                        | Units                              | Res                        | uit                    | Limit                  |                        | <u>"L</u>               | Analyzed              |                 | laimers |            |      |
| Fluoride           |          |                        | mg/L                               |                            | ND                     | 0.1                    | 0                      | 0.050 0                 | 2/12/21 20:           | 16              |         |            |      |
| LABORATORY CO      | NTROL S  | SAMPLE:                | 3161252                            | Cailea                     |                        | <u> </u>               | 1.00                   | 0/ D                    |                       |                 |         |            |      |
| Para               | meter    |                        | Units                              | Conc.                      | Res                    | sult                   | % Rec                  | % R<br>Lim              | its (                 | Qualifiers      |         |            |      |
| Fluoride           |          |                        | mg/L                               | 2                          | .5                     | 2.6                    | 10                     |                         | 90-110                |                 |         |            |      |
| MATRIX SPIKE & M   | MATRIX S |                        | LICATE: 3161                       | 253                        |                        | 3161254                | 1                      |                         |                       |                 |         |            |      |
|                    |          |                        |                                    | MS                         | MSD                    |                        |                        |                         |                       | _               |         |            |      |
| Paramete           | ۰r       | Units                  | 92521574009<br>Result              | Spike<br>Conc.             | Spike<br>Conc.         | MS<br>Result           | MSD<br>Result          | MS<br>% Rec             | MSD<br>% Rec          | % Rec<br>Limits | RPD     | Max<br>RPD | Qual |
| Fluoride           |          | mg/L                   | ND                                 | 2.5                        | 2.5                    | 2.7                    | 2.7                    | 109                     | 108                   | 90-110          | 1       | 10         |      |
| MATRIX SPIKE & M   | MATRIX S | PIKE DUP               | LICATE: 3161                       | 255                        | MCD                    | 3161256                | 3                      |                         |                       |                 |         |            |      |
|                    |          |                        | 92521581005                        | IVIJ<br>Snika              | Snike                  | MS                     | MSD                    | MS                      | MSD                   | % Rec           |         | Max        |      |
| Paramete           | r        | Units                  | Result                             | Conc.                      | Conc.                  | Result                 | Result                 | % Rec                   | % Rec                 | Limits          | RPD     | RPD        | Qual |
| Fluoride           |          | mg/L                   | ND                                 | 2.5                        | 2.5                    | 2.5                    | 2.7                    | 100                     | 108                   | 90-110          | 8       | 10         |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:           | YATES AMA        |                 |            |              |           |             |              |              |            |           |     |      |
|--------------------|------------------|-----------------|------------|--------------|-----------|-------------|--------------|--------------|------------|-----------|-----|------|
| Pace Project No.:  | 92521581         |                 |            |              |           |             |              |              |            |           |     |      |
| QC Batch:          | 599664           |                 | Analy      | sis Metho    | d:        | EPA 300.0   | Rev 2.1 19   | 93           |            |           |     |      |
| QC Batch Method:   | EPA 300.0 Rev 2  | .1 1993         | Anal       | ysis Descrij | ption:    | 300.0 IC Ar | nions        |              |            |           |     |      |
|                    |                  |                 | Labo       | ratory:      |           | Pace Analy  | tical Servio | ces - Ashevi | lle        |           |     |      |
| Associated Lab Sar | mples: 925215810 | 011, 9252158101 | 2, 9252158 | 31013, 9252  | 21581014, | 925215810   | 15, 92521    | 581016, 92   | 521581017  |           |     |      |
| METHOD BLANK:      | 3161257          |                 |            | Matrix: W    | ater      |             |              |              |            |           |     |      |
| Associated Lab Sar | mples: 925215810 | 011, 9252158101 | 2, 9252158 | 1013, 9252   | 21581014, | 925215810   | 15, 92521    | 581016, 92   | 521581017  | ,         |     |      |
|                    |                  |                 | Blai       | nk l         | Reporting |             | -            |              |            |           |     |      |
| Parar              | neter            | Units           | Res        | ult          | Limit     | MD          | L            | Analyzed     | Qu         | ualifiers |     |      |
| Fluoride           |                  | mg/L            |            | ND           | 0.1       | 10          | 0.050 0      | 2/12/21 15:  | 24         |           |     |      |
|                    |                  |                 |            |              |           |             |              |              |            |           |     |      |
| LABORATORY CO      | NTROL SAMPLE:    | 3161258         |            |              |           |             |              |              |            |           |     |      |
|                    |                  |                 | Spike      | LC           | S         | LCS         | % F          | Rec          |            |           |     |      |
| Parar              | neter            | Units           | Conc.      | Res          | sult      | % Rec       | Lim          | its (        | Qualifiers |           |     |      |
| Fluoride           |                  | mg/L            | 2          | .5           | 2.6       | 10          | 3            | 90-110       |            |           |     |      |
| MATRIX SPIKE & M   | ATRIX SPIKE DUP  | LICATE: 3161    | 259        |              | 316126    | 0           |              |              |            |           |     |      |
|                    |                  |                 | MS         | MSD          |           |             |              |              |            |           |     |      |
|                    |                  | 92521578009     | Spike      | Spike        | MS        | MSD         | MS           | MSD          | % Rec      |           | Max |      |
| Paramete           | r Units          | Result          | Conc.      | Conc.        | Result    | Result      | % Rec        | % Rec        | Limits     | RPD       | RPD | Qual |
| Fluoride           | mg/L             | 0.066J          | 2.5        | 2.5          | 2.4       | 2.5         | 93           | 99           | 90-110     | 6         | 10  |      |
| MATRIX SPIKE & M   | ATRIX SPIKE DUP  | LICATE: 3161    | 575        |              | 316157    | 6           |              |              |            |           |     |      |
|                    |                  |                 | MS         | MSD          |           |             |              |              |            |           |     |      |
|                    |                  | 92521143010     | Spike      | Spike        | MS        | MSD         | MS           | MSD          | % Rec      |           | Max |      |
| Paramete           | r Units          | Result          | Conc.      | Conc.        | Result    | Result      | % Rec        | % Rec        | Limits     | RPD       | RPD | Qual |
| Fluoride           | mg/L             | 0.21            | 2.5        | 2.5          | 2.3       | 2.5         | 84           | 91           | 90-110     | 7         | 10  | M1   |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:           | YATES AMA        |                 |       |             |           |               |              |              |            |           |     |      |
|--------------------|------------------|-----------------|-------|-------------|-----------|---------------|--------------|--------------|------------|-----------|-----|------|
| Pace Project No.:  | 92521581         |                 |       |             |           |               |              |              |            |           |     |      |
| QC Batch:          | 600235           |                 | Analy | ysis Metho  | d:        | EPA 300.0 I   | Rev 2.1 19   | 93           |            |           |     |      |
| QC Batch Method:   | EPA 300.0 Rev 2  | .1 1993         | Analy | ysis Descri | ption:    | 300.0 IC An   | ions         |              |            |           |     |      |
|                    |                  |                 | Labo  | oratory:    |           | Pace Analy    | tical Servic | es - Ashevil | le         |           |     |      |
| Associated Lab Sar | nples: 92521578  | 010, 9252157801 | 1     |             |           |               |              |              |            |           |     |      |
| METHOD BLANK:      | 3164171          |                 |       | Matrix: W   | ater      |               |              |              |            |           |     |      |
| Associated Lab Sar | nples: 92521578  | 010, 9252157801 | 1     |             |           |               |              |              |            |           |     |      |
|                    |                  |                 | Blai  | nk          | Reporting |               |              |              |            |           |     |      |
| Parar              | neter            | Units           | Res   | ult         | Limit     | MD            | L            | Analyzed     | Qu         | ualifiers |     |      |
| Fluoride           |                  | mg/L            |       | ND          | 0.1       | 0             | 0.050 0      | 2/16/21 14:" | 16         |           |     |      |
|                    |                  |                 |       |             |           |               |              |              |            |           |     |      |
| LABORATORY CO      | NTROL SAMPLE:    | 3164172         |       |             |           |               |              |              |            |           |     |      |
|                    |                  |                 | Spike | LC          | S         | LCS           | % R          | ec           |            |           |     |      |
| Parar              | neter            | Units           | Conc. | Res         | sult      | % Rec         | Lim          | its C        | Qualifiers | _         |     |      |
| Fluoride           |                  | mg/L            | 2     | .5          | 2.4       | 9             | 7            | 90-110       |            |           |     |      |
| MATRIX SPIKE & M   | IATRIX SPIKE DUP | LICATE: 3164    | 173   |             | 3164174   | 4             |              |              |            |           |     |      |
|                    |                  |                 | MS    | MSD         |           |               |              |              |            |           |     |      |
| Deremete           | r Linita         | 92522138001     | Spike | Spike       | MS        | MSD<br>Decult | MS<br>% Dee  | MSD          | % Rec      | חחח       | Max | Qual |
| Paramete           |                  | Result          |       | Conc.       | Result    | Result        | % Rec        | % Rec        | Limits     |           |     | Quai |
| Fluoride           | mg/L             | ND              | 2.5   | 2.5         | 2.4       | 2.5           | 95           | 97           | 90-110     | 2         | 10  |      |
| MATRIX SPIKE & M   | ATRIX SPIKE DUP  | LICATE: 3164    | 175   |             | 3164170   | 6             |              |              |            |           |     |      |
|                    | _                |                 | MS    | MSD         |           |               |              |              |            |           |     |      |
|                    |                  | 92521578011     | Spike | Spike       | MS        | MSD           | MS           | MSD          | % Rec      |           | Max |      |
| Paramete           | r Units          | Result          | Conc. | Conc.       | Result    | Result        | % Rec        | % Rec        | Limits     | RPD       | RPD | Qual |
| Fluoride           | mg/L             | 0.068J          | 2.5   | 2.5         | 2.6       | 2.6           | 100          | 100          | 90-110     | 1         | 10  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### QUALIFIERS

Project: YATES AMA Pace Project No.: 92521581

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

### ANALYTE QUALIFIERS

B Analyte was detected in the associated method blank.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.



### QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: YATES AMA Pace Project No.: 92521581

| Lab ID      | Sample ID         | QC Batch Method | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|-------------------|-----------------|----------|-------------------|---------------------|
| 92521578002 | YGWA-14S (021021) |                 |          |                   |                     |
| 92521581003 | YGWA-5I (020821)  |                 |          |                   |                     |
| 92521581004 | YGWA-39 (021021)  |                 |          |                   |                     |
| 92521581005 | YGWA-40 (021021)  |                 |          |                   |                     |
| 92521581007 | YGWA-20S (020921) |                 |          |                   |                     |
| 92521581008 | YGWA-4I(020921)   |                 |          |                   |                     |
| 92521581009 | YGWA-17S(020921)  |                 |          |                   |                     |
| 92521581010 | YGWA-18S(020921)  |                 |          |                   |                     |
| 92521581011 | YGWA-18I(020921)  |                 |          |                   |                     |
| 92521581012 | YGWA-211(020921)  |                 |          |                   |                     |
| 92521581013 | YGWA-3I(021021)   |                 |          |                   |                     |
| 92521581014 | YGWA-3D(021021)   |                 |          |                   |                     |
| 92521581015 | YGWA-30I(021121)  |                 |          |                   |                     |
| 92521578010 | YGWA-1I (021221)  |                 |          |                   |                     |
| 92521578011 | YGWA-1D (021221)  |                 |          |                   |                     |
| 92521578001 | EB-02 (021021)    | EPA 3005A       | 601867   | EPA 6020B         | 601989              |
| 92521578002 | YGWA-14S (021021) | EPA 3005A       | 601867   | EPA 6020B         | 601989              |
| 92521578003 | DUP-1 (021021)    | EPA 3005A       | 601867   | EPA 6020B         | 601989              |
| 92521581001 | YGWA-5D (020821)  | EPA 3005A       | 600633   | EPA 6020B         | 600737              |
| 92521581002 | DUP-01(020821)    | EPA 3005A       | 600633   | EPA 6020B         | 600737              |
| 92521581003 | YGWA-5I (020821)  | EPA 3005A       | 600633   | EPA 6020B         | 600737              |
| 92521581004 | YGWA-39 (021021)  | EPA 3005A       | 600633   | EPA 6020B         | 600737              |
| 92521581005 | YGWA-40 (021021)  | EPA 3005A       | 600633   | EPA 6020B         | 600737              |
| 92521581006 | FB-01(021021)     | EPA 3005A       | 600633   | EPA 6020B         | 600737              |
| 92521581007 | YGWA-20S (020921) | EPA 3005A       | 600633   | EPA 6020B         | 600737              |
| 92521581008 | YGWA-4I(020921)   | EPA 3005A       | 600633   | EPA 6020B         | 600737              |
| 92521581009 | YGWA-17S(020921)  | EPA 3005A       | 600633   | EPA 6020B         | 600737              |
| 92521581010 | YGWA-18S(020921)  | EPA 3005A       | 600633   | EPA 6020B         | 600737              |
| 92521581011 | YGWA-18I(020921)  | EPA 3005A       | 600633   | EPA 6020B         | 600737              |
| 92521581012 | YGWA-21I(020921)  | EPA 3005A       | 600633   | EPA 6020B         | 600737              |
| 92521581013 | YGWA-3I(021021)   | EPA 3005A       | 600633   | EPA 6020B         | 600737              |
| 92521581014 | YGWA-3D(021021)   | EPA 3005A       | 600633   | EPA 6020B         | 600737              |
| 92521581015 | YGWA-30I(021121)  | EPA 3005A       | 600633   | EPA 6020B         | 600737              |
| 92521581016 | FB-01(021121)     | EPA 3005A       | 600633   | EPA 6020B         | 600737              |
| 92521581017 | EB-01(021121)     | EPA 3005A       | 600633   | EPA 6020B         | 600737              |
| 92521578010 | YGWA-1I (021221)  | EPA 3005A       | 601867   | EPA 6020B         | 601989              |
| 92521578011 | YGWA-1D (021221)  | EPA 3005A       | 601867   | EPA 6020B         | 601989              |
| 92521578001 | EB-02 (021021)    | EPA 7470A       | 600023   | EPA 7470A         | 600226              |
| 92521578002 | YGWA-14S (021021) | EPA 7470A       | 600023   | EPA 7470A         | 600226              |
| 92521578003 | DUP-1 (021021)    | EPA 7470A       | 600023   | EPA 7470A         | 600226              |
| 92521581001 | YGWA-5D (020821)  | EPA 7470A       | 600356   | EPA 7470A         | 600864              |
| 92521581002 | DUP-01(020821)    | EPA 7470A       | 600356   | EPA 7470A         | 600864              |
| 92521581003 | YGWA-5I (020821)  | EPA 7470A       | 600356   | EPA 7470A         | 600864              |
| 92521581004 | YGWA-39 (021021)  | EPA 7470A       | 600356   | EPA 7470A         | 600864              |
| 92521581005 | YGWA-40 (021021)  | EPA 7470A       | 600356   | EPA 7470A         | 600864              |
| 92521581006 | FB-01(021021)     | EPA 7470A       | 600356   | EPA 7470A         | 600864              |



## QUALITY CONTROL DATA CROSS REFERENCE TABLE

| Project:          | YATES AMA |
|-------------------|-----------|
| Pace Project No.: | 92521581  |

|             |                   |                        |          |                   | Analytical |
|-------------|-------------------|------------------------|----------|-------------------|------------|
| Lab ID      | Sample ID         | QC Batch Method        | QC Batch | Analytical Method | Batch      |
| 92521581007 | YGWA-20S (020921) | EPA 7470A              | 600356   | EPA 7470A         | 600864     |
| 92521581008 | YGWA-4I(020921)   | EPA 7470A              | 600356   | EPA 7470A         | 600864     |
| 92521581009 | YGWA-17S(020921)  | EPA 7470A              | 600356   | EPA 7470A         | 600864     |
| 92521581010 | YGWA-18S(020921)  | EPA 7470A              | 600356   | EPA 7470A         | 600864     |
| 92521581011 | YGWA-18I(020921)  | EPA 7470A              | 600356   | EPA 7470A         | 600864     |
| 92521581012 | YGWA-21I(020921)  | EPA 7470A              | 600356   | EPA 7470A         | 600864     |
| 92521581013 | YGWA-3I(021021)   | EPA 7470A              | 600356   | EPA 7470A         | 600864     |
| 92521581014 | YGWA-3D(021021)   | EPA 7470A              | 600356   | EPA 7470A         | 600864     |
| 92521581015 | YGWA-30I(021121)  | EPA 7470A              | 600356   | EPA 7470A         | 600864     |
| 92521581016 | FB-01(021121)     | EPA 7470A              | 600356   | EPA 7470A         | 600864     |
| 92521581017 | EB-01(021121)     | EPA 7470A              | 600356   | EPA 7470A         | 600864     |
| 92521578010 | YGWA-1I (021221)  | EPA 7470A              | 601295   | EPA 7470A         | 601814     |
| 92521578011 | YGWA-1D (021221)  | EPA 7470A              | 601295   | EPA 7470A         | 601814     |
| 92521578001 | EB-02 (021021)    | EPA 300.0 Rev 2.1 1993 | 599663   |                   |            |
| 92521578002 | YGWA-14S (021021) | EPA 300.0 Rev 2.1 1993 | 599663   |                   |            |
| 92521578003 | DUP-1 (021021)    | EPA 300.0 Rev 2.1 1993 | 599663   |                   |            |
| 92521581001 | YGWA-5D (020821)  | EPA 300.0 Rev 2.1 1993 | 599663   |                   |            |
| 92521581002 | DUP-01(020821)    | EPA 300.0 Rev 2.1 1993 | 599663   |                   |            |
| 92521581003 | YGWA-5I (020821)  | EPA 300.0 Rev 2.1 1993 | 599663   |                   |            |
| 92521581004 | YGWA-39 (021021)  | EPA 300.0 Rev 2.1 1993 | 599663   |                   |            |
| 92521581005 | YGWA-40 (021021)  | EPA 300.0 Rev 2.1 1993 | 599663   |                   |            |
| 92521581006 | FB-01(021021)     | EPA 300.0 Rev 2.1 1993 | 599663   |                   |            |
| 92521581007 | YGWA-20S (020921) | EPA 300.0 Rev 2.1 1993 | 599663   |                   |            |
| 92521581008 | YGWA-4I(020921)   | EPA 300.0 Rev 2.1 1993 | 599663   |                   |            |
| 92521581009 | YGWA-17S(020921)  | EPA 300.0 Rev 2.1 1993 | 599663   |                   |            |
| 92521581010 | YGWA-18S(020921)  | EPA 300.0 Rev 2.1 1993 | 599663   |                   |            |
| 92521581011 | YGWA-18I(020921)  | EPA 300.0 Rev 2.1 1993 | 599664   |                   |            |
| 92521581012 | YGWA-21I(020921)  | EPA 300.0 Rev 2.1 1993 | 599664   |                   |            |
| 92521581013 | YGWA-3I(021021)   | EPA 300.0 Rev 2.1 1993 | 599664   |                   |            |
| 92521581014 | YGWA-3D(021021)   | EPA 300.0 Rev 2.1 1993 | 599664   |                   |            |
| 92521581015 | YGWA-30I(021121)  | EPA 300.0 Rev 2.1 1993 | 599664   |                   |            |
| 92521581016 | FB-01(021121)     | EPA 300.0 Rev 2.1 1993 | 599664   |                   |            |
| 92521581017 | EB-01(021121)     | EPA 300.0 Rev 2.1 1993 | 599664   |                   |            |
| 92521578010 | YGWA-1I (021221)  | EPA 300.0 Rev 2.1 1993 | 600235   |                   |            |
| 92521578011 | YGWA-1D (021221)  | EPA 300.0 Rev 2.1 1993 | 600235   |                   |            |
|             |                   |                        |          |                   |            |

| Pace Analytical*                                                                                                                                                                                                                                                                                                                                   | Document Name:<br>Sample Condition Upon Recei<br>Document No.:<br>F-CAR-CS-033-Rev.07                                        | Document Revised: October 28, 2020<br>Page 1 of 2<br>Issuing Authority:<br>Pace Carolinas Quality Office                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Asheville Eden Greenwood                                                                                                                                                                                                                                                                                                                           | Huntersville Rate                                                                                                            | eigh Mechanicsville Atlanta Kernersville                                                                                                                                                                                                                                          |
| Sample Condition<br>Upon Receipt                                                                                                                                                                                                                                                                                                                   | o<br>o we v                                                                                                                  | Project #: WO#:92521581                                                                                                                                                                                                                                                           |
| Courter: Effed Ex U<br>Commercial Pace                                                                                                                                                                                                                                                                                                             | PS USPS D<br>Other:                                                                                                          | Client 92521581                                                                                                                                                                                                                                                                   |
| Custody Seal Present? Yes                                                                                                                                                                                                                                                                                                                          | Seals Intact? 🕴 🗌 Yes 🔤 🕅                                                                                                    | No<br>Date/Initials Person Examining Contents 2/10/2-(                                                                                                                                                                                                                            |
| Packing Material:       Bubble Wrap       [         Thermometer:       IR Gun ID:       230         Cooler Temp:       24       Correction         Cooler Temp:       24       Add/Subtra         Cooler Temp Corrected (*C):       2         USDA Regulated Soil ( IN/A, water sample)       Did samples originate in a quarantine zone within th | Bubble Bags None<br>Type of Ice:<br>Factor:<br>act (*C) 0-0<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L<br>L | Other     Biological Tissue Frozen?       Yes     No       Blue     None       Temp should be above freezing to 6°C       Samples out of temp criteria. Samples on ice, cooling process has begun       cmaps)?     Did samples originate from a foreign source (internationally; |
| Yes No                                                                                                                                                                                                                                                                                                                                             |                                                                                                                              | Including Hawaii and Puerto Rico)? Yes No<br>Comments/Discrepancy:                                                                                                                                                                                                                |
| Chain of Custody Present?                                                                                                                                                                                                                                                                                                                          |                                                                                                                              | 1. 1.                                                                                                                                                                                                                                                                             |
| Samples Arrived within Hold Time?                                                                                                                                                                                                                                                                                                                  |                                                                                                                              | 2.                                                                                                                                                                                                                                                                                |
| Short Hold Time Analysis (<72 hr.)?                                                                                                                                                                                                                                                                                                                | IYes ING IN/A                                                                                                                | 3.                                                                                                                                                                                                                                                                                |
| Rush Turn Around Time Requested?                                                                                                                                                                                                                                                                                                                   |                                                                                                                              | 4.                                                                                                                                                                                                                                                                                |
| Sufficient Volume?                                                                                                                                                                                                                                                                                                                                 |                                                                                                                              | A 5                                                                                                                                                                                                                                                                               |
| Correct Containers Used?<br>-Pace Containers Used?                                                                                                                                                                                                                                                                                                 | 1217és 12100 121/A<br>1217és 12100 121/A                                                                                     | A 6.                                                                                                                                                                                                                                                                              |
| Containers Intact?                                                                                                                                                                                                                                                                                                                                 |                                                                                                                              | A 7.                                                                                                                                                                                                                                                                              |
| Dissolved analysis: Samples Field Filtered?                                                                                                                                                                                                                                                                                                        |                                                                                                                              | A 8.:                                                                                                                                                                                                                                                                             |
| Sample Labels Match COC?                                                                                                                                                                                                                                                                                                                           |                                                                                                                              | A 9.                                                                                                                                                                                                                                                                              |
| -includes Date/Time/ID/Analysis Matrix:                                                                                                                                                                                                                                                                                                            |                                                                                                                              |                                                                                                                                                                                                                                                                                   |
| Headspace in VOA Vials (>5-6mm)?                                                                                                                                                                                                                                                                                                                   |                                                                                                                              | A 10.                                                                                                                                                                                                                                                                             |
| Trip Black Cuttody Socia Procent?                                                                                                                                                                                                                                                                                                                  |                                                                                                                              |                                                                                                                                                                                                                                                                                   |
| COMMENTS/SAMPLE DISCREPANCY                                                                                                                                                                                                                                                                                                                        |                                                                                                                              | Field Data Required? Yes No                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                              |                                                                                                                                                                                                                                                                                   |
| CLIENT NOTIFICATION/RESOLUTION                                                                                                                                                                                                                                                                                                                     |                                                                                                                              | Lot ID of split containers:                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                    | · · · · · · · · · · · · · · · · · · ·                                                                                        |                                                                                                                                                                                                                                                                                   |
| Person contacted:                                                                                                                                                                                                                                                                                                                                  | Dat                                                                                                                          | te/Time:                                                                                                                                                                                                                                                                          |
| Project Manager SCURF Review:                                                                                                                                                                                                                                                                                                                      |                                                                                                                              |                                                                                                                                                                                                                                                                                   |
| Project Manager SRF Review:                                                                                                                                                                                                                                                                                                                        |                                                                                                                              | Date:                                                                                                                                                                                                                                                                             |

|    |                |                   | 1 | l        | 1                                       |                  |               | e l   | N. |     | B        | 9        | 18     | 7  | 16       | 6                                        |               |         | IIEM#                                                                                |               |    | <b>Vest</b> | i H         | 1<br>D<br>D | Ĩ                   | i i i           |                          | ****              |
|----|----------------|-------------------|---|----------|-----------------------------------------|------------------|---------------|-------|----|-----|----------|----------|--------|----|----------|------------------------------------------|---------------|---------|--------------------------------------------------------------------------------------|---------------|----|-------------|-------------|-------------|---------------------|-----------------|--------------------------|-------------------|
|    |                |                   |   |          | AND AND AND AND AND AND AND AND AND AND |                  | THE REPORTION |       |    |     |          |          |        |    |          |                                          |               | YGWB-SD | SAMPLE ID<br>One Character per bost.<br>(A-Z, 0-8 / , -<br>Sample int must be unique |               |    | N Due Cale: |             | 3A 30114    | 1070 Bridge Mil Ave | c Georgia Power | Client information:      | Proce Analytical  |
|    |                |                   |   |          |                                         |                  |               |       |    |     |          |          |        |    |          | an an an an an an an an an an an an an a |               |         | Connect And                                                                          | MATRIXO CODED |    | Priver #    | Purchase On |             | Copy To:            | Report To:      | Section B<br>Required Pr |                   |
|    |                |                   |   |          |                                         |                  |               |       |    |     | 1        | ١        | ¥.     | ¥. | ۲.       | 5                                        | ¥.            | WT      | MATRIX CODE (see valid cod                                                           | es to ieit)   |    | "           |             |             |                     | <u>s</u>        |                          |                   |
|    |                |                   |   |          |                                         |                  |               |       | ļ  |     | <b> </b> |          |        | L  | <u> </u> | <b> </b>                                 | <u> </u>      |         | SAMPLE TYPE (B+GRAB C                                                                | COMP)         | •  | 1.00        |             |             | ŕ                   | š               |                          | - <u>-</u>        |
|    |                |                   |   |          |                                         |                  |               |       |    |     |          |          |        |    |          |                                          |               | plate   | ST                                                                                   |               |    | 5 ANEA      | ;           |             |                     |                 | mation                   |                   |
|    | DIS            | CT-LITTE          |   |          |                                         |                  | VIELAN        |       |    |     |          |          |        |    |          |                                          |               | 1645    | TIME                                                                                 | 8<br>E        | :  |             |             |             |                     | ·               |                          | -                 |
|    | NATURE         | IT NAME           | 8 |          |                                         |                  |               |       |    |     |          |          |        |    |          |                                          |               |         | DATE                                                                                 | ECTED         |    |             |             |             |                     |                 |                          |                   |
|    | of SANP        | or one of         |   |          |                                         |                  | B             |       |    |     |          |          |        |    |          |                                          |               |         | TIME                                                                                 |               |    |             |             |             |                     |                 |                          | N-O               |
|    |                |                   |   |          |                                         |                  |               |       |    |     |          |          |        |    |          |                                          |               | 2       | SAMPLE TEMP AT COLLECTIC                                                             | M             |    |             |             | $\Box$      |                     |                 |                          | ┋꾼                |
|    |                |                   |   |          |                                         |                  |               |       | ·  |     |          |          |        |    |          |                                          |               |         | # OF CONTAINERS                                                                      |               |    | 8           | 8           | ě           | 8                   |                 |                          | ê Ç               |
|    |                | d l               |   |          |                                         |                  |               |       |    |     |          | <b> </b> |        | ·  |          | ļ                                        | ļ             |         | Unpreserved                                                                          |               | 3  | Į           | 8           | 8           |                     | Hon:            | ្រ<br>ទី ថ្មី<br>ទី ០    | ST<br>ST          |
| ŗ. | $\bigcirc$     | ₹                 |   | <b>.</b> | Ļ                                       |                  |               | <br>  |    |     |          |          |        |    |          |                                          |               |         | H2SO4                                                                                |               | Ĩ  |             | Ĩ           |             | <u>a</u>            |                 | 3                        |                   |
| 0  |                | 5 N               |   |          |                                         | 2                | S.            | <br>  |    |     |          |          |        |    |          |                                          |               |         | HNU3                                                                                 | Tes           |    | - Partie    |             |             | °                   |                 |                          | ≥ ₹               |
|    |                | 8                 |   |          |                                         | $\sim$           | 8.7           | <br>  |    |     |          |          |        |    |          |                                          |               |         | NaOH                                                                                 | eva           | Į  | 8           |             |             |                     |                 |                          | 8≥                |
|    |                | $\sum_{i=1}^{n}$  |   |          |                                         |                  | 3             | <br>  |    |     |          |          |        |    |          |                                          |               |         | Na28203                                                                              | lives         |    | 5           |             |             |                     |                 |                          |                   |
|    |                | 100               |   |          |                                         | $\sim$           |               | <br>- |    |     |          |          |        |    |          |                                          |               |         | Methanol                                                                             |               |    | 1 A         |             |             |                     |                 |                          | ۳ <b>X</b>        |
| •  |                |                   |   |          |                                         | $\left  \right $ | D             | <br>  |    |     |          |          |        |    |          |                                          |               |         | Other                                                                                |               |    | <b>The</b>  |             |             |                     |                 |                          | <u>≥</u> <u>S</u> |
|    |                | 154               |   |          | <pre></pre>                             | X                | Ŵ.            |       |    |     |          |          |        | _  |          |                                          |               |         | Analyses Test                                                                        | Y/N           |    | Bhao        |             |             |                     | ł               |                          |                   |
|    | p              |                   |   | :        |                                         | Š.               | P.S.          | <br>  |    |     | ×        | ×        | ×      | ×  | ×        | ×                                        | X             | ×<br>U  | App IV Metals                                                                        | -             |    | elabs       |             |             |                     |                 |                          | ą                 |
|    | Ĩ              | 100               |   |          |                                         | W)               | 2             | <br>  |    |     | ^<br>X   | ×        | с<br>х | ×  | ×        | ×                                        | ×             | ×       | PAD 9315/0320                                                                        |               |    | 8           |             |             |                     | I               |                          | ie is             |
| -  | - Inde         |                   |   |          |                                         |                  |               | <br>  |    |     |          |          |        | -  |          |                                          |               |         |                                                                                      |               |    |             |             |             | Ĭ.                  |                 | · . '                    | 2 D               |
|    | ÷              |                   |   |          |                                         | と                |               |       |    |     |          |          |        |    |          |                                          |               |         |                                                                                      |               | ŝ, |             |             |             |                     |                 |                          | <u><u>a</u> 0</u> |
|    | 53             |                   |   |          | ~                                       | 0                |               |       |    |     |          |          |        |    |          |                                          |               |         |                                                                                      |               | ł  |             |             | i I         |                     |                 |                          |                   |
|    | 0              | 5.9               |   |          | ~                                       | $\Sigma$         | MIE           |       |    |     |          |          |        |    |          | ļ                                        |               |         |                                                                                      |               |    |             | Ц           |             | ┛                   |                 | · .                      |                   |
|    | 00             |                   |   | <b>.</b> | ,                                       |                  |               | <br>  |    |     |          |          |        |    | <u> </u> |                                          |               |         |                                                                                      |               |    |             |             |             | 24.                 |                 |                          |                   |
|    | 5              |                   |   |          |                                         | $\mathbb{C}$     | 1             | <br>  |    |     |          |          |        |    |          |                                          |               |         |                                                                                      |               |    |             |             |             |                     |                 |                          |                   |
|    |                |                   |   |          |                                         | ${\mathbf P}$    | ы.            |       |    |     |          |          |        |    | · · ·    |                                          |               |         |                                                                                      |               |    |             |             |             |                     | ſ               |                          | irate -           |
| :  |                |                   |   |          |                                         |                  |               |       |    |     |          |          |        |    |          | ·                                        |               |         | ······································                                               |               |    | 2           |             |             |                     |                 | 5                        | ×.                |
|    | TEMP           | <sup>2</sup> In C |   |          |                                         |                  |               |       |    | . : | ·        |          |        |    |          |                                          | (10000000000° |         | Residual Chlorine (Y/N)                                                              |               |    | l           |             |             | 6                   | ŀ               | р<br>+                   |                   |
|    | Rece           | ved on 🗄          |   |          |                                         |                  | 191           |       |    |     |          |          |        |    |          |                                          |               |         | а.<br>О                                                                              |               | 9  | 5           |             |             |                     |                 | _                        |                   |
|    | (Y/N)          |                   |   |          |                                         |                  |               |       |    |     |          |          |        |    |          |                                          |               |         | 2                                                                                    |               |    |             |             | <b>Ş</b> Ì  |                     | Ī               | •                        |                   |
|    | Cusic<br>Seale | ay<br>10          |   |          |                                         |                  | <b>S</b>      |       |    |     |          |          |        |    |          |                                          |               |         | Ś                                                                                    |               | 1  | (C.).       |             |             |                     |                 |                          |                   |
|    | Coole          | rCi               |   |          | l                                       |                  |               |       |    |     |          |          |        |    |          |                                          |               |         | 3                                                                                    |               | S. |             |             |             |                     | ľ               | 4                        |                   |
|    | Samp           | les               |   |          |                                         |                  |               |       |    |     |          |          |        |    |          |                                          |               |         | 3                                                                                    |               |    |             |             |             | •                   |                 |                          | 2.3               |
|    | (Y/N)          | 3                 |   |          |                                         |                  |               |       |    |     |          |          |        |    |          |                                          |               |         |                                                                                      |               |    |             | L           |             | Ŕ                   | Ľ               | N                        |                   |

Page 46 of 50

5

| Answer         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             | [ <sup>3, 1</sup> ] | 11   |                                                                              | E        |          | 8            |          |              |                                                                                                                 |          |                   |              | <b>W</b>         | 2      |                   | ITEM#                                                                          |            | İ         |             | <b>,</b>       | nton, G    | Tess:                |                             | 5 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------|------|------------------------------------------------------------------------------|----------|----------|--------------|----------|--------------|-----------------------------------------------------------------------------------------------------------------|----------|-------------------|--------------|------------------|--------|-------------------|--------------------------------------------------------------------------------|------------|-----------|-------------|----------------|------------|----------------------|-----------------------------|---|
| Herein         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |                     |      |                                                                              |          | YCHADD+  | YEARO CAR    |          | YCHAN DRI    | YGWA-20S bag of the transformed of the second second second second second second second second second second se |          | **** FB-01/02102D | XOWA-40      | Kenner YAWA - 39 | YGWAS  | ×==- DUP-01(02082 | SAMPLE ID<br>One Chanadar per box.<br>(A-Z, 64) /<br>Sample kis must be unique |            |           | d Due Date: |                | X 30114    | 1070 Bridge Mill Ave | Client Information:         |   |
| Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manual         Manua         Manua         Manua <td></td> <td></td> <td></td> <td>at a large</td> <td>×</td> <td></td> <td>×</td> <td>2</td> <td>V</td> <td></td> <td>&lt;</td> <td>¥</td> <td></td> <td>&lt;</td> <td>5</td> <td></td> <td></td> <td></td> <td></td> <td>Project #:</td> <td>Purchase Order</td> <td></td> <td>Copy To:</td> <td>Section B<br/>Required Proje</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |                     |      | at a large                                                                   | ×        |          | ×            | 2        | V            |                                                                                                                 | <        | ¥                 |              | <                | 5      |                   |                                                                                |            |           | Project #:  | Purchase Order |            | Copy To:             | Section B<br>Required Proje |   |
| Image: New Constraints         Image: New Constraints         Image: New Constraints         Image: New Constraints         Image: New Constraints         Image: New Constraints         Image: New Constraints         Image: New Constraints         Image: New Constraints         Image: New Constraints         Image: New Constraints         Image: New Constraints         Image: New Constraints         Image: New Constraints         Image: New Constraints         Image: New Constraints         Image: New Constraints         Image: New Constraints         Image: New Constraints         Image: New Constraints         Image: New Constraints         Image: New Constraints         Image: New Constraints         Image: New Constraints         Image: New Constraints         Image: New Constraints         Image: New Constraints         Image: New Constraints         Image: New Constraints         Image: New Constraints         Image: New Constraints         Image: New Constraints         Image: New Constraints         Image: New Constraints         Image: New Constraints         Image: New Constraints         Image: New Constraints         Image: New Constraints         Image: New Constraints         Image: New Constraints         Image: New Constraints         Image: New Constraints         Image: New Constraints         Image: New Constraints         Image: New Constraints         Image: New Constraints         Image: New Constraints         Image: New Constraints         Image: New Constraints         Image: New Constraints         Image: New Constraints<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                     | R    |                                                                              | 14       | 4        | 15           | Ĩ        | 15           | 5                                                                                                               | 5        | 4                 | 5            | ٦<br>٦           | 5      | 5                 | SAMPLE TYPE (G=GRAS C                                                          | COMP)      | :         | Yat         | 7              |            | sow s                |                             |   |
| Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name         Name <th< td=""><td></td><td></td><td>E E</td><td></td><td></td><td>1</td><td>1</td><td>Тř</td><td>1</td><td>12</td><td></td><td>5</td><td>2</td><td><u>or Z</u></td><td>27</td><td>\$2</td><td>PA I</td><td></td><td></td><td></td><td></td><td></td><td>ec.vor</td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                     | E E  |                                                                              |          | 1        | 1            | Тř       | 1            | 12                                                                                                              |          | 5                 | 2            | <u>or Z</u>      | 27     | \$2               | PA I                                                                           |            |           |             |                |            | ec.vor               |                             |   |
| Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number     Number <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>4 16</td> <td></td> <td>2110</td> <td>य<br/>प</td> <td>209</td> <td>216</td> <td></td> <td></td> <td>Q</td> <td></td> <td>: 5</td> <td></td> <td></td> <td></td> <td>Ă</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |                     |      |                                                                              |          |          |              |          | -            | 4 16                                                                                                            |          | 2110              | य<br>प       | 209              | 216    |                   |                                                                                | Q          |           | : 5         |                |            |                      | Ă                           |   |
| Processor     Processor       Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: Image: I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                     | 1110 |                                                                              |          | <u> </u> |              | ₽.       |              | 8,                                                                                                              |          | сл<br>Г           | יא           | 36               | 20     |                   | R I                                                                            |            |           |             |                |            |                      |                             |   |
| Network     Note:     Comparison       Intervention     Sample TERPAT COLLECTION     Provide TERPAT COLLECTION       Provide TERPAT COLLECTION     Provide TERPAT COLLECTION     Provide TERPAT COLLECTION       Provide TERPAT COLLECTION     Provide TERPAT COLLECTION     Provide TERPAT COLLECTION       Provide TERPAT COLLECTION     Provide TERPAT COLLECTION     Provide TERPAT COLLECTION       Provide TERPAT COLLECTION     Provide TERPAT COLLECTION     Provide TERPAT COLLECTION       Provide TERPAT COLLECTION     Provide TERPAT COLLECTION     Provide TERPAT COLLECTION       Provide TERPAT COLLECTION     Provide TERPAT COLLECTION     Provide TERPAT COLLECTION       Provide TERPAT COLLECTION     Provide TERPAT COLLECTION     Provide TERPAT COLLECTION       Provide TERPAT COLLECTION     Provide TERPAT COLLECTION     Provide TERPAT COLLECTION       Provide TERPAT COLLECTION     Provide TERPAT COLLECTION     Provide TERPAT COLLECTION       Provide TERPAT COLLECTION     Provide TERPAT COLLECTION     Provide TERPAT COLLECTION       Provide TERPAT COLLECTION     Provide TERPAT COLLECTION     Provide TERPAT COLLECTION       Provide TERPAT COLLECTION     Provide TERPAT COLLECTION     Provide TERPAT COLLECTION       Provide TERPAT COLLECTION     Provide TERPAT COLLECTION     Provide TERPAT COLLECTION       Provide TERPAT COLLECTION     Provide TERPAT COLLECTION     Provide TERPAT COLLECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                     | 200  | よ<br>2<br>3<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |          | -        |              |          | <b> </b>     |                                                                                                                 |          |                   |              |                  |        |                   |                                                                                | 18         |           |             |                |            |                      |                             |   |
| SAMPLETERATICALLETTION<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Network<br>Networ                                                                                                                                                                                                                                                                                                                            | 1dmV        |                     | 101  |                                                                              |          |          |              |          |              |                                                                                                                 |          |                   |              |                  |        |                   | ă 👘                                                                            |            |           |             |                |            |                      |                             |   |
| Print     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H     H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |                     | =    |                                                                              |          | ļ        |              | à_       |              |                                                                                                                 |          |                   |              |                  | -      |                   | SAMPLE TEMP AT GOLLECTIN                                                       | R          |           | 5 5         | 1 1            |            | 000                  | <b>.</b>                    | • |
| Program     Program       Image: State of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ya S        |                     | Ē    | Ŋ                                                                            |          |          |              |          |              |                                                                                                                 | <u> </u> | F                 | 21/          | 11               | 1      |                   | Unpreserved                                                                    | 1          |           |             | 0 202          | danes      |                      |                             |   |
| Image: Note of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1×          |                     | 7    | い調                                                                           |          |          |              |          |              |                                                                                                                 |          |                   |              |                  | Ň      | 5                 | H2904                                                                          |            |           |             | luote:         | <b>9</b> 7 | 2   7                | in o                        | • |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |                     |      |                                                                              |          |          |              | Ň        |              | $\sim$                                                                                                          |          | $\overline{\ }$   | Ζ            | 1                | Ζ      | ~                 | HNO3                                                                           | 3          | ľ         | T Nana      |                |            |                      |                             |   |
| NBCH     MBCH     MBCH       Mac2203     Mac2203       Mac2203     Mac2203       Mac2203     Mac2203       Mac2203     Mac2203       Mac2203     Mac2203       Mac2203     Mac2203       Mac2203     Mac2203       Mac2203     Mac2203       Mac2203     Mac2203       Mac2203     Mac2203       Mac2203     Mac2203       Mac2203     Mac2203       Mac2203     Mac2203       Mac2203     Mac2203       Mac2203     Mac2203       Mac2203     Mac2203       Mac2203     Mac2303       Mac2203     Mac2303       Mac2203     Mac2303       Mac2303     Mac2303       Mac2303     Mac2303       Mac2303     Mac2303       Mac2303     Mac2303       Mac2303     Mac2303       Mac2303     Mac2303       Mac2303     Mac2303       Mac2303     Mac2303       Mac2303     Mac2303       Mac2303     Mac2303       Mac2303     Mac2303       Mac2303     Mac2303       Mac2303     Mac2303       Mac2303     Mac2303       Mac2303     Mac2303       Mac2303     M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ۶.          |                     | Ž    |                                                                              |          |          |              | 1        |              |                                                                                                                 |          | <u> </u>          |              |                  |        |                   | HCI                                                                            | 13         | 1001      | 8           |                |            |                      | 1¥                          |   |
| Since     Image: Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since Since                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | õ 🖉         |                     | å    |                                                                              |          |          |              |          | <u></u>      |                                                                                                                 | —        | -                 |              |                  |        |                   | Na2\$203                                                                       | i i        |           | 8           |                |            |                      |                             |   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | કુ.         |                     | 4    | NB                                                                           |          |          |              |          |              |                                                                                                                 |          |                   |              |                  |        |                   | Methanol                                                                       | μ.         |           | No.2        |                |            |                      |                             |   |
| Andress         Andress         Mail           Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andress         Andres         Andres         Andres <td>輸び</td> <td></td> <td>7</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Other</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 輸び          |                     | 7    |                                                                              |          |          |              |          |              |                                                                                                                 |          |                   |              |                  |        |                   | Other                                                                          | 1          |           |             |                |            |                      |                             |   |
| Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal         Normal<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                     | 2    |                                                                              |          | 'n       | 1.1          |          | 1.1          | 1                                                                                                               |          |                   | <b>A</b> .   |                  |        |                   | Analysee Track                                                                 |            |           | <u>oeda</u> | · .            |            |                      |                             |   |
| P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c         P in c<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                     | Ì    |                                                                              | Ţ-       | ĮĮ−      | 1            | <u>I</u> | IJ-          | ×                                                                                                               | 1        |                   | ۲ř           | 1                | ×      | ×                 | App IV Metals                                                                  | <b> </b>   |           |             |                |            | ľ                    |                             |   |
| Plin c<br>Hed on<br>pog<br>plog<br>plog<br>plog<br>plog<br>plog<br>plog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |                     | N    |                                                                              | H        | k        | <b>x</b>     | ¥        | k            | ×                                                                                                               | *        | 5                 | <del>,</del> | ,<br>X           | ×      | ×                 | RAD 9315/9320                                                                  |            |           | )<br>j      |                |            |                      |                             |   |
| Pinc Resduil Chicrine (V/N)<br>AHIDIAH 17710<br>Pinc AH: 5:10 7<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH: 5:30<br>- DH:                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |                     |      |                                                                              | 1        |          | 1            | 1        | *            |                                                                                                                 |          | ₩→                | +            | •                |        |                   | -                                                                              |            |           |             |                |            |                      |                             |   |
| $P_{\text{res}} = P_{\text{res}}                                                                                                                                |             |                     |      |                                                                              |          |          |              |          |              |                                                                                                                 | •        |                   |              |                  |        |                   |                                                                                |            | 1. See .  |             |                |            |                      |                             |   |
| P in C<br>1770 $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$ $1770$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |                     | H.   |                                                                              | <b> </b> | <b> </b> |              | <u> </u> | ┨            |                                                                                                                 | <b> </b> |                   |              |                  |        | ļ                 |                                                                                | <b> </b> î | F. 4. 15. |             |                |            |                      |                             |   |
| Pinc<br>1/7/0<br>Pinc<br>Need on<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7/0<br>Pinc<br>1/7                                                                                                                                          |             |                     | D    | 当時                                                                           | -        | +        |              |          |              |                                                                                                                 |          | ├──               |              |                  |        |                   |                                                                                | ╂───┨Ĭ     |           | 繱           |                | <u>.</u>   |                      | 1                           |   |
| Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pin C<br>Pi                                                                                                                                                                                      |             |                     |      |                                                                              |          | 1 -      | <del> </del> |          | <del> </del> |                                                                                                                 |          | <b> </b>          |              |                  |        |                   |                                                                                |            | -<br>-    | Carle H     |                |            |                      |                             | • |
| P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in C<br>P in                                                                                                                                                                                                                                                                  |             |                     | 4    |                                                                              |          |          |              |          |              |                                                                                                                 |          |                   |              |                  |        |                   |                                                                                |            |           |             |                |            |                      |                             |   |
| P In C<br>rived on<br>rived on<br>D dy<br>rived on<br>P In C<br>Residual Chlorine (Y/N)<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P In C<br>P                                                                                                                                                                                                                                                                    |             |                     |      | > 🎇                                                                          | -        |          |              |          | ļ            |                                                                                                                 |          |                   |              |                  |        |                   |                                                                                |            |           |             |                |            | Ì                    | 2                           |   |
| Prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on<br>prived on                                                                                                                                                                                                                                                                                                                                                                                                              | IP (n C     |                     |      |                                                                              | <b>_</b> | <u></u>  | <u> </u>     |          | <u> </u>     |                                                                                                                 | l        | L                 |              |                  |        | <u> </u>          |                                                                                |            |           |             |                |            |                      | 19                          |   |
| H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.107<br>H:5.10 | elved on    |                     |      |                                                                              | -        | 1        | •            | d.       | 1            | 0                                                                                                               | 4        |                   | <u>,</u>     |                  | 0.     | 1                 | TARANAN ANAINA (TUA)                                                           |            | e la      |             |                |            | Ň                    | ľ                           |   |
| Big Big Big Big Big Big Big Big Big Big                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | )           |                     |      |                                                                              |          | ¶ • .    | (            | Ħ        | 11           | 4                                                                                                               | 1        | 1                 | []           | 1                | 1      | 1                 | A.                                                                             | Merally.   |           |             |                |            | S."                  | R                           | ľ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tody        |                     |      |                                                                              |          |          |              | Å        |              | 5                                                                                                               |          |                   | 3            | 40               | r<br>S |                   | 2                                                                              | 200        |           |             |                | B          |                      | ľ                           |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | agu<br>larD |                     |      |                                                                              |          |          |              | ₽        | ĺ '          | 0                                                                                                               |          |                   | 6TG          | un l             | ۲,     | Г                 | 2                                                                              | 190        |           |             |                |            |                      | 2                           |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nples       |                     |      |                                                                              |          |          |              |          |              | Ι.                                                                                                              |          |                   | 3            | Ř                |        |                   | 3                                                                              |            |           | A STATE     |                |            | n                    |                             |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | สบ<br>1)    |                     |      |                                                                              | -        |          |              |          |              | Ĺ                                                                                                               | ŀ        | `                 | いた           | <b>W</b>         |        |                   | ~                                                                              |            |           |             |                |            | ğ                    | hh.                         |   |

Page 47 of 50

|              |                                       | ÌÌ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | 2                |      |                         |          |                | UB.     |                 |                     |                  |                         |                  |                  | ITEM#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | _        | quester                                                                                                        | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ₽<br> <br> <br> <br> | ž                   | ning ning          | tion A                                        |
|--------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|------|-------------------------|----------|----------------|---------|-----------------|---------------------|------------------|-------------------------|------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------------|--------------------|-----------------------------------------------|
| 1            |                                       | HER PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERTY AND A REAL PROPERT |              | 12402-0-1-0-2012 |      | VOWO 2101               | VONCES   | YGMA211 020911 | YOWARS  | 13WA-181 020201 | YOWA-185 ( DE OALI) | YGWA-175 (01092) | Million Contraction     | CHAP-            | YGMA-1 (0 209 21 | SAMPLE ID<br>One Churacter per box.<br>(A-Z, 647 /, -<br>Samphe Ms musst be unique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ·                 |          | 1 Due Date:                                                                                                    | (770)384.6526 Fax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A 30114              | 1070 5 Kige Mil Ave | Chest Informations | MOTION AND AND AND AND AND AND AND AND AND AN |
|              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                  |      |                         |          |                |         |                 |                     |                  |                         |                  |                  | A Participation of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second | Naliant formation |          | Projec                                                                                                         | Piojed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      | Copy                | Requi              | Sectio                                        |
|              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | ×                | ¥    |                         | ž        |                | ¥       | ŧ               | 1                   | £                | z                       | X                | ¥                | MATRX CODE (see vaid on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | đi đi             |          | 7                                                                                                              | Name:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      | <u>8</u>            | ad Proje           | 5                                             |
|              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                  |      |                         |          |                | -       | -               |                     | - <br>           |                         |                  |                  | SAMPLETYPE (G=GRAB (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C=COMP)           |          |                                                                                                                | ĭ.<br>Nate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | anc An              | et Indon           |                                               |
|              | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | 51 12            | 1    | ┽╃                      |          | 29 10          |         | 19 14           | 20                  | - 11             |                         | $\left  \right $ | <b>1</b>         | START                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                 |          |                                                                                                                | AWA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                     | netionx            |                                               |
| A MIN        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | ۳,<br>           | ┼┼   | ╢                       | ┼┨       | J              | ┼╉      | 8               | <u>8</u>            | S                |                         | ╢                | 9                | R F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |          |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                     |                    | 쿭                                             |
|              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2            |                  | ┼╀   |                         |          |                |         |                 |                     |                  |                         | ╀┼               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                 |          |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                     |                    | : Chain-ol                                    |
| <b>F</b>     | _                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | 廿                | Ш    | ╧                       |          |                |         |                 |                     |                  | $\pm$                   |                  |                  | SAMPLE TEMP AT COLLECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ION               |          |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                     |                    | -Cust                                         |
| [2] 7]       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | j 🛛          | ŧ                | ╟    | ┽╉                      | +        | 2              | •       | ×               | 2                   | 4 1              |                         | ┢┦               | 4                | # OF CONTAINERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u>          | ] [      | Page                                                                                                           | Pace C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Addres               | Allena              | Invoic             | Ody is<br>Sectio                              |
|              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | X                |      | 廿                       | $\bot$   |                |         |                 |                     |                  |                         |                  | É                | H2SO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |          |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ϋ́                   | NY Nar              |                    | ° E                                           |
|              |                                       | N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>,</b> /   | 甼                | ╢    | ╫                       | +        | ~              | ╂╋      | ×               | X                   |                  |                         | ╂╂               | ×                | HNO3<br>HCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Press             |          | 1                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 芬                   | mation             | GA L                                          |
|              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | 匚                | ţţ_  | ╧                       |          |                |         |                 |                     |                  |                         | Π                |                  | NaOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |          | 5                                                                                                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                     | ľ                  | ŏ                                             |
|              |                                       | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | ╟┼               | ╢    | ┿┥                      |          |                | ╢       |                 |                     | :                | +                       | ┼┼               |                  | Na2S2O3<br>Methanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - <sup>3</sup>    |          |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | Ĩ                   |                    | MEN                                           |
|              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | Ľ                |      |                         |          |                |         |                 |                     |                  |                         |                  |                  | Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |          | An Less                                                                                                        | [ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                     | с<br>              | T. A                                          |
|              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | Ľ.               | +    | 4                       | K        |                |         |                 |                     | v                | -                       |                  |                  | Autoriane That w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | R/N               |          | Stadio                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                     |                    | relev                                         |
|              |                                       | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | <b>H</b>         | ╠    | ×                       | ×        | ×              | 1       | ×               | ×                   | ×                | $\overline{\mathbf{x}}$ | R                | ÷                | App iv metals<br>Fluorida                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |          |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                     |                    | ar 2                                          |
| 12.24        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | ×_               | 1    | M                       | ×        | ×              | 1       | ×               | ×                   | ×                | ×                       | X                | ×                | RAD 9315/9320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |          | Ş                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                     |                    | elds                                          |
|              | ي د                                   | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | ╟                | ╢    | ┼╂                      | ┼┨       |                | ╢─      |                 |                     |                  |                         | ╟╋               |                  | ·,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                 | 100      |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                     |                    | Thus                                          |
|              |                                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 M          | L                | Ħ    |                         |          |                |         |                 |                     |                  | 1                       | ┢                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u>          |          |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                     |                    | 8                                             |
|              |                                       | 2ª                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | μ_               | ₩_   | $\downarrow \downarrow$ | +        |                | $\prod$ |                 |                     |                  | ╞                       | H                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |          |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 200                  |                     |                    | mple                                          |
|              |                                       | J.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | ╟╴               | ╢─   | ┼╂                      | ┼┦       | ┞╋──           | ┼╊      | ╞               |                     | _                | +                       | ╟╋               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ┢                 |          |                                                                                                                | tool of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division of a local division o |                      |                     |                    | . a                                           |
|              |                                       | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | <b>I</b>         |      | #                       | Щ        |                |         |                 |                     |                  | 1                       | Ш                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   |          | 144.14                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                     |                    |                                               |
|              | _                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1200<br>1200 | $\parallel$      | ╢    | ╢                       | ╢        | +              | ╫       | –               | -                   |                  | +                       | ╟                | <u> </u>         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | 12.00    | 1.00 (AL)                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                     | 3                  | nery.                                         |
| AP in C      |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                  | 1    | 4                       | <u> </u> |                |         | 1               | L                   | l                |                         | <u> </u>         | 1                | Residual Chiorine (Y/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |          |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i virte              |                     |                    |                                               |
| alved on     |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | IJ               | Π    | $\mathbf{T}$            | T        | 10             | 1.      | 它               | 2                   | <u>Ų</u>         |                         | 1                | d<br>V           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |          |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                     |                    |                                               |
| v)<br>itody  | _                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | 1                |      | ŀ                       |          |                | V       | F-              |                     | ~~               |                         |                  | F                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | 974<br>1 | 1000                                                                                                           | K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | 9                   | <b>[</b> 7]        | 1 1 1                                         |
| ledű<br>Xerű |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                  |      |                         | ľ        | h              | f       | 5               |                     | ิง               | Ľ                       | $V_{i}$          |                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |          | A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR A | L'AND STOLEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      | I                   | Q.                 | - ÷                                           |
| ()<br>nples  |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                  | $\ $ |                         |          |                |         | 2               |                     | 2                |                         | ľ                |                  | 2(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 200 A             |          | and the second                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                     |                    |                                               |
| tO Dto       |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |                  | 11   |                         | 1        | 12             | 1       | 12              | [                   | ~                |                         |                  | 2                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2404              |          |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | - [                 | NP.                | 1                                             |

Page 48 of 50

|                               |            | ļ                                                                                                              |                 | 1                                                                                                                |                                                                                                                 | N        | É.                                                                                                              |          |            |         |               |              | 0       |    |      | 5                 |                   | ITEM#                                                                |                       |               | 1        | ž             | X)                |            | ğ                    |                                           | Hon     |
|-------------------------------|------------|----------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------|----------|------------|---------|---------------|--------------|---------|----|------|-------------------|-------------------|----------------------------------------------------------------------|-----------------------|---------------|----------|---------------|-------------------|------------|----------------------|-------------------------------------------|---------|
|                               |            | and a second second second second second second second second second second second second second second second |                 | A CANADA AND A CANADA AND A CANADA AND A CANADA AND A CANADA AND A CANADA AND A CANADA AND A CANADA AND A CANADA | A STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF S |          |                                                                                                                 |          |            |         |               | See          |         |    |      | 297 (S. 6MAR. 400 |                   | (A-Z, 8-9'),- Other<br>} Other<br>Sample lds must be unique<br>There |                       | Dava          |          | ed Due Date:  | (770)334.6526 Fac | GA 30114   | 1070 Enkige Mill Ave | d Cilent Information:<br>97 Georgia Power | >.      |
| ·                             |            |                                                                                                                | -               | :                                                                                                                |                                                                                                                 |          |                                                                                                                 |          |            |         |               |              |         |    |      | 112.00            | 120               | 39 <u>8</u>                                                          |                       |               |          | Project       | Project N         |            | Copy Tr              | Require                                   | Section |
|                               |            |                                                                                                                | 0               |                                                                                                                  |                                                                                                                 |          |                                                                                                                 |          | -          |         |               | 5            | 5       | WT | WT   | X                 | 5                 | MATRIX CODE                                                          | ( <b>500 vali</b> d ( | odes to leit) |          |               | e Order #         |            | X                    | d Project                                 | μ.      |
|                               |            |                                                                                                                |                 | 抖                                                                                                                |                                                                                                                 |          | <b> </b>                                                                                                        | +        | ŀ          |         |               |              |         | -  |      | -                 | N                 | SAMPLE TYPE                                                          | (G*GRAB               | C+COMP)       |          |               | F .               |            | A State              | a dora                                    |         |
|                               |            |                                                                                                                |                 |                                                                                                                  |                                                                                                                 | ļ        |                                                                                                                 |          |            |         |               |              |         |    |      | 3                 | 3                 | ONTE                                                                 | ST                    | l.            |          |               |                   |            | WET                  |                                           |         |
|                               |            |                                                                                                                |                 |                                                                                                                  |                                                                                                                 |          | l                                                                                                               |          |            |         |               |              |         |    |      | 36                | Ē                 | T                                                                    | A                     | 8             |          |               |                   |            |                      |                                           |         |
| RUTT                          |            |                                                                                                                |                 |                                                                                                                  |                                                                                                                 |          | in the second second second second second second second second second second second second second second second |          |            |         |               |              |         | -  |      | S                 | 40                | m.<br>                                                               |                       |               |          |               | Þ                 |            |                      |                                           |         |
|                               |            |                                                                                                                |                 |                                                                                                                  |                                                                                                                 |          | l.                                                                                                              |          |            | ÷.к.    |               |              |         |    |      |                   |                   | ATE                                                                  | æ                     | Ð             |          | Ľ             |                   |            |                      |                                           |         |
|                               |            |                                                                                                                |                 |                                                                                                                  |                                                                                                                 |          |                                                                                                                 |          | . • **     |         |               |              |         |    |      |                   |                   | TIN TIN                                                              | 18                    |               |          | ľ             |                   |            |                      |                                           |         |
|                               |            |                                                                                                                |                 |                                                                                                                  |                                                                                                                 | i ta     |                                                                                                                 | <b> </b> |            |         | <u> </u>      |              |         |    |      |                   |                   | M<br>SAMPLE TPMP                                                     | AT COLLECT            |               | <u>ې</u> |               |                   |            |                      | 1                                         |         |
|                               |            | 1                                                                                                              | 1               |                                                                                                                  |                                                                                                                 |          |                                                                                                                 | ĺ        |            |         |               |              | <u></u> |    |      | c                 | 2                 | A OF CONTAIN                                                         | RS                    |               |          |               | 3                 | Σ          | δĮΣ                  | 3                                         | 8       |
| Ř                             | 9          |                                                                                                                |                 |                                                                                                                  |                                                                                                                 |          |                                                                                                                 |          |            |         | l             |              |         |    |      |                   | 4                 | Unpreserved                                                          |                       | T             |          | 8 8           |                   |            |                      | <u>No</u>                                 |         |
|                               |            | _                                                                                                              | _               |                                                                                                                  |                                                                                                                 | ·        |                                                                                                                 |          | :          |         |               |              |         |    |      |                   |                   | H2504                                                                |                       |               |          |               | -ote:             | 7          | N                    | in a                                      | ō       |
| Tool                          |            |                                                                                                                |                 |                                                                                                                  |                                                                                                                 |          |                                                                                                                 |          |            |         | <u> </u>      | <b> </b>     |         | ļ  |      | *                 | 24                | HNO3                                                                 |                       | Pre           |          |               |                   |            |                      |                                           |         |
| 2                             |            |                                                                                                                |                 | <b>(</b> )                                                                                                       |                                                                                                                 |          |                                                                                                                 |          | ·          |         |               |              |         |    |      |                   | <u> </u>          | HCI                                                                  |                       | Ň             |          |               |                   |            |                      | Ä                                         |         |
|                               |            |                                                                                                                |                 | 2                                                                                                                |                                                                                                                 |          | 1                                                                                                               | ·        |            | 1. T    |               |              |         | -  |      |                   |                   | Na28203                                                              |                       |               |          |               |                   |            |                      |                                           |         |
| P 📓                           |            |                                                                                                                |                 | $\mathbb{N}$                                                                                                     | 17.4                                                                                                            |          |                                                                                                                 |          |            | بنینجند | 1.<br>1. 1. 5 |              |         |    |      |                   |                   | Methanol                                                             |                       | -1%           |          | 7 CEA         |                   |            |                      |                                           |         |
|                               |            |                                                                                                                | 1               |                                                                                                                  |                                                                                                                 | :        |                                                                                                                 |          | . <u>3</u> |         |               |              |         |    |      |                   |                   | Other                                                                | al.                   |               |          | Cintry        |                   |            |                      |                                           |         |
|                               |            |                                                                                                                |                 | ſ                                                                                                                |                                                                                                                 |          | -                                                                                                               |          |            |         |               |              |         |    | 141  |                   |                   | Anilyse                                                              | a CLE                 | N/N           |          | No.           |                   |            |                      |                                           |         |
|                               |            |                                                                                                                |                 | <u>عا</u>                                                                                                        | 11.5                                                                                                            |          |                                                                                                                 |          |            |         |               | ×            | X       | ×  | ×    | ×                 | ×                 | App IV Metals                                                        |                       |               |          | <b>Selved</b> |                   |            |                      |                                           |         |
|                               |            |                                                                                                                |                 |                                                                                                                  |                                                                                                                 |          |                                                                                                                 |          |            |         |               | <u>S</u>     | ×       | X  | x    | ×                 | Ŝ                 | Fluorida                                                             |                       |               |          | 200           |                   |            |                      |                                           |         |
|                               |            | 1.                                                                                                             |                 | $\mathbf{r}$                                                                                                     |                                                                                                                 | -        |                                                                                                                 |          |            |         |               |              |         |    | ···- |                   |                   | 1010 001010002                                                       |                       | · · ·         |          |               |                   |            |                      |                                           |         |
|                               |            |                                                                                                                | <u>.</u>        |                                                                                                                  |                                                                                                                 |          |                                                                                                                 |          |            |         |               | <u>`</u>     |         |    |      |                   |                   |                                                                      |                       |               |          |               |                   |            |                      |                                           |         |
|                               |            |                                                                                                                |                 | 3                                                                                                                |                                                                                                                 |          |                                                                                                                 |          |            | ·       |               | . <u>.</u> . |         |    |      | :                 |                   |                                                                      |                       |               |          |               |                   |            |                      |                                           |         |
|                               | 8          |                                                                                                                | - 1944<br>- 144 |                                                                                                                  |                                                                                                                 |          |                                                                                                                 |          |            |         |               |              | :       |    |      |                   |                   |                                                                      |                       |               |          | L             |                   |            | Ĺ                    |                                           |         |
|                               | 8 <b> </b> |                                                                                                                |                 | 22                                                                                                               |                                                                                                                 |          |                                                                                                                 |          |            |         |               |              |         |    |      |                   |                   |                                                                      | WWW.                  |               |          |               |                   |            |                      |                                           |         |
|                               |            |                                                                                                                |                 | 2                                                                                                                |                                                                                                                 |          |                                                                                                                 |          | ·····      |         |               |              |         |    |      |                   |                   |                                                                      | <u></u>               |               | jan se   |               |                   |            |                      |                                           |         |
|                               |            |                                                                                                                |                 | X                                                                                                                |                                                                                                                 | <u>.</u> | <u>.</u>                                                                                                        |          |            |         |               |              |         |    |      |                   |                   |                                                                      |                       |               |          |               |                   |            | I                    |                                           | ٦       |
|                               |            |                                                                                                                |                 |                                                                                                                  |                                                                                                                 |          |                                                                                                                 |          |            |         | ·             |              |         |    | -    |                   |                   |                                                                      |                       |               |          |               |                   |            |                      | Pag                                       | 1       |
| - mr - wi V                   |            |                                                                                                                |                 |                                                                                                                  |                                                                                                                 |          |                                                                                                                 |          | e n        |         |               | :.:          |         |    |      |                   |                   | Residual Chiori                                                      | ne (Y/N)              |               |          |               |                   | 61 H       |                      | 3                                         |         |
| ecelved on <sup>1</sup><br>El | •          | 1                                                                                                              |                 |                                                                                                                  | 9                                                                                                               |          |                                                                                                                 |          |            |         |               | . • :        |         |    | -    |                   | $\mathfrak{I}$    | 0                                                                    |                       |               |          | Ř             |                   |            |                      |                                           |         |
| (/N)                          | <u> </u>   |                                                                                                                |                 |                                                                                                                  | 5                                                                                                               |          |                                                                                                                 |          |            | ļ       |               |              |         |    |      | <u>ز</u> ک        | 5                 | $\overline{\lambda}$                                                 |                       |               |          |               |                   | Ű          |                      |                                           |         |
|                               | 1          |                                                                                                                |                 |                                                                                                                  |                                                                                                                 |          |                                                                                                                 |          |            |         |               |              |         |    | -    | J                 |                   | ~                                                                    |                       | 16,505        |          | 摘             |                   | j.         | 0                    | ~                                         |         |
| (N)                           |            |                                                                                                                |                 |                                                                                                                  |                                                                                                                 |          |                                                                                                                 | 5        |            |         |               |              |         |    |      | 0                 |                   | ِ <b>ک</b>                                                           |                       | New Sector    |          |               |                   |            | Ŝ                    | Å                                         |         |
| amples<br>lactD               |            |                                                                                                                |                 |                                                                                                                  |                                                                                                                 |          |                                                                                                                 |          |            |         |               |              |         |    | ļ    |                   | $\mathcal{S}_{1}$ | S.                                                                   |                       |               |          |               |                   | <b>م</b> ا | 1                    | _ 4                                       |         |
| (/N)                          | 4          |                                                                                                                | <u> </u>        |                                                                                                                  |                                                                                                                 |          | :                                                                                                               |          |            |         |               | · [          |         |    |      | 1                 | ן יי              | ~~~                                                                  |                       | 3.36          |          | 鯼             |                   | 1          |                      | И.                                        | 1       |

Page 49 of 50

|                          |     |      |             |                    |    |          |                |                                          |                 |                    |          |          |                  |            |           | ITEM#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                | quested       | <b>X9</b> .       | nion Q    | Jass:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | pund (              |             |
|--------------------------|-----|------|-------------|--------------------|----|----------|----------------|------------------------------------------|-----------------|--------------------|----------|----------|------------------|------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|---------------|-------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------|
|                          |     |      |             | Approved Community |    |          | (CD DH(0)1121/ |                                          | ICMAIN (02.021) |                    |          |          |                  |            |           | SAMPLE ID<br>One Character per box.<br>(A-2, e40 /,-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9 5            |                | Due Date:     | (770)384-6526 Fax | A 30114   | 1070 Bridge Nati Ave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Client Information: |             |
|                          |     |      |             |                    |    |          |                |                                          |                 |                    |          |          |                  |            |           | Class Control of Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Class Clas Cla | ATTACATI CODED |                | Project #     | Purchase (        |           | Report To:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Required (          |             |
|                          |     | -    | ş           |                    |    | ¥.       | R              | ¥1                                       | ž               | \$                 | A        | 3        | ¥                | WT         | ×.        | MATRIX CODE (see valid co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | des ici lett)  |                |               | Dider #:          |           | Besty                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | noject k            |             |
|                          |     | T    |             |                    |    | - 1.4.   |                | Ŧ                                        | 12              |                    |          |          | -, <sup>-,</sup> |            | ·         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                |               |                   |           | Sleaver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | donnati             |             |
|                          |     |      |             |                    |    |          | 8              | 5                                        |                 |                    |          | -        |                  |            |           | E TI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                |               | 6                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Â                   |             |
| FRINT IL                 |     |      |             | 1                  |    |          | <u> </u>       | 8                                        | <u>B</u> ,      |                    |          |          |                  |            | -         | <u>A</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OLLECII        |                |               | -                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | Ę           |
|                          |     | -    |             | 88<br>841          | -  |          |                |                                          |                 |                    |          |          |                  | <u> </u>   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8              |                |               |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | e Chair     |
| AMPLE                    |     |      |             |                    | _  |          |                | en<br>Antonio<br>Prosta                  |                 |                    | L        |          |                  | <u> </u>   | <u> </u>  | <u>F</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                |               |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | 200         |
|                          |     |      |             |                    |    |          | £              | <u>-</u> E                               | 2               |                    |          |          |                  | <br>       | <br> <br> | # OF CONTAINERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                | 33            | 7 3               | 2 2       | 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ž š                 | istod)      |
| D 🛛                      |     |      |             | ĸĽ                 |    |          | 5              | $\geq$                                   |                 |                    |          |          |                  |            | ļ         | Unpreserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | l              |                |               |                   | dista:    | CALIFICATION OF CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFICALIFIC CALIFIC CALIFICALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFIC CALIFICALIFIC CALIFICALIFIC CALIFICALIFIC CALIFICALIFIC CALIFICALIFICALIFICALIFIC CALIFICALIFICALIFICALIFICALIFICALIFICALIFICALIFICALIFICALIFICALIFICALIFICALIFICALIFICALIFICALIFICALIFICALIFICALIFICALIFICALIFICALIFICALIFICALIFI | olce k              | 8           |
|                          |     |      |             | 904<br>1945 -      |    | _        |                | -                                        |                 |                    |          |          | -                |            |           | H2804<br>HN03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                | bo Na         | R                 | Natio     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10m                 | LEG         |
| S                        |     |      | ġ,          | Ш.                 |    |          |                | · · · · ·                                |                 |                    |          |          |                  |            |           | HCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | reser          | 10             | - mager       |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | P<br>D      |
| いた                       |     |      |             | <u>9</u> -         | -  |          |                | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |                 | 11 - 1<br>1950 - 1 |          |          |                  |            | ļ         | NaOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Vativ          | đ              | 5             |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | 2<br>2<br>2 |
| 3                        |     |      | 6           | <b>ğ</b>  -        |    |          | -              |                                          | -               |                    |          |          | -                |            |           | Methanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8              |                | evin.h        |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                   | À           |
| N S                      |     |      |             |                    |    |          |                |                                          |                 |                    | -        |          |                  |            |           | Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                |                | <b>Bilden</b> |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | A           |
| - 2                      | ŀ   | 63   |             |                    | ٦¥ | *        | k              | स्ति                                     | ×               | X                  | ×        | 8        | Þ                | A          | *         | ADD IV Motels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 成内國            |                | (aced         |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | elev:       |
|                          |     |      | 3           |                    | 下  | k        | k              | ×                                        | ×               | ×                  | 2        | <u>k</u> | K                | ł          | Å         | Fluoride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                |                | abs.oo        |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | 둜           |
|                          |     |      |             | Ĭ                  | 1  | _  1_    | *              | **                                       | ×               | *                  | <u>۲</u> | 8        | *                | <b>X</b> _ | ×Ļ        | RAD 9315/9320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                |                | 13            |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |             |
| ė 📓                      |     |      |             |                    | -  |          | -              |                                          |                 |                    |          |          |                  |            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | 5.51           |               |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | HUSL D      |
|                          |     |      |             |                    |    | <u> </u> | :              |                                          | <u>.</u>        |                    |          |          |                  |            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                |               |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | 8           |
|                          |     |      | Υ.          | <b>X</b> -         | 1  |          |                | n a se                                   |                 |                    |          |          |                  |            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                |               |                   |           | Ц                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | mplet       |
| - 8                      |     |      |             |                    |    |          | -              |                                          |                 |                    |          | a ng     | —                |            |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                |                |               |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     | 8           |
|                          |     | at d | 8           |                    | -  | -        |                |                                          |                 |                    |          |          | Li te e          | S          |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | N/S            |               |                   |           | r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |             |
| iMP In C                 |     |      | <u>, 11</u> |                    | _  |          |                | ŀ                                        |                 |                    |          |          | neineineine<br>T |            |           | new de la constante de la constante de la constante de la constante de la constante de la constante de la const                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | and the second |               |                   | Alexa Con |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pace                | ely.        |
| eceived on               |     | ┥┥   |             |                    | Ī  |          | i i            |                                          | 9               |                    |          |          |                  |            |           | Residual Chlorine (Y/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                |                | E             |                   | ۱r        | ۱,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | " -                 |             |
| eŭ<br>Y/N)               |     |      |             |                    |    |          |                | 1                                        | Y.              |                    |          |          |                  |            |           | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                |               |                   | R         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                   |             |
| UBRODY<br>Balediji       |     |      |             |                    |    |          |                |                                          | 11              |                    |          |          |                  |            |           | , λ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                |               |                   | P         | ן נ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |             |
| oolern<br>(/N)           |     |      |             |                    |    |          |                |                                          | Š               |                    |          |          |                  |            |           | 2اھ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                | <b>100</b>    |                   |           | ľ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×                   |             |
| ampies<br>tact()<br>(/N) | i i |      | page 1      |                    |    |          | 0              | 8                                        | Ø.              |                    |          |          |                  |            |           | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                |                |               |                   |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>ی</b> ا          |             |
| 177 <b>4)</b>            |     |      | . 1         |                    |    | L        | $\mathbf{F}$   | ۲`)                                      | 3               | l                  |          |          |                  |            |           | ta 🖌 🖉 👘                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                | £              | 臈             |                   |           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Γ I                 |             |

Page 50 of 50



February 25, 2021

Ms. Lauren Petty Southern Co. Services 42 Inverness Center Parkway Birmingham, AL 35242

RE: Project: YATES AMA-R6/AP-2 Pace Project No.: 92521583

Dear Ms. Petty:

Enclosed are the analytical results for sample(s) received by the laboratory between February 10, 2021 and February 11, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Asheville
- Pace Analytical Services Charlotte
- Pace Analytical Services Peachtree Corners, GA

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kardoniy

Kevin Herring kevin.herring@pacelabs.com 1(704)875-9092 HORIZON Database Administrator

Enclosures

cc: Joju Abraham, Georgia Power-CCR Lauren Coker, Georgia Pwer Geoffrey Gay, ARCADIS - Atlanta Kristen Jurinko Kelley Sharpe, ARCADIS - Atlanta Alex Simpson, Arcadis Samantha Thomas Maribel Vital





Pace Analytical Services, LLC 110 Technology Parkway Peachtree Corners, GA 30092 (770)734-4200

### CERTIFICATIONS

Project: YATES AMA-R6/AP-2

Pace Project No.: 92521583

#### Pace Analytical Services Charlotte

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12

#### Pace Analytical Services Asheville

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648 North Carolina Drinking Water Certification #: 37712

#### Pace Analytical Services Peachtree Corners

110 Technology Pkwy, Peachtree Corners, GA 30092 Florida DOH Certification #: E87315 Georgia DW Inorganics Certification #: 812 South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221

North Carolina Wastewater Certification #: 40 South Carolina Certification #: 99030001 Virginia/VELAP Certification #: 460222

North Carolina Certification #: 381 South Carolina Certification #: 98011001



### SAMPLE SUMMARY

Project: YATES AMA-R6/AP-2

Pace Project No.: 92521583

| Lab ID      | Sample ID       | Matrix | Date Collected | Date Received  |
|-------------|-----------------|--------|----------------|----------------|
| 92521583001 | PZ-37 (020921)  | Water  | 02/09/21 09:30 | 02/10/21 17:10 |
| 92521583003 | YAMW-2 (020921) | Water  | 02/09/21 12:45 | 02/10/21 17:10 |
| 92521583004 | YAMW-4 (020921) | Water  | 02/09/21 10:20 | 02/10/21 17:10 |
| 92521583005 | YAMW-5 (020921) | Water  | 02/09/21 09:45 | 02/10/21 17:10 |
| 92521583006 | YAMW-1 (020921) | Water  | 02/09/21 14:10 | 02/10/21 17:10 |
| 92521583007 | PZ-35(021021)   | Water  | 02/10/21 16:15 | 02/11/21 13:03 |



### SAMPLE ANALYTE COUNT

Project: YATES AMA-R6/AP-2 Pace Project No.: 92521583

| 92521583001         PZ-37 (020921)         EPA 6020B         CW1           EPA 7470A         VB           EPA 300.0 Rev 2.1 1993         CDC           92521583003         YAMW-2 (020921)         EPA 6020B         CW1 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EPA 7470A VB<br>EPA 300.0 Rev 2.1 1993 CDC<br>92521583003 YAMW-2 (020921) EPA 6020B CW1                                                                                                                                  |
| EPA 300.0 Rev 2.1 1993         CDC           92521583003         YAMW-2 (020921)         EPA 6020B         CW1                                                                                                           |
| 92521583003 YAMW-2 (020921) EPA 6020B CW1                                                                                                                                                                                |
|                                                                                                                                                                                                                          |
| EPA 7470A VB                                                                                                                                                                                                             |
| EPA 300.0 Rev 2.1 1993 CDC                                                                                                                                                                                               |
| 92521583004 YAMW-4 (020921) EPA 6020B CW1                                                                                                                                                                                |
| EPA 7470A VB                                                                                                                                                                                                             |
| EPA 300.0 Rev 2.1 1993 CDC                                                                                                                                                                                               |
| 92521583005 YAMW-5 (020921) EPA 6020B CW1                                                                                                                                                                                |
| EPA 7470A VB                                                                                                                                                                                                             |
| EPA 300.0 Rev 2.1 1993 CDC                                                                                                                                                                                               |
| 92521583006 YAMW-1 (020921) EPA 6020B CW1                                                                                                                                                                                |
| EPA 7470A VB                                                                                                                                                                                                             |
| EPA 300.0 Rev 2.1 1993 CDC                                                                                                                                                                                               |
| 92521583007 PZ-35(021021) EPA 6020B CW1                                                                                                                                                                                  |
| EPA 7470A VB                                                                                                                                                                                                             |
| EPA 300.0 Rev 2.1 1993 CDC                                                                                                                                                                                               |

PASI-A = Pace Analytical Services - Asheville

PASI-C = Pace Analytical Services - Charlotte

PASI-GA = Pace Analytical Services - Peachtree Corners, GA



# SUMMARY OF DETECTION

Project: YATES AMA-R6/AP-2

Pace Project No.: 92521583

| Method     Parameters     Result     Units     Report Lim       92521583001     PZ-37 (020921)       Barformed by     CUSTOME | it Analyzed Qualifiers<br>02/23/21 08:11<br>02/23/21 08:11 |
|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| 92521583001 PZ-37 (020921)                                                                                                    | 02/23/21 08:11<br>02/23/21 08:11                           |
|                                                                                                                               | 02/23/21 08:11<br>02/23/21 08:11                           |
|                                                                                                                               | 02/23/21 08:11                                             |
| pH 5.42 Std. Units                                                                                                            |                                                            |
| EPA 6020B Antimony 0.00035J mg/L 0.003                                                                                        | 0 02/19/21 19:04                                           |
| EPA 6020B         Arsenic         0.0015J         mg/L         0.005                                                          | 0 02/19/21 19:04                                           |
| EPA 6020B Barium 0.036 mg/L 0.04                                                                                              | 0 02/19/21 19:04                                           |
| EPA 6020B Beryllium 0.00029J mg/L 0.002                                                                                       | 0 02/19/21 19:04                                           |
| EPA 6020B Cadmium 0.00042J mg/L 0.002                                                                                         | 5 02/19/21 19:04                                           |
| EPA 6020B Cobalt 0.0023J mg/L 0.005                                                                                           | 0 02/19/21 19:04                                           |
| EPA 6020B Lead 0.00088J mg/L 0.005                                                                                            | 0 02/19/21 19:04                                           |
| EPA 6020B Lithium 0.024J mg/L 0.03                                                                                            | 0 02/19/21 19:04                                           |
| EPA 6020B Molybdenum 0.0016J mg/L 0.01                                                                                        | 0 02/19/21 19:04                                           |
| EPA 6020B         Selenium         0.28         mg/L         0.04                                                             | 0 02/19/21 19:04                                           |
| 92521583003 YAMW-2 (020921)                                                                                                   |                                                            |
| Performed by CUSTOME<br>R                                                                                                     | 02/23/21 08:11                                             |
| pH 5.81 Std. Units                                                                                                            | 02/23/21 08:11                                             |
| EPA 6020B Barium 0.0085J mg/L 0.04                                                                                            | 0 02/19/21 19:32                                           |
| EPA 6020B         Beryllium         0.000051J         mg/L         0.003                                                      | 0 02/19/21 19:32                                           |
| EPA 6020B         Chromium         0.0011J         mg/L         0.01                                                          | 0 02/19/21 19:32                                           |
| EPA 6020B Cobalt 0.0010J mg/L 0.005                                                                                           | 0 02/19/21 19:32                                           |
| EPA 6020B         Lead         0.00011J         mg/L         0.005                                                            | 0 02/19/21 19:32                                           |
| 92521583004 YAMW-4 (020921)                                                                                                   |                                                            |
| Performed by CUSTOME<br>R                                                                                                     | 02/23/21 08:11                                             |
| pH 6.96 Std. Units                                                                                                            | 02/23/21 08:11                                             |
| EPA 6020B         Antimony         0.0011J         mg/L         0.003                                                         | 0 02/19/21 19:38                                           |
| EPA 6020B         Arsenic         0.0010J         mg/L         0.005                                                          | 0 02/19/21 19:38                                           |
| EPA 6020B         Barium         0.020         mg/L         0.01                                                              | 0 02/19/21 19:38                                           |
| EPA 6020B         Chromium         0.00057J         mg/L         0.01                                                         | 0 02/19/21 19:38                                           |
| EPA 6020B         Cobalt         0.00063J         mg/L         0.005                                                          | 0 02/19/21 19:38                                           |
| EPA 6020B         Lead         0.00054J         mg/L         0.0054J                                                          | 0 02/19/21 19:38                                           |
| EPA 6020B         Lithium         0.018J         mg/L         0.03                                                            | 0 02/19/21 19:38                                           |
| EPA 6020B         Molybdenum         0.0068J         mg/L         0.01                                                        | 0 02/19/21 19:38                                           |
| EPA 300.0 Rev 2.1 1993         Fluoride         0.14         mg/L         0.14                                                | 0 02/12/21 17:16                                           |
| 92521583005 YAMW-5 (020921)                                                                                                   |                                                            |
| Performed by CUSTOME<br>R                                                                                                     | 02/23/21 08:11                                             |
| pH 5.34 Std. Units                                                                                                            | 02/23/21 08:11                                             |
| EPA 6020B Arsenic 0.00095J ma/L 0.005                                                                                         | 0 02/19/21 19:44                                           |
| EPA 6020B Barium 0.042 mg/L 0.07                                                                                              | 0 02/19/21 19:44                                           |
| EPA 6020B Beryllium 0.00015J ma/L 0.000                                                                                       | 0 02/19/21 19:44                                           |
| EPA 6020B Cadmium 0.00025J ma/L 0.002                                                                                         | 5 02/19/21 19:44                                           |
| EPA 6020B Lead 0.000073J mg/L 0.005                                                                                           | 0 02/19/21 19:44                                           |
| EPA 6020B Lithium 0.016J ma/L 0.03                                                                                            | 0 02/19/21 19:44                                           |
| EPA 6020B Selenium 0.060 mg/L 0.07                                                                                            | 0 02/19/21 19:44                                           |



# SUMMARY OF DETECTION

Project: YATES AMA-R6/AP-2

Pace Project No.: 92521583

| Lab Sample ID | Client Sample ID |              |            |              |                |            |
|---------------|------------------|--------------|------------|--------------|----------------|------------|
| Method        | Parameters       | Result       | Units      | Report Limit | Analyzed       | Qualifiers |
| 92521583006   | YAMW-1 (020921)  |              |            |              |                |            |
|               | Performed by     | CUSTOME<br>R |            |              | 02/23/21 08:11 |            |
|               | рН               | 6.42         | Std. Units |              | 02/23/21 08:11 |            |
| EPA 6020B     | Antimony         | 0.00037J     | mg/L       | 0.0030       | 02/19/21 20:01 |            |
| EPA 6020B     | Barium           | 0.039        | mg/L       | 0.010        | 02/19/21 20:01 |            |
| EPA 6020B     | Cadmium          | 0.00013J     | mg/L       | 0.0025       | 02/19/21 20:01 |            |
| EPA 6020B     | Chromium         | 0.0010J      | mg/L       | 0.010        | 02/19/21 20:01 |            |
| EPA 6020B     | Cobalt           | 0.030        | mg/L       | 0.0050       | 02/19/21 20:01 |            |
| EPA 6020B     | Lead             | 0.00019J     | mg/L       | 0.0050       | 02/19/21 20:01 |            |
| EPA 6020B     | Lithium          | 0.021J       | mg/L       | 0.030        | 02/19/21 20:01 |            |
| EPA 6020B     | Molybdenum       | 0.0038J      | mg/L       | 0.010        | 02/19/21 20:01 |            |
| 92521583007   | PZ-35(021021)    |              |            |              |                |            |
|               | Performed by     | CUSTOME<br>R |            |              | 02/23/21 08:11 |            |
|               | рН               | 5.53         | Std. Units |              | 02/23/21 08:11 |            |
| EPA 6020B     | Arsenic          | 0.00096J     | mg/L       | 0.0050       | 02/19/21 20:07 |            |
| EPA 6020B     | Barium           | 0.032        | mg/L       | 0.010        | 02/19/21 20:07 |            |
| EPA 6020B     | Beryllium        | 0.00025J     | mg/L       | 0.0030       | 02/19/21 20:07 |            |
| EPA 6020B     | Chromium         | 0.00060J     | mg/L       | 0.010        | 02/19/21 20:07 |            |
| EPA 6020B     | Lead             | 0.000087J    | mg/L       | 0.0050       | 02/19/21 20:07 |            |
| EPA 6020B     | Lithium          | 0.0012J      | mg/L       | 0.030        | 02/19/21 20:07 |            |



### Project: YATES AMA-R6/AP-2

Pace Project No.: 92521583

| Sample: PZ-37 (020921)  | Lab ID:      | 92521583001      | Collecte    | ed: 02/09/2  | 09:30     | Received: 02/  | /10/21 17:10 Ma | atrix: Water |      |
|-------------------------|--------------|------------------|-------------|--------------|-----------|----------------|-----------------|--------------|------|
|                         |              |                  | Report      |              |           |                |                 |              |      |
| Parameters              | Results      | Units            | Limit       | MDL          | DF        | Prepared       | Analyzed        | CAS No.      | Qual |
| Field Data              | Analytical   | Method:          |             |              |           |                |                 |              |      |
|                         | Pace Ana     | lytical Services | - Charlotte | e            |           |                |                 |              |      |
| Performed by            | CUSTOME<br>R |                  |             |              | 1         |                | 02/23/21 08:11  |              |      |
| рН                      | 5.42         | Std. Units       |             |              | 1         |                | 02/23/21 08:11  |              |      |
| 6020 MET ICPMS          | Analytical   | Method: EPA 6    | 020B Pre    | paration Met | hod: E    | PA 3005A       |                 |              |      |
|                         | Pace Ana     | lytical Services | - Peachtre  | e Corners, C | <b>SA</b> |                |                 |              |      |
| Antimony                | 0.00035J     | mg/L             | 0.0030      | 0.00028      | 1         | 02/18/21 11:04 | 02/19/21 19:04  | 7440-36-0    |      |
| Arsenic                 | 0.0015J      | mg/L             | 0.0050      | 0.00078      | 1         | 02/18/21 11:04 | 02/19/21 19:04  | 7440-38-2    |      |
| Barium                  | 0.036        | mg/L             | 0.010       | 0.00071      | 1         | 02/18/21 11:04 | 02/19/21 19:04  | 7440-39-3    |      |
| Beryllium               | 0.00029J     | mg/L             | 0.0030      | 0.000046     | 1         | 02/18/21 11:04 | 02/19/21 19:04  | 7440-41-7    |      |
| Cadmium                 | 0.00042J     | mg/L             | 0.0025      | 0.00012      | 1         | 02/18/21 11:04 | 02/19/21 19:04  | 7440-43-9    |      |
| Chromium                | ND           | mg/L             | 0.010       | 0.00055      | 1         | 02/18/21 11:04 | 02/19/21 19:04  | 7440-47-3    |      |
| Cobalt                  | 0.0023J      | mg/L             | 0.0050      | 0.00038      | 1         | 02/18/21 11:04 | 02/19/21 19:04  | 7440-48-4    |      |
| Lead                    | 0.000088J    | mg/L             | 0.0050      | 0.000036     | 1         | 02/18/21 11:04 | 02/19/21 19:04  | 7439-92-1    |      |
| Lithium                 | 0.024J       | mg/L             | 0.030       | 0.00081      | 1         | 02/18/21 11:04 | 02/19/21 19:04  | 7439-93-2    |      |
| Molybdenum              | 0.0016J      | mg/L             | 0.010       | 0.00069      | 1         | 02/18/21 11:04 | 02/19/21 19:04  | 7439-98-7    |      |
| Selenium                | 0.28         | mg/L             | 0.010       | 0.0016       | 1         | 02/18/21 11:04 | 02/19/21 19:04  | 7782-49-2    |      |
| Thallium                | ND           | mg/L             | 0.0010      | 0.00014      | 1         | 02/18/21 11:04 | 02/19/21 19:04  | 7440-28-0    |      |
| 7470 Mercury            | Analytical   | Method: EPA 7    | '470A Pre   | paration Met | hod: El   | PA 7470A       |                 |              |      |
|                         | Pace Ana     | lytical Services | - Peachtre  | e Corners, C | βA        |                |                 |              |      |
| Mercury                 | ND           | mg/L             | 0.00050     | 0.000078     | 1         | 02/15/21 15:30 | 02/16/21 12:01  | 7439-97-6    |      |
| 300.0 IC Anions 28 Days | Analytical   | Method: EPA 3    | 300.0 Rev 2 | 2.1 1993     |           |                |                 |              |      |
| -                       | Pace Ana     | lytical Services | - Asheville | )            |           |                |                 |              |      |
| Fluoride                | ND           | mg/L             | 0.10        | 0.050        | 1         |                | 02/12/21 16:28  | 16984-48-8   |      |



### Project: YATES AMA-R6/AP-2

Pace Project No.: 92521583

| Sample: YAMW-2 (020921) | Lab ID: 92521583003 Collected: 02/09/21 12:45 Received: 02/10/21 17:10 Matrix: Water |                 |               |              |          |                |                |            |      |
|-------------------------|--------------------------------------------------------------------------------------|-----------------|---------------|--------------|----------|----------------|----------------|------------|------|
|                         |                                                                                      |                 | Report        |              |          |                |                |            |      |
| Parameters              | Results                                                                              | Units           | Limit         | MDL          | DF       | Prepared       | Analyzed       | CAS No.    | Qual |
| Field Data              | Analytical                                                                           | Method:         |               |              |          |                |                |            |      |
|                         | Pace Ana                                                                             | lytical Service | s - Charlotte | 9            |          |                |                |            |      |
| Performed by            | CUSTOME<br>R                                                                         |                 |               |              | 1        |                | 02/23/21 08:11 |            |      |
| рН                      | 5.81                                                                                 | Std. Units      |               |              | 1        |                | 02/23/21 08:11 |            |      |
| 6020 MET ICPMS          | Analytical                                                                           | Method: EPA     | 6020B Pre     | paration Met | hod: E   | PA 3005A       |                |            |      |
|                         | Pace Ana                                                                             | lytical Service | s - Peachtre  | e Corners, C | <b>A</b> |                |                |            |      |
| Antimony                | ND                                                                                   | mg/L            | 0.0030        | 0.00028      | 1        | 02/18/21 11:04 | 02/19/21 19:32 | 7440-36-0  |      |
| Arsenic                 | ND                                                                                   | mg/L            | 0.0050        | 0.00078      | 1        | 02/18/21 11:04 | 02/19/21 19:32 | 7440-38-2  |      |
| Barium                  | 0.0085J                                                                              | mg/L            | 0.010         | 0.00071      | 1        | 02/18/21 11:04 | 02/19/21 19:32 | 7440-39-3  |      |
| Beryllium               | 0.000051J                                                                            | mg/L            | 0.0030        | 0.000046     | 1        | 02/18/21 11:04 | 02/19/21 19:32 | 7440-41-7  |      |
| Cadmium                 | ND                                                                                   | mg/L            | 0.0025        | 0.00012      | 1        | 02/18/21 11:04 | 02/19/21 19:32 | 7440-43-9  |      |
| Chromium                | 0.0011J                                                                              | mg/L            | 0.010         | 0.00055      | 1        | 02/18/21 11:04 | 02/19/21 19:32 | 7440-47-3  |      |
| Cobalt                  | 0.0010J                                                                              | mg/L            | 0.0050        | 0.00038      | 1        | 02/18/21 11:04 | 02/19/21 19:32 | 7440-48-4  |      |
| Lead                    | 0.00011J                                                                             | mg/L            | 0.0050        | 0.000036     | 1        | 02/18/21 11:04 | 02/19/21 19:32 | 7439-92-1  |      |
| Lithium                 | ND                                                                                   | mg/L            | 0.030         | 0.00081      | 1        | 02/18/21 11:04 | 02/19/21 19:32 | 7439-93-2  |      |
| Molybdenum              | ND                                                                                   | mg/L            | 0.010         | 0.00069      | 1        | 02/18/21 11:04 | 02/19/21 19:32 | 7439-98-7  |      |
| Selenium                | ND                                                                                   | mg/L            | 0.010         | 0.0016       | 1        | 02/18/21 11:04 | 02/19/21 19:32 | 7782-49-2  |      |
| Thallium                | ND                                                                                   | mg/L            | 0.0010        | 0.00014      | 1        | 02/18/21 11:04 | 02/19/21 19:32 | 7440-28-0  |      |
| 7470 Mercury            | Analytical                                                                           | Method: EPA     | 7470A Pre     | paration Met | hod: El  | PA 7470A       |                |            |      |
|                         | Pace Ana                                                                             | lytical Service | s - Peachtre  | e Corners, C | βA       |                |                |            |      |
| Mercury                 | ND                                                                                   | mg/L            | 0.00050       | 0.000078     | 1        | 02/15/21 15:30 | 02/16/21 12:06 | 7439-97-6  |      |
| 300.0 IC Anions 28 Days | Analytical                                                                           | Method: EPA     | 300.0 Rev 2   | 2.1 1993     |          |                |                |            |      |
|                         | Pace Ana                                                                             | lytical Service | s - Asheville | •            |          |                |                |            |      |
| Fluoride                | ND                                                                                   | mg/L            | 0.10          | 0.050        | 1        |                | 02/12/21 17:00 | 16984-48-8 |      |



### Project: YATES AMA-R6/AP-2

Pace Project No.: 92521583

| Sample: YAMW-4 (020921) | Lab ID: 92521583004 Collected: 02/09/21 10:20 Received: 02/10/21 17:10 Matrix: Water |                 |               |              |         |                |                |            |      |
|-------------------------|--------------------------------------------------------------------------------------|-----------------|---------------|--------------|---------|----------------|----------------|------------|------|
|                         |                                                                                      |                 | Report        |              |         |                |                |            |      |
| Parameters              | Results                                                                              | Units           | Limit         | MDL          | DF      | Prepared       | Analyzed       | CAS No.    | Qual |
| Field Data              | Analytical                                                                           | Method:         |               |              |         |                |                |            |      |
|                         | Pace Ana                                                                             | lytical Service | s - Charlotte | 9            |         |                |                |            |      |
| Performed by            | CUSTOME<br>R                                                                         |                 |               |              | 1       |                | 02/23/21 08:11 |            |      |
| рН                      | 6.96                                                                                 | Std. Units      |               |              | 1       |                | 02/23/21 08:11 |            |      |
| 6020 MET ICPMS          | Analytical                                                                           | Method: EPA     | 6020B Pre     | paration Met | hod: E  | PA 3005A       |                |            |      |
|                         | Pace Ana                                                                             | lytical Service | s - Peachtre  | e Corners, G | βA      |                |                |            |      |
| Antimony                | 0.0011J                                                                              | mg/L            | 0.0030        | 0.00028      | 1       | 02/18/21 11:04 | 02/19/21 19:38 | 7440-36-0  |      |
| Arsenic                 | 0.0010J                                                                              | mg/L            | 0.0050        | 0.00078      | 1       | 02/18/21 11:04 | 02/19/21 19:38 | 7440-38-2  |      |
| Barium                  | 0.020                                                                                | mg/L            | 0.010         | 0.00071      | 1       | 02/18/21 11:04 | 02/19/21 19:38 | 7440-39-3  |      |
| Beryllium               | ND                                                                                   | mg/L            | 0.0030        | 0.000046     | 1       | 02/18/21 11:04 | 02/19/21 19:38 | 7440-41-7  |      |
| Cadmium                 | ND                                                                                   | mg/L            | 0.0025        | 0.00012      | 1       | 02/18/21 11:04 | 02/19/21 19:38 | 7440-43-9  |      |
| Chromium                | 0.00057J                                                                             | mg/L            | 0.010         | 0.00055      | 1       | 02/18/21 11:04 | 02/19/21 19:38 | 7440-47-3  |      |
| Cobalt                  | 0.00063J                                                                             | mg/L            | 0.0050        | 0.00038      | 1       | 02/18/21 11:04 | 02/19/21 19:38 | 7440-48-4  |      |
| Lead                    | 0.00054J                                                                             | mg/L            | 0.0050        | 0.000036     | 1       | 02/18/21 11:04 | 02/19/21 19:38 | 7439-92-1  |      |
| Lithium                 | 0.018J                                                                               | mg/L            | 0.030         | 0.00081      | 1       | 02/18/21 11:04 | 02/19/21 19:38 | 7439-93-2  |      |
| Molybdenum              | 0.0068J                                                                              | mg/L            | 0.010         | 0.00069      | 1       | 02/18/21 11:04 | 02/19/21 19:38 | 7439-98-7  |      |
| Selenium                | ND                                                                                   | mg/L            | 0.010         | 0.0016       | 1       | 02/18/21 11:04 | 02/19/21 19:38 | 7782-49-2  |      |
| Thallium                | ND                                                                                   | mg/L            | 0.0010        | 0.00014      | 1       | 02/18/21 11:04 | 02/19/21 19:38 | 7440-28-0  |      |
| 7470 Mercury            | Analytical                                                                           | Method: EPA     | 7470A Pre     | paration Met | hod: El | PA 7470A       |                |            |      |
|                         | Pace Ana                                                                             | lytical Service | s - Peachtre  | e Corners, G | βA      |                |                |            |      |
| Mercury                 | ND                                                                                   | mg/L            | 0.00050       | 0.000078     | 1       | 02/15/21 15:30 | 02/16/21 12:08 | 7439-97-6  |      |
| 300.0 IC Anions 28 Days | Analytical                                                                           | Method: EPA     | 300.0 Rev 2   | 2.1 1993     |         |                |                |            |      |
|                         | Pace Ana                                                                             | lytical Service | s - Asheville | •            |         |                |                |            |      |
| Fluoride                | 0.14                                                                                 | mg/L            | 0.10          | 0.050        | 1       |                | 02/12/21 17:16 | 16984-48-8 |      |



### Project: YATES AMA-R6/AP-2

Pace Project No.: 92521583

| Sample: YAMW-5 (020921) | Lab ID: 92521583005 Collected: 02/09/21 09:45 Received: 02/10/21 17:10 Matrix: Water |                  |               |              |          |                |                |            |      |
|-------------------------|--------------------------------------------------------------------------------------|------------------|---------------|--------------|----------|----------------|----------------|------------|------|
|                         |                                                                                      |                  | Report        |              |          |                |                |            |      |
| Parameters              | Results                                                                              | Units            | Limit         | MDL          | DF       | Prepared       | Analyzed       | CAS No.    | Qual |
| Field Data              | Analytical                                                                           | Method:          |               |              |          |                |                |            |      |
|                         | Pace Ana                                                                             | lytical Services | - Charlotte   | 9            |          |                |                |            |      |
| Performed by            | CUSTOME<br>R                                                                         |                  |               |              | 1        |                | 02/23/21 08:11 |            |      |
| рН                      | 5.34                                                                                 | Std. Units       |               |              | 1        |                | 02/23/21 08:11 |            |      |
| 6020 MET ICPMS          | Analytical                                                                           | Method: EPA      | 6020B Pre     | paration Met | hod: E   | PA 3005A       |                |            |      |
|                         | Pace Ana                                                                             | lytical Services | - Peachtre    | e Corners, G | βA       |                |                |            |      |
| Antimony                | ND                                                                                   | mg/L             | 0.0030        | 0.00028      | 1        | 02/18/21 11:04 | 02/19/21 19:44 | 7440-36-0  |      |
| Arsenic                 | 0.00095J                                                                             | mg/L             | 0.0050        | 0.00078      | 1        | 02/18/21 11:04 | 02/19/21 19:44 | 7440-38-2  |      |
| Barium                  | 0.042                                                                                | mg/L             | 0.010         | 0.00071      | 1        | 02/18/21 11:04 | 02/19/21 19:44 | 7440-39-3  |      |
| Beryllium               | 0.00015J                                                                             | mg/L             | 0.0030        | 0.000046     | 1        | 02/18/21 11:04 | 02/19/21 19:44 | 7440-41-7  |      |
| Cadmium                 | 0.00025J                                                                             | mg/L             | 0.0025        | 0.00012      | 1        | 02/18/21 11:04 | 02/19/21 19:44 | 7440-43-9  |      |
| Chromium                | ND                                                                                   | mg/L             | 0.010         | 0.00055      | 1        | 02/18/21 11:04 | 02/19/21 19:44 | 7440-47-3  |      |
| Cobalt                  | ND                                                                                   | mg/L             | 0.0050        | 0.00038      | 1        | 02/18/21 11:04 | 02/19/21 19:44 | 7440-48-4  |      |
| Lead                    | 0.000073J                                                                            | mg/L             | 0.0050        | 0.000036     | 1        | 02/18/21 11:04 | 02/19/21 19:44 | 7439-92-1  |      |
| Lithium                 | 0.016J                                                                               | mg/L             | 0.030         | 0.00081      | 1        | 02/18/21 11:04 | 02/19/21 19:44 | 7439-93-2  |      |
| Molybdenum              | ND                                                                                   | mg/L             | 0.010         | 0.00069      | 1        | 02/18/21 11:04 | 02/19/21 19:44 | 7439-98-7  |      |
| Selenium                | 0.060                                                                                | mg/L             | 0.010         | 0.0016       | 1        | 02/18/21 11:04 | 02/19/21 19:44 | 7782-49-2  |      |
| Thallium                | ND                                                                                   | mg/L             | 0.0010        | 0.00014      | 1        | 02/18/21 11:04 | 02/19/21 19:44 | 7440-28-0  |      |
| 7470 Mercury            | Analytical                                                                           | Method: EPA      | 7470A Pre     | paration Met | hod: El  | PA 7470A       |                |            |      |
|                         | Pace Ana                                                                             | lytical Services | - Peachtre    | e Corners, G | <b>A</b> |                |                |            |      |
| Mercury                 | ND                                                                                   | mg/L             | 0.00050       | 0.000078     | 1        | 02/15/21 15:30 | 02/16/21 12:15 | 7439-97-6  |      |
| 300.0 IC Anions 28 Days | Analytical                                                                           | Method: EPA      | 300.0 Rev 2   | 2.1 1993     |          |                |                |            |      |
| -                       | Pace Ana                                                                             | lytical Services | s - Asheville | •            |          |                |                |            |      |
| Fluoride                | ND                                                                                   | mg/L             | 0.10          | 0.050        | 1        |                | 02/12/21 17:32 | 16984-48-8 |      |



### Project: YATES AMA-R6/AP-2

Pace Project No.: 92521583

| Sample: YAMW-1 (020921) | Lab ID: 92521583006 Collected: 02/09/21 14:10 Received: 02/10/21 17:10 Matrix: Water |                  |               |              |         |                |                |            |      |
|-------------------------|--------------------------------------------------------------------------------------|------------------|---------------|--------------|---------|----------------|----------------|------------|------|
|                         |                                                                                      |                  | Report        |              |         |                |                |            |      |
| Parameters              | Results                                                                              | Units            | Limit         | MDL          | DF      | Prepared       | Analyzed       | CAS No.    | Qual |
| Field Data              | Analytical                                                                           | Method:          |               |              |         |                |                |            |      |
|                         | Pace Ana                                                                             | lytical Services | s - Charlotte | e            |         |                |                |            |      |
| Performed by            | CUSTOME<br>R                                                                         |                  |               |              | 1       |                | 02/23/21 08:11 |            |      |
| рН                      | 6.42                                                                                 | Std. Units       |               |              | 1       |                | 02/23/21 08:11 |            |      |
| 6020 MET ICPMS          | Analytical                                                                           | Method: EPA      | 6020B Pre     | paration Met | hod: E  | PA 3005A       |                |            |      |
|                         | Pace Ana                                                                             | lytical Services | s - Peachtre  | e Corners, C | βA      |                |                |            |      |
| Antimony                | 0.00037J                                                                             | mg/L             | 0.0030        | 0.00028      | 1       | 02/18/21 11:04 | 02/19/21 20:01 | 7440-36-0  |      |
| Arsenic                 | ND                                                                                   | mg/L             | 0.0050        | 0.00078      | 1       | 02/18/21 11:04 | 02/19/21 20:01 | 7440-38-2  |      |
| Barium                  | 0.039                                                                                | mg/L             | 0.010         | 0.00071      | 1       | 02/18/21 11:04 | 02/19/21 20:01 | 7440-39-3  |      |
| Beryllium               | ND                                                                                   | mg/L             | 0.0030        | 0.000046     | 1       | 02/18/21 11:04 | 02/19/21 20:01 | 7440-41-7  |      |
| Cadmium                 | 0.00013J                                                                             | mg/L             | 0.0025        | 0.00012      | 1       | 02/18/21 11:04 | 02/19/21 20:01 | 7440-43-9  |      |
| Chromium                | 0.0010J                                                                              | mg/L             | 0.010         | 0.00055      | 1       | 02/18/21 11:04 | 02/19/21 20:01 | 7440-47-3  |      |
| Cobalt                  | 0.030                                                                                | mg/L             | 0.0050        | 0.00038      | 1       | 02/18/21 11:04 | 02/19/21 20:01 | 7440-48-4  |      |
| Lead                    | 0.00019J                                                                             | mg/L             | 0.0050        | 0.000036     | 1       | 02/18/21 11:04 | 02/19/21 20:01 | 7439-92-1  |      |
| Lithium                 | 0.021J                                                                               | mg/L             | 0.030         | 0.00081      | 1       | 02/18/21 11:04 | 02/19/21 20:01 | 7439-93-2  |      |
| Molybdenum              | 0.0038J                                                                              | mg/L             | 0.010         | 0.00069      | 1       | 02/18/21 11:04 | 02/19/21 20:01 | 7439-98-7  |      |
| Selenium                | ND                                                                                   | mg/L             | 0.010         | 0.0016       | 1       | 02/18/21 11:04 | 02/19/21 20:01 | 7782-49-2  |      |
| Thallium                | ND                                                                                   | mg/L             | 0.0010        | 0.00014      | 1       | 02/18/21 11:04 | 02/19/21 20:01 | 7440-28-0  |      |
| 7470 Mercury            | Analytical                                                                           | Method: EPA      | 7470A Pre     | paration Met | hod: El | PA 7470A       |                |            |      |
|                         | Pace Ana                                                                             | lytical Services | s - Peachtre  | e Corners, C | βA      |                |                |            |      |
| Mercury                 | ND                                                                                   | mg/L             | 0.00050       | 0.000078     | 1       | 02/15/21 15:30 | 02/16/21 12:18 | 7439-97-6  |      |
| 300.0 IC Anions 28 Days | Analytical                                                                           | Method: EPA      | 300.0 Rev 2   | 2.1 1993     |         |                |                |            |      |
|                         | Pace Ana                                                                             | lytical Services | s - Asheville | )            |         |                |                |            |      |
| Fluoride                | ND                                                                                   | mg/L             | 0.10          | 0.050        | 1       |                | 02/12/21 17:48 | 16984-48-8 |      |


# ANALYTICAL RESULTS

#### Project: YATES AMA-R6/AP-2

Pace Project No.: 92521583

| Sample: PZ-35(021021)   | Lab ID:      | 9252158300      | 7 Collecte    | ed: 02/10/27 | 1 16:15 | Received: 02/  | 11/21 13:03 Ma | atrix: Water |      |
|-------------------------|--------------|-----------------|---------------|--------------|---------|----------------|----------------|--------------|------|
|                         |              |                 | Report        |              |         |                |                |              |      |
| Parameters              | Results      | Units           | Limit         | MDL          | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| Field Data              | Analytical   | Method:         |               |              |         |                |                |              |      |
|                         | Pace Ana     | lytical Service | s - Charlotte | e            |         |                |                |              |      |
| Performed by            | CUSTOME<br>R |                 |               |              | 1       |                | 02/23/21 08:11 |              |      |
| рН                      | 5.53         | Std. Units      |               |              | 1       |                | 02/23/21 08:11 |              |      |
| 6020 MET ICPMS          | Analytical   | Method: EPA     | 6020B Pre     | paration Met | hod: E  | PA 3005A       |                |              |      |
|                         | Pace Ana     | lytical Service | s - Peachtre  | e Corners, C | βA      |                |                |              |      |
| Antimony                | ND           | mg/L            | 0.0030        | 0.00028      | 1       | 02/18/21 11:04 | 02/19/21 20:07 | 7440-36-0    |      |
| Arsenic                 | 0.00096J     | mg/L            | 0.0050        | 0.00078      | 1       | 02/18/21 11:04 | 02/19/21 20:07 | 7440-38-2    |      |
| Barium                  | 0.032        | mg/L            | 0.010         | 0.00071      | 1       | 02/18/21 11:04 | 02/19/21 20:07 | 7440-39-3    |      |
| Beryllium               | 0.00025J     | mg/L            | 0.0030        | 0.000046     | 1       | 02/18/21 11:04 | 02/19/21 20:07 | 7440-41-7    |      |
| Cadmium                 | ND           | mg/L            | 0.0025        | 0.00012      | 1       | 02/18/21 11:04 | 02/19/21 20:07 | 7440-43-9    |      |
| Chromium                | 0.00060J     | mg/L            | 0.010         | 0.00055      | 1       | 02/18/21 11:04 | 02/19/21 20:07 | 7440-47-3    |      |
| Cobalt                  | ND           | mg/L            | 0.0050        | 0.00038      | 1       | 02/18/21 11:04 | 02/19/21 20:07 | 7440-48-4    |      |
| Lead                    | 0.000087J    | mg/L            | 0.0050        | 0.000036     | 1       | 02/18/21 11:04 | 02/19/21 20:07 | 7439-92-1    |      |
| Lithium                 | 0.0012J      | mg/L            | 0.030         | 0.00081      | 1       | 02/18/21 11:04 | 02/19/21 20:07 | 7439-93-2    |      |
| Molybdenum              | ND           | mg/L            | 0.010         | 0.00069      | 1       | 02/18/21 11:04 | 02/19/21 20:07 | 7439-98-7    |      |
| Selenium                | ND           | mg/L            | 0.010         | 0.0016       | 1       | 02/18/21 11:04 | 02/19/21 20:07 | 7782-49-2    |      |
| Thallium                | ND           | mg/L            | 0.0010        | 0.00014      | 1       | 02/18/21 11:04 | 02/19/21 20:07 | 7440-28-0    |      |
| 7470 Mercury            | Analytical   | Method: EPA     | 7470A Pre     | paration Met | hod: El | PA 7470A       |                |              |      |
|                         | Pace Ana     | lytical Service | s - Peachtre  | e Corners, C | 3A      |                |                |              |      |
| Mercury                 | ND           | mg/L            | 0.00050       | 0.000078     | 1       | 02/15/21 15:30 | 02/16/21 12:22 | 7439-97-6    |      |
| 300.0 IC Anions 28 Days | Analytical   | Method: EPA     | 300.0 Rev 2   | 2.1 1993     |         |                |                |              |      |
|                         | Pace Ana     | lytical Service | s - Asheville | ;            |         |                |                |              |      |
| Fluoride                | ND           | mg/L            | 0.10          | 0.050        | 1       |                | 02/12/21 22:03 | 16984-48-8   |      |



| -        | · · · · <b>·</b> · · · · · · · · · · |
|----------|--------------------------------------|
| Project: | YATES AMA-R6/AP-2                    |
| 1 10/000 |                                      |

Pace Project No.: 92521583

| QC Batch:           | 600920                             | Analysis Method:       | EPA 6020B                                        |
|---------------------|------------------------------------|------------------------|--------------------------------------------------|
| QC Batch Method:    | EPA 3005A                          | Analysis Description:  | 6020 MET                                         |
|                     |                                    | Laboratory:            | Pace Analytical Services - Peachtree Corners, GA |
| Associated Lab Samp | bles: 92521583001, 92521583003, 92 | 521583004, 92521583005 | , 92521583006, 92521583007                       |
| METHOD BLANK: 3     | 3167301                            | Matrix: Water          |                                                  |

| Associated Lab Samples: | 92521583001, 92521583003, 9 | 2521583004, 92 | 2521583005, 925 | 521583006, 925 | 21583007       |            |
|-------------------------|-----------------------------|----------------|-----------------|----------------|----------------|------------|
|                         |                             | Blank          | Reporting       |                |                |            |
| Parameter               | Units                       | Result         | Limit           | MDL            | Analyzed       | Qualifiers |
| Antimony                | mg/L                        | ND             | 0.0030          | 0.00028        | 02/19/21 18:52 |            |
| Arsenic                 | mg/L                        | ND             | 0.0050          | 0.00078        | 02/19/21 18:52 |            |
| Barium                  | mg/L                        | ND             | 0.010           | 0.00071        | 02/19/21 18:52 |            |
| Beryllium               | mg/L                        | ND             | 0.0030          | 0.000046       | 02/19/21 18:52 |            |
| Cadmium                 | mg/L                        | ND             | 0.0025          | 0.00012        | 02/19/21 18:52 |            |
| Chromium                | mg/L                        | ND             | 0.010           | 0.00055        | 02/19/21 18:52 |            |
| Cobalt                  | mg/L                        | ND             | 0.0050          | 0.00038        | 02/19/21 18:52 |            |
| Lead                    | mg/L                        | ND             | 0.0050          | 0.000036       | 02/19/21 18:52 |            |
| Lithium                 | mg/L                        | ND             | 0.030           | 0.00081        | 02/19/21 18:52 |            |
| Molybdenum              | mg/L                        | ND             | 0.010           | 0.00069        | 02/19/21 18:52 |            |
| Selenium                | mg/L                        | ND             | 0.010           | 0.0016         | 02/19/21 18:52 |            |
| Thallium                | mg/L                        | ND             | 0.0010          | 0.00014        | 02/19/21 18:52 |            |

#### LABORATORY CONTROL SAMPLE: 3167302

|            |       | Spike | LCS    | LCS   | % Rec  |            |
|------------|-------|-------|--------|-------|--------|------------|
| Parameter  | Units | Conc. | Result | % Rec | Limits | Qualifiers |
| Antimony   | mg/L  | 0.1   | 0.11   | 111   | 80-120 |            |
| Arsenic    | mg/L  | 0.1   | 0.10   | 101   | 80-120 |            |
| Barium     | mg/L  | 0.1   | 0.099  | 99    | 80-120 |            |
| Beryllium  | mg/L  | 0.1   | 0.10   | 101   | 80-120 |            |
| Cadmium    | mg/L  | 0.1   | 0.10   | 101   | 80-120 |            |
| Chromium   | mg/L  | 0.1   | 0.10   | 101   | 80-120 |            |
| Cobalt     | mg/L  | 0.1   | 0.098  | 98    | 80-120 |            |
| Lead       | mg/L  | 0.1   | 0.10   | 100   | 80-120 |            |
| Lithium    | mg/L  | 0.1   | 0.10   | 105   | 80-120 |            |
| Molybdenum | mg/L  | 0.1   | 0.10   | 104   | 80-120 |            |
| Selenium   | mg/L  | 0.1   | 0.095  | 95    | 80-120 |            |
| Thallium   | mg/L  | 0.1   | 0.098  | 98    | 80-120 |            |

| MATRIX SPIKE & MATRIX SP | IKE DUPL | ICATE: 3167 | 303   |       | 3167304 |        |       |       |        |     |     |      |
|--------------------------|----------|-------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                          |          |             | MS    | MSD   |         |        |       |       |        |     |     |      |
|                          |          | 92521583001 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter                | Units    | Result      | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Antimony                 | mg/L     | 0.00035J    | 0.1   | 0.1   | 0.12    | 0.11   | 117   | 110   | 75-125 | 5   | 20  |      |
| Arsenic                  | mg/L     | 0.0015J     | 0.1   | 0.1   | 0.11    | 0.10   | 106   | 103   | 75-125 | 2   | 20  |      |
| Barium                   | mg/L     | 0.036       | 0.1   | 0.1   | 0.14    | 0.13   | 104   | 95    | 75-125 | 7   | 20  |      |
| Beryllium                | mg/L     | 0.00029J    | 0.1   | 0.1   | 0.095   | 0.088  | 95    | 88    | 75-125 | 7   | 20  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

# **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



Project: YATES AMA-R6/AP-2

Pace Project No.: 92521583

| MATRIX SPIKE & MATRIX SPI | KE DUPI | LICATE: 3167 | 303         |              | 3167304 |        |             |        |        |     |     |      |
|---------------------------|---------|--------------|-------------|--------------|---------|--------|-------------|--------|--------|-----|-----|------|
| Poromotor                 | Linito  | 92521583001  | MS<br>Spike | MSD<br>Spike | MS      | MSD    | MS<br>% Roo | MSD    | % Rec  | חחם | Max | Qual |
|                           | Units   |              |             | CONC.        |         | Result |             | /0 Kec |        |     |     | Quai |
| Cadmium                   | mg/L    | 0.00042J     | 0.1         | 0.1          | 0.10    | 0.10   | 102         | 101    | 75-125 | 1   | 20  |      |
| Chromium                  | mg/L    | ND           | 0.1         | 0.1          | 0.11    | 0.10   | 106         | 104    | 75-125 | 1   | 20  |      |
| Cobalt                    | mg/L    | 0.0023J      | 0.1         | 0.1          | 0.10    | 0.10   | 103         | 102    | 75-125 | 0   | 20  |      |
| Lead                      | mg/L    | 0.000088J    | 0.1         | 0.1          | 0.099   | 0.097  | 99          | 97     | 75-125 | 2   | 20  |      |
| Lithium                   | mg/L    | 0.024J       | 0.1         | 0.1          | 0.12    | 0.11   | 98          | 88     | 75-125 | 8   | 20  |      |
| Molybdenum                | mg/L    | 0.0016J      | 0.1         | 0.1          | 0.11    | 0.11   | 108         | 108    | 75-125 | 1   | 20  |      |
| Selenium                  | mg/L    | 0.28         | 0.1         | 0.1          | 0.38    | 0.37   | 106         | 92     | 75-125 | 4   | 20  |      |
| Thallium                  | mg/L    | ND           | 0.1         | 0.1          | 0.097   | 0.096  | 97          | 96     | 75-125 | 1   | 20  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project.                                                          | YATES AMA-R6/A                                        | P-2                                                               |                                                         |                                         |                                                |                                      |                  |                                     |                               |           |            |      |
|-------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------|------------------------------------------------|--------------------------------------|------------------|-------------------------------------|-------------------------------|-----------|------------|------|
| Pace Project No.:                                                 | 92521583                                              |                                                                   |                                                         |                                         |                                                |                                      |                  |                                     |                               |           |            |      |
| QC Batch:                                                         | 600023                                                |                                                                   | Analy                                                   | sis Method                              | d:                                             | EPA 7470A                            |                  |                                     |                               |           |            |      |
| QC Batch Method:                                                  | EPA 7470A                                             |                                                                   | Analy                                                   | sis Descri                              | ption:                                         | 7470 Mercui                          | ъ                |                                     |                               |           |            |      |
|                                                                   |                                                       |                                                                   | Labor                                                   | ratory:                                 |                                                | Pace Analyti                         | cal Servic       | es - Peach                          | tree Corne                    | rs, GA    |            |      |
| Associated Lab Sar                                                | mples: 92521583                                       | 001, 9252158300                                                   | 3, 9252158                                              | 3004, 9252                              | 21583005,                                      | 9252158300                           | 06, 92521        | 583007                              |                               |           |            |      |
| METHOD BLANK:                                                     | 3163248                                               |                                                                   |                                                         | Matrix: W                               | ater                                           |                                      |                  |                                     |                               |           |            |      |
| Associated Lab Sar                                                | nples: 92521583                                       | 001, 9252158300                                                   | 3, 9252158                                              | 3004, 9252                              | 21583005,                                      | 9252158300                           | 6, 92521         | 583007                              |                               |           |            |      |
|                                                                   |                                                       |                                                                   | Blan                                                    | k l                                     | Reporting                                      |                                      |                  |                                     |                               |           |            |      |
| Parar                                                             | neter                                                 | Units                                                             | Resu                                                    | ult                                     | Limit                                          | MDL                                  | -                | Analyzed                            | l Qı                          | ualifiers |            |      |
| Mercury                                                           |                                                       | mg/L                                                              |                                                         | ND                                      | 0.0005                                         | 0.00                                 | 00078 0          | 2/16/21 11                          | :30                           |           |            |      |
|                                                                   |                                                       |                                                                   |                                                         |                                         |                                                |                                      |                  |                                     |                               |           |            |      |
|                                                                   |                                                       |                                                                   |                                                         |                                         |                                                |                                      |                  |                                     |                               |           |            |      |
| LABORATORY CO                                                     | NTROL SAMPLE:                                         | 3163249                                                           |                                                         |                                         |                                                |                                      |                  |                                     |                               |           |            |      |
| LABORATORY CO                                                     | NTROL SAMPLE:                                         | 3163249                                                           | Spike                                                   | LC                                      | S                                              | LCS                                  | % R              | ec                                  |                               |           |            |      |
| LABORATORY CO                                                     | NTROL SAMPLE:                                         | 3163249<br>Units                                                  | Spike<br>Conc.                                          | LC<br>Res                               | :S<br>sult                                     | LCS<br>% Rec                         | % R<br>Lim       | ec                                  | Qualifiers                    |           |            |      |
| LABORATORY CO<br>Parar<br>Mercury                                 | NTROL SAMPLE:                                         | 3163249<br>Units<br>mg/L                                          | Spike<br>Conc.                                          | LC<br>Res<br>5                          | S<br>Sult<br>0.0025                            | LCS<br>% Rec<br>100                  | % R<br>          | ec<br>its<br>80-120                 | Qualifiers                    |           |            |      |
| LABORATORY CO<br>Parar<br>Mercury                                 | NTROL SAMPLE:                                         | 3163249<br>Units<br>mg/L                                          | Spike<br>Conc.<br>0.002                                 | LC<br>Res<br>5                          | S<br>sult                                      | LCS<br>% Rec<br>100                  | % R<br>Lim       | ec<br>its                           | Qualifiers                    | _         |            |      |
| LABORATORY CO<br>Parar<br>Mercury<br>MATRIX SPIKE & M             | NTROL SAMPLE:<br>neter                                | 3163249<br><u>Units</u><br>mg/L<br>LICATE: 3163                   | Spike<br>Conc.<br>0.0029                                | LC<br>Res<br>5                          | S<br>Sult<br>0.0025<br>3163251                 | LCS<br>% Rec<br>100                  | % R<br>          | ec<br>its                           | Qualifiers                    |           |            |      |
| LABORATORY CO<br>Parar<br>Mercury<br>MATRIX SPIKE & N             | NTROL SAMPLE:<br>neter                                | 3163249<br><u>Units</u><br>mg/L<br>LICATE: 3163                   | 250<br>MS                                               | LC<br>Res<br>5<br>MSD                   | S<br>sult<br>0.0025<br>3163251                 | LCS<br>% Rec<br>100                  | % R<br>          | ec<br>its<br>80-120                 | Qualifiers                    | _         |            |      |
| LABORATORY CO<br>Parar<br>Mercury<br>MATRIX SPIKE & M             | NTROL SAMPLE:<br>neter<br>MATRIX SPIKE DUP            | 3163249<br>Units<br>mg/L<br>LICATE: 3163<br>92521578009           | Spike<br>Conc.<br>0.0023<br>250<br>MS<br>Spike          | LC<br>Res<br>5<br>MSD<br>Spike          | S<br>sult<br>0.0025<br>3163251<br>MS           | LCS<br>% Rec<br>100                  | % R<br>Lim<br>MS | ec<br>its<br>80-120<br>MSD          | Qualifiers<br>% Rec           |           | Max        |      |
| LABORATORY CO<br>Parar<br>Mercury<br>MATRIX SPIKE & M<br>Paramete | NTROL SAMPLE:<br>meter<br>MATRIX SPIKE DUP<br>r Units | 3163249<br>Units<br>mg/L<br>LICATE: 3163<br>92521578009<br>Result | Spike<br>Conc.<br>0.0029<br>250<br>MS<br>Spike<br>Conc. | LC<br>Res<br>5<br>MSD<br>Spike<br>Conc. | S<br>sult<br>0.0025<br>3163251<br>MS<br>Result | LCS<br>% Rec<br>100<br>MSD<br>Result | MS<br>% Rec      | ec<br>its<br>80-120<br>MSD<br>% Rec | Qualifiers<br>% Rec<br>Limits | RPD       | Max<br>RPD | Qual |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Fluoride          |                | mg/L         | 0.21                  | 2.5                | 2.5                     | 2.3                    | 2.5           | 84           | 91           | 90-110          | 7         | 10         | M1   |
|-------------------|----------------|--------------|-----------------------|--------------------|-------------------------|------------------------|---------------|--------------|--------------|-----------------|-----------|------------|------|
| Paramete          | er             | Units        | 92521143010<br>Result | Spike<br>Conc.     | Spike<br>Conc.          | MS<br>Result           | MSD<br>Result | MS<br>% Rec  | MSD<br>% Rec | % Rec<br>Limits | RPD       | Max<br>RPD | Qual |
| MATRIX SPIKE & M  | MATRIX         | SPIKE DUP    | LICATE: 3161          | 575<br>MS          | MSD                     | 316157                 | 6             |              |              |                 |           |            |      |
| Fluoride          |                | mg/L         | 0.066J                | 2.5                | 2.5                     | 2.4                    | 2.5           | 93           | 99           | 90-110          | 6         | 10         |      |
| Paramete          | er             | Units        | 92521578009<br>Result | Spike<br>Conc.     | Spike<br>Conc.          | MS<br>Result           | MSD<br>Result | MS<br>% Rec  | MSD<br>% Rec | % Rec<br>Limits | RPD       | Max<br>RPD | Qual |
| MATRIX SPIKE & M  | MATRIX         | SPIKE DUP    | LICATE: 3161          | 259<br>MS          | MED                     | 316126                 | 0             |              |              |                 |           |            |      |
| Fluoride          |                |              | mg/L                  | 2                  | 5                       | 2.6                    | 10            | 3            | 90-110       |                 |           |            |      |
| LABORATORY CO     | NTROL<br>meter | SAMPLE:      | 3161258<br>Units      | Spike<br>Conc.     | LC<br>Res               | S                      | LCS<br>% Rec  | % R<br>Lim   | lec<br>its   | Qualifiers      |           |            |      |
|                   |                |              | mg/∟                  |                    | ND                      | 0.1                    | 10            | 0.050 0.     | 2/12/21 15:  | 24              |           |            |      |
| Para              | meter          |              | Units                 | Res                | sult                    | Limit                  | MD            | L            | Analyzed     |                 | ualifiers |            |      |
| Associated Lab Sa | mples:         | 925215830    | 001, 9252158300       | 03, 9252158<br>Bla | 33004, 925<br>nk        | 21583005,<br>Reporting | 925215830     | 06, 92521    | 583007       |                 |           |            |      |
| METHOD BLANK:     | 31612          | 57           |                       |                    | Matrix: W               | ater                   |               |              |              |                 |           |            |      |
| Associated Lab Sa | mples:         | 925215830    | 001, 9252158300       | 03, 9252158        | 33004, 925              | 21583005,              | 925215830     | 06, 92521    | 583007       |                 |           |            |      |
| QC Batch Method:  | EPA            | 300.0 Rev 2. | 1 1993                | Labo               | ysis Descri<br>pratory: | otion:                 | Pace Analy    | tical Servic | es - Ashevi  | lle             |           |            |      |
| QC Batch:         | 5996           | 64           | 4 4000                | Anal               | ysis Metho              | d:<br>                 | EPA 300.0 I   | Rev 2.1 19   | 93           |                 |           |            |      |
| Pace Project No.: | 92521          | 583          |                       |                    |                         |                        |               |              |              |                 |           |            |      |
| Project:          | YATES          | 5 AMA-R6/AF  | P-2                   |                    |                         |                        |               |              |              |                 |           |            |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



## QUALIFIERS

#### Project: YATES AMA-R6/AP-2

Pace Project No.: 92521583

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### ANALYTE QUALIFIERS

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.



# QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: YATES AMA-R6/AP-2 Pace Project No.: 92521583

| Lab ID      | Sample ID       | QC Batch Method        | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|-----------------|------------------------|----------|-------------------|---------------------|
| 92521583001 | PZ-37 (020921)  |                        |          |                   |                     |
| 92521583003 | YAMW-2 (020921) |                        |          |                   |                     |
| 92521583004 | YAMW-4 (020921) |                        |          |                   |                     |
| 92521583005 | YAMW-5 (020921) |                        |          |                   |                     |
| 92521583006 | YAMW-1 (020921) |                        |          |                   |                     |
| 92521583007 | PZ-35(021021)   |                        |          |                   |                     |
| 92521583001 | PZ-37 (020921)  | EPA 3005A              | 600920   | EPA 6020B         | 601040              |
| 92521583003 | YAMW-2 (020921) | EPA 3005A              | 600920   | EPA 6020B         | 601040              |
| 92521583004 | YAMW-4 (020921) | EPA 3005A              | 600920   | EPA 6020B         | 601040              |
| 92521583005 | YAMW-5 (020921) | EPA 3005A              | 600920   | EPA 6020B         | 601040              |
| 92521583006 | YAMW-1 (020921) | EPA 3005A              | 600920   | EPA 6020B         | 601040              |
| 92521583007 | PZ-35(021021)   | EPA 3005A              | 600920   | EPA 6020B         | 601040              |
| 92521583001 | PZ-37 (020921)  | EPA 7470A              | 600023   | EPA 7470A         | 600226              |
| 92521583003 | YAMW-2 (020921) | EPA 7470A              | 600023   | EPA 7470A         | 600226              |
| 92521583004 | YAMW-4 (020921) | EPA 7470A              | 600023   | EPA 7470A         | 600226              |
| 92521583005 | YAMW-5 (020921) | EPA 7470A              | 600023   | EPA 7470A         | 600226              |
| 92521583006 | YAMW-1 (020921) | EPA 7470A              | 600023   | EPA 7470A         | 600226              |
| 92521583007 | PZ-35(021021)   | EPA 7470A              | 600023   | EPA 7470A         | 600226              |
| 92521583001 | PZ-37 (020921)  | EPA 300.0 Rev 2.1 1993 | 599664   |                   |                     |
| 92521583003 | YAMW-2 (020921) | EPA 300.0 Rev 2.1 1993 | 599664   |                   |                     |
| 92521583004 | YAMW-4 (020921) | EPA 300.0 Rev 2.1 1993 | 599664   |                   |                     |
| 92521583005 | YAMW-5 (020921) | EPA 300.0 Rev 2.1 1993 | 599664   |                   |                     |
| 92521583006 | YAMW-1 (020921) | EPA 300.0 Rev 2.1 1993 | 599664   |                   |                     |
| 92521583007 | PZ-35(021021)   | EPA 300.0 Rev 2.1 1993 | 599664   |                   |                     |

|                                                                                                                                                                         | Page Applicat                                                                                                    | Do<br>Sample Condi                                                                                              | :ument N<br>tion Upo         | iame:<br>in Receipt(SCUI | 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Document Revised: October 28, 2020<br>Page 1 of 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 17.                                                                                                                                                                     | r aut ruidiyliudi                                                                                                | D.<br>E-CAL                                                                                                     | ocument                      | No.:                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Issuing Authority:<br>Pace Carolinas Quality Office                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                    |
| inharater                                                                                                                                                               |                                                                                                                  |                                                                                                                 | <u>~~~3~U3</u> 3             | -104.07                  | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pace Colonias Quarty Unice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                    |
| Asheville                                                                                                                                                               | Eden Greenwoo                                                                                                    | d 🗌 Huntersv                                                                                                    | ille []                      | Raleigh                  | Mect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | anicsville Atlante Kerne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ersville 🔄                                                                                                                                                                                                                         |
|                                                                                                                                                                         |                                                                                                                  |                                                                                                                 |                              |                          | سنتيو .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | }                                                                                                                                                                                                                                  |
| Upon Receipt                                                                                                                                                            |                                                                                                                  | PALLOW                                                                                                          |                              | Proje                    | ;ct #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WO#:92521585                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                                                                                                  |
| Courler:                                                                                                                                                                | Fed Ex Pace                                                                                                      | UPS USPS                                                                                                        | •                            | Client                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 92521583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                    |
| Custody Seal Presen                                                                                                                                                     | t7 Yes Ano                                                                                                       | Seals Intact?                                                                                                   | Yes                          | No                       | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ate/initiais Person Examining Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10/21                                                                                                                                                                                                                              |
| Packing Material:                                                                                                                                                       |                                                                                                                  | Bubble Bags                                                                                                     |                              | Other                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Biological Tissue Frozen?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                    |
| Thermometer:                                                                                                                                                            | 730                                                                                                              |                                                                                                                 | Cr                           | Wet Blue                 | Non                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e LjYes LjNo LjN/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                    |
|                                                                                                                                                                         | 1 Correction                                                                                                     | n Factor:                                                                                                       | ĸ                            |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                    |
| Copler Temp:                                                                                                                                                            | Add/Sub                                                                                                          | tract (*C) <u>0-0</u>                                                                                           | 66. <del>7.7.86.7</del> 16.4 | <del></del>              | Temp st<br>⊡S;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | hould be above freezing to 6°C<br>amples out of temp criteria. Samples on ice, co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | oling process                                                                                                                                                                                                                      |
| Cooler Temp Correct                                                                                                                                                     | ted (°C):                                                                                                        | X.                                                                                                              |                              |                          | has t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | jegun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                    |
| Did samples originate                                                                                                                                                   | in a quarantine zone within t                                                                                    | the United States: CA,                                                                                          | NY, or SC                    | C (check maps)?          | Did sam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ples originate from a foreign source (Internatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | onally,                                                                                                                                                                                                                            |
| Ljves LINO                                                                                                                                                              | 20 Kolon (1979)                                                                                                  | ana ana amin'ny tanàna mandritra dia kaominina dia kaominina dia kaominina dia kaominina dia kaominina dia kaom |                              |                          | Includin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>g nawait and Puerto Ricol7 LiYes liNo</u><br>Comments/Discrepancy:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                    |
| Chain of Custod                                                                                                                                                         | Present?                                                                                                         | Yes                                                                                                             |                              | □N/A 1.                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | una serier na hanna an ann an ann an ann an ann an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | **************************************                                                                                                                                                                                             |
| Samples Arrived                                                                                                                                                         | within Hold Time?                                                                                                | Cars.                                                                                                           | []No                         | []N/A 2                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | When the product of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s<br>second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec<br>second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec |                                                                                                                                                                                                                                    |
| Short Hold Time                                                                                                                                                         | Analysis (<72 hr.1?                                                                                              | rares<br>∏Yes                                                                                                   | EN8                          | DN/A 3.                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                    |
| Rush Turn Arou                                                                                                                                                          | nd Time Requested?                                                                                               | Yes                                                                                                             | 2%                           | □N/A 4.                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                    |
| Sufficient Volum                                                                                                                                                        | e?                                                                                                               | E.S.                                                                                                            |                              | DN/A 5.                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | and the second second second second second second second second second second second second second second secon                                                                                                                    |
| Correct Contain                                                                                                                                                         | ers Used?                                                                                                        | [2]Yes                                                                                                          |                              | □N/A 6.                  | Napa ana amin'ny fisiana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lauren eta segun anterio eta errizzia di al constructivo en esta esta esta en esta en esta en esta en en en est                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1. 10 M TO 10 M TO 10 M TO 10 M TO 10 M TO 10 M TO 10 M TO 10 M TO 10 M TO 10 M TO 10 M TO 10 M TO 10 M TO 10 M                                                                                                                    |
| -Pace Contair                                                                                                                                                           | ers Used?                                                                                                        | E Tes                                                                                                           |                              |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | anaas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                    |
| Containers Intac                                                                                                                                                        | <b>t?</b>                                                                                                        | Eres                                                                                                            |                              | <u> </u>                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | an a suite ann an an an an ann an ann an ann an an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                    |
| Dissolved analys                                                                                                                                                        | is: Samples Field Filtered?                                                                                      | □Yes                                                                                                            | No                           | EN/A 8.                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | aan ah waxaa waxaa ka ka maa ka ka ka ka ka ka ka ka ka ka ka ka k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                    |
| لا ماهماه از ماهمس ۲۰                                                                                                                                                   | Aatch COC?                                                                                                       | G.                                                                                                              | <b>⊡</b> No                  | <b>□</b> N/A 9.          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                    |
| Sample capels N                                                                                                                                                         |                                                                                                                  | - not                                                                                                           |                              |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                    |
| Jampie Labels N                                                                                                                                                         | a/Time/ID/Analucia Atatela                                                                                       | W17                                                                                                             |                              |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                    |
| -includes Dat                                                                                                                                                           | e/Time/ID/Analysis Matrix:                                                                                       | анталана (С. 1997).<br>ГЪ.                                                                                      | 1771 Mar                     | E Think I was            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *****                                                                                                                                                                                                                              |
| -includes Dat<br>Headspace in Vi                                                                                                                                        | e/Time/ID/Analysis Matrix:<br>DA Vials (>5-6mm)?<br>Int?                                                         | Yes<br>Yes                                                                                                      |                              | N/A 10                   | ter<br>nameconomiseerotaanseerotaanseerotaanseero                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n waa nin aannan amaa maraan hare haan ha ka aa waxaa maxaa waxaa waxaa aa aa aa aa aa aa aa aa aa aa aa aa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -<br>1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - |
| -Includes Dat<br>Headspace in Vi<br>Trip Blank Prese                                                                                                                    | e/Time/ID/Analysis Matrix:<br>DA Vials (>5-6mm)?<br>nt?<br>dy Seals Present?                                     |                                                                                                                 |                              |                          | normae can an an each crist of a marky                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11111111111111111111111111111111111111                                                                                                                                                                                             |
| -includes Dat<br>-includes Dat<br>Headspace in VI<br>Trip Blank Prese<br>Trip Blank Custo                                                                               | e/Time/ID/Analysis Matrix:<br>DA Vials (>5-6mm)?<br>int?<br>indy Seals Present?                                  | ∏Yas<br>□Yas<br>□Yas<br>□Yas                                                                                    |                              |                          | normet several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves of the several harves  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                    |
| -Includes Dat<br>-Includes Dat<br>Headspace In VI<br>Trip Blank Prese<br>Trip Blank Custo<br>COMMENTS/SAMP                                                              | e/Time/ID/Analysis Matrix:<br>DA Vials (>5-6mm)?<br>nt?<br>ndy Seals Present?<br>LE DISCREPANCY                  | ⊡Yas<br>□Yas<br>□Yes                                                                                            |                              |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Field Data Required?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Yes No                                                                                                                                                                                                                             |
| -Includes Dat<br>-Includes Dat<br>Headspace In VI<br>Trip Blank Prese<br>Trip Blank Custo<br>COMMENTS/SAMP                                                              | e/Time/ID/Analysis Matrix:<br>DA Vials (>5-6mm)?<br>int?<br>int?<br>int?<br>Ite DISCREPANCY                      | □Yas<br>□Yas<br>□Yas                                                                                            |                              |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Field Data Required?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Yes No                                                                                                                                                                                                                             |
| -Includes Dat<br>-Includes Dat<br>Headspace In VI<br>Trip Blank Prese<br>Trip Blank Custo<br>COMMENTS/SAMP                                                              | e/Time/ID/Analysis Matrix:<br>DA Vials (>5-6mm)?<br>int?<br>indy Seals Present?<br>LE DISCREPANCY                | ∏Yas<br>  Yas<br>  Yas<br>  Yas                                                                                 |                              |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Field Data Required?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Yes No                                                                                                                                                                                                                             |
| -Includes Dat<br>-Includes Dat<br>Headspace In VI<br>Trip Blank Prese<br>Trip Blank Custo<br>COMMENTS/SAMP                                                              | e/Time/ID/Analysis Matrix:<br>DA Vials (>5-6mm)?<br>nt?<br>hdy Seals Present?<br>LE DISCREPANCY                  | ⊡Yas<br>□Yas<br>□Yes                                                                                            |                              |                          | .ot ID of si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Field Data Required?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Yes No                                                                                                                                                                                                                             |
| -Includes Dat<br>-Includes Dat<br>Headspace In VI<br>Trip Blank Prese<br>Trip Blank Custo<br>COMMENTS/SAMP                                                              | e/Time/ID/Analysis Matrix:<br>DA Vials (>5-6mm)?<br>int?<br>int?<br>int?<br>Ite DISCREPANCY<br>N/RESOLUTION      | □Yas<br>□Yas<br>□Yes                                                                                            |                              |                          | .ot ID of s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Field Data Required?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Yes No                                                                                                                                                                                                                             |
| -Includes Dat<br>-Includes Dat<br>Headspace In VI<br>Trip Blank Prese<br>Trip Blank Custo<br>COMMENTS/SAMP                                                              | e/Time/ID/Analysis Matrix:<br>DA Vials (>5-6mm)?<br>nt?<br>hdy Seals Present?<br>LE DISCREPANCY<br>N/RESOLUTION  | ∏Yas<br>  Y¤s<br>  Y⊭s                                                                                          |                              |                          | .ot ID of s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Field Data Required?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Yes No                                                                                                                                                                                                                             |
| -Includes Dat<br>-Includes Dat<br>Headspace In VI<br>Trip Blank Prese<br>Trip Blank Custo<br>COMMENTS/SAMP<br>CLIENY NOTIFICATION                                       | e/Time/ID/Analysis Matrix:<br>DA Vials (>5-6mm)?<br>int?<br>int?<br>int?<br>int?<br>int?<br>int?<br>int?<br>int  | ∏Yas<br>  Yas<br>  Yas                                                                                          |                              |                          | on an address of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se | Field Data Required?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Yes No                                                                                                                                                                                                                             |
| -Includes Dat<br>-Includes Dat<br>Headspace In VI<br>Trip Blank Prese<br>Trip Blank Custo<br>COMMENTS/SAMP<br>CLIENY NOTIFICATION<br>Person contacted                   | e/Time/ID/Analysis Matrix:<br>DA Vials (>5-6mm)?<br>Int?<br>My Seals Present?<br>LE DISCREPANCY                  | ∏Yas<br>  Yπs<br>  Yπs                                                                                          |                              | Date/Time:               | .ot ID of s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Field Data Required?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Yes No                                                                                                                                                                                                                             |
| -Includes Dat<br>-Includes Dat<br>Headspace In VI<br>Trip Blank Prese<br>Trip Blank Custo<br>COMMENTS/SAMP<br>CLIENT NOTIFICATION<br>Person contacted                   | e/Time/ID/Analysis Matrix:<br>DA Vials (>5-6mm)?<br>Int?<br>Int?<br>Int?<br>Int?<br>Int?<br>Int?<br>Int?<br>Int  | <u>□</u> Yes<br>□Yes<br>□Yes                                                                                    |                              | Date/Time:               | ot ID of s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Field Data Required?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Yes No                                                                                                                                                                                                                             |
| -Includes Dat<br>-Includes Dat<br>Headspace in Vi<br>Trip Blank Prese<br>Trip Blank Custo<br>COMMENTS/SAMP<br>CLIENT NOTIFICATION<br>Person contacted<br>Project Manage | e/Time/ID/Analysis Matrix:<br>DA Vials (>5-6mm)?<br>Int?<br>Int?<br>Int?<br>Int?<br>Int?<br>Int?<br>Int?<br>Int  |                                                                                                                 |                              | Date/Time:               | .ot ID of s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Field Data Required?     plit containers:     Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes No                                                                                                                                                                                                                             |
| -Includes Dat<br>-Includes Dat<br>Headspace In Vi<br>Trip Blank Prese<br>Trip Blank Custo<br>COMMENTS/SAMP<br>CLIENT NOTIFICATION<br>Person contacted<br>Project Manage | e/Time/ID/Analysis Matrix:<br>DA Vials (>5-6mm)?<br>Int?<br>May Seals Present?<br>LE DISCREPANCY<br>N/RESOLUTION | ∏Yas<br> Yas<br> ∑Yes                                                                                           |                              | Date/Time:               | .ot ID of s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Field Data Required?     plit containers:     Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Yes   No                                                                                                                                                                                                                           |
| CLIENT NOTIFICATION<br>Person contacted<br>Project Manage                                                                                                               | e/Time/ID/Analysis Matrix:<br>DA Vials (>5-6mm)?<br>Int?<br>Int?<br>Int?<br>Int?<br>Int?<br>Int?<br>Int?<br>Int  |                                                                                                                 |                              | Date/Time:               | at with the the the the the the the the the t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Field Data Required?     plit containers:     Date:   Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Yes No                                                                                                                                                                                                                             |

|                                                        |          |                | Ĩ |          |                  |                 | <b>N</b>               |                                         | P           |       | 193      |    |     |     |       |     | 12             |              | ITEM#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                               | 1       | tex          | X                       | ₽             |          |                 | 5                     |                                         |
|--------------------------------------------------------|----------|----------------|---|----------|------------------|-----------------|------------------------|-----------------------------------------|-------------|-------|----------|----|-----|-----|-------|-----|----------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------|--------------|-------------------------|---------------|----------|-----------------|-----------------------|-----------------------------------------|
|                                                        |          |                |   |          |                  | Literas mainter |                        |                                         |             |       |          |    |     |     | P7_37 |     |                |              | Sample Ms must be unique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                 |         | ed Due Date: | (770)384.6526 Fac       |               | A 20144  | Y Georgia Power | d Citent Information: | Face Analytical                         |
|                                                        |          | <b>mpeters</b> |   |          |                  |                 |                        |                                         |             |       |          |    |     |     |       |     |                |              | Heading Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andrea |                                                                                 |         | Project #:   | Project Name;           | Purchase Orde | Copy To: | Report To: p    | Required Proj         |                                         |
|                                                        | :        |                |   |          | Ľ.               |                 |                        |                                         | ļ           | -     |          |    | 3   | 3   | 3     | 3   | 3              | 7            | MATRIX CODE (SOUVARD CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | as to tell<br>=COMP}                                                            |         |              | 3                       | 3             |          | Venctoy S       |                       |                                         |
|                                                        |          |                |   | 1.       | Ŕ                |                 | l –                    |                                         |             | İ     | Î        |    |     |     | 17    |     |                | $\mathbf{T}$ | lg l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T                                                                               | 1       |              | tes Δ                   |               |          | Nove            | ormal                 |                                         |
| T                                                      |          | <b>i</b>       |   |          | Ren              |                 |                        |                                         |             |       | ļ        | ļ, |     | ļ   | 2     |     | Ļ              | -            | ITE STAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                 |         | ł            | N R                     |               |          |                 | Ř                     |                                         |
| 8                                                      | 3        | ĺ              |   | 100      | Colle            |                 | n<br>di<br>zanizi      |                                         |             |       | 2.4      |    |     |     | S     |     |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8                                                                               |         |              |                         |               |          |                 |                       |                                         |
|                                                        |          |                |   |          | <b>M</b>         |                 |                        |                                         |             |       |          |    |     |     |       |     | Γ              |              | R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 |         |              |                         | 2             |          |                 |                       | 쿻                                       |
| 8                                                      | 2 2 S    |                |   |          | 24               |                 | -                      |                                         |             |       |          | 11 |     |     |       |     | ł, se          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ľ                                                                               |         |              |                         |               |          |                 |                       | 유민                                      |
| ANPL                                                   | -AND     |                |   |          | ō                |                 |                        |                                         |             |       |          |    |     |     |       |     |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 |         |              |                         |               |          |                 |                       | 2                                       |
| 7                                                      |          |                |   |          | $\frac{2}{2}$    |                 |                        |                                         |             |       | -        |    |     |     |       |     |                |              | SAMPLE TEMP AT COLLECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DN                                                                              |         |              |                         |               |          |                 | - 4                   |                                         |
| -3                                                     | $\Sigma$ |                |   | <u>ь</u> | Ø                | 1<br>1<br>1     |                        |                                         |             | -     |          |    |     |     | 1     |     | <b> </b>       |              | # OF CONTAINERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T                                                                               |         | Page 1       | 8                       |               |          | Athene          | <b>Envoic</b>         | 9 C                                     |
| ŝ.                                                     | 7        |                |   |          | N                |                 |                        |                                         |             |       |          | ]  | ·   |     |       |     | ┢              |              | H2504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |         |              |                         | í ÷           | N K      | 24              | * 3                   |                                         |
| $\mathbb{N}$                                           |          | - History      |   | İ.       |                  |                 |                        |                                         |             |       |          |    |     |     | Same. |     |                |              | HNO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                               |         | *            |                         |               | Ř        | ľ               |                       | i i i i i i i i i i i i i i i i i i i   |
| M                                                      |          |                |   |          | $\mathbf{C}$     |                 |                        |                                         |             | فتستب |          |    |     |     |       |     |                |              | HCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ]8                                                                              | 14      | Į.           |                         |               |          |                 | <b>8</b> .            | 8:                                      |
| NI                                                     | 2 👯      |                |   |          | 5                | С.<br>Ц         |                        |                                         | <u></u>     | ::. s | :        |    | ·   |     |       |     | <u> </u>       |              | Naoh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                 | ŀľ      |              |                         |               |          |                 |                       | <u>Š</u>                                |
| 11 1                                                   |          |                |   |          | E.               |                 |                        |                                         | i.<br>Grade |       | ÷        |    |     |     |       |     | <u> </u>       |              | Na2S2O3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18                                                                              |         |              | i                       |               |          |                 |                       |                                         |
| 1 19                                                   | Ē.       |                |   |          | $\mathbb{R}^{3}$ |                 |                        |                                         |             | ×     |          |    |     |     |       |     |                | ļ            | Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |         |              |                         |               |          |                 | , .                   |                                         |
|                                                        | <b>5</b> |                |   |          | N I              |                 |                        |                                         |             |       |          |    | L I |     |       |     | 1              | 8<br>• · ·   | Amilyion was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1.<br>1. | 靀       |              | ş                       |               |          |                 |                       |                                         |
| ľ                                                      | 100      |                |   | -        |                  |                 |                        |                                         |             |       |          |    | X.  | ۲   | ×     | ŧ   | 17             | 1            | App IV Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                 |         |              |                         |               |          |                 |                       | eval                                    |
| <b>T</b>                                               |          |                |   |          |                  |                 |                        |                                         |             |       | · -,     |    | X   |     | ×     | 1   | R              | М            | Fluoride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | l.                                                                              |         |              |                         |               |          |                 | ÷                     | l i i i i i i i i i i i i i i i i i i i |
| 9                                                      |          | ý.             |   |          |                  |                 |                        |                                         | بر.<br>ت    |       |          |    | ×   | 2   | ×     | 1   | <b>×</b>       | ×            | RAD 9315/9320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                 | ł.      |              | 1                       |               |          | ľ               | :                     | <u> </u>                                |
|                                                        |          |                |   | ·        |                  |                 | *                      |                                         |             |       |          |    |     |     |       |     | <b> </b>       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 |         |              |                         |               |          |                 |                       |                                         |
| $\left  \begin{array}{c} \\ \\ \\ \end{array} \right $ |          |                |   | ·        | 1<br>C           |                 | <u>) 34</u><br>11 - 14 |                                         |             |       |          |    |     |     | -     | .,  | ) <sup>-</sup> |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 |         | :            |                         |               |          |                 |                       | 8 6                                     |
| 9                                                      |          |                |   |          | 6                |                 |                        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | eiji man    |       |          |    | ,,  |     |       |     |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | i.                                                                              |         |              |                         |               |          | 1               |                       |                                         |
| 8                                                      |          |                |   | ŝ        | H                |                 |                        |                                         |             |       |          |    |     |     |       |     |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 |         |              |                         |               | a, 1     | <b></b> .       |                       |                                         |
| Ñ                                                      |          |                | 2 |          |                  |                 |                        |                                         |             |       |          |    |     |     |       |     |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 |         |              |                         | 1000          |          |                 |                       | a                                       |
|                                                        |          |                |   |          | $\mathbb{E}$     |                 |                        |                                         |             |       |          |    |     |     |       |     | :              |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 |         |              |                         |               |          | ~               |                       | 23                                      |
|                                                        |          |                |   |          | $\sim$           |                 |                        |                                         |             |       |          |    |     |     |       |     |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 | 190 (A) |              | No. of Concession, Name |               |          | ŀ               | 2                     | tery.                                   |
| TEMP                                                   | in C     |                |   |          |                  |                 |                        |                                         |             |       | <u> </u> |    |     |     | ليسيا |     | Ļ              |              | Residual Chiorine (Y/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18346                                                                           |         |              |                         |               |          |                 |                       | - 1.                                    |
| Receiv                                                 | ved on   |                |   | <u> </u> |                  |                 | 1                      |                                         | Ì           |       |          |    |     | j.  | 3     |     | È,             | 1            | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 |         |              |                         |               | -        |                 |                       |                                         |
| (Y/N)                                                  |          |                |   |          |                  |                 |                        |                                         |             |       |          |    | V   |     | ات    | . • |                |              | <i>5k</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                 |         |              |                         |               | 0        | ŀ               | •                     |                                         |
| Cusio                                                  | ay<br>D  |                |   | l.       |                  | 4<br>4<br>1     |                        |                                         |             |       |          |    |     | - A | 4     |     |                |              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 |         |              |                         | 3             |          |                 |                       |                                         |
| Cooter<br>(Y/N)                                        | ıÖ       |                |   |          |                  |                 |                        |                                         |             |       |          |    |     |     | 17    |     |                |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                 | 63      |              |                         |               | F        | 1               | 2                     |                                         |
| Sampl                                                  | ês.      |                | - | [<br>    |                  |                 |                        |                                         |             |       |          |    |     |     |       |     | ŀ              |              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 |         |              | 1                       |               | .:       |                 |                       |                                         |
| (Y/N)                                                  | e        |                |   |          |                  |                 |                        |                                         |             |       |          |    |     |     |       |     |                |              | V.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                 |         |              |                         |               |          |                 | N                     |                                         |

Page 20 of 23

|                   |                   |                |                              | Í                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          | 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |          | ð          |             |           |              | <b>1</b> 05 y    |         |     |                | R                                                                  |          | ITEM#                                                                                                          |                                     |                                                                                                                |                | 8 ₽         |          |                  | 1                         | 8               |
|-------------------|-------------------|----------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------|------------|-------------|-----------|--------------|------------------|---------|-----|----------------|--------------------------------------------------------------------|----------|----------------------------------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------|-------------|----------|------------------|---------------------------|-----------------|
|                   |                   |                |                              | an an an an an an an an an an an an an a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |              | A STATE OF A DIVISION OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE | +cwens- |          |            |             | YG40 889- |              | <b>WSTR7-H0-</b> | ALLER . |     | NONYA (DITOIT) | NONY-TO                                                            |          | SAMPLE ID<br>One Character per box.<br>(A-Z, 0-8/;-<br>Sample lets must be unique                              |                                     |                                                                                                                | of Due Date:   |             | GA 30114 | Y: Georgia Power | d Cfient information:     | Face Analytical |
| •                 |                   |                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | 13.25        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |          |            |             |           |              |                  |         |     |                | 2 - 2<br>- 2<br>- 2<br>- 2<br>- 2<br>- 2<br>- 2<br>- 2<br>- 2<br>- |          | Named<br>Name<br>Name<br>Name<br>Name<br>Name<br>Name<br>Name<br>Name                                          | NATRICE CODES<br>Driving Waters DWC |                                                                                                                | Project Warne  | Puratase On | Capy To: | Steport To:      | Section is<br>Required Pr |                 |
|                   |                   |                |                              | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | WT      | ×,       | M          | 5           | WT        | ¥.           | M                | TW      | WT  | WT             | ¥1                                                                 | ¥        | MATRIX CODE (see valid co<br>SAMPLE TYPE (G=GRAB (                                                             | des to left)<br>=COMP)              |                                                                                                                | " Yak          | 081 #       |          | Becky St         | oject info                | •* •            |
| <b>1</b> 11       |                   | 1 1000         |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | b            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |          |            |             |           |              |                  |         |     | -              |                                                                    |          | DATE                                                                                                           |                                     |                                                                                                                | SAP-2          |             |          | <b>38A2</b> :    | unadon:                   |                 |
|                   | -                 | PRA            |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | Tr.d         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |          |            |             |           |              |                  |         |     | 1240           | 1                                                                  |          |                                                                                                                | со<br>1100                          |                                                                                                                |                |             |          |                  |                           | · ·             |
|                   |                   | Chanse of      |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | ¢.           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |          | :          |             | <br>      |              |                  |         |     |                |                                                                    |          | MIE g                                                                                                          | Î                                   |                                                                                                                |                |             |          |                  |                           |                 |
|                   | SHA               |                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | Ê            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |          |            |             |           | · .          |                  | :       |     |                |                                                                    |          | T BAR                                                                                                          |                                     | 1 - 2 - 1<br>                                                                                                  |                |             |          |                  |                           | ain-of          |
|                   | RY C              |                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .  .<br> | 2            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |          |            |             |           |              |                  |         |     |                |                                                                    | ļ        | SAMPLE TEMP AT COLLECT                                                                                         | ON                                  |                                                                                                                |                |             | 2<br>    |                  |                           |                 |
|                   | F                 | 6 <b>16</b>    | b.                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | 15           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |          |            | ļ.,,        |           |              |                  |         |     |                |                                                                    | -        | # OF CONTAINERS                                                                                                | . <u></u>                           | 205-1                                                                                                          | Page           | Page        |          | Àter             |                           | 4 ÜS            |
|                   | ſ                 | 12             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | N<br>V       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | 1        |            |             |           |              |                  | 8       |     | Z              | <u>int</u>                                                         | <u> </u> | H2SO4                                                                                                          |                                     | . IOR                                                                                                          | Projec         |             | any N    | ō,               |                           | ů,              |
|                   |                   |                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | L        |            |             |           |              |                  |         |     | 1              |                                                                    |          | HNO3                                                                                                           | Pa                                  | 2                                                                                                              | t Man          |             | ane:     |                  |                           | EGA             |
|                   | a when the second |                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 50       | Ľ            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -       |          | 1          | н.<br>11 г. |           | Harjania     |                  |         |     |                |                                                                    |          | HCI                                                                                                            |                                     | 1084                                                                                                           | ager:          | · · · ·     |          |                  | 2                         | g               |
|                   |                   |                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Z.       | A            | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |          |            |             | :         |              |                  |         |     |                |                                                                    |          | N80H                                                                                                           | afy.                                | ſ                                                                                                              | z              |             |          |                  |                           |                 |
|                   |                   |                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S        | Ы            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |          |            |             |           |              |                  |         |     |                | <u> </u>                                                           |          | Methanol                                                                                                       | 105                                 |                                                                                                                | Nh.h           |             |          |                  |                           | ₹R              |
|                   |                   |                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C        | P            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | Ľ        |            |             |           |              |                  | <       |     |                |                                                                    |          | Other                                                                                                          |                                     | ┛                                                                                                              | <b>Manual</b>  | :           |          |                  |                           | ≥ a             |
|                   |                   | A LOCAL        |                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ₹        | Ğ,           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ĸ       | <b>R</b> | k          | 8           | F         | ŧ            | <b>a</b> (       | े.<br>¥ | *   | ×              | *                                                                  |          | ADD IV Metate                                                                                                  | Yns                                 |                                                                                                                |                |             |          |                  |                           | Rev             |
| Þ                 | S.                |                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2        | [ <b>٢</b> ] | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         | ł        | ŀ          | *           |           | $\mathbf{k}$ | 2                | 4       |     | ×              | ×                                                                  | 2        | Fluoride                                                                                                       |                                     |                                                                                                                | 20 845         |             |          |                  |                           | ž.              |
| E                 |                   |                | 100 Million (100 million)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2        | ٢            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1       | 4        | ×          | Ż.          | *         | <u>}</u>     | X                |         | ŧ   | ×              | ×1                                                                 | ×        | RAD 8316/8320                                                                                                  |                                     | , v                                                                                                            | Ĭ              |             |          |                  |                           | ă X             |
| ł                 | Ā                 |                |                              | -<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ÷.      |          |            |             |           |              |                  |         |     | -              |                                                                    |          |                                                                                                                |                                     | a the second second second second second second second second second second second second second second second |                |             |          |                  | : -                       |                 |
| Γ                 |                   |                | ľ                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2        | N            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |          |            |             |           |              |                  |         |     |                | <u></u>                                                            |          |                                                                                                                |                                     | land the                                                                                                       |                |             |          |                  | . •                       |                 |
|                   |                   | and the second |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |          |            |             |           |              |                  |         |     |                |                                                                    |          |                                                                                                                |                                     |                                                                                                                |                |             |          |                  |                           |                 |
|                   |                   |                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7        | a si         | Stora<br>Acci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |         |          | :<br>:••.: |             | _         |              |                  | -       |     |                |                                                                    | :.<br>   | tions of the second second second second second second second second second second second second second second |                                     | 5 C                                                                                                            |                |             |          |                  |                           | ved a           |
|                   |                   |                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |          |            |             |           |              |                  |         |     |                |                                                                    |          |                                                                                                                |                                     |                                                                                                                | and the second |             |          |                  |                           |                 |
| -                 |                   | 193            | ļ.,                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -        |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |          |            |             |           |              |                  |         |     |                |                                                                    | · .      |                                                                                                                |                                     | 2020                                                                                                           | 2.000          | Ĩ           |          |                  | ,                         | ately           |
| TE                | MP In             | C              |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ч.,      |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |          |            | l           | 1         | <u> </u>     |                  |         |     | <u> </u>       |                                                                    | <u> </u> | Residual Chlorine (Y/N)                                                                                        |                                     | 27 F.                                                                                                          |                |             |          |                  |                           |                 |
| Re                | icelved<br>ti     | on             |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |          |            |             |           | I            |                  |         | 7   | 5              | •                                                                  |          | ~                                                                                                              |                                     | 10A                                                                                                            | 5              | J           |          |                  |                           |                 |
| (Y)<br>C1         | N)<br>Blody       |                | <b>[</b>                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |              | <b>F</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |          | :          | -           |           |              |                  |         | ŧ   | 5              |                                                                    |          | j,                                                                                                             |                                     |                                                                                                                |                |             |          | K                | ·                         | ·               |
| Sez<br>Co         | (jboli<br>oler    |                | Warman and the second second |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |          |            |             |           |              |                  |         |     | 1              |                                                                    |          | Ś                                                                                                              |                                     |                                                                                                                |                |             | ľ        |                  | , [                       |                 |
| ( <u>//</u><br>s. | Nj<br>mplas       |                |                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |          |            |             |           |              |                  |         |     | N              |                                                                    | · •      | 21.                                                                                                            |                                     |                                                                                                                |                |             | <b>.</b> |                  |                           | · .             |
| lnta<br>(Y/       | N)                |                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -       |          |            |             |           |              |                  |         |     | ٩              |                                                                    |          | 5                                                                                                              |                                     |                                                                                                                |                |             | 5        | $\frac{1}{2}$    | 1                         |                 |
| <b>E</b>          |                   |                |                              | اا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | an si i  |              | 470.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |          |            | 1           | <u> </u>  |              |                  |         | . L | <u>. 1</u>     |                                                                    |          |                                                                                                                | 3-07A.P                             | ð -                                                                                                            | 鑃              |             | RI       | Ē                |                           | 1.1             |

Page 21 of 23

|    | •                   | 1                                         | l. | ľ      | P 3                     |                             |          | 12    |          |   | 33                 | T.           |          |            |          | -          | tiem #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ļ             |        | āļi                                       | <b>}</b>  ₽   | 3          | <u>i</u>              | I                   | 5                   | •                 |
|----|---------------------|-------------------------------------------|----|--------|-------------------------|-----------------------------|----------|-------|----------|---|--------------------|--------------|----------|------------|----------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------|-------------------------------------------|---------------|------------|-----------------------|---------------------|---------------------|-------------------|
|    |                     |                                           |    |        |                         | ADDUDANU COMINENTES         |          |       |          |   | P2007              | YAMW-1       |          | YAMW-5     | YAMW-4 - | YAMW-2     | SAMPLE ID<br>One Character per boz.<br>(A-Z, 0-6 / , -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |        | ed Due Date                               |               | GA 30114   | 1070 Bistice Mill Ave |                     | A Minut Information | Face Areintia     |
| -  |                     |                                           |    |        |                         | のななのないの                     |          |       |          |   |                    |              |          |            |          |            | Chundra Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Church Andre Chur | MATRIAL CODED |        | Friday Indiana,                           | Puichase Onde |            | Copy To:              |                     | Section 8           |                   |
|    |                     |                                           |    |        |                         |                             | <u> </u> | <br>  |          |   | <br>A.             | A.           | 3        | 13         | 3        | 3          | MATRIX CODE (\$60 VARIA CON<br>SAMPLE TYPE (G=GRAB C=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | COMP)         |        |                                           |               |            | ecity.                |                     | í<br>E              | • •               |
|    |                     |                                           |    |        |                         |                             | <b> </b> | <br>- | $\vdash$ |   | <br>               | 9            | <u> </u> | B          | 18.      | Ę.         | <b>B</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |        | ates ,                                    |               |            | Sleev                 | <b>NN</b>           | Į                   |                   |
| ſ  |                     |                                           |    |        |                         | DBLINE                      |          | <br>  | 3        |   |                    | Ma Iu        |          | विधि व्य   | odu lor  | 07/21   TU |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0             |        | NWA-K6                                    |               |            | a                     |                     |                     |                   |
|    | PRINT Na<br>SKOWATU | -                                         |    |        |                         | MIN                         |          | <br>  |          |   |                    | <del>o</del> |          | 5          | δ        | ቻ          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | OLLECTEI      |        |                                           |               |            |                       | and the strend mode |                     | 불운                |
|    | RE of SAM           |                                           |    | -<br>- |                         | P                           |          | <br>  |          |   |                    |              | -        |            |          |            | END<br>TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ĭ             |        |                                           |               | 1          |                       |                     |                     | Chain-of          |
|    |                     |                                           |    |        |                         | E.                          |          |       |          |   |                    |              |          |            |          |            | SAMPLE TEMP AT COLLECTIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N N           |        |                                           |               |            |                       |                     |                     | S T               |
|    |                     |                                           |    |        |                         |                             |          |       |          |   |                    | 2            | ¥        | ٦          | 2        | ¢          | # OF CONTAINERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |        | ₫₹                                        | Ţ             | Σ          | <u>8</u>              | 3                   |                     | <sup>a</sup><br>S |
| đ  | 78                  |                                           |    |        |                         |                             |          |       |          |   |                    |              |          |            |          |            | Unpressived                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |               | 2      | 13                                        | 8             |            |                       |                     | 3                   | E S               |
| A  |                     | 1                                         |    |        |                         |                             |          |       |          |   |                    |              |          |            |          |            | H2904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | Xae #  | 1<br>N                                    | 8             |            | N.                    |                     | 0                   | E C               |
|    | -                   |                                           |    |        |                         |                             |          |       |          |   |                    |              |          |            |          |            | HNO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pres          | Ĺ      | Aana                                      |               | 1          | ۶Į                    | <b>NEGO</b>         | ł                   | ž×                |
|    | J.                  |                                           |    |        | 1                       | <b>.</b>                    |          |       |          |   | <br>               |              |          | Ъ.         |          |            | HCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ierva         | 0840   | 1                                         |               |            |                       | R                   |                     | × ×               |
|    | 16                  |                                           |    |        | di                      | 3                           |          | <br>  |          |   | <br>               |              |          |            |          |            | Na25203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | live          |        | ह                                         |               |            |                       | l                   |                     | Na Na             |
|    | F.                  |                                           |    |        | \$                      | 0                           |          | <br>  |          |   |                    |              |          |            |          |            | Methanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | "             |        | 1 State                                   |               |            |                       |                     |                     |                   |
|    | M                   |                                           |    |        | 2                       | 808                         |          |       |          |   |                    |              |          |            |          |            | Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |        | Quine                                     |               |            |                       |                     |                     | ≧ 🔓               |
| L  |                     |                                           |    | ç      | 1                       | 11.65                       |          |       |          |   |                    |              |          |            | •        |            | Analyses Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | YN            |        |                                           |               |            |                       |                     |                     | i R               |
|    |                     | 1                                         |    |        | $\langle \cdot \rangle$ |                             |          |       |          |   | <br>1_             | ×            | <b>X</b> | ×          | ×        | ×          | App IV Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | 8      | ġ.                                        |               |            |                       |                     |                     |                   |
|    | ATE ST              |                                           |    |        | 3                       | <b>1</b>                    |          |       |          |   | <br><u>1</u> _     | X            | Ž_       | ×          | ×.       | ×          | Fluoride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |        | 18                                        |               |            |                       |                     | -                   |                   |
|    | Sign Sign           |                                           |    |        | ľ                       |                             |          |       |          | _ | <br><del>1</del> - | Ê            | 1        | ~          | ~        |            | KAD 9310/8320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1             |        | ľ                                         |               |            |                       |                     |                     |                   |
| [  | <u>A</u>            | ч.                                        |    |        |                         | Argade<br>Ka <sup>n</sup> a |          | <br>  |          |   |                    |              |          |            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |        |                                           |               |            |                       | ·                   |                     | S O               |
| E. | 2                   | in an an an an an an an an an an an an an |    |        | 2                       | ÷.,                         |          |       |          |   |                    |              |          |            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |        |                                           |               |            |                       |                     |                     |                   |
| ĺ  | 2                   |                                           |    | -      | ζŻ                      |                             |          |       |          |   |                    |              |          |            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | -<br>- |                                           | Ц             |            | ⊥                     |                     |                     |                   |
| Ī  | 3 0                 |                                           |    |        | ų                       |                             |          | <br>  |          |   |                    |              |          |            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |        |                                           | 1000          |            |                       |                     |                     |                   |
|    |                     |                                           |    | ~      |                         |                             |          |       |          |   |                    |              |          |            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |        | 1. S. S. S. S. S. S. S. S. S. S. S. S. S. |               |            |                       |                     |                     | acc               |
|    |                     |                                           |    | -      | 0                       | 1                           |          |       |          |   | <br>               |              |          |            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |        |                                           |               |            |                       | Г                   | -                   | hate              |
| ł  | - COSK              |                                           |    |        |                         | 1000                        |          |       |          |   |                    |              |          |            |          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |        |                                           | 1000070v      |            |                       | Pag                 | '                   | ¥.                |
|    | TEMP in C           |                                           |    |        |                         |                             |          |       |          |   |                    |              |          |            |          |            | Residual Chiorine (Y/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |        | i a                                       |               |            |                       |                     | ľ                   |                   |
| Ī  | Received on         |                                           |    |        |                         | ŝ                           |          |       |          |   | 1                  |              | 1        | ţ¢         | 8        | ţð .       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 8      | 5                                         |               |            | •                     | 5                   | <u>.</u>            |                   |
| ľ  | (Y/N)               |                                           |    |        |                         |                             |          |       |          |   | ۱                  | <b>,</b>     |          | 1:5        | H2       | 1,         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |        |                                           |               | <b>A</b>   | }                     | ſ                   | •                   | •                 |
| Į. | Cusiody<br>SealedD  |                                           |    |        |                         |                             |          |       |          |   |                    | o_           |          | کن         | 6        | Š          | $\mathcal{S}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |        |                                           |               | ľ          | \$                    | 0                   | , I                 |                   |
|    | Cooler0<br>(Y/N)    |                                           |    |        |                         |                             |          |       |          |   |                    | 2            |          | <i>ع</i> د | 3        | చ          | ۲<br>۲                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |        |                                           |               | ļ          | 6                     | ľ                   | '                   |                   |
| Ī  | Samples             |                                           |    |        |                         |                             |          |       |          |   |                    |              |          |            |          |            | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |        | 200                                       |               |            | ÷                     | L                   | j I                 |                   |
| ſ  | (YAN)               |                                           |    |        |                         |                             |          |       |          |   |                    |              |          |            |          |            | لب                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |        |                                           | Ш             | <b>§</b> . |                       | Ľ                   |                     |                   |

Page 22 of 23

|                    | Ì   |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | X        |         | <u> </u> | 18        |                         |       | 0          | 2<br>2<br>2 |          | 6 S      |          |             | ITEM#                                                                            |                        |                | <b>Treste</b> | ğ                 |       | ines:               | Aubdul       | permit              | 5004/28                                |
|--------------------|-----|----------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------|----------|-----------|-------------------------|-------|------------|-------------|----------|----------|----------|-------------|----------------------------------------------------------------------------------|------------------------|----------------|---------------|-------------------|-------|---------------------|--------------|---------------------|----------------------------------------|
| .•                 |     |          |     | ALC: NO REPORT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT OF A CONTRACT O |          |         |          |           |                         |       |            |             |          |          |          | Maran CC-71 | SAMPLE ID<br>One Character per box.<br>(AZ 5-9 / ,-<br>Semple kts must be unique | ·<br>·                 |                | d Due Date:   | (770)384-5528 Fax |       | 1070 Broge Mill Ave | Ceorda Power | Client Information: | (_PaceAnalytical<br>www.veituences     |
|                    |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |          |           |                         |       |            |             |          |          |          |             | Hannahari<br>Froduced<br>Otto<br>Mayel<br>Mayel<br>Dokenti<br>Dokenti            | Deterting Version()    |                | P             | - Part            |       |                     | Reb          | 20 Sec              |                                        |
| 2 <b>8</b><br>8    |     |          | St. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |          |           |                         |       |            |             |          | -        |          |             | *39965999                                                                        | DWC<br>CODEL           |                | A             | ed Nam            | 5     | 7.7                 | ort To:      | Wined Pr            | · · ·                                  |
|                    |     |          | B   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |          |           | 1                       | WT    | WT         | M           | N.       | M        | WT       | T           | MATRIX CODE (see valid co<br>SAMPLE TYPE (G-SPAR)                                | des lo jañ)<br>CeCOMEI |                |               |                   | *     |                     |              | Diacx in            |                                        |
|                    |     | ÷        |     | No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | ĺ       |          |           |                         |       | $\uparrow$ |             |          | ╈        | +        | 17          | g                                                                                |                        |                |               | STIME N           |       |                     | Steeve       | dormali             |                                        |
|                    |     |          |     | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          | -       |          | <b>.</b>  |                         | +     | +          |             | +        | +        | ╉┈       | 22          | TE STAR                                                                          |                        |                | 1             |                   | Ľ     |                     |              | 5                   |                                        |
| NOIS<br>NULL       |     |          | -   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | Į.      | ļ        |           |                         |       |            |             |          |          |          | ้จั         |                                                                                  | 2001                   |                |               |                   |       |                     |              |                     |                                        |
| Nume               |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |          |           |                         | -     |            | ł           |          |          |          |             |                                                                                  | CTED                   |                |               |                   |       |                     |              |                     |                                        |
| of SAN             |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |          |           |                         | 1     |            | 1-          | T        |          | 1        |             | ž Š                                                                              |                        |                |               |                   |       |                     |              |                     | Yain -                                 |
|                    |     |          |     | Ē                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u> |         |          |           |                         |       | -          | ┼╍          | ╀        | ╀        | ┦╌       |             | M<br>SAMPLE TEMP AT COLLECT                                                      |                        |                |               |                   |       |                     |              |                     |                                        |
|                    |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |          |           |                         |       |            |             |          |          |          | 2           | # OF CONTAINERS                                                                  |                        |                | ġ.            | 2 2               | ě     | 8                   | 2            | ĨĨ                  | Š                                      |
| BB                 |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |          |           | <u> </u>                |       | ļ          | _           | <u> </u> |          |          |             | Unpreserved                                                                      | _                      |                |               |                   | Texs: | npany               |              |                     | ଅ<br>ଜ<br>ଜ                            |
| Rts I              |     | -        | h   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |          |           | ┝──                     |       | -          |             | -        |          | +        |             | H2SO4                                                                            | - <b>[</b>             |                | 5             |                   |       | Nam                 |              | 1                   |                                        |
|                    |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·        |         |          |           |                         |       | -          |             |          | -        |          |             | HCL                                                                              | - I                    |                |               |                   |       | 8                   |              |                     | 2 T                                    |
| NZ                 |     | ľ        | R.  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |          | -         |                         |       |            | 1           |          |          | T        |             | NaOH                                                                             | Tat                    | Ş              |               |                   |       |                     | ľ            | •                   | 8 Z                                    |
| N R                |     |          | Ċ   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |          | -         |                         |       | Į          | <u> </u>    |          |          |          |             | Na28203                                                                          |                        |                | No.           |                   |       |                     | 1            |                     |                                        |
| 1 is B             |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         | -<br>    |           |                         |       | <u> </u>   | <u> </u>    | <u> </u> | <b> </b> |          |             | Methanol                                                                         | ]                      |                | R             |                   |       |                     |              |                     | NIC                                    |
| 1 2                |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         | ļ        | 2<br>     | ÷.                      | Larry | 1          | <u> </u>    |          | <u> </u> | L        | .l          | Other                                                                            | * ANY 1988             |                | Sector 1      |                   |       |                     |              |                     | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|                    |     | 17       | R   | 1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |         |          |           | ×                       | ×     | ×          | ×           | ×        | ×        | ×        | ×           | App IV Metals                                                                    |                        |                | No.           |                   |       |                     |              |                     | lieva <b>Ke</b> va                     |
| I TA               | i   |          | R   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |          |           | ×                       | ×     | ×          | ×           | ×        | ×        | ×        | ×           | Fluoride                                                                         |                        |                | 105.00        |                   |       |                     |              |                     | at fie                                 |
|                    |     |          | N   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |          |           | ×                       | ×     | ×          | ×           | ×        | ×        | ×        | ×           | RAD 9316/9320                                                                    |                        |                | P             |                   |       |                     |              |                     | ŝ                                      |
| Ă                  |     |          | K,  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |          |           |                         |       |            |             | -        |          |          |             |                                                                                  |                        | 100            |               |                   | Í     |                     |              |                     |                                        |
|                    | · · |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |          | 2<br>1    |                         |       |            |             | ┢        |          |          | -           |                                                                                  | <b> </b>               |                |               |                   |       | ŀ                   |              |                     | S C                                    |
| <b>F</b>           |     |          | R   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |          |           |                         |       |            |             | İ        |          |          |             |                                                                                  |                        |                |               |                   |       |                     | I.           |                     | ă E                                    |
|                    |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |          |           |                         |       |            |             |          |          | 1        |             |                                                                                  |                        |                | 臣             |                   |       | li                  |              |                     | ă R                                    |
|                    |     |          | R   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | <u></u> | ainmin . | un antica |                         |       |            |             |          |          |          |             |                                                                                  |                        | 1              | 201030        |                   | 200   |                     |              |                     | lac                                    |
|                    |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _        |         |          |           | $(x^{n},y) \in \{0,1\}$ |       |            | -           | <u> </u> |          |          |             |                                                                                  | [                      | and the second | 1000          |                   |       |                     | _            | <b></b> ,           | ਮਾਹ                                    |
| TEMOLO             |     | 1        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |          |           |                         |       |            |             |          |          | <u>.</u> | <b> </b>    |                                                                                  |                        | 5              |               |                   |       |                     | J            | '                   | e,                                     |
| TEMPING            |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |          | innen i   |                         |       |            |             | £        |          |          | ť.<br>      | Residual Chiorine (Y/N)                                                          |                        |                |               |                   |       |                     | 8            |                     |                                        |
| Received on liceO  |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |          | :         |                         | ~     |            |             |          | ·        | ,        | σ           | 2                                                                                |                        | 9              | <b>B</b>      |                   | N     |                     |              |                     | -                                      |
| (Y/N)              |     |          |     | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |         |          |           |                         |       |            |             | ŀ        |          |          |             | Ŝ,                                                                               | A DEST                 |                |               |                   |       |                     | N            |                     |                                        |
| Sealed D           |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · :]     |         | : - i    |           |                         |       |            |             |          | :        |          | Ŋ1          | ù vy                                                                             |                        |                |               |                   |       | P                   |              |                     |                                        |
|                    |     | <u> </u> |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         |          |           | 1                       |       |            |             |          |          | ÷.       | N           | <u>C</u>                                                                         |                        |                |               |                   |       | å                   | <u>۹</u>     |                     |                                        |
| Samples<br>IntactO |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |         | 1        |           |                         |       | :          |             |          |          |          | 3           | N                                                                                |                        |                | 1000          |                   |       | عٰ                  |              |                     |                                        |
|                    |     |          |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . I      |         | I        |           | ·                       | ,<br> | :          |             |          |          |          |             | 2                                                                                | sone di<br>Desta       |                | (Tester       |                   |       | :                   | ~            |                     |                                        |

......

Page 23 of 23

5.08



Pace Analytical Services, LLC 110 Technology Parkway Peachtree Corners, GA 30092 (770)734-4200

March 05, 2021

Ms. Lauren Petty Southern Co. Services 42 Inverness Center Parkway Birmingham, AL 35242

RE: Project: YATES AMA-R6/AP-2 RADS Pace Project No.: 92521572

Dear Ms. Petty:

Enclosed are the analytical results for sample(s) received by the laboratory between February 10, 2021 and February 11, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Karalany

Kevin Herring kevin.herring@pacelabs.com 1(704)875-9092 HORIZON Database Administrator

Enclosures

cc: Joju Abraham, Georgia Power-CCR Lauren Coker, Georgia Pwer Geoffrey Gay, ARCADIS - Atlanta Kristen Jurinko Kelley Sharpe, ARCADIS - Atlanta Alex Simpson, Arcadis Samantha Thomas Maribel Vital





Pace Analytical Services, LLC 110 Technology Parkway Peachtree Corners, GA 30092 (770)734-4200

### CERTIFICATIONS

Project: YATES AMA-R6/AP-2 RADS Pace Project No.: 92521572

#### Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601 ANAB DOD-ELAP Rad Accreditation #: L2417 Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694 **Delaware Certification** EPA Region 4 DW Rad Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET **Guam Certification** Hawaii Certification Idaho Certification **Illinois Certification** Indiana Certification Iowa Certification #: 391 Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221 Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086 Maine Certification #: 2017020 Maryland Certification #: 308 Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991

Missouri Certification #: 235 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249 Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification Tennessee Certification #: 02867 Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L



# SAMPLE SUMMARY

Project: YATES AMA-R6/AP-2 RADS

Pace Project No.: 92521572

| t No · | 92521572 |  |
|--------|----------|--|

| Lab ID      | Sample ID       | Matrix | Date Collected | Date Received  |
|-------------|-----------------|--------|----------------|----------------|
| 92521572001 | PZ-37 (020921)  | Water  | 02/09/21 09:30 | 02/10/21 17:10 |
| 92521572003 | YAMW-2 (020921) | Water  | 02/09/21 12:45 | 02/10/21 17:10 |
| 92521572004 | YAMW-4 (020921) | Water  | 02/09/21 10:20 | 02/10/21 17:10 |
| 92521572005 | YAMW-5 (020921) | Water  | 02/09/21 09:45 | 02/10/21 17:10 |
| 92521572006 | YAMW-1 (020921) | Water  | 02/09/21 14:10 | 02/10/21 17:10 |
| 92521572007 | PZ-35(021021)   | Water  | 02/10/21 16:15 | 02/11/21 13:03 |



# SAMPLE ANALYTE COUNT

Project: YATES AMA-R6/AP-2 RADS

Pace Project No.: 92521572

| Lab ID      | Sample ID       | Method                   | Analysts | Analytes<br>Reported | Laboratory |
|-------------|-----------------|--------------------------|----------|----------------------|------------|
| 92521572001 | PZ-37 (020921)  | EPA 9315                 | JJY      | 1                    | PASI-PA    |
|             |                 | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                 | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 92521572003 | YAMW-2 (020921) | EPA 9315                 | JJY      | 1                    | PASI-PA    |
|             |                 | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                 | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 92521572004 | YAMW-4 (020921) | EPA 9315                 | JJY      | 1                    | PASI-PA    |
|             |                 | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                 | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 92521572005 | YAMW-5 (020921) | EPA 9315                 | JJY      | 1                    | PASI-PA    |
|             |                 | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                 | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 92521572006 | YAMW-1 (020921) | EPA 9315                 | JJY      | 1                    | PASI-PA    |
|             |                 | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                 | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 92521572007 | PZ-35(021021)   | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                 | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                 | Total Radium Calculation | JAL      | 1                    | PASI-PA    |

PASI-PA = Pace Analytical Services - Greensburg



# SUMMARY OF DETECTION

Project: YATES AMA-R6/AP-2 RADS

Pace Project No.: 92521572

| Lab Sample ID            | Client Sample ID |                                                    |       |              |                |            |
|--------------------------|------------------|----------------------------------------------------|-------|--------------|----------------|------------|
| Method                   | Parameters       | Result                                             | Units | Report Limit | Analyzed       | Qualifiers |
| 92521572001              | PZ-37 (020921)   |                                                    |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.561 ±<br>0.213<br>(0.207)                        | pCi/L |              | 03/02/21 11:26 |            |
| EPA 9320                 | Radium-228       | C:68% T:NA<br>0.955 ±<br>0.451<br>(0.768)<br>C:76% | pCi/L |              | 02/24/21 15:31 |            |
| Total Radium Calculation | Total Radium     | T:88%<br>1.52 ±<br>0.664<br>(0.975)                | pCi/L |              | 03/02/21 16:35 |            |
| 92521572003              | YAMW-2 (020921)  |                                                    |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.112 ±<br>0.123<br>(0.249)<br>C-83% T.NA          | pCi/L |              | 03/02/21 11:24 |            |
| EPA 9320                 | Radium-228       | 0.380 ±<br>0.425<br>(0.891)<br>C:73%<br>T84%       | pCi/L |              | 02/24/21 15:31 |            |
| Total Radium Calculation | Total Radium     | 0.492 ±<br>0.548<br>(1.14)                         | pCi/L |              | 03/02/21 16:35 |            |
| 92521572004              | YAMW-4 (020921)  |                                                    |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.186 ±<br>0.126<br>(0.202)<br>C:81% TNA           | pCi/L |              | 03/02/21 11:23 |            |
| EPA 9320                 | Radium-228       | 0.473 ±<br>0.414<br>(0.837)<br>C:72%<br>T86%       | pCi/L |              | 02/24/21 15:31 |            |
| Total Radium Calculation | Total Radium     | 0.659 ±<br>0.540<br>(1.04)                         | pCi/L |              | 03/02/21 16:35 |            |
| 92521572005              | YAMW-5 (020921)  |                                                    |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.405 ±<br>0.214<br>(0.350)                        | pCi/L |              | 03/01/21 19:11 |            |
| EPA 9320                 | Radium-228       | C:78% 1:NA<br>0.664 ±<br>0.477<br>(0.936)<br>C:73% | pCi/L |              | 02/24/21 15:32 |            |
| Total Radium Calculation | Total Radium     | 1:84%<br>1.07 ±<br>0.691<br>(1.29)                 | pCi/L |              | 03/02/21 16:39 |            |



# SUMMARY OF DETECTION

Project: YATES AMA-R6/AP-2 RADS

Pace Project No.: 92521572

| Lab Sample ID            | Client Sample ID |                                               |       |              |                |            |
|--------------------------|------------------|-----------------------------------------------|-------|--------------|----------------|------------|
| Method                   | Parameters       | Result                                        | Units | Report Limit | Analyzed       | Qualifiers |
| 92521572006              | YAMW-1 (020921)  |                                               |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.159 ±<br>0.136<br>(0.251)<br>C:76% T:NA     | pCi/L |              | 03/02/21 07:34 |            |
| EPA 9320                 | Radium-228       | 0.707 ±<br>0.491<br>(0.957)<br>C:71%<br>T:83% | pCi/L |              | 02/24/21 15:32 |            |
| Total Radium Calculation | Total Radium     | 0.866 ±<br>0.627<br>(1.21)                    | pCi/L |              | 03/02/21 16:39 |            |
| 92521572007              | PZ-35(021021)    |                                               |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.0238 ±<br>0.0799<br>(0.201)<br>C:92% T:NA   | pCi/L |              | 03/05/21 07:14 |            |
| EPA 9320                 | Radium-228       | 0.522 ±<br>0.370<br>(0.721)<br>C:76%<br>T:97% | pCi/L |              | 02/24/21 15:32 |            |
| Total Radium Calculation | Total Radium     | 0.546 ±<br>0.450<br>(0.922)                   | pCi/L |              | 03/05/21 14:01 |            |



Project: YATES AMA-R6/AP-2 RADS

Pace Project No.: 92521572

| Sample: PZ-37 (020921) | Lab ID: 9252157             | 2001 Collected: 02/09/21 09:30       | Received: | 02/10/21 17:10 N | Aatrix: Water |      |
|------------------------|-----------------------------|--------------------------------------|-----------|------------------|---------------|------|
| 1 100.                 | One iD.                     | oumpie Type.                         |           |                  |               |      |
| Parameters             | Method                      | Act ± Unc (MDC) Carr Trac            | Units     | Analyzed         | CAS No.       | Qual |
|                        | Pace Analytical Ser         | vices - Greensburg                   |           |                  |               |      |
| Radium-226             | EPA 9315                    | 0.561 ± 0.213 (0.207)<br>C:68% T:NA  | pCi/L     | 03/02/21 11:26   | 13982-63-3    |      |
|                        | Pace Analytical Ser         | vices - Greensburg                   |           |                  |               |      |
| Radium-228             | EPA 9320                    | 0.955 ± 0.451 (0.768)<br>C:76% T:88% | pCi/L     | 02/24/21 15:31   | 15262-20-1    |      |
|                        | Pace Analytical Ser         | vices - Greensburg                   |           |                  |               |      |
| Total Radium           | Total Radium<br>Calculation | 1.52 ± 0.664 (0.975)                 | pCi/L     | 03/02/21 16:35   | 7440-14-4     |      |



Project: YATES AMA-R6/AP-2 RADS

Pace Project No.: 92521572

| <b>Sample: YAMW-2 (020921)</b><br>PWS: | Lab ID: 9252157<br>Site ID: | 2003 Collected: 02/09/21 12:45<br>Sample Type: | Received: | 02/10/21 17:10 M | Matrix: Water |      |
|----------------------------------------|-----------------------------|------------------------------------------------|-----------|------------------|---------------|------|
| Parameters                             | Method                      | Act ± Unc (MDC) Carr Trac                      | Units     | Analyzed         | CAS No.       | Qual |
|                                        | Pace Analytical Ser         | vices - Greensburg                             |           |                  |               | -    |
| Radium-226                             | EPA 9315                    | 0.112 ± 0.123 (0.249)<br>C:83% T:NA            | pCi/L     | 03/02/21 11:24   | 13982-63-3    |      |
|                                        | Pace Analytical Ser         | vices - Greensburg                             |           |                  |               |      |
| Radium-228                             | EPA 9320                    | 0.380 ± 0.425 (0.891)<br>C:73% T:84%           | pCi/L     | 02/24/21 15:31   | 15262-20-1    |      |
|                                        | Pace Analytical Ser         | vices - Greensburg                             |           |                  |               |      |
| Total Radium                           | Total Radium<br>Calculation | 0.492 ± 0.548 (1.14)                           | pCi/L     | 03/02/21 16:35   | 7440-14-4     |      |



Project: YATES AMA-R6/AP-2 RADS

Pace Project No.: 92521572

| Sample: YAMW-4 (020921)<br>PWS: | Lab ID: 9252157<br>Site ID: | 72004 Collected: 02/09/21 10:20<br>Sample Type: | Received: | 02/10/21 17:10 N | Aatrix: Water |      |
|---------------------------------|-----------------------------|-------------------------------------------------|-----------|------------------|---------------|------|
| Parameters                      | Method                      | Act ± Unc (MDC) Carr Trac                       | Units     | Analyzed         | CAS No.       | Qual |
|                                 | Pace Analytical Se          | rvices - Greensburg                             |           |                  |               |      |
| Radium-226                      | EPA 9315                    | 0.186 ± 0.126 (0.202)<br>C:81% T:NA             | pCi/L     | 03/02/21 11:23   | 13982-63-3    |      |
|                                 | Pace Analytical Se          | rvices - Greensburg                             |           |                  |               |      |
| Radium-228                      | EPA 9320                    | 0.473 ± 0.414 (0.837)<br>C:72% T:86%            | pCi/L     | 02/24/21 15:31   | 15262-20-1    |      |
|                                 | Pace Analytical Se          | rvices - Greensburg                             |           |                  |               |      |
| Total Radium                    | Total Radium<br>Calculation | 0.659 ± 0.540 (1.04)                            | pCi/L     | 03/02/21 16:35   | 7440-14-4     |      |



Project: YATES AMA-R6/AP-2 RADS

Pace Project No.: 92521572

| Sample: YAMW-5 (020921)<br>PWS: | Lab ID: 9252157<br>Site ID: | 2005 Collected: 02/09/21 09:45<br>Sample Type: | Received: | 02/10/21 17:10 N | Matrix: Water |      |
|---------------------------------|-----------------------------|------------------------------------------------|-----------|------------------|---------------|------|
| Parameters                      | Method                      | Act ± Unc (MDC) Carr Trac                      | Units     | Analyzed         | CAS No.       | Qual |
|                                 | Pace Analytical Ser         | vices - Greensburg                             |           |                  | _             |      |
| Radium-226                      | EPA 9315                    | 0.405 ± 0.214 (0.350)<br>C:78% T:NA            | pCi/L     | 03/01/21 19:11   | 13982-63-3    |      |
|                                 | Pace Analytical Ser         | vices - Greensburg                             |           |                  |               |      |
| Radium-228                      | EPA 9320                    | 0.664 ± 0.477 (0.936)<br>C:73% T:84%           | pCi/L     | 02/24/21 15:32   | 15262-20-1    |      |
|                                 | Pace Analytical Ser         | vices - Greensburg                             |           |                  |               |      |
| Total Radium                    | Total Radium<br>Calculation | 1.07 ± 0.691 (1.29)                            | pCi/L     | 03/02/21 16:39   | 7440-14-4     |      |



Project: YATES AMA-R6/AP-2 RADS

Pace Project No.: 92521572

| Sample: YAMW-1 (020921)<br>PWS: | Lab ID: 9252157<br>Site ID: | 2006 Collected: 02/09/21 14:10<br>Sample Type: | Received: | 02/10/21 17:10 M | latrix: Water |      |
|---------------------------------|-----------------------------|------------------------------------------------|-----------|------------------|---------------|------|
| Parameters                      | Method                      | Act ± Unc (MDC) Carr Trac                      | Units     | Analyzed         | CAS No.       | Qual |
|                                 | Pace Analytical Ser         | vices - Greensburg                             |           |                  |               |      |
| Radium-226                      | EPA 9315                    | 0.159 ± 0.136 (0.251)<br>C:76% T:NA            | pCi/L     | 03/02/21 07:34   | 13982-63-3    |      |
|                                 | Pace Analytical Service     | vices - Greensburg                             |           |                  |               |      |
| Radium-228                      | EPA 9320                    | 0.707 ± 0.491 (0.957)<br>C:71% T:83%           | pCi/L     | 02/24/21 15:32   | 15262-20-1    |      |
|                                 | Pace Analytical Service     | vices - Greensburg                             |           |                  |               |      |
| Total Radium                    | Total Radium<br>Calculation | 0.866 ± 0.627 (1.21)                           | pCi/L     | 03/02/21 16:39   | 7440-14-4     |      |



Project: YATES AMA-R6/AP-2 RADS

Pace Project No.: 92521572

| Sample: PZ-35(021021) | Lab ID: 9252157             | 2007 Collected: 02/10/21 16:15        | Received: | 02/11/21 13:03 M | Aatrix: Water |      |
|-----------------------|-----------------------------|---------------------------------------|-----------|------------------|---------------|------|
| PWS:                  | Site ID:                    | Sample Type:                          |           |                  |               |      |
| Parameters            | Method                      | Act ± Unc (MDC) Carr Trac             | Units     | Analyzed         | CAS No.       | Qual |
|                       | Pace Analytical Ser         | vices - Greensburg                    |           |                  |               |      |
| Radium-226            | EPA 9315                    | 0.0238 ± 0.0799 (0.201)<br>C:92% T:NA | pCi/L     | 03/05/21 07:14   | 13982-63-3    |      |
|                       | Pace Analytical Ser         | vices - Greensburg                    |           |                  |               |      |
| Radium-228            | EPA 9320                    | 0.522 ± 0.370 (0.721)<br>C:76% T:97%  | pCi/L     | 02/24/21 15:32   | 15262-20-1    |      |
|                       | Pace Analytical Ser         | vices - Greensburg                    |           |                  |               |      |
| Total Radium          | Total Radium<br>Calculation | 0.546 ± 0.450 (0.922)                 | pCi/L     | 03/05/21 14:01   | 7440-14-4     |      |



## **QUALITY CONTROL - RADIOCHEMISTRY**

| Project:           | YATES AMA-R6/AP-2 RAD  | DS                                |                  |                       |            |  |
|--------------------|------------------------|-----------------------------------|------------------|-----------------------|------------|--|
| Pace Project No.:  | 92521572               |                                   |                  |                       |            |  |
| QC Batch:          | 435459                 | Analysis Method:                  | EPA 9315         |                       |            |  |
| QC Batch Method:   | EPA 9315               | Analysis Description:             | 9315 Total Radiu | um                    |            |  |
|                    |                        | Laboratory:                       | Pace Analytical  | Services - Greensburg | g          |  |
| Associated Lab Sam | ples: 92521572001, 925 | 21572003, 92521572004, 9252157200 | 5, 92521572006   |                       |            |  |
| METHOD BLANK:      | 2102227                | Matrix: Water                     |                  |                       |            |  |
| Associated Lab Sam | ples: 92521572001, 925 | 21572003, 92521572004, 9252157200 | 5, 92521572006   |                       |            |  |
| Param              | eter                   | Act ± Unc (MDC) Carr Trac         | Units            | Analyzed              | Qualifiers |  |
| Radium-226         | 0.276 ±                | 0.140 (0.180) C:89% T:NA          | pCi/L            | 03/02/21 07:53        |            |  |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



# **QUALITY CONTROL - RADIOCHEMISTRY**

| Project:           | YATES AMA-R6/A  | P-2 RADS               |                      |                   |                      |            |  |
|--------------------|-----------------|------------------------|----------------------|-------------------|----------------------|------------|--|
| Pace Project No.:  | 92521572        |                        |                      |                   |                      |            |  |
| QC Batch:          | 435781          | A                      | nalysis Method:      | EPA 9315          |                      |            |  |
| QC Batch Method:   | EPA 9315        | A                      | nalysis Description: | 9315 Total Radiu  | Im                   |            |  |
|                    |                 | L                      | aboratory:           | Pace Analytical S | Services - Greensbur | g          |  |
| Associated Lab San | nples: 92521572 | 007                    |                      |                   |                      |            |  |
| METHOD BLANK:      | 2103737         |                        | Matrix: Water        |                   |                      |            |  |
| Associated Lab San | nples: 92521572 | 007                    |                      |                   |                      |            |  |
| Paran              | neter           | Act ± Unc (MD          | OC) Carr Trac        | Units             | Analyzed             | Qualifiers |  |
| Radium-226         |                 | 0.0349 ± 0.0874 (0.210 | ) C:95% T:NA         | pCi/L             | 03/05/21 07:14       |            |  |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



## **QUALITY CONTROL - RADIOCHEMISTRY**

| Project:           | YATES AMA-R6/AP-2 RAD  | S                                 |                   |                      |            |  |
|--------------------|------------------------|-----------------------------------|-------------------|----------------------|------------|--|
| Pace Project No.:  | 92521572               |                                   |                   |                      |            |  |
| QC Batch:          | 435116                 | Analysis Method:                  | EPA 9320          |                      |            |  |
| QC Batch Method:   | EPA 9320               | Analysis Description:             | 9320 Radium 22    | 28                   |            |  |
|                    |                        | Laboratory:                       | Pace Analytical   | Services - Greensbur | g          |  |
| Associated Lab Sam | ples: 92521572001, 925 | 21572003, 92521572004, 9252157200 | 5, 92521572006,   | 92521572007          |            |  |
| METHOD BLANK:      | 2100680                | Matrix: Water                     |                   |                      |            |  |
| Associated Lab Sam | ples: 92521572001, 925 | 21572003, 92521572004, 9252157200 | 5, 92521572006, 9 | 92521572007          |            |  |
| Param              | ieter                  | Act ± Unc (MDC) Carr Trac         | Units             | Analyzed             | Qualifiers |  |
| Radium-228         | 0.356 ±                | 0.369 (0.763) C:72% T:87%         | pCi/L             | 02/24/21 15:29       |            |  |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



## QUALIFIERS

#### Project: YATES AMA-R6/AP-2 RADS

Pace Project No.: 92521572

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.



# QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:YATES AMA-R6/AP-2 RADSPace Project No.:92521572

| Lab ID      | Sample ID       | QC Batch Method          | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|-----------------|--------------------------|----------|-------------------|---------------------|
| 92521572001 | PZ-37 (020921)  | EPA 9315                 | 435459   |                   |                     |
| 92521572003 | YAMW-2 (020921) | EPA 9315                 | 435459   |                   |                     |
| 92521572004 | YAMW-4 (020921) | EPA 9315                 | 435459   |                   |                     |
| 92521572005 | YAMW-5 (020921) | EPA 9315                 | 435459   |                   |                     |
| 92521572006 | YAMW-1 (020921) | EPA 9315                 | 435459   |                   |                     |
| 92521572007 | PZ-35(021021)   | EPA 9315                 | 435781   |                   |                     |
| 92521572001 | PZ-37 (020921)  | EPA 9320                 | 435116   |                   |                     |
| 92521572003 | YAMW-2 (020921) | EPA 9320                 | 435116   |                   |                     |
| 92521572004 | YAMW-4 (020921) | EPA 9320                 | 435116   |                   |                     |
| 92521572005 | YAMW-5 (020921) | EPA 9320                 | 435116   |                   |                     |
| 92521572006 | YAMW-1 (020921) | EPA 9320                 | 435116   |                   |                     |
| 92521572007 | PZ-35(021021)   | EPA 9320                 | 435116   |                   |                     |
| 92521572001 | PZ-37 (020921)  | Total Radium Calculation | 436928   |                   |                     |
| 92521572003 | YAMW-2 (020921) | Total Radium Calculation | 436928   |                   |                     |
| 92521572004 | YAMW-4 (020921) | Total Radium Calculation | 436928   |                   |                     |
| 92521572005 | YAMW-5 (020921) | Total Radium Calculation | 436930   |                   |                     |
| 92521572006 | YAMW-1 (020921) | Total Radium Calculation | 436930   |                   |                     |
| 92521572007 | PZ-35(021021)   | Total Radium Calculation | 437456   |                   |                     |

| n n                                                                                                                          | Document Name:<br>Sample Condition Linon Resolution                                                             | +(50112)                      | Document Revised: October 28, 2020<br>Page 1 of 2                                                                                                                                                                                  |                                          |
|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| Pace Analytical                                                                                                              | Document No -                                                                                                   | (PCON)                        | issuing Authority:                                                                                                                                                                                                                 |                                          |
|                                                                                                                              | F-CAR-C5-033-Rev.07                                                                                             |                               | Pace Carolinas Quality Office                                                                                                                                                                                                      |                                          |
| poratory receiving samples:<br>sheville Eden Greenwood                                                                       | 🔲 Huntersville 🛄 Ralei                                                                                          | gh M                          | echanicsville Atlante Kernersvill                                                                                                                                                                                                  | le 🗌                                     |
| Sample Condition Client Name:                                                                                                | Awov                                                                                                            | Project #:                    | WO <b># : 92521572</b>                                                                                                                                                                                                             |                                          |
| urier:                                                                                                                       | PS USPS C                                                                                                       | lient                         | 92521572                                                                                                                                                                                                                           |                                          |
| ody Seal Present? Yes 4100                                                                                                   | Seals Intact? Yes No                                                                                            | •                             | Date/Initials Person Examining Contents 2/10/2                                                                                                                                                                                     | 1                                        |
| ang Material: Bubble Wrap                                                                                                    |                                                                                                                 | Other                         | Biological Tissue Frozen?                                                                                                                                                                                                          |                                          |
| mometer:                                                                                                                     |                                                                                                                 |                               | Yes No N/A                                                                                                                                                                                                                         |                                          |
| [] IR Gun ID: 230                                                                                                            | Type of ice:                                                                                                    | Blue                          | None                                                                                                                                                                                                                               |                                          |
| ler Temp: $24$ Correction I<br>Add/Subtration<br>ler Temp Corrected (*C):<br>A Regulated Soil ( $\square$ N/A, water sample) | Factor: 0-0<br>oct (*C) 0-0                                                                                     | Tem                           | p should be above freezing to 6°C<br>Samples out of temp criteria. Samples on ice, cooling p<br>has begun                                                                                                                          | irocess                                  |
| samples originate in a quarantine zone within the<br>Yes No                                                                  | e United States: CA, NY, or SC (check n                                                                         | naps)? Did<br>inch            | samples originate from a foreign source (internationally,<br>iding Hawali and Puerto Rico)? Yes No<br>Comments/Discrepancy:                                                                                                        |                                          |
| Chain of Custody Present?                                                                                                    |                                                                                                                 |                               |                                                                                                                                                                                                                                    | antes contenente                         |
|                                                                                                                              |                                                                                                                 |                               |                                                                                                                                                                                                                                    |                                          |
| Samples Arrived within Hold Time?                                                                                            | Lerres Dina Lin/A                                                                                               | 2.                            | n an an an an an an an an an an an an an                                                                                                                                                                                           |                                          |
| Short Hold Time Analysis (<72 hr.)?                                                                                          |                                                                                                                 | <b>[</b> 3.                   | n séresesen an an an an an an an an an an an an an                                                                                                                                                                                 | t agaigan na an ann an an an ann an an a |
| Rush Turn Around Time Requested?                                                                                             | Lives INa IN/A                                                                                                  | 4.                            | หม่อ การกระบบการกระบบการกระบบการกระบบการกระบบการกระบบการกระบบการกระบบการกระบบการกระบบการกระบบการกระบบการกระบบกา                                                                                                                    | ç <b>iini</b> nanızırdır                 |
| Sufficient Volume?                                                                                                           |                                                                                                                 | 5.                            | an an an an an an an an an an an an an a                                                                                                                                                                                           |                                          |
| Correct Containers Used?                                                                                                     | Tes No N/A                                                                                                      | 6.                            |                                                                                                                                                                                                                                    |                                          |
| -Pace Containers Used?                                                                                                       |                                                                                                                 |                               |                                                                                                                                                                                                                                    |                                          |
| Containers Intact?                                                                                                           |                                                                                                                 | 7.                            |                                                                                                                                                                                                                                    |                                          |
| Dissolved analysis: Samples Field Filtered?                                                                                  |                                                                                                                 | 8.                            |                                                                                                                                                                                                                                    |                                          |
| Sample Labels Match COC?                                                                                                     |                                                                                                                 | 9.                            |                                                                                                                                                                                                                                    | -,-,                                     |
| -Includes Date/Time/ID/Analysis Matrix:                                                                                      |                                                                                                                 | <b>_</b>                      |                                                                                                                                                                                                                                    |                                          |
| Headspace in VOA Vials (>5-6mm)?                                                                                             |                                                                                                                 | 10.                           |                                                                                                                                                                                                                                    |                                          |
| Trip Blank Present?                                                                                                          |                                                                                                                 | 11                            | анска, танатындарылан нерениң шағасан өксілігі жаға бараттан танатын талаттан қазақ бала бала бала бала бала б<br>Танаттан танаттан танаттан тарында тарастан бала бараттан танаттан танаттан танаттан қазақ бала бала бала бала б | erought (A Section                       |
| Trip Blank Custody Seals Present?                                                                                            |                                                                                                                 |                               |                                                                                                                                                                                                                                    |                                          |
| OMMENTS/SAMPLE DISCREPANCY                                                                                                   | ananana mana manga kata sa kasana ana na sa sa sa na na na sa sa sa sa sa sa sa sa sa sa sa sa sa               |                               |                                                                                                                                                                                                                                    | JNO                                      |
|                                                                                                                              |                                                                                                                 | Lot ID                        | of split containers:                                                                                                                                                                                                               |                                          |
|                                                                                                                              | n y gan a ganna an an an an an an an an an an an an                                                             |                               | enter-minimum de regionne de regione de regione de la constante de constant à desense de la constant de la cons                                                                                                                    | <u></u>                                  |
| erson contacted                                                                                                              | an and at Date/                                                                                                 | Time:                         |                                                                                                                                                                                                                                    | <u></u>                                  |
|                                                                                                                              | and de lange entre entre la trem d'allé d'alle entre en rener de la constante de la constante de la constante d |                               | Datar                                                                                                                                                                                                                              | <del></del>                              |
|                                                                                                                              | 4 M M M M M M M M M M M M M M M M M M M                                                                         | ente e cara de la composición |                                                                                                                                                                                                                                    |                                          |
| Project Manager Scurr Review;                                                                                                | anne a san ann an an ann an an ann an ann an                                                                    | Carlo and Construction of     |                                                                                                                                                                                                                                    |                                          |

|                                                                                  |                                                                                                                | The second second second second second second second second second second second second second second second se | and a second second second second second second second second second second second second second second second |                      | Likenic) workers      |  |  |  |    |          | A PZ.37   |    |                       |     | Sample Ids must be unique                                                             |                   | prested Due Date:                                                                                              | Me: (770)384-6526 Fax   |                                                                                                                 | non, GA 30114 | Ther INTA BALAN LITT A | quired Client Information: | Face Analytical<br>menuncum                 |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------------|-----------------------|--|--|--|----|----------|-----------|----|-----------------------|-----|---------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------|---------------|------------------------|----------------------------|---------------------------------------------|
| j <b>u</b>                                                                       |                                                                                                                |                                                                                                                 |                                                                                                                | Yone V               |                       |  |  |  | WT | WT       |           | WT | WT                    | WT. | THE TYPE GREAT C                                                                      | Connecting waters | Project #                                                                                                      | Project Name: Y         | Purchase Order #:                                                                                               | Cathy to:     | Report To: Becky       | Required Project in        |                                             |
| PRINT Mame of S<br>SNGHATURE of S                                                |                                                                                                                |                                                                                                                 |                                                                                                                | Coccemical Micades 2 | and the second second |  |  |  |    |          | 19/11/930 |    |                       |     | START END                                                                             | COLLECTED         |                                                                                                                | ates AMA-R6             |                                                                                                                 |               | Siever                 | formation;                 | CHAIN<br>The Chai                           |
| meres: Kate F                                                                    | Sacratica de la companya de la companya de la companya de la companya de la companya de la companya de la comp |                                                                                                                 |                                                                                                                | 1212121              |                       |  |  |  |    |          | 4/1/      |    |                       |     | E<br>SAMPLE TEMP AT COLLECT<br># OF CONTAINERS<br>Unpreserved<br>H2SO4<br>HNO3<br>HCI |                   | Pace Profile # 10                                                                                              | Pace Project Manage     | Page Quole:                                                                                                     | Company Name: | Anerdoo:               | Invoice Information:       | 4-OF-CUSTODY /<br>h-of-Custody is a LEGAL C |
| ptimicz                                                                          |                                                                                                                |                                                                                                                 |                                                                                                                | KANCI AL             | ALVERNA AND ACCOUNTS  |  |  |  |    | <b>Ť</b> | ×××       |    |                       |     | NaOH<br>Na28203<br>Methanol<br>Other<br>App IV Metala<br>Elupídie                     | ivalives<br>y/Na  |                                                                                                                | C. Include Subscription |                                                                                                                 |               |                        |                            | Analytical Reque                            |
| TE Symot: 2-9-202                                                                |                                                                                                                |                                                                                                                 |                                                                                                                | HALFE W              |                       |  |  |  |    | 3        | ×         |    |                       |     | RAD 9315/8320                                                                         |                   |                                                                                                                |                         |                                                                                                                 |               |                        |                            | lest Document<br>fields must be completed   |
| TEMP In C<br>Received on<br>Iced                                                 |                                                                                                                |                                                                                                                 |                                                                                                                | 17/10                |                       |  |  |  |    |          | <u>इ</u>  | 1  | :<br>:<br>:<br>:<br>: |     | Residual Chlorine (Y/N)                                                               |                   | The state of the second second second second second second second second second second second second second se |                         | Vicensis and a subscription                                                                                     | 60            |                        |                            | accurately.                                 |
| (Y/N)<br>Custody<br>Seated:<br>Cooler()<br>(Y/N)<br>Samples<br>intact()<br>(Y/N) |                                                                                                                |                                                                                                                 | -<br>                                                                                                          |                      |                       |  |  |  |    |          | 542       |    |                       |     | 2521572                                                                               |                   |                                                                                                                |                         | A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF | n. u          | 4                      | 2<br>A                     |                                             |

Page 19 of 25

| Hon  | Pace Analytical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | • *            |          | · ·         |              | THO CHA                                                                                                         | NN-0     | Ş. H       | jä 🗋     | S<br>S<br>S      | 2                                     | h N    | ĭ×ĭ   | <b>v</b> ~   | -8≥                                       | E B   | j<br>Ģ₹         | 글루              | ≧ 🎽         | ē 7                 | S Q              | <u> 동</u> -월 | <u>a</u> .   | ិត 🙀     | 30       | ₩ Q                | 8 <u>H</u>   | 8 3      | 문 🖸        | - <b>g t</b> | Å.                                                                                                              | 8                                         | 5        | <u>ē</u>                                                                                                        | 7         |            |          |       |          | ·       |        | 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19 - |         |          |       |                                              |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------|----------|-------------|--------------|-----------------------------------------------------------------------------------------------------------------|----------|------------|----------|------------------|---------------------------------------|--------|-------|--------------|-------------------------------------------|-------|-----------------|-----------------|-------------|---------------------|------------------|--------------|--------------|----------|----------|--------------------|--------------|----------|------------|--------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------|-----------|------------|----------|-------|----------|---------|--------|-----------------------------------------|---------|----------|-------|----------------------------------------------|
| ğh   | N7 (Géoria: Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Required Pro  |                | 100 H    | <b>G</b> on |              |                                                                                                                 |          |            | 17       | 8                | Ē                                     | đ      | Į     | Ā            |                                           | ŀ     |                 |                 | . ÷         |                     |                  |              |              |          |          |                    |              | · .      |            |              |                                                                                                                 |                                           |          | -                                                                                                               | Š         | ē          | -        | •     | ج -      | 1       | _      | 9                                       |         |          | R.    |                                              |
| 1    | E 1070 Bridge WII Ave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Capy To:      |                |          |             |              |                                                                                                                 |          |            | 81       |                  | ž i s                                 | S.     | R .   |              |                                           |       | ·   ·           |                 |             |                     | 100              |              |              |          |          |                    |              | ÷.       |            |              |                                                                                                                 |                                           |          |                                                                                                                 |           |            |          |       |          |         |        |                                         | ·       |          | 1     |                                              |
| R    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Purpase Ord   |                |          |             |              |                                                                                                                 |          |            | 2 2      |                  | 18                                    | 4      |       |              |                                           |       |                 |                 | 11          | 11                  |                  | 11           | 11           |          |          |                    | 11           | 11       |            | 瀫            |                                                                                                                 |                                           | 嬼        |                                                                                                                 | 1         |            |          |       | Ą.       |         |        | 瀏                                       |         | <b>8</b> |       | 2578 E 7                                     |
| Ì    | (770)384-8528  Fac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Project Name: |                |          | 5           |              |                                                                                                                 |          | ľ          | 7        | 8                | ş.                                    | 21     | S.    | 8            | 2                                         |       | 5               | Ĩ               |             |                     |                  |              |              | 1        | 1        |                    |              |          |            | 20           |                                                                                                                 |                                           | Ű.       | 1                                                                                                               |           |            | í.       |       |          | 1       | 1.     |                                         |         |          |       | 1                                            |
| Ĩ    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Project #:    |                |          |             |              |                                                                                                                 |          |            | 7        | 2                | ğ,                                    | 2      |       | ŝ,           | ā                                         |       | - li            | l               | - B         |                     |                  | 2            | - 1          | . 6      |          |                    |              |          | ć.         |              | 1000                                                                                                            | ĥ                                         | No.      |                                                                                                                 | 1 and 1   | P          |          | 1     | l        | 1       |        | 100                                     |         |          | B     | - 1 ()                                       |
| ľ    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                |          |             |              |                                                                                                                 |          |            | ł        |                  |                                       |        |       | ,            | ł                                         |       | 1               |                 |             | 灦                   | ġ.               |              | N.           | Ň.       |          | 2                  |              | ň.,      | ũ.         | 4            | ý                                                                                                               | Ń                                         | đ        | 頿                                                                                                               | a l       |            | <b>.</b> | Ø\$   |          | 1       | )      |                                         | 1       | á        |       | <i>6</i>                                     |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8<br>0005     | s to left)     | <b></b>  |             |              | CIED                                                                                                            |          |            |          |                  |                                       | _      | 2     | 6            | <u>a</u>                                  | ř.    | ^               |                 |             | YN                  |                  |              |              | <u> </u> |          | diama and a second |              |          |            |              |                                                                                                                 | [j                                        | _        |                                                                                                                 |           |            | 治中的      |       |          |         |        |                                         |         |          |       | 11 A. B. B. B. B. B. B. B. B. B. B. B. B. B. |
|      | SAMPLE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               | (see valid cod |          | STAR        |              | £                                                                                                               | 5        | TCOLLECTIC | IS       | -                |                                       |        |       |              |                                           | ····· | <u> </u>        |                 | 5 - F<br>20 | CTR See             | 1 <sup>1</sup> 1 |              |              |          |          |                    |              |          | 1          |              | in the second second second second second second second second second second second second second second second | -ii                                       |          | <u> </u>                                                                                                        |           | (YA)       |          |       |          |         |        |                                         | · · [   |          |       | 19                                           |
| €M # | Array Commission per box. Wight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | LE TYPE        |          |             |              | · .                                                                                                             |          | E TEMP A   | ONTAINER | served           | 4                                     |        |       |              | 4-10-00-00-00-00-00-00-00-00-00-00-00-00- | 203   |                 |                 |             | $\mathbf{y}_{2}$ th | Metals           | -            | -            | 316/9520 | i        |                    |              |          | 7          |              |                                                                                                                 |                                           |          | · .                                                                                                             |           | I Chiorin  |          |       |          |         |        |                                         |         |          |       |                                              |
| ITI  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | MATE           | Q        |             | Ā            |                                                                                                                 | <b>F</b> | SAMP       | # OF C   | Unpre            | H290                                  |        | MNO3  | HCI          | NaOH                                      | Na282 | faiba           |                 | Other       | -60                 | Noo IV           |              |              | AD 8     |          |                    |              |          |            |              |                                                                                                                 | N. M. M. M. M. M. M. M. M. M. M. M. M. M. |          |                                                                                                                 |           | (initial)  |          |       |          |         |        |                                         |         |          |       |                                              |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | T              |          |             |              |                                                                                                                 |          |            | Ť        | t and the second | - 1                                   |        |       |              |                                           | 1     | - t             |                 | 1           |                     | 4                |              | ╋            | 11       |          |                    |              |          |            | - T          | ľ                                                                                                               | -t                                        |          |                                                                                                                 |           | F          |          | 1     |          | • 1     | 1      | . ( <b> </b> *                          |         |          |       |                                              |
|      | <b>Vertical</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | N.             |          |             |              |                                                                                                                 |          |            | ·        |                  |                                       |        |       |              |                                           |       | نىيىنى <u>ت</u> |                 |             |                     | 4                | 1            |              | 21       | .        | . 1                |              |          |            |              | T                                                                                                               | ÷                                         | <u> </u> |                                                                                                                 |           |            | . 1      |       |          |         |        |                                         | ľ       |          |       |                                              |
|      | YEMAZ (MIDEI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               | S              | Þ        |             | 0H2          |                                                                                                                 |          |            | 4        |                  | £                                     |        | 1     |              | - C.,                                     |       |                 | in in i         | ÷           |                     | ×                | ×            |              |          |          |                    |              |          |            |              | · · · T                                                                                                         |                                           |          |                                                                                                                 |           |            |          |       | <b>5</b> |         |        |                                         | NI      | ונ       |       |                                              |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | S              | 1        |             |              |                                                                                                                 |          |            | 54<br>1  |                  | <u> </u>                              |        |       |              |                                           |       |                 |                 |             |                     | ŧ                | 1            | <u> </u>     | 1        |          |                    |              |          |            |              |                                                                                                                 |                                           |          |                                                                                                                 |           |            | T        | -     | 1        | ſ       |        |                                         |         |          | ſ     | :                                            |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | Ę              | ļ        |             |              |                                                                                                                 |          |            |          |                  |                                       |        |       |              | • • • • • (<br>}                          |       |                 |                 | 1           | c                   | Ŧ                |              |              | 11       |          | I                  | 1            |          |            |              |                                                                                                                 |                                           |          | 1                                                                                                               |           |            |          | T     | ŀ        | ľ       |        |                                         | 1       |          | . 1   |                                              |
|      | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | 3              |          |             |              |                                                                                                                 |          |            |          |                  | wakitiyay                             | ·      |       |              |                                           |       |                 | <u> </u>        |             |                     | 1                | 1            | $\mathbf{H}$ | 14       |          | Ĩ                  |              | i        |            |              | ···· [                                                                                                          |                                           |          |                                                                                                                 |           |            |          | 1     |          |         |        |                                         | 1       | ŀ        |       |                                              |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | 3              | İ –      |             |              |                                                                                                                 |          |            |          | -                | i i i i i i i i i i i i i i i i i i i | ł      |       | <u>i - i</u> | [                                         |       |                 | in l            |             |                     | <b>t</b>         | 1            | 1-1          | 3        |          |                    |              |          | <u> </u>   |              | ·                                                                                                               | -                                         | -+       |                                                                                                                 |           |            | 1        | 1     | 1        |         |        |                                         |         | ŧ.       |       | · 1                                          |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | 3              | <b> </b> |             |              |                                                                                                                 | Y        |            | 1        | .,               |                                       |        |       |              |                                           |       |                 |                 | <u> </u>    |                     | ł                | 1            |              |          |          |                    |              | <u>.</u> | <u> </u>   | <u> </u>     |                                                                                                                 |                                           |          | -                                                                                                               |           |            |          |       |          | 1       | -      | . ]                                     | -1      |          | . 1   |                                              |
|      | Now-28-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | 3              |          |             |              |                                                                                                                 |          |            |          | -                |                                       |        |       | ÷.           | ··· · ]                                   |       |                 | ÷               |             |                     | ¥                |              | $\pm$        | 1        |          |                    |              |          |            |              |                                                                                                                 |                                           |          |                                                                                                                 | -         |            | Ĩ        |       |          | 4       | 1      |                                         |         |          |       |                                              |
| 0    | Your ore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | 3              |          |             | -            |                                                                                                                 |          |            |          |                  |                                       |        | ~~~·{ |              |                                           |       |                 | - +             | l           |                     |                  | ¢            |              | <u> </u> |          | T                  | 1            |          |            |              |                                                                                                                 | Ţ.                                        | <u> </u> |                                                                                                                 | . I       |            | 1        |       |          |         |        |                                         |         |          |       |                                              |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | 3              |          |             | :            |                                                                                                                 |          |            | 1        |                  | ionennen<br>1                         |        |       | ч.<br>       |                                           | 1 A 1 |                 |                 | l           |                     | ₿. ľ             |              | 1-1          | 3        | ľ        |                    | - T          |          |            |              |                                                                                                                 | 1                                         |          | tin and the second second second second second second second second second second second second second second s | L         |            | i i      |       | 1        | . I     |        |                                         | ļ       | l        |       |                                              |
|      | *CW0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               | Ĩ.             |          |             |              |                                                                                                                 |          |            |          | -                |                                       |        |       |              |                                           |       |                 | <u>in quur</u>  |             | ;                   | r I              |              |              | 14       |          |                    |              |          | _          |              |                                                                                                                 | 1                                         |          |                                                                                                                 |           |            | Ť        |       |          |         | 1      | - 1                                     |         |          |       | anni I.                                      |
|      | A State of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se                                       |               |                |          |             | <b>COLVE</b> |                                                                                                                 | L. A. S. |            | 74462    |                  | 8 PU<br>10 PU                         | Peters |       |              |                                           |       |                 |                 |             |                     | <b>N</b> •1      |              | And .        |          |          | CN N               |              |          |            |              |                                                                                                                 |                                           | 188 -    |                                                                                                                 |           |            | 調子       |       |          |         | 5      |                                         |         |          |       | - X - WHILE                                  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.51          | Ŷ              | L        | A           | CC.          | M                                                                                                               | Ê        | B          | -        |                  | Ĭč                                    | †× i   | 50    |              |                                           | P-I   |                 | $ \mathcal{L} $ |             | ĸ                   |                  | F            | 1.           | Γ Ι      |          |                    | N            | Ë        | <b>A</b> _ |              |                                                                                                                 |                                           | § - 1    | <b>  </b>                                                                                                       |           |            |          |       |          |         |        |                                         |         | ſ        |       | la se a di                                   |
|      | NAMES AND ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF ADDRESS OF |               |                |          |             |              |                                                                                                                 | -        |            |          |                  | 2                                     |        | 3     | 50           | 8                                         | 6     | Υ.              | 1               |             | d T                 | $\mathbf{x}$     | \$           | 57           |          | <u>.</u> | ${\bf z}$          | $\mathbf{x}$ |          | <b>.</b> . |              | J                                                                                                               | Sec. Sec.                                 | Nin Y    |                                                                                                                 |           | : ]        | - 1      | l     |          |         |        | 4                                       |         |          |       | -                                            |
| Í    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | н<br>2.        |          |             |              |                                                                                                                 |          |            |          |                  |                                       |        |       |              |                                           |       |                 |                 |             | - Xter              |                  |              |              |          |          |                    | Ē            | T.       | ļ.         |              |                                                                                                                 | t                                         | - N      |                                                                                                                 | ľ         | . <b>.</b> |          | : I   |          | ÷       |        | .:                                      |         |          | ÷     | - North                                      |
| 1    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                |          |             |              |                                                                                                                 |          | :<br>      | et 1     |                  |                                       |        | •     |              |                                           |       |                 |                 |             |                     |                  |              |              |          |          |                    |              |          |            |              |                                                                                                                 | -                                         |          | ļ                                                                                                               |           | . [        |          |       | . 1      |         | I      | _ I.                                    | -       |          |       |                                              |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |                |          | 142         | PROF         |                                                                                                                 |          |            | Ŕ        |                  |                                       |        |       | 055          | 1965                                      | 32    | 80              |                 |             |                     |                  | 12.2         |              | 43       |          |                    |              |          |            |              |                                                                                                                 |                                           |          |                                                                                                                 | c i       | -          | OP       | - 419 |          | ·····   |        | Ĩ                                       |         |          |       |                                              |
|      | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,             |                |          |             | NE .         | X                                                                                                               | Sup      | 186        |          |                  | N                                     |        |       | 8<br>1       |                                           | 2 - C | ÷.              | · [             |             |                     |                  |              |              |          |          |                    | Ne l         |          | Ĩ.         |              |                                                                                                                 |                                           |          | , i                                                                                                             | TEMP in C |            | Received | Cell  | (Y/N)    | Custody | Sealed |                                         | Samples | niactC   | (Y/N) |                                              |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •             |                |          |             |              | the second second second second second second second second second second second second second second second se |          | l          |          | l                | l                                     |        | ľ     |              |                                           | ŀ     | ł               |                 |             | Ļ                   | ł.               | Ê            | Ľ            | Ľ        | L,       | ľ                  | 1            |          |            |              |                                                                                                                 |                                           |          |                                                                                                                 | -         |            | ï        | k     | (        | ł       | S      | ž                                       | *       | b        | Ç     |                                              |

Page 20 of 25

~

|                             |   |   |               |                         |      | ō |   |      | and a    |            |          |        | ۴.      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 3         | 18                | ,              |                                | 19                      |                         |                                                          |
|-----------------------------|---|---|---------------|-------------------------|------|---|---|------|----------|------------|----------|--------|---------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|-------------------|----------------|--------------------------------|-------------------------|-------------------------|----------------------------------------------------------|
|                             |   |   |               | Set (Blacking Michigan) |      |   |   |      | Pater    | YAMW-1 ··· |          | YAMN-5 | YAMWA . | YANM-2  | SAMPLE ID<br>One Churacter per bor.<br>(A-Z, 0-0 /,-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |           | (770)384-6526 Fax |                | 1070 Bridge M# Ave<br>24 30114 | Georgia Porrer          | Cilent information:     | Prace Arabytical                                         |
|                             |   |   |               | のないの                    |      |   |   |      |          |            |          |        |         |         | ama the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |          | is menual | Project Nan       | Purchase O     | Copy To:                       | Report To:              | Section B<br>Required F | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |
|                             |   |   |               | CHEEN                   |      |   |   | <br> | WT       | WT         | W        | WT     | WT      | M.      | MATRIX CODE (see valid code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | to jell) |           | Y                 | nder #:        |                                | Becky                   | noject in               |                                                          |
| •                           |   |   |               | 19191 B                 |      | • |   |      |          | 01.04      |          | palad  | ndos.   | patonli |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           | abas AW           |                |                                | Sleever                 | Tormadio                | •<br>• • •                                               |
|                             |   |   |               | A LAND                  | <br> |   | 1 | <br> |          | n lut      |          | u  094 | rol R   | mi h    | START<br>E TIM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8        |           |                   |                |                                |                         | <b>3</b>                | . *                                                      |
| PLER NA                     |   |   |               | and a                   | <br> |   |   | <br> |          | 1          |          | 5      | 0       | Un      | en en en en en en en en en en en en en e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LECTE    |           |                   |                |                                |                         |                         | 불유                                                       |
| RE 9 84                     |   |   | <u>.</u>      |                         | <br> |   |   |      |          |            |          |        |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |                   |                |                                | ľ                       |                         | Chain-o                                                  |
| MPLER                       |   |   |               | NIE .                   |      |   |   | <br> |          |            |          |        |         |         | RAMPLE TEMP AT COLLECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -        |           |                   |                |                                |                         | ?                       |                                                          |
| 22                          |   |   |               | 1.4.4<br>1.4.4<br>1.5   |      |   |   | <br> |          | 4          | ¥        | 2      | 4       | ç       | # OF CONTAINERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 206-1     | ş                 | P              | ß                              | Anen                    |                         |                                                          |
| De                          |   |   |               | R                       |      |   |   | <br> |          |            |          |        |         |         | Unpreserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | PION      | Page              |                | any N                          |                         | 5 9<br>9 9              | STC                                                      |
| #                           |   |   |               |                         | <br> |   |   |      |          |            |          |        |         |         | HNO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | y        |           | XMan              | 'n             | ame:                           |                         | Denad                   |                                                          |
| 궁                           | : |   | 2             |                         |      |   |   |      |          |            |          | ь,     |         |         | HCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | esen     | Į         | lager:            |                |                                |                         |                         | 8                                                        |
| F.                          |   |   | 24            |                         | <br> |   |   | <br> |          |            |          | ·      |         |         | NaOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ativ     | ľ         | -                 |                |                                |                         |                         |                                                          |
| ۲.                          |   |   | 2             |                         | <br> |   |   | <br> |          |            |          |        |         |         | Na2S203<br>Methapol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |           | 2                 |                |                                |                         |                         |                                                          |
|                             |   |   | 2             |                         | <br> |   |   |      |          |            |          |        |         |         | Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |           | Non Ing           |                |                                |                         |                         |                                                          |
|                             |   | İ |               |                         |      |   |   |      |          |            |          |        |         |         | Analyses Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | YN       |           |                   |                |                                |                         |                         | 문<br>문                                                   |
|                             |   |   | $\mathcal{K}$ | Nu z                    |      |   |   | <br> | Ĭ        | ×          | <b>X</b> | ×      | ×       | ×       | App IV Metala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |           | Š.                |                |                                |                         | •                       | and B                                                    |
| AR A                        |   |   | 3             | 2                       | <br> |   |   | <br> | 1        | ××         | 7        | ×××    | ××      | ××      | Fluoride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |           | 8                 |                |                                |                         | ÷                       | Tield I                                                  |
| sign (                      |   |   |               |                         |      |   | — | <br> | <b>1</b> |            | 1        |        |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |                   |                |                                |                         |                         |                                                          |
| Ă                           |   |   |               |                         | <br> |   |   |      |          |            |          |        |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |                   |                |                                |                         |                         | 8 0 · · ·                                                |
| Ë                           |   |   |               |                         |      |   |   |      |          |            |          |        |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |                   |                |                                |                         |                         |                                                          |
| 8                           |   |   | R             |                         |      |   |   | -    |          |            |          |        |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |                   |                |                                |                         |                         | n ên                                                     |
| S I                         |   |   |               |                         |      |   |   |      |          |            |          |        |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.81     |           |                   | No.            |                                |                         |                         |                                                          |
|                             |   | - | 1             |                         |      |   |   | <br> |          |            |          |        |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |                   | distant.       |                                |                         |                         |                                                          |
|                             |   |   | 6             |                         |      |   |   |      |          |            |          |        |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |                   | 1000           |                                | ſ                       |                         | ate                                                      |
|                             |   |   |               |                         |      |   |   |      |          |            |          |        |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |                   |                |                                |                         | ğ                       | <b>Y</b>                                                 |
| TEMPING                     |   |   |               |                         |      |   |   | <br> |          |            |          |        |         |         | Residual Chlorine (Y/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | ř.        | 20                |                | 2                              |                         |                         |                                                          |
| Received on<br>iceO         |   |   |               | ŝ                       |      |   |   |      | 1        | È          | ۱ 1      | Ŧ      | 2       | 3       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | 8         | 8 N               | 1.5 1.         | L                              | $\overline{\mathbf{A}}$ | à                       |                                                          |
| (Y/N)                       |   |   |               | j,                      |      |   |   |      | ۱        | v          | 1        | ž      | オジ      | - 11    | ŕ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |           |                   | in a           | K                              |                         | -                       |                                                          |
| SealedD                     |   |   | 1             | i i                     |      |   |   |      |          | <u>_</u>   |          | َ عِن  | 6       | 5       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |                   | 1000           | P                              |                         | 0                       |                                                          |
|                             |   |   | <b>_</b>      |                         |      |   |   |      |          | 5          |          |        | 36      | <br>    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |                   | and the second | 2                              |                         |                         |                                                          |
|                             |   |   |               | 1986                    |      |   |   |      |          |            |          |        |         | - 1     | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |           |                   |                |                                | · [                     | •                       |                                                          |
| Samples<br>IntactC          |   |   | 1             | 11.00                   |      |   |   |      |          |            |          |        |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          | ŧ.        |                   |                | 1                              |                         | N                       |                                                          |
| Samples<br>IntaclC<br>(Y/N) |   |   |               |                         |      |   |   | _    |          |            |          |        |         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |           |                   |                |                                |                         | Ņ                       |                                                          |

•

•

| Ρ | age | 21 | of | 25 |
|---|-----|----|----|----|
|   |     |    |    |    |

| •                      |                | The second second second second second second second second second second second second second second second s |     |             | P        |              | N.       |                                            |           |          |                     |                   |          | 5        |           | e.             | ITEM #                                            |                                                                                                   |                                     |         | pessed    |            | nton, GJ  | inpany:                               | ) participation   |                  |
|------------------------|----------------|----------------------------------------------------------------------------------------------------------------|-----|-------------|----------|--------------|----------|--------------------------------------------|-----------|----------|---------------------|-------------------|----------|----------|-----------|----------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------|---------|-----------|------------|-----------|---------------------------------------|-------------------|------------------|
| •<br>•                 |                |                                                                                                                |     |             |          |              |          | ALAN AND AND AND AND AND AND AND AND AND A |           |          |                     |                   | т        |          |           | Maral CC-21    | (A-Z, G-P / , .<br>}<br>Sample kis must be unique | SAMPLE ID                                                                                         |                                     |         | Due Date: |            | 130174    | Georgia Power<br>1070 Sector Mill Ave | Hent Information: | Faits Analytical |
| •                      |                |                                                                                                                | 9   |             |          |              |          |                                            |           |          |                     |                   |          |          |           |                | Auto<br>Official<br>Transver<br>TS<br>TS          | Water Water With<br>Water Water With<br>Statistical With<br>Statistical Statistics<br>OUD OLD OLD | NATHOR: CODED<br>Driving Wangit DWD |         | Project # | Puralase ( |           | Report To:                            | Required (        |                  |
|                        |                |                                                                                                                | (A) |             |          | 1            |          |                                            | 1         | £        | 5                   | 1                 | 3        | ¥.       | ¥         | 5              | MATRIX CODE                                       | (see valid co                                                                                     | des lo iel)                         |         | 1         | order a:   |           | Bed                                   | noject            |                  |
|                        |                | l.                                                                                                             | T   | 1           |          |              | +        |                                            |           |          |                     | _                 |          |          |           |                | SAMPLE TYPE                                       | (G=GRA8 (                                                                                         | C=COMP)                             |         | Take      |            |           | ry Ste                                | lator:            |                  |
|                        |                | ſ                                                                                                              |     |             |          |              |          | -                                          |           |          | ]                   |                   |          |          |           | 10             | DATE                                              | S                                                                                                 |                                     |         | Ň         |            |           | BVBC                                  | natice            | ·                |
| 2 3                    |                |                                                                                                                |     |             |          |              |          | ľ                                          |           |          | 1                   |                   |          |          | 1         | 141            | T                                                 | TART                                                                                              | 8                                   |         |           |            |           |                                       | R                 |                  |
| UNT NE                 |                |                                                                                                                |     |             |          | 1            | 1        |                                            | ┼─        |          |                     |                   |          |          |           | 5              | 0                                                 | 1                                                                                                 |                                     |         | 1         |            |           |                                       |                   | ₹ 2              |
| Re of SJ               |                |                                                                                                                |     |             |          |              | ŀ        |                                            |           |          | -                   |                   | ļ        |          |           |                | a<br>1                                            | <b>B</b>                                                                                          | a                                   |         |           |            |           |                                       |                   | : Chain          |
|                        |                |                                                                                                                |     |             |          |              |          | Į.                                         |           |          |                     |                   | <u> </u> |          | L         |                | Ā                                                 |                                                                                                   |                                     |         |           |            |           |                                       |                   | - Å              |
| * *                    |                | _                                                                                                              | _   | and<br>Anna |          | -            |          |                                            | ┣—        |          | ļ                   | ļ                 |          | <u> </u> | <u> </u>  |                | SAMPLETEMP                                        | AT COLLECT                                                                                        | ON                                  | L       |           |            |           |                                       |                   |                  |
| 719                    |                |                                                                                                                |     |             |          | -            |          |                                            | ┢         | ┼──      |                     |                   |          |          |           | R              | # OF CONTAINE                                     | :RS                                                                                               | <b>T</b>                            | 100     | 8         | 8          |           | <b>Amend</b>                          | invoic<br>Sectio  | ्र दे<br>संदे    |
| がな                     |                |                                                                                                                |     |             |          | $\mathbf{T}$ | -        | ŀ                                          | ┢──       | -        |                     |                   |          |          | <u> </u>  |                | H2SO4                                             |                                                                                                   | -                                   | 10      | đ         | NOR.       |           | 8                                     | 8 3<br>5 0        |                  |
|                        |                |                                                                                                                | n   |             |          |              | L        | 1                                          |           |          |                     |                   |          |          |           |                | HNO3                                              |                                                                                                   | P                                   | . 8     | May       |            | 1.<br>No. |                                       |                   | Ģ                |
| No.                    |                |                                                                                                                | A   |             |          | -            | <u>.</u> | :<br>                                      |           |          |                     |                   |          |          |           |                | HCI                                               |                                                                                                   |                                     | Į       | 900       |            |           |                                       | 2                 | 5                |
| 175                    |                |                                                                                                                | Å   |             |          | 1            | <b> </b> | <u> </u>                                   | _         | <u> </u> | en en el<br>Regione |                   |          |          |           |                | NaOH                                              |                                                                                                   |                                     | Ģ       | L         |            |           |                                       |                   | ğ                |
|                        |                |                                                                                                                | R   |             |          | 1            | 1        | <u> </u>                                   |           |          |                     |                   |          |          |           |                | N#2S2D3                                           |                                                                                                   | - 8                                 |         | EV.       |            |           |                                       |                   |                  |
| 2                      |                |                                                                                                                | K   |             | 1        | t            | 1        |                                            |           |          |                     |                   |          |          | - <u></u> |                | Other                                             |                                                                                                   | -                                   |         | henda     |            | ŀ         |                                       |                   |                  |
|                        |                |                                                                                                                | 1   |             |          |              |          |                                            |           | 3        |                     |                   |          |          |           |                | Analyse                                           | Test                                                                                              | 1.<br>Market                        |         | 8         |            |           |                                       |                   |                  |
| الم اع                 |                |                                                                                                                | S   |             |          |              | -        |                                            | ×         | ×        | ×                   | ×                 | X        | ×        | ×         | ×              | App IV Metala                                     |                                                                                                   |                                     |         | (interest |            |           |                                       |                   | Para             |
| H K                    |                |                                                                                                                | 8   |             |          | <u> </u>     |          |                                            | ×         | ×        | X                   | ×                 | C X      | X        | ×         | ×              | Fluoride                                          |                                                                                                   |                                     | 湖<br>3. | 5.00      |            |           |                                       |                   |                  |
| <b>ğ</b>               |                |                                                                                                                |     |             |          | -            |          |                                            |           | <u> </u> | <b>2</b>            | <u></u>           | <u> </u> |          | <u>.</u>  | <u> </u>       | RAD 9315/932                                      | )                                                                                                 |                                     |         | r I       |            |           |                                       |                   | 87               |
|                        |                |                                                                                                                | Ň   |             |          | t -          |          |                                            |           |          |                     |                   |          |          |           |                |                                                   |                                                                                                   | 1                                   |         |           |            |           |                                       |                   | Es s             |
|                        |                |                                                                                                                | Æ   |             |          |              |          |                                            |           |          |                     |                   |          |          |           |                |                                                   |                                                                                                   |                                     |         |           |            |           |                                       |                   | - Se F           |
| TI 📓                   |                |                                                                                                                | P   |             |          | L            |          |                                            |           |          |                     |                   |          |          |           | ,<br>,         |                                                   | 1<br>.41                                                                                          |                                     |         |           |            |           |                                       |                   |                  |
|                        |                | _                                                                                                              |     |             |          | <u> </u>     |          |                                            |           |          |                     |                   |          |          |           |                | -                                                 |                                                                                                   |                                     |         |           |            | 1         | t                                     |                   |                  |
|                        |                |                                                                                                                | R   |             | <u> </u> | <u></u>      |          |                                            |           |          |                     |                   |          |          |           | _              |                                                   |                                                                                                   |                                     |         | 10.00     |            |           |                                       |                   |                  |
|                        |                |                                                                                                                |     |             | <u> </u> |              |          |                                            | ्र<br>स्ट |          |                     | ****              | ,        |          | <u></u>   | -+             |                                                   |                                                                                                   | ļ.                                  | 83      |           | 1          | i trees   | -                                     |                   | 비감               |
| TEMPING                |                | 1                                                                                                              |     |             |          |              |          |                                            |           |          |                     | <u>Ryb</u> anie   |          |          |           | -              |                                                   |                                                                                                   |                                     |         | 122.17    |            |           | j                                     | <b>P</b>          | et.              |
| • estant nr <i>C</i> 4 |                | Ļ                                                                                                              |     |             |          |              |          |                                            |           |          |                     | er and<br>animasi |          |          | <u> </u>  |                | Residual Chlori                                   | ne (Y/N)                                                                                          |                                     |         | 1         |            |           | ŀ                                     | :                 |                  |
| Received on<br>cet)    |                |                                                                                                                |     |             |          |              |          |                                            |           |          |                     |                   |          |          | -         | D.             |                                                   |                                                                                                   |                                     | 8       | 110       |            |           |                                       | ·                 |                  |
| (Y/N)                  |                | _                                                                                                              |     |             |          |              |          |                                            |           |          |                     |                   |          |          |           | <u> </u>       |                                                   |                                                                                                   |                                     |         | No.       | h          |           | ľ                                     | ,                 |                  |
|                        |                |                                                                                                                |     |             |          |              |          |                                            |           |          |                     |                   |          | 1        |           | <b>n</b>       |                                                   |                                                                                                   |                                     |         |           | B          | c         |                                       |                   |                  |
| (Y/N)                  |                |                                                                                                                |     |             |          |              |          | 1                                          | 9<br>11   |          | Ì                   |                   |          |          |           | ហ្គ            |                                                   |                                                                                                   |                                     |         | Sec. 2    |            |           | 5  S                                  | <b>،</b>          |                  |
|                        | - <b>1</b> - 1 | 1                                                                                                              | 1   |             | 1        |              |          |                                            |           |          | 1                   | - 1               | 1        | 1        | - f-      | $(\mathbf{N})$ |                                                   |                                                                                                   | 2. B. C.                            |         |           | 8          |           | _1                                    |                   |                  |
| Samples<br>IntactO     |                |                                                                                                                | 1   | COLOR.      |          |              |          |                                            |           |          | 1                   | ALC: N            |          |          |           | 21             |                                                   |                                                                                                   | 6.                                  |         |           | 8          |           | -1                                    |                   |                  |

÷.,

Page 22 of 25

- ÷.

PACE Analytical Services Ra-228 Analysis

Face Analytical

# Quality Control Sample Performance Assessment

MS/MSD 2

MS/MSD 1

Sample I.D. Sample MS I.D. Sample MSD I.D. Spike I.D.:

Sample Collection Date:

Sample Matrix Spike Control Assessment

MS/MSD Decay Corrected Spike Concentration (pCi/mL):

Spike Volume Used in MS (mL): Spike Volume Used in MSD (mL):

MS Aliquot (L, g, F): MS Target Conc.(pCi/L, g, F): MSD Aliquot (L, g, F): MSD Target Conc. (pCi/L, g, F): MS Spike Uncertainty (calculated) MSD Spike Uncertainty (calculated)

Analyst Must Manually Enter All Fields Highlighted in Yellow.

|                                              |                                                                                                                                                                        | Y<br>LLCSD58877<br>3/2/2021<br>19-033<br>24,040<br>0.10<br>0.10<br>0.10<br>0.501<br>4.798                                                                                                                                                |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ra-226<br>J.Y<br>2/19/2021<br>58877<br>DW    | 2102227<br>0.276<br>0.134<br>0.134<br>0.180<br>4.05<br>N/A<br>See Comment*                                                                                             | LCSD (Y or N)?<br>LCS58877<br>3/2/2021<br>3/2/2021<br>24.040<br>0.10<br>0.10<br>0.502<br>4.789                                                                                                                                           |
| Test<br>Analyst<br>Date: Worklist<br>Matrix: | sment MB Sample ID<br>MB Councentration:<br>M/B Counting Uncertainty:<br>MB Numerical Performance Indicator:<br>MB Status vs Numerical Indicator:<br>MB Status vs MDC: | sample Assessment<br>Count Date<br>Spike 1.D.:<br>Spike 2.D.:<br>Spike 2.D.:<br>Spike 2.D.:<br>Spike 2.D.:<br>Spike 2.D.:<br>Spike 2.D.:<br>Aliquot Volume (L. g, F):<br>Target Cont. (2.D.(1, g, F):<br>Target Contron. (2.D.(1, g, F): |
| of Anna                                      | Method Blank Asses                                                                                                                                                     | Laboratory Control S<br>De                                                                                                                                                                                                               |

| Based on the Percent Recoveries) MS/ MSD Duplicate RPD:           | 92520873006DUP   | 13.77%         | (Based on the LCS/LCSD Percent Recoveries) Duplicate RPD:   |
|-------------------------------------------------------------------|------------------|----------------|-------------------------------------------------------------|
| Duplicate Numerical Performance Indicator                         | 92520873006      | 1.742          | Duplicate Numerical Performance Indicator:                  |
| Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F). |                  | 8              | Are sample and/or duplicate results below RL?               |
| Sample Matrix Spike Duplicate Result                              |                  | 0.517          | Sample Duplicate Result Counting Uncertainty (pCi/L, g, F): |
| Matrix Spike Result Counting Uncertainty (pCi/L, g, F)            | the space below. | 4.626          | Sample Duplicate Result (pCi/L, g, F):                      |
| Sample Matrix Spike Result                                        | LCS/LCSD in      | 0.555          | Sample Result Counting Uncertainty (pCi/L, g, F):           |
| Sample MSD I.D.                                                   | other than       | 5.300          | Sample Result (pCi/L, g, F):                                |
| Sample MS I.D.                                                    | sample IDs if    | LCSD58877      | Duplicate Sample I.D.                                       |
| Sample I.D.                                                       | Enter Duplicate  | LCS58877       | Sample I.D.:                                                |
| Matrix Spike/Matrix Spike Duplicate Sample Assessment             |                  |                | Duplicate Sample Assessment                                 |
|                                                                   |                  |                |                                                             |
| MS/MSD Lower % Recovery Limits:                                   | 75%              | 75%            | Lower % Recovery Limits:                                    |
| MSD Status vs Recovery                                            | Pass             | Pass           | Status vs Recovery:                                         |
| MS Status vs Recovery.                                            | N/A              | N/A            | Status vs Numerical Indicator.                              |
| MSD Status vs Numerical Indicator                                 | 96.42%           | 110.67%        | Percent Recovery:                                           |
| MS Status vs Numerical Indicator:                                 | -0.65            | 1.80           | Numerical Performance Indicator:                            |
| MSD Percent Recovery:                                             | 0.517            | 0.555          | LCS/LCSD Counting Uncertainty (pCi/L, g, F):                |
| MS Percent Recovery                                               | 4.626            | 5.300          | Result (pCi/l., g, F):                                      |
| MSD Numerical Performance Indicator                               | 0.058            | 0.057          | Uncertainty (Calculated):                                   |
| MS Numerical Performance Indicator.                               | 4.798            | 4.789          | Target Conc. (pCi/L, g, F):                                 |
| Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): | 0.501            | 0.502          | Aliquot Volume (L, g, F):                                   |
| Sample Matrix Spike Duplicate Result                              | 0.10             | 0.10           | Volume Used (mL):                                           |
| Matrix Spike Result Counting Uncertainty (pCi/L, g, F):           | 24.040           | 24.040         | Decay Corrected Spike Concentration (pCi/mL):               |
| Sample Matrix Spike Result                                        | 19-033           | 19-033         | Spike 1.D.:                                                 |
| Sample Result Counting Uncertainty (pCi/L, g, F):                 | 3/2/2021         | 3/2/2021       | Count Date:                                                 |
| Sample Result                                                     | LCSD58877        | LCS58877       |                                                             |
| MSD Spike Uncertainty (calculated):                               | ٢                | LCSD (Y or N)? | Laboratory Control Sample Assessment                        |

# ## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

N/A Pass 25%

Duplicate Status vs Numerical Indicator:

Duplicate Status vs RPD: % RPD Limit

Duplicate Numerical Performance indicator: (Based on the Percent Recoveries) MS/ MSD Duplicate RPD: MS/ MSD Duplicate Status vs Numerical Indicator:

MS/ MSD Duplicate Status vs RPD:

% RPD Limit

Comments:

"The method blank result is below the reporting limit for this analysis and is acceptable

TAR DW QC Printed: 3/2/2021 1:18 PM

MM3222121

TAR\_58877\_W.xls Total Alpha Radium (R104-3 11Feb2019).xls



l o l

PACE Analytical Services Ra-228 Analysis

| Quality C                                                                                                     | control Sa                | mple Pei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | formance Assessment                                                                                       |          |          |
|---------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------|----------|
| Pace Analytical                                                                                               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Analyst Must Manually Enter All Fields Highlighted in                                                     | Yellow.  |          |
| Test                                                                                                          | Ra-226                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                           |          |          |
| Analyst                                                                                                       | رال<br>2/19/2021          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sample Matrix Spike Control Assessment<br>Sample Collection Date:                                         | MS/MSD 1 | MS/MSD 2 |
| Worklist<br>Matrix:                                                                                           | 58877<br>DW               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sample I.D.<br>Sample MS I.D.<br>Sample MSD I.D.                                                          |          |          |
| Method Blank Assessment                                                                                       |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Spike I.D.:                                                                                               |          |          |
| MB concentration                                                                                              | 2102227<br>0.276          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MS/MSD Decay Corrected Spike Concentration (pCl/mL):<br>Spike Volume Used in MS (mL):⊡                    |          |          |
| M/B Counting Uncertainty:                                                                                     | 0.134                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Spike Volume Used in MSD (mL):<br>MS Alianon (1 2 EV)                                                     |          |          |
| MB Numerical Performance Indicator:                                                                           | 4.05                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MS Target Conc. (pC/L, g, F):                                                                             |          |          |
| MB Status vs Numerical Indicator:<br>MB Status vs. MDC:                                                       | N/A<br>See Comment*       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MSD Target Conc. (pCI/L, g, F);<br>MSD Target Conc. (pCI/L, g, F);                                        |          |          |
|                                                                                                               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MS Spike Uncertainty (calculated):                                                                        |          |          |
| Laboratory Control Sample Assessment                                                                          | LCSD (Y or N)?            | z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MSD Spike Uncertainty (calculated):                                                                       |          |          |
|                                                                                                               | LCS58877                  | LCSD58877                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sample Result                                                                                             |          |          |
| Solike I.D.:                                                                                                  | 3/2/2/12 1<br>19-033      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sample result Counting Uncertainty (point, 9, r).<br>Sample Matrix Spike Result                           |          |          |
| Decay Corrected Spike Concentration (pCi/mL):                                                                 | 24.040                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Matrix Spike Result Counting Uncertainty (pCi/L, g, F):                                                   |          |          |
| Volume Used (mL):                                                                                             | 0.10                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sample Matrix Spike Duplicate Result                                                                      |          |          |
| Aliquot Volume (t. g. r.):<br>Target Conc. (nCi/L. g. F):                                                     | 0.502                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | wattix opike pupilcate result counting uncertainty (puert, g, r );<br>MS Numerical Performance Indicator; |          |          |
| Uncertainty (Calculated):                                                                                     | 0.057                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MSD Numerical Performance Indicator                                                                       |          |          |
| Result (pCi/L, g, F):                                                                                         | 5.300                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MS Percent Recovery:                                                                                      |          |          |
| LCS/LCSD Counting Uncertainty (pCi/L, g, F):<br>Numerical Performance Indicator                               | 0.555                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MSD Percent Recovery:<br>MS Status vs Numerical Indicator:                                                |          |          |
| Percent Recovery:                                                                                             | 110.67%                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MSD Status vs Numerical Indicator:                                                                        |          | ·        |
| Status vs Numerical Indicator:                                                                                | A/N                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MS Status vs Recovery:                                                                                    |          |          |
| Status vs Recovery:                                                                                           | Pass                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MSD Status vs Recovery.                                                                                   |          |          |
| Upper % Recovery Limits:<br>Lower % Recovery Limits:                                                          | 75%                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MS/MSD Lopper % Recovery Limits:<br>MS/MSD Lower % Recovery Limits:                                       |          |          |
|                                                                                                               |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                           |          |          |
| Duplicate Sample Assessment                                                                                   |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Matrix Spike/Matrix Spike Duplicate Sample Assessment                                                     |          | -        |
| Sample I.D.:                                                                                                  | 92520873006               | Enter Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sample I.D.                                                                                               |          |          |
| Duplicate Sample I.D. Samole Result (nCi/I o F):                                                              | 925208/3006DUP            | other than                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sample MS I.D. Sample MSD I.D.                                                                            |          |          |
| Sample Result Counting Uncertainty (pCi/L, g, F):                                                             | 0.140                     | LCS/LCSD in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sample Matrix Spike Result:                                                                               |          |          |
| Sample Duplicate Result (pCi/L, g, F):                                                                        | 0.006                     | he space below.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Matrix Spike Result Counting Uncertainty (pCi/L, g, F):                                                   |          |          |
| Sample Duplicate Result Counting Uncertainty (pCvRL, g, r.);<br>Are sample and/or duplicate results below RL? | Cee Below #               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Matrix Spike Duplicate Result Counting Uncertainty (pCiVL, g. F.):                                        |          |          |
| Duplicate Numerical Performance Indicator.<br>Duvicate DDD:                                                   | 1.924<br>1.924<br>185 80% | 92520873006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Duplicate Numerical Performance Indicator:<br>(Research the Dercent Recoveries) MS/ MSD Duplicate RPD-    |          |          |
| Duplicate Status vs Numerical Indicator                                                                       | N/N                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MS/ MSD Duplicate Status vs Numerical Indicator:                                                          |          |          |
| Duplicate Status vs RPD:<br>& point init-                                                                     | Failter                   | And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se | MS/ MSD Duplicate Status vs RPD:                                                                          |          |          |
|                                                                                                               | e 27 %                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                           |          |          |
| ## Evaluation of duplicate precision is not applicable if either the s                                        | sample or duplicate re    | sults are below th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e MDC.                                                                                                    |          |          |

1 of 1

Wm 3/2/2/

1000 mm

"Barch must be re-prepried due to unacceptable precision:  $N(\Omega, Q, M, 3/2/2)$ 

Comments: "The method blank result is below the reporting limit for this analysis and is acceptable.
Pace Analytical

# **Quality Control Sample Performance Assessment**

|                                                                      |        | D 1 MS/MSD 2                                                      |             |                 |                         |                                                      |                               |                                                         |                                     |                                   |                                 |                                    |                                         |           |                                                                       |                                                |                                       |                                                          |                                    |                                      |                       |                                     |                                   |                                    |                               |                         |                                                                     |                                                       |                 |                       |                              |                                          |                                                |                                                    |                                                          |                                                                                                    |                                                          |                                                  |                                        |
|----------------------------------------------------------------------|--------|-------------------------------------------------------------------|-------------|-----------------|-------------------------|------------------------------------------------------|-------------------------------|---------------------------------------------------------|-------------------------------------|-----------------------------------|---------------------------------|------------------------------------|-----------------------------------------|-----------|-----------------------------------------------------------------------|------------------------------------------------|---------------------------------------|----------------------------------------------------------|------------------------------------|--------------------------------------|-----------------------|-------------------------------------|-----------------------------------|------------------------------------|-------------------------------|-------------------------|---------------------------------------------------------------------|-------------------------------------------------------|-----------------|-----------------------|------------------------------|------------------------------------------|------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------|----------------------------------------|
| <u>Analyst Must Manually Enter All Fields Highlighted in Yellow.</u> |        | Sample Matrix Spike Control Assessment<br>Sample Collection Date: | Sample I.D. | Sample MSD I.D. | Spike I.D.:             | MS/MSD Decay Corrected Spike Concentration (pCi/mL): | Spike Volume Used in MS (mL): | Spike Volume Used in MSD (mL):<br>MS Aliquot (L. o. F): | MS Target Conc.(pCi/L, g, F):       | MSD Aliquot (L, g, F):            | MSD Target Conc. (pCi/L, g, F): | MS Spike Uncertainty (calculated): | INISU Spike Unicertaining (calculated); |           | oanpie Result 4 olgma Cou (powL, g, r);<br>Samnle Matrix Snike Result | Matrix Spike Result 2 Sigma CSU (pCi/L, q, F): | Sample Matrix Spike Duplicate Result: | Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F); | MS Numerical Performance Indicator | MSD Numerical Performance Indicator: | MS Percent Recovery:  | MSD Percent Recovery:               | MS Status vs Numerical Indicator: | MSD Status vs Numerical Indicator. | MS Status vs Recovery:        | MSD Status vs Recovery: | MS/MSD Upper % Recovery Limits:<br>MS/MSD1 rower % Recovery Limits: | Matrix Spike/Matrix Spike Duplicate Sample Assessment | Sample I.D.     | Sample MS I.D.        | Sample MSD I.D.              | Sample Matrix Spike Result:              | Matrix Spike Result 2 Sigma CSU (pCi/L, g, F): | Sample Matrix Spike Duplicate Result               | Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F): | Duplicate Numerical Performance Indicator:                                                         | (based off dis relating the provided and puppicate AFD)  | MOV MOULD LUDINGIC STATUS VS NUTIFICATIFICATION, | WO THE CONTRACT CONTRACT STATUS STATUS |
|                                                                      |        |                                                                   |             |                 |                         |                                                      |                               |                                                         |                                     |                                   |                                 | ļ                                  | 1.005                                   | LU2U36831 | 21-003                                                                | 38.698                                         | 0.10                                  | 0.821                                                    | 4.711                              | 0.231                                | 5,382                 | 1.179                               | 1.09                              | 114.23%                            | A/N                           | Pass                    | 135%                                                                |                                                       | Enter Duplicate | sample IDs if         | other than                   | LCS/LCSD in                              | the space below.                               |                                                    |                                                          |                                                                                                    |                                                          |                                                  |                                        |
|                                                                      | Ka-228 | VAL<br>2/22/2021                                                  | 58851<br>WT |                 |                         | 2100680                                              | 0.356                         | 0.369                                                   | 1.89                                | Pass                              | Pass                            |                                    |                                         | LC00001   | 21-003                                                                | 38,698                                         | 0.10                                  | 0.813                                                    | 4.759                              | 0.233                                | 4.358                 | 1.031                               | -0.74                             | 91.58%                             | A/N                           | Pass                    | 135%<br>60%                                                         |                                                       | LCS58851        | LCSD58851             | 4.358                        | 1.031                                    | 5.382                                          | 1,179                                              | DN 200                                                   | 1.281                                                                                              | 0410-27<br>Daee                                          | Doce                                             | 36%                                    |
|                                                                      |        | Analysc<br>Date:                                                  | Worklist    |                 | Method Blank Assessment | MB Sample ID                                         | MB concentration:             | MIB 2 SIGMB CSU:<br>MB MDC:                             | MB Numerical Performance indicator: | MB Status vs Numerical Indicator: | MB Status vs. MDC:              | ahoratoar Cantal Samala Accession  |                                         |           | Spike I.D.:                                                           | Decay Corrected Spike Concentration (pCi/mi.); | Volume Used (ml.):                    | Aliquot Volume (L, g, F);                                | Target Conc. (pCi/L, g, F):        | Uncertainty (Calculated):            | Result (pCi/L, g, F): | LCS/LCSD 2 Sigma CSU (pCi/L, g, F); | Numencal Performance Indicator    | Percent Recovery:                  | Status vs Numerical Indicator | Status vs Recovery:     | Upper % Recovery Limits:<br>Lower % Recovery Limits:                | Duplicate Sample Assessment                           | Sample I.D.:    | Duplicate Sample I.D. | Sample Result (pCi/L, g, F); | Sample Result 2 Sigma CSU (pCi/L, g, F): | Sample Duplicate Result (pCi/L, g, F):         | sample Duplicate Result 2 Sigma CSU (pCI/L, g, F): | Are sample and/or duplicate results below RL/            | Puppicate Numerical Peromance Indicator: //Based on the LOS/LOS/LOS/LDBreat Deconder/Dunitode DDD- | Cosed on the ECONTOUR Florent Incounties) Duplicate NED. | Depicate Ocacus Variational Indicate Indicator.  | % RPD Limit                            |

There

Comments:

## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.



March 19, 2021

Ms. Lauren Petty Southern Co. Services 42 Inverness Center Parkway Birmingham, AL 35242

RE: Project: YATES R6/AMA RADS Pace Project No.: 92521564

Dear Ms. Petty:

Enclosed are the analytical results for sample(s) received by the laboratory on February 10, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Karalin ya

Kevin Herring kevin.herring@pacelabs.com 1(704)875-9092 HORIZON Database Administrator

Enclosures

cc: Joju Abraham, Georgia Power-CCR Lauren Coker, Georgia Pwer Geoffrey Gay, ARCADIS - Atlanta Kristen Jurinko Kelley Sharpe, ARCADIS - Atlanta Alex Simpson, Arcadis Samantha Thomas Maribel Vital





### CERTIFICATIONS

Project: YATES R6/AMA RADS Pace Project No.: 92521564

### Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601 ANAB DOD-ELAP Rad Accreditation #: L2417 Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694 **Delaware Certification** EPA Region 4 DW Rad Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET **Guam Certification** Hawaii Certification Idaho Certification **Illinois Certification** Indiana Certification Iowa Certification #: 391 Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221 Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086 Maine Certification #: 2017020 Maryland Certification #: 308 Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991

Missouri Certification #: 235 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249 Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification Tennessee Certification #: 02867 Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L



# SAMPLE SUMMARY

Project: YATES R6/AMA RADS Pace Project No.: 92521564

| Lab ID      | Sample ID            | Matrix | Date Collected | Date Received  |
|-------------|----------------------|--------|----------------|----------------|
| 92521564001 | YGWC-38 (020921)     | Water  | 02/09/21 13:50 | 02/10/21 17:10 |
| 92521564002 | YGWC-41 (021021)     | Water  | 02/10/21 13:25 | 02/10/21 17:10 |
| 92521564003 | YGWC-42 (021021)     | Water  | 02/10/21 14:30 | 02/10/21 17:10 |
| 92521564004 | YGWC-43 (020921)     | Water  | 02/09/21 15:30 | 02/10/21 17:10 |
| 92521564005 | EB-01(021021)        | Water  | 02/10/21 13:30 | 02/10/21 17:10 |
| 92521564006 | YGWC-23S (020921)    | Water  | 02/09/21 11:10 | 02/10/21 17:10 |
| 92521564007 | YGWC-49 (020921)     | Water  | 02/09/21 15:15 | 02/10/21 17:10 |
| 92521564008 | YGWC-24SA (020921)   | Water  | 02/09/21 16:10 | 02/10/21 17:10 |
| 92521564009 | DUP-02 (020921)      | Water  | 02/09/21 00:00 | 02/10/21 17:10 |
| 92521564010 | YGWC-36A (021021)    | Water  | 02/10/21 14:30 | 02/10/21 17:10 |
| 92521564011 | YGWC-38 (020921) MS  | Water  | 02/09/21 13:50 | 02/10/21 17:10 |
| 92521564012 | YGWC-38 (020921) MSD | Water  | 02/09/21 13:50 | 02/10/21 17:10 |



# SAMPLE ANALYTE COUNT

Project: YATES R6/AMA RADS

Pace Project No.: 92521564

| Lab ID      | Sample ID            | Method                   | Analysts | Analytes<br>Reported | Laboratory |
|-------------|----------------------|--------------------------|----------|----------------------|------------|
| 92521564001 | <br>YGWC-38 (020921) | EPA 9315                 |          | 1                    | PASI-PA    |
|             |                      | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                      | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 92521564002 | YGWC-41 (021021)     | EPA 9315                 | MK1      | 1                    | PASI-PA    |
|             |                      | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                      | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 92521564003 | YGWC-42 (021021)     | EPA 9315                 | MK1      | 1                    | PASI-PA    |
|             |                      | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                      | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 92521564004 | YGWC-43 (020921)     | EPA 9315                 | MK1      | 1                    | PASI-PA    |
|             |                      | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                      | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92521564005 | EB-01(021021)        | EPA 9315                 | MK1      | 1                    | PASI-PA    |
|             |                      | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                      | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 92521564006 | YGWC-23S (020921)    | EPA 9315                 | MK1      | 1                    | PASI-PA    |
|             |                      | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                      | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 92521564007 | YGWC-49 (020921)     | EPA 9315                 | MK1      | 1                    | PASI-PA    |
|             |                      | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                      | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 92521564008 | YGWC-24SA (020921)   | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                      | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                      | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92521564009 | DUP-02 (020921)      | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                      | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                      | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92521564010 | YGWC-36A (021021)    | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                      | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                      | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92521564011 | YGWC-38 (020921) MS  | EPA 9315                 | MK1      | 1                    | PASI-PA    |
|             |                      | EPA 9320                 | VAL      | 1                    | PASI-PA    |
| 92521564012 | YGWC-38 (020921) MSD | EPA 9315                 | MK1      | 1                    | PASI-PA    |
|             |                      | EPA 9320                 | VAL      | 1                    | PASI-PA    |

PASI-PA = Pace Analytical Services - Greensburg



# SUMMARY OF DETECTION

Project: YATES R6/AMA RADS

Pace Project No.: 92521564

| Lab Sample ID            | Client Sample ID |                                                    |       |              |                |            |
|--------------------------|------------------|----------------------------------------------------|-------|--------------|----------------|------------|
| Method                   | Parameters       | Result                                             | Units | Report Limit | Analyzed       | Qualifiers |
| 92521564001              | YGWC-38 (020921) |                                                    |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.302 ±<br>0.160<br>(0.232)                        | pCi/L |              | 03/05/21 07:44 |            |
| EPA 9320                 | Radium-228       | C:89% 1:NA<br>0.320 ±<br>0.348<br>(0.724)<br>C:80% | pCi/L |              | 02/26/21 14:46 |            |
| Total Radium Calculation | Total Radium     | 1:82%<br>0.626 ±<br>0.580<br>(1.07)                | pCi/L |              | 03/05/21 14:01 |            |
| 92521564002              | YGWC-41 (021021) |                                                    |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.124 ±<br>0.136<br>(0.280)<br>C:87% T:NA          | pCi/L |              | 03/05/21 07:44 |            |
| EPA 9320                 | Radium-228       | 0.424 ±<br>0.338<br>(0.664)<br>C:76%<br>T:88%      | pCi/L |              | 02/26/21 14:46 |            |
| Total Radium Calculation | Total Radium     | 0.548 ±<br>0.474<br>(0.944)                        | pCi/L |              | 03/05/21 14:01 |            |
| 92521564003              | YGWC-42 (021021) |                                                    |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.259 ±<br>0.201<br>(0.383)<br>C:79% T:NA          | pCi/L |              | 03/05/21 07:44 |            |
| EPA 9320                 | Radium-228       | 0.353 ±<br>0.350<br>(0.718)<br>C:75%<br>T:85%      | pCi/L |              | 02/26/21 14:46 |            |
| Total Radium Calculation | Total Radium     | 0.612 ±<br>0.551<br>(1.10)                         | pCi/L |              | 03/05/21 14:01 |            |
| 92521564004              | YGWC-43 (020921) |                                                    |       |              |                |            |
| EPA 9315                 | Radium-226       | 4.91 ±<br>0.852<br>(0.170)<br>C:88% T:NA           | pCi/L |              | 03/18/21 10:30 |            |
| EPA 9320                 | Radium-228       | 1.47 ±<br>0.584<br>(0.904)<br>C:73%<br>T:74%       | pCi/L |              | 02/26/21 14:46 |            |
| Total Radium Calculation | Total Radium     | 6.38 ± 1.44<br>(1.07)                              | pCi/L |              | 03/18/21 14:07 |            |



# SUMMARY OF DETECTION

Project: YATES R6/AMA RADS

Pace Project No.: 92521564

| Lab Sample ID            | Client Sample ID   |                                                    |       |              |                |            |
|--------------------------|--------------------|----------------------------------------------------|-------|--------------|----------------|------------|
| Method                   | Parameters         | Result                                             | Units | Report Limit | Analyzed       | Qualifiers |
| 92521564005              | EB-01(021021)      |                                                    |       |              |                |            |
| EPA 9315                 | Radium-226         | 0.0250 ±<br>0.103<br>(0.259)                       | pCi/L |              | 03/05/21 07:45 |            |
| EPA 9320                 | Radium-228         | C:88% T:NA<br>0.699 ±<br>0.416<br>(0.774)<br>C:77% | pCi/L |              | 02/26/21 14:46 |            |
| Total Radium Calculation | Total Radium       | T:86%<br>0.724 ±<br>0.519<br>(1.03)                | pCi/L |              | 03/05/21 14:01 |            |
| 92521564006              | YGWC-23S (020921)  |                                                    |       |              |                |            |
| EPA 9315                 | Radium-226         | 0.0999 ±<br>0.121<br>(0.250)<br>C:78% T:NA         | pCi/L |              | 03/05/21 07:38 |            |
| EPA 9320                 | Radium-228         | 0.364 ±<br>0.363<br>(0.747)<br>C:76%<br>T.82%      | pCi/L |              | 02/26/21 14:46 |            |
| Total Radium Calculation | Total Radium       | 0.464 ±<br>0.484<br>(0.997)                        | pCi/L |              | 03/05/21 14:01 |            |
| 92521564007              | YGWC-49 (020921)   |                                                    |       |              |                |            |
| EPA 9315                 | Radium-226         | 0.137 ±<br>0.130<br>(0.248)<br>C:77% T:NA          | pCi/L |              | 03/05/21 07:38 |            |
| EPA 9320                 | Radium-228         | -0.0900 ±<br>0.330<br>(0.796)<br>C:78%<br>T76%     | pCi/L |              | 02/26/21 14:46 |            |
| Total Radium Calculation | Total Radium       | 0.137 ±<br>0.460<br>(1.04)                         | pCi/L |              | 03/05/21 14:01 |            |
| 92521564008              | YGWC-24SA (020921) |                                                    |       |              |                |            |
| EPA 9315                 | Radium-226         | 0.100 ±<br>0.114<br>(0.235)                        | pCi/L |              | 03/08/21 08:35 |            |
| EPA 9320                 | Radium-228         | C:90% T:NA<br>0.578 ±<br>0.379<br>(0.729)<br>C:80% | pCi/L |              | 03/02/21 12:34 |            |
| Total Radium Calculation | Total Radium       | T:84%<br>0.678 ±<br>0.493<br>(0.964)               | pCi/L |              | 03/08/21 12:26 |            |



# SUMMARY OF DETECTION

Project: YATES R6/AMA RADS

Pace Project No.: 92521564

| Lab Sample ID            | Client Sample ID     |                                                     |       |              |                |            |
|--------------------------|----------------------|-----------------------------------------------------|-------|--------------|----------------|------------|
| Method                   | Parameters           | Result                                              | Units | Report Limit | Analyzed       | Qualifiers |
| 92521564009              | DUP-02 (020921)      |                                                     |       |              |                |            |
| EPA 9315                 | Radium-226           | 0.153 ±<br>0.130<br>(0.241)<br>C:86% T:NA           | pCi/L |              | 03/08/21 08:35 |            |
| EPA 9320                 | Radium-228           | 0.310 ±<br>0.321<br>(0.666)<br>C:82%<br>T-89%       | pCi/L |              | 03/02/21 12:34 |            |
| Total Radium Calculation | Total Radium         | 0.463 ±<br>0.451<br>(0.907)                         | pCi/L |              | 03/08/21 12:26 |            |
| 92521564010              | YGWC-36A (021021)    |                                                     |       |              |                |            |
| EPA 9315                 | Radium-226           | 0.0504 ±<br>0.0936<br>(0.214)<br>C:80% T:NA         | pCi/L |              | 03/08/21 08:32 |            |
| EPA 9320                 | Radium-228           | 0.416 ±<br>0.429<br>(0.893)<br>C:73%<br>T:85%       | pCi/L |              | 03/02/21 15:44 |            |
| Total Radium Calculation | Total Radium         | 0.466 ±<br>0.523<br>(1.11)                          | pCi/L |              | 03/08/21 12:26 |            |
| 92521564011              | YGWC-38 (020921) MS  |                                                     |       |              |                |            |
| EPA 9315                 | Radium-226           | 95.48<br>%REC ±<br>NA (NA)<br>C:NA T:NA             | pCi/L |              | 03/05/21 07:38 |            |
| EPA 9320                 | Radium-228           | 101.32<br>%REC ±<br>NA (NA)<br>C:NA T:NA            | pCi/L |              | 02/26/21 14:46 |            |
| 92521564012              | YGWC-38 (020921) MSD |                                                     |       |              |                |            |
| EPA 9315                 | Radium-226           | 100.39<br>%REC<br>5.01RPD ±<br>NA (NA)<br>C:NA T:NA | pCi/L |              | 03/05/21 07:38 |            |
| EPA 9320                 | Radium-228           | 92.73<br>%REC<br>8.85 RPD ±<br>NA (NA)<br>C:NA T:NA | pCi/L |              | 02/26/21 14:46 |            |



Project: YATES R6/AMA RADS

Pace Project No.: 92521564

| Sample: YGWC-38 (020921)<br>PWS: | Lab ID: 92521564<br>Site ID: | 001 Collected: 02/09/21 13:50<br>Sample Type: | Received: | 02/10/21 17:10 N | Aatrix: Water |      |
|----------------------------------|------------------------------|-----------------------------------------------|-----------|------------------|---------------|------|
| Parameters                       | Method                       | Act ± Unc (MDC) Carr Trac                     | Units     | Analyzed         | CAS No.       | Qual |
|                                  | Pace Analytical Serv         | ices - Greensburg                             |           |                  |               |      |
| Radium-226                       | EPA 9315                     | 0.302 ± 0.160 (0.232)<br>C:89% T:NA           | pCi/L     | 03/05/21 07:44   | 13982-63-3    |      |
|                                  | Pace Analytical Serv         | ices - Greensburg                             |           |                  |               |      |
| Radium-228                       | EPA 9320                     | 0.320 ± 0.348 (0.724)<br>C:80% T:82%          | pCi/L     | 02/26/21 14:46   | 15262-20-1    |      |
|                                  | Pace Analytical Serv         | ices - Greensburg                             |           |                  |               |      |
| Total Radium                     | Total Radium<br>Calculation  | 0.626 ± 0.580 (1.07)                          | pCi/L     | 03/05/21 14:01   | 7440-14-4     |      |



Project: YATES R6/AMA RADS

Pace Project No.: 92521564

| Sample: YGWC-41 (021021)<br>PWS: | Lab ID: 92521<br>Site ID:   | 564002 Collected: 02/10/21 13:25<br>Sample Type: | Received: | 02/10/21 17:10 M | latrix: Water |      |
|----------------------------------|-----------------------------|--------------------------------------------------|-----------|------------------|---------------|------|
| Parameters                       | Method                      | Act ± Unc (MDC) Carr Trac                        | Units     | Analyzed         | CAS No.       | Qual |
|                                  | Pace Analytical S           | Services - Greensburg                            |           |                  |               |      |
| Radium-226                       | EPA 9315                    | 0.124 ± 0.136 (0.280)<br>C:87% T:NA              | pCi/L     | 03/05/21 07:44   | 13982-63-3    |      |
|                                  | Pace Analytical S           | Services - Greensburg                            |           |                  |               |      |
| Radium-228                       | EPA 9320                    | 0.424 ± 0.338 (0.664)<br>C:76% T:88%             | pCi/L     | 02/26/21 14:46   | 15262-20-1    |      |
|                                  | Pace Analytical S           | Services - Greensburg                            |           |                  |               |      |
| Total Radium                     | Total Radium<br>Calculation | 0.548 ± 0.474 (0.944)                            | pCi/L     | 03/05/21 14:01   | 7440-14-4     |      |



Project: YATES R6/AMA RADS

Pace Project No.: 92521564

| <b>Sample: YGWC-42 (021021)</b><br>PWS: | Lab ID: 9252156<br>Site ID: | 4003 Collected: 02/10/21 14:30<br>Sample Type: | Received: | 02/10/21 17:10 M | latrix: Water |      |
|-----------------------------------------|-----------------------------|------------------------------------------------|-----------|------------------|---------------|------|
| Parameters                              | Method                      | Act ± Unc (MDC) Carr Trac                      | Units     | Analyzed         | CAS No.       | Qual |
|                                         | Pace Analytical Ser         | vices - Greensburg                             |           |                  |               |      |
| Radium-226                              | EPA 9315                    | 0.259 ± 0.201 (0.383)<br>C:79% T:NA            | pCi/L     | 03/05/21 07:44   | 13982-63-3    |      |
|                                         | Pace Analytical Ser         | vices - Greensburg                             |           |                  |               |      |
| Radium-228                              | EPA 9320                    | 0.353 ± 0.350 (0.718)<br>C:75% T:85%           | pCi/L     | 02/26/21 14:46   | 15262-20-1    |      |
|                                         | Pace Analytical Ser         | vices - Greensburg                             |           |                  |               |      |
| Total Radium                            | Total Radium<br>Calculation | 0.612 ± 0.551 (1.10)                           | pCi/L     | 03/05/21 14:01   | 7440-14-4     |      |



Project: YATES R6/AMA RADS

Pace Project No.: 92521564

| <b>Sample: YGWC-43 (020921)</b><br>PWS: | Lab ID: 92521564<br>Site ID: | Collected: 02/09/21 15:30<br>Sample Type: | Received: | 02/10/21 17:10 M | Aatrix: Water |      |
|-----------------------------------------|------------------------------|-------------------------------------------|-----------|------------------|---------------|------|
| Parameters                              | Method                       | Act ± Unc (MDC) Carr Trac                 | Units     | Analyzed         | CAS No.       | Qual |
|                                         | Pace Analytical Serv         | vices - Greensburg                        |           |                  |               |      |
| Radium-226                              | EPA 9315                     | 4.91 ± 0.852 (0.170)<br>C:88% T:NA        | pCi/L     | 03/18/21 10:30   | 13982-63-3    |      |
|                                         | Pace Analytical Serv         | rices - Greensburg                        |           |                  |               |      |
| Radium-228                              | EPA 9320                     | 1.47 ± 0.584 (0.904)<br>C:73% T:74%       | pCi/L     | 02/26/21 14:46   | 15262-20-1    |      |
|                                         | Pace Analytical Serv         | rices - Greensburg                        |           |                  |               |      |
| Total Radium                            | Total Radium<br>Calculation  | 6.38 ± 1.44 (1.07)                        | pCi/L     | 03/18/21 14:07   | 7440-14-4     |      |



Project: YATES R6/AMA RADS

Pace Project No.: 92521564

| Sample: EB-01(021021) | Lab ID: 925215              | 64005 Collected: 02/10/21 13:30<br>Sample Type: | Received: | 02/10/21 17:10 N | latrix: Water |      |
|-----------------------|-----------------------------|-------------------------------------------------|-----------|------------------|---------------|------|
| -                     |                             |                                                 |           |                  |               |      |
| Parameters            | Method                      | Act ± Unc (MDC) Carr Trac                       | Units     | Analyzed         | CAS No.       | Qual |
|                       | Pace Analytical Se          | rvices - Greensburg                             |           |                  |               |      |
| Radium-226            | EPA 9315                    | 0.0250 ± 0.103 (0.259)<br>C:88% T:NA            | pCi/L     | 03/05/21 07:45   | 13982-63-3    |      |
|                       | Pace Analytical Se          | rvices - Greensburg                             |           |                  |               |      |
| Radium-228            | EPA 9320                    | 0.699 ± 0.416 (0.774)<br>C:77% T:86%            | pCi/L     | 02/26/21 14:46   | 15262-20-1    |      |
|                       | Pace Analytical Se          | rvices - Greensburg                             |           |                  |               |      |
| Total Radium          | Total Radium<br>Calculation | 0.724 ± 0.519 (1.03)                            | pCi/L     | 03/05/21 14:01   | 7440-14-4     |      |



Project: YATES R6/AMA RADS

Pace Project No.: 92521564

| Sample: YGWC-23S (020921)<br>PWS: | Lab ID: 9252156<br>Site ID: | <b>4006</b> Collected: 02/09/21 11:10<br>Sample Type: | Received: | 02/10/21 17:10 M | latrix: Water |      |
|-----------------------------------|-----------------------------|-------------------------------------------------------|-----------|------------------|---------------|------|
| Parameters                        | Method                      | Act ± Unc (MDC) Carr Trac                             | Units     | Analyzed         | CAS No.       | Qual |
|                                   | Pace Analytical Se          | rvices - Greensburg                                   |           |                  |               |      |
| Radium-226                        | EPA 9315                    | 0.0999 ± 0.121 (0.250)<br>C:78% T:NA                  | pCi/L     | 03/05/21 07:38   | 13982-63-3    |      |
|                                   | Pace Analytical Se          | rvices - Greensburg                                   |           |                  |               |      |
| Radium-228                        | EPA 9320                    | 0.364 ± 0.363 (0.747)<br>C:76% T:82%                  | pCi/L     | 02/26/21 14:46   | 15262-20-1    |      |
|                                   | Pace Analytical Se          | rvices - Greensburg                                   |           |                  |               |      |
| Total Radium                      | Total Radium<br>Calculation | 0.464 ± 0.484 (0.997)                                 | pCi/L     | 03/05/21 14:01   | 7440-14-4     |      |



Project: YATES R6/AMA RADS

Pace Project No.: 92521564

| Sample: YGWC-49 (020921)<br>PWS: | Lab ID: 9252156<br>Site ID: | 64007 Collected: 02/09/21 15:15<br>Sample Type: | Received: | 02/10/21 17:10 M | latrix: Water |      |
|----------------------------------|-----------------------------|-------------------------------------------------|-----------|------------------|---------------|------|
| Parameters                       | Method                      | Act ± Unc (MDC) Carr Trac                       | Units     | Analyzed         | CAS No.       | Qual |
|                                  | Pace Analytical Ser         | rvices - Greensburg                             |           |                  |               |      |
| Radium-226                       | EPA 9315                    | 0.137 ± 0.130 (0.248)<br>C:77% T:NA             | pCi/L     | 03/05/21 07:38   | 13982-63-3    |      |
|                                  | Pace Analytical Ser         | rvices - Greensburg                             |           |                  |               |      |
| Radium-228                       | EPA 9320                    | -0.0900 ± 0.330 (0.796)<br>C:78% T:76%          | pCi/L     | 02/26/21 14:46   | 15262-20-1    |      |
|                                  | Pace Analytical Ser         | rvices - Greensburg                             |           |                  |               |      |
| Total Radium                     | Total Radium<br>Calculation | 0.137 ± 0.460 (1.04)                            | pCi/L     | 03/05/21 14:01   | 7440-14-4     |      |



Project: YATES R6/AMA RADS

Pace Project No.: 92521564

| Sample: YGWC-24SA (020921)<br>PWS: | Lab ID: 9252156<br>Site ID: | 4008 Collected: 02/09/21 16:10<br>Sample Type: | Received: | 02/10/21 17:10 M | fatrix: Water |      |
|------------------------------------|-----------------------------|------------------------------------------------|-----------|------------------|---------------|------|
| Parameters                         | Method                      | Act ± Unc (MDC) Carr Trac                      | Units     | Analyzed         | CAS No.       | Qual |
|                                    | Pace Analytical Ser         | vices - Greensburg                             |           |                  |               |      |
| Radium-226                         | EPA 9315                    | 0.100 ± 0.114 (0.235)<br>C:90% T:NA            | pCi/L     | 03/08/21 08:35   | 13982-63-3    |      |
|                                    | Pace Analytical Ser         | vices - Greensburg                             |           |                  |               |      |
| Radium-228                         | EPA 9320                    | 0.578 ± 0.379 (0.729)<br>C:80% T:84%           | pCi/L     | 03/02/21 12:34   | 15262-20-1    |      |
|                                    | Pace Analytical Ser         | vices - Greensburg                             |           |                  |               |      |
| Total Radium                       | Total Radium<br>Calculation | 0.678 ± 0.493 (0.964)                          | pCi/L     | 03/08/21 12:26   | 7440-14-4     |      |



Project: YATES R6/AMA RADS

Pace Project No.: 92521564

| Sample: DUP-02 (020921)<br>PWS: | Lab ID: 92521<br>Site ID:   | 564009 Collected: 02/09/21 00:00<br>Sample Type: | Received: | 02/10/21 17:10 M | fatrix: Water |      |
|---------------------------------|-----------------------------|--------------------------------------------------|-----------|------------------|---------------|------|
| Parameters                      | Method                      | Act ± Unc (MDC) Carr Trac                        | Units     | Analyzed         | CAS No.       | Qual |
|                                 | Pace Analytical S           | Services - Greensburg                            |           |                  |               |      |
| Radium-226                      | EPA 9315                    | 0.153 ± 0.130 (0.241)<br>C:86% T:NA              | pCi/L     | 03/08/21 08:35   | 13982-63-3    |      |
|                                 | Pace Analytical S           | ervices - Greensburg                             |           |                  |               |      |
| Radium-228                      | EPA 9320                    | 0.310 ± 0.321 (0.666)<br>C:82% T:89%             | pCi/L     | 03/02/21 12:34   | 15262-20-1    |      |
|                                 | Pace Analytical S           | ervices - Greensburg                             |           |                  |               |      |
| Total Radium                    | Total Radium<br>Calculation | 0.463 ± 0.451 (0.907)                            | pCi/L     | 03/08/21 12:26   | 7440-14-4     |      |



Project: YATES R6/AMA RADS

Pace Project No.: 92521564

| Sample: YGWC-36A (021021)<br>PWS: | Lab ID: 92521<br>Site ID:   | 564010 Collected: 02/10/21 14:30<br>Sample Type: | Received: | 02/10/21 17:10 M | latrix: Water |      |
|-----------------------------------|-----------------------------|--------------------------------------------------|-----------|------------------|---------------|------|
| Parameters                        | Method                      | Act ± Unc (MDC) Carr Trac                        | Units     | Analyzed         | CAS No.       | Qual |
|                                   | Pace Analytical S           | Gervices - Greensburg                            |           |                  |               |      |
| Radium-226                        | EPA 9315                    | 0.0504 ± 0.0936 (0.214)<br>C:80% T:NA            | pCi/L     | 03/08/21 08:32   | 13982-63-3    |      |
|                                   | Pace Analytical S           | Services - Greensburg                            |           |                  |               |      |
| Radium-228                        | EPA 9320                    | 0.416 ± 0.429 (0.893)<br>C:73% T:85%             | pCi/L     | 03/02/21 15:44   | 15262-20-1    |      |
|                                   | Pace Analytical S           | Services - Greensburg                            |           |                  |               |      |
| Total Radium                      | Total Radium<br>Calculation | 0.466 ± 0.523 (1.11)                             | pCi/L     | 03/08/21 12:26   | 7440-14-4     |      |



Project: YATES R6/AMA RADS

Pace Project No.: 92521564

| Sample: YGWC-38 (020921) MS<br>PWS: | Lab ID: 9252156<br>Site ID: | 4011 Collected: 02/09/21 13:50<br>Sample Type: | Received: | 02/10/21 17:10 M | fatrix: Water |      |
|-------------------------------------|-----------------------------|------------------------------------------------|-----------|------------------|---------------|------|
| Parameters                          | Method                      | Act ± Unc (MDC) Carr Trac                      | Units     | Analyzed         | CAS No.       | Qual |
|                                     | Pace Analytical Ser         | vices - Greensburg                             |           |                  |               |      |
| Radium-226                          | EPA 9315                    | 95.48 %REC ± NA (NA)<br>C:NA T:NA              | pCi/L     | 03/05/21 07:38   | 13982-63-3    |      |
|                                     | Pace Analytical Ser         | vices - Greensburg                             |           |                  |               |      |
| Radium-228                          | EPA 9320                    | 101.32 %REC ± NA (NA)<br>C:NA T:NA             | pCi/L     | 02/26/21 14:46   | 15262-20-1    |      |



Project: YATES R6/AMA RADS

Pace Project No.: 92521564

| Sample: YGWC-38 (020921) MSD<br>PWS: | Lab ID: 9252156<br>Site ID: | 4012 Collected: 02/09/21 13:50<br>Sample Type: | Received: | 02/10/21 17:10 N | Aatrix: Water |      |
|--------------------------------------|-----------------------------|------------------------------------------------|-----------|------------------|---------------|------|
| Parameters                           | Method                      | Act ± Unc (MDC) Carr Trac                      | Units     | Analyzed         | CAS No.       | Qual |
|                                      | Pace Analytical Ser         | vices - Greensburg                             |           |                  |               |      |
| Radium-226                           | EPA 9315                    | 100.39 %REC 5.01RPD ±<br>NA (NA)<br>C:NA T:NA  | pCi/L     | 03/05/21 07:38   | 13982-63-3    |      |
|                                      | Pace Analytical Ser         | vices - Greensburg                             |           |                  |               |      |
| Radium-228                           | EPA 9320                    | 92.73 %REC 8.85 RPD ±<br>NA (NA)<br>C:NA T:NA  | pCi/L     | 02/26/21 14:46   | 15262-20-1    |      |



| Project:                                                                                                                                                                                                                | YATES R       | 6/AMA RADS                                 |                                      |                    |                    |            |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------------------------------------|--------------------------------------|--------------------|--------------------|------------|--|
| Pace Project No.:                                                                                                                                                                                                       | 92521564      | 4                                          |                                      |                    |                    |            |  |
| QC Batch:                                                                                                                                                                                                               | 435783        |                                            | Analysis Method:                     | EPA 9315           |                    |            |  |
| QC Batch Method:                                                                                                                                                                                                        | EPA 93        | 15                                         | Analysis Description:                | 9315 Total Radi    | um                 |            |  |
| Laboratory:         Pace Analytical Services - Greensburg           Associated Lab Samples:         92521564001, 92521564002, 92521564003, 92521564004, 92521564005, 92521564006, 92521564007, 92521564011, 92521564012 |               |                                            |                                      |                    | rg<br>564007,      |            |  |
| METHOD BLANK:                                                                                                                                                                                                           | 2103740       |                                            | Matrix: Water                        |                    |                    |            |  |
| Associated Lab San                                                                                                                                                                                                      | nples: 9<br>9 | 2521564001, 9252156<br>2521564011, 9252156 | 4002, 92521564003, 925215640<br>4012 | 04, 92521564005, 9 | 92521564006, 92521 | 564007,    |  |
| Paran                                                                                                                                                                                                                   | neter         | Act                                        | ± Unc (MDC) Carr Trac                | Units              | Analyzed           | Qualifiers |  |
| Radium-226 0.267 ± 0.14                                                                                                                                                                                                 |               | 3 (0.193) C:92% T:NA                       | pCi/L                                | 03/05/21 07:29     |                    |            |  |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:           | YATES R6/AMA R                                                   | YATES R6/AMA RADS |                    |                 |                      |            |  |
|--------------------|------------------------------------------------------------------|-------------------|--------------------|-----------------|----------------------|------------|--|
| Pace Project No.:  | 92521564                                                         |                   |                    |                 |                      |            |  |
| QC Batch:          | 435786                                                           |                   | Analysis Method:   | EPA 9315        |                      |            |  |
| QC Batch Method:   | C Batch Method: EPA 9315 Analysis Description: 9315 Total Radium |                   |                    |                 |                      |            |  |
|                    |                                                                  |                   | Laboratory:        | Pace Analytical | Services - Greensbur | g          |  |
| Associated Lab San | nples: 92521564                                                  | 008, 92521564009  | , 92521564010      |                 |                      |            |  |
| METHOD BLANK:      | 2103744                                                          |                   | Matrix: Water      |                 |                      |            |  |
| Associated Lab San | nples: 92521564                                                  | 008, 92521564009  | , 92521564010      |                 |                      |            |  |
| Paran              | neter                                                            | Act ± Ur          | nc (MDC) Carr Trac | Units           | Analyzed             | Qualifiers |  |
| Radium-226         |                                                                  | -0.0425 ± 0.0687  | (0.225) C:93% T:NA | pCi/L           | 03/08/21 08:35       |            |  |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:           | YATES R6/AMA RADS |                |                       |                 |                      |            |  |
|--------------------|-------------------|----------------|-----------------------|-----------------|----------------------|------------|--|
| Pace Project No.:  | 92521564          |                |                       |                 |                      |            |  |
| QC Batch:          | 435787            |                | Analysis Method:      | EPA 9320        |                      |            |  |
| QC Batch Method:   | EPA 9320          |                | Analysis Description: | 9320 Radium 22  | 28                   |            |  |
|                    |                   |                | Laboratory:           | Pace Analytical | Services - Greensbur | g          |  |
| Associated Lab San | nples: 92521564   | 008, 925215640 | 09, 92521564010       |                 |                      |            |  |
| METHOD BLANK:      | 2103745           |                | Matrix: Water         |                 |                      |            |  |
| Associated Lab San | nples: 92521564   | 008, 925215640 | 09, 92521564010       |                 |                      |            |  |
| Paran              | neter             | Act ±          | Unc (MDC) Carr Trac   | Units           | Analyzed             | Qualifiers |  |
| Radium-228         |                   | 0.345 ± 0.339  | (0.700) C:84% T:79%   | pCi/L           | 03/02/21 12:33       |            |  |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:                                                                                                                                                                                                                | YATES F  | R6/AMA RADS                                  |                                      |                    |                    |            |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------|--------------------------------------|--------------------|--------------------|------------|--|
| Pace Project No.:                                                                                                                                                                                                       | 9252156  | 4                                            |                                      |                    |                    |            |  |
| QC Batch:                                                                                                                                                                                                               | 435784   | ļ                                            | Analysis Method:                     | EPA 9320           |                    |            |  |
| QC Batch Method:                                                                                                                                                                                                        | EPA 93   | 20                                           | Analysis Description:                | 9320 Radium 22     | 9320 Radium 228    |            |  |
| Laboratory:         Pace Analytical Services - Greensburg           Associated Lab Samples:         92521564001, 92521564002, 92521564003, 92521564004, 92521564005, 92521564006, 92521564007, 92521564011, 92521564012 |          |                                              |                                      |                    | rg<br>564007,      |            |  |
| METHOD BLANK:                                                                                                                                                                                                           | 2103741  |                                              | Matrix: Water                        |                    |                    |            |  |
| Associated Lab San                                                                                                                                                                                                      | nples: § | 92521564001, 9252156<br>92521564011, 9252156 | 4002, 92521564003, 925215640<br>4012 | 04, 92521564005, 9 | 92521564006, 92521 | 564007,    |  |
| Paran                                                                                                                                                                                                                   | neter    | Ac                                           | t ± Unc (MDC) Carr Trac              | Units              | Analyzed           | Qualifiers |  |
| Radium-228 0.191 ± 0.33                                                                                                                                                                                                 |          | 3 (0.740) C:71% T:85%                        | pCi/L                                | 02/26/21 11:33     |                    |            |  |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### QUALIFIERS

### Project: YATES R6/AMA RADS

Pace Project No.: 92521564

### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

**RPD - Relative Percent Difference** 

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.



# QUALITY CONTROL DATA CROSS REFERENCE TABLE

| Project:           | YATES R6/AMA RADS |
|--------------------|-------------------|
| Pace Project No .: | 92521564          |

| Lab ID      | Sample ID            | QC Batch Method          | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|----------------------|--------------------------|----------|-------------------|---------------------|
| 92521564001 | YGWC-38 (020921)     | EPA 9315                 | 435783   |                   |                     |
| 92521564002 | YGWC-41 (021021)     | EPA 9315                 | 435783   |                   |                     |
| 92521564003 | YGWC-42 (021021)     | EPA 9315                 | 435783   |                   |                     |
| 92521564004 | YGWC-43 (020921)     | EPA 9315                 | 435783   |                   |                     |
| 92521564005 | EB-01(021021)        | EPA 9315                 | 435783   |                   |                     |
| 92521564006 | YGWC-23S (020921)    | EPA 9315                 | 435783   |                   |                     |
| 92521564007 | YGWC-49 (020921)     | EPA 9315                 | 435783   |                   |                     |
| 92521564008 | YGWC-24SA (020921)   | EPA 9315                 | 435786   |                   |                     |
| 92521564009 | DUP-02 (020921)      | EPA 9315                 | 435786   |                   |                     |
| 92521564010 | YGWC-36A (021021)    | EPA 9315                 | 435786   |                   |                     |
| 92521564011 | YGWC-38 (020921) MS  | EPA 9315                 | 435783   |                   |                     |
| 92521564012 | YGWC-38 (020921) MSD | EPA 9315                 | 435783   |                   |                     |
| 92521564001 | YGWC-38 (020921)     | EPA 9320                 | 435784   |                   |                     |
| 92521564002 | YGWC-41 (021021)     | EPA 9320                 | 435784   |                   |                     |
| 92521564003 | YGWC-42 (021021)     | EPA 9320                 | 435784   |                   |                     |
| 92521564004 | YGWC-43 (020921)     | EPA 9320                 | 435784   |                   |                     |
| 92521564005 | EB-01(021021)        | EPA 9320                 | 435784   |                   |                     |
| 92521564006 | YGWC-23S (020921)    | EPA 9320                 | 435784   |                   |                     |
| 92521564007 | YGWC-49 (020921)     | EPA 9320                 | 435784   |                   |                     |
| 92521564008 | YGWC-24SA (020921)   | EPA 9320                 | 435787   |                   |                     |
| 92521564009 | DUP-02 (020921)      | EPA 9320                 | 435787   |                   |                     |
| 92521564010 | YGWC-36A (021021)    | EPA 9320                 | 435787   |                   |                     |
| 92521564011 | YGWC-38 (020921) MS  | EPA 9320                 | 435784   |                   |                     |
| 92521564012 | YGWC-38 (020921) MSD | EPA 9320                 | 435784   |                   |                     |
| 92521564001 | YGWC-38 (020921)     | Total Radium Calculation | 437456   |                   |                     |
| 92521564002 | YGWC-41 (021021)     | Total Radium Calculation | 437456   |                   |                     |
| 92521564003 | YGWC-42 (021021)     | Total Radium Calculation | 437456   |                   |                     |
| 92521564004 | YGWC-43 (020921)     | Total Radium Calculation | 439388   |                   |                     |
| 92521564005 | EB-01(021021)        | Total Radium Calculation | 437456   |                   |                     |
| 92521564006 | YGWC-23S (020921)    | Total Radium Calculation | 437456   |                   |                     |
| 92521564007 | YGWC-49 (020921)     | Total Radium Calculation | 437456   |                   |                     |
| 92521564008 | YGWC-24SA (020921)   | Total Radium Calculation | 437634   |                   |                     |
| 92521564009 | DUP-02 (020921)      | Total Radium Calculation | 437634   |                   |                     |
| 92521564010 | YGWC-36A (021021)    | Total Radium Calculation | 437634   |                   |                     |
|             |                      |                          |          |                   |                     |

| · · ·       |                                                             | Document Name:                         | Document Revised: October 28, 2020                                                                    |                    |
|-------------|-------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------|
|             | Pace Analytical"                                            | Sample Condition Upon Rece             | ot(SCUR) Page 1 of 2                                                                                  |                    |
|             |                                                             | Document No.:                          | Issuing Authority:<br>Pace Carolinas Duality Office                                                   |                    |
|             |                                                             | 1                                      |                                                                                                       |                    |
| Labo        | heville Eden Greenwood                                      | d 🛄 Huntersville 🛄 Ral                 | igh Mechanicsville Atlant                                                                             | rnersville[]       |
| Sa          | ample Condition Client Name:                                | Pa                                     | Project #: WO# : 9252156                                                                              | 64                 |
| Cour        | nier:fed Exi<br>CommercialPace                              | UPS USPS 2<br>Other:                   |                                                                                                       |                    |
| Custo       | dy Seal Present? Yes 4NO                                    | Seals Intact? 🦾 🔲 Yes 📋                | lo<br>Date/initials Person Examining Contents                                                         | 2/10/21            |
| Packi       | ng Material: Bubble Wrap                                    | Bubble Bags None                       | Other Biological Tissue Frozen?                                                                       | , .                |
| Thern       | nometer:                                                    | Twee                                   |                                                                                                       |                    |
|             | [] IR Gun ID: ] []                                          | Type of ice:                           |                                                                                                       | а.                 |
| Coole       | r Temp: 2. Add/Subtr                                        | Factor:                                | Temp should be above freezing to 6°C                                                                  |                    |
| Coole       | Temp Corrected ("C):                                        | .(                                     | Samples out of temp criteria. Samples on ic                                                           | e, cooling process |
| USDA        | Regulated Soil ( 🛄 N/A, water sample)                       |                                        |                                                                                                       |                    |
| Did sa<br>F | mples originate in a quarantine zone within th<br>Type: The | he United States: CA, NY, or SC (chec  | maps)? Did samples originate from a foreign source (inter<br>Including Hawall and Puerto Rico)? Types | nationaliy,<br>No  |
| Ľ           |                                                             |                                        | Comments/Discrepancy:                                                                                 |                    |
|             | Chain of Custody Present?                                   |                                        | 1                                                                                                     |                    |
|             | Samples Arrived within Hold Time?                           | Eres INO IN/                           | 2.                                                                                                    | -                  |
|             | Short Hold Time Analysis (<72 hr.)?                         |                                        | 3.                                                                                                    |                    |
|             | Rush Turn Around Time Requested?                            |                                        | 4.                                                                                                    |                    |
|             | Sufficient Volume?                                          | No N/                                  | 5.                                                                                                    |                    |
| - í         | Correct Containers Used?                                    |                                        | 6.                                                                                                    |                    |
| -           | -Pace Containers Useur                                      |                                        |                                                                                                       |                    |
| ·           | Containers Intact?                                          |                                        | 0                                                                                                     |                    |
| ŀ           | Dissolved analysis: Samples Field Hiltered /                |                                        | a. (                                                                                                  | •                  |
|             | Sample Labels Match COCF                                    |                                        |                                                                                                       |                    |
|             | -Includes Date/Time/ID/Analysis Matrix:                     |                                        |                                                                                                       |                    |
| : F         | •<br>Headsnace in VOA Vials (>5-6mm)?                       |                                        | 10.                                                                                                   |                    |
|             | Trip Blank Present?                                         |                                        | 11.                                                                                                   |                    |
|             | Trip Blank Custody Seals Present?                           |                                        |                                                                                                       |                    |
| . CC        | DMMENTS/SAMPLE DISCREPANCY                                  |                                        | Field Data Required?                                                                                  | Yes No             |
|             |                                                             | · · · · · · · · · · · · · · · · · · ·  |                                                                                                       |                    |
|             |                                                             | ······································ | Lot ID of split containers:                                                                           |                    |
| CLIE        | ENT NOTIFICATION/RESOLUTION                                 |                                        |                                                                                                       |                    |
|             |                                                             |                                        |                                                                                                       | <u> </u>           |
| •           | · · ·                                                       |                                        |                                                                                                       |                    |
| Pe          | erson contacted:                                            | Da                                     | e/Time:                                                                                               |                    |
| •           | Project Manager SCURF Review                                |                                        | Date:                                                                                                 | a <sup>1</sup>     |
|             |                                                             |                                        | <u></u>                                                                                               |                    |
|             | Project Manager SRF Review:                                 |                                        | Date:                                                                                                 | <del></del>        |
|             |                                                             |                                        | · , , ,                                                                                               | _                  |

Page 26 of 34

|                                                                                        |                 | YANC-235  | FR-01/12/1021) | VGWC-43       | S YGWC-42      | YGWC-41       | YGWC-38       | Your the second       | The vourse of the later | ITEM #<br>Sample Ids must be unique                          |               |               | ME: (770)34+6526 Fax           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Iress: 1070 Bridge MRI Ave<br>nbn. CA 30114 | mpany: Georgia Power     | Ston A standard                                 |
|----------------------------------------------------------------------------------------|-----------------|-----------|----------------|---------------|----------------|---------------|---------------|-----------------------|-------------------------|--------------------------------------------------------------|---------------|---------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------------------|-------------------------------------------------|
| s, -                                                                                   | Kate Apprenc    | 2.4.21 HI |                | WT 2.7.11 153 | M 1012 M       | WT (2102) 132 | WT 2-9-41 139 | ک <del>ررا</del> پر ک | WT 2+03-04              | MATRIX CODE (see valid cod<br>SAMPLE TYPE (G=GRAB C<br>D)    | Second        | irroject #:   | Project Name: Vates R6         | Punchase Order #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Copy To:                                    | Report To: Becky Steever |                                                 |
| SER RAME AND BRANTINE AND REAL THAN OF SAMPLER: Y (H)                                  | 2 2:10:21 11512 |           |                | 4/1           | <u>И</u> Н И/И | 5             |               | 6                     |                         | AMPLE TEMP AT COLLECTIC<br># OF CONTAINERS<br>Unpreserved    |               | Pace Profi    | jord soed                      | Address:<br>Page Quol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Company                                     | trivolos in              | The Chain-of-Custody is a 1<br>Section c        |
| herine Puptier                                                                         | Cluber Ho       |           |                |               |                |               |               |                       |                         | H2SO4<br>HNO3<br>HCI<br>NaOH<br>Na2S2O3<br>Methanol<br>Other | Preservatives | file #: 10840 | loct Manager: Levin heminniður |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Nane:                                       | Romation:                | LEGAL DOCUMENT. Al ref                          |
| U)(2<br>DATE Signed: 2/9/20                                                            | nt dial         |           |                | X X X         | x x x x        | × × × × ×     |               |                       |                         | App IV Metals<br>Fluoride<br>RAD 9315/9320                   |               |               | toplate com                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                             |                          | request bocument<br>evant fields must be comple |
| TEMP in C<br>Received on                                                               | 1/0             |           |                |               |                |               |               |                       |                         | Residual Chiorine (Y/N)                                      |               | 2             |                                | No. of Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, Street, |                                             | Page ;                   | ted accurately.                                 |
| IceD<br>(Y/N)<br>Cuslody<br>SealedD<br>CoolerD<br>(Y/N)<br>Semples<br>IntectD<br>(Y/N) |                 | NS @      | 1              | 1:5.80        | H- Sal S H     | Touley Loria  |               |                       | F 12 8                  | 92521564                                                     |               |               |                                | Marsh .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                           | 1 Of 3                   |                                                 |

Page 27 of 34

| •                                                                                                                      |               |               |             |    |     |             |    |                         | 1280201212 | ITEM #<br>ITEM #<br>ITEM #<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION<br>INCLUSION | ANY REACT                                                |                                                                                                                 | Thested One Date:                                                                                               | ant:<br>Ane: (770)344 store | fress: 1070 Bridge Mill Ave<br>nton, GA 30114 | incary: Georgia Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V uop:                                                            | 2 |
|------------------------------------------------------------------------------------------------------------------------|---------------|---------------|-------------|----|-----|-------------|----|-------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|---|
| Print Name of St.                                                                                                      |               | John Marine 1 |             | WT | WT  | WT          | WT | WT                      | NT ZA ISIS | 해 유 값 값 유 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and cooper<br>with cooper<br>codes to iait)<br>C = COMP) |                                                                                                                 | Project Name: Yates ANA                                                                                         | Punchase Order #:           | Copy To: Becky Steever                        | Required Project Information:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | The                                                               | • |
| Sidn Strem                                                                                                             | Clarter House |               |             |    |     |             |    |                         | 477        | SAMPLE TEMP AT COLLECT<br># OF CONTAINERS<br>Unpreserved<br>H2804<br>H1NO3<br>HCI<br>H20H<br>H282203<br>Hethanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Preservatives                                            | Pace Profile #: 10840                                                                                           | Pace Project Managem                                                                                            | Address:                    | Attention:                                    | Section C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | IAIN-OF-CUSTODY / Analyti<br>Chain-of-Custody is a LEGAL DOCUMENT |   |
| 121181121                                                                                                              | ON MON JUNE   |               | ×<br>×<br>× |    | ××× | ×<br>×<br>× |    |                         |            | Altellyage Teat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                          | The second states cont.                                                                                         |                                                                                                                 |                             |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Al relevant fields must be completed a                            |   |
| TEMP in C<br>Received on<br>loeCi<br>(Y/N)<br>Cualody<br>Sealed()<br>Cooler()<br>(Y/N)<br>Samples<br>Intact()<br>(Y/N) |               |               |             |    |     |             |    | ++   <del>2H</del> 5.79 | Real       | idual Chiorine (YAN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                        | A STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF STATE OF S | States of the second second second second second second second second second second second second second second | 0                           | Page: ~/<br>Q: V*                             | action of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco |                                                                   |   |

Page 28 of

|              |                     | Í. | ľ |                  | Ė             |                       | 2          |                  | 6             |          |          |          |          | 3        |          | 14                  | P        |          | ITEM #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       | Í                                                                                                              | įŘ                |               |          |                 | den in                     | :                                     |
|--------------|---------------------|----|---|------------------|---------------|-----------------------|------------|------------------|---------------|----------|----------|----------|----------|----------|----------|---------------------|----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------|-------------------|---------------|----------|-----------------|----------------------------|---------------------------------------|
| · · · · · ·  |                     |    |   |                  |               | ACCERCICATION COMPANY | Home YGWC- | NOW - OUP - OID. | HONCZASA YGWL | VGWC238  | YCHA 3H  | COTAMON. | KOMA-NI- | XGW2-166 |          | Vannao - Yichah - S |          | -YOWA-41 | SAMPLE ID<br>One Character per box.<br>(A-2, 64 /, -<br>Sample kts must be unique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                                                                                                                | (770)334-6526 Fax |               | GA 30114 | V Georgia Power | A<br>Client information:   | Pace Architz                          |
|              | :                   |    |   | -<br>-<br>-<br>- |               |                       | 36A VON    |                  | - IMSA ENE/   |          |          |          |          |          |          | 0.000 3             |          |          | Weater<br>Product Water<br>Product Water<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statistical<br>Statist | MATRIXO . 000ED       | the second second second second second second second second second second second second second second second s | Project Name:     | Purchase Orde | capy To: | Report To: E    | Section B<br>Required Proj | · · · · · · · · · · · · · · · · · · · |
|              |                     |    |   |                  |               |                       | WT         | ¥7               | 4             | N7       | N.       | WT       | 5        | Ϋ́.      | P        | S.                  | MT       | WT       | MATRIX CODE (see valid coo<br>SAMPLE TYPE (G=GRAB C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | es to tell}<br>=COMP) |                                                                                                                | Ya                | 백<br>카        |          | Secky St        | act Info                   |                                       |
|              |                     |    |   |                  |               | 100 814               | 1012d      | 2612             | in polt       |          |          |          |          |          |          | 200                 |          |          | DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       | •                                                                                                              | es AMA            |               |          | CEVE!           | nution                     |                                       |
|              |                     |    |   |                  |               | WEEK                  | Ehll       |                  | 1610          |          |          |          |          |          |          | ē                   |          |          | TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                     |                                                                                                                |                   |               |          |                 |                            |                                       |
|              |                     |    |   |                  |               |                       | Ö          |                  |               |          |          |          |          |          |          | Ĩ                   |          |          | 8 <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LECTE                 |                                                                                                                |                   |               |          |                 |                            | 불 문                                   |
|              | RE of SJ            |    |   | _                |               |                       |            |                  | [             |          |          |          |          |          |          | ┼╉                  |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                                                                                                |                   |               |          |                 |                            | Chain                                 |
|              | MPLE                |    |   |                  |               | DATE                  |            |                  |               |          |          | `        |          |          | ļ        | H                   |          |          | SAMPLE TEMP AT COLLECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                                                                                                                |                   |               |          |                 |                            | - <sup>2</sup><br>2<br>T              |
|              |                     |    |   | ~~~~             |               |                       | 2          | 2                | 4             |          |          |          |          |          |          | Ŧ                   |          |          | # OF CONTAINERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                                                                                                | 3                 | 3             | 5 8      | Ş               |                            |                                       |
| . ~          | 2G                  |    |   |                  |               | (F)                   |            |                  |               |          |          |          |          | ·        |          | 1                   |          |          | Unpreserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       | 8                                                                                                              | 8                 | ê<br>ê        |          | entior          |                            | S. 8                                  |
| 4            |                     |    |   |                  |               |                       |            |                  |               |          |          |          |          |          |          | []                  |          |          | H2504 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ]                     |                                                                                                                | ž                 | <u>š</u> .    | y Nar    | ក               | n<br>S                     | ŭ Ū                                   |
| Ç            | PB                  | 2  |   | (                | 1             | 23                    |            |                  |               |          |          |          |          |          |          | 1                   | ļ        | <b></b>  | HNO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Pre                   |                                                                                                                | Mana              |               | Ř        |                 |                            | ୁ ନୁ                                  |
| 4.1          | <u>\$</u>           |    |   |                  | $\mathbb{Z}$  | <b>.</b>              |            |                  | <b></b>       |          |          |          | ļ        |          |          | ∦                   |          |          | HCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Nerv.                 | 10840                                                                                                          | 3                 |               |          |                 | 8                          | 8<br>F                                |
|              | 6                   |    |   |                  | Ź             | 8                     |            |                  |               |          |          |          |          |          |          | ╂—                  |          |          | Na28203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ative                 | ſ                                                                                                              | 5                 |               |          |                 |                            | - Cina                                |
|              | <u> </u>            |    |   |                  | Z             | 9                     |            |                  |               | *****    |          |          |          |          |          |                     |          |          | Methano!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | м                     |                                                                                                                | Ž                 |               |          |                 |                            |                                       |
|              |                     |    |   |                  | 4             |                       |            |                  | -             |          |          |          |          |          |          | 1                   |          |          | Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |                                                                                                                | ening             |               |          |                 |                            | <u>ି</u> ରୁ                           |
| · · ·        | 14                  |    |   | 7                | $\mathcal{T}$ | 1105                  | · ••••*    |                  |               |          |          |          |          |          |          | ]                   |          |          | Analyses Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Y/N                   |                                                                                                                |                   |               |          |                 |                            |                                       |
|              |                     |    |   |                  | 5             | No.                   | ×          | x                | ×             | <u>1</u> | 1        | ×        | 1        | 1        | ×        | 1_                  | <b>*</b> | 1        | App IV Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                                                                                                                | <u>ă</u>          |               |          |                 |                            | Sa Ca                                 |
|              | ATE S               |    |   |                  | È.            | Ē                     | ×          | X                | ×             | 7        | <u>}</u> | ×.       | 7        | <u>7</u> | <u>×</u> | 1                   | 1        | Ĩ        | Fluoride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       |                                                                                                                |                   |               |          |                 |                            | field                                 |
|              |                     |    |   |                  |               |                       |            |                  | <b>F</b>      | 7-       | 1_       | <u> </u> | <u> </u> |          |          | -                   | <b>^</b> | <b>-</b> | PAU 9310/9320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | a attack                                                                                                       |                   |               |          |                 |                            | 3 <b>6</b>                            |
|              | Ă                   |    |   | _                | Y             |                       |            |                  |               |          |          |          |          |          |          |                     |          |          | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       | 1999 (A)<br>1999 (A)<br>1999 (A)                                                                               |                   |               |          |                 |                            | E O                                   |
|              | 3                   |    |   |                  | 0             |                       |            |                  |               |          |          |          |          |          |          |                     |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                                                                                                |                   |               |          |                 |                            | 8 1                                   |
| 1            | 110                 |    |   |                  | $\Sigma$      | Š.                    |            |                  |               |          |          |          |          |          |          |                     |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                                                                                                |                   |               |          |                 |                            |                                       |
|              | 02                  |    |   |                  | -             |                       |            |                  | <u> </u>      |          |          |          | <u> </u> |          |          |                     |          | ·        | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                                                                                                                |                   | 100           |          | ; `<br>}        |                            |                                       |
|              | 2                   |    |   | 1                | $\geq$        |                       |            |                  |               |          |          |          |          |          |          |                     |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                                                                                                | 100               | 2012          |          | *               |                            | 8                                     |
|              |                     |    |   | ĺ                | $\bigcirc$    |                       |            |                  |               |          |          |          |          |          |          |                     |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                                                                                                |                   | Arres .       |          |                 |                            | Irate                                 |
|              |                     |    |   |                  |               |                       |            |                  |               |          |          |          |          |          |          |                     |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                                                                                                |                   | 1000          |          | 1               |                            | ζ.                                    |
|              | TEMP IN C           |    |   |                  |               |                       |            |                  | ,             |          |          |          |          |          |          |                     | •        |          | Residual Chlorine (Y/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                       |                                                                                                                | Ĕ                 |               |          | ŀ               | •                          |                                       |
| •            | Received on<br>IceC | ·  |   |                  |               | E.                    | q          | 1-               |               | C        | ۱.       | l        | 1        | 1        | c        | 1                   | 1        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       | 8                                                                                                              |                   |               | 50-00-0  |                 | 8                          |                                       |
|              | (Y/N)               |    |   |                  |               | 150                   | <b>.</b>   | ł                | 1             |          |          | Ĺ        | <b> </b> |          |          |                     |          |          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                                                                                                                |                   |               | Y M BORN | ſ               | '                          |                                       |
| . <u>.</u> 1 |                     |    |   |                  |               |                       | 5          |                  | S             |          |          |          |          |          |          |                     |          |          | ン                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                                                                                                                |                   | 1 and 1       |          |                 | ,                          | <u> </u>                              |
| · · · .      | (Y/N)               | ļ  |   |                  |               |                       | 3          |                  | 5             |          |          | l        |          |          |          |                     |          |          | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |                                                                                                                | COLC.             |               |          | ľ               | ~                          | e<br>Q                                |
|              | Samples             |    |   |                  |               |                       |            |                  |               |          |          |          |          |          |          |                     |          |          | .6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | 8                                                                                                              |                   | 14.14         |          | <b>.</b> I      |                            | ••                                    |
| . •          | (YAN)               |    |   |                  | 1             |                       |            |                  |               |          |          |          |          |          |          |                     |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |                                                                                                                |                   | 1             | ļ        | s C             | <b>₩</b>                   |                                       |

Page 29 of 34

E, Annhot Ć

# **Quality Control Sample Performance Assessment**

| /Pace Analytical                                            |                     |                  | <u>Analyst Must Manually Enter All Fields Highlighted in</u>      | Yellow.        |
|-------------------------------------------------------------|---------------------|------------------|-------------------------------------------------------------------|----------------|
| Test                                                        | Ra-226              |                  |                                                                   |                |
| Analyst:                                                    | MK1                 |                  | Sample Matrix Spike Control Assessment                            | MS/MSD 1       |
| Date:                                                       | 2/26/2021           |                  | Sample Collection Date:                                           | 2/11/2021      |
| Worklist                                                    | 58912               |                  | Sample 1.D.                                                       | 92521567009    |
| MIGUIX.                                                     | 2                   |                  | Sample MSD I D                                                    | 92521567016    |
| Method Blank Assessment                                     |                     |                  | Soike I.D.:                                                       | 19-033         |
| MB Sample ID                                                | 2103740             |                  | MS/MSD Decay Corrected Spike Concentration (pCi/mL):              | 24.040         |
| MB concentration:                                           | 0.267               |                  | Spike Volume Used in MS (mL):                                     | 0.20           |
| M/B Counting Uncertainty:                                   | 0.137               |                  | Spike Volume Used in MSD (mL):                                    | 0.20           |
| MB MDC:                                                     | 0.193               |                  | MS Aliquot (L, g, F):                                             | 0.505          |
| MB Numerical Performance Indicator:                         | 3.81                |                  | MS Target Conc.(pCi/L, g, F):                                     | 9.519          |
| MB Status vs Numerical Indicator;<br>MB Status vs. MDC;     | N/A<br>See Comment* |                  | MSD Aliquot (L, g, F):<br>MSD Target Conc. (pCi/L, g, F):         | 0.508<br>9.464 |
|                                                             |                     | _                | MS Spike Uncertainty (calculated):                                | 0,114          |
| Laboratory Control Sample Assessment                        | -CSD (Y or N)?      | z                | MSD Spike Uncertainty (calculated):                               | 0.114          |
|                                                             | LCS58912            | LCSD58912        | Sample Result                                                     | 0.181          |
| Count Date:                                                 | 3/5/2021            |                  | Sample Result Counting Uncertainty (pCi/L, g, F):                 | 0.143          |
| Spike I.D.:                                                 | 19-033              |                  | Sample Matrix Spike Result:                                       | 10.375         |
| Decay Corrected Spike Concentration (pCirmL):               | 24.040              |                  | Matrix Spike Result Counting Uncertainty (pCi/L, g, F):           | 0.765          |
| Volume Used (mL):                                           | 0,10                |                  | Sample Matrix Spike Duplicate Result:                             | 8.763          |
| Aliquot Volume (L, g, F):                                   | 0.508               |                  | Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): | 0.699          |
| Target Conc. (pCi/L, g, F):                                 | 4.733               |                  | MS Numerical Performance Indicator.                               | 1.680          |
| Uncertainty (Calculated):                                   | 0.057               |                  | MSD Numerical Performance Indicator.                              | -2.392         |
| Result (pCi/L, g, F):                                       | 4.870               |                  | MS Percent Recovery:                                              | 107.09%        |
| LCS/LCSD Counting Uncertainty (pCi/L, g, F):                | 0.530               |                  | MSD Percent Recovery:                                             | 90.68%         |
| Numerical Performance Indicator:                            | 0.50                |                  | MS Status vs Numerical Indicator:                                 | N/A            |
| Percent Recovery:                                           | 102.88%             |                  | MSD Status vs Numerical Indicator:                                | N/A            |
| Status vs Numerical Indicator.                              | NA                  |                  | MS Status vs Recovery:                                            | Pass           |
| Status vs Recovery:                                         | Pass                |                  | MSD Status vs Recovery:                                           | Pass           |
| Upper % Recovery Limits:                                    | 125%                |                  | MS/MSD Upper % Recovery Limits:                                   | 125%           |
|                                                             | RO                  |                  | MOMON FOMEL & LECONEL & LECONEL                                   | R.C.           |
| Duplicate Sample Assessment                                 |                     |                  | Matrix Spike/Matrix Spike Duplicate Sample Assessment             |                |
| Sample I.D.:                                                |                     | Enter Duplicate  | Sample I.D.                                                       | 92521567009    |
| Duplicate Sample I.D.                                       |                     | sample IDs if    | Sample MS I.D.                                                    | 92521567015    |
| Sample Result (pCi/L, g, F):                                |                     | other than       | Sample MSD I.D.                                                   | 92521567016    |
| Sample Result Counting Uncertainty (pCi/l., g. F):          |                     | LCS/LCSD in      | Sample Matrix Spike Result:                                       | 10.375         |
| Sample Duplicate Result (pCi/L, g, F):                      |                     | the space below. | Matrix Spike Result Counting Uncertainty (pCi/L, g, F);           | 0.766          |
| Sample Duplicate Result Counting Uncertainty (pCi/L, g, F); | -<br>-<br>-         |                  | Sample Matrix Spike Duplicate Result                              | 8.763          |
| Are sample and/or duplicate results below KL?               | Cee Relow #         |                  | Matrix Spike Ouplicate Result Counting Uncertainty (pCVL, g, F):  | 0.699          |
| Duplicate Numerical Performance Indicator                   |                     |                  | Duplicate Numerical Performance indicator                         | 3.046          |
| Uuplicate KPU:                                              |                     |                  | (Based on the Percent Recoveries) MS/ MSD Uuplicate KPD;          | 16.60%         |

MS/MSD 2 2/11/2021

## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Duplicate Status vs Numerical Indicator. Duplicate Status vs RPD: % RPD Limit:

92521564001 92521564011 92521564012 9.287 9.287 9.288 9.688 0.770 0.770 5.01%

N/A Pass 25%

N/A Pass 25%

MS/ MSD Duplicate Status vs Numerical Indicator: MS/ MSD Duplicate Status vs RPD: MS/ MSD Duplicate Status vs RPD Limit;

Comments:

\*The method blank result is below the reporting limit for this analysis and is acceptable.

UAM315121

10/2/01

1 of 1

Earo Anahatinal

# **Quality Control Sample Performance Assessment**

MS/MSD 2

| Yellow.                                               |        | MS/MSD 1                               |                         |             |                 |                         |                                                      |                                                                 |                       |                                     |                                   |                                 |                                       |               |                                                   |                             |                                                         |                                      |                                                                   |                                     |                                      |                       |                                              |                                   |                                    |                                |                         |                                                                    |                               |                                                       |                 |                       |                              |                                                   |                                                         |                                                             |                                                      |                                                                                                                    |                                                |                                  |               |
|-------------------------------------------------------|--------|----------------------------------------|-------------------------|-------------|-----------------|-------------------------|------------------------------------------------------|-----------------------------------------------------------------|-----------------------|-------------------------------------|-----------------------------------|---------------------------------|---------------------------------------|---------------|---------------------------------------------------|-----------------------------|---------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------|-------------------------------------|--------------------------------------|-----------------------|----------------------------------------------|-----------------------------------|------------------------------------|--------------------------------|-------------------------|--------------------------------------------------------------------|-------------------------------|-------------------------------------------------------|-----------------|-----------------------|------------------------------|---------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------|---------------|
| Analyst Must Manually Enter All Fields Highlighted in |        | Sample Matrix Spike Control Assessment | Sample Collection Date: | Sample I.D. | Sample MSD I.D. | Spike I.D.:             | MS/MSD Decay Corrected Spike Concentration (pCl/mL): | Spike Volume Used in MS (mL):<br>Spike Volume Used in MSD (mL): | WS Aliquot (L, g, F): | MS Target Conc.(pCi/L, g, F):       | MSD Aliquot (L, g, F):            | MSD Target Conc. (pCi/L, g, F): | MSD Snike Lincertainty (calculated):  | Sample Result | Sample Result Counting Uncertainty (pCi/L, g, F): | Sample Matrix Spike Result: | Matrix Spike Result Counting Uncertainty (pCi/L, g, F): | Sample Matrix Spike Duplicate Result | Matrix Spike Duplicate Result Counting Uncertainty (pCl/L, g, F): | MS Numerical Performance Indicator. | MSD Numerical Performance Indicator. | MS Percent Recovery:  | MSD Percent Recovery:                        | MS Status vs Numerical Indicator: | MSD Status vs Numerical Indicator: | MS Status vs Recovery:         | MSD Status vs Recovery: | MS/MSD Upper % Recovery Limits:<br>MS/MSD Lower & Decovery Limits: | MOUMOD TOMEL & RECOVERY LINES | Matrix Spike/Matrix Spike Duplicate Sample Assessment | Sample I.D.     | Sample MS I.D.        | Sample MSD I.D.              | Sample Matrix Spike Result                        | Matrix Spike Result Counting Uncertainty (pCi/L, g, F): | Sample Matrix Spike Duplicate Result.                       | Intaux optics cupicate result country (point, g, r). | Based on the Percent Recoveries) MS/ MSD Dunitrate RPD:                                                            | MS/ MSD Dunicate Status vs Numerical Indicator | MS/ MSD Duplicate Status vs RPD: | . % RPD Limit |
|                                                       |        |                                        |                         |             |                 |                         |                                                      |                                                                 |                       |                                     |                                   |                                 | >                                     | 1 CSD58914    | 3/8/2021                                          | 19-033                      | 24.039                                                  | 0.10                                 | 0.509                                                             | 4.724                               | 0.057                                | 5.140                 | 0.510                                        | 1.59                              | 108.80%                            | AN                             | Pass                    | 125%                                                               | P/C /                         |                                                       | Enter Duplicate | sample IDs if         | other than                   | LCS/LCSD in                                       | the space below.                                        |                                                             |                                                      | 92521125006DUP                                                                                                     |                                                |                                  |               |
|                                                       | Ka-226 | LAL                                    | 2/26/2021               | 58914<br>DW | 1               |                         | 2103744                                              | -0.043<br>0.068                                                 | 0.225                 | -1.22                               | N/A                               | Pass                            | CSD (V or N/2                         | I CS58914     | 3/8/2021                                          | 19-033                      | 24.039                                                  | 0.10                                 | 0.504                                                             | 4.770                               | 0.057                                | 4.906                 | 0.508                                        | 0.52                              | 102.86%                            | N/A                            | Pass                    | 125%                                                               | 8/11                          |                                                       | LCS58914        | LCSD58914             | 4.906                        | 0.508                                             | 5.140                                                   | 0.510                                                       | 200                                                  | -0.03/<br>5.61%                                                                                                    | N/A                                            | Pass                             | 25%           |
|                                                       | lest   | Analyst:                               | Date:                   | Worklist    |                 | Method Blank Assessment | MB Sample ID                                         | MB concentration:<br>MB Concertainty                            | WB MDC                | MB Numerical Performance Indicator: | MB Status vs Numerical Indicator: | MB Status vs. MDC:              | l aboratory Control Samula Assessment |               | Count Date:                                       | Spike I.D.:                 | Decay Corrected Spike Concentration (pCi/mL):           | Volume Used (mL):                    | Aliquot Volume (L, g, F):                                         | Target Conc. (pC/Å, g, F):          | Uncertainty (Calculated):            | Result (pCi/L, g, F): | LCS/LCSD Counting Uncertainty (pCi/L, g, F): | Numerical Performance Indicator:  | Percent Recovery:                  | Status vs Numerical Indicator. | Status vs Recovery:     | Upper % Recovery Limits:                                           | FOWER / RECOVERY LANDER       | Duplicate Sample Assessment                           | Sample I.D.:    | Duplicate Sample I.D. | Sample Result (pCi/L, g, F); | Sample Result Counting Uncertainty (pCi/L, g, F): | Sample Duplicate Result (pCi/L, g, F):                  | Sample Duplicate Result Counting Uncertainty (pCl/L, g, F): | Are satisfied atturis suppresents below ALS          | Uppicate Numerical Percent Recoveries) Diminate RPD-<br>(Based on the I CS/I CSD Percent Recoveries) Diminate RPD- | Dunlicate Status vs Numerical Indicator        | Duplicate Status vs RPD:         | % RPD Limit   |

## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

TAR DW QC Printed: 3/8/2021 11:24 AM

TAR\_58914\_W.xls Total Apha Radium (R104-3 11Feb2019).xls

3/0/01

Pace Analytical

# Quality Control Sample Performance Assessment

MS/MSD 2

MS/MSD 1

| Yellow.                                               |        | WSM                                    |                         |             |                |                         |                                                      |                               |                                |                       |                                     |                                   |                                                                     |                                      |               |                                                   |                             |                                                         |                                       |                                                                   |                                      |                      |                                               |                                  |                                    |                                |                         |                                                                      |                                                       |                 |                       |                              |                                                   |                                                         |                                                             |                                                                                         |                                                                                                           |                                                   |                                  |              |
|-------------------------------------------------------|--------|----------------------------------------|-------------------------|-------------|----------------|-------------------------|------------------------------------------------------|-------------------------------|--------------------------------|-----------------------|-------------------------------------|-----------------------------------|---------------------------------------------------------------------|--------------------------------------|---------------|---------------------------------------------------|-----------------------------|---------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------|--------------------------------------|----------------------|-----------------------------------------------|----------------------------------|------------------------------------|--------------------------------|-------------------------|----------------------------------------------------------------------|-------------------------------------------------------|-----------------|-----------------------|------------------------------|---------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------|--------------|
| Analyst Must Manually Enter All Fields Highlighted in |        | Sample Matrix Spike Control Assessment | Sample Collection Date: | Sample I.D. | Sample MS I.D. |                         | MS/MSD Decay Corrected Spike Concentration (pCi/mL): | Spike Volume Used in MS (mL): | Spike Volume Used in MSD (mL): | MS Aliquot (L, g, F): | MS Target Conc.(pCi/L, g, F):       | MSD Aliquot (L, g, F):            | MSD Target Conc. (pC/L, g, F):<br>MS Saile Financiale (2014, g, F): | MSD Snike Uncertainty (calculated).  | Sample Result | Sample Result Counting Uncertainty (pCi/L, g, F); | Sample Matrix Spike Result: | Matrix Spike Result Counting Uncertainty (pCi/L, g, F): | Sample Matrix Spike Duplicate Result: | Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): | MSD Numerical Performance Indicator. | MS Percent Recovery: | MSD Percent Recovery:                         | MS Status vs Numencal Indicator: | MSD Status vs Numerical Indicator: | MS Status vs Recovery:         | MSD Status vs Recovery: | MS/MSD Upper % Recovery Limits:<br>MS/MSD I ower % Recovery 1 inits: | Matrix Spike/Matrix Spike Duplicate Sample Assessment | Sample I.D.     | Sample MS I.D.        | Sample MSD I.D.              | Sample Matrix Spike Result:                       | Matrix Spike Result Counting Uncertainty (pCi/L, g, F): | Sample Matrix Spike Duplicate Result:                       | Matrix Spike Duplicate Result Counting Uncertainty (pCI/L, g, F):                       | Uuplicate Numerical Performance Indicator,<br>(Resert on the Derrient Decouveries) MS/ MSD Duniticate DDD | MS/ MSD Dunlicate Status ve Alumericati Indicator | MS/ MSD Duplicate Status vs RPD: | RPD Limit:   |
|                                                       |        |                                        |                         |             |                | _                       |                                                      |                               |                                |                       |                                     |                                   |                                                                     | z                                    | LCSD58914     |                                                   |                             |                                                         |                                       |                                                                   |                                      |                      |                                               |                                  |                                    |                                |                         |                                                                      |                                                       | Enter Duplicate | sample IDs if         | other than                   | LCS/LCSD in                                       | the space below.                                        |                                                             | 0050140500                                                                              | 82521125000 B2521125000                                                                                   |                                                   |                                  |              |
| 0- 220<br>0-                                          | Ra-226 | LAL                                    | 2/26/2021               | 58914       |                |                         | 2103744                                              | -0.043                        | 0.068                          | 0.225                 | -1.22                               | A/N                               | Pass                                                                | LCSD (Y or N)?                       | LCS58914      | 3/8/2021                                          | 19-033                      | 24.039                                                  | 0.10                                  | 0.504                                                             | / 900 \$                             | 4.500                | 0.5Ug                                         | 70'0 001                         | 102.86%                            | AN 7                           | Pass                    | %cZ1                                                                 |                                                       | 92521125006     | 92521125006DUP        | 0.181                        | 0.137                                             | 0.027                                                   | 0.145                                                       | See Below ##                                                                            | 147 89%                                                                                                   | N/A                                               | Fail                             | 25%          |
| A aver rulary under we was predicted                  | lest   | Analyst                                | Late:                   | Worklist    | Matrix         | Method Blank Assessment | MB Sample (D                                         | MB concentration:             | M/B Counting Uncertainty:      | MB MDC:               | MB Numerical Performance Indicator. | MB Status vs Numerical Indicator: | MB Status vs. MUC:                                                  | Laboratory Control Sample Assessment |               | Count Date:                                       |                             | Decay Corrected Spike Concentration (pCi/mL):           | Aoiume Used (mL):                     | Aliquot Volume (L, g, F):<br>Terraet Cono. / 2011 - 2012          |                                      |                      | LUSILUSU COUNTING Undertainty (purity, g, F); |                                  | Percent Recovery:                  | Status vs numerical indicator. | Status vs Recovery:     | Upper % Recovery Limits;<br>Lower % Recovery Limits;                 | Duplicate Sample Assessment                           | Sample I.D.:    | Duplicate Sample I.D. | Sample Result (pCi/L, g, F): | Sample Result Counting Uncertainty (pCi/L, g, F): | Sample Duplicate Result (pCl/L, g, F):                  | Sample Uuplicate Result Counting Uncertainty (pCt/L, g, F): | Are sangre anoror ouplicate results pelow KL?<br>Durdicate Mumorical Domances indicates | tuppicare mutanual renuntance mutanu<br>Diminare RPD-                                                     | Duplicate Status vs Numerical Indicator           | Duplicate Status vs RPD:         | % RPD Limit: |

12/3/8/2010 Mich precision. NIA CAM 3/8/2/ d taum dateb must b

sults are below the MDC.

## Evaluation of duplicate precision is not applicable if either the sample or duplicate

Comments:

TAR DW QC Printed: 3/8/2021 11:24 AM

TAR\_58914\_W.xls Totai Alpha Radium (R104-3 11Feb2019).xls



1 of 1

Pace Analytical

# **Quality Control Sample Performance Assessment**

| Table:         R.2.28<br>Rando Libe:         Sample Control Assessment         MMSN 1         Sample Control Assessment         MMSN 1         Sample Control Assessment         MMSN 1         Sample Control Assessment         MMSN 1         Sample Control Assessment         MMSN 1         Sample Control Assessment         MMSN 1         Sample Control Assessment         MMSN 1         Sample Control Assessment         MMSN 1         Sample Control Assessment         MMSN 1         Sample Control Assessment         MMSN 1         Sample Control Assessment         MMSN 1         Sample Control Assessment         MMSN 1         Sample Control Assessment         MMSN 1         Sample Control Assessment         MMSN 1         Sample Control Assessment         MMSN 2         MMSN 2         MMSN 2         MMSN 2         MMSN 2         MMSN 2         MMSN 2         MMSN 2         MMSN 2         MMSN 2         MMSN 2         MMSN 2         MMSN 2         MMSN 2         MMSN 2         MMSN 2         MMSN 2         MMSN 2         MMSN 2         MMSN 2         MMSN 2         MMSN 2         MMSN 2         MMSN 2         MMSN 2         MMSN 2         MMSN 2         MMSN 2         MMSN 2         MMSN 2         MMSN 2         MMSN 2         MMSN 2         MMSN 2         MMSN 2         MMSN 2         MMSN 2         MMSN 2         MMSN 2         MMSN 2         MMSN 2 <t< th=""><th>aut ri laiy uuai</th><th></th><th></th><th><u>Analyst Must Manually Enter All Fields Highlighted in</u></th><th>Yellow.</th><th></th></t<>                                                                                                                          | aut ri laiy uuai                                       |              |                  | <u>Analyst Must Manually Enter All Fields Highlighted in</u>          | Yellow.                    |                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------|------------------|-----------------------------------------------------------------------|----------------------------|----------------------------|
| Thight:         Date:         2/24/201         Sample Sile         MMSD 1         MMSD 1         MMSD 1         MMSD 1         MMSD 1         MMSD 1         MMSD 1         MMSD 1         MMSD 1         MMSD 1         MMSD 1         MMSD 1         MMSD 1         MMSD 1         MMSD 1         MMSD 1         MMSD 1         MMSD 1         MMSD 1         MMSD 1         MMSD 1         MMSD 1         MMSD 1         MMSD 1         MMSD 1         MMSD 1         MMSD 1         MMSD 1         MMSD 1         MMSD 1         MMSD 1         MMSD 1         MMSD 1         MMSD 1         MMSD 1         MMSD 1         MMSD 1         MMSD 1         MMSD 2         MMSD 1         MMSD 2         MMSD 2         MMSD 2         MMSD 2         MMSD 2         MMSD 2         MMSD 2         MMSD 2         MMSD 2         MMSD 2         MMSD 2         MMSD 2         MMSD 2         MMSD 2         MMSD 2         MMSD 2         MMSD 2         MMSD 2         MMSD 2         MMSD 2         MMSD 2         MMSD 2         MMSD 2         MMSD 2         MMSD 2         MMSD 2         MMSD 2         MMSD 2         MMSD 2         MMSD 2         MMSD 2         MMSD 2         MMSD 2         MMSD 2         MMSD 2         MMSD 2         MMSD 2         MMSD 2         MMSD 2 <thmsd 2<="" th=""> <thmsd< td=""><td>lest</td><td>Ra-228</td><td></td><td></td><td></td><td></td></thmsd<></thmsd>                                                                                                                                                                                                                                                                                               | lest                                                   | Ra-228       |                  |                                                                       |                            |                            |
| Utal:         2120/21<br>2023/150/16         Sample ID<br>2122/150/16         2122/150/16         2223/150/16         2223/150/16         2223/150/16         2223/150/16         2223/150/16         2223/150/16         2223/150/16         2223/150/16         2223/150/16         2223/150/16         2223/150/16         2223/150/16         2223/150/16         2223/150/16         2223/150/16         2223/150/16         2223/150/16         2223/150/16         2223/150/16         2223/150/16         2223/150/16         2223/150/16         2223/150/16         2223/150/16         2223/150/16         2223/150/16         2232/150/16         2232/150/16         2232/150/16         2232/150/16         2200/16         2232/150/16         2232/150/16         2232/150/16         2232/150/16         2232/150/16         2232/150/16         2232/150/16         2232/150/16         2232/150/16         2232/150/16         2232/150/16         2232/150/16         2232/150/16         2232/150/16         2232/150/16         2232/150/16         2232/150/16         2232/150/16         2232/150/16         2232/150/16         2232/150/16         2232/150/16         2232/150/16         2232/150/16         2232/150/16         2232/150/16         2232/150/16         2232/150/16         2232/150/16         2232/150/16         2232/150/16         2232/150/16         2232/150/16         2232/150/16         2232/150/16 <td>Analyst</td> <td>VAL</td> <td></td> <td>Sample Matrix Spike Control Assessment</td> <td>MS/MSD 1</td> <td>MS/MSD 2</td>                                                                                                                     | Analyst                                                | VAL          |                  | Sample Matrix Spike Control Assessment                                | MS/MSD 1                   | MS/MSD 2                   |
| Worldst:     Signal Statistics     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sample MS1(L)     Sampl                                                                                                                                                                                                                                                                                                    | Date:                                                  | 2/24/2021    |                  | Sample Collection Date:                                               | 2/11/2021                  | 2/9/2021                   |
| Sestent         Same No.         State ID:         21003         2211001         2211001         2211001         2211001         2211001         2211001         2211001         2211001         2211001         2211001         2211001         2211001         2211001         2211001         2211001         2211001         2211001         2211001         2211001         2211001         2211001         2211001         2211001         2211001         2211001         2211001         2211001         2211001         2211001         2211001         2211001         2211001         2211001         2211001         2211001         221001         221001         221001         221001         221001         221001         221001         221001         221001         221001         221001         221001         221001         221001         221001         221001         221001         221001         221001         221001         221001         22101         22101         22101         22101         22101         22101         22101         22101         22101         22101         22101         22101         22101         22101         22101         22101         22101         22101         22101         2210101         2210101         2210101         2210101         221010                                                                                                                                                                                                                                                                                                                                                                                  | Worklist<br>Matrix:                                    | 58913<br>WT  |                  | Sample I.D.<br>Sample MS I.D.                                         | 92521567009<br>92521567015 | 92521564001<br>92521564011 |
| mscannet         With Sample (D)         2(074)         MSMSD Deery Carrented Splite Concernation (C)(m), 2         2(003)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103)         2(103) <th< td=""><td></td><td></td><td></td><td>Sample MSD I.D.</td><td>92521567016</td><td>92521564012</td></th<>                                                                                                                                                                                                                                                                    |                                                        |              |                  | Sample MSD I.D.                                                       | 92521567016                | 92521564012                |
| No.         2103741         MSMSD Deery Corrected Splic Contention (Grint)         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.87         38.8                                                                                                                                                                                                                                                                                                                                                                                                             | sessment                                               |              |                  | Spike I.D.:                                                           | 21-003                     | 21-003                     |
| Wild Somoertandlor:         0.91         Splex Volume Used in M(C)         0.20         0.20           Wild Numerical Performance Indicat:         0.44         0.20         0.20         0.20           Wild Numerical Performance Indicat:         1.11         0.20         0.20         0.20           Wild Numerical Performance Indicat:         1.15         0.41         0.20         0.20           Wild Numerical Performance Indicat:         Person         0.50         0.50         0.50           Mild Numerical Performance Indicat:         Person         0.50         0.50         0.50           Sample Kastis vantumeric (ancluated):         0.473         0.473         0.473         0.473           Sample Kastis Signe Uncentration (contundency (ancluated):         0.473         0.473         0.473         0.473           Sample Kastis Signe Uncentration (contundency (ancluated):         0.473         0.473         0.473         0.473           Volume Used (mil)         0.31         0.412         0.412         0.423         0.412           Wolume Used (mil)         0.32         0.412         0.423         0.412         0.423           Wolume Used (mil)         0.31         0.412         0.412         0.412         0.412         0.412         0.412<                                                                                                                                                                                                                                                                                                                                                                                                  | MB Sample ID                                           | 2103741      |                  | MS/MSD Decay Corrected Spike Concentration (pCi/mL):                  | 38.867                     | 38.867                     |
| MB Stands Volmer Landon:         11         MB Stand CU:         0.338         Shiek Volmer (Jai, F):         9500         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.000         9.0000                                                                                                                                                                                                                                                                                                                                                                                                             | MB concentration;                                      | 0.191        |                  | Spike Volume Used in MS (mL):                                         | 0.20                       | 0.20                       |
| MB Numerical Performance indicator:         1.14         MB Status v. More         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         958         95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | M/B 2 Sigma CSU:                                       | 0.338        |                  | Spike Volume Used in MSD (mL):                                        | 0.20                       | 0.20                       |
| met numerate retrontanction (notation: 1)     MS Splatu vest Mamerial (notation: 1)     MS Splatu vest Mamerial (notation: 1)     Sinte vest Mamerial (notation: 1)     Sinte vest Mamerial (notation: 1)     Sinte vest Mamerial (notation: 1)     Sinte vest Mamerial (notation: 1)     Sinte vest Mamerial (notation: 1)     Sinte vest Mamerial (notation: 1)     Sinte vest Mamerial (notation: 1)     Sinte vest Mamerial (notation: 1)     Sinte vest Mamerial (notation: 1)     Sinte vest Mamerial (notation: 1)     Sinte vest Mamerial (notation: 1)     Sinte vest Mamerial (notation: 1)     Sinte vest Mamerial (notation: 1)     Sinte vest Mamerial (notation: 1)     Sinte vest Mamerial (notation: 1)     Sinte vest Mamerial (notation: 1)     Sinte vest Mamerial (notation: 1)     Sinte vest Mamerial (notation: 1)     Sinte vest Mamerial (notation: 1)     Sinte vest Mamerial (notation: 1)     Sinte vest Mamerial (notation: 1)     Sinte vest Mamerial (notation: 1)     Sinte vest Mamerial (notation: 1)     Sinte vest Mamerial (notation: 1)     Sinte vest Mamerial (notation: 1)     Sinte vest Mamerial (notation: 1)     Sinte vest Mamerial (notation: 1)     Sinte vest Mamerial (notation: 1)     Sinte vest Mamerial (notation: 1)     Sinte vest Mamerial (notation: 1)     Sinte vest Mamerial (notation: 1)     Sinte vest Mamerial (notation: 1)     Sinte vest Mamerial (notation: 1)     Sinte vest Mamerial (notation: 1)     Sinte vest Mamerial (notation: 1)     Sinte vest Mamerial (notation: 1)     Sinte vest Mamerial (notation: 1)     Sinte vest Mamerial (notation: 1)     Sinte vest Mamerial (notation: 1)     Sinte vest Mamerial (notation: 1) |                                                        | 0.740        |                  |                                                                       | 0.80/                      | 0.805                      |
| ms sature so numerical modulor     pass     mSS spine Uncertainty (calculator)     0.473     0.471       Simple Assessment     LCSOTY or NY     NS     0.472     0.471       Nil Sample Assessment     Count Date     27650731     1.050 yr NY     0.472     0.471       Simple Assessment     Count Date     27650731     1.050 yr NY     0.472     0.471       Decay Corrected Splite Concentration (Clinculator)     0.10     0.472     0.471       Decay Corrected Splite Concentration (Clinculator)     0.10     0.472     0.471       Decay Corrected Splite Concentration (Clinculator)     0.10     0.473     0.473       Decay Corrected Splite Concentration (Clinculator)     0.10     0.473     0.473       Decay Corrected Splite Concentration (Clinculator)     0.10     0.473     0.473       Decay Corrected Splite Concentration (Clinculator)     0.10     0.116     0.473       Uncertainty Clinculator)     0.10     0.10     0.116     0.125       Uncertainty Clinculator)     0.10     0.116     0.113     0.116       Uncertainty Clinculator)     0.10     0.116     0.125     0.473       Uncertainty Clinculator)     0.10     0.116     0.125     0.473       Uncertainty Clinculator)     0.116     0.116     0.116     0.116                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MIS Numerical Performance Indicator.                   | 1.11         |                  | MS Target Conc.(pCi/L, g, F):                                         | 9.638                      | 9.616                      |
| Simple Assessment     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     Cont Date     <                                                                                                                                                                                                                                                                                                                                                                                                                     | MIS Status vs Numenca: Indicator:<br>MB Status vs MDC: | Pass         |                  | MSD Aliquot (L, g, F):<br>MSD Tarret Conc. (nCit) o. E)-              | 0.804<br>0.668             | 0.808                      |
| I Sample Assessment         ICSD (Y or N/)         N         NSD Spike Uncertainty (calculated)         0.473         0.473         0.473           Decay Corrected Spike Concentration (pCim):         27:003         27:003         3:349         0.334         0.334           Decay Corrected Spike Concentration (pCim):         27:003         10:10         3:347         0.347         0.347           Decay Corrected Spike Concentration (pCim):         27:003         10:10         3:347         0.10         0.348           Decay Corrected Spike Concentration (pCim):         2:103         0.10         3:348         0.348         0.348           Unortation (pCim):         2:1735         Natrix Spike Bould Science (pCim):         2:1738         0.348           Unortation (pCim):         2:1735         Natrix Spike Bould Science (pCim):         2:1738         0.113           Unortation (pCim):         2:1738         Matrix Spike Bould Science (pCim):         2:1738         0.113           Unortation (pCim):         2:1238         Matrix Spike Bould Science (pCim):         2:1738         0.113           Unortation (pCim):         2:138         Matrix Spike Doubine Result (pCim):         2:138         0.113           Unortation (pCim):         2:138         Matrix Spike Doubine Result (pCim):         2:138                                                                                                                                                                                                                                                                                                                                           |                                                        | -            | _                | MSS Spike Encertainty (calculated):                                   | 0.472                      | 3.023<br>0.471             |
| Count Date         LC5505913         LC5505913         LC5505913         LC5505913         LC5505913         Count Date         Sample Result 2 Sigme Scu (pc/L, g, F)         0.801         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.030         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033         0.033                                                                                                                                                                                                                                                                                                                                                                                                    | ol Sample Assessment                                   | SD (Y or N)? | z                | MSD Spike Uncertainty (calculated):                                   | 0.474                      | 0.472                      |
| Control Date:       2252/2021       Spite ID:       2252/2023       0.346         Solite ID:       36.74       0.103       Sample Matrix Spite Result 2 (spine CSU) (GUL, g. P. 1, 175       0.303       0.346         Volume IL:       0.10       36.74       0.10       34.73       2.016       3.201       3.243         Target Corrected Spike Concentration (pcl/L, g. P. 1, 273       0.11       3.674       3.735       3.432       2.016         Unsertainty Calculation (DCL), g. P. 1, 273       0.341       Matrix Spike Result 2 Sigma CSU (pCL), g. P. 1, 753       1.142         Unsertainty Calculation (DCL), g. P. 1, 233       0.343       Matrix Spike Result 2 Sigma CSU (pCL), g. P. 1, 753       1.013         Numerical Fertomatics Indicator       0.383       0.346       Matrix Spike Result 2 Sigma CSU (pCL), g. P. 1, 753       1.013         Numerical Fertomatics Indicator       1.326       Matrix Spike Result 2 Sigma CSU (pCL), g. P. 1, 753       1.013         Numerical Fertomatics Indicator       1.326       0.346       Matrix Spike Result 2 Sigma SU (pCL), g. P. 1, 753       1.013         Numerical Fertomatics Indicator       1.326       Matrix Spike Diplicate Resourcy       82.536       0.118         Numerical Fertomatics Indicator       1.326       Matrix Spike Diplicate Resourcy       82.5364       0.118      <                                                                                                                                                                                                                                                                                                                               | -                                                      | LCS58913     | LCSD58913        | Sample Result                                                         | 0.891                      | 0.320                      |
| Decay Corrected Spike (LD::     21-003       Decay Corrected Spike Concentration (GrimL):     8674       And the base (mL):     3674       And the base (mL):     3674       And the base (mL):     3674       And the base (mL):     3674       And the base (mL):     3674       And the base (mL):     3674       And the base (mL):     3674       And the base (mL):     3674       And the base (mL):     3674       And the base (mL):     3674       And the base (mL):     3674       And the base (mL):     3674       And the base (mL):     3674       And the base (mL):     3674       And the base (mL):     3674       And the base (mL):     3674       And the base (mL):     3674       And the base (mL):     3674       And the base (mL):     3674       And the base (mL):     3674       And the base (mL):     3674       And the base (mL):     3674       And the base (mL):     3756       And the base (mL):     3756       And the base (mL):     3756       And the base (mL):     3756       And the base (mL):     3756       And the base (mL):     3756       And the base (mL):     3756                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Count Date:                                            | 2/26/2021    |                  | Sample Result 2 Sigma CSU (pCi/L, g, F):                              | 0.393                      | 0.348                      |
| Decay Corrected Splite Concentration (p.C.Im.).     36.574     Matrix Splike Result. Signar CSU (p.C.I., g. F)     1.755     2.018       Aliquot Volume U.s (F)     0.817     0.817     Matrix Splike Duplicate Result. Signar CSU (p.C.I., g. F)     1.733     0.118       Target Concertation (p.C.I., g. F)     0.817     Matrix Splike Duplicate Result. Signar CSU (p.C.I., g. F)     1.733     0.118       Uncertation (p.C.I., g. F)     0.817     Matrix Splike Duplicate Result. Signar CSU (p.C.I., g. F)     1.733     0.118       Uncertation (p.C.I., g. F)     0.833     Matrix Splike Duplicate Result. Signar CSU (p.C.I., g. F)     1.733     0.118       Uncertation (p.C.I., g. F)     0.833     Matrix Splike Duplicate Result. Signar CSU (p.C.I., g. F)     1.733     0.118       Numerical Performance Indicator     1.383     Matrix Splike Duplicate Result. Signar CSU (p.C.I., g. F)     1.733     0.118       Status vs Rocovery     0.132%     MS Status vs Numerical Indicator     9.375%     0.132%       Unper "s Recovery Imfis:     0.935     MS Status vs Rocovery Imfis:     0.935%     9.375%       Unper "s Recovery Imfis:     0.936     0.708     9.375%     9.375%       Unper "s Recovery Imfis:     0.935     MS Status vs Recovery Imfis:     0.936       Unper "s Recovery Imfis:     0.935     MS Status vs Recovery Imfis:     0.936       Unpe                                                                                                                                                                                                                                                                                                                | Spike I.D.:                                            | 21-003       |                  | Sample Matrix Spike Result:                                           | 8.855                      | 10.063                     |
| Numerical Performance (I, g, F):       0.10       Matrix Spike Duplicate Result S Signare CSU (pical, g, F):       1.733       1.422         Target Conc. (pCil, g, F):       0.817       Matrix Spike Duplicate Result S Signare CSU (pical, g, F):       1.733       1.422         Target Conc. (pCil, g, F):       0.833       Matrix Spike Duplicate Result S Signare CSU (pical, g, F):       1.733       0.116         Result (pCil, g, F):       0.833       MS Numerical Performance Indicator:       1.139       0.773         Numerical Performance Indicator:       0.833       MS Numerical Performance Indicator:       1.339       0.716         Numerical Performance Indicator:       0.13       MS Numerical Performance Indicator:       1.339       0.7733         Numerical Performance Indicator:       0.833       MS Numerical Performance Indicator:       1.339       0.7733         Numerical Performance Indicator:       0.43       MS Numerical Performance Indicator:       1.339       0.7733         Numerical Performance Indicator:       1.123       MS Numerical Performance Indicator:       1.733       0.164         Numerical Performance Indicator:       1.123       MS Status vs Recovery:       1.1333       0.116         Status vs Recovery:       Pass       MS Status vs Recovery:       Pass       Pass         Sample Result (Cil,                                                                                                                                                                                                                                                                                                                          | Decay Corrected Spike Concentration (pCi/mL):          | 38.674       |                  | Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):                        | 1.785                      | 2.018                      |
| Alguot Volume (L, g. F):       0.817       Maturk Spike Undicate Result 25 (pma CSU (pc/L, g. F):       1.733       1.42         Target Cons. (pc/L, g. F):       0.343       Mastrix Spike Undicate Performance Indicator:       1.333       0.118         Uncertainty (Calculated)       0.223       Result 25 (pc/L, g. F):       3.843       101.32%       0.118         Uncertainty (Calculated)       0.232       Miss Numerical Performance Indicator:       1.89       0.138         Numerical Performance Indicator:       1.89       MSD Numerical Performance Indicator:       1.33       0.118         Status vs Numerical Performance Indicator:       1.89       MSD Pricent Recovery:       81.53%       0.118         Status vs Numerical Performance Indicator:       1.89       MSD Numerical Performance Indicator:       1.89       0.133%         Status vs Numerical Performance Indicator:       1.89       MSD Status vs Recovery:       82.553%       0.118         Status vs Numerical Performance Indicator:       1.89       MSD Status vs Recovery:       82.5515%       0.118         Status vs Numerical Performance Indicator:       1.89       MSD Status vs Numerical Performance Indicator:       1.895       0.118         Assessment       Sample I.D:       0.97       MSD Status vs Numerical Performance Indicator:       1.835       0.97                                                                                                                                                                                                                                                                                                                            | Volume Used (mL):                                      | 0.10         |                  | Sample Matrix Spike Duplicate Result:                                 | 8.720                      | 9.243                      |
| Target Conc. (pc/ld. g. F):     4.733     mission (cold., g. F):     4.733     mission (cold., g. F):     4.733       Unretical Fernance Indicator:     0.323     MSD Numerical Performance Indicator:     -1.738     0.118       Unretical Fernance Indicator:     0.835     MSD Numerical Fernance Indicator:     -1.339     0.1708       Numerical Fernance Indicator:     1.898     MSD Numerical Indicator:     90%     92.73%       Numerical Fernance Indicator:     1.398     MSD Status vs Recovery:     82.53%     01.32%       Status vs Recovery:     81.20%     MSD Status vs Recovery:     82.53%     01.32%       Upper %, Recovery Limits:     135%     MSD Status vs Recovery:     92.537564011       Sample Nation     0.05%     90%     90%       Duplicate Sample I.D.     Sample I.D.     90%     90%       Sample I.D.     Sample I.D.     90%     90%     90%       Sample I.D.     Sample Rout (pC/l, g, F):     10.057(19)     92251564011       Sample I.D.     Sample I.D.     90%     90%     90%       Sample I.D.     Sample Rout (pC/l, g, F):     10.65%     90%     90%       Sample I.D.     Sample Rout (pC/l, g, F):     10.65%     90%     90%       Sample Rout (pC/l, g, F):     10.55%     90%     90%     90% </td <td>Aliquot Votume (L, g, F):</td> <td>0.817</td> <td></td> <td>Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):</td> <td>1.753</td> <td>1.842</td>                                                                                                                                                                                                                                                                                       | Aliquot Votume (L, g, F):                              | 0.817        |                  | Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):              | 1.753                      | 1.842                      |
| Undertainty (calculated):     0.232     MSD Numerical Performance Indicator:     1.339     0.709       Retainty (calculated):     0.383     10132%     0.394     0.738     0.132%       Numerical Indicator:     1.89     Numerical Indicator:     7.833     10132%       Numerical Indicator:     1.89     MSD Percent Recovery:     80.39%     97.35%       Numerical Indicator:     1.89     MSD Percent Recovery:     80.39%     97.35%       Numerical Indicator:     1.93     MSD Percent Recovery:     80.39%     97.35%       Numerical Indicator:     1.89     MSD Status vs Numerical Indicator:     7.339     97.35%       Status vs Recovery Limits:     60%     0.709     97.35%     97.35%     97.35%       Upper % Recovery Limits:     60%     MSD ND Duper % Recovery Limits:     97.9     97.35%       Sample I.D:     Sample I.D:     Sample Result (pCit, g, F):     97.35%     95.456       Sample Result (pCit, g, F):     Sample Result (pCit, g, F):     97.25564011     92.2521664011       Sample Result 2 Sigma SU (pCit, g, F):     Sample RASI (pCit, g, F):     97.66     90.66%       Sample Result 2 Sigma SU (pCit, g, F):     1.78     92.251664011     92.251664011       Sample Result 2 Sigma SU (pCit, g, F):     1.78     1.785     1.942                                                                                                                                                                                                                                                                                                                                                                                                                              | Target Conc. (pCi/L, g, F):                            | 4.733        |                  | MS Numerical Performance Indicator:                                   | -1.738                     | 0.118                      |
| LCSALCSD 2 Signe sout (pC/L, g, F):       3.843       mS Percent Recovery:       22.63%       101.32%         Numerical Performance Indicator:       0.893       MS Status vs Numerical Indicator:       9.237%       9.273%         Numerical Performance Indicator:       1.89       MS Status vs Numerical Indicator:       Pass       9.273%         Numerical Performance Indicator:       1.80       MS Status vs Numerical Indicator:       Pass       9.273%         Numerical Performance Indicator:       NA       MS Status vs Recovery:       9.273%       9.273%         Status vs Recovery:       1.35%       MS Status vs Recovery:       9.273%       9.273%         Upper % Recovery Limits:       1.35%       MS/MSD Lower % Recovery Limits:       1.35%       1.35%         Lower % Recovery Limits:       1.35%       MS/MSD Lower % Recovery Limits:       1.35%       1.35%         Lower % Recovery Limits:       1.35%       MS/MSD Lower % Recovery Limits:       1.35%       1.35%         Assessment       Sample ND       Sample Matrix Spike Result       9.2757167016       9.2251564011         Sample Result (pC/L, g, F):       Sample ND       9.2251564011       9.2251564011       9.22521564011         Sample Result (pC/L, g, F):       Sample ND       9.2251564011       9.22521564011       9.22521564                                                                                                                                                                                                                                                                                                                                                             | Uncertainty (Calculated):                              | 0.232        |                  | MSD Numerical Performance Indicator:                                  | -1.939                     | -0.709                     |
| LCSALCSO 2 Sigma CSU (pc/il, g, F):       0.893       WIS Detcart Recovery:       0.803       92.73%         Numerical Perconnarce Indicator:       1.89       MS Status vs Numerical Indicator:       Pass       Pass         Numerical Perconnarce Indicator:       1.89       MS Status vs Numerical Indicator:       Pass       Pass         Status vs Recovery:       NAS       Status vs Recovery:       Pass       Pass       Pass         Upper % Recovery Limits:       60%       60%       60%       60%       60%         Assessment       Sample I.D:       Erfler Ouplicate Sample I.D:       Sample Result (pc/u, g, F):       005       60%       60%       60%         Sample Result (pc/u, g, F):       Duplicate Result (pc/u, g, F):       Close Result (pc/u, g, F):       005       92271564001       92271564001         Sample Result (pc/u, g, F):       Sample Result (pc/u, g, F):       Close Result (pc/u, g, F):       00%       92271564001         Sample Result (pc/u, g, F):       Duplicate Result (pc/u, g, F):       Sample Matrix Spike Duplicate Result       92521564001       92521564001         Sample Result (pc/u, g, F):       Duplicate Result (pc/u, g, F):       1.756       92521564001       92521564001         Sample Numerical Indicator:       Sample Matrix Spike Duplicate Result       92571654001                                                                                                                                                                                                                                                                                                                                                   | Result (pCi/L, g, F);                                  | 3.843        |                  | MS Percent Recovery:                                                  | 82.63%                     | 101.32%                    |
| Numerical Performance Indicator:     -1.89     MS Status vs Numerical Indicator:     Pass Pass Pass Pass Pass Pass Pass Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LCS/LCSD 2 Sigma CSU (pCi/L, g, F):                    | 0.893        |                  | MSD Percent Recovery:                                                 | 80.99%                     | 92.73%                     |
| Status vs Numerical Indicator:       MSD Status vs Numerical Indicator:       Pass Pass Pass Pass MSD Status vs Recovery:       Pass Pass Pass Pass Pass Pass Pass Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Numerical Performance Indicator                        | -1.89        |                  | MS Status vs Numerical Indicator:                                     | Pass                       | Pass                       |
| Status vs Recovery:       NA       MS Status vs Recovery:       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass       Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Percent Recovery:                                      | 81.20%       |                  | MSD Status vs Numerical Indicator:                                    | Pass                       | Pass                       |
| Status vs Recovery:       Pass       Pass       Pass       Pass       Pass         Upper % Recovery: Liower % Recovery: Links:       133%       0%       60%       60%         Lower % Recovery: Links:       135%       135%       60%       60%         Assessment       Sample I.D.:       00%       60%       60%         Duplicate Sample I.D.:       Sample I.D.:       Enter Duplicate       Sample I.D.:       92521564001         Sample Result pockl., g, F):       Sample NSD Lower % Recovery Links:       135%       135%       60%         Sample Result pockl., g, F):       Sample NSD Lioner than       Matrix Spike Duplicate Sample MSD Lioner than       92521564001       92521564001         Sample NSD Lioner than       Sample NSD Lioner than       Matrix Spike Result 2 Sigma CSU (pc/l., g, F):       92521564012       92521564011         Sample NSD Lioner than       COKL., g, F):       LCSALCSD in       Sample MSD Lioner MSD Lioner than       92521564011       92521564011         Sample NSD Roupicate Result pockl., g, F):       LCSALCSD in       Matrix Spike Result 2 Sigma CSU (pc/l., g, F):       92521564011       92521564011         Sample NSD Roupicate Result 2 Sigma CSU (pc/l., g, F):       LCSALCSD in       92521564011       92521564011       92521564011         Sample NSD Roupicate Result 2 Sigma C                                                                                                                                                                                                                                                                                                                                           | Status vs Numerical Indicator:                         | A/A          |                  | MS Status vs Recovery:                                                | Pass                       | Pass                       |
| Upber % Recovery Limits:       135%       135%       135%       135%       135%       135%       135%       135%       135%       135%       135%       135%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60%       60% <td>Status vs Recovery:</td> <td>Pass</td> <td></td> <td>MSD Status vs Recovery:</td> <td>Pass</td> <td>Pass</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Status vs Recovery:                                    | Pass         |                  | MSD Status vs Recovery:                                               | Pass                       | Pass                       |
| Assessment       Sample I.D.:       Enter Duplicate       Matrix Spike/Matrix Spike Duplicate Sample Assessment       Sample I.D.:       Sample I.D.:       Sample I.D.:       Sample I.D.:       Sample I.D.:       Sample I.D.:       Sample I.D.:       Sample I.D.:       Sample I.D.:       Sample I.D.:       Sample I.D.:       Sample I.D.:       Sample I.D.:       Sample I.D.:       Sample I.D.:       Sample I.D.:       Sample I.D.:       Sample I.D.:       Sample I.D.:       Sample I.D.:       S2521564011       S2521564011       S2521564011       S2521564012       S2521564012       S2521564012       S2521564012       S2521564012       S2521564012       S2521564012       S2521564012       S2521564012       S2521564012       S2521564012       S2521564012       S2521564012       S2521564012       S2521564012       S2521564012       S2521564012       S2521564012       S2521564012       S2521564012       S2521564012       S2521564012       S2521564012       S2521564012       S2521564012       S2521564012       S2521564012       S2521564012       S2521564012       S2521564012       S2521564012       S2521564012       S2521564012       S2521564012       S2521564012       S2521564012       S2521564012       S2521564012       S2521564012       S2521564012       S2521564012       S2521564012       S2521564012       S2521564012       S2521564012       S2521                                                                                                                                                                                                                                                                                       | Upper % Recovery Limits:<br>Lower % Recovery Limits:   | 130%<br>60%  |                  | MS/MS/J Upper % Recovery Limits:<br>MS/MS/J I ower % Recovery Limits- | 1.35%                      | 135%<br>60%                |
| Assessment       Matrix Spike/Matrix Spike Duplicate Sample I.D.       Sample I.D.       S252156401         Duplicate Sample I.D.       Sample I.D.       Sample I.D.       S252156401       9252156401         Duplicate Sample I.D.       Sample I.D.       Sample MS.I.D.       9252156401       9252156401         Sample Result (pC/L, g. F)       Sample IDs if       Sample MS.I.D.       9252156401       9252156401         Sample Result (pC/L, g. F)       Sample MS.I.D.       9252156401       9252156401       9252156401         Sample Result (pC/L, g. F)       sample MS.I.D.       9252156401       9252156401       9252156401         Sample Result (pC/L, g. F)       tite space below       Matrix Spike Result 2 Sigma CSU (pC/L, g. F)       10.063       10.063         Are sample andor duplicate Result (pC/L, g. F)       Upplicate Result 2 Sigma CSU (pC/L, g. F)       1.753       1.82         Duplicate Result 2 Sigma CSU (pC/L, g. F)       Duplicate Result 2 Sigma CSU (pC/L, g. F)       1.753       1.82         Are sample andor duplicate Result 2 Sigma CSU (pC/L, g. F)       1.753       1.785       1.785         Duplicate Numerical Performance Indicator:       Duplicate Result 2 Sigma CSU (pC/L, g. F)       1.785       1.82         Duplicate Status vs Numerical Indicator:       Duplicate Status vs Numerical Indicator:       0.105       9.2                                                                                                                                                                                                                                                                                                       |                                                        |              |                  |                                                                       |                            |                            |
| Sample LD:       Enter Duplicate       Sample LD.       92521564001       92521564001         Duplicate Sample LD:       Sample ND.       92521567015       92521564011       92521564011         Sample Result (pCi/t, g, F):       Sample ND.       92521567015       92521564011       92521564011         Sample ND:       Sample ND.       92521567015       92521564011       92521564011       92521564011         Sample ND:       Sample ND:       92521567015       92521564012       92521564012       92521564012         Sample ND:       Sample ND:       Sample MSD ID.       92521567016       92521564012       92521564012         Sample ND:       Sample ND:       Sample MSD ID.       92521567016       92521564012       92521564012         MD:       Sample Duplicate Result (pCi/t, g, F):       LCSALCSD in       Matrix Spike Result 2 Sigma CSU (pCi/t, g, F):       10.063       9.243         Are sample and/or duplicate Result 2 Sigma CSU (pCi/t, g, F):       Natrix Spike Result 2 Sigma CSU (pCi/t, g, F):       1.753       1.872         Duplicate Numerical Performance Indicator:       Duplicate Result 2 Sigma CSU (pCi/t, g, F):       1.783       1.872         Duplicate Status vs Numerical Indicator:       Duplicate Result 2 Sigma CSU (pCi/t, g, F):       1.773       1.872         Duplicate Status vs Numeric                                                                                                                                                                                                                                                                                                                                           | Assessment                                             |              |                  | Matrix Spike/Matrix Spike Duplicate Sample Assessment                 |                            |                            |
| Duplicate Sample (LD.     Sample ID: if     Sample MS I.D.     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521567015     92521564012     926912     92616     92616     92616     926164012     92616     92521564012     92521564012     92616     92616     92616     92616     92521564012     92616     92616     92616     92616     92616     92616     92616     92616                                                                                                                                                                                                                                                                                                                                                                                           | Sample I.D.:                                           |              | Enter Duplicate  | Sample I.D.                                                           | 92521567009                | 92521564001                |
| Sample Result (pCi/t, g, F):     other than     Sample WSD I.D.     92521567016     92521564012       Sample Result (pCi/t, g, F):     LCSALCSD in     Natrix Spike Result 2 Sigma CSU (pCi/t, g, F):     10.063       Sample Duplicate Result 2 Sigma CSU (pCi/t, g, F):     the space below.     Matrix Spike Result 2 Sigma CSU (pCi/t, g, F):     1785     2.018       Mole Duplicate Result 2 Sigma CSU (pCi/t, g, F):     the space below.     Matrix Spike Result 2 Sigma CSU (pCi/t, g, F):     1.785     2.018       Mole Duplicate Result 2 Sigma CSU (pCi/t, g, F):     the space below.     Matrix Spike Result 2 Sigma CSU (pCi/t, g, F):     1.785     2.018       Molicate Result 2 Sigma CSU (pCi/t, g, F):     the space below.     Matrix Spike Result 2 Sigma CSU (pCi/t, g, F):     1.785     2.018       Duplicate Numerical Performance Indicator:     Duplicate Result 2 Sigma CSU (pCi/t, g, F):     0.568     9.243       Duplicate Status vs Numerical Indicator:     Duplicate Status vs ND:     0.105     9.243       Duplicate Status vs ND:     Duplicate Status vs ND:     0.105     9.243       Matrix Spike Duplicate Status vs ND:     the result 2 Sigma CSU (pCi/t, g, F):     0.768       Duplicate Status vs ND:     Duplicate Status vs ND:     0.105     9.243       Duplicate Status vs ND:     Duplicate Status vs ND:     0.705     9.243                                                                                                                                                                                                                                                                                                                          | Duplicate Sample I.D.                                  |              | sample IDs if    | Sample MS I.D.                                                        | 92521567015                | 92521564011                |
| Sample Result 2 Sigma CSU (pCi/l, g, F):     LCSALCSD in<br>LCSALCSD in<br>Sample Matrix Spike Result 2 Sigma CSU (pCi/l, g, F):     8.855     10.063       Sample Duplicate Result 2 Sigma CSU (pCi/l, g, F):     1.785     2.018       Matrix Spike Duplicate Result 2 Sigma CSU (pCi/l, g, F):     1.785     2.018       Are sample and/or duplicate result 2 Sigma CSU (pCi/l, g, F):     1.785     3.43       Are sample and/or duplicate result 2 Sigma CSU (pCi/l, g, F):     1.753     1.842       Are sample and/or duplicate result 2 Sigma CSU (pCi/l, g, F):     0.105     9.243       Are sample and/or duplicate result 2 Sigma CSU (pCi/l, g, F):     0.105     9.243       Are sample and/or duplicate Result 2 Sigma CSU (pCi/l, g, F):     0.105     9.243       Are sample and/or duplicate Result 2 Sigma CSU (pCi/l, g, F):     0.105     9.243       Are sample and/or duplicate Result 2 Sigma CSU (pCi/l, g, F):     0.105     9.243       Are sample and/or duplicate Result 2 Sigma CSU (pCi/l, g, F):     0.105     9.243       Are sample and/or duplicate Result 2 Sigma CSU (pCi/l, g, F):     0.105     9.243       Are sample and/or duplicate Result 2 Sigma CSU (pCi/l, g, F):     0.105     9.243       Are sample and/or duplicate Result 2 Sigma CSU (pCi/l, g, F):     0.105     9.243       Are sample and/or duplicate Result 2 Sigma CSU (pCi/l, g, F):     0.105     9.243       Are sample and/or duplicate Result 2 Sigma CSU (pCi/l,                                                                                                                                                                                                                             | Sample Result (pCi/L, g, F):                           |              | other than       | Sample MSD I.D.                                                       | 92521567016                | 92521564012                |
| Sample Duplicate Result (pCi/t, g, F):       the space below.       Matrix Spike Result 2 Sigma CSU (pCi/t, g, F):       1.785       2.018         mole Duplicate Result 2 Sigma CSU (pCi/t, g, F):       5.178       9.243         Are sample and/or duplicate results below RL?       See Below ##       Matrix Spike Duplicate Result 2 Sigma CSU (pCi/t, g, F):       1.753       1.423         Are sample and/or duplicate results below RL?       See Below ##       Matrix Spike Duplicate Result 2 Sigma CSU (pCi/t, g, F):       1.753       1.842         Duplicate Network       Duplicate Result 2 Sigma CSU (pCi/t, g, F):       0.105       0.588       0.588         Duplicate Numerical Performance Indicator:       Duplicate Result 2 Sigma CSU (pCi/t, g, F):       1.753       1.842         Duplicate Result 2 Sigma CSU (pCi/t, g, F):       0.105       0.588       0.588         Duplicate Result 2 Sigma CSU (pCi/t, g, F):       0.105       0.588       0.588         Duplicate Result 2 Sigma CSU (pci/t, g, F):       0.105       0.588       0.588         Duplicate Result 2 Sigma CSU (pci/t, g, F):       0.105       0.588       0.588         Duplicate Result 2 Sigma CSU (pci/t, g, F):       0.105       0.588       0.588         Duplicate Result 2 Sigma CSU (pci/t, g, F):       0.105       0.588       0.588         Duplicate Result 2 Sigma CSU (pci/t, g,                                                                                                                                                                                                                                                                                                      | Sample Result 2 Sigma CSU (pCi/L, g, F):               |              | LCS/LCSD in      | Sample Matrix Spike Result:                                           | 8.855                      | 10.063                     |
| mole Duplicate Result 2 Sigma CSU (pCi/l, g, F):     9.243       Are sample and/or duplicate Result 2 Sigma CSU (pCi/l, g, F):     1.753       Are sample and/or duplicate results below KL?     See Below ##       Duplicate Numerical Performance Indicator:     0.105       Duplicate Numerical Indicator:     0.105       Duplicate Status vs Numerical Indicator:     2.01%       Bublicate Status vs Numerical Indicator:     2.01%       Duplicate Status vs Numerical Indicator:     2.01%       Duplicate Status vs Numerical Indicator:     0.105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sample Duplicate Result (pCi/L, g, F);                 |              | the space below. | Matrix Spike Result 2 Sigma CSU (pCi/d, g, F);                        | 1.785                      | 2.018                      |
| Are sample and/or duplicate results below RL? See Below ## Matrix Spike Duplicate Result 2 Sigma CSU (pC/if. g. F): 1.753 1 1842<br>Duplicate Numerical Performance indicator: 0.105 0.588 (Based on the Percent Recoveries) MS/ MSD Duplicate Resolut 2.01% 8.85% MS/ MSD Duplicate Status vs Numerical Indicator: Pass Pass Pass vs Duplicate Status vs PDD: Pass Pass Pass Pass Pass Pass Pass Pas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nple Duplicate Result 2 Sigma CSU (pCi/L, g, F):       |              |                  | Sample Matrix Spike Duplicate Result:                                 | 8.720                      | 9.243                      |
| Duplicate Numerical Performance Indicator:     0.105     0.588       Duplicate Numerical Performance Indicator:     0.105     0.588       Duplicate RPD:     Duplicate RPD:     2.01%     8.85%       Duplicate Status vs Numerical Indicator:     MS/ MSD Duplicate Status vs Numerical Indicator:     Pass     Pass       Duplicate Status vs Numerical Indicator:     Duplicate Status vs Numerical Indicator:     Pass     Pass     Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Are sample and/or duplicate results below RL?          | See Below #  |                  | Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):              | 1.753                      | 1,842                      |
| Duplicate RPD:     2.01%     8.85%       Duplicate Status vs Numerical Indicator:     MS/ MSD Duplicate Status vs Numerical Indicator:     Pass       Pass     Pass     Pass       Publicate Status vs ND     Pass     Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Duplicate Numerical Performance Indicator:             |              |                  | Duplicate Numerical Performance Indicator:                            | 0.105                      | 0.588                      |
| Duplicate Status vs Numerical Indicator:         Pass         Pass         Pass           Duplicate Status vs RD:         MS/ MSD Duplicate Status vs RD:         Pass         Pass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Duplicate RPD:                                         |              |                  | (Based on the Percent Recoveries) MS/ MSD Duplicate RPD:              | 2.01%                      | 8.85%                      |
| Unplicate Status vs RPD: Pass Pass V Duplicate Status vs RPD: Pass Pass Pass Pass Pass Pass Pass Pas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Duplicate Status vs Numerical Indicator:               |              |                  | MS/ MSD Duplicate Status vs Numerical Indicator:                      | Pass                       | Pass                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Duplicate Status vs KPU:                               |              |                  | MS/ MSD Duplicate Status vs RPD:                                      | Pass                       | Pass                       |

## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

Alt H

Della Contraction

Pace Analytical

# **Quality Control Sample Performance Assessment**

|                                                              |                                        |                         |                               |                               |                                                      |                               |                                                         |                                     |                                                          |                                    |                                     |                |                                          |                                               |                                       |                                                          |       |                                                             |                                     |                                   |                                    |                                |                         |                                                                    | ٦     |                                                       |                 |                       |                              |                                          |                                                |                                                                                                           |                                            |                                                           |                                                  |                                                  |
|--------------------------------------------------------------|----------------------------------------|-------------------------|-------------------------------|-------------------------------|------------------------------------------------------|-------------------------------|---------------------------------------------------------|-------------------------------------|----------------------------------------------------------|------------------------------------|-------------------------------------|----------------|------------------------------------------|-----------------------------------------------|---------------------------------------|----------------------------------------------------------|-------|-------------------------------------------------------------|-------------------------------------|-----------------------------------|------------------------------------|--------------------------------|-------------------------|--------------------------------------------------------------------|-------|-------------------------------------------------------|-----------------|-----------------------|------------------------------|------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|
|                                                              | CUSPA/SPA                              | 4                       |                               |                               |                                                      |                               |                                                         |                                     |                                                          |                                    |                                     |                |                                          |                                               |                                       |                                                          |       |                                                             |                                     |                                   |                                    |                                |                         |                                                                    |       |                                                       |                 |                       |                              |                                          |                                                |                                                                                                           |                                            |                                                           |                                                  |                                                  |
| Yellow.                                                      | MS/MSD 1                               |                         |                               |                               |                                                      |                               |                                                         |                                     |                                                          |                                    |                                     |                |                                          |                                               |                                       |                                                          |       |                                                             |                                     |                                   |                                    |                                |                         |                                                                    |       |                                                       |                 |                       |                              |                                          |                                                |                                                                                                           |                                            |                                                           |                                                  |                                                  |
| <u>Analyst Must Manually Enter All Fields Highlighted in</u> | Samole Matrix Snike Control Assessment | Sample Collection Date: | Sample I.D.<br>Sample MS I.D. | Sample MSD I.D.<br>Spike I.D. | MS/MSD Decay Corrected Spike Concentration (pCi/mL): | Spike Volume Used in MS (mL): | Spike volume Used #1 #3U (#L):<br>MS Aliquot (L, g, F): | MS Target Conc.(pCi/L, g, F):       | MSD Aliquot (L, g, F);<br>MSD Tarret Conc. (nCi/L o, E); | MS Spike Uncertainty (calculated): | MSD Spike Uncertainty (calculated); | Sample Result: | Sample Result 2 Sigma CSU (pCi/l, g, F): | Matrix Soike Result 2 Sigma CSU (oCi/o. F):   | Sample Matrix Spike Duplicate Result: | Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F): |       | MSD Numencal Performance indicator:<br>MS Percent Recovery: | MSD Percent Recovery:               | MS Status vs Numerical Indicator: | MSD Status vs Numerical Indicator: | MS Status vs Recovery:         | MSD Status vs Recovery: | MS/MSD Upper % Recovery Limits:<br>MS/MSD Lower % Recovery Limits: |       | Matrix Spike/Matrix Spike Duplicate Sample Assessment | Sample I.D.     | Sample MS I.D.        | Sample MSD I.D.              | Sample Matrix Spike Result:              | Matrix Spike Result 2 Sigma CSU (pCi/l, g, F): | oangre waara opixe Duminate Result 3 Simma CSH (nCi/) - n F)-                                             | Dunicate Numerical Performance Indicator   | (Based on the Percent Recoveries) MS/ MSD Duplicate RPD:  | MS/ MSD Duplicate Status vs Numerical Indicator: | MS/ MSD Duplicate Status vs RPD:<br>% RPD Limit: |
|                                                              |                                        |                         |                               |                               |                                                      |                               |                                                         |                                     |                                                          |                                    | Y                                   | LCSD58915      | 3/2/2021<br>21-003                       | 38.623                                        | 0.10                                  | 0.819                                                    | 4.710 | 0.231<br>3.747                                              | 0.834                               | -2.20                             | 79.42%                             | N/A                            | Pass                    | 135%                                                               | 27.00 |                                                       | Enter Duplicate | sample IDs if         | other than                   | LCS/LCSD in                              | the space below.                               |                                                                                                           |                                            |                                                           |                                                  |                                                  |
| 000 000                                                      | VAI                                    | 2/24/2021               | 58915<br>WT                   |                               | 2103745                                              | 0.345                         | 0.700                                                   | 1.99                                | Pass                                                     |                                    | LCSD (Y or N)?                      | LCS58915       | 3/2/2021<br>21-003                       | 38.623                                        | 0.10                                  | 0.808                                                    | 4.701 | U.234<br>4.284                                              | 0.952                               | -0.99                             | 89.60%                             | N/A                            | Pass                    | 135%<br>60%                                                        |       |                                                       | LCS58915        | LCSD58915             | 4.284                        | 0.952                                    | 3.747                                          |                                                                                                           | 0.832                                      | 12.05%                                                    | Pass                                             | Pass<br>36%                                      |
| Tool                                                         | Analvst                                | Date:                   | Worklist:<br>Matrix:          | lethod Blank Assessment       | MB Sample ID                                         | MB concentration:             |                                                         | MB Numerical Performance Indicator: | MB Status vs Nurmericai Indicator:<br>MB Status vs MDC:  |                                    | aboratory Control Sample Assessment |                | Count Date:                              | Decay Corrected Spike Concentration (pCl/mL); | Volume Used (mt):                     | Aliquot Volume (L, g, F):                                |       | Uncertainty (Calculated): <br>Result (pCi/L. o. F):         | LCS/LCSD 2 Sigma CSU (pCi/L, g, F): | Numerical Performance Indicator   | Percent Recovery:                  | Status vs Numerical Indicator: | Status vs Recovery:     | Upper % Recovery Limits:                                           |       | uplicate Sample Assessment                            | Sample I.D.:    | Duplicate Sample I.D. | Sample Result (pCi/L, g, F): | Sample Result 2 Sigma CSU (pCi/L, g, F): | Sample Duplicate Result (pCi/L, g, F);         | odrighe trupivare result & orgina ever (pevel, y, i ), i<br>Are sample and/or diminate results helow RI ? | Duplicate Numerical Performance Indicator: | (Based on the LCS/LCSD Percent Recoveries) Duplicate RPD: | Duplicate Status vs Numerical Indicator:         | Duplicate Status vs RPD:<br>% RPD Limit:         |

## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

J'ss'

Ra-228 NELAC DW2 Printed: 3/3/2021 6:44 AM

UNIT



March 11, 2021

Ms. Lauren Petty Southern Co. Services 42 Inverness Center Parkway Birmingham, AL 35242

RE: Project: YATES AMA RADS Pace Project No.: 92521568

Dear Ms. Petty:

Enclosed are the analytical results for sample(s) received by the laboratory between February 10, 2021 and February 12, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Karaling

Kevin Herring kevin.herring@pacelabs.com 1(704)875-9092 HORIZON Database Administrator

Enclosures

cc: Joju Abraham, Georgia Power-CCR Lauren Coker, Georgia Pwer Geoffrey Gay, ARCADIS - Atlanta Kristen Jurinko Kelley Sharpe, ARCADIS - Atlanta Alex Simpson, Arcadis Samantha Thomas Maribel Vital




Pace Analytical Services, LLC 110 Technology Parkway Peachtree Corners, GA 30092 (770)734-4200

#### CERTIFICATIONS

Project: YATES AMA RADS Pace Project No.: 92521568

#### Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601 ANAB DOD-ELAP Rad Accreditation #: L2417 Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694 **Delaware Certification** EPA Region 4 DW Rad Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET **Guam Certification** Hawaii Certification Idaho Certification **Illinois Certification** Indiana Certification Iowa Certification #: 391 Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221 Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086 Maine Certification #: 2017020 Maryland Certification #: 308 Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991

Missouri Certification #: 235 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249 Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification Tennessee Certification #: 02867 Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L



Pace Analytical Services, LLC 110 Technology Parkway Peachtree Corners, GA 30092 (770)734-4200

### SAMPLE SUMMARY

Project: YATES AMA RADS

Pace Project No.: 92521568

| Lab ID      | Sample ID            | Matrix | Date Collected | Date Received  |
|-------------|----------------------|--------|----------------|----------------|
| 92521568001 | YGWA-5D (020821)     | Water  | 02/08/21 16:45 | 02/10/21 17:10 |
| 92521568002 | DUP-01(020821)       | Water  | 02/08/21 00:00 | 02/10/21 17:10 |
| 92521568003 | YGWA-5I (020821)     | Water  | 02/08/21 16:20 | 02/10/21 17:10 |
| 92521568004 | YGWA-39 (021021)     | Water  | 02/10/21 09:30 | 02/10/21 17:10 |
| 92521568005 | YGWA-40 (021021)     | Water  | 02/10/21 10:50 | 02/10/21 17:10 |
| 92521568006 | FB-01(021021)        | Water  | 02/10/21 11:05 | 02/10/21 17:10 |
| 92521568007 | YGWA-20S (020921)    | Water  | 02/09/21 16:50 | 02/10/21 17:10 |
| 92521568008 | YGWA-4I(020921)      | Water  | 02/09/21 09:50 | 02/10/21 17:10 |
| 92521568009 | YGWA-17S(020921)     | Water  | 02/09/21 11:15 | 02/10/21 17:10 |
| 92521568010 | YGWA-18S(020921)     | Water  | 02/09/21 13:25 | 02/10/21 17:10 |
| 92521568011 | YGWA-18I(020921)     | Water  | 02/09/21 14:00 | 02/10/21 17:10 |
| 92521568012 | YGWA-21I(020921)     | Water  | 02/09/21 16:10 | 02/10/21 17:10 |
| 92521568013 | YGWA-3I(021021)      | Water  | 02/10/21 16:40 | 02/11/21 13:03 |
| 92521568014 | YGWA-3D(021021)      | Water  | 02/10/21 17:25 | 02/11/21 13:03 |
| 92521568015 | YGWA-30I(021121)     | Water  | 02/11/21 09:50 | 02/11/21 13:03 |
| 92521568016 | FB-01(021121)        | Water  | 02/11/21 10:00 | 02/11/21 13:03 |
| 92521568017 | EB-01(021121)        | Water  | 02/11/21 12:05 | 02/11/21 13:03 |
| 92521568018 | YGWA-40 (021021) MS  | Water  | 02/10/21 10:50 | 02/10/21 17:10 |
| 92521568019 | YGWA-40 (021021) MSD | Water  | 02/10/21 10:50 | 02/10/21 17:10 |
| 92521567001 | EB-02 (021021)       | Water  | 02/10/21 11:30 | 02/10/21 17:10 |
| 92521567003 | DUP-1 (021021)       | Water  | 02/10/21 00:00 | 02/10/21 17:10 |
| 92521567002 | YGWA-14S (021021)    | Water  | 02/10/21 08:50 | 02/10/21 17:10 |
| 92521567010 | YGWA-1I (021221)     | Water  | 02/12/21 13:20 | 02/12/21 17:10 |
| 92521567011 | YGWA-1D (021221)     | Water  | 02/12/21 11:55 | 02/12/21 17:10 |
| 92521567017 | YGWA-1D (021221) MS  | Water  | 02/12/21 11:55 | 02/12/21 17:10 |
| 92521567018 | YGWA-1D (021221) MSD | Water  | 02/12/21 11:55 | 02/12/21 17:10 |
| 92521572002 | YGWA-2I(021021)      | Water  | 02/10/21 12:40 | 02/10/21 17:10 |



### SAMPLE ANALYTE COUNT

Project: YATES AMA RADS Pace Project No.: 92521568

| Lab ID      | Sample ID         | Method                   | Analysts | Analytes<br>Reported | Laboratory |
|-------------|-------------------|--------------------------|----------|----------------------|------------|
| 92521568001 | YGWA-5D (020821)  | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 92521568002 | DUP-01(020821)    | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 92521568003 | YGWA-5I (020821)  | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 92521568004 | YGWA-39 (021021)  | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 92521568005 | YGWA-40 (021021)  | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 92521568006 | FB-01(021021)     | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 92521568007 | YGWA-20S (020921) | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 92521568008 | YGWA-4I(020921)   | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 92521568009 | YGWA-17S(020921)  | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 92521568010 | YGWA-18S(020921)  | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 92521568011 | YGWA-18I(020921)  | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 92521568012 | YGWA-21I(020921)  | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                   | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                   | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 92521568013 | YGWA-3I(021021)   | EPA 9315                 | LAL      | 1                    | PASI-PA    |



# SAMPLE ANALYTE COUNT

Project: YATES AMA RADS

Pace Project No.: 92521568

| Lab ID      | Sample ID            | Method                   | Analysts | Analytes<br>Reported | Laboratory |
|-------------|----------------------|--------------------------|----------|----------------------|------------|
|             |                      | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                      | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 92521568014 | YGWA-3D(021021)      | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                      | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                      | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 92521568015 | YGWA-30I(021121)     | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                      | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                      | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 92521568016 | FB-01(021121)        | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                      | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                      | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 92521568017 | EB-01(021121)        | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                      | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                      | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 92521568018 | YGWA-40 (021021) MS  | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                      | EPA 9320                 | VAL      | 1                    | PASI-PA    |
| 92521568019 | YGWA-40 (021021) MSD | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                      | EPA 9320                 | VAL      | 1                    | PASI-PA    |
| 92521567001 | EB-02 (021021)       | EPA 9315                 | MK1      | 1                    | PASI-PA    |
|             |                      | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                      | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 92521567003 | DUP-1 (021021)       | EPA 9315                 | MK1      | 1                    | PASI-PA    |
|             |                      | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                      | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 92521567002 | YGWA-14S (021021)    | EPA 9315                 | MK1      | 1                    | PASI-PA    |
|             |                      | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                      | Total Radium Calculation | JAL      | 1                    | PASI-PA    |
| 92521567010 | YGWA-1I (021221)     | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                      | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                      | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92521567011 | YGWA-1D (021221)     | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                      | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                      | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92521567017 | YGWA-1D (021221) MS  | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                      | EPA 9320                 | VAL      | 1                    | PASI-PA    |
| 92521567018 | YGWA-1D (021221) MSD | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                      | EPA 9320                 | VAL      | 1                    | PASI-PA    |



### SAMPLE ANALYTE COUNT

Project: YATES AMA RADS Pace Project No.: 92521568

| Lab ID      | Sample ID       | Method                   | Analysts | Analytes<br>Reported | Laboratory |
|-------------|-----------------|--------------------------|----------|----------------------|------------|
| 92521572002 | YGWA-2I(021021) | EPA 9315                 | JJY      | 1                    | PASI-PA    |
|             |                 | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                 | Total Radium Calculation | JAL      | 1                    | PASI-PA    |

PASI-PA = Pace Analytical Services - Greensburg



Project: YATES AMA RADS

Pace Project No.: 92521568

| Lab Sample ID            | Client Sample ID |                                                       |       |              |                |            |
|--------------------------|------------------|-------------------------------------------------------|-------|--------------|----------------|------------|
| Method                   | Parameters       | Result                                                | Units | Report Limit | Analyzed       | Qualifiers |
| 92521568001              | YGWA-5D (020821) |                                                       |       |              |                |            |
| EPA 9315                 | Radium-226       | 2.30 ±<br>0.514<br>(0.306)                            | pCi/L |              | 03/05/21 07:15 |            |
| EPA 9320                 | Radium-228       | C:89% T:NA<br>0.591 ±<br>0.501<br>(1.00)<br>C:79%     | pCi/L |              | 03/01/21 16:19 |            |
| Total Radium Calculation | Total Radium     | T:67%<br>2.89 ± 1.02<br>(1.31)                        | pCi/L |              | 03/05/21 14:00 |            |
| 92521568002              | DUP-01(020821)   |                                                       |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.171 ±<br>0.133<br>(0.235)<br>C <sup>.</sup> 92% TNA | pCi/L |              | 03/05/21 07:15 |            |
| EPA 9320                 | Radium-228       | 0.0142 ±<br>0.351<br>(0.815)<br>C:80%                 | pCi/L |              | 03/01/21 16:19 |            |
| Total Radium Calculation | Total Radium     | 0.185 ±<br>0.484<br>(1.05)                            | pCi/L |              | 03/05/21 14:00 |            |
| 92521568003              | YGWA-5I (020821) |                                                       |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.476 ±<br>0.249<br>(0.427)<br>C <sup>.</sup> 90% TNA | pCi/L |              | 03/05/21 07:15 |            |
| EPA 9320                 | Radium-228       | 0.137 ±<br>0.351<br>(0.783)<br>C:82%<br>T:79%         | pCi/L |              | 03/01/21 16:19 |            |
| Total Radium Calculation | Total Radium     | 0.613 ±<br>0.600<br>(1.21)                            | pCi/L |              | 03/05/21 14:00 |            |
| 92521568004              | YGWA-39 (021021) |                                                       |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.363 ±<br>0.187<br>(0.306)<br>C <sup>.</sup> 96% TNA | pCi/L |              | 03/05/21 07:15 |            |
| EPA 9320                 | Radium-228       | 0.155 ±<br>0.298<br>(0.655)<br>C:87%<br>T:90%         | pCi/L |              | 03/01/21 16:20 |            |
| Total Radium Calculation | Total Radium     | 0.518 ±<br>0.485<br>(0.961)                           | pCi/L |              | 03/05/21 14:00 |            |



Project: YATES AMA RADS

Pace Project No.: 92521568

| Lab Sample ID            | Client Sample ID  |                                                   |       |              |                |            |
|--------------------------|-------------------|---------------------------------------------------|-------|--------------|----------------|------------|
| Method                   | Parameters        | Result                                            | Units | Report Limit | Analyzed       | Qualifiers |
| 92521568005              | YGWA-40 (021021)  |                                                   |       |              |                |            |
| EPA 9315                 | Radium-226        | 0.346 ±<br>0.178<br>(0.255)                       | pCi/L |              | 03/05/21 07:15 |            |
| EPA 9320                 | Radium-228        | C:93% 1:NA<br>0.437 ±<br>0.487<br>(1.02)<br>C:90% | pCi/L |              | 03/01/21 16:19 |            |
| Total Radium Calculation | Total Radium      | 0.783 ±<br>0.665<br>(1.28)                        | pCi/L |              | 03/05/21 14:00 |            |
| 92521568006              | FB-01(021021)     |                                                   |       |              |                |            |
| EPA 9315                 | Radium-226        | 0.0756 ±<br>0.104<br>(0.217)<br>C:87% T:NA        | pCi/L |              | 03/05/21 07:15 |            |
| EPA 9320                 | Radium-228        | 0.0378 ±<br>0.302<br>(0.696)<br>C:86%<br>T:83%    | pCi/L |              | 03/01/21 16:20 |            |
| Total Radium Calculation | Total Radium      | 0.113 ±<br>0.406<br>(0.913)                       | pCi/L |              | 03/05/21 14:00 |            |
| 92521568007              | YGWA-20S (020921) |                                                   |       |              |                |            |
| EPA 9315                 | Radium-226        | 0.0222 ±<br>0.0899<br>(0.230)<br>C:94% T:NA       | pCi/L |              | 03/05/21 07:27 |            |
| EPA 9320                 | Radium-228        | 0.262 ±<br>0.354<br>(0.756)<br>C:84%<br>T:79%     | pCi/L |              | 03/01/21 16:20 |            |
| Total Radium Calculation | Total Radium      | 0.284 ±<br>0.444<br>(0.986)                       | pCi/L |              | 03/05/21 14:00 |            |
| 92521568008              | YGWA-4I(020921)   |                                                   |       |              |                |            |
| EPA 9315                 | Radium-226        | 0.492 ±<br>0.201<br>(0.224)                       | pCi/L |              | 03/05/21 07:27 |            |
| EPA 9320                 | Radium-228        | 0.134 ±<br>0.379<br>(0.848)<br>C:84%<br>T:78%     | pCi/L |              | 03/01/21 16:20 |            |
| Total Radium Calculation | Total Radium      | 0.626 ±<br>0.580<br>(1.07)                        | pCi/L |              | 03/05/21 14:00 |            |



Project: YATES AMA RADS

Pace Project No.: 92521568

| Lab Sample ID            | Client Sample ID |                                                        |       |              |                |            |
|--------------------------|------------------|--------------------------------------------------------|-------|--------------|----------------|------------|
| Method                   | Parameters       | Result                                                 | Units | Report Limit | Analyzed       | Qualifiers |
| 92521568009              | YGWA-17S(020921) |                                                        |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.0845 ±<br>0.101<br>(0.203)                           | pCi/L |              | 03/05/21 07:27 |            |
| EPA 9320                 | Radium-228       | C:86% T:NA<br>0.444 ±<br>0.512<br>(1.08)<br>C:89%      | pCi/L |              | 03/01/21 16:20 |            |
| Total Radium Calculation | Total Radium     | T:63%<br>0.529 ±<br>0.613<br>(1.28)                    | pCi/L |              | 03/05/21 14:00 |            |
| 92521568010              | YGWA-18S(020921) |                                                        |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.0536 ±<br>0.0925<br>(0.208)                          | pCi/L |              | 03/05/21 07:27 |            |
| EPA 9320                 | Radium-228       | 0.205 ±<br>0.313<br>(0.676)<br>C:82%<br>T:78%          | pCi/L |              | 03/01/21 16:20 |            |
| Total Radium Calculation | Total Radium     | 0.259 ±<br>0.406<br>(0.884)                            | pCi/L |              | 03/05/21 14:00 |            |
| 92521568011              | YGWA-18I(020921) |                                                        |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.147 ±<br>0.123<br>(0.217)<br>C <sup>.</sup> 89% T.NA | pCi/L |              | 03/05/21 07:48 |            |
| EPA 9320                 | Radium-228       | 0.167 ±<br>0.338<br>(0.745)<br>C:86%<br>T:79%          | pCi/L |              | 03/01/21 16:20 |            |
| Total Radium Calculation | Total Radium     | 0.314 ±<br>0.461<br>(0.962)                            | pCi/L |              | 03/05/21 14:00 |            |
| 92521568012              | YGWA-211(020921) |                                                        |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.925 ±<br>0.287<br>(0.231)<br>C.91% TNA               | pCi/L |              | 03/05/21 07:27 |            |
| EPA 9320                 | Radium-228       | 0.315 ±<br>0.363<br>(0.763)<br>C:88%<br>T:79%          | pCi/L |              | 03/01/21 16:21 |            |
| Total Radium Calculation | Total Radium     | 1.24 ±<br>0.650<br>(0.994)                             | pCi/L |              | 03/05/21 14:00 |            |



Project: YATES AMA RADS

Pace Project No.: 92521568

| Lab Sample ID            | Client Sample ID |                                                   |       |              |                |            |
|--------------------------|------------------|---------------------------------------------------|-------|--------------|----------------|------------|
| Method                   | Parameters       | Result                                            | Units | Report Limit | Analyzed       | Qualifiers |
| 92521568013              | YGWA-3I(021021)  |                                                   |       |              |                |            |
| EPA 9315                 | Radium-226       | 1.10 ±<br>0.317<br>(0.250)                        | pCi/L |              | 03/05/21 07:27 |            |
| EPA 9320                 | Radium-228       | C:91% I:NA<br>1.36 ±<br>0.549<br>(0.874)<br>C:90% | pCi/L |              | 03/01/21 16:20 |            |
| Total Radium Calculation | Total Radium     | T:68%<br>2.46 ±<br>0.866<br>(1.12)                | pCi/L |              | 03/05/21 14:00 |            |
| 92521568014              | YGWA-3D(021021)  |                                                   |       |              |                |            |
| EPA 9315                 | Radium-226       | 1.59 ±<br>0.397<br>(0.248)<br>C:91% TNA           | pCi/L |              | 03/05/21 07:27 |            |
| EPA 9320                 | Radium-228       | 2.06 ±<br>0.635<br>(0.822)<br>C:84%<br>T:79%      | pCi/L |              | 03/01/21 16:20 |            |
| Total Radium Calculation | Total Radium     | 3.65 ± 1.03<br>(1.07)                             | pCi/L |              | 03/05/21 14:00 |            |
| 92521568015              | YGWA-30I(021121) |                                                   |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.0594 ±<br>0.0766<br>(0.153)<br>C:94% TNA        | pCi/L |              | 03/05/21 07:27 |            |
| EPA 9320                 | Radium-228       | 0.619 ±<br>0.427<br>(0.833)<br>C:86%<br>T79%      | pCi/L |              | 03/01/21 16:20 |            |
| Total Radium Calculation | Total Radium     | 0.678 ±<br>0.504<br>(0.986)                       | pCi/L |              | 03/05/21 14:00 |            |
| 92521568016              | FB-01(021121)    |                                                   |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.0929 ±<br>0.0996<br>(0.196)                     | pCi/L |              | 03/05/21 07:28 |            |
| EPA 9320                 | Radium-228       | 0.419 ±<br>0.398<br>(0.821)<br>C:88%<br>T:80%     | pCi/L |              | 03/01/21 16:20 |            |
| Total Radium Calculation | Total Radium     | 0.512 ±<br>0.498<br>(1.02)                        | pCi/L |              | 03/05/21 14:00 |            |



Project: YATES AMA RADS

Pace Project No.: 92521568

| Lab Sample ID            | Client Sample ID     |                                                      |       |              |                |            |
|--------------------------|----------------------|------------------------------------------------------|-------|--------------|----------------|------------|
| Method                   | Parameters           | Result                                               | Units | Report Limit | Analyzed       | Qualifiers |
| 92521568017              | EB-01(021121)        |                                                      |       |              |                |            |
| EPA 9315                 | Radium-226           | 0.0319 ±<br>0.0775<br>(0.187)                        | pCi/L |              | 03/05/21 07:28 |            |
| EPA 9320                 | Radium-228           | C:87% T:NA<br>0.648 ±<br>0.478<br>(0.941)<br>C:86%   | pCi/L |              | 03/01/21 16:20 |            |
| Total Radium Calculation | Total Radium         | T:67%<br>0.680 ±<br>0.556<br>(1.13)                  | pCi/L |              | 03/05/21 14:00 |            |
| 92521568018              | YGWA-40 (021021) MS  |                                                      |       |              |                |            |
| EPA 9315                 | Radium-226           | 102.72<br>%REC ±<br>NA (NA)<br>C:NA T:NA             | pCi/L |              | 03/05/21 07:28 |            |
| EPA 9320                 | Radium-228           | 82.38<br>%REC ±<br>NA (NA)<br>C:NA T:NA              | pCi/L |              | 03/01/21 16:20 |            |
| 92521568019              | YGWA-40 (021021) MSD |                                                      |       |              |                |            |
| EPA 9315                 | Radium-226           | 93.67%RE                                             | pCi/L |              | 03/05/21 07:28 |            |
|                          |                      | C<br>9.21RPD ±<br>NA (NA)<br>C:NA T:NA               |       |              |                |            |
| EPA 9320                 | Radium-228           | 62.49<br>%REC<br>27.45 RPD<br>± NA (NA)<br>C:NA T:NA | pCi/L |              | 03/01/21 16:20 |            |
| 92521567001              | EB-02 (021021)       |                                                      |       |              |                |            |
| EPA 9315                 | Radium-226           | 0.0550 ±<br>0.0861<br>(0.188)<br>C:84% T:NA          | pCi/L |              | 03/05/21 07:30 |            |
| EPA 9320                 | Radium-228           | -0.0344 ±<br>0.302<br>(0.716)<br>C:69%               | pCi/L |              | 02/26/21 11:30 |            |
| Total Radium Calculation | Total Radium         | T:90%<br>0.0550 ±<br>0.388<br>(0.904)                | pCi/L |              | 03/05/21 14:01 |            |
| 92521567003              | DUP-1 (021021)       |                                                      |       |              |                |            |
| EPA 9315                 | Radium-226           | 0.0865 ±<br>0.0955<br>(0.184)<br>C:82% T:NA          | pCi/L |              | 03/05/21 07:30 |            |



Project: YATES AMA RADS

Pace Project No.: 92521568

| Lab Sample ID            | Client Sample ID    |                                                |       |              |                |            |
|--------------------------|---------------------|------------------------------------------------|-------|--------------|----------------|------------|
| Method                   | Parameters          | Result                                         | Units | Report Limit | Analyzed       | Qualifiers |
| 92521567003              | DUP-1 (021021)      |                                                |       |              |                |            |
| EPA 9320                 | Radium-228          | 0.528 ±<br>0.390<br>(0.755)<br>C:71%           | pCi/L |              | 02/26/21 11:30 |            |
| Total Radium Calculation | Total Radium        | 0.615 ±<br>0.486<br>(0.939)                    | pCi/L |              | 03/05/21 14:01 |            |
| 92521567002              | YGWA-14S (021021)   |                                                |       |              |                |            |
| EPA 9315                 | Radium-226          | 0.173 ±<br>0.123<br>(0.203)<br>C:90% T:NA      | pCi/L |              | 03/05/21 07:30 |            |
| EPA 9320                 | Radium-228          | 0.180 ±<br>0.339<br>(0.746)<br>C:73%<br>T75%   | pCi/L |              | 02/26/21 11:30 |            |
| Total Radium Calculation | Total Radium        | 0.353 ±<br>0.462<br>(0.949)                    | pCi/L |              | 03/05/21 14:01 |            |
| 92521567010              | YGWA-1I (021221)    |                                                |       |              |                |            |
| EPA 9315                 | Radium-226          | 0.136 ±<br>0.0809<br>(0.131)<br>C:94% T:NA     | pCi/L |              | 03/09/21 19:03 |            |
| EPA 9320                 | Radium-228          | 0.322 ±<br>0.541<br>(1.18)<br>C:72%<br>T-83%   | pCi/L |              | 03/09/21 17:17 |            |
| Total Radium Calculation | Total Radium        | 0.458 ±<br>0.622<br>(1.31)                     | pCi/L |              | 03/10/21 15:19 |            |
| 92521567011              | YGWA-1D (021221)    |                                                |       |              |                |            |
| EPA 9315                 | Radium-226          | 0.275 ±<br>0.0990<br>(0.123)<br>C:95% T:NA     | pCi/L |              | 03/09/21 19:03 |            |
| EPA 9320                 | Radium-228          | 0.0910 ±<br>0.322<br>(0.726)<br>C:81%<br>T:87% | pCi/L |              | 03/09/21 15:27 |            |
| Total Radium Calculation | Total Radium        | 0.366 ±<br>0.421<br>(0.849)                    | pCi/L |              | 03/10/21 14:15 |            |
| 92521567017              | YGWA-1D (021221) MS |                                                |       |              |                |            |
| EPA 9315                 | Radium-226          | 98.68<br>%REC ±<br>NA (NA)<br>C:NA T:NA        | pCi/L |              | 03/09/21 19:03 |            |



Project: YATES AMA RADS

Pace Project No.: 92521568

| Lab Sample ID            | Client Sample ID     |                                                      |       |              |                |            |
|--------------------------|----------------------|------------------------------------------------------|-------|--------------|----------------|------------|
| Method                   | Parameters           | Result                                               | Units | Report Limit | Analyzed       | Qualifiers |
| 92521567017              | YGWA-1D (021221) MS  |                                                      |       |              |                |            |
| EPA 9320                 | Radium-228           | 106.48<br>%REC ±<br>NA (NA)<br>C:NA T:NA             | pCi/L |              | 03/09/21 15:27 |            |
| 92521567018              | YGWA-1D (021221) MSD |                                                      |       |              |                |            |
| EPA 9315                 | Radium-226           | 91.79<br>%REC<br>7.24 RPD ±<br>NA (NA)<br>C:NA T:NA  | pCi/L |              | 03/09/21 19:03 |            |
| EPA 9320                 | Radium-228           | 91.25<br>%REC<br>15.40 RPD<br>± NA (NA)<br>C:NA T:NA | pCi/L |              | 03/09/21 15:28 |            |
| 92521572002              | YGWA-2I(021021)      |                                                      |       |              |                |            |
| EPA 9315                 | Radium-226           | 0.209 ±<br>0.130<br>(0.198)<br>C:83% T:NA            | pCi/L |              | 03/02/21 11:26 |            |
| EPA 9320                 | Radium-228           | 0.831 ±<br>0.551<br>(1.06)<br>C:70%<br>T:78%         | pCi/L |              | 02/24/21 15:31 |            |
| Total Radium Calculation | Total Radium         | 1.04 ±<br>0.681<br>(1.26)                            | pCi/L |              | 03/02/21 16:35 |            |



Project: YATES AMA RADS

Pace Project No.: 92521568

| <b>Sample: YGWA-5D (020821)</b><br>PWS: | Lab ID: 92521568<br>Site ID: | 8001 Collected: 02/08/21 16:45<br>Sample Type: | Received: | 02/10/21 17:10 M | fatrix: Water |      |
|-----------------------------------------|------------------------------|------------------------------------------------|-----------|------------------|---------------|------|
| Parameters                              | Method                       | Act ± Unc (MDC) Carr Trac                      | Units     | Analyzed         | CAS No.       | Qual |
|                                         | Pace Analytical Ser          | vices - Greensburg                             |           |                  |               |      |
| Radium-226                              | EPA 9315                     | 2.30 ± 0.514 (0.306)<br>C:89% T:NA             | pCi/L     | 03/05/21 07:15   | 13982-63-3    |      |
|                                         | Pace Analytical Service      | vices - Greensburg                             |           |                  |               |      |
| Radium-228                              | EPA 9320                     | 0.591 ± 0.501 (1.00)<br>C:79% T:67%            | pCi/L     | 03/01/21 16:19   | 15262-20-1    |      |
|                                         | Pace Analytical Service      | vices - Greensburg                             |           |                  |               |      |
| Total Radium                            | Total Radium<br>Calculation  | 2.89 ± 1.02 (1.31)                             | pCi/L     | 03/05/21 14:00   | 7440-14-4     |      |



Project: YATES AMA RADS

Pace Project No.: 92521568

| Sample: DUP-01(020821) | Lab ID: 92521               | 568002 Collected: 02/08/21 00:00      | Received: | 02/10/21 17:10 N | latrix: Water |      |
|------------------------|-----------------------------|---------------------------------------|-----------|------------------|---------------|------|
| PWS:                   | Site ID:                    | Sample Type:                          |           |                  |               |      |
| Parameters             | Method                      | Act ± Unc (MDC) Carr Trac             | Units     | Analyzed         | CAS No.       | Qual |
|                        | Pace Analytical S           | Services - Greensburg                 |           |                  |               |      |
| Radium-226             | EPA 9315                    | 0.171 ± 0.133 (0.235)<br>C:92% T:NA   | pCi/L     | 03/05/21 07:15   | 13982-63-3    |      |
|                        | Pace Analytical S           | Services - Greensburg                 |           |                  |               |      |
| Radium-228             | EPA 9320                    | 0.0142 ± 0.351 (0.815)<br>C:80% T:79% | pCi/L     | 03/01/21 16:19   | 15262-20-1    |      |
|                        | Pace Analytical S           | Services - Greensburg                 |           |                  |               |      |
| Total Radium           | Total Radium<br>Calculation | 0.185 ± 0.484 (1.05)                  | pCi/L     | 03/05/21 14:00   | 7440-14-4     |      |



Project: YATES AMA RADS

Pace Project No.: 92521568

| <b>Sample: YGWA-5I (020821)</b><br>PWS: | Lab ID: 925215<br>Site ID:  | 68003 Collected: 02/08/21 16:20<br>Sample Type: | Received: | 02/10/21 17:10 M | fatrix: Water |      |
|-----------------------------------------|-----------------------------|-------------------------------------------------|-----------|------------------|---------------|------|
| Parameters                              | Method                      | Act ± Unc (MDC) Carr Trac                       | Units     | Analyzed         | CAS No.       | Qual |
|                                         | Pace Analytical Se          | ervices - Greensburg                            |           |                  |               |      |
| Radium-226                              | EPA 9315                    | 0.476 ± 0.249 (0.427)<br>C:90% T:NA             | pCi/L     | 03/05/21 07:15   | 13982-63-3    |      |
|                                         | Pace Analytical Se          | ervices - Greensburg                            |           |                  |               |      |
| Radium-228                              | EPA 9320                    | 0.137 ± 0.351 (0.783)<br>C:82% T:79%            | pCi/L     | 03/01/21 16:19   | 15262-20-1    |      |
|                                         | Pace Analytical Se          | ervices - Greensburg                            |           |                  |               |      |
| Total Radium                            | Total Radium<br>Calculation | 0.613 ± 0.600 (1.21)                            | pCi/L     | 03/05/21 14:00   | 7440-14-4     |      |



Project: YATES AMA RADS

Pace Project No.: 92521568

| <b>Sample: YGWA-39 (021021)</b><br>PWS: | Lab ID: 92521568<br>Site ID: | Collected: 02/10/21 09:30<br>Sample Type: | Received: | 02/10/21 17:10 M | latrix: Water |      |
|-----------------------------------------|------------------------------|-------------------------------------------|-----------|------------------|---------------|------|
| Parameters                              | Method                       | Act ± Unc (MDC) Carr Trac                 | Units     | Analyzed         | CAS No.       | Qual |
|                                         | Pace Analytical Serv         | vices - Greensburg                        |           |                  |               |      |
| Radium-226                              | EPA 9315                     | 0.363 ± 0.187 (0.306)<br>C:96% T:NA       | pCi/L     | 03/05/21 07:15   | 13982-63-3    |      |
|                                         | Pace Analytical Serv         | rices - Greensburg                        |           |                  |               |      |
| Radium-228                              | EPA 9320                     | 0.155 ± 0.298 (0.655)<br>C:87% T:90%      | pCi/L     | 03/01/21 16:20   | 15262-20-1    |      |
|                                         | Pace Analytical Serv         | rices - Greensburg                        |           |                  |               |      |
| Total Radium                            | Total Radium<br>Calculation  | 0.518 ± 0.485 (0.961)                     | pCi/L     | 03/05/21 14:00   | 7440-14-4     |      |



Project: YATES AMA RADS

Pace Project No.: 92521568

| Sample: YGWA-40 (021021)<br>PWS: | Lab ID: 92521<br>Site ID:   | 568005 Collected: 02/10/21 10:50<br>Sample Type: | Received: | 02/10/21 17:10 M | latrix: Water |      |
|----------------------------------|-----------------------------|--------------------------------------------------|-----------|------------------|---------------|------|
| Parameters                       | Method                      | Act ± Unc (MDC) Carr Trac                        | Units     | Analyzed         | CAS No.       | Qual |
|                                  | Pace Analytical S           | ervices - Greensburg                             |           |                  |               |      |
| Radium-226                       | EPA 9315                    | 0.346 ± 0.178 (0.255)<br>C:93% T:NA              | pCi/L     | 03/05/21 07:15   | 13982-63-3    |      |
|                                  | Pace Analytical S           | ervices - Greensburg                             |           |                  |               |      |
| Radium-228                       | EPA 9320                    | 0.437 ± 0.487 (1.02)<br>C:90% T:61%              | pCi/L     | 03/01/21 16:19   | 15262-20-1    |      |
|                                  | Pace Analytical S           | ervices - Greensburg                             |           |                  |               |      |
| Total Radium                     | Total Radium<br>Calculation | 0.783 ± 0.665 (1.28)                             | pCi/L     | 03/05/21 14:00   | 7440-14-4     |      |



Project: YATES AMA RADS

Pace Project No.: 92521568

| Sample: FB-01(021021)<br>PWS: | Lab ID: 9252156<br>Site ID: | 8006 Collected: 02/10/21 11:05<br>Sample Type: | Received: | 02/10/21 17:10 N | latrix: Water |      |
|-------------------------------|-----------------------------|------------------------------------------------|-----------|------------------|---------------|------|
| Parameters                    | Method                      | Act ± Unc (MDC) Carr Trac                      | Units     | Analyzed         | CAS No.       | Qual |
|                               | Pace Analytical Se          | rvices - Greensburg                            |           |                  |               |      |
| Radium-226                    | EPA 9315                    | 0.0756 ± 0.104 (0.217)<br>C:87% T:NA           | pCi/L     | 03/05/21 07:15   | 13982-63-3    |      |
|                               | Pace Analytical Se          | rvices - Greensburg                            |           |                  |               |      |
| Radium-228                    | EPA 9320                    | 0.0378 ± 0.302 (0.696)<br>C:86% T:83%          | pCi/L     | 03/01/21 16:20   | 15262-20-1    |      |
|                               | Pace Analytical Se          | rvices - Greensburg                            |           |                  |               |      |
| Total Radium                  | Total Radium<br>Calculation | 0.113 ± 0.406 (0.913)                          | pCi/L     | 03/05/21 14:00   | 7440-14-4     |      |



Project: YATES AMA RADS

Pace Project No.: 92521568

| Sample: YGWA-20S (020921)<br>PWS: | Lab ID: 925215<br>Site ID:  | 568007 Collected: 02/09/21 16:50<br>Sample Type: | Received: | 02/10/21 17:10 N | Aatrix: Water |      |
|-----------------------------------|-----------------------------|--------------------------------------------------|-----------|------------------|---------------|------|
| Parameters                        | Method                      | Act ± Unc (MDC) Carr Trac                        | Units     | Analyzed         | CAS No.       | Qual |
|                                   | Pace Analytical S           | ervices - Greensburg                             |           |                  |               |      |
| Radium-226                        | EPA 9315                    | 0.0222 ± 0.0899 (0.230)<br>C:94% T:NA            | pCi/L     | 03/05/21 07:27   | 13982-63-3    |      |
|                                   | Pace Analytical S           | ervices - Greensburg                             |           |                  |               |      |
| Radium-228                        | EPA 9320                    | 0.262 ± 0.354 (0.756)<br>C:84% T:79%             | pCi/L     | 03/01/21 16:20   | 15262-20-1    |      |
|                                   | Pace Analytical S           | ervices - Greensburg                             |           |                  |               |      |
| Total Radium                      | Total Radium<br>Calculation | 0.284 ± 0.444 (0.986)                            | pCi/L     | 03/05/21 14:00   | 7440-14-4     |      |



Project: YATES AMA RADS

Pace Project No.: 92521568

| <b>Sample: YGWA-4I(020921)</b><br>PWS: | Lab ID: 9252156<br>Site ID: | 8008 Collected: 02/09/21 09:50<br>Sample Type: | Received: | 02/10/21 17:10 N | Aatrix: Water |      |
|----------------------------------------|-----------------------------|------------------------------------------------|-----------|------------------|---------------|------|
| Parameters                             | Method                      | Act ± Unc (MDC) Carr Trac                      | Units     | Analyzed         | CAS No.       | Qual |
|                                        | Pace Analytical Ser         | vices - Greensburg                             |           |                  |               |      |
| Radium-226                             | EPA 9315                    | 0.492 ± 0.201 (0.224)<br>C:89% T:NA            | pCi/L     | 03/05/21 07:27   | 13982-63-3    |      |
|                                        | Pace Analytical Ser         | vices - Greensburg                             |           |                  |               |      |
| Radium-228                             | EPA 9320                    | 0.134 ± 0.379 (0.848)<br>C:84% T:78%           | pCi/L     | 03/01/21 16:20   | 15262-20-1    |      |
|                                        | Pace Analytical Ser         | vices - Greensburg                             |           |                  |               |      |
| Total Radium                           | Total Radium<br>Calculation | 0.626 ± 0.580 (1.07)                           | pCi/L     | 03/05/21 14:00   | 7440-14-4     |      |



Project: YATES AMA RADS

Pace Project No.: 92521568

| <b>Sample: YGWA-17S(020921)</b><br>PWS: | Lab ID: 9252156<br>Site ID: | 8009 Collected: 02/09/21 11:15<br>Sample Type: | Received: | 02/10/21 17:10 M | fatrix: Water |      |
|-----------------------------------------|-----------------------------|------------------------------------------------|-----------|------------------|---------------|------|
| Parameters                              | Method                      | Act ± Unc (MDC) Carr Trac                      | Units     | Analyzed         | CAS No.       | Qual |
|                                         | Pace Analytical Ser         | rvices - Greensburg                            |           |                  |               |      |
| Radium-226                              | EPA 9315                    | 0.0845 ± 0.101 (0.203)<br>C:86% T:NA           | pCi/L     | 03/05/21 07:27   | 13982-63-3    |      |
|                                         | Pace Analytical Ser         | rvices - Greensburg                            |           |                  |               |      |
| Radium-228                              | EPA 9320                    | 0.444 ± 0.512 (1.08)<br>C:89% T:63%            | pCi/L     | 03/01/21 16:20   | 15262-20-1    |      |
|                                         | Pace Analytical Ser         | rvices - Greensburg                            |           |                  |               |      |
| Total Radium                            | Total Radium<br>Calculation | 0.529 ± 0.613 (1.28)                           | pCi/L     | 03/05/21 14:00   | 7440-14-4     |      |



Project: YATES AMA RADS

Pace Project No.: 92521568

| Sample: YGWA-18S(020921)<br>PWS: | Lab ID: 9252<br>Site ID:    | <b>1568010</b> Collected: 02/09/21 13:25<br>Sample Type: | Received: | 02/10/21 17:10 N | Aatrix: Water |      |
|----------------------------------|-----------------------------|----------------------------------------------------------|-----------|------------------|---------------|------|
| Parameters                       | Method                      | Act ± Unc (MDC) Carr Trac                                | Units     | Analyzed         | CAS No.       | Qual |
|                                  | Pace Analytical             | Services - Greensburg                                    |           |                  |               |      |
| Radium-226                       | EPA 9315                    | 0.0536 ± 0.0925 (0.208)<br>C:92% T:NA                    | pCi/L     | 03/05/21 07:27   | 13982-63-3    |      |
|                                  | Pace Analytical             | Services - Greensburg                                    |           |                  |               |      |
| Radium-228                       | EPA 9320                    | 0.205 ± 0.313 (0.676)<br>C:82% T:78%                     | pCi/L     | 03/01/21 16:20   | 15262-20-1    |      |
|                                  | Pace Analytical             | Services - Greensburg                                    |           |                  |               |      |
| Total Radium                     | Total Radium<br>Calculation | 0.259 ± 0.406 (0.884)                                    | pCi/L     | 03/05/21 14:00   | 7440-14-4     |      |



Project: YATES AMA RADS

Pace Project No.: 92521568

| <b>Sample: YGWA-18I(020921)</b><br>PWS: | Lab ID: 925215<br>Site ID:  | 568011 Collected: 02/09/21 14:00<br>Sample Type: | Received: | 02/10/21 17:10 M | latrix: Water |      |
|-----------------------------------------|-----------------------------|--------------------------------------------------|-----------|------------------|---------------|------|
| Parameters                              | Method                      | Act ± Unc (MDC) Carr Trac                        | Units     | Analyzed         | CAS No.       | Qual |
|                                         | Pace Analytical S           | ervices - Greensburg                             |           |                  |               |      |
| Radium-226                              | EPA 9315                    | 0.147 ± 0.123 (0.217)<br>C:89% T:NA              | pCi/L     | 03/05/21 07:48   | 13982-63-3    |      |
|                                         | Pace Analytical S           | ervices - Greensburg                             |           |                  |               |      |
| Radium-228                              | EPA 9320                    | 0.167 ± 0.338 (0.745)<br>C:86% T:79%             | pCi/L     | 03/01/21 16:20   | 15262-20-1    |      |
|                                         | Pace Analytical S           | ervices - Greensburg                             |           |                  |               |      |
| Total Radium                            | Total Radium<br>Calculation | 0.314 ± 0.461 (0.962)                            | pCi/L     | 03/05/21 14:00   | 7440-14-4     |      |



Project: YATES AMA RADS

Pace Project No.: 92521568

| Sample: YGWA-211(020921)<br>PWS: | Lab ID: 9252<br>Site ID:    | <b>1568012</b> Collected: 02/09/21 16:10<br>Sample Type: | Received: | 02/10/21 17:10 N | latrix: Water |      |
|----------------------------------|-----------------------------|----------------------------------------------------------|-----------|------------------|---------------|------|
| Parameters                       | Method                      | Act ± Unc (MDC) Carr Trac                                | Units     | Analyzed         | CAS No.       | Qual |
|                                  | Pace Analytical             | Services - Greensburg                                    |           |                  |               | -    |
| Radium-226                       | EPA 9315                    | 0.925 ± 0.287 (0.231)<br>C:91% T:NA                      | pCi/L     | 03/05/21 07:27   | 13982-63-3    |      |
|                                  | Pace Analytical             | Services - Greensburg                                    |           |                  |               |      |
| Radium-228                       | EPA 9320                    | 0.315 ± 0.363 (0.763)<br>C:88% T:79%                     | pCi/L     | 03/01/21 16:21   | 15262-20-1    |      |
|                                  | Pace Analytical             | Services - Greensburg                                    |           |                  |               |      |
| Total Radium                     | Total Radium<br>Calculation | 1.24 ± 0.650 (0.994)                                     | pCi/L     | 03/05/21 14:00   | 7440-14-4     |      |



Project: YATES AMA RADS

Pace Project No.: 92521568

| <b>Sample: YGWA-3I(021021)</b><br>PWS: | Lab ID: 925215<br>Site ID:  | 68013 Collected: 02/10/21 16:40<br>Sample Type: | Received: | 02/11/21 13:03 M | fatrix: Water |      |
|----------------------------------------|-----------------------------|-------------------------------------------------|-----------|------------------|---------------|------|
| Parameters                             | Method                      | Act ± Unc (MDC) Carr Trac                       | Units     | Analyzed         | CAS No.       | Qual |
|                                        | Pace Analytical Se          | ervices - Greensburg                            |           |                  |               |      |
| Radium-226                             | EPA 9315                    | 1.10 ± 0.317 (0.250)<br>C:91% T:NA              | pCi/L     | 03/05/21 07:27   | 13982-63-3    |      |
|                                        | Pace Analytical Se          | ervices - Greensburg                            |           |                  |               |      |
| Radium-228                             | EPA 9320                    | 1.36 ± 0.549 (0.874)<br>C:90% T:68%             | pCi/L     | 03/01/21 16:20   | 15262-20-1    |      |
|                                        | Pace Analytical Se          | ervices - Greensburg                            |           |                  |               |      |
| Total Radium                           | Total Radium<br>Calculation | 2.46 ± 0.866 (1.12)                             | pCi/L     | 03/05/21 14:00   | 7440-14-4     |      |



Project: YATES AMA RADS

Pace Project No.: 92521568

| Sample: YGWA-3D(021021)<br>PWS: | Lab ID: 925215<br>Site ID:  | 568014 Collected: 02/10/21 17:25<br>Sample Type: | Received: | 02/11/21 13:03 M | latrix: Water |      |
|---------------------------------|-----------------------------|--------------------------------------------------|-----------|------------------|---------------|------|
| Parameters                      | Method                      | Act ± Unc (MDC) Carr Trac                        | Units     | Analyzed         | CAS No.       | Qual |
|                                 | Pace Analytical S           | ervices - Greensburg                             |           |                  | -             |      |
| Radium-226                      | EPA 9315                    | 1.59 ± 0.397 (0.248)<br>C:91% T:NA               | pCi/L     | 03/05/21 07:27   | 13982-63-3    |      |
|                                 | Pace Analytical S           | ervices - Greensburg                             |           |                  |               |      |
| Radium-228                      | EPA 9320                    | 2.06 ± 0.635 (0.822)<br>C:84% T:79%              | pCi/L     | 03/01/21 16:20   | 15262-20-1    |      |
|                                 | Pace Analytical S           | ervices - Greensburg                             |           |                  |               |      |
| Total Radium                    | Total Radium<br>Calculation | 3.65 ± 1.03 (1.07)                               | pCi/L     | 03/05/21 14:00   | 7440-14-4     |      |



Project: YATES AMA RADS

Pace Project No.: 92521568

| Sample: YGWA-30l(021121)<br>PWS: | Lab ID: 9252<br>Site ID:    | 1568015 Collected: 02/11/21 09:50<br>Sample Type: | Received: | 02/11/21 13:03 M | latrix: Water |      |
|----------------------------------|-----------------------------|---------------------------------------------------|-----------|------------------|---------------|------|
| Parameters                       | Method                      | Act ± Unc (MDC) Carr Trac                         | Units     | Analyzed         | CAS No.       | Qual |
|                                  | Pace Analytical             | Services - Greensburg                             |           |                  |               |      |
| Radium-226                       | EPA 9315                    | 0.0594 ± 0.0766 (0.153)<br>C:94% T:NA             | pCi/L     | 03/05/21 07:27   | 13982-63-3    |      |
|                                  | Pace Analytical             | Services - Greensburg                             |           |                  |               |      |
| Radium-228                       | EPA 9320                    | 0.619 ± 0.427 (0.833)<br>C:86% T:79%              | pCi/L     | 03/01/21 16:20   | 15262-20-1    |      |
|                                  | Pace Analytical             | Services - Greensburg                             |           |                  |               |      |
| Total Radium                     | Total Radium<br>Calculation | 0.678 ± 0.504 (0.986)                             | pCi/L     | 03/05/21 14:00   | 7440-14-4     |      |



Project: YATES AMA RADS

Pace Project No.: 92521568

| Sample: FB-01(021121) | Lab ID: 9252                | <b>1568016</b> Collected: 02/11/21 10:00 | Received: | 02/11/21 13:03 N | Aatrix: Water |      |
|-----------------------|-----------------------------|------------------------------------------|-----------|------------------|---------------|------|
| PWS:                  | Site ID:                    | Sample Type:                             |           |                  |               |      |
| Parameters            | Method                      | Act ± Unc (MDC) Carr Trac                | Units     | Analyzed         | CAS No.       | Qual |
|                       | Pace Analytical             | Services - Greensburg                    |           |                  |               |      |
| Radium-226            | EPA 9315                    | 0.0929 ± 0.0996 (0.196)<br>C:96% T:NA    | pCi/L     | 03/05/21 07:28   | 13982-63-3    |      |
|                       | Pace Analytical             | Services - Greensburg                    |           |                  |               |      |
| Radium-228            | EPA 9320                    | 0.419 ± 0.398 (0.821)<br>C:88% T:80%     | pCi/L     | 03/01/21 16:20   | 15262-20-1    |      |
|                       | Pace Analytical             | Services - Greensburg                    |           |                  |               |      |
| Total Radium          | Total Radium<br>Calculation | 0.512 ± 0.498 (1.02)                     | pCi/L     | 03/05/21 14:00   | 7440-14-4     |      |



Project: YATES AMA RADS

Pace Project No.: 92521568

| Sample: EB-01(021121)<br>PWS: | Lab ID: 9252<br>Site ID:    | <b>1568017</b> Collected: 02/11/21 12:05<br>Sample Type: | Received: | 02/11/21 13:03 M | fatrix: Water |      |
|-------------------------------|-----------------------------|----------------------------------------------------------|-----------|------------------|---------------|------|
| Parameters                    | Method                      | Act ± Unc (MDC) Carr Trac                                | Units     | Analyzed         | CAS No.       | Qual |
|                               | Pace Analytical             | Services - Greensburg                                    |           |                  |               |      |
| Radium-226                    | EPA 9315                    | 0.0319 ± 0.0775 (0.187)<br>C:87% T:NA                    | pCi/L     | 03/05/21 07:28   | 13982-63-3    |      |
|                               | Pace Analytical             | Services - Greensburg                                    |           |                  |               |      |
| Radium-228                    | EPA 9320                    | 0.648 ± 0.478 (0.941)<br>C:86% T:67%                     | pCi/L     | 03/01/21 16:20   | 15262-20-1    |      |
|                               | Pace Analytical             | Services - Greensburg                                    |           |                  |               |      |
| Total Radium                  | Total Radium<br>Calculation | 0.680 ± 0.556 (1.13)                                     | pCi/L     | 03/05/21 14:00   | 7440-14-4     |      |



Project: YATES AMA RADS

Pace Project No.: 92521568

| Sample: YGWA-40 (021021) MS<br>PWS: | Lab ID: 9252156<br>Site ID: | 8018 Collected: 02/10/21 10:50<br>Sample Type: | Received: | 02/10/21 17:10 N | Aatrix: Water |      |
|-------------------------------------|-----------------------------|------------------------------------------------|-----------|------------------|---------------|------|
| Parameters                          | Method                      | Act ± Unc (MDC) Carr Trac                      | Units     | Analyzed         | CAS No.       | Qual |
|                                     | Pace Analytical Ser         | vices - Greensburg                             |           |                  |               |      |
| Radium-226                          | EPA 9315                    | 102.72 %REC ± NA (NA)<br>C:NA T:NA             | pCi/L     | 03/05/21 07:28   | 13982-63-3    |      |
|                                     | Pace Analytical Ser         | vices - Greensburg                             |           |                  |               |      |
| Radium-228                          | EPA 9320                    | 82.38 %REC ± NA (NA)<br>C:NA T:NA              | pCi/L     | 03/01/21 16:20   | 15262-20-1    |      |



Project: YATES AMA RADS

Pace Project No.: 92521568

| Sample: YGWA-40 (021021) MSD<br>PWS: | Lab ID: 9252156<br>Site ID: | 8019 Collected: 02/10/21 10:50<br>Sample Type: | Received: | 02/10/21 17:10 N | Matrix: Water |      |
|--------------------------------------|-----------------------------|------------------------------------------------|-----------|------------------|---------------|------|
| Parameters                           | Method                      | Act ± Unc (MDC) Carr Trac                      | Units     | Analyzed         | CAS No.       | Qual |
|                                      | Pace Analytical Ser         | vices - Greensburg                             |           |                  |               | _    |
| Radium-226                           | EPA 9315                    | 93.67%REC 9.21RPD ± NA<br>(NA)<br>C:NA T:NA    | pCi/L     | 03/05/21 07:28   | 13982-63-3    |      |
|                                      | Pace Analytical Ser         | vices - Greensburg                             |           |                  |               |      |
| Radium-228                           | EPA 9320                    | 62.49 %REC 27.45 RPD ±<br>NA (NA)<br>C:NA T:NA | pCi/L     | 03/01/21 16:20   | 15262-20-1    |      |



Project: YATES AMA RADS

Pace Project No.: 92521568

| Sample: EB-02 (021021)<br>PWS: | Lab ID: 9252156<br>Site ID: | 7001 Collected: 02/10/21 11:30<br>Sample Type: | Received: | 02/10/21 17:10 M | fatrix: Water |      |
|--------------------------------|-----------------------------|------------------------------------------------|-----------|------------------|---------------|------|
| Parameters                     | Method                      | Act ± Unc (MDC) Carr Trac                      | Units     | Analyzed         | CAS No.       | Qual |
|                                | Pace Analytical Ser         | vices - Greensburg                             |           |                  |               |      |
| Radium-226                     | EPA 9315                    | 0.0550 ± 0.0861 (0.188)<br>C:84% T:NA          | pCi/L     | 03/05/21 07:30   | 13982-63-3    |      |
|                                | Pace Analytical Ser         | vices - Greensburg                             |           |                  |               |      |
| Radium-228                     | EPA 9320                    | -0.0344 ± 0.302 (0.716)<br>C:69% T:90%         | pCi/L     | 02/26/21 11:30   | 15262-20-1    |      |
|                                | Pace Analytical Ser         | vices - Greensburg                             |           |                  |               |      |
| Total Radium                   | Total Radium<br>Calculation | 0.0550 ± 0.388 (0.904)                         | pCi/L     | 03/05/21 14:01   | 7440-14-4     |      |



Project: YATES AMA RADS

Pace Project No.: 92521568

| Sample: DUP-1 (021021)<br>PWS: | Lab ID: 9252156<br>Site ID: | 7003 Collected: 02/10/21 00:00<br>Sample Type: | Received: | 02/10/21 17:10 M | latrix: Water |      |
|--------------------------------|-----------------------------|------------------------------------------------|-----------|------------------|---------------|------|
| Parameters                     | Method                      | Act ± Unc (MDC) Carr Trac                      | Units     | Analyzed         | CAS No.       | Qual |
|                                | Pace Analytical Ser         | vices - Greensburg                             |           |                  |               |      |
| Radium-226                     | EPA 9315                    | 0.0865 ± 0.0955 (0.184)<br>C:82% T:NA          | pCi/L     | 03/05/21 07:30   | 13982-63-3    |      |
|                                | Pace Analytical Ser         | vices - Greensburg                             |           |                  |               |      |
| Radium-228                     | EPA 9320                    | 0.528 ± 0.390 (0.755)<br>C:71% T:78%           | pCi/L     | 02/26/21 11:30   | 15262-20-1    |      |
|                                | Pace Analytical Ser         | vices - Greensburg                             |           |                  |               |      |
| Total Radium                   | Total Radium<br>Calculation | 0.615 ± 0.486 (0.939)                          | pCi/L     | 03/05/21 14:01   | 7440-14-4     |      |



Project: YATES AMA RADS

Pace Project No.: 92521568

| <b>Sample: YGWA-14S (021021)</b><br>PWS: | Lab ID: 925215<br>Site ID:  | <b>67002</b> Collected: 02/10/21 08:50<br>Sample Type: | Received: | 02/10/21 17:10 M | latrix: Water |      |
|------------------------------------------|-----------------------------|--------------------------------------------------------|-----------|------------------|---------------|------|
| Parameters                               | Method                      | Act ± Unc (MDC) Carr Trac                              | Units     | Analyzed         | CAS No.       | Qual |
|                                          | Pace Analytical S           | ervices - Greensburg                                   |           |                  |               |      |
| Radium-226                               | EPA 9315                    | 0.173 ± 0.123 (0.203)<br>C:90% T:NA                    | pCi/L     | 03/05/21 07:30   | 13982-63-3    |      |
|                                          | Pace Analytical S           | ervices - Greensburg                                   |           |                  |               |      |
| Radium-228                               | EPA 9320                    | 0.180 ± 0.339 (0.746)<br>C:73% T:75%                   | pCi/L     | 02/26/21 11:30   | 15262-20-1    |      |
|                                          | Pace Analytical S           | ervices - Greensburg                                   |           |                  |               |      |
| Total Radium                             | Total Radium<br>Calculation | 0.353 ± 0.462 (0.949)                                  | pCi/L     | 03/05/21 14:01   | 7440-14-4     |      |



Project: YATES AMA RADS

Pace Project No.: 92521568

| <b>Sample: YGWA-1I (021221)</b><br>PWS: | Lab ID: 9252<br>Site ID:    | <b>1567010</b> Collected: 02/12/21 13:20<br>Sample Type: | Received: | 02/12/21 17:10 M | latrix: Water |      |
|-----------------------------------------|-----------------------------|----------------------------------------------------------|-----------|------------------|---------------|------|
| Parameters                              | Method                      | Act ± Unc (MDC) Carr Trac                                | Units     | Analyzed         | CAS No.       | Qual |
|                                         | Pace Analytical             | Services - Greensburg                                    |           |                  |               |      |
| Radium-226                              | EPA 9315                    | 0.136 ± 0.0809 (0.131)<br>C:94% T:NA                     | pCi/L     | 03/09/21 19:03   | 13982-63-3    |      |
|                                         | Pace Analytical             | Services - Greensburg                                    |           |                  |               |      |
| Radium-228                              | EPA 9320                    | 0.322 ± 0.541 (1.18)<br>C:72% T:83%                      | pCi/L     | 03/09/21 17:17   | 15262-20-1    |      |
|                                         | Pace Analytical             | Services - Greensburg                                    |           |                  |               |      |
| Total Radium                            | Total Radium<br>Calculation | 0.458 ± 0.622 (1.31)                                     | pCi/L     | 03/10/21 15:19   | 7440-14-4     |      |



Project: YATES AMA RADS

Pace Project No.: 92521568

| Sample: YGWA-1D (021221)<br>PWS: | Lab ID: 92521<br>Site ID:   | 567011 Collected: 02/12/21 11:55<br>Sample Type: | Received: | 02/12/21 17:10 N | latrix: Water |      |
|----------------------------------|-----------------------------|--------------------------------------------------|-----------|------------------|---------------|------|
| Parameters                       | Method                      | Act ± Unc (MDC) Carr Trac                        | Units     | Analyzed         | CAS No.       | Qual |
|                                  | Pace Analytical S           | Services - Greensburg                            |           |                  |               |      |
| Radium-226                       | EPA 9315                    | 0.275 ± 0.0990 (0.123)<br>C:95% T:NA             | pCi/L     | 03/09/21 19:03   | 13982-63-3    |      |
|                                  | Pace Analytical S           | Services - Greensburg                            |           |                  |               |      |
| Radium-228                       | EPA 9320                    | 0.0910 ± 0.322 (0.726)<br>C:81% T:87%            | pCi/L     | 03/09/21 15:27   | 15262-20-1    |      |
|                                  | Pace Analytical S           | Services - Greensburg                            |           |                  |               |      |
| Total Radium                     | Total Radium<br>Calculation | 0.366 ± 0.421 (0.849)                            | pCi/L     | 03/10/21 14:15   | 7440-14-4     |      |


#### ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: YATES AMA RADS

Pace Project No.: 92521568

| Sample: YGWA-1D (021221) MS<br>PWS: | Lab ID: 9252156<br>Site ID: | 7017 Collected: 02/12/21 11:55<br>Sample Type: | Received: | 02/12/21 17:10 N | Aatrix: Water |      |
|-------------------------------------|-----------------------------|------------------------------------------------|-----------|------------------|---------------|------|
| Parameters                          | Method                      | Act ± Unc (MDC) Carr Trac                      | Units     | Analyzed         | CAS No.       | Qual |
|                                     | Pace Analytical Ser         | vices - Greensburg                             |           |                  |               |      |
| Radium-226                          | EPA 9315                    | 98.68 %REC ± NA (NA)<br>C:NA T:NA              | pCi/L     | 03/09/21 19:03   | 13982-63-3    |      |
|                                     | Pace Analytical Ser         | vices - Greensburg                             |           |                  |               |      |
| Radium-228                          | EPA 9320                    | 106.48 %REC ± NA (NA)<br>C:NA T:NA             | pCi/L     | 03/09/21 15:27   | 15262-20-1    |      |



#### ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: YATES AMA RADS

Pace Project No.: 92521568

| Sample: YGWA-1D (021221) MSD<br>PWS: | Lab ID: 9252156<br>Site ID: | <b>7018</b> Collected: 02/12/21 11:55<br>Sample Type: | Received: | 02/12/21 17:10 N | Aatrix: Water |      |
|--------------------------------------|-----------------------------|-------------------------------------------------------|-----------|------------------|---------------|------|
| Parameters                           | Method                      | Act ± Unc (MDC) Carr Trac                             | Units     | Analyzed         | CAS No.       | Qual |
|                                      | Pace Analytical Ser         | vices - Greensburg                                    |           |                  |               |      |
| Radium-226                           | EPA 9315                    | 91.79 %REC 7.24 RPD ±<br>NA (NA)<br>C:NA T:NA         | pCi/L     | 03/09/21 19:03   | 13982-63-3    |      |
|                                      | Pace Analytical Ser         | vices - Greensburg                                    |           |                  |               |      |
| Radium-228                           | EPA 9320                    | 91.25 %REC 15.40 RPD ±<br>NA (NA)<br>C:NA T:NA        | pCi/L     | 03/09/21 15:28   | 15262-20-1    |      |



#### ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: YATES AMA RADS

Pace Project No.: 92521568

| <b>Sample: YGWA-2I(021021)</b><br>PWS: | Lab ID: 92521<br>Site ID:   | 572002 Collected: 02/10/21 12:40<br>Sample Type: | Received: | 02/10/21 17:10 M | latrix: Water |      |
|----------------------------------------|-----------------------------|--------------------------------------------------|-----------|------------------|---------------|------|
| Parameters                             | Method                      | Act ± Unc (MDC) Carr Trac                        | Units     | Analyzed         | CAS No.       | Qual |
|                                        | Pace Analytical S           | Gervices - Greensburg                            |           |                  |               |      |
| Radium-226                             | EPA 9315                    | 0.209 ± 0.130 (0.198)<br>C:83% T:NA              | pCi/L     | 03/02/21 11:26   | 13982-63-3    |      |
|                                        | Pace Analytical S           | Services - Greensburg                            |           |                  |               |      |
| Radium-228                             | EPA 9320                    | 0.831 ± 0.551 (1.06)<br>C:70% T:78%              | pCi/L     | 02/24/21 15:31   | 15262-20-1    |      |
|                                        | Pace Analytical S           | Services - Greensburg                            |           |                  |               |      |
| Total Radium                           | Total Radium<br>Calculation | 1.04 ± 0.681 (1.26)                              | pCi/L     | 03/02/21 16:35   | 7440-14-4     |      |



| Project:           | YATES AMA RADS  |                                            |                    |                      |            |  |  |
|--------------------|-----------------|--------------------------------------------|--------------------|----------------------|------------|--|--|
| Pace Project No.:  | 92521568        |                                            |                    |                      |            |  |  |
| QC Batch:          | 436983          | Analysis Method:                           | EPA 9315           |                      |            |  |  |
| QC Batch Method:   | EPA 9315        | Analysis Description:                      | 9315 Total Radiun  | า                    |            |  |  |
|                    |                 | Laboratory:                                | Pace Analytical Se | ervices - Greensburg | 9          |  |  |
| Associated Lab San | nples: 92521567 | 010, 92521567011, 92521567017, 92521567018 |                    |                      |            |  |  |
| METHOD BLANK:      | 2109306         | Matrix: Water                              |                    |                      |            |  |  |
| Associated Lab San | nples: 92521567 | 010, 92521567011, 92521567017, 92521567018 |                    |                      |            |  |  |
| Paran              | neter           | Act ± Unc (MDC) Carr Trac                  | Units              | Analyzed             | Qualifiers |  |  |
| Radium-226         |                 | 0.0161 ± 0.0615 (0.127) C:96% T:NA         | pCi/L              | 03/09/21 19:03       |            |  |  |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:                                    | YATES AMA RAD   | YATES AMA RADS                |                  |                      |            |  |  |  |
|---------------------------------------------|-----------------|-------------------------------|------------------|----------------------|------------|--|--|--|
| Pace Project No.:                           | 92521568        |                               |                  |                      |            |  |  |  |
| QC Batch:                                   | 435783          | Analysis Method:              | EPA 9315         |                      |            |  |  |  |
| QC Batch Method:                            | EPA 9315        | Analysis Description:         | 9315 Total Radiu | ım                   |            |  |  |  |
|                                             |                 | Laboratory:                   | Pace Analytical  | Services - Greensbur | g          |  |  |  |
| Associated Lab San                          | nples: 92521567 | 001, 92521567002, 92521567003 |                  |                      |            |  |  |  |
| METHOD BLANK:                               | 2103740         | Matrix: Water                 |                  |                      |            |  |  |  |
| Associated Lab San                          | nples: 92521567 | 001, 92521567002, 92521567003 |                  |                      |            |  |  |  |
| Paran                                       | neter           | Act ± Unc (MDC) Carr Trac     | Units            | Analyzed             | Qualifiers |  |  |  |
| Radium-226 0.267 ± 0.143 (0.193) C:92% T:NA |                 |                               | pCi/L            | 03/05/21 07:29       |            |  |  |  |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:                  | YATES AMA RAD   | S             |                       |                   |                                       |            |  |
|---------------------------|-----------------|---------------|-----------------------|-------------------|---------------------------------------|------------|--|
| Pace Project No.:         | 92521568        |               |                       |                   |                                       |            |  |
| QC Batch:                 | 435459          |               | Analysis Method:      | EPA 9315          |                                       |            |  |
| QC Batch Method: EPA 9315 |                 |               | Analysis Description: | 9315 Total Radium |                                       |            |  |
|                           |                 |               | Laboratory:           | Pace Analytical   | Pace Analytical Services - Greensburg |            |  |
| Associated Lab San        | nples: 92521572 | 2002          |                       |                   |                                       |            |  |
| METHOD BLANK:             | 2102227         |               | Matrix: Water         |                   |                                       |            |  |
| Associated Lab San        | nples: 92521572 | 2002          |                       |                   |                                       |            |  |
| Paran                     | neter           | Act           | ± Unc (MDC) Carr Trac | Units             | Analyzed                              | Qualifiers |  |
| Radium-226                |                 | 0.276 ± 0.140 | (0.180) C:89% T:NA    | pCi/L             | 03/02/21 07:53                        |            |  |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:                                                                                                                                                                                                          | YATES      | ATES AMA RADS                                |                                              |                                                             |                                              |                                                         |                                                         |                                      |                       |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------------------------------|----------------------------------------------|-------------------------------------------------------------|----------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|--------------------------------------|-----------------------|--|
| Pace Project No.:                                                                                                                                                                                                 | 925215     | 68                                           |                                              |                                                             |                                              |                                                         |                                                         |                                      |                       |  |
| QC Batch:                                                                                                                                                                                                         | 43578      | 1                                            |                                              | Analysis M                                                  | ethod:                                       | EPA 9315                                                |                                                         |                                      |                       |  |
| QC Batch Method:                                                                                                                                                                                                  | : EPA 9315 |                                              |                                              | Analysis De                                                 | escription:                                  | 9315 Total Ra                                           | adium                                                   |                                      |                       |  |
| Associated Lab Sam                                                                                                                                                                                                | iples:     | 92521568001,<br>92521568008,<br>92521568015, | 92521568002,<br>92521568009,<br>92521568016, | Laboratory:<br>92521568003,<br>92521568010,<br>92521568017, | 92521568004,<br>92521568011,<br>92521568018, | Pace Analytic<br>9252156800<br>9252156801<br>9252156801 | cal Services - G<br>5, 9252156800<br>2, 9252156801<br>9 | ireensburg<br>6, 925215<br>3, 925215 | 9<br>68007,<br>68014, |  |
| METHOD BLANK:                                                                                                                                                                                                     | 210373     | 7                                            |                                              | Matrix                                                      | c: Water                                     |                                                         |                                                         |                                      |                       |  |
| Associated Lab Samples: 92521568001, 92521568002, 92521568003, 92521568004, 9252156<br>92521568008, 92521568009, 92521568010, 92521568011, 9252156<br>92521568015, 92521568016, 92521568017, 92521568018, 9252156 |            |                                              |                                              |                                                             | 9252156800<br>9252156801<br>9252156801       | 5, 9252156800<br>2, 9252156801<br>9                     | 6, 925215<br>3, 925215                                  | 68007,<br>68014,                     |                       |  |
| Param                                                                                                                                                                                                             | neter      |                                              | Act ± Un                                     | c (MDC) Carr T                                              | rac                                          | Units                                                   | Analy                                                   | /zed                                 | Qualifiers            |  |
| Radium-226                                                                                                                                                                                                        |            | 0.03                                         | 849 ± 0.0874 (                               | 0.210) C:95% T                                              | Γ:NA                                         | pCi/L                                                   | 03/05/2                                                 | 1 07:14                              |                       |  |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:                  | YATES AMA RAD   | 5             |                       |                 |                      |            |  |
|---------------------------|-----------------|---------------|-----------------------|-----------------|----------------------|------------|--|
| Pace Project No.:         | 92521568        |               |                       |                 |                      |            |  |
| QC Batch:                 | 435116          |               | Analysis Method:      | EPA 9320        |                      |            |  |
| QC Batch Method: EPA 9320 |                 |               | Analysis Description: | 9320 Radium 228 |                      |            |  |
|                           |                 |               | Laboratory:           | Pace Analytical | Services - Greensbur | g          |  |
| Associated Lab San        | nples: 92521572 | 002           |                       |                 |                      |            |  |
| METHOD BLANK:             | 2100680         |               | Matrix: Water         |                 |                      |            |  |
| Associated Lab San        | nples: 92521572 | 002           |                       |                 |                      |            |  |
| Paran                     | neter           | Act :         | ± Unc (MDC) Carr Trac | Units           | Analyzed             | Qualifiers |  |
| Radium-228                |                 | 0.356 ± 0.369 | (0.763) C:72% T:87%   | pCi/L           | 02/24/21 15:29       |            |  |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:                                                                                                                      | YATES                                                                                                  | ATES AMA RADS |                 |                                                             |                                              |                                                                                                                                                      |                                      |                     |                |  |
|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------|-----------------|-------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------|----------------|--|
| Pace Project No.:                                                                                                             | 925215                                                                                                 | 68            |                 |                                                             |                                              |                                                                                                                                                      |                                      |                     |                |  |
| QC Batch:                                                                                                                     | 43578                                                                                                  | 0             |                 | Analysis Me                                                 | ethod:                                       | EPA 9320                                                                                                                                             |                                      |                     |                |  |
| QC Batch Method:                                                                                                              | od: EPA 9320                                                                                           |               |                 | Analysis De                                                 | escription:                                  | 9320 Radium                                                                                                                                          | 228                                  |                     |                |  |
| Associated Lab Sam                                                                                                            | sociated Lab Samples: 92521568001, 92521568002<br>92521568008, 92521568009<br>92521568015, 92521568016 |               |                 | Laboratory:<br>92521568003,<br>92521568010,<br>92521568017, | 92521568004,<br>92521568011,<br>92521568018, | Pace Analytical Services - Greensburg<br>)4, 92521568005, 92521568006, 92521568007,<br>11, 92521568012, 92521568013, 92521568014,<br>18, 92521568019 |                                      |                     |                |  |
| METHOD BLANK:                                                                                                                 | 210373                                                                                                 | 6             |                 | Matrix                                                      | : Water                                      |                                                                                                                                                      |                                      |                     |                |  |
| Associated Lab Samples: 92521568001, 92521568002, 92521<br>92521568008, 92521568009, 92521<br>92521568015, 92521568016, 92521 |                                                                                                        |               |                 |                                                             | 92521568004,<br>92521568011,<br>92521568018, | 92521568005<br>92521568012<br>92521568019                                                                                                            | , 92521568006, 9<br>, 92521568013, 9 | 12521568<br>2521568 | 8007,<br>3014, |  |
| Param                                                                                                                         | neter                                                                                                  |               | Act ± Un        | c (MDC) Carr Ti                                             | rac                                          | Units                                                                                                                                                | Analyze                              | d                   | Qualifiers     |  |
| Radium-228                                                                                                                    |                                                                                                        | 0.17          | 75 ± 0.283 (0.6 | 315) C:84% T:89                                             | 9%                                           | pCi/L                                                                                                                                                | 03/01/21 16                          | 3:20                |                |  |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:           | YATES AMA RAD   | 5              |                              |                 |                      |            |  |
|--------------------|-----------------|----------------|------------------------------|-----------------|----------------------|------------|--|
| Pace Project No.:  | 92521568        |                |                              |                 |                      |            |  |
| QC Batch:          | 436984          |                | Analysis Method:             | EPA 9320        |                      |            |  |
| QC Batch Method:   | EPA 9320        |                | Analysis Description:        | 9320 Radium 22  | 28                   |            |  |
|                    |                 |                | Laboratory:                  | Pace Analytical | Services - Greensbur | g          |  |
| Associated Lab San | nples: 92521567 | 010, 925215670 | 11, 92521567017, 92521567018 | 3               |                      |            |  |
| METHOD BLANK:      | 2109307         |                | Matrix: Water                |                 |                      |            |  |
| Associated Lab San | nples: 92521567 | 010, 925215670 | 11, 92521567017, 92521567018 | 3               |                      |            |  |
| Paran              | neter           | Act ±          | Unc (MDC) Carr Trac          | Units           | Analyzed             | Qualifiers |  |
| Radium-228         |                 | 0.0130 ± 0.299 | (0.696) C:76% T:89%          | pCi/L           | 03/09/21 15:28       |            |  |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:                  | YATES AMA RADS  | 6              |                       |                 |                      |            |   |
|---------------------------|-----------------|----------------|-----------------------|-----------------|----------------------|------------|---|
| Pace Project No.:         | 92521568        |                |                       |                 |                      |            |   |
| QC Batch:                 | 435784          |                | Analysis Method:      | EPA 9320        |                      |            |   |
| QC Batch Method: EPA 9320 |                 |                | Analysis Description: | 9320 Radium 228 |                      |            |   |
|                           |                 |                | Laboratory:           | Pace Analytical | Services - Greensbur | g          |   |
| Associated Lab San        | nples: 92521567 | 001, 925215670 | 02, 92521567003       |                 |                      |            |   |
| METHOD BLANK:             | 2103741         |                | Matrix: Water         |                 |                      |            |   |
| Associated Lab San        | nples: 92521567 | 001, 925215670 | 02, 92521567003       |                 |                      |            |   |
| Paran                     | neter           | Act ±          | Unc (MDC) Carr Trac   | Units           | Analyzed             | Qualifiers |   |
| Radium-228                |                 | 0.191 ± 0.338  | (0.740) C:71% T:85%   | pCi/L           | 02/26/21 11:33       |            | - |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### QUALIFIERS

#### Project: YATES AMA RADS

Pace Project No.: 92521568

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.



#### QUALITY CONTROL DATA CROSS REFERENCE TABLE

| Project:           | YATES AMA RADS |
|--------------------|----------------|
| Pace Project No .: | 92521568       |

| Lab ID      | Sample ID            | QC Batch Method | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|----------------------|-----------------|----------|-------------------|---------------------|
| 92521567001 | EB-02 (021021)       | EPA 9315        | 435783   |                   |                     |
| 92521567002 | YGWA-14S (021021)    | EPA 9315        | 435783   |                   |                     |
| 92521567003 | DUP-1 (021021)       | EPA 9315        | 435783   |                   |                     |
| 92521568001 | YGWA-5D (020821)     | EPA 0315        | 435781   |                   |                     |
| 92521500001 | DUB 01(020021)       | EDA 0215        | 435701   |                   |                     |
| 92521506002 | DOF-01(020821)       | EFA 9315        | 433701   |                   |                     |
| 92521568003 | YGWA-51 (020821)     | EPA 9315        | 435781   |                   |                     |
| 92521568004 | YGWA-39 (021021)     | EPA 9315        | 435781   |                   |                     |
| 92521568005 | YGWA-40 (021021)     | EPA 9315        | 435781   |                   |                     |
| 92521568006 | FB-01(021021)        | EPA 9315        | 435781   |                   |                     |
| 92521568007 | YGWA-20S (020921)    | EPA 9315        | 435781   |                   |                     |
| 92521568008 | YGWA-4I(020921)      | EPA 9315        | 435781   |                   |                     |
| 92521568009 | YGWA-17S(020921)     | EPA 9315        | 435781   |                   |                     |
| 92521568010 | YGWA-18S(020921)     | EPA 9315        | 435781   |                   |                     |
| 92521568011 | YGWA-18I(020921)     | EPA 9315        | 435781   |                   |                     |
| 92521568012 | YGWA-21I(020921)     | EPA 9315        | 435781   |                   |                     |
| 92521572002 | YGWA-2I(021021)      | EPA 9315        | 435459   |                   |                     |
| 92521568013 | YGWA-3I(021021)      | EPA 9315        | 435781   |                   |                     |
| 92521568014 | YGWA-3D(021021)      | EPA 9315        | 435781   |                   |                     |
| 92521568015 | YGWA-30I(021121)     | EPA 9315        | 435781   |                   |                     |
| 92521568016 | FB-01(021121)        | EPA 9315        | 435781   |                   |                     |
| 92521568017 | EB-01(021121)        | EPA 9315        | 435781   |                   |                     |
| 92521567010 | YGWA-1I (021221)     | EPA 9315        | 436983   |                   |                     |
| 92521567011 | YGWA-1D (021221)     | EPA 9315        | 436983   |                   |                     |
| 92521567017 | YGWA-1D (021221) MS  | EPA 9315        | 436983   |                   |                     |
| 92521567018 | YGWA-1D (021221) MSD | EPA 9315        | 436983   |                   |                     |
| 92521568018 | YGWA-40 (021021) MS  | EPA 9315        | 435781   |                   |                     |
| 92521568019 | YGWA-40 (021021) MSD | EPA 9315        | 435781   |                   |                     |
| 92521567001 | EB-02 (021021)       | EPA 9320        | 435784   |                   |                     |
| 92521567002 | YGWA-14S (021021)    | EPA 9320        | 435784   |                   |                     |
| 92521567003 | DUP-1 (021021)       | EPA 9320        | 435784   |                   |                     |
| 92521568001 | YGWA-5D (020821)     | EPA 9320        | 435780   |                   |                     |
| 92521568002 | DUP-01(020821)       | EPA 9320        | 435780   |                   |                     |
| 92521568003 | YGWA-5I (020821)     | EPA 9320        | 435780   |                   |                     |
| 92521568004 | YGWA-39 (021021)     | EPA 9320        | 435780   |                   |                     |
| 92521568005 | YGWA-40 (021021)     | EPA 9320        | 435780   |                   |                     |
| 92521568006 | FB-01(021021)        | EPA 9320        | 435780   |                   |                     |
| 92521568007 | YGWA-20S (020921)    | EPA 9320        | 435780   |                   |                     |
| 92521568008 | YGWA-4I(020921)      | EPA 9320        | 435780   |                   |                     |
| 92521568009 | YGWA-17S(020921)     | EPA 9320        | 435780   |                   |                     |
| 92521568010 | YGWA-18S(020921)     | EPA 9320        | 435780   |                   |                     |
| 92521568011 | YGWA-18I(020921)     | EPA 9320        | 435780   |                   |                     |
| 92521568012 | YGWA-211(020921)     | EPA 9320        | 435780   |                   |                     |
| 92521572002 | YGWA-2I(021021)      | EPA 9320        | 435116   |                   |                     |
| 92521568013 | YGWA-3I(021021)      | EPA 9320        | 435780   |                   |                     |



#### QUALITY CONTROL DATA CROSS REFERENCE TABLE

| Project:           | YATES AMA RADS |
|--------------------|----------------|
| Pace Project No .: | 92521568       |

| Lab ID      | Sample ID            | QC Batch Method          | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|----------------------|--------------------------|----------|-------------------|---------------------|
| 92521568014 | YGWA-3D(021021)      | EPA 9320                 | 435780   |                   |                     |
| 92521568015 | YGWA-301(021121)     | EPA 9320                 | 435780   |                   |                     |
| 92521568016 | FB-01(021121)        | EPA 9320                 | 435780   |                   |                     |
| 92521568017 | EB-01(021121)        | EPA 9320                 | 435780   |                   |                     |
| 92521567010 | YGWA-1I (021221)     | EPA 9320                 | 436984   |                   |                     |
| 92521567011 | YGWA-1D (021221)     | EPA 9320                 | 436984   |                   |                     |
| 92521567017 | YGWA-1D (021221) MS  | EPA 9320                 | 436984   |                   |                     |
| 92521567018 | YGWA-1D (021221) MSD | EPA 9320                 | 436984   |                   |                     |
| 92521568018 | YGWA-40 (021021) MS  | EPA 9320                 | 435780   |                   |                     |
| 92521568019 | YGWA-40 (021021) MSD | EPA 9320                 | 435780   |                   |                     |
| 92521567001 | EB-02 (021021)       | Total Radium Calculation | 437456   |                   |                     |
| 92521567002 | YGWA-14S (021021)    | Total Radium Calculation | 437456   |                   |                     |
| 92521567003 | DUP-1 (021021)       | Total Radium Calculation | 437456   |                   |                     |
| 92521568001 | YGWA-5D (020821)     | Total Radium Calculation | 437454   |                   |                     |
| 92521568002 | DUP-01(020821)       | Total Radium Calculation | 437454   |                   |                     |
| 92521568003 | YGWA-5I (020821)     | Total Radium Calculation | 437454   |                   |                     |
| 92521568004 | YGWA-39 (021021)     | Total Radium Calculation | 437454   |                   |                     |
| 92521568005 | YGWA-40 (021021)     | Total Radium Calculation | 437454   |                   |                     |
| 92521568006 | FB-01(021021)        | Total Radium Calculation | 437454   |                   |                     |
| 92521568007 | YGWA-20S (020921)    | Total Radium Calculation | 437454   |                   |                     |
| 92521568008 | YGWA-4I(020921)      | Total Radium Calculation | 437454   |                   |                     |
| 92521568009 | YGWA-17S(020921)     | Total Radium Calculation | 437454   |                   |                     |
| 92521568010 | YGWA-18S(020921)     | Total Radium Calculation | 437454   |                   |                     |
| 92521568011 | YGWA-18I(020921)     | Total Radium Calculation | 437454   |                   |                     |
| 92521568012 | YGWA-21I(020921)     | Total Radium Calculation | 437454   |                   |                     |
| 92521572002 | YGWA-2I(021021)      | Total Radium Calculation | 436928   |                   |                     |
| 92521568013 | YGWA-3I(021021)      | Total Radium Calculation | 437454   |                   |                     |
| 92521568014 | YGWA-3D(021021)      | Total Radium Calculation | 437454   |                   |                     |
| 92521568015 | YGWA-30I(021121)     | Total Radium Calculation | 437454   |                   |                     |
| 92521568016 | FB-01(021121)        | Total Radium Calculation | 437454   |                   |                     |
| 92521568017 | EB-01(021121)        | Total Radium Calculation | 437454   |                   |                     |
| 92521567010 | YGWA-1I (021221)     | Total Radium Calculation | 438070   |                   |                     |
| 92521567011 | YGWA-1D (021221)     | Total Radium Calculation | 438070   |                   |                     |

| Pace Analytical*                                                                                                                         | Document N<br>Sample Condition Upor<br>Document I<br>F-CAR-CS-033- | ame:<br>n Receipt(SCUR)<br>No.:<br>Rev.07 | Document Revised: October 28, 2020<br>Page 1 of 2<br>Issuing Authority:<br>Pace Carolinas Quality Office                                          |
|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| aboratory receiving samples:<br>Asheville Eden Greenwoo                                                                                  | d 🗌 Huntersville 🗌                                                 | Raleigh 🗌                                 | Mechanicsville Atlanta Kernersville                                                                                                               |
| Sample Condition Client Name:                                                                                                            | PALIPIC                                                            | Project                                   | # WO#:92521568                                                                                                                                    |
| Courier: Fed Ex<br>Commercial Pace                                                                                                       | UPS USPS<br>Other:                                                 | Client                                    |                                                                                                                                                   |
| ustody Seal Present? Yes 4NO                                                                                                             | Seals Intact? 👋 🔲 Yes                                              | <b>∐</b> No                               | Date/Initials Person Examining Contents 2/10/2-(                                                                                                  |
| acking Material: Bubble Wrap<br>hermometer:<br>IR Gun ID: 230<br>correction<br>coler Temp: 2(1 Add/Subt                                  | Bubble Bags None<br>Type of Ice:<br>Factor:<br>ract (°C) 0-0       | Other                                     | Biological Tissue Frozen?<br>Yes No N/A<br>Semp should be above freezing to 6°C<br>Samples out of terms criteria. Samples on ice, cooling process |
| ooler Temp Corrected (°C):<br>SDA Regulated Soil (  N/A, water sample)<br>Id samples originate in a quarantine zone within the<br>Yes No | t (                                                                | (check maps)?                             | Did samples originate from a foreign source (internationally, including Hawaii and Puerto Rico)? Yes No                                           |
| Chain of Custody Present?                                                                                                                |                                                                    |                                           | Contracticy Discrepancy:                                                                                                                          |
| Sampler Arrived within Hold Time?                                                                                                        |                                                                    |                                           |                                                                                                                                                   |
| Short Hold Time Analysis (<72 hr.)?                                                                                                      |                                                                    | $\frac{1}{1} N/A + \frac{2}{3}$           |                                                                                                                                                   |
| Rush Turn Around Time Requested?                                                                                                         |                                                                    | CIN/A 4.                                  |                                                                                                                                                   |
| Sufficient Volume?                                                                                                                       |                                                                    |                                           |                                                                                                                                                   |
| Correct Containers Used?                                                                                                                 |                                                                    | □N/A 5.<br>□N/A 6.                        |                                                                                                                                                   |
| -Pace Containers Used?                                                                                                                   | Tes No                                                             |                                           | .!                                                                                                                                                |
| Containers Intact?                                                                                                                       | Gres No                                                            | □N/A 7.                                   | ;                                                                                                                                                 |
| Dissolved analysis: Samples Field Filtered?                                                                                              |                                                                    | EN/A 8                                    | ······                                                                                                                                            |
| -includes Date/Time/ID/Analysis Matrix:                                                                                                  |                                                                    | LIN/A 9.                                  |                                                                                                                                                   |
| ♦<br>Headspace in VOA Vials {>5-6mm)?                                                                                                    | Yes No                                                             | UN/A 10.                                  |                                                                                                                                                   |
| Trip Blank Present?                                                                                                                      | Yes No                                                             | ZN/A 11.                                  |                                                                                                                                                   |
| Trip Blank Custody Seals Present?                                                                                                        | Yes No                                                             | DN/A                                      | 3                                                                                                                                                 |
| COMMENTS/SAMPLE DISCREPANCY                                                                                                              |                                                                    |                                           | Field Data Required? 🗍 Yes 🋄 No                                                                                                                   |
|                                                                                                                                          |                                                                    |                                           |                                                                                                                                                   |
|                                                                                                                                          |                                                                    | Lot                                       | ID of split containers:                                                                                                                           |
| CLIENT NOTIFICATION/RESOLUTION                                                                                                           |                                                                    |                                           |                                                                                                                                                   |
| Person contacted:                                                                                                                        |                                                                    | Date/Time:                                |                                                                                                                                                   |
| Project Manager SCURF Review:                                                                                                            |                                                                    |                                           | Date:                                                                                                                                             |
| Project Manager SRF Review:                                                                                                              |                                                                    |                                           | Date:                                                                                                                                             |
|                                                                                                                                          |                                                                    |                                           | Page 52 ô                                                                                                                                         |

. .

|    |                         |          |          |   |                                                                                                                |          |                |      | 8        | ß                                                                                                                |            | B        | 10 | 8        | 5        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | U.       |          | 3        |                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                                                                                                                | poteont             | 25                | 107 E   | Ĩ                   | npany:       | The state           |                                       |
|----|-------------------------|----------|----------|---|----------------------------------------------------------------------------------------------------------------|----------|----------------|------|----------|------------------------------------------------------------------------------------------------------------------|------------|----------|----|----------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------|---------------------|-------------------|---------|---------------------|--------------|---------------------|---------------------------------------|
|    |                         |          |          |   | ระการและ (การและ (การและ (การและ (การและ (การและ (การและ (การและ (การและ (การและ (การและ (การและ (การและ (การแ |          | SURPHIC NOTION |      |          | and the second second second second second second second second second second second second second second second |            |          |    |          |          | A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A COMPANY AND A CO |          |          | YGWA-SD. | Cure construction per cost.<br>(A-Z, 0-0 /,-<br>)<br>Sampte lats must be unique | SAMPLE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | and a second second second second second second second second second second second second second second second | Due Date:           | 17703344.4526 Fax | V 30114 | 1070 Extope Mit Ave | Géorda Power | Client Information: | Pace Analytical                       |
|    |                         |          |          |   |                                                                                                                |          | はないでは、         |      |          |                                                                                                                  |            |          |    |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |          |          |                                                                                 | The characteristics of the characteristics and the characteristics with the characteristic of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics of the characteristics | MATRIXE CODES |                                                                                                                | Project #:          | Project Nam       |         | Copy To:            | Report To:   | Required P          |                                       |
|    |                         |          | . đ      |   |                                                                                                                |          |                |      |          |                                                                                                                  |            | £        | ٤  | ¥,       | 5        | ٤                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5        | ¥        | WT       | MATRIX CODE                                                                     | (see vaild cod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (fiel of ze   | 1                                                                                                              |                     | 8 (§              |         |                     |              |                     |                                       |
|    |                         |          |          |   |                                                                                                                |          | - United       |      |          | ļ                                                                                                                |            | <u> </u> | ·  |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |          | <u> </u> | SAMPLE TYPE                                                                     | (G+GRAE C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | COMP)         |                                                                                                                |                     | ĭ.                |         |                     | 2            |                     |                                       |
|    | •.                      |          | 1        |   |                                                                                                                |          | (14810=        |      |          |                                                                                                                  |            |          | :  |          | · .      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |          | ochela   | DATE                                                                            | ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                                                                                                                |                     | Â                 |         |                     |              | matton:             | •                                     |
|    | - 543                   | R        |          |   |                                                                                                                |          | <b>ALCORE</b>  |      |          |                                                                                                                  |            |          |    |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |          | 1645     | TIME                                                                            | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8<br>E        |                                                                                                                |                     |                   |         |                     |              |                     |                                       |
|    | NATURE                  | NT Kane  |          |   |                                                                                                                |          |                |      | Γ        |                                                                                                                  |            |          |    |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |          |          | DATE                                                                            | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ECTED         |                                                                                                                |                     |                   |         |                     |              | 2                   | S S S S S S S S S S S S S S S S S S S |
|    | of SAME                 | a SAN    |          |   | ĺ                                                                                                              |          | 1              |      |          |                                                                                                                  |            |          |    |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |          |          | TIME                                                                            | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |               |                                                                                                                |                     |                   |         |                     |              |                     |                                       |
|    | ģ                       | Ş,       | 1        |   |                                                                                                                |          | лî.            |      |          |                                                                                                                  |            |          |    |          |          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |          | 2        | SAMPLE TEMP                                                                     | AT COLLECTIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | )N            |                                                                                                                |                     |                   |         |                     |              |                     |                                       |
|    | -                       | z I      |          |   | [                                                                                                              |          |                |      |          |                                                                                                                  |            |          |    |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |          |          | # OF CONTAINE                                                                   | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               | <u>ן</u> ן                                                                                                     | 2                   |                   | Ì.      | S                   | à            |                     | ê Ç                                   |
|    |                         | 3        |          |   |                                                                                                                |          | L.             |      |          |                                                                                                                  |            | L        |    |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |          |          | Unpreserved                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                                                                                | Z.                  | 2                 | 8       | Aued                | 80 N         |                     | TS<br>S                               |
| 2  | đ                       | ₹ 0      | <u> </u> | _ | <u> </u>                                                                                                       | <b> </b> | 1.11.00        | _    |          |                                                                                                                  |            | <u> </u> |    |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | <b> </b> | L        | H2SO4                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _             |                                                                                                                | ₹<br>*              | ំគ្រី<br>ឆ្នាំ    |         | A                   |              | 3                   |                                       |
|    | R.                      | E.       |          |   |                                                                                                                | 2        |                |      | <b> </b> |                                                                                                                  |            |          |    |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | <b> </b> |          | HNO3                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Tes           |                                                                                                                |                     |                   |         | 3                   |              | uition              | ≥ ₹                                   |
| °≞ | -Jeans                  |          |          |   |                                                                                                                | シ        |                |      |          |                                                                                                                  |            |          |    | <u> </u> |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |          |          | NaOH                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ewa           |                                                                                                                | Š                   | 3                 |         |                     |              |                     | 8 <b>≥</b>                            |
|    | Î                       | S.       |          |   |                                                                                                                |          | 5              | •    | ┢        |                                                                                                                  |            |          |    | <u> </u> | <b> </b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |          |          | Na28203                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lives         |                                                                                                                |                     | 5                 |         |                     |              |                     | Unat                                  |
|    |                         |          |          |   |                                                                                                                |          |                |      |          |                                                                                                                  |            |          |    |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |          |          | Methanol                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                                                                                |                     | 3                 |         |                     | ŀ            |                     | - ä                                   |
|    |                         |          |          |   | ~                                                                                                              | I.       |                | -    |          |                                                                                                                  |            |          | ·  |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |          |          | Other                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                                                                                |                     |                   |         |                     |              |                     | ≧ <u>&amp;</u>                        |
|    | _                       | 144      |          |   |                                                                                                                | 1        |                | ·    |          |                                                                                                                  |            |          |    |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |          |          | Analyses                                                                        | Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Y/N.          |                                                                                                                |                     |                   |         |                     |              | e                   |                                       |
|    | Ø                       |          |          |   |                                                                                                                | ž        | <b>Ner</b>     |      | ┢        |                                                                                                                  |            | ×        | ×  | ×        | ×.       | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ×        | ×        | ×        | App IV Metals                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                                                                                |                     |                   |         |                     |              |                     | q                                     |
|    | ATE                     | 12       |          |   |                                                                                                                | R        | 18             |      | <u> </u> |                                                                                                                  | -          | r<br>×   | ×  | ∩<br>×   | ×        | r<br>×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ×        | ×        | ×        | PIUDRIE<br>RAD 9315/932                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                                                                                |                     |                   |         |                     |              |                     | le de S                               |
| ·  | <b>Vig</b>              | ie.      |          |   |                                                                                                                |          |                | ÷    | <u> </u> | <b>†</b>                                                                                                         | <b> </b>   | ┢──      |    |          | <b> </b> | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u> </u> |          |          |                                                                                 | <del>.</del><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | ×.                                                                                                             |                     |                   |         |                     | i ana        |                     | Į,                                    |
|    | \$                      |          |          |   |                                                                                                                | R        | 5235<br>2316   |      | †        | 1                                                                                                                |            |          |    |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |          |          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                                                                                |                     |                   |         |                     |              |                     | <u>a</u> 0                            |
| ļ  | 67                      |          |          | 1 | <b>.</b>                                                                                                       | Ø        |                |      |          |                                                                                                                  |            |          |    |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |          |          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               | H                                                                                                              |                     |                   |         |                     | l            |                     |                                       |
|    | $\overline{\mathbf{o}}$ |          |          |   |                                                                                                                | 2        |                |      |          |                                                                                                                  |            |          |    | <u> </u> | <u> </u> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ļ        |          |          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                                                                                |                     | Ļ                 |         | Ļ                   |              |                     | ande<br>Lie                           |
| ľ  | S                       |          | Ľ.       | - | <u> </u>                                                                                                       |          |                |      |          |                                                                                                                  |            |          |    |          | · ·      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b> </b> |          |          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                                                                                | and an other        | ġ                 |         | · · ·               | ·            |                     |                                       |
|    | <u> </u>                |          |          |   |                                                                                                                | 8        | -              |      | ╞──      | ┢──                                                                                                              | <b>—</b> — |          |    |          | <u> </u> | <b> </b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |          |          |                                                                                 | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               | E.                                                                                                             |                     |                   |         |                     |              |                     | Öğ .                                  |
|    |                         |          | r<br>K   |   |                                                                                                                | Ρ        | ×6.            |      | -        | $\square$                                                                                                        |            |          |    |          |          | ┢                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |          |          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                                                                                |                     |                   |         |                     | ſ            | _                   |                                       |
|    |                         |          |          |   |                                                                                                                | +        |                |      | <b>†</b> |                                                                                                                  |            |          |    |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |          |          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                                                                                |                     | Č.                |         |                     |              |                     | ×                                     |
|    | TEMP                    | n C      |          |   |                                                                                                                | L        |                | i, i |          |                                                                                                                  | :          | <u>.</u> |    |          | -        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _        |          |          | Residual Chior                                                                  | ine (Y/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |               | 0                                                                                                              | 1                   | l                 |         | 6                   | ŀ            | 5                   |                                       |
| ſ  | Recei                   | ved on   | <u>}</u> |   |                                                                                                                |          |                |      |          |                                                                                                                  |            |          |    |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |          |          | الحمر                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.5           |                                                                                                                | e                   | Á                 |         | 5°.                 | ļ            |                     |                                       |
|    | (Y/N)                   |          |          |   |                                                                                                                |          | E.             |      |          |                                                                                                                  | ŀ          |          |    | 1        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1        |          |          | 2                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                                                                                |                     |                   | 1       | <u> </u>            | ſ            |                     |                                       |
| ſ  | Cusio<br>Sealed         | dy<br>ID | Τ        |   |                                                                                                                | [        | Ĩ              |      |          |                                                                                                                  | i          | ·        | ŀ  |          | 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |          |          | $\simeq$                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                                                                                | Contraction of the  |                   |         |                     |              | 0                   |                                       |
|    | Coole<br>(Y/N)          | rCi      |          |   |                                                                                                                |          |                |      | 1        | 1                                                                                                                |            |          | 1  |          |          | Į                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |          |          | 2                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                                                                                | The part of a local |                   |         |                     | ľ            | <b>4</b>            |                                       |
|    | Samp                    | les      | 1        |   |                                                                                                                |          |                |      |          | <b> </b> .                                                                                                       |            | ļ        |    |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |          |          | -A                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                                                                                | 1000                | ř.                | 52      | 0                   |              | J                   |                                       |
|    | (Y/N)                   | 2        |          |   |                                                                                                                |          |                |      |          |                                                                                                                  |            |          |    |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | L        |          |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |               |                                                                                                                | ŝ                   |                   |         | R                   | Ľ            | <u>N</u>            |                                       |

Page 53 of 59

لر)

20 **m**g - 1

|                |        | Î               | ĺ                  |                                |   | F        | 8        |      |          |         |   |             |              |          |              | 100                     | ITEM#                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |          | turs                                    | ž                 |           | į                    | (inclusion)     |                                 | -                                                  |
|----------------|--------|-----------------|--------------------|--------------------------------|---|----------|----------|------|----------|---------|---|-------------|--------------|----------|--------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------|-----------------------------------------|-------------------|-----------|----------------------|-----------------|---------------------------------|----------------------------------------------------|
|                |        |                 |                    | Contraction of the line of the |   | YCM000   | YOWDENCA |      | XCMA941  | YGWA20S |   | ×=== FB-01/ | KINGNA-      | YOWA -   | YGWA-SI      | Mar Dup-01              | (A-Z, 0-9 / , -<br>(A-Z, 0-9 / , -<br>Sample kis must be unkp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SAMPLE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |          | ad Due Date:                            | (770)384-6526 Fax | GA 30114  | 1070 Bridge Mill Ave | r Georgia Power | A<br>A<br>3 Client Information: | THE REPORT AND AND AND AND AND AND AND AND AND AND |
|                |        |                 | ζ.                 | · 医马克克 金属 金属 中国                |   |          |          |      |          |         |   | 021020      | 40           | 39       |              | (62082))                | And<br>And<br>Consection<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State<br>State | Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andread Andrea | MATRIXD CODED                 |          | Project #                               | Project Nam       | Destine 0 | Copy Te:             | Report To:      | Section B<br>Required P         | •                                                  |
|                |        |                 | e f                |                                | ٩ | 5        | WT       | W.T. | 5        | ¥       | Ę | ¥.          | 5            | <u>ع</u> | N.           | M                       | MATRIX CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (ses valid cod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ies lo ieft)                  | 1        |                                         |                   |           |                      | Bec             |                                 |                                                    |
|                |        |                 | R                  |                                |   | <b> </b> | <b> </b> |      | <u> </u> |         |   | 2           | 5            | 5        | 2            | 2                       | SAMPLE TYPE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (G≖GRAB C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ×COMP)                        |          |                                         | Í                 |           |                      | y Slee          |                                 |                                                    |
|                |        |                 | <b>WICO</b>        | D D D D D                      |   |          |          | \$   |          | 121     |   | 10-21       | 1021         | 01201    | 194 h        | - 821 -                 | DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               |          |                                         |                   | ŀ         |                      | Wei             | hation;                         |                                                    |
| PROF           |        | i denni<br>i    | 24/J               | T N S                          |   |          |          | ŧ    |          | Ş,      |   | S           | <u></u> র্হু | 936      | 020          |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | COLLECT                       |          |                                         |                   |           |                      |                 |                                 |                                                    |
| Number of S    |        |                 | 2 500              |                                |   |          |          |      |          |         |   |             |              |          |              |                         | MTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | œ                             |          |                                         |                   |           |                      |                 |                                 |                                                    |
| A ROAD         |        | ĺ               | 10.7               | D'AN                           |   |          |          |      |          |         |   |             |              |          |              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |          |                                         |                   |           |                      |                 |                                 | Ş                                                  |
|                |        |                 |                    | 1995)<br>(1985)                |   |          |          | Å.   |          |         |   | E.          | _            | -        | <b>7</b>     | -                       | SAMPLE TEMP /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T COLLECTI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |          |                                         | 0 3               |           | 0                    | 5               | 5 9                             | 5                                                  |
| 5              |        |                 | <u></u>            |                                |   |          |          |      |          |         |   | 11          | 12           | /        |              | ナ                       | Unpreserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u></u>                       |          |                                         |                   |           | OTIDA                |                 |                                 | S S                                                |
| オー             |        |                 | 2                  |                                |   |          |          | Ì    |          |         |   |             |              |          |              | 5                       | H2904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |          |                                         | 5                 | 3         | ny Na                | 8               | Í Ó                             | а<br>Б                                             |
|                |        |                 | $\mathbb{N}$       |                                |   |          |          | k    | <u> </u> | /       |   |             | $\geq$       | 7        | /            | $\geq$                  | HNO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Pre                           |          |                                         | Ī                 |           | ļ,                   |                 |                                 | 2                                                  |
| <u> </u>       |        |                 | $\sim$             |                                |   |          |          | •    |          |         |   |             |              |          |              |                         | NEOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | 0070     |                                         | !                 |           |                      | I               | ₹.                              | . ξ                                                |
| ŝ              |        |                 | Š.                 |                                |   |          |          |      |          |         |   |             |              |          |              |                         | Na2S203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lives                         |          | 100                                     |                   |           |                      |                 |                                 | Č                                                  |
| 5              |        |                 | 2                  |                                |   |          |          |      |          |         |   |             |              |          |              |                         | Methanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |          | 1 LAND                                  |                   |           |                      |                 |                                 | 241.                                               |
| で              |        | 10              | $\mathbf{\lambda}$ |                                |   |          |          |      |          |         |   |             |              |          |              |                         | Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 (* <del>7 2), (</del> 15 () | 800      | an Nijer                                |                   |           |                      | ł               |                                 | 2                                                  |
| 540            |        |                 | Ę                  |                                | ¥ | l¥.      | IX I     | ¥    | Я        | ×       | ¥ | ¥8          | <b>≹</b> ≿   | ××       | ×            | $\overline{\mathbf{x}}$ | ADD IV Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ALU I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |          | incer.                                  |                   |           |                      |                 |                                 | 94240                                              |
|                | A VORT |                 |                    | E,                             | * | ŧ        |          | *    | 7        | ×       | * | *8          | ž            | ×        | ×            | ×                       | Fluorida                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |          | 103.00                                  |                   |           |                      | I               |                                 |                                                    |
| Si di          |        |                 | $\mathbf{N}$       |                                | 打 | ĸ        | 8        | ¥    | X        | X       | × | <u>ک</u>    | λ            | ž        | ×            | ×                       | RAD 9315/9320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |          | ļ                                       | 1                 |           |                      |                 | -                               | ŝ                                                  |
|                |        |                 |                    |                                | • | <b> </b> |          |      |          |         |   | • •         | •            | •        |              | -                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |          |                                         |                   |           |                      |                 |                                 |                                                    |
|                |        | ╇┯              | 争                  |                                |   |          |          |      |          |         |   |             |              |          |              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |          |                                         |                   |           |                      | 1               |                                 | 8                                                  |
|                |        | -               | 10                 |                                |   |          |          |      |          |         |   |             |              |          |              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ┢╌╌╢                          |          |                                         |                   |           |                      |                 |                                 | di lo                                              |
|                |        |                 | ド                  |                                |   |          |          |      |          |         |   |             |              |          |              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |          |                                         |                   |           |                      | إلى             |                                 | <b>Dallar</b>                                      |
| 1000<br>1000   |        |                 | 1                  |                                |   |          |          |      |          | • • • • |   |             |              |          |              |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |          | 1000                                    |                   | 100       |                      |                 |                                 | 8                                                  |
| And P          |        | -               | 01                 |                                |   | <u> </u> |          |      |          |         |   |             |              | <u>5</u> |              | -                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |          | ALC: NO.                                |                   | 1000      |                      | ſ               | 1                               | Uiate                                              |
| MP in C        |        | +               |                    |                                |   | Ļ        |          |      | <u> </u> |         |   |             |              |          |              | _                       | Pasident                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |          |                                         |                   |           | Č.                   |                 |                                 | ay.                                                |
| selved on      |        | +               | ╉╍┥                |                                |   | 4        |          | d    |          | 0       | , | 3           | , 1          | . 1      | <del>.</del> |                         | Kenninn Cyloffi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H# (Y/IN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |          |                                         |                   |           |                      | ſ               | Ì                               |                                                    |
| )<br>N)        |        |                 |                    |                                | ١ | 1        | (        | ¥    |          | Y.      | { |             | ()           |          | X            |                         | S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |          |                                         |                   | 1.5       |                      |                 |                                 |                                                    |
| stody<br>led(1 |        | <del> -</del> - |                    |                                |   |          |          | à    |          | 8<br>2  |   |             | 폱            | E        | รา <br>ธา    | ľ                       | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |          | Den weiter                              |                   | 1528      | ĺ                    | ľ               | '                               | i.                                                 |
|                |        |                 |                    |                                |   |          |          | 1    |          | 0       |   |             | 570          | ΰJ       | Ĩ            | ` [                     | 215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | An and a second               | 24       | 100000000000000000000000000000000000000 |                   | STATE OF  | ĺ                    | 9               | 2                               |                                                    |
| N)             |        | 1               |                    | Fr. 6                          | 1 |          | 1        |      | 1        |         |   |             |              |          | 1            | - 1                     | <i>U</i> \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | <b>9</b> |                                         | 緟                 |           |                      | 1               | - 1                             |                                                    |
| mptes          |        | Γ               |                    |                                |   |          |          |      | 1        |         |   |             | 3            | 83       |              |                         | $\sigma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |          | たい                                      |                   | 1         | n                    |                 |                                 |                                                    |

Page 54 of 59

| nples<br>btCl<br>v)               |                                          |          |          |                |               |    |        |     | с<br>С | 3           |      | 4    |        | 3           |        |        | Q                | -68                                                                               |             | においたが                                                                                                          |             | Carlo Carlo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (              |              |                      |
|-----------------------------------|------------------------------------------|----------|----------|----------------|---------------|----|--------|-----|--------|-------------|------|------|--------|-------------|--------|--------|------------------|-----------------------------------------------------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------|----------------------|
| N)<br>N)<br>Nody<br>NedC)<br>NerC |                                          | -        |          | Subsection The | Z.            |    | l      | )   | 3 40   |             |      |      |        | S<br>2<br>2 | ]      |        | ) H <sup>4</sup> | 12521                                                                             | 2000        | The second second second second second second second second second second second second second second second s |             | any Agency 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -              | Q<br>Q       |                      |
| AP in C                           |                                          |          |          |                |               | ╢  | 4      | ╢   |        |             |      |      |        |             |        | +      |                  | Residual Chiorine (Y/N)                                                           |             | 記録の日本                                                                                                          |             | State State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                | Page :       | e y                  |
|                                   | Ī                                        | 20       | 420      |                | $\frac{1}{1}$ |    |        |     | III.   |             |      |      |        |             | +      | Ţ      |                  |                                                                                   | <b>ELAN</b> | Contraction and the                                                                                            |             | ALC: NO DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL DECIMA |                |              |                      |
|                                   |                                          | H KI     | كأبطعا   |                |               |    |        |     |        |             |      |      |        |             |        |        |                  |                                                                                   |             |                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              | ment<br>completer    |
|                                   |                                          |          |          |                |               |    |        |     |        |             |      |      |        |             |        |        |                  |                                                                                   |             |                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              | Docu<br>must be      |
|                                   |                                          | r s      | £        | No.            | ×             |    | ××     | ××  | ××     | ,<br>,<br>, |      | <    | ×<br>× | ×<br>×      | ×<br>× | x<br>x | ×                | Fluoride RAD 9315/9320                                                            |             | Habs.com,                                                                                                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              | iquest<br>ant fields |
|                                   |                                          |          | parts of |                | ļ             |    |        |     |        |             |      |      |        |             |        |        |                  | Other<br>Alfalyage Teat as R/Alfa                                                 |             | enno@pao                                                                                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              | Cal Re<br>All new    |
|                                   |                                          | and a    |          | No.            |               | ╟  |        |     | ╟      | _           | ┝╍╀╸ |      |        | <br>-       |        |        |                  | NaOH Di<br>Ne28203 Di<br>Methanol                                                 | Č           | u<br>urunan                                                                                                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              | <b>Inalyti</b>       |
|                                   |                                          | <u>í</u> | E .      |                | 7             |    |        |     |        |             |      | ~    | *      | ~           |        |        | ×                | HNO3 T                                                                            | <br>1001    |                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | anne:          | AUNTEROUT:   | EGAL DO              |
| ۱ <sup>-</sup> (۳)                |                                          |          | 50       |                |               | ┝╋ | ┼┥     |     |        |             | ╞    | ~    | X      | N N         |        |        |                  | # UF CONTAINERS Unpreserved H2SO4                                                 |             | ace Profile                                                                                                    | ace Quole   | vooress:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Company N      | vitention:   | dy is a Li           |
|                                   |                                          |          | hd'a l   |                |               |    |        |     |        |             |      | _    |        |             | ╞┼     |        |                  | SAMPLE TEMP AT COLLECTION                                                         |             |                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              | -of-Custo            |
|                                   |                                          |          | 2        |                |               |    |        |     |        |             |      |      | -      |             |        |        |                  |                                                                                   |             |                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              | The Chain            |
| PRINT                             |                                          |          | ials.    |                | 136           |    |        |     | 5      | ;<br>;      |      | *    | 58     | Sum         |        |        | 6                |                                                                                   |             |                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              | -                    |
|                                   |                                          |          | ne /A    |                |               |    |        |     |        | 20          |      | 2    | 219    | 11          |        |        | 29               |                                                                                   |             |                                                                                                                | Voine AMA   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | / Stoever    |                      |
|                                   |                                          |          | a de la  |                | WT            | ×  | 1<br>1 | N.  |        |             | Į.   | 4    | WT     | WT          | 4      | W      | ¥                | MATRIX CODE (see valid codes to left)                                             |             | 7                                                                                                              | ie Order a: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8              | To: Bedry    |                      |
|                                   |                                          |          | न        |                |               |    |        |     |        |             |      |      |        |             |        |        |                  |                                                                                   |             | Project                                                                                                        | Photect     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Copy 1         | Report       |                      |
|                                   |                                          |          |          |                | ľ             |    |        |     |        |             |      | ソ    |        |             |        |        |                  | ₩<br>₩<br>₩<br>₩<br>₩<br>₩<br>₩<br>₩<br>₩<br>₩<br>₩<br>₩<br>₩<br>₩<br>₩<br>₩<br>₩ |             |                                                                                                                |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |              |                      |
|                                   | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 |          |          |                | 22402         |    |        |     | .076/1 | トン          |      | 2092 | E OATI | 10931       |        |        | 120              |                                                                                   |             | N                                                                                                              | Fax         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ave            | -<br>-<br>   |                      |
|                                   | 4                                        |          |          | and the second | i<br>q        |    |        | 2.2 |        | <u>و</u>    |      |      | 185 (0 | -175 60     |        |        | 4 (0 Z O         | SAMP<br>om Charact<br>(A.Z. d                                                     |             |                                                                                                                | 701384-6526 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 170 Bridge Mil | eorgia Power | e Analytical         |
|                                   |                                          |          |          |                | YCNIC         | 1  |        |     | C IGN/ |             |      | YCWA | YGWA   | YGWA        |        |        | YGWA             |                                                                                   |             | sted Due (                                                                                                     |             | 1, 64, 301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                | any o        |                      |

|                | Î                                                                                                                |        |          | 1        |                                                                                                                 | 12              | Í.                                        |          |   | 18 M | 2    |         | O.       | 13 | es. | 15           |                           | ITEM#                                                      |               |                   |                | tuest          | ¥ ₿        |                                          |                                          |                       |            |
|----------------|------------------------------------------------------------------------------------------------------------------|--------|----------|----------|-----------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------------------|----------|---|------|------|---------|----------|----|-----|--------------|---------------------------|------------------------------------------------------------|---------------|-------------------|----------------|----------------|------------|------------------------------------------|------------------------------------------|-----------------------|------------|
|                |                                                                                                                  |        |          |          | A STATE AND A STATE AND A STATE AND A STATE AND A STATE AND A STATE AND A STATE AND A STATE AND A STATE AND A S |                 |                                           |          |   |      |      |         |          |    |     | 1000 -37 (PM | 120 ) IE . UMA . SI ( 02) | (A-Z, 8-87,- A2<br>)<br>Sample Ids must be unique<br>nesse | SAMPLE ID     | Denergy           |                | od Due Date:   |            | GA 30114                                 | 7: Georgea Prower<br>1070 Extoor Aut Ave | d Client Information: | A Arabitat |
|                |                                                                                                                  |        |          |          |                                                                                                                 |                 |                                           |          |   |      |      |         |          |    |     | 021)         | 021)                      | 겨울놀                                                        |               |                   |                | Protect        | Punchase O |                                          | Heport To:                               | Required P            |            |
|                | :                                                                                                                |        | C        |          |                                                                                                                 |                 | 1                                         | 1        |   | ļ    |      | 5       | 1        | ٤  | ¥   | <u>ع</u>     | <u>ج</u>                  | MATRIX CODE                                                | (see valid co | des to lett)      |                | 1              | nder #     |                                          | Bec                                      |                       |            |
|                |                                                                                                                  |        |          | 抖        |                                                                                                                 |                 | ┢                                         |          | - |      |      |         | -        |    |     | 154          | N                         | SAMPLE TYPE                                                | (G+GRAB C     | »COMP)            |                | 1              |            |                                          | y Siee                                   | hilorn                |            |
|                |                                                                                                                  |        |          |          | - BO                                                                                                            | :               |                                           | 1        |   |      |      |         |          |    |     | 3            | 8                         |                                                            | STN           |                   |                |                |            |                                          | NOT .                                    |                       |            |
| PRO            | and the second second second second second second second second second second second second second second second |        |          |          |                                                                                                                 |                 |                                           |          |   |      | :    |         |          |    |     | 512          | 240                       | TIME                                                       | 4             | cou               |                |                |            |                                          |                                          |                       |            |
| TName          |                                                                                                                  |        |          |          |                                                                                                                 |                 |                                           |          |   |      |      |         |          |    |     |              |                           | DATE                                                       |               | ECTED             |                |                |            |                                          |                                          |                       | I a c      |
| or same        |                                                                                                                  |        |          |          |                                                                                                                 |                 |                                           | l        |   |      |      |         |          | 1  |     |              |                           | in an an an an an an an an an an an an an                  | ő             |                   |                |                |            | -                                        |                                          |                       | hain-of    |
| a fiz          |                                                                                                                  |        |          |          |                                                                                                                 |                 |                                           |          |   |      |      |         | ╞──      |    |     |              | <u> </u>                  | SAMPLE TEMP                                                | AT COLLECTI   | ÓN                |                |                |            |                                          |                                          |                       | 5.5        |
| プ酸             |                                                                                                                  | Ι      |          |          |                                                                                                                 |                 |                                           |          |   |      |      |         | [        |    |     | E            |                           | 4 OF CONTAINS                                              | RS            |                   |                | 8              | ð          | ξŞ                                       | Ī                                        |                       |            |
| 8              |                                                                                                                  |        |          |          |                                                                                                                 | <u> </u>        |                                           | ļ        | ļ |      |      |         |          |    |     | 2            | Ķ                         | Unpreserved                                                |               |                   |                | 3              | ğ          | anas.                                    |                                          |                       | ມ<br>ທີ    |
| 3              | <u> </u>                                                                                                         | -      |          |          |                                                                                                                 | <u>.</u>        |                                           |          | [ |      |      |         | -        |    | ╞╧╧ |              |                           | H2804                                                      |               |                   |                | BOL M          | ă          | (Nalt                                    |                                          |                       |            |
| <b>C</b>       | í.                                                                                                               |        |          | 13       |                                                                                                                 |                 |                                           |          |   |      |      |         |          |    |     | 7            |                           | HNU3<br>HCI                                                |               | -Tes              |                | Ceur           |            | 8                                        |                                          | Hitlon                | Ž          |
| 8              |                                                                                                                  |        |          | {        |                                                                                                                 | 4               |                                           |          | · |      | i    |         | i in set |    |     |              |                           | NaOH                                                       |               |                   | 240            | 8              | ÷.,        |                                          |                                          | n                     | - 8        |
|                |                                                                                                                  |        | 1        |          |                                                                                                                 |                 |                                           | Î        |   |      |      | , seein |          |    |     |              |                           | Na28203                                                    |               | TV9               |                | ş              |            | 1.                                       |                                          |                       | ŰM         |
|                | 1                                                                                                                |        | 13       |          |                                                                                                                 |                 |                                           |          |   |      | 2.19 |         |          |    |     |              |                           | Methanol                                                   |               | 1                 |                | 22             |            |                                          |                                          |                       | Ľ,         |
|                |                                                                                                                  |        |          |          |                                                                                                                 |                 |                                           |          |   |      |      |         |          |    |     |              |                           | Other                                                      |               |                   |                |                |            |                                          |                                          |                       | Å.         |
| -              |                                                                                                                  |        | 2        |          |                                                                                                                 |                 |                                           |          |   |      | i    | ×       | ×        | ×  | ×   | ×            | ×                         | Ano IV Metele                                              |               | W/N®              |                | <b>Brace</b>   |            |                                          |                                          |                       | elev:      |
|                |                                                                                                                  |        |          | [h-      | 4-1                                                                                                             | 2000            |                                           |          | - |      |      | ×       | X        | ×  | ×   | ×            | ×                         | Fluoride                                                   |               |                   |                | laba o         |            |                                          |                                          |                       | ant fi     |
|                |                                                                                                                  |        |          | R.,      |                                                                                                                 |                 |                                           |          |   |      |      | ×       | ×        | ×  | ×   | ×            | ×                         | RAD 9315/832                                               | 0             | 2002<br>11. (N. 1 |                | 3              |            |                                          |                                          |                       | eids       |
|                |                                                                                                                  |        |          | 1        | 10000S                                                                                                          |                 |                                           |          | _ |      |      |         |          |    |     |              |                           |                                                            |               |                   |                |                |            |                                          |                                          |                       | mus        |
|                |                                                                                                                  | ····   | ┝,       |          |                                                                                                                 | <u></u>         |                                           |          |   |      |      |         |          |    |     |              |                           |                                                            |               | ļ                 |                | ŀ              |            | ľ                                        |                                          |                       | ŝ          |
|                |                                                                                                                  | :      |          | E        | 2                                                                                                               |                 | 1997 - 1997<br>1997 - 1997<br>1997 - 1997 |          |   | is   |      |         |          |    |     | i<br>N       |                           |                                                            |               |                   | - 52<br>       |                |            |                                          |                                          |                       | ŝ          |
|                |                                                                                                                  |        |          | <b>F</b> |                                                                                                                 |                 |                                           |          |   | 1    |      |         |          |    |     |              |                           |                                                            |               | -                 |                |                |            |                                          | ليا                                      |                       | plete      |
|                |                                                                                                                  |        |          | -        |                                                                                                                 |                 |                                           | ľ.       |   | ·    |      |         |          |    |     |              |                           | ·                                                          |               |                   | <u> . 11 a</u> |                |            |                                          |                                          |                       | 2<br>2     |
|                |                                                                                                                  |        | ۱ ا      | 8        |                                                                                                                 |                 |                                           |          |   |      |      |         |          |    |     |              |                           |                                                            |               |                   |                | 10000          |            | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | _                                        |                       | _ X        |
|                |                                                                                                                  |        |          | ~        |                                                                                                                 | <u></u>         |                                           |          |   |      |      |         |          |    |     |              |                           |                                                            |               |                   |                |                |            |                                          | ſ                                        | 7                     | ļ          |
| MP in C        |                                                                                                                  |        |          |          |                                                                                                                 | ari.<br>Ali ari |                                           |          |   |      |      |         |          |    |     |              |                           | Desident Obt of                                            |               | EN 200 MILLAN     |                | 2000           | 2          | 1<br>1                                   | ł                                        |                       | ,-         |
| ceived on      |                                                                                                                  |        |          |          |                                                                                                                 |                 |                                           |          |   | :    |      |         | -        |    |     |              | 3                         |                                                            | ne (YAN)      | 计计算               |                | 1.00           |            |                                          | ľ                                        |                       |            |
| n<br>N)        |                                                                                                                  | ÷.     |          |          |                                                                                                                 |                 |                                           |          |   |      |      | . 3     |          |    |     | -1           | ايري                      | ン                                                          |               |                   | ľ              |                |            |                                          |                                          | -                     |            |
| utody<br>aledD |                                                                                                                  | -<br>- | <b>.</b> |          | 8                                                                                                               |                 |                                           |          |   |      |      | 1       | i i      |    | 1   |              |                           | $\tilde{\varsigma}$                                        |               |                   |                | and the second | Į          | 1                                        | 1                                        |                       |            |
| xierD          |                                                                                                                  |        |          |          |                                                                                                                 |                 |                                           |          |   |      |      |         |          |    |     |              | 1                         | <u>C</u>                                                   |               | 1000              |                | Sold Sector    |            |                                          |                                          | R                     |            |
| mples          |                                                                                                                  | •      |          |          |                                                                                                                 |                 | - 14<br>- 14                              |          |   |      |      |         |          |    |     | ₿<br>CV      | in l                      | 5                                                          |               | regener på        |                |                |            | ģ                                        | 3                                        |                       |            |
| act0<br>//N)   |                                                                                                                  |        |          |          |                                                                                                                 |                 |                                           |          |   |      |      |         |          |    | İ   | ÷ (          | ] 10                      | 8                                                          |               |                   |                |                |            |                                          |                                          | N                     |            |
|                |                                                                                                                  | 2.     | lymaad   |          | nie:39362                                                                                                       | <b></b>         | i in the second second                    | <u>.</u> |   |      |      |         | in či    |    | l   | ~            |                           |                                                            |               |                   | ň.             |                | 18         | I                                        | L                                        |                       | l          |

Page 56 of 59

|                  |                |       | ÌÌ       |                                                                                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | R          |          |          |                 |                        |                  |         | N                |          |                                                                                                                |          |            | ITEM #                                              |                                          |      | and a        | X R                  |                  |                                         | ļļ                    | 벐                |
|------------------|----------------|-------|----------|-----------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|----------|-----------------|------------------------|------------------|---------|------------------|----------|----------------------------------------------------------------------------------------------------------------|----------|------------|-----------------------------------------------------|------------------------------------------|------|--------------|----------------------|------------------|-----------------------------------------|-----------------------|------------------|
| NAMA.            |                |       |          | аннын налан жалаан жалаан жалаан жалаан жалаан жалаан жалаан жалаан жалаан жалаан жалаан жалаан жалаан жалаан ж |          | The second second second second second second second second second second second second second second second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Marrieller | W. HOLD  | NGWC-29W | - CU-DH(021/21/ | x + 6-0 4021121)       | VENNIA (07.1121) |         |                  |          |                                                                                                                |          |            | SAMPLE ID<br>One Character per box.<br>(A-2, 446/). |                                          |      | ed Due Date: | 1770 Statustan Space | CA 30114         | 7- Georgia Power<br>1070 Broke Lett Ave | d Cilent Information: | Azze Analytica'  |
| ( <del>*</del> - |                |       |          |                                                                                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l n        | 8        |          | 5               | 5                      |                  | ×       |                  |          |                                                                                                                | X        | <          |                                                     |                                          |      | Poloci #     | Purchase Orde        |                  | Report To: 8                            | Required Proje        |                  |
|                  |                |       |          | K                                                                                                               | 团        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7          | न        |          |                 | E                      | 7                | 7       | <b>P</b>         | 7        | 7                                                                                                              | F        | 7          | SAMPLE TYPE (G=GRAE                                 | C=COMP)                                  |      | 10           |                      |                  | ecky Sh                                 |                       |                  |
|                  |                |       |          |                                                                                                                 | Ŧ        | (International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International International I |            |          |          | 1-1-21          | 5                      | 2Nu              |         |                  |          |                                                                                                                |          |            | DAIE                                                |                                          |      | 2            |                      |                  | eever                                   | million               |                  |
| j.               | 2              | 2     |          |                                                                                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |          | 3               | 0                      | SK<br>SK         |         |                  |          |                                                                                                                |          |            |                                                     | . 8                                      |      |              |                      |                  |                                         |                       |                  |
|                  | UT MO          |       |          |                                                                                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -          |          |          |                 | 0                      |                  |         | -                |          |                                                                                                                |          |            |                                                     | LECTE                                    |      |              |                      |                  | man de la                               | •                     | ୍ କ୍ଟ ପ୍ର        |
| .a               | RE OI SJ       |       | <b> </b> | -                                                                                                               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | <b>.</b> | -        |                 |                        | <u> </u>         |         |                  |          |                                                                                                                | -        | 1          |                                                     | 6                                        |      |              |                      |                  | ļ                                       |                       |                  |
|                  |                | ANDLE |          |                                                                                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |          | ļ.              | L                      |                  |         |                  |          |                                                                                                                |          | -          | <b>K</b>                                            |                                          |      |              |                      |                  |                                         |                       |                  |
|                  |                |       |          |                                                                                                                 | 1.1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          | 1        |                 | r                      | 2                |         |                  |          |                                                                                                                |          |            | SAMPLE TEMP AT COLLEC                               | TION                                     |      | 2 7          |                      | 2 2              | 2                                       | <b>a</b> 2            |                  |
| R                |                | } [[[ |          |                                                                                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ì          |          | 1        |                 | $\overline{\}$         | N                |         |                  |          |                                                                                                                |          |            | Unpresarved                                         | <b>F</b> ipinana                         |      |              | 0                    | niaduu<br>Sector | licintic                                | voice.                | S<br>S<br>S<br>S |
| 16               | 1              |       |          | :                                                                                                               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |          |                 |                        |                  |         |                  |          | ļ.,                                                                                                            |          |            | H2804                                               |                                          |      | ojeci i      | <u>Ř</u>             | y Nan            | 7                                       |                       |                  |
| V                | Ł              |       |          |                                                                                                                 | 5        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          | 1        | arphi           |                        |                  | -       |                  |          |                                                                                                                |          | -          | HNO3                                                | <b>R</b>                                 |      | Dauey        |                      | R                |                                         | nation                | ¥¥               |
|                  | 1              | 2     |          |                                                                                                                 | N        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          | 1        | l.              |                        | · · ·            | ···· ·  |                  |          |                                                                                                                |          | -          | NaOH                                                | era i                                    | 0940 | 9            |                      |                  |                                         | ñ                     |                  |
|                  | 15             |       |          |                                                                                                                 | <b>Š</b> | $\frac{2}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |          |          |                 | ан, <sub>19</sub>      |                  | : N. 4  |                  | ŀ        |                                                                                                                |          | 1          | Na28203                                             | Wes                                      |      | M            |                      |                  |                                         |                       |                  |
| Ψ                | 2              |       |          |                                                                                                                 | P        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ļ          |          | [        |                 |                        | , i              | -       |                  |          |                                                                                                                |          | -          | Methanol                                            |                                          |      | Incher       |                      |                  |                                         |                       | Ä                |
|                  | ľ              |       | 1.       |                                                                                                                 | N        | 385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u> </u>   | ļ        | ļ.       |                 |                        |                  |         | <u> </u>         | L        |                                                                                                                |          | l          | Other                                               | 0770                                     |      | thoot        |                      |                  |                                         |                       |                  |
|                  |                |       |          |                                                                                                                 | N.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ۲          | *        | ħ        | 1               | R                      | ×                | 7       | ×                | X        | ۲                                                                                                              | R        | 1          | App IV Metals                                       | WILLOW.                                  |      | pascela      |                      |                  |                                         |                       | Heva Reva        |
|                  |                |       |          |                                                                                                                 | 2        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ť.         | <u>†</u> | ¥_       | 1               | ×                      | ×                | *       | ۲                | X        | ۲                                                                                                              | <u>×</u> | X          | Fivorida                                            | 23.0                                     |      | 05.00        |                      |                  |                                         |                       | a fe             |
|                  | ŝ              | 4.0   |          |                                                                                                                 | M        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×          | 7        | 1        | ×               | ך                      | ×                | *       | <del>اگر</del>   | X        | *                                                                                                              | ×        | <b>×</b> ↓ | RAD 9915/9520                                       | an an an an an an an an an an an an an a |      | 3            |                      |                  |                                         |                       | l te             |
|                  |                |       |          |                                                                                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |          |                 | <u>і</u> .<br>Га       |                  |         | <b>e</b> tişinen |          |                                                                                                                |          |            |                                                     | -                                        | 2    |              |                      |                  |                                         |                       |                  |
| 1                |                |       |          |                                                                                                                 | P        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |          |                 |                        |                  |         |                  |          | 200                                                                                                            |          |            |                                                     |                                          |      |              |                      |                  |                                         |                       | ă Ŭ              |
| 1                |                |       |          |                                                                                                                 | \$       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | <u> </u> |          |                 | 11 (A. 4)<br>11 (A. 4) |                  |         |                  |          |                                                                                                                |          |            |                                                     |                                          |      |              |                      |                  |                                         |                       | Į Š              |
|                  | -              |       |          | -                                                                                                               | N        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | <b>—</b> | -        | ÷.,             |                        |                  |         |                  |          |                                                                                                                |          |            |                                                     | _                                        |      |              | Ares Nove            |                  |                                         |                       | Č.               |
|                  |                |       |          |                                                                                                                 | ₩3       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |          |                 | 1                      |                  | 21 - T  | 41 - A           |          |                                                                                                                |          |            |                                                     | -                                        |      |              | 0.000                |                  |                                         |                       |                  |
|                  | 1              |       |          | 1                                                                                                               | Ø        | ØĽ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            |          |          | 1 11<br>        |                        |                  |         |                  |          |                                                                                                                |          |            |                                                     |                                          |      |              |                      | -                |                                         | p                     | ately            |
| TE               | MP I           | n C   |          |                                                                                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          | <u></u>  | I               |                        |                  |         |                  | <u> </u> |                                                                                                                |          |            | Residual Chlorine (Y/N)                             | 2010.070                                 |      |              |                      |                  |                                         |                       |                  |
| Re               | icelva<br>D    | no be |          | ľ                                                                                                               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |          |                 | , -                    | 7                |         |                  |          |                                                                                                                | :        |            | 0                                                   |                                          | 8    | 2010         | و د د                | 8                |                                         |                       |                  |
| (*/              | N)             |       |          | Ļ                                                                                                               |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |          |                 | ł                      | ابخ              | н.<br>1 |                  |          |                                                                                                                |          |            | 5                                                   |                                          |      |              |                      | ľ                | ,   <b>1</b>                            | ۲                     |                  |
| Sea              | aled()<br>olen |       |          |                                                                                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |          |                 |                        | -                |         |                  |          |                                                                                                                |          |            | か                                                   |                                          |      | No.          |                      | て                | *  ,                                    |                       |                  |
| <u>a</u>         | <u>N)</u>      |       |          |                                                                                                                 | -        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |          |                 |                        | <b>N</b>         |         |                  |          | , and the second second second second second second second second second second second second second second se |          |            | 5                                                   |                                          |      |              |                      |                  | ľ                                       | *                     |                  |
| inta<br>/v/      | nol⊜<br>nol⊜   |       |          |                                                                                                                 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |          | ×               | 916                    | <u></u>          |         |                  |          |                                                                                                                |          |            | 6                                                   |                                          |      | and the      |                      |                  |                                         | <b>ა</b>              |                  |
|                  | ·••)           |       |          | 1                                                                                                               |          | 642                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L          |          |          | 4               |                        | $\mathbb{Z}$     |         | 1.               |          |                                                                                                                |          |            | · * N.                                              | 1000                                     |      |              |                      |                  |                                         | v -                   |                  |

Page 57 of 59

| Pace Analytical |
|-----------------|
|-----------------|

# Quality Control Sample Performance Assessment

| Ra-226 | LAL<br>2/26/2021  | 58911<br>DW                        |  |
|--------|-------------------|------------------------------------|--|
| Test:  | Analyst:<br>Date: | Worklist:<br>Matrix: <mark></mark> |  |

**MS/MSD 2** 

MS/MSD 1 2/10/2021

Analyst Must Manually Enter All Fields Highlighted in Yellow.

Sample Matrix Spike Control Assessment Sample Collection Date:

| Method Blank Assessment             |         |
|-------------------------------------|---------|
| MB Sample ID                        | 2103737 |
| MB concentration:                   | 0.035   |
| M/B Counting Uncertainty:           | 0.087   |
| MB MDC:                             | 0.210   |
| MB Numerical Performance Indicator: | 0.78    |
| MB Status vs Numerical Indicator:   | N/A     |
| MB Status vs. MDC:                  | Pass    |
|                                     |         |

| I CS58911      |                                     |
|----------------|-------------------------------------|
| -CSD (Y or N)? | ontrol Sample Assessment            |
|                |                                     |
| Pass           | MB Status vs. MDC:                  |
| N/A            | MB Status vs Numerical Indicator:   |
| 0.78           | MB Numerical Performance Indicator: |
| 2 2            |                                     |

| Matrix Spike/Matrix Spike Duplicate Sample Assessment             |           |                | Duplicate Sample Assessment                   |
|-------------------------------------------------------------------|-----------|----------------|-----------------------------------------------|
|                                                                   |           |                |                                               |
| MS/MSD Lower % Recovery Limits:                                   | 75%       | 75%            | Lower % Recovery Limits:                      |
| MS/MSD Upper % Recovery Limits:                                   | 125%      | 125%           | Upper % Recovery Limits:                      |
| MSD Status vs Recovery:                                           | Pass      | Pass           | Status vs Recovery:                           |
| MS Status vs Recovery:                                            | N/A       | N/A            | Status vs Numerical Indicator:                |
| MSD Status vs Numerical Indicator:                                | 98.83%    | 100.53%        | Percent Recovery:                             |
| MS Status vs Numerical Indicator:                                 | -0.21     | 0.09           | Numerical Performance Indicator:              |
| MSD Percent Recovery:                                             | 0.516     | 0.526          | LCS/LCSD Counting Uncertainty (pCi/L, g, F):  |
| MS Percent Recovery:                                              | 4.738     | 4.762          | Result (pCi/L, g, F):                         |
| MSD Numerical Performance Indicator:                              | 0.058     | 0.057          | Uncertainty (Calculated):                     |
| MS Numerical Performance Indicator:                               | 4.795     | 4.737          | Target Conc. (pCi/L, g, F):                   |
| Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): | 0.501     | 0.508          | Aliquot Volume (L, g, F):                     |
| Sample Matrix Spike Duplicate Result:                             | 0.10      | 0.10           | Volume Used (mL):                             |
| Matrix Spike Result Counting Uncertainty (pCi/L, g, F):           | 24.040    | 24.040         | Decay Corrected Spike Concentration (pCi/mL): |
| Sample Matrix Spike Result:                                       | 19-033    | 19-033         | Spike I.D.:                                   |
| Sample Result Counting Uncertainty (pCi/L, g, F):                 | 3/5/2021  | 3/5/2021       | Count Date:                                   |
| Sample Result:                                                    | LCSD58911 | LCS58911       |                                               |
| MSD Spike Uncertainty (calculated):                               | Y         | LCSD (Y or N)? | Laboratory Control Sample Assessment          |

| Sample I.D. 92521668005<br>Sample MS I.D. 92521668018<br>Sample MSD I.D. 92521668019 | Spike I.D.: 19-033<br>MSMSD Decay Corrected Spike Concentration (pCl/mL): 24.040 | Spike Volume Used in MS (mL): 0.20 | Spike Volume Used in MSD (mL): 0.20<br>MS Aliquot (L, g, F): 0.507 | MS Target Conc. (pCi/L, g, F): 9.481 | MSD Aliquot (L, g, F): 0.504<br>MSD Tarret Conc. (AC'i/ a. E): 0.524 | MS Spike Uncertainty (calculated): 0.114 | MSD Spike Uncertainty (calculated): 0.114 | Sample Result: 0.346 | Sample Result Counting Uncertainty (pCi/L, g, F): 0.170 | Sample Matrix Spike Result 10.085<br>Matrix Spike Result Counting Uncertainty (ACUI a EV 0.750 | Sample Matrix Spike Duplicate Result: 9.274 | Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): 0.719 | MS Numerical Performance Indicator: 0.643 | MSD Numerical Performance Indicator: -1.581 | MS Percent Recovery: 102.72% | MSD Percent Recovery: 93.67%                 | MS Status vs Numerical Indicator: N/A | MSD Status vs Numerical Indicator: N/A | MS Status vs Recovery: Pass    | MSD Status vs Recovery: Pass | MS/MSD Upper % Recovery Limits: 125%<br>MS/MSD Lower % Recovery Limits: 75% |                            | Matrix Spike/Matrix Spike Duplicate Sample Assessment | e Sample I.D. 92521568005 | Sample MS I.D. 92521568018 | Sample MSD I.D. 92521568019  | e Sample Matrix Spike Result: 10.085              | Matrix Spike Result Counting Uncertainty (pCi/L, g, F): 0.759 | Sample Matrix Spike Duplicate Result: 9.274                 | Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): 0.719 | Duplicate Numerical Performance Indicator: 1.522<br>(Based on the Percent Recoveries) MS/ MSD Duplicate RPD- 0.21% | MC/ MCD Dunlicate Status vs Numerical Indicator | MOU PUPPICARE ORANG VS NAMERICAN INDEXACOL | % RPD Limit 25% |  |
|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------|------------------------------------------|-------------------------------------------|----------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------|------------------------------|----------------------------------------------|---------------------------------------|----------------------------------------|--------------------------------|------------------------------|-----------------------------------------------------------------------------|----------------------------|-------------------------------------------------------|---------------------------|----------------------------|------------------------------|---------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------|-----------------|--|
|                                                                                      |                                                                                  |                                    |                                                                    |                                      |                                                                      |                                          | ٢                                         | LCSD58911            | 3/5/2021                                                | 19-033<br>24 040                                                                               | 0.10                                        | 0.501                                                                   | 4.795                                     | 0.058                                       | 4.738                        | 0.516                                        | -0.21                                 | 98.83%                                 | N/A                            | Pass                         | 125%<br>75%                                                                 | 0/01                       |                                                       | Enter Duplicate           | sample IDs if              | other than                   | LCS/LCSD in th                                    | space below.                                                  |                                                             |                                                                         |                                                                                                                    |                                                 |                                            |                 |  |
| 58911<br>DW                                                                          | 2103737                                                                          | 0.035                              | 0.087<br>0.210                                                     | 0.78                                 | A/A<br>Dass                                                          | Lass                                     | CSD (Y or N)?                             | LCS58911             | 3/5/2021                                                | 19-033<br>24 040                                                                               | 0.10                                        | 0.508                                                                   | 4.737                                     | 0.057                                       | 4.762                        | 0.526                                        | 0.09                                  | 100.53%                                | N/A                            | Pass                         | 125%<br>75%                                                                 | 9/C1                       |                                                       | LCS58911                  | LCSD58911                  | 4.762                        | 0.526                                             | 4.738                                                         | 0.516                                                       | DZ                                                                      | 0.062                                                                                                              | N/A                                             | Pass                                       | 25%             |  |
| Worklist:<br>Matrix:                                                                 | hod Blank Assessment<br>MB Sample ID                                             | MB concentration:                  | M/B Counting Uncertainty:<br>MB MDC:                               | MB Numerical Performance Indicator:  | MB Status vs Numerical Indicator:                                    |                                          | oratory Control Sample Assessment         |                      | Count Date:                                             | Spike I.D.:<br>Decay Corrected Shike Concentration (nCi/m) ).                                  | Volume Used (mL):                           | Aliquot Volume (L, g, F):                                               | Target Conc. (pCi/L, g, F):               | Uncertainty (Calculated):                   | Result (pCi/L, g, F):        | LCS/LCSD Counting Uncertainty (pCi/L, g, F): | Numerical Performance Indicator:      | Percent Recovery:                      | Status vs Numerical Indicator: | Status vs Recovery:          | Upper % Recovery Limits:<br>Lower % Recovery Limits:                        | LOWER /0 NECOVERY LITTINS. | licate Sample Assessment                              | Sample I.D.:              | Duplicate Sample I.D.      | Sample Result (pCi/L, g, F): | Sample Result Counting Uncertainty (pCi/L, g, F): | Sample Duplicate Result (pCi/L, g, F):                        | Sample Duplicate Result Counting Uncertainty (pCi/L, g, F): | Are sample and/or duplicate results below KL?                           | Duplicate Numerical Performance Indicator:<br>Based on the LCS/LCSD Percent Recoveries) Duplicate RPD.             | Dunlicate Status ve Numerical Indicator:        | Dunlicate Status vs rvantencar marcarot.   | % RPD Limit:    |  |

## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

PACE Analytical Services Ra-228 Analysis

Face Analytical"

# Quality Control Sample Performance Assessment

<u>Analyst Must Manually Enter All Fields Highlighted in Yellow.</u>

| Ra-228 | VAL<br>2/24/2021  | 58910<br>WT          |
|--------|-------------------|----------------------|
| Test   | Analyst:<br>Date: | Worklist:<br>Matrix: |

MS/MSD 2

2/10/2021 MS/MSD

Sample Collection Date:

Sample Matrix Spike Control Assessment

Sample I.D. Sample MS I.D. Sample MSD I.D.

Spike I.D.:

| rthod Blank Assessment              |         |
|-------------------------------------|---------|
| MB Sample ID                        | 2103736 |
| MB concentration:                   | 0.175   |
| M/B 2 Sigma CSU:                    | 0.283   |
| MB MDC:                             | 0.615   |
| MB Numerical Performance Indicator; | 1.21    |
| MB Status vs Numerical Indicator:   | Pass    |
| MB Status vs. MDC:                  | Pass    |

|       | 3/1/2021<br>21-003 | Count Date:<br>Soire 10             |
|-------|--------------------|-------------------------------------|
| rcs   | LCS58910           |                                     |
| 11141 | LCSD (Y or N)?     | ory Control Sample Assessment       |
| _     |                    |                                     |
|       | Pass               | MB Status vs. MDC:                  |
|       | Pass               | MB Status vs Numerical Indicator:   |
|       | 1.21               | MB Numerical Performance Indicator; |
|       | 0.615              | MB MDC:                             |
|       | 0.283              | M/B Z Sigma CSU:                    |

Sample Result

MS Target Conc. (p. 5) MS Target Conc. (p. 2), F) MSD Target Conc. (p. 2), F) MSD Target Conc. (p. 2), 9, F) MS Spike Uncertainty (calculated); MSD Spike Uncertainty (calculated);

Spike Volume Used in MS (mL): Spike Volume Used in MSD (mL):

MS/MSD Decay Corrected Spike Concentration (pCi/mL):

| M/B 2 Sioma CSU:                    | 0.283          |
|-------------------------------------|----------------|
| MB MDC:                             | 0.615          |
| MB Numerical Performance Indicator: | 1.21           |
| MB Status vs Numerical Indicator:   | Pass           |
| MB Status vs. MDC:                  | Pass           |
|                                     |                |
| ory Control Sample Assessment       | LCSD (Y or N)? |
|                                     | 10558010       |

|                                               | rdss           | _         |
|-----------------------------------------------|----------------|-----------|
| boratory Control Sample Assessment            | -CSD (Y or N)? | Ν         |
|                                               | LCS58910       | LCSD58910 |
| Count Date:                                   | 3/1/2021       |           |
| Spike I.D.:                                   | 21-003         |           |
| Decay Corrected Spike Concentration (pCi/mL): | 38.633         |           |
| Volume Used (mL):                             | 0.10           |           |
| Aliquot Volume (L, g, F).                     | 0.813          |           |
| Target Conc. (pCi/L, g, F):                   | 4.751          |           |
| Uncertainty (Calculated):                     | 0.233          |           |
| Result (pCi/L, g, F):                         | 3.106          |           |
| LCS/LCSD 2 Sigma CSU (pCi/L, g, F):           | 0.756          |           |
| Nimerical Professional Advisory               | 1 07           |           |

|             |            | htration (pCi/mL): 38.633   Matrix Spike Result 2 Sigma CSU (pCi/L | lume Used (mL): [110:000000000000000000000000000000000 | Volume (L, g, F): 0.813 0.813 Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, | nc. (pCi/l, g, F): 4.751 MS Numerical Performance Indi | Inty (Catculated): 0.233 MSD Numerical Performance India | sult (pCi/L, g, F): 3.106 MS Percent Reco | SU (pCi/L, g, F): 0.756 MSD Percent Reco | mance Indicator: 4.07 MS Status vs Numerical Indic | ercent Recovery: 65.39% MSD Status vs Numerical India | merical Indicator: N/A MS Status vs Reco | tus vs Recovery: Pass MSD Status vs Reco | Recovery Limits: 135% I accovery Limits: 135% | Recovery Limits: 60% Recovery L | Matrix Spike/Matrix Spike Duplicate Sample Assessment | Samole (.D.: Enter Dunicate |   |
|-------------|------------|--------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------|-------------------------------------------|------------------------------------------|----------------------------------------------------|-------------------------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------------------|---------------------------------|-------------------------------------------------------|-----------------------------|---|
| Contraction | Colloc 17. | Decay Corrected Spike Concentration (pCi/mL):                      | Volume Used (mL);   · · · · · · · ·                    | Aliquot Volume (L, g, F):                                                       | Target Conc. (pCi/L, g, F):                            | Uncertainty (Calculated):                                | Result (pCi/L, g, F);                     | LCS/LCSD 2 Sigma CSU (pCi/L, g, F);]     | Numerical Performance Indicator,                   | Percent Recovery: 6                                   | Status vs Numerical Indicator:           | Status vs Recovery:                      | Upper % Recovery Limits:                      | Lower % Recovery Limits:        | e Sample Assessment                                   | Samole (D.:)                | C |

| 135%<br>60%                                                        |                                                       | 92521568005     | 92521568018           | 92521568019                  | 8.391                                    | 1.709                                           | 6.453                                               | 1.402                                                    | 1.718                                      | 27.45%                                                   | Pass                                             | Pass                             | 36%          |
|--------------------------------------------------------------------|-------------------------------------------------------|-----------------|-----------------------|------------------------------|------------------------------------------|-------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|--------------------------------------------|----------------------------------------------------------|--------------------------------------------------|----------------------------------|--------------|
| MS/MSD Upper % Recovery Limits:<br>MS/MSD Lower % Recovery Limits: | Matrix Spike/Matrix Spike Duplicate Sample Assessment | Sample I.D.     | Sample MS I.D.        | Sample MSD I.D.              | Sample Matrix Spike Result:              | Matrix Spike Result 2 Sigma CSU (pCi/l., g, F); | Sample Matrix Spike Duplicate Result:               | Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F): | Duplicate Numerical Performance Indicator: | (Based on the Percent Recoveries) MS/ MSD Duplicate RPD: | MS/ MSD Duplicate Status vs Numerical Indicator: | MS/ MSD Duplicate Status vs RPD: | % RPD Limit  |
|                                                                    |                                                       | Enter Duplicate | sample IDs if         | other than                   | LCS/LCSD in                              | the space below.                                |                                                     |                                                          |                                            |                                                          |                                                  |                                  |              |
| 60%                                                                |                                                       |                 |                       |                              |                                          |                                                 |                                                     | See Below #                                              |                                            |                                                          |                                                  |                                  |              |
| Lower & Recovery Limits.                                           | Juplicate Sample Assessment                           | Sample I.D.:    | Duplicate Sample I.D. | Sample Result (pCi/L, g, F): | Sample Result 2 Sigma CSU (pCi/L, g, F): | Sample Duplicate Result (pCi/L, g, F):          | Sample Duplicate Result 2 Sigma CSU (pCi/L, g, F);] | Are sample and/or duplicate results below RL?            | Duplicate Numerical Performance Indicator. | Duplicate RPD:                                           | Duplicate Status vs Numerical Indicator:         | Duplicate Status vs RPD:         | % RPD Limit: |

## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

R.

XY

Comments:

CHURD DO

Ra-228 NELAC DW2 Printed: 3/2/2021 8:57 AM

# **March 2021**

Semiannual Event





# Georgia Power Co. – Plant Yates

# **DATA REVIEW**

Metals, Radium, and General Chemistry Analyses SDGs #92525896, 92525905, 92525931 and 92525936

Analyses Performed By: Pace Analytical Services – Asheville, North Carolina Pace Analytical Services – Peachtree Corners, Georgia Pace Analytical Services – Greensburg, Pennsylvania

Report #41027R Review Level: Tier II Project: 30052922.00004

# **SUMMARY**

This data quality assessment summarizes the review of Sample Delivery Groups (SDGs) # 92525896, 92525905, 92525931 and 92525936 for samples collected in association with the Georgia Power Company – Plant Yates. The review was conducted as a Tier II evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the chain of custody form and a table summarizing the data validation qualifiers. Analyses were performed on the following samples:

|          |           |                            |        | Sample             |               |     | Analy | sis         |
|----------|-----------|----------------------------|--------|--------------------|---------------|-----|-------|-------------|
| SDG      | Sample ID | Lab ID                     | Matrix | Collection<br>Date | Parent Sample | RAD | MET   | GEN<br>CHEM |
|          | YGWC-24SA | 92525896-1<br>92525931-1   | Water  | 03/03/21           |               | х   | х     | х           |
|          | YGWC-36A  | 92525896-2<br>92525931-2   | Water  | 03/04/21           |               | х   | Х     | Х           |
|          | DUP-2     | 92525896-3<br>92525931-3   | Water  | 03/03/21           | YGWC-24SA     | x   | х     | х           |
|          | YGWC-23S  | 92525896-4<br>92525931-4   | Water  | 03/04/21           |               | х   | Х     | Х           |
|          | YGWC-41   | 92525896-5<br>92525931-5   | Water  | 03/04/21           |               | х   | Х     | х           |
| 92525896 | YGWC-43   | 92525896-6<br>92525931-6   | Water  | 03/04/21           |               | х   | Х     | х           |
| 92525931 | FB-1      | 92525896-7<br>92525931-7   | Water  | 03/04/21           |               | х   | Х     | х           |
|          | EB-2      | 92525896-8<br>92525931-8   | Water  | 03/04/21           |               | х   | Х     | х           |
|          | YGWC-49   | 92525896-9<br>92525931-9   | Water  | 03/04/21           |               | х   | Х     | х           |
|          | FB-02     | 92525896-10<br>92525931-10 | Water  | 03/04/21           |               | х   | Х     | Х           |
|          | YGWC-42   | 92525896-11<br>92525931-11 | Water  | 03/04/21           |               | х   | Х     | х           |
|          | TGWC-38   | 92525896-12<br>92525931-12 | Water  | 03/04/21           |               | х   | Х     | х           |
| 92525905 | YAMW-2    | 92525905-1<br>92525936-1   | Water  | 03/03/21           |               | х   | Х     | Х           |
|          | YAMW-4    | 92525905-2<br>92525936-2   | Water  | 03/03/21           |               | х   | х     | х           |

|                      |           |                          |        | Sample             |               |     | Analysis |             |  |  |
|----------------------|-----------|--------------------------|--------|--------------------|---------------|-----|----------|-------------|--|--|
| SDG                  | Sample ID | Lab ID                   | Matrix | Collection<br>Date | Parent Sample | RAD | MET      | GEN<br>CHEM |  |  |
|                      | YAMW-5    | 92525905-3<br>92525936-3 | Water  | 03/04/21           |               | х   | Х        | Х           |  |  |
|                      | YAMW-1    | 92525905-4<br>92525936-4 | Water  | 03/03/21           |               | х   | Х        | Х           |  |  |
| 92525905<br>92525936 | PZ-35     | 92525905-5<br>92525936-5 | Water  | 03/04/21           |               | х   | Х        | Х           |  |  |
| 92525936             | EB1       | 92525905-6<br>92525936-6 | Water  | 03/04/21           |               | x   | Х        | Х           |  |  |
|                      | PZ-37     | 92525905-7<br>92525936-7 | Water  | 03/04/21           |               | х   | Х        | Х           |  |  |

Notes:

1. Metals and total dissolved solids (TDS) analysis performed by Pace Analytical Services – Peachtree Corners, Georgia.

2. Anions (chloride, fluoride, and sulfate) analysis performed by Pace Analytical Services – Asheville, North Carolina.

3. Radium analysis performed by Pace Analytical Services – Greensburg, Pennsylvania.

4. pH analysis performed as a field measurement.

### ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

|     |                                                     | Reported |     | Performance<br>Acceptable |     | Not      |
|-----|-----------------------------------------------------|----------|-----|---------------------------|-----|----------|
|     | Items Reviewed                                      | No       | Yes | No                        | Yes | Required |
| 1.  | Sample receipt condition                            |          | Х   |                           | Х   |          |
| 2.  | Requested analyses and sample results               |          | Х   |                           | Х   |          |
| 3.  | Master tracking list                                |          | Х   |                           | Х   |          |
| 4.  | Methods of analysis                                 |          | Х   |                           | Х   |          |
| 5.  | Reporting limits                                    |          | Х   |                           | Х   |          |
| 6.  | Sample collection date                              |          | Х   |                           | Х   |          |
| 7.  | Laboratory sample received date                     |          | Х   |                           | Х   |          |
| 8.  | Sample preservation verification (as applicable)    |          | Х   |                           | Х   |          |
| 9.  | Sample preparation/extraction/analysis dates        |          | Х   |                           | Х   |          |
| 10. | Fully executed Chain-of-Custody (COC) form          |          | Х   |                           | Х   |          |
| 11. | Narrative summary of QA or sample problems provided |          | Х   |                           | Х   |          |
| 12. | Data Package Completeness and Compliance            |          | Х   |                           | Х   |          |

Note:

QA - Quality Assurance

#### **INORGANIC ANALYSIS INTRODUCTION**

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Methods 6010D, 6020B, 9315, and 9320; Standard Method (SM) SM4500-H+ B and SM2540C; and USEPA Method 300.0. Data were reviewed in accordance with USEPA Region IV Data Validation Standard Operating Procedures for Contract Laboratory Program Inorganic Data by Inductively Coupled Plasma–Atomic Emission Spectroscopy and Inductively Coupled Plasma–Mass Spectroscopy (September 2011, Rev. 2), USEPA Region IV Data Validation Standard Operating Procedures for Contract Laboratory Program Mercury Data by Cold Vapor Atomic Absorption (September 2011, Rev. 2), and the National Functional Guidelines for Inorganic Superfund Methods Data Review (January2017).

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and that it was already subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with the USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
  - U The analyte was analyzed for but not detected. The associated value is the analyte instrument detection limit.
  - J The reported value was obtained from a reading less than the reporting limit (RL), but greater than or equal to the method detection limit (MDL).
- Quantitation (Q) Qualifiers
  - E The reported value is estimated due to the presence of interference.
  - N Spiked sample recovery is not within control limits.
  - \* Duplicate analysis is not within control limits.
- Validation Qualifiers
  - J The analyte was positively identified; however, the associated numerical value is an estimated concentration only.
  - UJ The analyte was not detected above the reported sample detection limit. However, the reported limit is approximate and may or may not represent the actual limit of detection.
  - UB Analyte considered non-detect at the listed value due to associated blank contamination.
  - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

#### METALS ANALYSES

# 1. Holding Times

The specified holding times for the following methods are presented in the following table.

| Method                | Matrix | Holding Time                         | Preservation                                        |
|-----------------------|--------|--------------------------------------|-----------------------------------------------------|
| SW-846<br>6010D/6020B | Water  | 180 days from collection to analysis | Cool to <6°C; preserved to a pH of less than 2 s.u. |
| SW-846 7470A          | Water  | 28 days from collection to analysis  | Cool to <6°C; preserved to a pH of less than 2 s.u. |

Note:

s.u. = Standard units

All samples were analyzed within the specified holding times.

# 2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

All compounds associated with the QA blanks exhibited a concentration less than the MDL, with the exception of the compounds listed in the following table. Sample results associated with QA blank contamination that were greater than the BAL resulted in the removal of the laboratory qualifier (B) of data. Sample results less than the BAL associated with the following sample locations were qualified as listed in the following table.

| YGWC-36A<br>YGWC-23S Detected sample results <rl "ub"="" <bal="" and="" at="" rl<="" th="" the=""><th>Sample<br/>Locations</th><th>Analytes</th><th>Sample Result</th><th>Qualification</th></rl> | Sample<br>Locations  | Analytes  | Sample Result                                                                  | Qualification  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------|--------------------------------------------------------------------------------|----------------|
|                                                                                                                                                                                                   | YGWC-36A<br>YGWC-23S | Lead (EB) | Detected sample results <rl <bal<="" and="" td=""><td>"UB" at the RL</td></rl> | "UB" at the RL |

Note:

EB = Equipment blank

RL = Reporting limit

MB = Method Blank

# 3. Matrix Spike/Matrix Spike Duplicate (MS/MSD)/Laboratory Duplicate Analysis

MS/MSD and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

# 3.1 MS/MSD Analysis

All metal analytes must exhibit a percent recovery within the established acceptance limits of 75% to 125%. The MS recovery control limits do not apply for MS performed on sample locations where the analyte's concentration detected in the parent sample exceeds the MS concentration by a factor of four or greater.

The MS/MSD performed on samples YGWC-24SA and YAMW-2 exhibited recoveries and RPDs within the control limits.

# 3.2 Laboratory Duplicate Analysis

The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the RL. A control limit of 20% for water matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of one times the RL is applied for water matrices.

MS/MSD analysis was performed in replacement of the laboratory duplicate analysis. The MS/MSD recoveries exhibited acceptable RPD.

# 4. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 35% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

| Sample ID/Duplicate ID | Analyte   | Sample<br>Result | Duplicate<br>Result | RPD  |
|------------------------|-----------|------------------|---------------------|------|
|                        | Barium    | 0.025            | 0.026               | 3.9% |
| YGWC-24SA / DUP-2      | Beryllium | 0.000099 J       | 0.00011 J           | AC   |

Results for duplicate samples are summarized in the following table.

Note:

AC = Acceptable

The differences in the results between the parent sample YGWC-24SA and field duplicate sample DUP-2 were acceptable.

# 5. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The analytes associated with the LCS analysis must exhibit a percent recovery between the control limits of 80% and 120%.

The LCS analysis exhibited recoveries within the control limits.

# 6. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

## DATA VALIDATION CHECKLIST FOR METALS

| METALS: SW-846 6010D/6020B/7470A                        |           | Reported |    | mance<br>ptable | Not      |
|---------------------------------------------------------|-----------|----------|----|-----------------|----------|
|                                                         |           | Yes      | No | Yes             | Required |
| Inductively Coupled Plasma-Atomic Emission Spectrometer | у (ICP-AE | S)       |    |                 |          |
| Inductively Coupled Plasma-Mass Spectrometry (ICP-MS)   | 1         |          |    |                 |          |
| Atomic Absorption – Manual Cold Vapor (CV)              |           |          |    |                 |          |
| Tier II Validation                                      |           |          |    |                 |          |
| Holding Times                                           |           | Х        |    | Х               |          |
| Reporting limits (units)                                |           | Х        |    | Х               |          |
| Blanks                                                  |           |          |    |                 |          |
| A. Method Blanks                                        |           | Х        |    | Х               |          |
| B. Equipment/Field Blanks                               |           | Х        | Х  |                 |          |
| Laboratory Control Sample (LCS) %R                      |           | Х        |    | Х               |          |
| Matrix Spike (MS) %R                                    |           | Х        |    | Х               |          |
| Matrix Spike Duplicate (MSD) %R                         |           | Х        |    | Х               |          |
| MS/MSD Precision (RPD)                                  |           | Х        |    | х               |          |
| Field/Lab Duplicate (RPD)                               |           | Х        |    | Х               |          |
| Reporting Limit Verification                            |           | Х        |    | Х               |          |
| Notes:                                                  |           |          |    |                 |          |

%R Percent recovery

RPD Relative percent difference

#### GENERAL CHEMISTRY ANALYSES

## 1. Holding Times

The specified holding times for the following methods are presented in the following table.

| Method                                         | Matrix | Holding Time                        | Preservation |  |
|------------------------------------------------|--------|-------------------------------------|--------------|--|
| pH by SM4500-H+ B                              | Water  | ASAP                                | Cool to <6°C |  |
| Total Dissolved Solids by SM2540C              | Water  | 7 days from collection to analysis  | Cool to <6°C |  |
| Chloride, Fluoride, and Sulfate by USEPA 300.0 | Water  | 28 days from collection to analysis | Cool to <6°C |  |

All samples were analyzed within the specified holding times.

# 2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Analytes were not detected above the MDL in the associated blanks; therefore, detected sample results were not associated with blank contamination.

# 3. Matrix Spike/Matrix Spike Duplicate (MS/MSD)/Laboratory Duplicate Analysis

MS/MSD and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

### 3.1 MS/MSD Analysis

All analytes must exhibit a percent recovery within the established acceptance limits of 75% to 125%. The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the analyte's concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater. In instance where this is true, the data will not be qualified even if the percent recovery does not meet the control limits and the laboratory flag will be removed.

All analytes associated with MS/MSD recoveries were within control limits with the exception of the following analyte present in the table below.

| Sample Location | Analyte | MS Recovery | MSD Recovery |  |
|-----------------|---------|-------------|--------------|--|
| YGWC-23S        | Sulfate | 74%         | 73%          |  |
| YAMW-4          | Sulfate | 70%         | 65%          |  |

The criteria used to evaluate the MS/MSD recoveries are presented in the following table. In the case of an MS/MSD deviation, the sample results are qualified as documented in the table below.

| Control limit                      | Sample Result | Qualification |
|------------------------------------|---------------|---------------|
|                                    | Non-detect    | UJ            |
| MS/MSD percent recovery 30% to 74% | Detect        | J             |
|                                    | Non-detect    | R             |
| MS/MSD percent recovery <30%       | Detect        | J             |
| NO/NOD / 1050/                     | Non-detect    | No Action     |
| MS/MSD percent recovery >125%      | Detect        | J             |

# 3.2 Laboratory Duplicate Analysis

The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the RL. A control limit of 20% for water matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of one times the RL is applied for water matrices.

The laboratory duplicate performed on sample PZ-37 for TDS exhibited an acceptable RPD.

# 4. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 35% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

Sample **Duplicate** RPD Sample ID/Duplicate ID Analyte Result Result TDS 70 63 10.5% YGWC-24SA / DUP-2 Chloride 8.6 8.6 0.0%

Results for duplicate samples are summarized in the following table.

Notes:

#### AC = Acceptable

The differences in the results between the parent sample YGWC-24SA and field duplicate sample DUP-2 were acceptable.

# 5. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The analytes associated with the LCS analysis must exhibit a percent recovery between the control limits of 80% and 120%.

The LCS analysis exhibited recoveries within the control limits.

# 6. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

## DATA VALIDATION CHECKLIST FOR GENERAL CHEMISTRY

| General Chemistry: SM4500-H+ B, SM2540C, | Reported |     | Performance<br>Acceptable |     | Not      |
|------------------------------------------|----------|-----|---------------------------|-----|----------|
| USEPA 300.0                              | No       | Yes | No                        | Yes | Required |
| Miscellaneous Instrumentation            |          |     |                           |     |          |
| Tier II Validation                       |          |     |                           |     |          |
| Holding times                            |          | х   |                           | Х   |          |
| Reporting limits (units)                 |          | х   |                           | Х   |          |
| Blanks                                   |          |     |                           |     |          |
| A. Method Blanks                         |          | х   |                           | Х   |          |
| B. Equipment blanks                      |          | Х   |                           | Х   |          |
| Laboratory Control Sample (LCS) %R       |          | Х   |                           | Х   |          |
| Matrix Spike (MS) %R                     |          | Х   | Х                         |     |          |
| Matrix Spike Duplicate (MSD) %R          |          | Х   | Х                         |     |          |
| MS/MSD Precision (RPD)                   |          | Х   |                           | Х   |          |
| Field/Lab Duplicate (RPD)                |          | Х   |                           | Х   |          |
| Dilution Factor                          |          | Х   |                           | Х   |          |
| Moisture Content                         | Х        |     |                           |     | Х        |
| Notes:                                   |          |     |                           |     |          |

%R Percent recovery

RPD Relative percent difference
### RADIOLOGICAL ANALYSES

## 1. Holding Times

The specified holding times for the following methods are presented in the following table.

| Method                       | Matrix | Holding Time                         | Preservation                          |
|------------------------------|--------|--------------------------------------|---------------------------------------|
| Radium-226 by SW-846<br>9315 | Water  | 180 days from collection to analysis | Preserved to a pH of less than 2 s.u. |
| Radium-228 by SW-846<br>9320 | Water  | 180 days from collection to analysis | Preserved to a pH of less than 2 s.u. |

Note:

s.u. = Standard units

All samples were analyzed within the specified holding times.

## 2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and field/rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Field/rinse blanks measure contamination of samples during field operations.

Blank results should be verified to be accurately reported and that tolerance limits (+/- 2 sigma or standard deviation) were not exceeded; and blank results verified to be less than the reporting limit (RL) of 1 pCi/L.

For blanks to be considered not applicable, verify net blank results are less than the associated uncertainty by evaluating the blank results based on the following three criteria. If either of these criteria is true, the blank is considered not suspect of contamination (or non-detect).

- 1. Is the blank result less than the uncertainty and less than the minimum detectable concentration (MDC)?
- 2. Does the blank have an uncertainty greater than the result (or indistinguishable from background) or does the blank result fall between its uncertainty and its MDC?

If the blank QC results fall outside the appropriate tolerance limits or if the net blank results are not less than the associated uncertainty, the following equation for normalized absolute difference (NAD) should be used in determining the effect of possible blank contamination on the sample results:

Normalized absolute difference  $_{MethodBlank} = \frac{|Sample - Blank|}{\sqrt{(U_{Sample})^2 + (U_{Blank})^2}}$ 

Where:

 $U_{Sample}$  = uncertainty of the sample  $U_{Blank}$  = uncertainty of the blank Sample = concentration of isotope in sample Blank = concentration of isotope in blank

| Normalized Absolute Difference | Qualification |
|--------------------------------|---------------|
| > 2.58                         | None          |
| 1.96 > x < 2.58                | L             |
| x < 1.96                       | J*            |

\*= Minimally the result should be qualified as estimated, J; however, if other quality indicators are deficient the validator may determine the result should be qualified as rejected, R

Radium-228, Radium-226, and total Radium were detected in the QA blanks, however, the activities were measured as less than the uncertainty and MDC or between the uncertainty and MDC as described above. Hence, the blank results are considered non-detect and no qualification of the results was required.

## 3. Matrix Spike (MS)/Laboratory Duplicate Analysis

MS and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

## 3.1 MS Analysis

MS samples are not typically analyzed for gamma spectral content due to the inability of the laboratory to homogenize spike material with the sample.

If performed, the spike analysis must exhibit a percent recovery within the control limits of 70% to 130%. The MS recovery control limits do not apply for MS performed on sample locations where the analyte's concentration detected in the parent sample exceeds the MS concentration by a factor of four or greater. In instance where this is true, the data will not be qualified even if the percent recovery does not meet the control limits.

In the event the recovery is outside of this limit, a numerical indicator to make assessments is calculated, with a limit of < +/-3 sigma for either.

The numerical performance indicator for a matrix spike sample is calculated by:

$$Z_{MS} = \frac{x - x_0 - c}{\sqrt{u^2(x) + u^2(x_0) + u^2(c)}}$$

Where:

x = measured concentration of the spiked sample.

 $x_0$  = measured concentration of the unspiked sample.

c = spike concentration added.

 $u^{2}(x)$ ,  $u^{2}(x0)$ ,  $u^{2}(c)$  = the squares of the respective standard uncertainties of these values.

MS performance for all matrices is acceptable when the numerical performance indicator calculation yields a value between +/-3 sigma. Warning limits have been established as +/- 2 sigma.

MS analysis was not performed using a sample from these SDGs.

#### DATA REVIEW REPORT

## 3.2 Laboratory Duplicate Analysis

Duplicate analyses are indicators of laboratory precision based on each sample matrix. For replicate analysis results to be considered in agreement the duplicate error ratio (DER) must be less than 2.13. In the event the DER is outside of the limit of 2.13, a numerical indicator to make assessments is calculated, with a limit of +/- 3 sigma or standard deviation.

The numerical performance indicator for laboratory duplicates is calculated by:

$$Z_{\text{Dup}} = \frac{x_1 - x_2}{\sqrt{u^2(x_1) + u^2(x_2)}}$$

Where:

 $x_1$ ,  $x_2$  = two measured activity concentrations.

 $u^{2}(x_{1}), u^{2}(x_{2})$  = the combined standard uncertainty of each measurement squared.

Duplicate sample performance is acceptable when the numerical performance indicator calculation yields a value between +/- 3 sigma. Warning limits have been established as +/- 2 sigma.

The laboratory duplicate analysis performed using sample YAMW-1 in association with SW-846 9315 analysis exhibited acceptable differences between the results.

## 4. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. There are no specific review criteria for radiological field replicate analyses comparability. The degree of agreement between these replicates is to be used in conjunction with all of the remaining quality control results as an aid in the decision as to the overall quality of the data. Data are not to be qualified due to field replicates alone. To determine the level of agreement between the replicates, the following guidelines have been established:

For all analyses in soil matrices, data should be considered in agreement if results are within a factor of four of each other. Data between a factor of four and five of each other should be considered as a minor discrepancy and data greater than a factor of five should be considered a major discrepancy.

The field duplicate sample analysis is used to assess the overall precision of the field sampling procedures and analytical method. For results greater than five times the MDC, a control limit of 35 percent for water matrices is applied to the RPD between the parent and field duplicate sample results. If the parent and field duplicate sample results are less than five times the MDC, for water matrices a control limit of two times the MDC is applied to the difference between the results.

| Sample ID/Duplicate ID | Analyte      | Sample Result   | Duplicate Result | RPD |
|------------------------|--------------|-----------------|------------------|-----|
|                        | Radium-226   | 0.139 +/- 0.138 | 4.78 +/- 0.878   |     |
| YGWC-24SA / DUP-2      | Radium-228   | 0.276 +/- 0.454 | 0.329 +/- 0.440  | AC  |
|                        | Total Radium | 0.415 +/- 0.592 | 5.11 +/- 1.32    |     |

The field duplicate sample results are summarized in the following table.

| Sample ID/Duplicate ID | Analyte | Sample Result | Duplicate Result | RPD |
|------------------------|---------|---------------|------------------|-----|
|                        |         |               |                  |     |

Notes:

AC = Acceptable

The differences in the results between the parent sample YGWA-24SA and field duplicate sample DUP-2 were acceptable.

## 5. Tracer or Carrier

Tracers and carriers are used in radiological separation methods to provide evaluation of chemical separation. Chemical yield is evaluated through the recovery of chemical species spiked into samples. Yield is evaluated radiometrically with a tracer and gravimetrically with a carrier. A control limit of 30% to110% is applied to each sample spiked with either a carrier and/or a tracer.

The tracer and carrier analyses exhibited recoveries within the control limits.

# 6. Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) Analysis

The LCS/LCSD analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The analytes associated with the LCS/LCSD analysis must exhibit a percent recovery between the control limits of 60% to 135%. In the event the recovery is outside of this limit, a numerical indicator to make assessments is calculated, with a limit of +/- 3 sigma.

The numerical performance indicator for a laboratory control sample is calculated

by:

$$Z_{LCS} = \frac{x-c}{\sqrt{u^2(x)+u^2(c)}}$$

Where:

x = Analytical result of the LCS

c = Known concentration of the LCS

 $u^{2}(x)$  = combined standard uncertainty of the result squared.

 $u^{2}(c)$  = combined standard uncertainty of the LCS value squared.

LCS performance is acceptable when the numerical performance indicator calculation yields a value between +/- 3 sigma. Warning limits have been established as +/- 2 sigma.

The LCS/LCSD analysis exhibited recoveries within the control limits.

## 7. Isotope Identification

For sample results to be considered "non-detect", evaluate data based on the following two criteria. If either one of these criteria is true, the sample result is considered "non-detect".

1. Sample result is less than the uncertainty and less than the MDC/MDA; or

#### DATA REVIEW REPORT

2. Sample has an uncertainty greater than the result (or indistinguishable from background) or result falls between its uncertainty and its MDC/MDA.

Based on the above criteria sample results should be considered non-detect as follows:

- YGWC-24SA Radium 226, Radium 228 and Total Radium
- YGWC-36A Radium 226, Radium 228 and Total Radium
- DUP-2 Radium 226
- YGWC-23S Radium 226, Radium 228 and Total Radium
- YGWC-41 Radium 226
- FB-1 Radium 226, Radium 228 and Total Radium
- EB-2 Radium 226, Radium 228 and Total Radium
- YGWC-49 Radium 228 and Total Radium
- FB-02 Radium 226, Radium 228 and Total Radium
- YGWC-42 Radium 226
- YGWC-38 Radium 226, Radium 228 and Total Radium
- YAMW-2 Radium 226, Radium 228 and Total Radium
- YAMW-4 Radium 228
- YAMW-1 Radium 226, Radium 228 and Total Radium
- PZ-35 Radium 226, Radium 228 and Total Radium
- EB-1 Radium 226, Radium 228 and Total Radium
- PZ-37 Radium 228

## 8. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

# DATA REVIEW REPORT

## DATA VALIDATION CHECKLIST FOR RADIOLOGICALS

| RADIOLOGICALS: SW-846 9315/9320            | Repo | orted | Perfor<br>Acce | mance<br>ptable | Not      |
|--------------------------------------------|------|-------|----------------|-----------------|----------|
|                                            | No   | Yes   | No             | Yes             | Required |
| Gas-Flow Proportional System               |      |       |                |                 |          |
| Tier II Validation                         |      |       |                |                 |          |
| Holding Times                              |      | Х     |                | Х               |          |
| Activity, +/- uncertainty, MDC/MDA         |      | Х     |                | Х               |          |
| Blanks                                     |      |       |                |                 |          |
| A. Method Blanks                           |      | Х     |                | Х               |          |
| B. Equipment/Field Blanks                  |      | Х     |                | Х               |          |
| Carrier (Surrogate) %R                     |      | Х     |                | Х               |          |
| Tracer (Surrogate) %R                      |      | Х     |                | Х               |          |
| Laboratory Control Sample (LCS)            |      | Х     |                | Х               |          |
| Laboratory Control Sample Duplicate (LCSD) |      | Х     |                | Х               |          |
| LCS/LCSD Precision (RPD)                   |      | Х     |                | Х               |          |
| Matrix Spike (MS) %R                       | Х    |       |                |                 | Х        |
| Matrix Spike Duplicate (MSD) %R            | Х    |       |                |                 | Х        |
| MS/MSD Precision (RPD)                     | Х    |       |                |                 | Х        |
| Field/Lab Duplicate (RPD)                  |      | Х     |                | Х               |          |

Notes:

%R Percent recovery

RPD Relative percent difference

VALIDATION PERFORMED BY: Rachelle Borne

SIGNATURE:

Jachule Band

DATE: May 17, 2021

PEER REVIEW: Jennifer Singer

DATE: May 18, 2021

# CHAIN OF CUSTODY / DATA QUALIFIER SUMMARY TABLE



|                  |                   |                       |   |    |     |   |    |           | 1  | *  | 1.2          | 3.4    | 14         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |                | 1 12          | 5                 |            | 1×       | 1             | 10                      |                 |
|------------------|-------------------|-----------------------|---|----|-----|---|----|-----------|----|----|--------------|--------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------|---------------|-------------------|------------|----------|---------------|-------------------------|-----------------|
|                  | g 1000000 - 20000 | ADDITIONAL COMPLEXITY |   |    |     |   |    |           |    |    | Smess- DUV-3 | GWC38A | GWC-24SA   | (A-Z, 0-8 /, -<br>Sample kis must be unique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SAMPLE ID                                                                           |                |               | (1/0)384-6526 Fax |            | 30114    | Georgia Power | lient information:      | Face Analytical |
|                  |                   |                       |   |    |     |   |    |           |    |    |              |        |            | Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer officer of Officer officer officer officer officer officer officer officer officer officer officer officer officer officer officer officer officer officer officer officer officer officer off | Automatic Market Cadimy Master Market Canon Caro Caro Caro Caro Caro Caro Caro Caro | MATHAND CODED  | Project #;    | Project Nam       | Purchase O | Lopy 10: | Report To:    | Section B<br>Required P |                 |
| .                | 一重                |                       |   |    | 1   | F | WT | WT        | WT | WT | WT           | ¥T.    | WT         | MATRIX COD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E (see velid co                                                                     | indes to left) |               | e                 | der #:     |          | Becky         | roject la               |                 |
|                  |                   |                       |   |    | 1   | 1 | 1  | +         | 1  | 1  | 225          | 8      | . <u>.</u> | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                     |                |               | fates A           |            |          | Sleeve        | alouna:                 |                 |
|                  |                   | AN' NE                | _ | -  | -   |   |    | -         | -  | -  | F            | ŝ      | Ř.         | H.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | STAR                                                                                |                |               | MA                |            |          | 1             | tion:                   |                 |
| PRON             |                   | OLIVIE                |   |    |     |   |    |           |    |    | 3            | 522    | 150        | TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9                                                                                   | COLL           |               |                   |            |          |               |                         |                 |
| R HAM            |                   | 2                     |   |    |     |   |    |           |    |    |              |        |            | DAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                     | ECTED          |               |                   |            |          |               |                         | The             |
| e of SA          | - <del>Q</del>    |                       |   | -  |     |   |    |           |    | -  | -            |        |            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EN                                                                                  | ľ              |               |                   | 1          |          |               |                         | Chair           |
| SIGNA            | 04/20             | NE                    |   |    |     |   |    |           | ļ  |    |              |        |            | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                     |                |               |                   |            |          |               |                         | 200             |
|                  | 2                 |                       | + | +- | -   |   | -  |           |    |    | In           | 5      | UT         | N OF CONTAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AT COLLECT                                                                          | ON             | 2             | 2                 | 7 2        | 0        | 2             | 5 9                     | ustod           |
| To a             | 8                 | THE L                 |   |    |     |   |    |           |    |    |              |        | x          | Unpreserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                     | T              | Se Pr         | Oe Pro            | ace Qu     | ompan    | tientior      | action                  | Y IS            |
| - 25             |                   |                       | _ |    |     |   |    |           |    |    |              |        | X          | H2504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                     |                | 1990 F.       | year w            | ote:       | y Nam    | H. HANNER     | 0                       | LEO             |
| 5                | 10                |                       |   |    |     |   |    |           |    |    |              |        | _          | HCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - HETTINGOUT                                                                        | Trese          | 10            | anaoe             |            | 2        |               | -                       | ALC             |
| 83               | 2                 | s [                   |   |    |     |   |    |           |    |    |              |        | _          | NaOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                     | vati           | 840           |                   |            |          |               |                         | õ,              |
| 2                | 0                 | 8-                    |   | -  |     |   | -  | <b></b> . |    |    |              |        |            | Na2S203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                     | 185            | NC 4 M        | hauto             |            |          |               |                         | ME              |
| 7                | 0                 |                       |   |    |     |   |    |           |    |    |              |        |            | Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                     | 1              |               |                   | ł          |          |               |                         | A.A             |
|                  | ap                | IN I                  |   |    |     |   |    | -         |    |    |              |        |            | Analyaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Tent                                                                                | YIN            | - internation |                   | 1          |          |               |                         | 1 rele          |
| DA               | 24                | Citilo -              |   |    |     | × | Ĵ- | <u>*</u>  | ţ_ | 1  | ×            | ××     | ×          | TDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                     |                | Anaus         |                   |            |          |               |                         | vant            |
| IE Sg            | R                 | *                     |   |    | 1 1 | × | *  | X         | *  | *  | ×            | ×      | ×          | App III/IV Meta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lş                                                                                  |                | CONT          |                   |            |          |               |                         | fields          |
| ned:             | 4                 |                       |   |    |     | × | 1  | <u>A</u>  | X  | ×  | ×            | ×      | ×          | RAD 9315/932                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                   |                |               |                   |            |          |               |                         | mus             |
| 3                | 121               |                       | + |    |     |   |    |           |    | -  |              | _      | -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ***                                                                                 |                |               |                   |            |          |               |                         | 2 De            |
| ž 🛛              | 121               |                       |   |    |     |   |    |           |    |    |              |        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |                |               |                   |            |          |               |                         | comp            |
| 2                |                   |                       |   |    |     |   |    |           |    |    |              |        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |                | T             | t                 |            |          | -             |                         | nt              |
|                  | R                 |                       | - |    |     | _ |    |           | -  | -  | -+           |        | -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 11000000000000                                                                    | - Tank         |               |                   |            |          |               |                         | 1 200           |
|                  |                   | - m.                  |   |    |     |   |    |           |    |    |              |        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |                |               |                   | (8)<br>(1) |          | E             | ٦                       | wate            |
| EMP In G         |                   |                       |   |    |     |   |    |           |    |    |              |        | _          | Deal-dual Obliga                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                     |                | 2             |                   | Reo        | ~        | Page          |                         | Ş.              |
| Received on      |                   | s F                   | T |    | T   | T | T  | 1         |    | T  |              | 10     | 2          | Residual Chion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ner (Y/N)                                                                           |                | G. C.         |                   | ACC INFO   | 9        | 1             |                         |                 |
| eD<br>Y/N)       |                   | 月日                    |   |    |     | 1 | 1  | 1         | 1  | 1  |              | Ĭ.     | 7          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     | 1.1.1          | A             |                   | V AGe      | P        | h             |                         |                 |
| uslody<br>saledO |                   | CONEC .               |   |    |     | 1 |    |           | 1  | 1  | 1            | n      | 5          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |                |               |                   | 8          | 02       |               |                         |                 |
| r/N)             |                   | INCOM S               |   |    |     |   |    |           |    |    |              | 3      | 3          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |                |               |                   | ¥.         | -        | R             |                         |                 |
| amples<br>tactD  |                   |                       |   |    |     |   |    |           |    | -  |              |        | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |                |               |                   |            |          | 6.0           |                         |                 |

| Name         Part of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s                                                                                                                                                                                                                                                      |                     |            |                    |             |           |                        | No. | 8     | 8 | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon | 8    | 8  | 60 | 7  | 6     | 5 404 | a Xee | 3      | IIEM #                                                                    |                                               |               | -     | juested Du | me                | 30:          | Non, GA 30           | ipany.        | juined Cile     | tion A     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------|--------------------|-------------|-----------|------------------------|-----|-------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|----|----|-------|-------|-------|--------|---------------------------------------------------------------------------|-----------------------------------------------|---------------|-------|------------|-------------------|--------------|----------------------|---------------|-----------------|------------|
| Sector b         Sector b         Sector b         Sector b         Sector b           Sector b         Sector b         Mail of The Legislation of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the                                                                                                                                                                                                                                                                                                                             | 2010-000            |            |                    | uguni kungu |           | ADDITIONNAL CONSIGNETS |     |       | - |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |    |    |    |       | 1     |       | NOWC-L | One Character per box.<br>(A-Z, 0-9 ),-<br>)<br>Semple ids must be unique | SAMPLE ID                                     |               |       | e Date:    | (770)334-6526 Fax |              | 1070 Bridge Mill Ave | Georgia Power | nt Information: | TACK HARAN |
| North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |            |                    |             | 2         | 8                      |     |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |    |    |    |       |       |       | ů<br>l | Net and a second state                                                    | WaterD Write<br>Product Pro<br>SalissingD SLC | MATRIXD CODED |       | Project #: | Project Name      | Purchase Ord | Copy To:             | Report To:    | Required Pro    | 0          |
| Norm     Norm       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |            |                    |             | 5         | LINOUI                 |     |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WT   | WT | WT | WT | WT    | WT    | WT    | WT     | MATRIX CODE (                                                             | GerGRAB                                       | des to lef    | 0     |            | *                 | er #:        |                      | Becky         | yect in         |            |
| Image: Section C         Section C           Image: Section C         Image: Section C           Image: Section C         Image: Section C           Image: Section C         Image: Section C           Image: Section C         Image: Section C           Image: Section C         Image: Section C           Image: Section C         Image: Section C           Image: Section C         Image: Section C           Image: Section C         Image: Section C           Image: Section C         Image: Section C           Image: Section C         Image: Section C           Image: Section C         Image: Section C           Image: Section C         Image: Section C           Image: Section C         Image: Section C           Image: Section C         Image: Section C           Image: Section C         Image: Section C           Image: Section C         Image: Section C           Image: Section C         Image: Section C           Image: Section C         Image: Section C           Image: Section C         Image: Section C           Image: Section C         Image: Section C           Image: Section C         Image: Section C           Image: Section C         Image: Section C           Image: Section C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |            |                    |             | D         | SHED E                 |     | 1     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |    | t  | T  | 1     |       | 1     | 12     | 8                                                                         |                                               |               |       |            | ates A            | Ł            |                      | Sleeve        | format          |            |
| Section C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     | 1.0        |                    |             | Ś         | BY I NS                |     | -     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | ļ  | ļ  | _  |       | -     |       | T.     | Ā                                                                         | STN                                           |               |       |            | A                 |              |                      | R             | tion:           |            |
| Section C       Register and the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the                                                                                                                                                                                                                                                                                      | 8 7                 |            |                    |             | 3         | FILMT                  |     |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |    |    |    |       |       |       | 2      | TIME                                                                      | 4                                             | 8             |       |            |                   |              |                      |               |                 |            |
| Section C       Norther Information       Information of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of th                                                                                                                                                                                                                                                                                                                       | MATU                |            |                    |             | 245       | 8                      |     |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |    |    |    | 1     | -     | +     | 100    | D                                                                         |                                               | LECTE         |       |            |                   |              |                      |               |                 | Ţ          |
| Savenue     Reserved       Internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet                                                                                                                                                                                                                                                                                                           | RE of               |            |                    |             | 2         | (C) (                  |     |       | - |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | _  |    | ļ  | -     | -     | -     |        | JE .                                                                      | m<br>H                                        | 8             |       |            |                   |              |                      |               |                 | e Cha      |
| Section C     Section C       Image: Section C     Image: Section C       Image: Section C     Image: Section C       Image: Section C     Image: Section C       Image: Section C     Image: Section C       Image: Section C     Image: Section C       Image: Section C     Image: Section C       Image: Section C     Image: Section C       Image: Section C     Image: Section C       Image: Section C     Image: Section C       Image: Section C     Image: Section C       Image: Section C     Image: Section C       Image: Section C     Image: Section C       Image: Section C     Image: Section C       Image: Section C     Image: Section C       Image: Section C     Image: Section C       Image: Section C     Image: Section C       Image: Section C     Image: Section C       Image: Section C     Image: Section C       Image: Section C     Image: Section C       Image: Section C     Image: Section C       Image: Section C     Image: Section C       Image: Section C     Image: Section C       Image: Section C     Image: Section C       Image: Section C     Image: Section C       Image: Section C     Image: Section C       Image: Section C     Image: Section C       Image: Section C </td <td>SAMP</td> <td>0 20</td> <td></td> <td></td> <td>24</td> <td>DAT</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>L.</td> <td></td> <td>TIME</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ain-of</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SAMP                | 0 20       |                    |             | 24        | DAT                    |     |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1    |    |    |    |       |       | L.    |        | TIME                                                                      |                                               |               |       |            |                   |              |                      |               |                 | ain-of     |
| Section C       Removed information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information: <td></td> <td>NATU</td> <td></td> <td></td> <td>12</td> <td>m</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>SAMPLE TEMP AT</td> <td>COLLECT</td> <td>CN NO</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-Cust</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | NATU       |                    |             | 12        | m                      | -   |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |    |    |    |       |       |       | 1      | SAMPLE TEMP AT                                                            | COLLECT                                       | CN NO         |       |            |                   |              |                      |               |                 | -Cust      |
| Analyse     Test     Nach     Nach       Proprior     Nach     Nach     Nach       Proprior     Nach     Nach     Nach       Proprior     Nach     Nach     Nach       Proprior     Nach     Nach     Nach       Proprior     Nach     Nach     Nach       Proprior     Nach     Nach     Nach       Nach     Nach     Nach     Nach       Nach     Nach     Nach     Nach       Nach     Nach     Nach     Nach       Nach     Nach     Nach     Nach       Nach     Nach     Nach     Nach       Nach     Nach     Nach     Nach       Nach     Nach     Nach     Nach       Nach     Nach     Nach     Nach       Nach     Nach     Nach     Nach       Nach     Nach     Nach     Nach       Nach     Nach     Nach     Nach       Nach     Nach     Nach     Nach       Nach     Nach     Nach     Nach       Nach     Nach     Nach     Nach       Nach     Nach     Nach     Nach       Nach     Nach     Nach     Nach       N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1c                  | RE         |                    |             | 3         | 3                      | -   | -     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |    |    |    |       |       |       | S      | # OF CONTAINERS                                                           | S                                             | 1             |       | Page       | Page              | Addin        | Sumo                 | Atten         | Sect            | lody i     |
| Progenities (VIN)<br>Regeneration (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities | JA                  |            |                    |             | 8         | ħ.                     | -   |       | - | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |    |    | -  | -     | -     |       | 1      | H2SO4                                                                     |                                               |               |       | Profile    | Quole             |              | oany N               | tion:         |                 | sat        |
| DATE segment     Marci     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 1                 |            |                    |             | 2         |                        |     |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |    |    |    |       |       |       | 3      | HNO3                                                                      |                                               | P             |       | A model    |                   |              | ame:                 |               | or mat          | EGA        |
| NACH     NACH       NACH     NaCS203       NacS203     NacS203       Methanol     Other       Other     Analysee Test       YIN     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X        X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Akr                 |            |                    |             | 2         | 100                    |     | F and |   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1    |    |    | N. |       |       | L     |        | нсі                                                                       | *******                                       | esen          |       | 1084       |                   |              |                      |               | 5               | Do 1       |
| Image: Section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of t                                                                                                                                                                                                                                       | 31                  |            |                    |             | f'        | 2                      |     |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |    | -  |    | -     | -     | -     | -      | NaOH                                                                      |                                               | rativ         |       | Ö .        |                   |              |                      |               |                 | č          |
| DATE signed:     Control     Request to set     Y/N       DATE signed:     Control     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18                  | 14         |                    |             | Š         | ğ                      | +   | -     | - | -+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -+   |    |    |    |       |       |       |        | Na2S203                                                                   |                                               | 8             | П     | levin.     |                   |              |                      |               |                 | MEN        |
| Ontring     Analyses Test     Y/N       Image: State of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state                                                                                                                                                                                                                                                                               | 52                  | 1          |                    |             | 12        |                        |     |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |    |    |    |       | 1     |       |        | Other                                                                     |                                               |               | 11    | nenth      |                   |              |                      |               |                 | A.F        |
| DATE Squeet of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of t                                                                                                                                                                                                                      | Å                   |            | -                  |             | 11        | ŝ                      |     |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |    |    |    |       | L     |       |        | Analyses T                                                                | est                                           | YIN           | Ħ     | 9@p        |                   |              |                      |               |                 | ll ret     |
| ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J,                                                           |                     |            | Social Contraction | 10          | pq.       | S                      |     |       |   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×    | ×  | ×  | ×  | ×     | *     | K     | ×      | TDS                                                                       |                                               |               |       | celat      |                   |              |                      |               |                 | evan       |
| Solones:     A     A     A     A     A     App III/IV Metals       Gradination     A     A     A     A     App III/IV Metals       File     A     A     A     A     App III/IV Metals       File     A     A     A     A     App III/IV Metals       File     A     A     A     A     App III/IV Metals       File     A     A     A     A     App III/IV Metals       File     A     A     A     A     App III/IV Metals       File     A     A     A     App III/IV Metals     App III/IV Metals       File     A     A     A     A     App III/IV Metals       File     A     A     A     App III/IV Metals       File     A     A     A     App III/IV Metals       File     A     A     A     App III/IV Metals       File     A     A     A     App III/IV Metals       File     A     A     A     App III/IV Metals       File     A     A     A     App III/IV Metals       File     A     A     A     App III/IV Metals       File     A     A     A     A       File     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATE                 |            |                    |             | 12        | 2 L                    | _   | -     | - | - 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ×    | ×  | ×  | ×  | ×     | 1     | r.    | ×      | CI, F, SO4                                                                |                                               |               |       | S.001      |                   |              |                      |               |                 | I fiel     |
| A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A <td>Signe</td> <td></td> <td>l</td> <td></td> <td>B</td> <td>- F</td> <td>-</td> <td></td> <td>-</td> <td>-,</td> <td>&lt; 12</td> <td>×</td> <td>×</td> <td>×</td> <td>×</td> <td>1</td> <td>£</td> <td>×</td> <td>App III/IV Metals</td> <td>4.8.9. a. 1</td> <td></td> <td>ques</td> <td>ľ</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ds n</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Signe               |            | l                  |             | B         | - F                    | -   |       | - | -,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | < 12 | ×  | ×  | ×  | ×     | 1     | £     | ×      | App III/IV Metals                                                         | 4.8.9. a. 1                                   |               | ques  | ľ          |                   |              |                      |               |                 | ds n       |
| EMP In C<br>Leceived on<br>eC<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e<br>al             |            |                    | X           |           | ľ                      |     |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |    |    |    |       | -     | *     |        | 1010 0010/0020                                                            |                                               |               | A De  |            |                   |              |                      | L             |                 | Les C      |
| Image: Stress of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second                                                                                                                                                                                                                                       | 2                   |            |                    | 17          | 3         |                        |     |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |    |    |    |       | 1     |       |        |                                                                           |                                               |               | R     |            |                   |              |                      |               |                 | beo        |
| EMP In C     Residual Chlorine (Y/N)     Residual Chlorine (Y/N)       Iteratived on edition (Y/N)     Iteratived on edition (Y/N)     Iteratived on edition (Y/N)       Stated Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di                                                                                                                                                                                                                                                                                                                        | S                   |            |                    | 1           | 4         |                        |     |       |   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |    |    |    |       |       |       |        |                                                                           |                                               |               |       |            |                   |              |                      |               |                 | duc        |
| TEMP In C Received on Page Page Page Page Page Page Page Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |            | -                  | +-+         | 3         |                        | -   | -     | - | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -    | -  | 5  |    |       |       | -     |        |                                                                           |                                               |               | and a |            | Π                 |              |                      | ٩.            |                 | eled       |
| TEMP In C     Residual Chlorine (Y/N)     Residual Chlorine (Y/N)       Received on e0<br>Y/N)     Page     Page       Y/N)     Y/N     Y/N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |            |                    | 17          | 9         |                        | -   | +     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -    | -+ |    |    |       | -     | _     |        | ······                                                                    |                                               |               | S     |            |                   |              |                      |               |                 | 80         |
| EEMP In C     Residual Chilorine (Y/N)     Residual Chilorine (Y/N)       Received on eD     A       Page     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | 762<br>552 |                    | 19          | 9         | "  -                   |     |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -+   | -  |    | -  |       |       |       |        | •                                                                         |                                               |               |       |            |                   |              |                      | E             |                 | urate      |
| Recalved on the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to t                                                                                                                                                                                                                      | EMP In C            | -          |                    |             |           | T                      |     |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1    |    | 1  |    |       |       |       |        |                                                                           |                                               | 151           |       |            |                   | 22           |                      | Page          |                 | ly.        |
| All Constants of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se                                                                                                                                                                                                                      | Janahund            |            |                    |             |           |                        |     |       |   | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T    | -r |    |    | بعصمه | ·     |       |        | Residual Chiorine                                                         | (Y/N)                                         |               |       |            |                   |              |                      |               |                 |            |
| Subledy<br>leated()<br>cooler()<br>Y(N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | cell                | on         |                    |             | - Address |                        |     |       |   | in f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 1  |    |    |       | 1     | 1     | 20     |                                                                           |                                               |               | A     | Loca       |                   | ž (          | 2                    | 1             | 11              |            |
| ealedQ<br>CoolerD<br>Y/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T/N)<br>Cuslody     | -          |                    | ++          | -1        | 8                      |     |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |    |    |    |       |       |       | er.    |                                                                           |                                               | 1             |       | tion.      |                   |              | 2                    | ľ             | 2               |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ealed()<br>Cooler() |            |                    |             |           | DITIO                  |     |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |    |    |    |       | 1     | •     | 1      |                                                                           |                                               | 11            | 1     |            |                   | 1            | -                    | Q             | ő,              |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Y/N)                |            | -                  | +           | _         | ١.<br>١                |     |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |    |    |    |       |       |       | 2      |                                                                           |                                               |               |       |            |                   |              | 2                    | Γ             |                 |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tactC               |            | 120                |             |           |                        |     |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |    |    |    |       |       |       |        |                                                                           | 1                                             | 5             |       |            |                   | P            | 2                    | S             |                 |            |

| •           |           |      |                      | 2.2 | 0          | 60   | 14       | 9  | M             | *      | ω                    | Ŋ  | 1      | ITEM #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                                                    | 1         | quest         | 1.                | all:          | Iness                | milup                  | Hon       |
|-------------|-----------|------|----------------------|-----|------------|------|----------|----|---------------|--------|----------------------|----|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------------------------------|-----------|---------------|-------------------|---------------|----------------------|------------------------|-----------|
|             |           |      | ADDITIONAL COLORENTS |     | e transfer | 1-00 | 12-      |    | YGWC43        | NOWERZ | YGWC-1               |    |        | (A-Z, 0-9 , )<br>)<br>Sample Ids must be unique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SAMPLE ID        |                                                    |           | led Due Date: | (770)384-6526 Fax | GA 30114      | 1070 Bridge Mill Ave | vd Client information: | A         |
|             |           | Ja   | 1                    |     |            |      |          |    |               |        |                      |    |        | Tomes 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wrate Water Word | MATRIXD CODED<br>Drending WaterD DWD<br>WaterD DWD |           | Project #:    | Project Name      |               | Coov To              | Required Pr            | Contine D |
|             |           | R    | CINCHER              |     |            | 舌    | S        | TW | WT            | WT     |                      |    |        | MATRIX CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (see valid       | codes to jet                                       |           |               | der #:            |               | Becky                | oject Im               |           |
|             |           | 5-20 | HED BY               |     |            | 215  | 13       |    | 3/2           | 4      | 2                    |    | 5      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                                                    |           | ales Ko       |                   |               | Sleever              | formati                |           |
|             |           | 0500 | UNTEL                |     |            | 5    | L.L.     |    | 4             | -      | <u>5</u><br><u>7</u> | -  |        | 1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | START            |                                                    |           |               |                   |               |                      | 97.                    |           |
| PLERN       |           | 2A   | WIDM                 |     | _          | 3    | 8        |    | 8             |        | 3                    | -  | INIT   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | OULEC                                              | 11        |               |                   |               |                      |                        |           |
| AME AN      | $\square$ |      |                      |     |            |      |          |    |               |        |                      |    | DATE   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | g                | TED                                                |           |               |                   |               |                      |                        | The Ct    |
| SANPL       |           | 3/4  | Dial                 |     |            |      |          |    |               |        |                      |    | TIME   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6                |                                                    |           |               |                   |               |                      |                        | nain-of   |
| ER:         |           | 21   |                      |     |            | 1    |          |    | -             |        |                      |    | s      | AMPLE TEMP /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AT COLLEC        | TION                                               | 11        |               |                   |               |                      |                        | HCust     |
| S           |           | 0    | 展                    |     |            | K    | 10       |    | 3             | 1      | +                    | -  | H<br>U | OF CONTAINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RS               | 1                                                  | Pace P    | Page Pr       | Page Q            | <b>Nodres</b> | Anendo               | Section                | ody is    |
| R -         |           | P    |                      |     |            | R    | V        | _  | <             | -      | 1.                   | -  | H      | 2504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                    | offile #: | roject M      | uote:             | ny Nam        | ž                    | n C                    | a LEO     |
| 10          |           | 0    |                      |     |            | 7    |          | Z  | $\rightarrow$ |        |                      |    | н      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 46-4             | Teser                                              | 108       | anagen        |                   | 8             |                      | ation:                 | AL D      |
| E           |           | N    | à -                  |     | -          |      |          | +  | +             |        | +                    | +- | N      | aOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  | vative                                             | ð         | Z             |                   |               |                      |                        | OCUN      |
| 2           |           | R    |                      |     | -          |      |          |    |               |        |                      | 1  | M      | ethanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | - <sup>o</sup>                                     |           | vinhe         |                   |               |                      |                        | IEN       |
| 6           |           | 10   | BTIN                 |     |            |      |          | 1  |               |        |                      |    | 01     | Ansluges                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tool             | -                                                  |           | ming@         |                   |               |                      |                        | Alin      |
| 2           |           | 学    |                      |     |            | R    | ×        | ×  | T             | ×      | M                    | Ŧ  | TO     | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | a opt.           | A MARIN                                            |           | puccila       |                   |               |                      |                        | Bleva     |
|             | i I       | N.   | ₽ L                  |     | -          | XX   | X        | ×  | -             | ×      | ×                    | 1  | CI,    | F, SO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                                                    | 8         | S.com         |                   |               |                      |                        | It field  |
| 2.4.2       |           | M    | t                    |     |            | 8    | X        | ×  | *             | ×      | ×                    | 1  | RA     | D 9315/9320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ······           |                                                    | Plansty.  |               |                   |               |                      |                        | ts mu     |
|             |           | Yer  |                      |     |            |      | <u>[</u> | -  | 1             |        |                      | -  | 1-     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                                                    | N         |               | 1                 |               |                      |                        | st be     |
|             | -         | RI.  |                      |     |            |      |          |    |               |        |                      | 1  | -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | -                                                  | A MAR     |               |                   |               |                      |                        | comp      |
| -           |           | 5    | 4                    |     | _          |      | _        | -  | -             |        |                      | -  | 1_     | Yearna Abayeraa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                                                    | 副十        |               |                   | T             |                      |                        | vieted    |
|             |           | B    |                      |     |            |      | -        | +  |               | -      | 1                    | +  | +      | delated and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |                  | -                                                  | FIN       |               | ALL ALL AND A     |               |                      |                        | 3001      |
|             |           | PL   |                      |     |            |      |          | 1  |               |        |                      | [  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                                                    |           |               |                   |               | 5                    | ٦                      | Irately   |
| PinC        |           |      | ŀ                    |     |            |      |          |    |               | 1      | 1                    | 1  | Res    | Idual Chiedre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (YAN)            | 141.00                                             |           | 9             | Reg               |               | age                  |                        | *         |
| eived on    |           |      |                      |     |            | F    |          | 5  | ¢,            |        | J                    | 1  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (1.1.1)          |                                                    | CA        |               | datory.           | 0             | ſ                    |                        |           |
| l)<br>lody  |           |      |                      |     |            |      |          | G  |               | p:     | 1                    | 1  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                                                    |           |               | Agen              | 0             | V                    | 1                      |           |
| edD<br>lerD |           |      |                      |     |            |      |          | à  | il .          | Ser.   | 1,                   | 1  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                                                    |           |               | 2                 | 3             | 0                    |                        |           |
| ples        |           |      |                      |     |            |      | 4        | 25 | L             | 6      |                      |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                                                    |           |               |                   |               |                      |                        |           |
| AL I        |           |      | 91                   |     |            | Ì    |          | -  | 12            | June   | 1                    |    | 1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | 1025000                                            |           |               | 1                 | CO            | 10                   |                        |           |

Page 29 of 31

88.

|           |      |                     | 8      | 8 3                                           | 12 | )<br>B | 19 | 10       | 2 | la    | U      | 4         | 4         | ITEM #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | Jľ              | queste                  | Ne:            | Iton, (              | Teden            | quine                       |                      |
|-----------|------|---------------------|--------|-----------------------------------------------|----|--------|----|----------|---|-------|--------|-----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------|-------------------------|----------------|----------------------|------------------|-----------------------------|----------------------|
|           |      | ADOLUMANT COMPARIES |        |                                               |    |        |    |          |   | 48-02 | YGWC49 | ACHIC DEA | Xem Clark | SAMPLE ID<br>One Character per box.<br>(A-Z, 0-9 /, -<br>)<br>Sample ids must be unique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | -               | vd Due Date:            | 1770 YBM ASSE  | 1070 Eridge Mill Ave | 1: Georgia Power | A<br>I Client Information:  | Math Sector Standard |
|           | 100  | Later - 1           |        |                                               |    | 8      | ×  |          | 8 |       |        | 5         | 5         | Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tr |         | the toology and | Project Marre:          | Purchase Order | Copy To:             | Report To: B     | Section B<br>Required Proje |                      |
|           | N    |                     |        |                                               | 1  | 1      |    | -        | - | -     | H N    |           | 1         | SAMPLE TYPE (B2GRAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C=COMP) |                 | Yate                    | *              |                      | they ste         | ct Infor                    |                      |
|           | IN.  | DIBNIA              |        |                                               |    |        |    |          |   | 4.21  | 42     |           |           | DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |                 | S AMA                   |                |                      | ever             | mation:                     |                      |
| PRI       |      | IL MTELS            |        |                                               |    |        |    |          |   | 15m   | F      | Ι         |           | TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8       |                 |                         |                |                      |                  |                             |                      |
| NT NAME   |      | B                   |        |                                               |    |        |    | -        |   |       |        |           | 1         | DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LECTED  |                 |                         |                |                      |                  |                             | Ine                  |
| of SAM    | 4    | 2                   | $\neg$ |                                               |    |        |    | +        |   |       |        |           | $\square$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                 | ſ                       |                |                      |                  |                             | Chain-               |
| PLER:     | 2    | .A                  | -      |                                               | -  |        |    | <b> </b> |   | -     |        |           |           | TI<br>SAMPLE TEMP AT COLLEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TION    |                 |                         |                |                      |                  |                             | of-Cus               |
| ST A      | 16   |                     |        |                                               | -  |        |    |          |   | S     | 5      |           | 1         | # OF CONTAINERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | Pace            | Page                    | Page           | 18                   | Atta             | 18                          | stody                |
| 1 ST      | 5    | 間                   | -+     |                                               | -  | 1      |    |          |   |       | 7      | -         | -         | Unpreserved<br>H2SO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 1     | Profile         | Projec                  | Quote          | pany N               | TRANSIT          | in c                        | IsaL                 |
| No T      | 0    |                     |        |                                               |    |        |    |          |   | 1     | N      |           |           | HNO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pre     | *               | t Mana                  |                | ame:                 | ALDer            |                             | EGAL                 |
| 5         | 1 St |                     | -      | _ _                                           |    | -      |    |          |   |       |        |           |           | HCI<br>NaOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Serva   | 10840           | ger:                    |                |                      | SUC              |                             | DOC                  |
| E .       | 1 M  | 6                   |        |                                               |    |        |    |          |   |       |        |           | 7.6.6.1   | Na2S203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tives   |                 | Kev                     |                |                      |                  |                             | UME                  |
| 2         |      | B GEILA             | -      |                                               |    |        |    |          |   | _     |        | -         |           | Methanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7       |                 | n.herri                 |                | 11                   |                  |                             | NT.                  |
| 12        | 来    | at l                |        |                                               |    |        |    |          |   |       |        |           |           | Analysee Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | YIN     |                 | nd sign                 | 1              |                      | L                |                             | ul rel               |
| 2         | 25C  | E.                  |        |                                               | _  | ××     | ×  | ×        | X | ×     | ×      | 2         | ٢         | TDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |                 | Celabs                  |                |                      |                  |                             | evant                |
|           | L.   | ¥                   |        |                                               |    | ×      | ×  | ×        | × | ×     | ×      |           | k         | App III/IV Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                 | 8                       |                |                      |                  |                             | field                |
| ined.     | ta   |                     |        |                                               |    | ×      | ×  | ×        | × | ×     | ×      |           | Ł         | RAD 9315/9320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                 |                         |                |                      |                  |                             | s mus                |
| 2         | 12   |                     |        | +                                             |    |        |    | -        |   |       | -      | -         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                 |                         |                |                      |                  |                             | tbe                  |
|           | 5    | SH L                |        |                                               |    |        |    |          |   |       |        |           |           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |                 |                         |                |                      |                  |                             | omp                  |
|           | - 70 |                     |        |                                               |    |        |    | _        |   | -     | -      | _         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | Π               | 1                       |                |                      | ale:             |                             | leted                |
|           | 0    | M                   |        |                                               |    | 1      |    |          |   |       |        |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                 | 100                     |                |                      |                  |                             | accur                |
|           |      |                     |        |                                               |    | _      |    |          |   |       | -      |           | -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                 |                         | 1              |                      | Pa               | ٦                           | ately.               |
| MPINC     |      |                     |        | ا میں اور اور اور اور اور اور اور اور اور اور |    |        |    |          |   | l     | L      |           |           | Residual Chlorine (Y/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |                 | 1                       | Racquida       |                      | e:               |                             |                      |
| Celved on |      | SAUR                |        |                                               |    |        |    |          |   | 11    | S.     | 1         | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.44    | GA              | No.                     | DORY A         | 00                   | C                | -                           |                      |
| stody     |      | ECO                 |        |                                               |    |        |    |          |   |       | S      | 1         | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | 1000            | È.                      | pancy          | 0                    | ŕ                | 1                           |                      |
| olerD     |      | NOULON NO           |        |                                               |    |        |    | 1        |   |       | 2      |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                 |                         | 2<br>C         | P                    | 2                |                             |                      |
| mples     |      | <b>母</b> .          |        |                                               |    |        |    |          |   | C     | N      |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                 | No. of Concession, Name | C X            |                      | ł.               |                             |                      |
| N)        |      | 12                  |        |                                               |    |        |    |          |   |       |        | 1         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (/elsi  |                 |                         | ×.             | 10                   | N                | 1                           |                      |

١.,

| •              |       |                     | J        | 0 9 | 09 N | 9      | 14       |        | 100 | M           | -       | IIEM #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                   | 11             | Les                | #              | ton s    | 1                 |                               |
|----------------|-------|---------------------|----------|-----|------|--------|----------|--------|-----|-------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------|--------------------|----------------|----------|-------------------|-------------------------------|
|                |       | NOOTINAAL COMPLETIT |          |     |      | YGWC38 | NCHIC-42 | YGWC42 |     | YGMA-IR     | *CWARD- | SAMPLE ID<br>One Character per box.<br>(A-Z, 0-8 /, -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                   |                | (770)384-6526 Fax: |                | GA 30114 | ny: Georgia Power | n A<br>ed Client information: |
|                | 100   | · 严                 |          |     |      | ×      | W        | ×      | 5   | 8           | ×       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MATRIXC CODED<br>Drawing WaterO DWD<br>WaterO DWD | in topological | Projed Name        | Purchase Order | Copy To: | Report To: B      | Section B                     |
| •              | 1     | XE                  |          |     |      | ਕ      | 7        | 17     | A   | 3           | 4       | SAMPLE TYPE (G=GRAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C=COMP)                                           | 11             | Ya                 | 7.75           |          | S Vocas           |                               |
| Î              | M     |                     |          |     |      | 342    |          | 4.5    |     |             |         | RA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                   | 1              | tes R6             |                |          | loever            |                               |
| 18             | WI    | I.M.                |          |     |      | 51113  |          | 81     |     |             |         | START                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                   |                |                    |                |          | MIX               |                               |
| PRINT          |       | MOIL                |          |     |      | ち      |          | 云      |     | _           |         | Mining and a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec | Court                                             |                |                    | 1              |          |                   |                               |
| NAME           |       |                     |          |     |      |        |          |        |     |             |         | DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CIED                                              |                |                    | ľ              |          |                   | The                           |
| or SAL         | W     |                     |          |     |      |        |          |        | +   | -           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                |                    |                |          |                   | Chain                         |
| MPLER MPLER    | 5     | <b>1</b>            |          |     | -    |        |          | _      | _   |             | _       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                |                    |                |          |                   | 9-10                          |
| K              | E     |                     |          |     |      | 5      |          | জ      |     | +           | -       | SAMPLE TEMP AT COLLEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TION                                              | P              | 3                  | 93             | 81       | 15                | ustod                         |
| 44             | 7     | , M                 |          |     |      |        |          | 1      |     |             | 1       | Unpreserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                   | CE Pro         | The Pro            | diess:         | neduc    | olce I            | y is a                        |
| 10-            |       |                     |          |     |      | 4      | -        | 1      |     | +           | -       | H2SO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                   | 100            | ed M               |                | Nam      | morn              | C LEG                         |
| 100            | J.    |                     |          |     |      |        |          | -7     |     |             |         | нсі                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tese                                              | 12             | anage              |                | 19       | ation:            | AL D                          |
| 12             | \$    | 2                   |          |     |      | _      | _        |        | 1   | _           |         | NaOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Vativ                                             | ð              | 2                  |                |          |                   | ÖQ                            |
| 10             | k     | XIII                | +        |     |      | -      |          | -      |     |             | +       | Na2S2O3<br>Methanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | es                                                |                | Kevin              |                |          |                   | MEN                           |
| E.             | a     | 50 BY               |          |     |      |        |          |        |     |             |         | Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                 |                |                    |                | 1        |                   | T.N                           |
| $   2^{\perp}$ | and a | INT                 | <u> </u> |     | 1 15 | . 11   | U 15     | . 1.   |     | <u>Г т.</u> |         | Analyage Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | YIN                                               |                | 0                  |                |          |                   | l rele                        |
| DAT            | A     | -                   | ┢┉┟╸     | ++  |      |        |          | < >    | H×  | ×           |         | TDS<br>CL F. 804                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                   |                |                    |                |          |                   | vant                          |
| Esign          | J.    |                     |          |     | >    | < >    |          | ( )    | X   | ×           | Ħ,      | App III/SV Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |                |                    |                |          |                   | fields                        |
| ed:            | 1 the | -                   |          | +   | >    | < >    |          | < ×    | 1 × | 13          | 1       | AD 9315/9320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |                |                    |                |          |                   | mus                           |
|                | -P    |                     |          |     |      |        |          | -      |     | -           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                |                    |                |          |                   | be                            |
| 1              | 6     | MIE                 |          |     |      |        |          |        |     |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                |                    |                | 1        |                   | comp                          |
| -              |       |                     |          |     |      | _      |          | -      | _   |             | +       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                |                    |                |          |                   | leted                         |
|                |       | 1                   |          |     |      | 1      | +        | +      | +   | -           | -       | 1014-0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                   |                |                    |                |          |                   | acc                           |
|                |       | 89.<br>             |          |     |      |        |          |        |     |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                |                    |                |          |                   |                               |
| EMP in C       |       |                     |          |     |      |        |          |        | 1   |             | R       | es dual Chlorine (VAI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                   | St             |                    | Sing           |          | age               | *                             |
| leceived on    |       | 2                   |          |     | Tto  |        | . to     |        | T   | Т           | ť       | and offering (T/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                   | 10             |                    | Laby           | 2        |                   |                               |
| (/N)           |       | 0 TG                |          |     | 11.  | S-     | 17       | 51     | 1   | 1           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   | ocatio         |                    |                | )1       | P                 |                               |
| aledO          |       | CADAC               |          |     |      | 2      |          | 2      |     | 1           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   | ð              |                    | ٩ľ             | 2        |                   | 10                            |
| (/N)           |       | CHO SHO             |          |     | 1 19 | 2      | R        | 5      |     |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                |                    |                |          | g                 |                               |
| enthice        |       |                     |          |     |      |        | 1        |        |     | 1           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Strate Co                                         | 1 18           | 111                |                | 1        |                   | 1                             |

|                  | T            | 11 | 11             | 1                   | N  | - | 5 . 10      | 00       | 7                                     | ማ     | Cn.    | *  | ω      | N)     | 1      | ITEM #                       |                  |                                          | 11       | Juest        |             | nton,    | mpan          | aninh a                  | ŧ                |
|------------------|--------------|----|----------------|---------------------|----|---|-------------|----------|---------------------------------------|-------|--------|----|--------|--------|--------|------------------------------|------------------|------------------------------------------|----------|--------------|-------------|----------|---------------|--------------------------|------------------|
| -                |              |    |                | VODITIONAL COMMENTS |    |   |             |          | EB1                                   | 72.35 | YAMW-1 |    | YAMW-S | YAMWA  | YAMW-2 | Sample Ids must be unique    | SAMPLE ID        |                                          |          | d Due Date:  |             | SA 30114 | Georgia Power | s Client Information:    | Arace Arabytical |
|                  |              |    | 4              |                     |    |   |             |          |                                       |       |        |    |        |        |        | AND<br>Office<br>Tesue<br>13 | Witherd With     | MATRIXO CODED<br>Ortmong WaterD DAYO     | a reduce | Project Name | Purchase On | uopy 10: | Report To:    | Section B<br>Required Pr |                  |
|                  |              | 9  | $\mathfrak{P}$ | 100                 |    |   |             |          |                                       | WT    | T      | -  | WT     | A      | WT     | MATRIX CODE                  | (see valid co    | des to left)                             |          | 1            | der #:      |          | Becky         | oject ti                 |                  |
|                  |              |    | 鬥              |                     |    |   |             | -        | 2                                     | ð.    | Sr.    | -  | 8      | 100    | 82     | SAMPLE TYPE                  | (G=GRAB (        | C=COMP)                                  |          | Yales I      |             |          | Sleev         | norma                    |                  |
|                  |              |    |                | BYIA                |    |   |             |          | 2 E                                   | XX    | 13/102 |    | Hay    | Strand | 101    | ATE                          | STA              |                                          |          | RE-AM        |             |          | R.            | illion:                  |                  |
| 2 3              | SAME         |    |                | THEN.               |    |   |             |          | 8                                     | 153   | SIS    |    | 1<br>L | E      | M      | TIME                         | \$               | 8                                        |          | A            |             |          |               |                          |                  |
| CHATL            | CRR NJ       |    |                | Đ,                  |    |   |             | +        | 15                                    | 2     | -      |    | 0.     | 0.     |        | 8                            |                  | LECTE                                    |          |              |             | -        |               |                          | T                |
| JRE of           |              |    |                |                     |    |   |             | -        |                                       |       |        |    | -      |        |        | Ĩ                            | EN A             | 8                                        |          |              |             |          |               |                          | e Cha            |
| SAMP             | NO SIO       |    | 30             | E.                  |    | 1 | 1           |          |                                       |       |        |    |        |        |        | TIME                         | ļ                |                                          |          |              |             |          |               |                          | 10-01-           |
|                  | 1 Star       |    | 5              | "it                 |    |   |             |          | 1                                     |       |        | 1  |        |        |        | SAMPLE TEMP                  | L<br>AT COLLECTI | ION                                      |          |              |             |          |               |                          | Cust             |
| 5                | R            |    | -              |                     |    |   |             |          | n                                     | S     | S      |    | S      | N      | ~      | # OF CONTAINE                | RS               | -                                        | Page     | Page         | See         | Com      | Allen         | Sacts                    | ody p            |
| Sig              | 1962         |    | 81             | Ă.                  | -  |   | -           |          | *                                     | X     | X      | 4  | X      | X      | X      | H2SO4                        |                  | -                                        | Profil   | Proje        | Quote       | bany h   | SON:          |                          | sal              |
| To               |              |    | ~              |                     | -  |   |             | -        | Y                                     | ×     | ×      |    | X      | X      | ×      | HNO3                         |                  | P                                        | 37       | X Mar        |             | lame:    |               | oma                      | EGA              |
| Set.             |              |    | 10             |                     |    |   |             |          |                                       |       |        |    |        |        |        | HCI                          |                  | esen                                     | 108      | ager:        |             |          |               | <b>N</b>                 | LDC              |
| 20               | 3.6          |    | 20             | ,                   |    |   |             |          |                                       |       |        |    |        |        |        | NaOH                         |                  | vativ                                    | ō        |              |             |          |               |                          | CU               |
| N                |              |    | 2              | 8                   | -  |   |             | -        |                                       | _     |        | +- |        | -      |        | Na2S2O3                      |                  | - S                                      |          | cevin.l      |             |          |               |                          | MEN              |
| 1                |              |    | 12             |                     |    |   |             |          |                                       |       |        | +  |        |        |        | Other                        | -w,              | -                                        |          | henin        |             |          |               |                          | TA               |
|                  | 8 - 11<br>24 | -  | 7              | ŝ                   |    |   |             | 4        | لــــــــــــــــــــــــــــــــــــ |       |        |    |        | ·!     |        | Analyses                     | Teat             | Y/N                                      | 1        | ed (2) 6     |             |          |               |                          | I rele           |
|                  | 6            |    | 24             | Ē                   |    |   |             |          | ×                                     | ×     | ×      | ×  | ×      | ×      | ×      | TDS                          |                  |                                          |          | oplab        |             |          |               |                          | vani             |
| ATE              |              |    | 3              | ŝ                   |    |   |             | mennonae | ×                                     | ×     | ×      | ×  | ×      | ×      | ×      | CI, F, SO4                   |                  |                                          | 2        | 5.00m        |             |          |               |                          | field            |
| lane             |              |    | ()             |                     | -+ |   |             | -        | X                                     | ×     | ×      | ×  | ×      | ×      | ×      | RAD 9315/9320                | 3<br>,           | -                                        | a en     |              |             |          |               |                          | ls m             |
|                  |              |    | N.             |                     |    |   |             |          |                                       |       | ~~~~   |    |        |        |        |                              |                  |                                          | ed Ag    |              |             |          |               |                          | stb              |
|                  |              |    | 3              |                     |    |   |             |          |                                       |       |        |    |        |        |        |                              |                  |                                          | anys.    |              |             |          | 1             |                          | eco              |
|                  |              |    |                | 5                   |    |   |             | -        |                                       | -     |        |    |        |        |        |                              |                  |                                          |          |              | 4           |          |               |                          | mple             |
| 9                |              | +  | R              | <u></u>             | -  |   |             | -        |                                       | _     |        | -  |        |        |        |                              |                  |                                          | 2        |              | K           |          |               |                          | ited a           |
|                  |              |    | S              | 1                   |    |   |             |          |                                       |       | -      |    |        |        |        |                              |                  |                                          | YEN      |              | ţ           |          |               |                          | accu             |
|                  |              |    | 1. Ber         |                     |    |   | NOOL HINDRO |          |                                       |       |        |    |        |        |        |                              |                  |                                          |          |              | 1           |          | L             |                          | rateh            |
| MP In C          | :            |    |                |                     | Ι  |   |             | 1        |                                       |       |        |    |        |        |        | Pasidual Chief               | A MAN            | da Managara                              |          | 12           | Rag         | 0        | aha           |                          | ×                |
| aceived          | on .         | ++ | -              | -                   | T  | 1 | 1           | T        |                                       | _     | 1      | +  | 2      | 101    | c.     | Residuel CDiofir             | Hei (T/N)        | a an an an an an an an an an an an an an | o        | 8            | ulator      | Q        | ľ             |                          |                  |
| 0<br>(N)         |              |    |                | MARCE               |    |   |             |          | p                                     | Ŧ     | T      |    |        | Ŧ      | T      |                              |                  | 1.0                                      | 1        | 0000         | N.S.        | 10       | -             |                          |                  |
| Islody<br>aledin | -            |    |                | 8                   |    |   |             |          |                                       | "S    | 5      |    | S      | σ)     | Ś      |                              |                  | 1                                        |          | 8            | No.         | 6        | 1             |                          |                  |
| DolerD           |              |    |                | 10inc               |    |   |             |          |                                       | 5     | 5      |    | 32     | 8      | 5      |                              |                  |                                          |          |              |             |          | ç             | 2                        |                  |
| amples           |              |    |                | 1                   |    |   |             |          |                                       | -     | -      |    | Ĩ      | -      |        |                              |                  | K. an<br>K. An                           |          |              |             |          |               |                          |                  |
| acto             |              |    |                | 22                  |    |   |             |          |                                       |       |        | 11 |        |        |        |                              |                  | 1.0.1                                    |          | 1            |             |          | C             | 11                       |                  |

|             |     |     |              | ADDITICHAN, COMMENTS |       |   |      | 8       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |         |    | 5 Vencut | 4 NOWO JEA | 3 W PZ-57 | Sample kis must be unique                                   | MATTRXC<br>Drawsg W |           | rested Due Date: |                   | ess: 1070 Bridge Mill Ave<br>on, GA 30114 | pany: Georgia Power | ion A<br>uired Client Information: | ALL ALL ALL ALL ALL ALL ALL ALL ALL ALL |
|-------------|-----|-----|--------------|----------------------|-------|---|------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|----|----------|------------|-----------|-------------------------------------------------------------|---------------------|-----------|------------------|-------------------|-------------------------------------------|---------------------|------------------------------------|-----------------------------------------|
|             |     | 100 | Wat          |                      | -     |   |      | WT      | WT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WT     | WT      | WT | WT       | WT         | WT        | 려 吕 홈 홋 홈 홈 홈<br>제 吕 홈 홋 홈 홈 홈<br>MATRIX CODE (See Valid of | odes to left)       | Friday at | Project Name:    | Purchase Order #: | Copy To:                                  | Report To: Beck     | Section B<br>Required Project      |                                         |
|             |     |     | 11           |                      | -     |   |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | -       |    |          | -          | 00        | SAMPLE TYPE (G=GRAB                                         | C*COMP)             |           | Yates A          |                   |                                           | y Sleew             | Informa                            |                                         |
| 1 60        |     |     | K            | BLIN                 | -     |   |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | -       | -  | -        |            | 481       | ATE                                                         |                     |           | MA               |                   |                                           | 8                   | tion                               |                                         |
| and PR      |     |     | /.           | FILMIN               |       |   |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |         |    |          |            | 155       | TIME                                                        | Sout                |           |                  |                   |                                           |                     |                                    |                                         |
| MT Maine    |     |     | 1'           | ¥                    |       |   |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |         |    |          |            |           | DATE                                                        | ECTED               |           |                  |                   |                                           |                     |                                    | Ine C                                   |
| OT SAM      |     |     | 22           | 8                    |       |   |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |         |    |          |            |           | TIME                                                        | 1                   |           |                  |                   |                                           |                     |                                    | ain-o                                   |
| IPLER       |     |     | 12:1         | E -                  | +     | - | -    |         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | -       | -  |          | -          |           | SAMPLE TEMP AT COLLEC                                       | TION                |           |                  |                   |                                           |                     |                                    | I-Cus                                   |
|             |     |     | ε            |                      |       |   |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |         |    |          |            | S         | # OF CONTAINERS                                             | -                   | Page      | Page             | Page              | 8                                         | Atten               | Sect                               | lody                                    |
| 3           |     | i   | হি           |                      | -     |   |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | -       | -  |          |            | 1         | Unpreserved                                                 | -                   | Profil    | Proje            | Quot              | pany b                                    | dion:               |                                    | sal                                     |
| To          | -+- |     | -            |                      | 1     |   |      | *****   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |         |    | -        |            | 1         | HNO3                                                        | P                   | e.#       | ot Mai           | R                 | lame:                                     |                     |                                    | EGA                                     |
| Ad.         |     | 1   | 0            | Ì                    |       |   |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |         |    |          |            |           | HCI                                                         | eser                | 108       | hager            |                   |                                           | 1000                | 5                                  | PD                                      |
| 3           |     | t.  | N            |                      | i cas |   |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |         |    | 1        |            |           | NaOH                                                        | vativ               | ô         |                  |                   |                                           |                     |                                    | ğ                                       |
| 2.          | 6   |     |              | 8                    |       |   | _    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |         |    |          | -          |           | Na2S2O3                                                     | S                   |           | cevin.           |                   |                                           |                     |                                    | MEN                                     |
| E .         |     | 1   | à            |                      | +     |   |      |         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -      |         | -  |          |            |           | Other                                                       | -                   |           | herrin           |                   |                                           |                     |                                    | T.A                                     |
| E.          |     |     | 71           | U'IN                 |       |   | I    |         | le commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de la commente de | 1      | l       | 1  | Linnet   |            |           | Analysee Teat                                               | Y/N                 |           | 9@pa             |                   |                                           |                     |                                    | li rele                                 |
|             |     |     | L            | ŝΞ                   |       |   |      | ×       | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×      | ×       | ×  | ×        | ×          | ×         | TDS                                                         | 1                   |           | celab            |                   |                                           |                     |                                    | van                                     |
|             |     |     | 24           | Se                   | -     |   | 1    | ×       | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×      | ×       | ×  | ×        | ×          | ×         | Ci, F, 904                                                  |                     | 2         | S.COIT           |                   |                                           |                     |                                    | field                                   |
|             |     |     | N            | 14-                  | -     |   |      | ×       | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×      | ×       | ×  | ×        | ×          | ×         | App III/IV Metals                                           | +                   | 8         | -                |                   |                                           |                     |                                    | ds m                                    |
|             |     |     | Ň            | 1                    |       |   |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |         |    |          |            |           | W WIND DUC                                                  |                     | ad A      |                  |                   |                                           |                     |                                    | ust t                                   |
| 2           |     | 1   | रेप          | 34                   |       |   |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |         |    |          |            |           |                                                             |                     |           |                  |                   |                                           |                     |                                    | x a                                     |
|             |     | 1   | 21           |                      |       |   |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |         |    |          |            |           |                                                             |                     |           |                  | 1                 |                                           |                     |                                    | Auble                                   |
| -           |     |     | 2            |                      |       |   |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | 1       |    |          |            |           |                                                             |                     | Daug      |                  | 0.00              |                                           |                     |                                    | eted                                    |
|             |     |     | 5            | - 1                  | -     |   | -    |         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -      | -       | -  | -        |            |           |                                                             |                     | TINE      | K                |                   |                                           |                     |                                    | accu                                    |
|             |     | 1   | 3            | M                    |       |   | -    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |         |    |          | -          | -         | TAM STATE STOLEN                                            | +                   |           |                  |                   |                                           | Ē                   |                                    | Irate                                   |
| MP In C     |     |     |              |                      | 1     |   | 1    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |         |    |          |            |           | Dealdup Able to Aver                                        |                     | 10°.      |                  | Reg               |                                           | 1-ade               |                                    | Y                                       |
| ceived on   |     |     | _            |                      | 1     | T | -1   | -       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | -       |    |          | L          | -         | residual Crititine (Y/N)                                    |                     | 0         | de P             | Links in          | 6                                         | ľ                   |                                    |                                         |
| O<br>N)     |     |     | and the same | 1                    |       |   |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |         |    |          |            | ¥         |                                                             |                     | >         | ocati            | XAD               | 2                                         | 100                 | 10                                 |                                         |
| slody       |     |     | _            | 8                    |       |   |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |         |    |          |            | S         |                                                             | 1 3 A               |           | 3                | NAME A            | R                                         | 1                   |                                    |                                         |
| olerD       |     |     |              | COLDO                |       |   |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |         |    |          |            | in        |                                                             | 124                 | 5         |                  | 50                | 1                                         | S                   | 2                                  |                                         |
| N)<br>mples |     | ++  | -            | Č,                   |       |   |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |         |    |          |            |           |                                                             |                     |           |                  |                   | 5                                         | 1                   |                                    |                                         |
|             |     |     |              | 82.54                | 1     | 1 | - 11 | 11.11.6 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 - 50 | 1 I I I |    |          |            |           |                                                             | 1.000               |           | 100              |                   | 100                                       | 11                  | 3 H.                               |                                         |

| 1             | 1 | 11   | 2                   | N. | B  | 3                | a, i | 8  | 5  | 8         | 5  | 16         | 15          | 4        | 12        | ITEM#                                                                                                                  |                                      |          | mested             | alt:           | nion, G  | mpany:        | quined .                  | ~                 |
|---------------|---|------|---------------------|----|----|------------------|------|----|----|-----------|----|------------|-------------|----------|-----------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------|--------------------|----------------|----------|---------------|---------------------------|-------------------|
|               |   |      | ADDITIONAL COMMENTS |    |    |                  |      |    |    |           |    |            | Names DUD-3 | YGWC-36A | YGWC-24SA | SAMPLE ID<br>One Character peq box.<br>(A-Z, 0-9 /, -1<br>Semple kts must be unique                                    |                                      |          | (770)384-6026 JFax |                | A 30114  | Georgia Power | Client information:       | - Pace Analytical |
|               |   | C    | 10 m                |    |    |                  |      |    |    |           |    |            |             |          |           | Water Wind<br>Water Water<br>Protection<br>Production<br>Production<br>Web<br>Out Out<br>Other<br>Other<br>Traue<br>15 | MATRIXO CODED<br>Draking Walero DAVD |          | Project Name       | Purchase Ord   | Copy 10: | Report To:    | Section B<br>Required Pro |                   |
|               |   |      | 抖音                  | Ē  | -  |                  |      | WT | WT | MI        | WT | WT         | WT          | WT       | TW        | MATRIX CODE (SOD VERIO CO<br>SAMPLE TYPE (G=GRAB                                                                       | odes to left)                        |          | X                  | er #:          |          | Becky S       | lect Inf                  |                   |
|               |   |      | I AN CENSIN         |    |    |                  |      | -  |    |           |    |            | a kard      | (Shiles  | No.       | DATE                                                                                                                   | Τ                                    |          | ates AMA           |                |          | Sleever       | ormstion:                 |                   |
| PRIM          |   |      | OLVINAL             |    |    |                  |      |    |    |           |    |            | 1           | 1235     | 1156      | ART                                                                                                                    | cours                                |          |                    |                |          |               |                           |                   |
| R PULLIE A    |   |      |                     |    |    |                  |      |    |    |           |    |            |             |          |           | DATE                                                                                                                   | CTED                                 |          |                    |                |          |               |                           | The Cha           |
| ND SK         |   | R    | N                   |    |    |                  |      |    |    |           |    |            |             |          |           | TIME                                                                                                                   |                                      |          |                    |                |          |               |                           | lin-of-           |
|               |   | ling | M                   | F  |    |                  |      |    |    |           |    | - <b>-</b> | 1           |          |           | SAMPLE TEMP AT COLLECT                                                                                                 | ON                                   |          |                    | Ц              | _        |               |                           | Custo             |
| 1             |   | Q    |                     |    |    |                  |      |    |    |           |    |            | S           | S        | X         | # OF CONTAINERS                                                                                                        | · · · · ·                            | axe.     | Pacel              | Page           | Comp     | Attent        | Sectio                    | ydy is            |
| er.           |   | G    | S R                 | -  | -  |                  |      | -  |    | -         | -  | -          |             | -        | ~         | H2SO4                                                                                                                  | -                                    | Protite  | Projec             | Quote          | any N    | ion:          | -                         | aL                |
| r I           | - | 100  | 1                   |    |    |                  |      |    |    |           |    |            |             |          | X         | HNO3                                                                                                                   | Pre                                  | 3        | Man                |                | ame      |               | (parate                   | EGAI              |
| $\mathbf{D}$  |   | 4    | 1                   |    |    |                  |      |    |    |           |    |            |             |          |           | HC                                                                                                                     | Ser                                  | 1084     | ager:              |                |          |               | 97                        | DO                |
| ¥ I           |   | 2    | 2                   | -  | -  |                  |      |    |    |           | -  | -          |             |          |           | NaOH                                                                                                                   | ative                                | °        | 5                  |                | 1        |               |                           | CUN               |
| a             |   | 1    | 88                  | 1  | -  | +                |      |    |    | <b></b> . |    | -          | -           |          |           | Methanol                                                                                                               | - N                                  |          | evin.h             |                |          |               |                           | AENT              |
| 2             |   | 11   | 869                 | 1  | 1  |                  |      |    |    |           |    |            |             |          |           | Other                                                                                                                  |                                      |          | eming              |                |          |               |                           | A                 |
|               | 1 | a    | BALL                |    |    |                  |      |    |    | 4         | 1. | 1.         |             |          |           | Analyses Test                                                                                                          | YIN                                  | 6        | Oed                |                |          |               |                           | relev             |
| 0324          |   | 1    | CHI                 |    | ** |                  |      | ×  | Ĭ- | Š-        | ľ. | 1          | ×           | ×        | ×         | TDS                                                                                                                    |                                      |          | elabs.             |                |          |               |                           | ant :             |
| 1.            |   | 1 fr | 3                   | -  | -  |                  |      | ×  | 1- | X         | 1  | *          | ×           | ×        | ×         | App III/IV Metals                                                                                                      |                                      | Feq      | com,               |                |          |               |                           | fields            |
| 19            |   | 1 th | 10                  | E  |    |                  |      | ×  | 1  | A         | X  | ×          | ×           | ×        | ×         | RAD 9315/9320                                                                                                          | -                                    | in state |                    |                |          |               |                           | mus               |
|               |   | -19  |                     |    |    |                  |      | ľ  |    |           |    | V          |             |          |           |                                                                                                                        |                                      | (And     |                    |                |          |               |                           | t be              |
|               |   | K    | 8                   | -  | -  |                  |      |    |    | -         |    | -          | -           |          |           |                                                                                                                        |                                      | Tals I   |                    |                |          |               |                           | Sm                |
|               |   | 0    | - TR                |    | -  | $\left  \right $ |      |    |    |           |    | -          | -           |          |           |                                                                                                                        |                                      |          | 188                |                |          | Ц             |                           | plete             |
|               |   | 12   |                     |    |    |                  |      |    |    |           |    |            |             |          |           |                                                                                                                        |                                      | A TH     |                    |                |          |               |                           | dac               |
|               |   |      | TER .               |    | -  | -                |      |    |    |           | -  | -          |             |          |           | driine ,                                                                                                               |                                      |          | 10 m               |                | 00       | Г             |                           | curate            |
| MP In G       |   |      |                     | F  | 1  |                  |      |    |    |           |    |            | 1           |          |           | Residual Chiprine (Y/N)                                                                                                | Contraction of the                   |          | Stad               | and the second | C        |               | Page :                    | Ŋ.                |
| ceived on     | 1 |      | 12                  | F  | 1  |                  |      |    |    |           |    |            | <b>a</b>    | 19       | 44        | - Marine - Marine - Marine - Marine - Marine - Marine - Marine - Marine - Marine - Marine - Marine - Marine - M        | 1.30                                 | GA       | 01:10              | 100            | d        |               |                           |                   |
| N)            |   |      | ALC:                | č. |    |                  |      |    | 1  | 1         | 1  | 1          |             | 1        | 1.        |                                                                                                                        |                                      |          | catior             | - And - Con    |          | Í             | ~                         |                   |
| elody<br>ledD |   |      | 100                 | *  |    |                  |      | 1  |    |           |    | 1          | 1           | S        | 5         |                                                                                                                        | 201                                  |          |                    | 1000           | 8        | 2             |                           |                   |
| olerD<br>N)   |   |      | THOM                |    |    |                  |      |    |    |           |    |            |             | 4        | ど         |                                                                                                                        | 19                                   |          |                    |                |          | ľ             | *                         |                   |
| mples<br>IctD |   |      |                     |    |    |                  |      |    |    |           |    |            | ļ           | 191      | Cr.       |                                                                                                                        |                                      | E.       |                    |                |          | 0             | 10                        |                   |
| N)            |   |      |                     |    |    | 1                |      |    |    |           |    |            |             |          |           |                                                                                                                        | 1000                                 |          |                    |                |          | ľ             | 3.                        |                   |

|                |           |    |        |                        | R | 8 | 153 | 3              | 8   | 5      | 00     | 17     | 6  | 15 year | 14 ×0    | 13       | 116M #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | Juested Dux | MP:               | Non, GA 30 | iress:                                | Juired Ciler                 | 1                                     |
|----------------|-----------|----|--------|------------------------|---|---|-----|----------------|-----|--------|--------|--------|----|---------|----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|-------------------|------------|---------------------------------------|------------------------------|---------------------------------------|
|                |           |    |        | ADDATIONNAL CONSIDENTS |   |   |     | e havene state |     |        |        |        |    | 1       |          | YGWC-2   | SAMPLE ID<br>One Character per box.<br>(A-2, D-9 1, -<br>Sample lots must be unique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | e Date:     | JTTONIAL SSOR Fat | 1114       | Georgia Power<br>1070 Bridoe Mill Ave | nt Information:              | and official con<br>one is sufficient |
|                |           |    | 5      | 8                      |   |   |     |                | -   | -      |        | V      |    | V       | V        | 3S       | MATTRACT<br>Domining Water<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattra |           | Project #:  | Purchase Order    |            | Copy To:                              | Section is<br>Required Proje |                                       |
|                |           |    | RE     | INCURSER<br>Beternoon  |   |   |     |                | VT  | 5      | 4      | 5      | ন  | 5       | 4        | AL N     | SAMPLE TYPE (G=GRAD C=COMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ì         | Talles      | *                 |            | cky Sleev                             | ct informa                   |                                       |
| T              | 10        |    | N      | DBYINF                 |   |   |     |                |     |        | -      |        |    |         | -        | 4        | START                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | WA          |                   |            | æ                                     | ntion:                       |                                       |
| SIGNATU        | NAPLER NA |    | work   | NOULTWIE               |   |   |     |                |     |        |        |        |    |         | <b>_</b> | 212      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |             |                   |            | ł                                     |                              | Тре                                   |
| JRE of SA      | WE AND    | -  | 2      | 0                      | - | ┝ |     |                | -   | -      | 121    |        | -  |         |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |             |                   |            |                                       |                              | Chain-o                               |
| MPLER:         | NOWATL    |    | that 1 | ATE                    |   |   |     |                |     |        |        |        |    |         |          |          | SAMPLE TEMP AT COLLECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |             |                   |            |                                       |                              | f-Custo                               |
| Cla            |           |    | 1700   | TIME                   |   |   |     |                |     |        |        |        |    |         |          | 2        | # OF CONTAINERS<br>Unpreserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           | ace Prof    | Page Que          | ddness:    | Attention:                            | nvoice in                    | dy is a                               |
| Re             |           |    | 1      | i ter                  |   |   |     |                |     |        |        |        |    |         |          | ~        | H2SO4<br>HNO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | He #        | Me:               | 11001      | Name:                                 | formatio                     | LEGAL                                 |
| 1V             |           |    | 1h     |                        |   |   |     |                |     |        | E D    |        |    | -       |          |          | NaOH Servati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           | 10840       |                   |            |                                       | ¥.                           | DOCU                                  |
| NOUN           |           |    | two    | ACCEPTE                |   |   |     |                |     |        |        |        |    |         |          |          | Na2S2O3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | kevin.her   |                   |            |                                       | 1                            | IMENT.                                |
| SQI            |           |    | 6      | DBYIAS                 |   |   |     |                |     |        |        |        |    |         |          | <u> </u> | Other Analyses Test Y/N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | ting@pa     | ,                 |            |                                       |                              | All rele                              |
|                | <b>Y</b>  |    | -      | FILLIATIO              |   |   |     |                | ××× | ××     | ××     | ×<br>× | ×× | K       | ××       | ××       | TD5<br>Cl, F, SO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           | celabs.c    |                   |            |                                       |                              | vant fi                               |
| TE Signed      |           |    | will   |                        |   |   |     |                | x x | ×<br>× | ×<br>× | ×<br>× | ×× | *       | ×        | ××       | App III/IV Metats<br>RAD 8316/8320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Requested | om,         |                   |            |                                       |                              | elds must                             |
| J              |           |    | -      | R                      |   |   |     |                |     |        |        |        |    |         |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Analyzis  |             |                   |            |                                       |                              | be com                                |
| 5              |           | 11 | 2ª     | 12                     |   |   |     |                |     |        |        |        |    |         |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Deve      | T           | Г                 |            | _                                     | 1                            | pleted a                              |
|                |           |    | ach.   | <b>N</b>               | - |   |     |                |     |        |        |        |    |         |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DUA       |             |                   |            |                                       |                              | accurate                              |
| EMP In         | nc        |    |        |                        |   |   |     |                |     |        |        |        | 1  |         |          | L        | Residual Chlorine (Y/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | SIL         |                   | Regu       |                                       | Page :                       | N.                                    |
| ecalve         | d on      |    |        | STATE                  | - |   |     |                |     |        | -      | Γ      |    | Γ,      | 4        | 50       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | e/Loca      |                   | ADDYA      | 2                                     | 4                            |                                       |
| /N)<br>uslody  |           |    |        | PLE COM                |   |   |     |                |     |        |        |        |    |         | 1        | 1.51     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | tion        |                   | ancy (     | 50                                    | 1                            |                                       |
| colerD<br>(/N) |           |    |        | DITIONS                |   |   |     |                |     |        |        |        |    |         |          | 44       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |             |                   |            | 0                                     | đ                            |                                       |
| amples<br>actC | 5         |    |        | 1                      |   |   |     |                |     |        |        |        |    |         |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |             |                   | P          | M                                     | 5                            |                                       |

|              |           |          |   | -      |            |                  |   |   | 7-00  | 1 T Z - |           | YGWC43 | KOWERT2 | YGWC-41 | X  | HARDEN | SAMPLE ID<br>One Character per box.<br>(A-Z, 0-9 /<br>Sampte kds must be unique |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | lested Due Date: | 10: (770)334-5525 JPax | on, GA 30114     | ress: 1070 Ercher Mill Ave | uined Cilent Information;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
|--------------|-----------|----------|---|--------|------------|------------------|---|---|-------|---------|-----------|--------|---------|---------|----|--------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------|------------------------|------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|              |           |          |   | Jet Cr |            |                  |   |   | NN NN |         | M         | WT     | WT      | WT      | WT | WT     | THE CODE (SSE VAL                                                               | WATRUD<br>Ornavong Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Wa | 2           | Project #:       | Purchase Order #:      | vojy 10:         | Report To: Bed             | Section B<br>Required Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
| ·            |           |          |   |        | Under the  |                  |   |   | 1510  | 14      | l<br>X    | 3/2    |         | 13/     |    |        | SAMPLE TYPE (G=GR                                                               | AB C×COMP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | Yales R6         |                        |                  | ty Sleever                 | Informatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
| 1            | 2         | Sug      |   | NV SQL | INTERNI    |                  |   |   | 5     | 30HI V  | +         | 1 145  |         | HOAD)   |    |        | START                                                                           | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                  |                        |                  |                            | ON:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| ONA I UNE    | UNT Name  | ER NAME  |   | P      | C.W        |                  |   |   |       | 1       |           | 0      |         | 40.3    |    |        | DATE                                                                            | LECTED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |                  |                        |                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| OI SAUNPL    | of SAMPL  | AND SIGN |   | 140    | ) Land     |                  |   |   |       |         |           |        |         |         |    |        | TIME                                                                            | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |                  |                        |                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -Io-uleu |
| EK:          | Ę.        | ATUR     |   | 121    |            |                  |   |   | In    | КН      | -         | E T    |         | 5       |    |        | SAMPLE TEMP AT COLL                                                             | CTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1           | 0 0              | -01                    | 20               | 2                          | <b>T</b> (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cusio    |
| L            | 5         |          |   | Q      | R          |                  |   |   | Ś     | 5       |           | 5      |         | 2       |    |        | Unpreserved                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1           | ace Pro          | ace Qu                 | iompan<br>doress | nention                    | iection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dy is a  |
| N            | R         |          |   |        | 1          |                  |   |   | 12    | 2       |           | <      | -       | <       |    |        | H2SO4                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | and as      | Yeat Ma          | ole:                   | y Name           |                            | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LEG      |
| 11           | 10        |          |   | 0      |            |                  |   |   | 1     |         | 1         |        |         |         |    |        | HC                                                                              | Tesen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 108         | mager:           |                        | 24               |                            | internet in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se | AL DA    |
| 1            | E         |          |   | 1      | 18         |                  |   |   |       | -       |           |        |         |         |    |        | NaOH<br>Na2S203                                                                 | vative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10          | X                |                        |                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OCUN     |
| 1            | 122       |          |   | - Wer  | BLEF       |                  |   |   |       |         |           |        |         |         |    |        | Methanol                                                                        | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | vinhe            |                        |                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IENT.    |
|              | 50        |          |   | 1      | BILIA      | H                |   |   | L     |         |           |        |         |         | T  |        | Other                                                                           | NAL MAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             | ming @           |                        |                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | All re   |
| 0            | 5         |          |   | A      | The second |                  |   | T | K     | ×       | ŧ         | ×      | 2       | * )     | T  | E      | TDS                                                                             | SI TAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | uso::lat         |                        |                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | elevar   |
| ATES         |           |          |   | Sw     | 2          |                  |   |   | XX    | XXX     | 1         | ×      |         | * >     |    |        | CI, F, SO4                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RB          | 35.00m           |                        |                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nt fiek  |
| Igned:       |           |          |   | 12     | 1          |                  |   |   | X     | X       |           | ×      |         | < >     |    |        | RAD 9315/9320                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Planship in |                  |                        |                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ts mu    |
| (1)          |           |          | _ | - 100  | -          |                  |   |   |       |         | $\square$ |        | -       |         |    | -      | b                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d'Anal      |                  |                        |                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | st be    |
| 2%           |           |          |   | 4      | il Re      |                  |   |   |       |         |           | 1      |         |         |    |        |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | YSE FU      |                  |                        |                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | comp     |
| 14           |           |          |   | +15    |            | $\left  \right $ |   |   |       |         | -         | -      | -       | _       |    | -      |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Belg        |                  | 1.00                   | Í                | -                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | leted    |
| 10           |           |          |   | 12     | Ĩ          |                  |   |   |       |         |           |        |         |         |    | $\pm$  |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TIN         |                  |                        |                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | accur    |
|              | _         |          |   | + 12   | 142        | $\left  \right $ |   | _ |       |         | -         |        | -       |         | _  | -      |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                  |                        |                  | P                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ately.   |
| TEM          | P in C    |          |   |        |            |                  |   |   |       |         | _1        |        |         |         |    |        | Realdual Chiorine (Y/N)                                                         | 13.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | Stanto           | Regul                  |                  | : efi                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| Rece<br>IceD | lived c   | n        |   |        | N.         |                  |   |   |       |         | 1         | 2      | 15      | 3       |    | I      |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GA          | Loca             | tory A                 | 0                | 1-                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |
| Cus          | ody<br>dD | -        |   | +-+-   | ECON       |                  |   |   |       | 1       |           | T      | 1       | -       | 11 |        |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | 661              | Dench                  | 00               | P                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| Cool         | erD       |          |   |        | NOUN       |                  | Í |   |       |         | K         | £      | State   | A.W.A   |    | 1      |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             |                  |                        |                  | 2                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| Sam          | ples<br>D | T        |   |        |            |                  |   | Ì |       |         | 10        |        | 1       | 2       |    |        |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |             | 10               |                        | D                | 10                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| (T/N         | 1         |          |   |        |            |                  |   |   |       |         | K         | S      | is is   | in a    |    |        |                                                                                 | 16 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |                  | 6                      |                  | p                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |

88

|                                                                      |          | ADOLUDIAN CONTRACTS     |  |      |      |       |     | E8-02       | VGWC49    | WEWC 35A- |        | SAMPLE ID<br>One Character per box.<br>(A.Z. 0.8 /<br>Sample His must be unique |                                           |                         | (770)384-6526 Fax       |                   | IS: 1070 Bridge MIR Ave | any: Georgia Power | n A<br>rad Client information: |
|----------------------------------------------------------------------|----------|-------------------------|--|------|------|-------|-----|-------------|-----------|-----------|--------|---------------------------------------------------------------------------------|-------------------------------------------|-------------------------|-------------------------|-------------------|-------------------------|--------------------|--------------------------------|
|                                                                      | to g     | DNE ESG                 |  | WT   | WT   | WT    | WT  | WT          | WT        | WT        | WT     |                                                                                 | MATRIXCI<br>COOCCI COOCCI<br>des Lo left) | palater                 | Project Name: Y         | Purchase Order #: | Copy To:                | Report To: Becky   | Section B                      |
| SAMPLER W                                                            |          | RANNED BY LANTIN MITTON |  |      |      |       |     | 3-4-21 1500 | 3421451   |           |        |                                                                                 | COLLECT                                   |                         | attes AMA               |                   |                         | Steever            |                                |
| AME AND SIGNATURE                                                    | 1 1245   | - PATE                  |  |      |      |       |     | 8           | স         |           |        | SAMPLE TEMP AT COLLECT                                                          | 0N                                        | Pac                     | Pac                     | No.               | 8                       | LAH<br>MAR         | ie Chain-oi-Custody<br>Sec     |
| othe Pipti                                                           | 45 Chus  | THE                     |  |      |      |       |     |             | V V I     |           |        | Unpreserved<br>H2SO4<br>HNO3<br>HCI<br>NaOH<br>Na2S2O3                          | Preservatives                             | e Profile #: 10840      | e Project Manager: kevi | P Onnie:          | pany Name:              | aice Infollatiou:  | tion C                         |
|                                                                      | latterde | ALINE AVABUAL           |  | ×××× | ×××× | ××××× | XXX | ×××         | ××××      | 2         | ×<br>× | Methanol<br>Other<br>Atialysees Test<br>TDS<br>Cl, F, SO4                       | YIN                                       | 8                       | in herring@cacelabs.com |                   |                         |                    | ENT. All relevant fiek         |
| Jane: 3.4.21                                                         | 49 MGL   | 明月                      |  | ×    | ×    | ×     | ×   | ×           | ×         |           | \$     | RAD 8315/9320                                                                   |                                           | Duasted Ansives: Pitton |                         |                   |                         |                    | is must be complete            |
| TEMP in C                                                            | <i>W</i> | THE                     |  |      |      |       |     |             |           |           |        | Basking Chinago area                                                            |                                           |                         | 4                       | Reg               |                         | Page :             | ed accurately.                 |
| Received on<br>(cc)<br>(Y/N)<br>Custody<br>Seated<br>Cooler<br>(Y/N) |          | SAMPLE CONDITIONS       |  |      |      |       |     |             | 04: S. 88 | l         | l      | rroenuuz Ghionne (Y/N)                                                          |                                           | GA                      | the Viscourie           | utationy Agency   | 000                     | 8                  |                                |

÷.

|                                                                      | 111      |                    | 5 10                                   | 100 14 | 01          | 10      | *           | 19     | (IN)  | -      | TITEM #                                                                            |                  | 11                   | to                   | stie                 | nton         | 13                  |                                 |
|----------------------------------------------------------------------|----------|--------------------|----------------------------------------|--------|-------------|---------|-------------|--------|-------|--------|------------------------------------------------------------------------------------|------------------|----------------------|----------------------|----------------------|--------------|---------------------|---------------------------------|
|                                                                      | i i      | ADDITIONAL COMPS   |                                        |        | YGWC.38     | VCWC 42 | YGWC42      | ****** | YOMAN | *CWARD | SAMPLE ID<br>One Character per box.<br>(A-Z, 0-8 /, -<br>Sample lds must be unique |                  |                      | sted Due Date:       |                      | L GA 30114   | any: Georgia: Power | an A<br>and Client Information: |
|                                                                      | 24       | []]<br>[]]         |                                        |        | *           | \$      | ž           | \$     | 8     | ×      |                                                                                    | MATRIXC CODED 19 |                      | Project Name:        | Purchase Order       | Copy To:     | Report To: Br       | Section B<br>Recuired Proje     |
| Scale (5                                                             | A.       |                    |                                        |        | 7 34211345  | -       | 5481245     | -      | -     | 4      | SAMPLE TYPE (G=GRAB                                                                | C=COMP)          |                      | Yates R6             | *                    |              | today Sleever       | rê întermetien                  |
| T NAME AND SIGNATUR<br>T Name of SAMPLER:                            | 348      | MIE                |                                        |        |             |         |             |        |       |        | SAMPLE TEMP AT COLLECT                                                             |                  |                      |                      |                      |              |                     |                                 |
| Kate Pre                                                             | 2 Chr    | <b>N</b> .         | ······································ |        | 1//0        |         | M M         |        |       |        | Unpreserved<br>H2SO4<br>HNO3<br>HCI<br>NaOH                                        | Preserval        | ace Profile #: 10840 | ace Project Manager: | wares:<br>war Quote: | ompany Name: | Wencon:             | action C                        |
|                                                                      | whe that | ACCEPTED BY / AFFL |                                        |        | ×           | *       | ×           | ×      |       | ×      | Na2S203<br>Methanol<br>Other<br>Analyses Tgat                                      | tives            |                      | kevin.heining@pacet  | -                    |              |                     | UMENI. Ali rejeva               |
|                                                                      | talk 27  |                    |                                        |        | X<br>X<br>X | XXX     | ×<br>×<br>× | ××××   | ×     | X X X  | CI, F, SO4<br>App IllisV Metals<br>RAD 9315/9320                                   |                  | Raquestad Accelys    | abs.com,             |                      |              |                     | ant lields must be co           |
|                                                                      | also 1   | ONTE INTE          |                                        |        |             |         |             |        |       | _      |                                                                                    |                  | E FILMAND (TYNE)     | -                    | 1000                 |              |                     | ompleted accurately             |
| VIP In C<br>celved on<br>V)<br>Ilody<br>ledo<br>olero<br>N)<br>moles |          | SAMPLE CONDITIONS  |                                        |        | pH:5.0      | 1       | 04:5.50     |        | 1     | 1      | Residual Chlorine (Y/N)                                                            |                  | GA                   | State / Location     | Regulatory Agency    | 68           | age: (m) Of         |                                 |

|                |       |                     |    |      | -    | -       | -  | and a second |        | and the second |                                                 |                   |                                       | 1            | 2            | 1            | 101      | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | a »                       |                   |
|----------------|-------|---------------------|----|------|------|---------|----|--------------|--------|----------------|-------------------------------------------------|-------------------|---------------------------------------|--------------|--------------|--------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------|
|                |       | ADDITIONAL COMMENTS |    | 661  | 2235 | YAWW-1  |    | YAMW-5       | YAMW-4 | YAMW-2         | (A-Z, 0-8', -<br>)<br>Sampia kis must berunique | SAMPLE ID         |                                       |              | Due Date:    |              | A 30114  | Georgia Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Client information:       | HERE PACTLASS COM |
|                | - W   |                     |    |      |      |         |    |              |        |                | AND<br>General Ont                              | Wiged Wiged Wiged | MATRIXD CODED<br>Drividing WaterD DWD | Intropod as: | Project Name | Purchase Ord | Copy To: | Report To:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Section B<br>Required Pro |                   |
|                | A     | ILLOWER ST          |    | _    | WT   | WT      | WT | WT           | T      | WT             | MATRIX CODE                                     | (see valid co     | des to left)<br>(=COMP)               |              | -            | er#          |          | Becky                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ect in                    |                   |
|                | 1 VF  | SHED B              |    | 10KS | 2    | 543     | Ħ  | (eta)        | 302    | 52             | <b>B</b>                                        | ſ                 | 1                                     | 11           | alles R6     |              |          | Sleever                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | formati                   |                   |
| 18             |       | A LINE              |    | E    | X    | N.      |    | 1 he         | 3      | E.             | R .                                             | STAR              |                                       |              | AMA          |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A                         |                   |
| PRIM           |       | UMIN                |    | 8    | 530  | SIS     |    | 5            | 꺐      | S              | TIME                                            | 의<br>             | COLLE                                 |              |              |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                   |
| NAME           |       |                     |    |      |      |         |    |              |        |                | DATE                                            | m                 | CTED                                  |              |              |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | The C             |
| IND SAM        | 950   | 8                   |    |      |      |         |    |              |        |                | TIME                                            | 18                |                                       |              |              |              | -        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | hain-o            |
| PLER:          | 15    | #                   | ++ |      |      |         | H  | -            |        |                | SAMPLE TEMP                                     | AT COLLECTI       | ON                                    |              |              |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | f-Cus             |
| Da A           | -     | _                   |    | N    | S    | S       | T  | 5            | N      | N              | # OF CONTAIN                                    | RS                |                                       | Page         | Page         | Page         | 200      | Aller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sect                      | tody              |
| 50             | S     | A                   |    | *    | X    | X       | 4  | X            | X      | X              | Unpreserved                                     |                   | -                                     | Profil       | Proje        | Quot         | pany h   | 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | in o                      | Isal              |
| BH             | TA    |                     | -  | X    | X    | ×       |    | ×            | X      | ×              | HNO3                                            | Parka             | Pr                                    | P.           | ol Mar       |              | lame:    | Contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contr |                           | EGA               |
| 50             | 19    |                     |    |      |      |         |    |              |        |                | HCI                                             |                   | esen                                  | 1084         | ager:        |              |          | - Contra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ş                         | 5                 |
| D              | 5     | 8                   |    |      |      | -       | 4_ |              |        |                | NaOH                                            |                   | ative                                 | °            | 7            |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | CUN               |
| S              | Ê     | CE T                |    |      |      |         | +  |              |        |                | Methanol                                        |                   | N.                                    |              | evin.h       |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | AEN               |
| 2.19           | 4     |                     |    |      |      |         |    |              |        |                | Other                                           |                   |                                       |              | enting       |              |          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           | 2                 |
| - 01           | 1     | 1-                  |    |      | ×    | ×       | ×  |              | XI     | ×              | Analyses                                        | Teat              | Y/N                                   |              | Cerdig       |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | relev             |
| DAT            | 14    | NTIO OF             | +  | X    | ×    | ×       | ×  | ×            | ×      | ×              | CI F, 904                                       |                   |                                       |              | tabs.o       |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | anti              |
| E Sq           | 14    |                     |    | X    | ×    | ×       | ×  | ×            | ×      | ×              | App III/IV Meta                                 | 3                 |                                       | Reg          | ă            |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | ields             |
| ed:            | - Dre |                     |    | ×    | ×    | ×       | ×  | ×            | ×      | ×              | RAD 9315/932                                    | )                 |                                       |              |              |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | must              |
|                | 12    |                     | +  |      |      |         |    |              |        | _              |                                                 |                   |                                       | <b>9</b>     |              |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | bec               |
|                | 12    | S.                  |    |      |      |         |    |              |        |                | 7.7.8%                                          |                   |                                       |              |              |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | duio              |
| •              | 2     |                     |    |      |      |         |    |              |        |                |                                                 |                   |                                       |              |              | C.           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | leted             |
|                | 2     | 1                   |    |      |      | -       | +  |              |        | _              |                                                 |                   |                                       |              | 1            |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | acou              |
|                |       |                     |    |      |      |         |    |              |        |                | 196)                                            |                   |                                       |              |              | £ .          |          | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Γ.                        | rate              |
| EMP In C       |       |                     |    |      |      | _       | -  | -            |        |                | Residual Chied                                  | 10 (Y/N)          | C. M. C. Martin                       |              | 2            | Regi         | 0        | age :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | Y.                |
| aceived on     |       | Sal T               |    |      | -st  | 01      | 1  | 21           | -01    | -              |                                                 | is (ind)          | a com                                 | 0.           |              | Culeti       | 2        | ľ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |                   |
| /N)            |       | PLACE CONTRACT      |    |      | ギリ   | T       |    |              | H .    | Т              |                                                 |                   |                                       |              |              | CL6          | 1.       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |                   |
| aledo          |       | DONC                |    |      | 5    | 5       |    | 5.3          | (i)    | S              |                                                 |                   |                                       |              |              |              | 0        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                   |
| /N)            |       | OKS                 |    |      | 49   | PS<br>S | 1  | 2            | ő      | ¥              |                                                 |                   |                                       |              |              | N.           |          | 1ª                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |                   |
| amples<br>ectD |       |                     |    | 1    |      |         | 1  |              |        |                |                                                 |                   | 1. 4                                  |              |              |              |          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |                   |

|             |            |                  | E E |       | <del>7</del> .  8 | 49       | <b>\$</b>                              | 17       | Ø  | 5  | *     | 13 13   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>1</del>             | -          | ine:              | alt:        | Mon. GA 3            | whether       | quired Cli               | 1                                 |
|-------------|------------|------------------|-----|-------|-------------------|----------|----------------------------------------|----------|----|----|-------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------|-------------------|-------------|----------------------|---------------|--------------------------|-----------------------------------|
|             |            | ADOTIONAL COMMEN |     |       |                   |          |                                        |          |    |    | WOJSA | 19-71 - | SAMPLE ID<br>One Character per box.<br>(A-Z, 0-9 f, -)<br>Sample Ids must be unique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |            | (770)384-6526 Fax |             | 1070 Bridge Mill Ave | Georgia Power | ent information:         | Pace Arabytical<br>servicensistem |
|             | 2          |                  |     |       |                   |          |                                        |          |    |    |       |         | HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HAN | MALLAND DARW BUNNED DAND | Project #: | Project Name      | Purchase Or | Copy To:             | Report To:    | Section B<br>Required Pr |                                   |
|             |            |                  |     |       | WT                | M        | TW                                     | WT       | TW | TW | M     | M       | MATRIX CODE (see valid c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | odes to left)            |            |                   | der #:      |                      | Becky         | olect ir                 |                                   |
|             |            | Nit              |     |       |                   | +        | -                                      | +        | +  | +  | -     | in      | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CRCOMP                   |            | fates I           |             |                      | Sleev         | donna                    |                                   |
|             |            |                  |     |       | 10                |          |                                        | -        |    |    |       | 42      | ATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |            | SWA               | 1           |                      | đ             | ntion;                   |                                   |
| *           |            | FRUNT            |     |       |                   |          |                                        |          |    |    |       | 1150    | TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Q                        |            |                   |             |                      |               |                          |                                   |
| DIT Nam     | $     \nu$ | 12-              |     |       | 1                 |          | 1                                      |          |    | -  |       |         | <u>S</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LECTED                   |            |                   |             |                      |               |                          | The                               |
| Eors        |            |                  |     |       | -                 | +        | 1                                      | $\vdash$ | 1  |    |       | -       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |            |                   |             |                      |               |                          | Chain                             |
| MIPLE       | 1.10       | MI               |     |       | -                 |          |                                        |          |    |    |       |         | ă 👘                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |            |                   |             |                      |               |                          | 05                                |
| 2           |            |                  |     | -     | -                 |          |                                        |          | -  |    |       | 12      | SAMPLE TEMP AT COLLECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ION                      | -          |                   |             |                      |               |                          | usto                              |
| EE"         | 2          |                  |     |       |                   | +        | +                                      | -        |    |    |       | 1       | NOF CONTAINERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          | age F      | age F             | age of      | iomp                 | Intend        | entio                    | dy is                             |
| EF          | 0          |                  |     |       |                   | +        | -                                      |          | -  |    |       | ~       | H2SO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 1                      | rofile     | T de              | Sel Se      | N YUR                | Stal o        | Į n                      | 8                                 |
| 10          |            | 100              |     | 1.    |                   | -        | ************************************** |          |    |    |       | 1       | HNO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P                        | *          | AMar              |             | ame                  | Multiple      |                          | EGA                               |
| 24          |            | * E              |     |       |                   |          |                                        |          |    |    |       |         | HCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | eser                     | 108        | ager              |             |                      | TUON:         | Ē.                       | P.                                |
| 0           |            | I.L              |     |       | _                 |          |                                        |          |    |    |       |         | NaOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Vati                     | 6          | 1                 |             |                      |               |                          | 2<br>2                            |
| 1.1.        | 1          | 8                |     |       |                   |          | <u> </u>                               |          |    |    |       |         | Na28203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | les                      |            | loevin            |             |                      |               |                          | ME                                |
| E           |            | J₫⊢              |     |       |                   | +        |                                        | -        | -  | -  |       | -       | Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4 1                      |            |                   |             |                      | 1             |                          | F                                 |
| E.          |            | 12               |     | L     | 1                 | -i       | die sies.                              |          |    |    | 1     | -       | Analyses Teat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | YIN                      |            |                   |             |                      |               |                          | JI re                             |
|             |            | 124              |     | T     | ×                 | ×        | ×                                      | ×        | ×  | ×  | ×     | ×       | TDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |            |                   |             |                      |               |                          | eva                               |
| TR          | 1 A        | ₹ <u>₹</u>       |     |       | ×                 | ×        | ×                                      | ×        | ×  | ×  | ×     | ×       | CI, F, 304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |            |                   |             |                      |               |                          | N Tie                             |
| Sig         | 7          |                  |     | -     | ×                 | ×        | ×                                      | ×        | ×  | ×  | ×     | ×       | App III/IV Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |            | 3                 |             |                      |               |                          | lds .                             |
| ₽.<br>      | 9          |                  | +   |       |                   | *        | ×                                      | ×        | ×  | ×  | ×     | ×       | RAD 9315/9320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |            |                   |             |                      |               |                          | nust                              |
| A.          |            |                  |     |       |                   | -        |                                        | -        |    |    | -     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |            |                   |             |                      |               |                          | 8                                 |
| 1           | 1 -5       | 1g -             |     | -     |                   |          |                                        |          |    |    | -     | -       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |            |                   |             |                      |               |                          | com                               |
|             | L R        |                  |     | ***** | 1 6. 1            |          |                                        |          |    |    |       | 1       | the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |            |                   |             |                      | 1             |                          | plete                             |
|             | 12         |                  |     |       |                   |          |                                        | 1.774    |    |    |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |            |                   |             |                      |               |                          | 8                                 |
| 3           | A          | Ĩ.               |     |       | -                 |          |                                        | -        |    |    |       | _       | and the state of the state of the state of the state of the state of the state of the state of the state of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                        |            |                   |             |                      | _             | _                        | cura                              |
|             |            | A Contraction    | _   | -     | +                 |          |                                        |          |    | _  | -     | -       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |            |                   |             |                      | 2             |                          | tely                              |
| EMP In C    |            |                  |     |       | 1                 | <u> </u> |                                        |          |    |    | 1     | +       | Residual Chlorine (YAI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          | -          |                   | Requ        |                      | : ebi         |                          |                                   |
| Received on |            | 15               | TT  | 1     | 1                 | 1        |                                        |          |    | T  | 4     | 0       | Stating (114)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          | 9          |                   | Sato 1      | 0                    |               |                          |                                   |
| eO<br>Y/N)  |            |                  |     |       |                   |          |                                        |          |    |    |       | ž       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32.                      | 1          |                   | E Age       | 20                   | 2             |                          |                                   |
| Cuslody     |            | 8                |     |       |                   |          |                                        |          |    |    |       | S       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.<br>1. F. 3. S.        | 3          | i                 | Nour        | v<br>n               | N             |                          |                                   |
| CoolerD     |            | D. D.            | 11  | 1     |                   |          |                                        |          |    |    |       | 5       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |            |                   |             |                      | 2             | 81                       |                                   |
| 1/N)        |            | ā                |     |       |                   |          |                                        |          |    |    |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2612 8                   |            |                   |             | 5                    |               |                          |                                   |
| Samples     |            | C                |     |       |                   |          |                                        |          |    |    |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0410.000               | 22 0,200   | (8)               | 9923        | 100                  |               |                          |                                   |



| SDG      | Sample ID | Method | Analyte | Result | Units     | Validation Qualifier | Reason for Validation Qualifier |
|----------|-----------|--------|---------|--------|-----------|----------------------|---------------------------------|
|          | YGWC-36A  | 6020   | Lead    | 0.001  | mg/L      | UB                   | EB Contamination                |
| 92525931 | YGWC-42   | 6020   | Lead    | 0.001  | mg/L      | UB                   | EB Contamination                |
|          | YGWC-23S  | 300    | Sulfate | 61.7   | mg/L      | J                    | MS/MSD Recovery                 |
| 92525936 | YAMW-4    | 300    | Sulfate | 91.7   | mg/L      | J                    | MS/MSD Recovery                 |
| 92525896 |           |        |         | Nc     | o Qualifi | ers Added            |                                 |
| 92525905 |           |        |         | Nc     | ) Qualifi | ers Added            |                                 |

Abbreviations:

mg/L = milligrams per liter

Qualifiers:

UB = not detected due to blank contamination J/UJ = Estimated



Pace Analytical Services, LLC 110 Technology Parkway Peachtree Corners, GA 30092 (770)734-4200

March 17, 2021

Ms. Lauren Petty Southern Co. Services 42 Inverness Center Parkway Birmingham, AL 35242

RE: Project: YATES Pace Project No.: 92525931

Dear Ms. Petty:

Enclosed are the analytical results for sample(s) received by the laboratory on March 05, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Asheville
- Pace Analytical Services Charlotte
- Pace Analytical Services Peachtree Corners, GA

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kandony

Kevin Herring kevin.herring@pacelabs.com 1(704)875-9092 HORIZON Database Administrator

Enclosures

cc: Joju Abraham, Georgia Power-CCR Lauren Coker, Georgia Pwer Geoffrey Gay, ARCADIS - Atlanta Kristen Jurinko Kelley Sharpe, ARCADIS - Atlanta Alex Simpson, Arcadis Samantha Thomas Maribel Vital





Pace Analytical Services, LLC 110 Technology Parkway Peachtree Corners, GA 30092 (770)734-4200

#### CERTIFICATIONS

Project: YATES Pace Project No.: 92525931

#### Pace Analytical Services Charlotte

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12

#### Pace Analytical Services Asheville

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648 North Carolina Drinking Water Certification #: 37712

#### Pace Analytical Services Peachtree Corners

110 Technology Pkwy, Peachtree Corners, GA 30092 Florida DOH Certification #: E87315 Georgia DW Inorganics Certification #: 812 South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221

North Carolina Wastewater Certification #: 40 South Carolina Certification #: 99030001 Virginia/VELAP Certification #: 460222

North Carolina Certification #: 381 South Carolina Certification #: 98011001



#### SAMPLE SUMMARY

Project: YATES Pace Project No.: 92525931

| Lab ID      | Sample ID | Matrix | Date Collected | Date Received  |
|-------------|-----------|--------|----------------|----------------|
| 92525931001 | YGWC-24SA | Water  | 03/03/21 11:50 | 03/05/21 09:20 |
| 92525931002 | YGWC-36A  | Water  | 03/04/21 12:35 | 03/05/21 09:20 |
| 92525931003 | DUP-2     | Water  | 03/03/21 00:00 | 03/05/21 09:20 |
| 92525931004 | YGWC-23S  | Water  | 03/04/21 12:15 | 03/05/21 09:20 |
| 92525931005 | YGWC-41   | Water  | 03/04/21 09:00 | 03/05/21 09:20 |
| 92525931006 | YGWC-43   | Water  | 03/04/21 14:50 | 03/05/21 09:20 |
| 92525931007 | FB-1      | Water  | 03/04/21 14:00 | 03/05/21 09:20 |
| 92525931008 | EB-2      | Water  | 03/04/21 16:35 | 03/05/21 09:20 |
| 92525931009 | YGWC-49   | Water  | 03/04/21 14:51 | 03/05/21 09:20 |
| 92525931010 | FB-02     | Water  | 03/04/21 15:00 | 03/05/21 09:20 |
| 92525931011 | YGWC-42   | Water  | 03/04/21 08:45 | 03/05/21 09:20 |
| 92525931012 | YGWC-38   | Water  | 03/04/21 13:45 | 03/05/21 09:20 |



## SAMPLE ANALYTE COUNT

| Project:        | YATES        |                        |          |                      |
|-----------------|--------------|------------------------|----------|----------------------|
| Pace Project No | o.: 92525931 |                        |          |                      |
| Lab ID          | Sample ID    | Method                 | Analysts | Analytes<br>Reported |
| 92525931001     | YGWC-24SA    | EPA 6010D              | DRB      | 1                    |
|                 |              | EPA 6020B              | CW1      | 12                   |
|                 |              | EPA 7470A              | VB       | 1                    |
|                 |              | SM 2450C-2011          | ALW      | 1                    |
|                 |              | EPA 300.0 Rev 2.1 1993 | CDC      | 3                    |
| 92525931002     | YGWC-36A     | EPA 6010D              | DRB      | 1                    |
|                 |              | EPA 6020B              | CW1      | 12                   |
|                 |              | EPA 7470A              | VB       | 1                    |
|                 |              | SM 2450C-2011          | ALW      | 1                    |
|                 |              | EPA 300.0 Rev 2.1 1993 | CDC      | 3                    |
| 92525931003     | DUP-2        | EPA 6010D              | DRB      | 1                    |
|                 |              | EPA 6020B              | CW1      | 12                   |
|                 |              | EPA 7470A              | VB       | 1                    |
|                 |              | SM 2450C-2011          | ALW      | 1                    |
|                 |              | EPA 300.0 Rev 2.1 1993 | CDC      | 3                    |
| 92525931004     | YGWC-23S     | EPA 6010D              | DRB      | 1                    |
|                 |              | EPA 6020B              | CW1      | 12                   |
|                 |              | EPA 7470A              | VB       | 1                    |
|                 |              | SM 2450C-2011          | ALW      | 1                    |
|                 |              | EPA 300.0 Rev 2.1 1993 | JLH      | 3                    |
| 92525931005     | YGWC-41      | EPA 6010D              | DRB      | 1                    |
|                 |              | EPA 6020B              | CW1      | 12                   |
|                 |              | EPA 7470A              | VB       | 1                    |
|                 |              | SM 2450C-2011          | ALW      | 1                    |
|                 |              | EPA 300.0 Rev 2.1 1993 | JLH      | 3                    |
| 92525931006     | YGWC-43      | EPA 6010D              | DRB      | 1                    |
|                 |              | EPA 6020B              | CW1      | 12                   |
|                 |              | EPA 7470A              | VB       | 1                    |
|                 |              | SM 2450C-2011          | ALW      | 1                    |
|                 |              | EPA 300.0 Rev 2.1 1993 | JLH      | 3                    |
| 92525931007     | FB-1         | EPA 6010D              | DRB      | 1                    |
|                 |              | EPA 6020B              | CW1      | 12                   |
|                 |              | EPA 7470A              | VB       | 1                    |
|                 |              | SM 2450C-2011          | ALW      | 1                    |
|                 |              | EPA 300.0 Rev 2.1 1993 | JLH      | 3                    |
| 92525931008     | EB-2         | EPA 6010D              | DRB      | 1                    |
|                 |              | EPA 6020B              | CW1      | 12                   |



#### SAMPLE ANALYTE COUNT

| Project:        | YATES       |                        |          |                      |
|-----------------|-------------|------------------------|----------|----------------------|
| Pace Project No | .: 92525931 |                        |          |                      |
| Lab ID          | Sample ID   | Method                 | Analysts | Analytes<br>Reported |
|                 |             | EPA 7470A              | VB       | 1                    |
|                 |             | SM 2450C-2011          | ALW      | 1                    |
|                 |             | EPA 300.0 Rev 2.1 1993 | JLH      | 3                    |
| 92525931009     | YGWC-49     | EPA 6010D              | DRB      | 1                    |
|                 |             | EPA 6020B              | CW1      | 12                   |
|                 |             | EPA 7470A              | VB       | 1                    |
|                 |             | SM 2450C-2011          | ALW      | 1                    |
|                 |             | EPA 300.0 Rev 2.1 1993 | JLH      | 3                    |
| 92525931010     | FB-02       | EPA 6010D              | DRB      | 1                    |
|                 |             | EPA 6020B              | CW1      | 12                   |
|                 |             | EPA 7470A              | VB       | 1                    |
|                 |             | SM 2450C-2011          | ALW      | 1                    |
|                 |             | EPA 300.0 Rev 2.1 1993 | JLH      | 3                    |
| 92525931011     | YGWC-42     | EPA 6010D              | DRB      | 1                    |
|                 |             | EPA 6020B              | CW1      | 12                   |
|                 |             | EPA 7470A              | VB       | 1                    |
|                 |             | SM 2450C-2011          | ALW      | 1                    |
|                 |             | EPA 300.0 Rev 2.1 1993 | JLH      | 3                    |
| 92525931012     | YGWC-38     | EPA 6010D              | DRB      | 1                    |
|                 |             | EPA 6020B              | CW1      | 12                   |
|                 |             | EPA 7470A              | VB       | 1                    |
|                 |             | SM 2450C-2011          | ALW      | 1                    |
|                 |             | EPA 300.0 Rev 2.1 1993 | JLH      | 3                    |
|                 |             |                        |          |                      |

PASI-A = Pace Analytical Services - Asheville

PASI-C = Pace Analytical Services - Charlotte

PASI-GA = Pace Analytical Services - Peachtree Corners, GA



#### SUMMARY OF DETECTION

Project: YATES

Pace Project No.: 92525931

| Lab Sample ID                                    | Client Sample ID       |           |                         |              |                |            |
|--------------------------------------------------|------------------------|-----------|-------------------------|--------------|----------------|------------|
| Method                                           | Parameters             | Result    | Units                   | Report Limit | Analyzed       | Qualifiers |
| 92525931001                                      | YGWC-24SA              |           |                         |              |                |            |
|                                                  | Performed by           | CUSTOME   |                         |              | 03/08/21 09:05 |            |
|                                                  | рН                     | 5.70      | Std. Units              |              | 03/08/21 09:05 |            |
| EPA 6010D                                        | Calcium                | 2.4       | ma/L                    | 1.0          | 03/12/21 19:29 |            |
| EPA 6020B                                        | Barium                 | 0.025     | ma/L                    | 0.0050       | 03/15/21 17:55 |            |
| EPA 6020B                                        | Bervllium              | 0.000099J | ma/L                    | 0.00050      | 03/15/21 17:55 |            |
| SM 2450C-2011                                    | Total Dissolved Solids | 70.0      | ma/L                    | 10.0         | 03/06/21 12:30 |            |
| EPA 300.0 Rev 2.1 1993                           | Chloride               | 8.6       | mg/L                    | 1.0          | 03/14/21 13:07 |            |
| 92525931002                                      | YGWC-36A               |           |                         |              |                |            |
|                                                  | Performed by           | CUSTOME   |                         |              | 03/08/21 09:05 |            |
|                                                  | рН                     | к<br>5.67 | Std. Units              |              | 03/08/21 09:05 |            |
| EPA 6010D                                        | Calcium                | 5.6       | mg/L                    | 1.0          | 03/12/21 19:34 |            |
| EPA 6020B                                        | Antimony               | 0.0015J   | mg/L                    | 0.0030       | 03/15/21 18:17 |            |
| EPA 6020B                                        | Barium                 | 0.028     | ma/L                    | 0.0050       | 03/15/21 18:17 |            |
| EPA 6020B                                        | Bervllium              | 0.00016J  | ma/L                    | 0.00050      | 03/15/21 18:17 |            |
| EPA 6020B                                        | Boron                  | 0.0088.   | mg/l                    | 0.040        | 03/15/21 18:17 |            |
| EPA 6020B                                        | Lead                   | 0.00025J  | mg/l                    | 0.0010       | 03/15/21 18:17 |            |
| SM 2450C-2011                                    | Total Dissolved Solids | 69.0      | mg/L                    | 10.0         | 03/06/21 12:32 |            |
| EPA 300 0 Rev 2 1 1993                           | Chloride               | 6.6       | mg/L                    | 10           | 03/14/21 13:23 |            |
| EPA 300.0 Rev 2.1 1993                           | Sulfate                | 6.3       | mg/L                    | 1.0          | 03/14/21 13:23 |            |
| 92525931003                                      | DUP-2                  |           | -                       |              |                |            |
| EPA 6010D                                        | Calcium                | 24        | ma/l                    | 1.0          | 03/12/21 10:30 |            |
| EPA 6020B                                        | Barium                 | 0.026     | mg/L                    | 0.0050       | 03/15/21 18:23 |            |
| EPA 6020B                                        | Beryllium              | 0.020     | mg/L                    | 0.0000       | 03/15/21 18:23 |            |
| SM 2450C-2011                                    | Total Dissolved Solids | 63.0      | mg/L                    | 10.0         | 03/06/21 12:30 |            |
| EPA 200 0 Poy 2 1 1002                           | Chlorido               | 00.0      | mg/L                    | 10.0         | 03/00/21 12:30 |            |
| 02525024004                                      |                        | 0.0       | mg/∟                    | 1.0          | 03/14/21 13:30 |            |
| 92525931004                                      | Porformed by           | CUSTOME   |                         |              | 02/08/21 00:05 |            |
|                                                  | Fendimed by            | R         |                         |              | 03/08/21 09.03 |            |
|                                                  | На                     | 5.44      | Std. Units              |              | 03/08/21 09:05 |            |
| EPA 6010D                                        | Calcium                | 10.2      | mg/L                    | 1.0          | 03/12/21 19:43 |            |
| EPA 6020B                                        | Barium                 | 0.043     | ma/L                    | 0.0050       | 03/15/21 18:29 |            |
| EPA 6020B                                        | Bervllium              | 0.00013J  | ma/L                    | 0.00050      | 03/15/21 18:29 |            |
| EPA 6020B                                        | Boron                  | 1.2       | mg/l                    | 0.040        | 03/15/21 18:29 |            |
| EPA 6020B                                        | Chromium               | 0.00078.1 | mg/l                    | 0.0050       | 03/15/21 18:29 |            |
| EPA 6020B                                        | Lead                   | 0.00021.1 | mg/L                    | 0.0010       | 03/15/21 18:29 |            |
| EPA 6020B                                        | Lithium                | 0.0026.1  | mg/L                    | 0.030        | 03/15/21 18:29 |            |
| EPA 6020B                                        | Selenium               | 0.00200   | mg/L                    | 0.050        | 03/15/21 18:20 |            |
| SM 2450C 2011                                    | Total Dissolved Solids | 0.007     | mg/L                    | 10.0         | 03/06/21 10:23 |            |
| EDA 200 0 Boy 2 1 1002                           | Chlorido               | 90.0      | mg/L                    | 10.0         | 03/00/21 12.32 |            |
| EPA 300.0 Rev 2.1 1993<br>EPA 300.0 Rev 2.1 1993 | Sulfate                | 61.7      | mg/L                    | 1.0          | 03/14/21 22:35 | M1         |
| 92525931005                                      | YGWC-41                | 0         | <del>g</del> , <b>L</b> |              |                |            |
| 52525351005                                      | Performed by           | CUSTOME   |                         |              | 03/08/21 09:05 |            |
|                                                  |                        | R         | Ctd Unite               |              | 02/02/24 00:05 |            |
|                                                  | μΠ                     | 4.69      | SIG. UNITS              |              | 03/00/21 09:05 |            |



#### SUMMARY OF DETECTION

Project: YATES

Pace Project No.: 92525931

| Lab Sample ID          | Client Sample ID       |              |            |              |                |            |
|------------------------|------------------------|--------------|------------|--------------|----------------|------------|
| Method                 | Parameters             | Result       | Units      | Report Limit | Analyzed       | Qualifiers |
| 92525931005            | YGWC-41                |              |            |              |                |            |
| EPA 6010D              | Calcium                | 16.4         | mg/L       | 1.0          | 03/12/21 19:48 |            |
| EPA 6020B              | Barium                 | 0.017        | mg/L       | 0.0050       | 03/15/21 18:35 |            |
| EPA 6020B              | Beryllium              | 0.0015       | mg/L       | 0.00050      | 03/15/21 18:35 |            |
| EPA 6020B              | Boron                  | 4.0          | mg/L       | 0.040        | 03/15/21 18:35 |            |
| EPA 6020B              | Lithium                | 0.0021J      | mg/L       | 0.030        | 03/15/21 18:35 |            |
| EPA 6020B              | Selenium               | 0.037        | mg/L       | 0.0050       | 03/15/21 18:35 |            |
| SM 2450C-2011          | Total Dissolved Solids | 224          | mg/L       | 10.0         | 03/06/21 12:33 |            |
| EPA 300.0 Rev 2.1 1993 | Chloride               | 3.4          | mg/L       | 1.0          | 03/14/21 23:20 |            |
| EPA 300.0 Rev 2.1 1993 | Sulfate                | 117          | mg/L       | 3.0          | 03/15/21 14:33 |            |
| 92525931006            | YGWC-43                |              |            |              |                |            |
|                        | Performed by           | CUSTOME<br>R |            |              | 03/08/21 09:05 |            |
|                        | рН                     | 5.88         | Std. Units |              | 03/08/21 09:05 |            |
| EPA 6010D              | Calcium                | 32.2         | mg/L       | 1.0          | 03/12/21 19:53 |            |
| EPA 6020B              | Barium                 | 0.039        | mg/L       | 0.0050       | 03/15/21 18:52 |            |
| EPA 6020B              | Beryllium              | 0.00056      | mg/L       | 0.00050      | 03/15/21 18:52 |            |
| EPA 6020B              | Boron                  | 3.6          | mg/L       | 0.040        | 03/15/21 18:52 |            |
| EPA 6020B              | Cobalt                 | 0.0015J      | mg/L       | 0.0050       | 03/15/21 18:52 |            |
| EPA 6020B              | Lithium                | 0.025J       | mg/L       | 0.030        | 03/15/21 18:52 |            |
| EPA 6020B              | Molybdenum             | 0.0011J      | mg/L       | 0.010        | 03/15/21 18:52 |            |
| SM 2450C-2011          | Total Dissolved Solids | 592          | mg/L       | 10.0         | 03/06/21 12:33 |            |
| EPA 300.0 Rev 2.1 1993 | Chloride               | 2.1          | mg/L       | 1.0          | 03/14/21 23:35 |            |
| EPA 300.0 Rev 2.1 1993 | Fluoride               | 0.063J       | mg/L       | 0.10         | 03/14/21 23:35 |            |
| EPA 300.0 Rev 2.1 1993 | Sulfate                | 328          | mg/L       | 7.0          | 03/15/21 14:48 |            |
| 92525931008            | EB-2                   |              |            |              |                |            |
| EPA 6020B              | Lead                   | 0.00022J     | mg/L       | 0.0010       | 03/15/21 19:03 |            |
| 92525931009            | YGWC-49                |              |            |              |                |            |
|                        | Performed by           | CUSTOME      |            |              | 03/08/21 09:05 |            |
|                        | рН                     | 5.88         | Std Units  |              | 03/08/21 09:05 |            |
| EPA 6010D              | Calcium                | 13.0         | ma/l       | 1.0          | 03/12/21 20:17 |            |
| EPA 6020B              | Barium                 | 0.069        | mg/l       | 0.0050       | 03/15/21 19:09 |            |
| EPA 6020B              | Beryllium              | 0.00010.1    | mg/L       | 0.00050      | 03/15/21 19:09 |            |
| EPA 6020B              | Chromium               | 0.0017.1     | mg/l       | 0.0050       | 03/15/21 19:09 |            |
| EPA 6020B              | Lithium                | 0.0035J      | mg/L       | 0.030        | 03/15/21 19:09 |            |
| EPA 6020B              | Selenium               | 0.0058       | mg/l       | 0.0050       | 03/15/21 19:09 |            |
| SM 2450C-2011          | Total Dissolved Solids | 145          | mg/L       | 10.0         | 03/08/21 11:06 |            |
| EPA 300 0 Rev 2 1 1993 | Chloride               | 4 1          | mg/L       | 10           | 03/15/21 01:05 |            |
| EPA 300.0 Rev 2.1 1993 | Sulfate                | 75.1         | mg/L       | 1.0          | 03/15/21 01:05 |            |
| 92525931011            | YGWC-42                |              |            |              |                |            |
|                        | Performed by           |              |            |              | 03/08/21 09:05 |            |
|                        | рН                     | 5.59         | Std. Units |              | 03/08/21 09:05 |            |
| EPA 6010D              | Calcium                | 90.7         | mg/L       | 1.0          | 03/12/21 20:27 |            |
| EPA 6020B              | Barium                 | 0.030        | mg/L       | 0.0050       | 03/15/21 19:20 |            |
| EPA 6020B              | Boron                  | 14.8         | mg/L       | 0.40         | 03/16/21 16:11 |            |

## **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



#### SUMMARY OF DETECTION

Project: YATES

Pace Project No.: 92525931

| Lab Sample ID          | Client Sample ID       |              |            |              |                |            |
|------------------------|------------------------|--------------|------------|--------------|----------------|------------|
| Method                 | Parameters             | Result       | Units      | Report Limit | Analyzed       | Qualifiers |
| 92525931011            | YGWC-42                |              |            |              |                |            |
| EPA 6020B              | Cobalt                 | 0.0018J      | mg/L       | 0.0050       | 03/15/21 19:20 |            |
| EPA 6020B              | Lithium                | 0.059        | mg/L       | 0.030        | 03/15/21 19:20 |            |
| EPA 6020B              | Molybdenum             | 0.00085J     | mg/L       | 0.010        | 03/15/21 19:20 |            |
| EPA 6020B              | Selenium               | 0.048        | mg/L       | 0.0050       | 03/15/21 19:20 |            |
| SM 2450C-2011          | Total Dissolved Solids | 501          | mg/L       | 10.0         | 03/08/21 11:06 |            |
| EPA 300.0 Rev 2.1 1993 | Chloride               | 2.7          | mg/L       | 1.0          | 03/15/21 01:35 |            |
| EPA 300.0 Rev 2.1 1993 | Sulfate                | 537          | mg/L       | 12.0         | 03/15/21 15:02 |            |
| 92525931012            | YGWC-38                |              |            |              |                |            |
|                        | Performed by           | CUSTOME<br>R |            |              | 03/08/21 09:05 |            |
|                        | рН                     | 5.01         | Std. Units |              | 03/08/21 09:05 |            |
| EPA 6010D              | Calcium                | 87.0         | mg/L       | 1.0          | 03/12/21 20:31 |            |
| EPA 6020B              | Barium                 | 0.016        | mg/L       | 0.0050       | 03/15/21 19:26 |            |
| EPA 6020B              | Beryllium              | 0.0029       | mg/L       | 0.00050      | 03/15/21 19:26 |            |
| EPA 6020B              | Boron                  | 6.4          | mg/L       | 0.040        | 03/15/21 19:26 |            |
| EPA 6020B              | Cadmium                | 0.0013       | mg/L       | 0.00050      | 03/15/21 19:26 |            |
| EPA 6020B              | Lithium                | 0.0067J      | mg/L       | 0.030        | 03/15/21 19:26 |            |
| EPA 6020B              | Selenium               | 0.076        | mg/L       | 0.0050       | 03/15/21 19:26 |            |
| SM 2450C-2011          | Total Dissolved Solids | 600          | mg/L       | 20.0         | 03/08/21 11:06 |            |
| EPA 300.0 Rev 2.1 1993 | Chloride               | 3.9          | mg/L       | 1.0          | 03/15/21 01:50 |            |
| EPA 300.0 Rev 2.1 1993 | Sulfate                | 356          | mg/L       | 8.0          | 03/15/21 15:17 |            |



Project: YATES

Pace Project No.: 92525931

| Sample: YGWC-24SA            | Lab ID:                | 92525931001                       | Collecte               | ed: 03/03/21                 | 11:50        | 0 Received: 03/05/21 09:20 Matrix: Water |                |            |      |
|------------------------------|------------------------|-----------------------------------|------------------------|------------------------------|--------------|------------------------------------------|----------------|------------|------|
| Demension                    | Deculto                | l la ita                          | Report                 | MDI                          |              | Dressered                                | Arrahmad       |            | Qual |
| Parameters                   |                        | Units                             | Limit                  |                              | DF           | Prepared                                 | - Analyzed     |            | Quai |
| Field Data                   | Analytical             | Method:                           |                        |                              |              |                                          |                |            |      |
|                              | Pace Ana               | lytical Services                  | - Charlotte            | 9                            |              |                                          |                |            |      |
| Performed by                 | CUSTOME<br>R           |                                   |                        |                              | 1            |                                          | 03/08/21 09:05 |            |      |
| рН                           | 5.70                   | Std. Units                        |                        |                              | 1            |                                          | 03/08/21 09:05 |            |      |
| 6010D ATL ICP                | Analytical<br>Pace Ana | Method: EPA 6<br>lytical Services | 010D Pre<br>- Peachtre | paration Met<br>e Corners, G | hod: E<br>3A | PA 3010A                                 |                |            |      |
| Calcium                      | 2.4                    | mg/L                              | 1.0                    | 0.070                        | 1            | 03/12/21 11:05                           | 03/12/21 19:29 | 7440-70-2  |      |
| 6020 MET ICPMS               | Analytical             | Method: EPA 6                     | 020B Pre               | paration Met                 | hod: E       | PA 3005A                                 |                |            |      |
|                              | Pace Ana               | lytical Services                  | - Peachtre             | e Corners, G                 | SA           |                                          |                |            |      |
| Antimony                     | ND                     | mg/L                              | 0.0030                 | 0.00028                      | 1            | 03/12/21 11:07                           | 03/15/21 17:55 | 7440-36-0  |      |
| Arsenic                      | ND                     | mg/L                              | 0.0050                 | 0.00078                      | 1            | 03/12/21 11:07                           | 03/15/21 17:55 | 7440-38-2  |      |
| Barium                       | 0.025                  | mg/L                              | 0.0050                 | 0.00071                      | 1            | 03/12/21 11:07                           | 03/15/21 17:55 | 7440-39-3  |      |
| Beryllium                    | 0.000099J              | mg/L                              | 0.00050                | 0.000046                     | 1            | 03/12/21 11:07                           | 03/15/21 17:55 | 7440-41-7  |      |
| Boron                        | ND                     | mg/L                              | 0.040                  | 0.0052                       | 1            | 03/12/21 11:07                           | 03/15/21 17:55 | 7440-42-8  |      |
| Cadmium                      | ND                     | mg/L                              | 0.00050                | 0.00012                      | 1            | 03/12/21 11:07                           | 03/15/21 17:55 | 7440-43-9  |      |
| Chromium                     | ND                     | mg/L                              | 0.0050                 | 0.00055                      | 1            | 03/12/21 11:07                           | 03/15/21 17:55 | 7440-47-3  |      |
| Cobalt                       | ND                     | mg/L                              | 0.0050                 | 0.00038                      | 1            | 03/12/21 11:07                           | 03/15/21 17:55 | 7440-48-4  |      |
| Lead                         | ND                     | mg/L                              | 0.0010                 | 0.000036                     | 1            | 03/12/21 11:07                           | 03/15/21 17:55 | 7439-92-1  |      |
| Lithium                      | ND                     | mg/L                              | 0.030                  | 0.00081                      | 1            | 03/12/21 11:07                           | 03/15/21 17:55 | 7439-93-2  |      |
| Molybdenum                   | ND                     | mg/L                              | 0.010                  | 0.00069                      | 1            | 03/12/21 11:07                           | 03/15/21 17:55 | 7439-98-7  |      |
| Selenium                     | ND                     | mg/L                              | 0.0050                 | 0.0016                       | 1            | 03/12/21 11:07                           | 03/15/21 17:55 | 7782-49-2  |      |
| 7470 Mercury                 | Analytical             | Method: EPA 7                     | 470A Pre               | paration Met                 | hod: El      | PA 7470A                                 |                |            |      |
|                              | Pace Ana               | lytical Services                  | - Peachtre             | e Corners, G                 | βA           |                                          |                |            |      |
| Mercury                      | ND                     | mg/L                              | 0.00020                | 0.000078                     | 1            | 03/10/21 13:05                           | 03/11/21 11:56 | 7439-97-6  |      |
| 2540C Total Dissolved Solids | Analytical             | Method: SM 24                     | 450C-2011              |                              |              |                                          |                |            |      |
|                              | Pace Ana               | lytical Services                  | - Peachtre             | e Corners, G                 | SA           |                                          |                |            |      |
| Total Dissolved Solids       | 70.0                   | mg/L                              | 10.0                   | 10.0                         | 1            |                                          | 03/06/21 12:30 |            |      |
| 300.0 IC Anions 28 Days      | Analytical             | Method: EPA 3                     | 300.0 Rev 2            | 2.1 1993                     |              |                                          |                |            |      |
|                              | Pace Ana               | lytical Services                  | - Asheville            | •                            |              |                                          |                |            |      |
| Chloride                     | 8.6                    | mg/L                              | 1.0                    | 0.60                         | 1            |                                          | 03/14/21 13:07 | 16887-00-6 |      |
| Fluoride                     | ND                     | mg/L                              | 0.10                   | 0.050                        | 1            |                                          | 03/14/21 13:07 | 16984-48-8 |      |
| Sulfate                      | ND                     | mg/L                              | 1.0                    | 0.50                         | 1            |                                          | 03/14/21 13:07 | 14808-79-8 |      |



Project: YATES

Pace Project No.: 92525931

| Sample: YGWC-36A             | Lab ID: 92525931002 Collected: 03/04/21 12:35 Received: 03/05/21 09:20 Matrix: Water |                  |                |              |         |                |                |            |      |  |
|------------------------------|--------------------------------------------------------------------------------------|------------------|----------------|--------------|---------|----------------|----------------|------------|------|--|
| _                            |                                                                                      |                  | Report         |              |         |                |                |            |      |  |
| Parameters                   | Results                                                                              | Units            | Limit          | MDL          | DF      | Prepared       | Analyzed       | CAS No.    | Qual |  |
| Field Data                   | Analytica                                                                            | l Method:        |                |              |         |                |                |            |      |  |
|                              | Pace Ana                                                                             | alytical Service | es - Charlotte | ;            |         |                |                |            |      |  |
| Performed by                 | CUSTOME                                                                              |                  |                |              | 1       |                | 03/08/21 09:05 |            |      |  |
| рН                           | 5.67                                                                                 | Std. Units       |                |              | 1       |                | 03/08/21 09:05 |            |      |  |
| 6010D ATL ICP                | Analytica                                                                            | I Method: EPA    | 6010D Pre      | paration Met | thod: E | PA 3010A       |                |            |      |  |
|                              | Pace Ana                                                                             | alytical Service | es - Peachtre  | e Corners, C | GΑ      |                |                |            |      |  |
| Calcium                      | 5.6                                                                                  | mg/L             | 1.0            | 0.070        | 1       | 03/12/21 11:05 | 03/12/21 19:34 | 7440-70-2  |      |  |
| 6020 MET ICPMS               | Analytica                                                                            | I Method: EPA    | 6020B Pre      | paration Met | hod: E  | PA 3005A       |                |            |      |  |
|                              | Pace Ana                                                                             | alytical Service | es - Peachtre  | e Corners, C | ΒA      |                |                |            |      |  |
| Antimony                     | 0.0015J                                                                              | mg/L             | 0.0030         | 0.00028      | 1       | 03/12/21 11:07 | 03/15/21 18:17 | 7440-36-0  |      |  |
| Arsenic                      | ND                                                                                   | mg/L             | 0.0050         | 0.00078      | 1       | 03/12/21 11:07 | 03/15/21 18:17 | 7440-38-2  |      |  |
| Barium                       | 0.028                                                                                | mg/L             | 0.0050         | 0.00071      | 1       | 03/12/21 11:07 | 03/15/21 18:17 | 7440-39-3  |      |  |
| Beryllium                    | 0.00016J                                                                             | mg/L             | 0.00050        | 0.000046     | 1       | 03/12/21 11:07 | 03/15/21 18:17 | 7440-41-7  |      |  |
| Boron                        | 0.0088J                                                                              | mg/L             | 0.040          | 0.0052       | 1       | 03/12/21 11:07 | 03/15/21 18:17 | 7440-42-8  |      |  |
| Cadmium                      | ND                                                                                   | mg/L             | 0.00050        | 0.00012      | 1       | 03/12/21 11:07 | 03/15/21 18:17 | 7440-43-9  |      |  |
| Chromium                     | ND                                                                                   | mg/L             | 0.0050         | 0.00055      | 1       | 03/12/21 11:07 | 03/15/21 18:17 | 7440-47-3  |      |  |
| Cobalt                       | ND                                                                                   | mg/L             | 0.0050         | 0.00038      | 1       | 03/12/21 11:07 | 03/15/21 18:17 | 7440-48-4  |      |  |
| Lead                         | 0.00025J                                                                             | mg/L             | 0.0010         | 0.000036     | 1       | 03/12/21 11:07 | 03/15/21 18:17 | 7439-92-1  |      |  |
| Lithium                      | ND                                                                                   | mg/L             | 0.030          | 0.00081      | 1       | 03/12/21 11:07 | 03/15/21 18:17 | 7439-93-2  |      |  |
| Molybdenum                   | ND                                                                                   | mg/L             | 0.010          | 0.00069      | 1       | 03/12/21 11:07 | 03/15/21 18:17 | 7439-98-7  |      |  |
| Selenium                     | ND                                                                                   | mg/L             | 0.0050         | 0.0016       | 1       | 03/12/21 11:07 | 03/15/21 18:17 | 7782-49-2  |      |  |
| 7470 Mercury                 | Analytical Method: EPA 7470A Preparation Method: EPA 7470A                           |                  |                |              |         |                |                |            |      |  |
|                              | Pace Ana                                                                             | alytical Service | es - Peachtre  | e Corners, C | ЗA      |                |                |            |      |  |
| Mercury                      | ND                                                                                   | mg/L             | 0.00020        | 0.000078     | 1       | 03/10/21 13:05 | 03/11/21 11:59 | 7439-97-6  |      |  |
| 2540C Total Dissolved Solids | Analytica                                                                            | I Method: SM     | 2450C-2011     |              |         |                |                |            |      |  |
|                              | Pace Ana                                                                             | alytical Service | es - Peachtre  | e Corners, C | ЗA      |                |                |            |      |  |
| Total Dissolved Solids       | 69.0                                                                                 | mg/L             | 10.0           | 10.0         | 1       |                | 03/06/21 12:32 |            |      |  |
| 300.0 IC Anions 28 Days      | Analytica                                                                            | l Method: EPA    | 300.0 Rev 2    | 2.1 1993     |         |                |                |            |      |  |
|                              | Pace Ana                                                                             | alytical Service | es - Asheville | •            |         |                |                |            |      |  |
| Chloride                     | 6.6                                                                                  | mg/L             | 1.0            | 0.60         | 1       |                | 03/14/21 13:23 | 16887-00-6 |      |  |
| Fluoride                     | ND                                                                                   | mg/L             | 0.10           | 0.050        | 1       |                | 03/14/21 13:23 | 16984-48-8 |      |  |
| Sulfate                      | 6.3                                                                                  | mg/L             | 1.0            | 0.50         | 1       |                | 03/14/21 13:23 | 14808-79-8 |      |  |



| Project:             | YATES      |            |                 |                              |              |          |                |                 |              |      |
|----------------------|------------|------------|-----------------|------------------------------|--------------|----------|----------------|-----------------|--------------|------|
| Pace Project No.:    | 92525931   |            |                 |                              |              |          |                |                 |              |      |
| Sample: DUP-2        |            | Lab ID:    | 92525931003     | Collecte                     | ed: 03/03/2  | 1 00:00  | Received: 03/  | /05/21 09:20 Ma | atrix: Water |      |
|                      |            |            |                 | Report                       |              |          |                |                 |              |      |
| Parame               | eters      | Results    | Units           | Limit                        | MDL          | DF       | Prepared       | Analyzed        | CAS No.      | Qual |
| 6010D ATL ICP        |            | Analytical | Method: EPA 6   | 010D Pre                     | paration Met | thod: EF | PA 3010A       |                 |              |      |
|                      |            | Pace Anal  | ytical Services | - Peachtre                   | e Corners, C | ĞΑ       |                |                 |              |      |
| Calcium              |            | 2.4        | mg/L            | 1.0                          | 0.070        | 1        | 03/12/21 11:05 | 03/12/21 19:39  | 7440-70-2    |      |
| 6020 MET ICPMS       |            | Analytical | Method: EPA 6   | 020B Prej                    | paration Met | hod: EF  | PA 3005A       |                 |              |      |
|                      |            | Pace Anal  | ytical Services | - Peachtre                   | e Corners, C | ЗA       |                |                 |              |      |
| Antimony             |            | ND         | ma/L            | 0.0030                       | 0.00028      | 1        | 03/12/21 11:07 | 03/15/21 18:23  | 7440-36-0    |      |
| Arsenic              |            | ND         | mg/L            | 0.0050                       | 0.00078      | 1        | 03/12/21 11:07 | 03/15/21 18:23  | 7440-38-2    |      |
| Barium               |            | 0.026      | mg/L            | 0.0050                       | 0.00071      | 1        | 03/12/21 11:07 | 03/15/21 18:23  | 7440-39-3    |      |
| Beryllium            |            | 0.00011J   | mg/L            | 0.00050                      | 0.000046     | 1        | 03/12/21 11:07 | 03/15/21 18:23  | 7440-41-7    |      |
| Boron                |            | ND         | mg/L            | 0.040                        | 0.0052       | 1        | 03/12/21 11:07 | 03/15/21 18:23  | 7440-42-8    |      |
| Cadmium              |            | ND         | mg/L            | 0.00050                      | 0.00012      | 1        | 03/12/21 11:07 | 03/15/21 18:23  | 7440-43-9    |      |
| Chromium             |            | ND         | mg/L            | 0.0050                       | 0.00055      | 1        | 03/12/21 11:07 | 03/15/21 18:23  | 7440-47-3    |      |
| Cobalt               |            | ND         | mg/L            | 0.0050                       | 0.00038      | 1        | 03/12/21 11:07 | 03/15/21 18:23  | 7440-48-4    |      |
| Lead                 |            | ND         | mg/L            | 0.0010                       | 0.000036     | 1        | 03/12/21 11:07 | 03/15/21 18:23  | 7439-92-1    |      |
| Lithium              |            | ND         | mg/L            | 0.030                        | 0.00081      | 1        | 03/12/21 11:07 | 03/15/21 18:23  | 7439-93-2    |      |
| Molybdenum           |            | ND         | mg/L            | 0.010                        | 0.00069      | 1        | 03/12/21 11:07 | 03/15/21 18:23  | 7439-98-7    |      |
| Selenium             |            | ND         | mg/L            | 0.0050                       | 0.0016       | 1        | 03/12/21 11:07 | 03/15/21 18:23  | 7782-49-2    |      |
| 7470 Mercury         |            | Analytical | Method: EPA 7   | 470A Prep                    | paration Met | hod: EP  | A 7470A        |                 |              |      |
|                      |            | Pace Anal  | ytical Services | - Peachtre                   | e Corners, C | GΑ       |                |                 |              |      |
| Mercury              |            | ND         | mg/L            | 0.00020                      | 0.000078     | 1        | 03/10/21 13:05 | 03/11/21 12:01  | 7439-97-6    |      |
| 2540C Total Dissol   | ved Solids | Analytical | Method: SM 24   | 50C-2011                     |              |          |                |                 |              |      |
|                      |            | Pace Anal  | ytical Services | <ul> <li>Peachtre</li> </ul> | e Corners, C | ΒA       |                |                 |              |      |
| Total Dissolved Soli | ds         | 63.0       | mg/L            | 10.0                         | 10.0         | 1        |                | 03/06/21 12:30  |              |      |
| 300.0 IC Anions 28   | Days       | Analytical | Method: EPA 3   | 00.0 Rev 2                   | 2.1 1993     |          |                |                 |              |      |
|                      |            | Pace Anal  | ytical Services | - Asheville                  |              |          |                |                 |              |      |
| Chloride             |            | 8.6        | ma/L            | 1.0                          | 0.60         | 1        |                | 03/14/21 13:38  | 16887-00-6   |      |
| Fluoride             |            | ND         | ma/L            | 0.10                         | 0.050        | 1        |                | 03/14/21 13:38  | 16984-48-8   |      |
| Sulfate              |            | ND         | mg/L            | 1.0                          | 0.50         | 1        |                | 03/14/21 13:38  | 14808-79-8   |      |



Project: YATES

Pace Project No.: 92525931

| Sample: YGWC-23S             | Lab ID: 92525931004 Collected: 03/04/21 12:15 Received: 03/05/21 09:20 Matrix: Water |                  |                |              |         |                |                |            |      |
|------------------------------|--------------------------------------------------------------------------------------|------------------|----------------|--------------|---------|----------------|----------------|------------|------|
|                              |                                                                                      |                  | Report         |              |         |                |                | 040 N      | 0    |
| Parameters                   | Results                                                                              | Units            |                | MDL          |         | Prepared       | Analyzed       | CAS No.    | Qual |
| Field Data                   | Analytica                                                                            | I Method:        |                |              |         |                |                |            |      |
|                              | Pace Ana                                                                             | alytical Service | es - Charlotte | )            |         |                |                |            |      |
| Performed by                 | CUSTOME                                                                              |                  |                |              | 1       |                | 03/08/21 09:05 |            |      |
| рН                           | 5.44                                                                                 | Std. Units       |                |              | 1       |                | 03/08/21 09:05 |            |      |
| 6010D ATL ICP                | Analytica                                                                            | I Method: EPA    | 6010D Pre      | paration Met | hod: E  | PA 3010A       |                |            |      |
|                              | Pace Ana                                                                             | alytical Service | es - Peachtre  | e Corners, G | βA      |                |                |            |      |
| Calcium                      | 10.2                                                                                 | mg/L             | 1.0            | 0.070        | 1       | 03/12/21 11:05 | 03/12/21 19:43 | 7440-70-2  |      |
| 6020 MET ICPMS               | Analytica                                                                            | I Method: EPA    | 6020B Pre      | paration Met | hod: E  | PA 3005A       |                |            |      |
|                              | Pace Ana                                                                             | alytical Service | es - Peachtre  | e Corners, C | ΒA      |                |                |            |      |
| Antimony                     | ND                                                                                   | ma/L             | 0.0030         | 0.00028      | 1       | 03/12/21 11:07 | 03/15/21 18:29 | 7440-36-0  |      |
| Arsenic                      | ND                                                                                   | ma/L             | 0.0050         | 0.00078      | 1       | 03/12/21 11:07 | 03/15/21 18:29 | 7440-38-2  |      |
| Barium                       | 0.043                                                                                | ma/L             | 0.0050         | 0.00071      | 1       | 03/12/21 11:07 | 03/15/21 18:29 | 7440-39-3  |      |
| Bervllium                    | 0.00013J                                                                             | ma/L             | 0.00050        | 0.000046     | 1       | 03/12/21 11:07 | 03/15/21 18:29 | 7440-41-7  |      |
| Boron                        | 1.2                                                                                  | mg/L             | 0.040          | 0.0052       | 1       | 03/12/21 11:07 | 03/15/21 18:29 | 7440-42-8  |      |
| Cadmium                      | ND                                                                                   | mg/L             | 0.00050        | 0.00012      | 1       | 03/12/21 11:07 | 03/15/21 18:29 | 7440-43-9  |      |
| Chromium                     | 0.00078J                                                                             | mg/L             | 0.0050         | 0.00055      | 1       | 03/12/21 11:07 | 03/15/21 18:29 | 7440-47-3  |      |
| Cobalt                       | ND                                                                                   | mg/L             | 0.0050         | 0.00038      | 1       | 03/12/21 11:07 | 03/15/21 18:29 | 7440-48-4  |      |
| Lead                         | 0.00021J                                                                             | mg/L             | 0.0010         | 0.000036     | 1       | 03/12/21 11:07 | 03/15/21 18:29 | 7439-92-1  |      |
| Lithium                      | 0.0026J                                                                              | mg/L             | 0.030          | 0.00081      | 1       | 03/12/21 11:07 | 03/15/21 18:29 | 7439-93-2  |      |
| Molybdenum                   | ND                                                                                   | mg/L             | 0.010          | 0.00069      | 1       | 03/12/21 11:07 | 03/15/21 18:29 | 7439-98-7  |      |
| Selenium                     | 0.037                                                                                | mg/L             | 0.0050         | 0.0016       | 1       | 03/12/21 11:07 | 03/15/21 18:29 | 7782-49-2  |      |
| 7470 Mercury                 | Analytica                                                                            | I Method: EPA    | 7470A Pre      | paration Met | hod: El | PA 7470A       |                |            |      |
|                              | Pace Ana                                                                             | alytical Service | es - Peachtre  | e Corners, G | βA      |                |                |            |      |
| Mercury                      | ND                                                                                   | mg/L             | 0.00020        | 0.000078     | 1       | 03/10/21 13:05 | 03/11/21 12:03 | 7439-97-6  |      |
| 2540C Total Dissolved Solids | Analytica                                                                            | I Method: SM     | 2450C-2011     |              |         |                |                |            |      |
|                              | Pace Ana                                                                             | alytical Service | es - Peachtre  | e Corners, G | βA      |                |                |            |      |
| Total Dissolved Solids       | 96.0                                                                                 | mg/L             | 10.0           | 10.0         | 1       |                | 03/06/21 12:32 |            |      |
| 300.0 IC Anions 28 Days      | Analytica                                                                            | I Method: EPA    | 300.0 Rev 2    | 2.1 1993     |         |                |                |            |      |
| -                            | Pace Ana                                                                             | alytical Service | es - Asheville | 1            |         |                |                |            |      |
| Chloride                     | 1.8                                                                                  | mg/L             | 1.0            | 0.60         | 1       |                | 03/14/21 22:35 | 16887-00-6 |      |
| Fluoride                     | ND                                                                                   | mg/L             | 0.10           | 0.050        | 1       |                | 03/14/21 22:35 | 16984-48-8 | M1   |
| Sulfate                      | 61.7                                                                                 | ma/L             | 1.0            | 0.50         | 1       |                | 03/14/21 22:35 | 14808-79-8 | M1   |



Project: YATES

Pace Project No.: 92525931

| Sample: YGWC-41              | Lab ID:                                                                                          | 92525931005       | Collecte                   | ed: 03/04/2                  | 1 09:00        | Received: 03/05/21 09:20 Matrix: Water |                |            |      |  |
|------------------------------|--------------------------------------------------------------------------------------------------|-------------------|----------------------------|------------------------------|----------------|----------------------------------------|----------------|------------|------|--|
| Parameters                   | Results                                                                                          | Units             | Report<br>Limit            | MDL                          | DF             | Prepared                               | Analvzed       | CAS No.    | Qual |  |
|                              |                                                                                                  |                   |                            |                              |                |                                        |                |            |      |  |
| Field Data                   | Analytica                                                                                        | I Method:         |                            |                              |                |                                        |                |            |      |  |
|                              | Pace Ana                                                                                         | alytical Services | s - Charlotte              | 9                            |                |                                        |                |            |      |  |
| Performed by                 | CUSTOME                                                                                          |                   |                            |                              | 1              |                                        | 03/08/21 09:05 |            |      |  |
| рН                           | 4.69                                                                                             | Std. Units        |                            |                              | 1              |                                        | 03/08/21 09:05 |            |      |  |
| 6010D ATL ICP                | Analytica<br>Pace Ana                                                                            | l Method: EPA     | 6010D Pre                  | paration Met                 | thod: El       | PA 3010A                               |                |            |      |  |
| Calcium                      | 16.4                                                                                             | ma/l              | 1 0                        | 0 070                        | 1              | 03/12/21 11:05                         | 03/12/21 19:48 | 7440-70-2  |      |  |
| Calcium                      | 10.4                                                                                             | iiig/E            | 1.0                        | 0.070                        |                | 00/12/21 11:00                         | 00/12/21 10:40 | 1440 10 2  |      |  |
| 6020 MET ICPMS               | Analytica<br>Pace Ana                                                                            | I Method: EPA     | 6020B Prej<br>s - Peachtre | paration Met<br>e Corners, C | ihod: El<br>GA | PA 3005A                               |                |            |      |  |
| Antimony                     | ND                                                                                               | mg/L              | 0.0030                     | 0.00028                      | 1              | 03/12/21 11:07                         | 03/15/21 18:35 | 7440-36-0  |      |  |
| Arsenic                      | ND                                                                                               | mg/L              | 0.0050                     | 0.00078                      | 1              | 03/12/21 11:07                         | 03/15/21 18:35 | 7440-38-2  |      |  |
| Barium                       | 0.017                                                                                            | mg/L              | 0.0050                     | 0.00071                      | 1              | 03/12/21 11:07                         | 03/15/21 18:35 | 7440-39-3  |      |  |
| Beryllium                    | 0.0015                                                                                           | mg/L              | 0.00050                    | 0.000046                     | 1              | 03/12/21 11:07                         | 03/15/21 18:35 | 7440-41-7  |      |  |
| Boron                        | 4.0                                                                                              | mg/L              | 0.040                      | 0.0052                       | 1              | 03/12/21 11:07                         | 03/15/21 18:35 | 7440-42-8  |      |  |
| Cadmium                      | ND                                                                                               | mg/L              | 0.00050                    | 0.00012                      | 1              | 03/12/21 11:07                         | 03/15/21 18:35 | 7440-43-9  |      |  |
| Chromium                     | ND                                                                                               | mg/L              | 0.0050                     | 0.00055                      | 1              | 03/12/21 11:07                         | 03/15/21 18:35 | 7440-47-3  |      |  |
| Cobalt                       | ND                                                                                               | mg/L              | 0.0050                     | 0.00038                      | 1              | 03/12/21 11:07                         | 03/15/21 18:35 | 7440-48-4  |      |  |
| Lead                         | ND                                                                                               | mg/L              | 0.0010                     | 0.000036                     | 1              | 03/12/21 11:07                         | 03/15/21 18:35 | 7439-92-1  |      |  |
| Lithium                      | 0.0021J                                                                                          | mg/L              | 0.030                      | 0.00081                      | 1              | 03/12/21 11:07                         | 03/15/21 18:35 | 7439-93-2  |      |  |
| Molybdenum                   | ND                                                                                               | mg/L              | 0.010                      | 0.00069                      | 1              | 03/12/21 11:07                         | 03/15/21 18:35 | 7439-98-7  |      |  |
| Selenium                     | 0.037                                                                                            | mg/L              | 0.0050                     | 0.0016                       | 1              | 03/12/21 11:07                         | 03/15/21 18:35 | 7782-49-2  |      |  |
| 7470 Mercury                 | Analytical Method: EPA 7470A Preparation Method: EPA 7470A                                       |                   |                            |                              |                |                                        |                |            |      |  |
|                              | Pace Ana                                                                                         | alytical Services | s - Peachtre               | e Corners, C                 | GA             |                                        |                |            |      |  |
| Mercury                      | ND                                                                                               | mg/L              | 0.00020                    | 0.000078                     | 1              | 03/10/21 13:05                         | 03/11/21 12:06 | 7439-97-6  |      |  |
| 2540C Total Dissolved Solids | Analytica<br>Pace Ana                                                                            | l Method: SM 2    | 450C-2011                  | e Corners, (                 | ΞA             |                                        |                |            |      |  |
| Total Dissolved Solids       | 224                                                                                              | mg/L              | 10.0                       | 10.0                         | 1              |                                        | 03/06/21 12:33 |            |      |  |
|                              | البرية من المريح المريح المريح المريح المريح المريح المريح المريح المريح المريح المريح المريح ال | Mathad EDA        |                            | 0 4 4000                     |                |                                        |                |            |      |  |
| 300.0 IC ANIONS 28 Days      | Analytica<br>Pace Ana                                                                            | alytical Services | s - Asheville              | 2.1 1993                     |                |                                        |                |            |      |  |
| Chloride                     | 3.4                                                                                              | mg/L              | 1.0                        | 0.60                         | 1              |                                        | 03/14/21 23:20 | 16887-00-6 |      |  |
| Fluoride                     | ND                                                                                               | mg/L              | 0.10                       | 0.050                        | 1              |                                        | 03/14/21 23:20 | 16984-48-8 |      |  |
| Sulfate                      | 117                                                                                              | ma/L              | 3.0                        | 1.5                          | 3              |                                        | 03/15/21 14:33 | 14808-79-8 |      |  |


Project: YATES

Pace Project No.: 92525931

| Sample: YGWC-43              | Lab ID:               | 92525931006                                                                                                    | Collecte                     | ed: 03/04/21                  | 14:50         | Received: 03/05/21 09:20 Matrix: Water |                |            |      |  |  |  |  |
|------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------|---------------|----------------------------------------|----------------|------------|------|--|--|--|--|
| Parameters                   | Results               | Units                                                                                                          | Report<br>Limit              | MDL                           | DF            | Prepared                               | Analyzed       | CAS No.    | Qual |  |  |  |  |
| Field Data                   | Analytica<br>Pace Ana | l Method:<br>Ilytical Services                                                                                 | s - Charlotte                | •                             |               |                                        |                |            |      |  |  |  |  |
| Performed by                 | CUSTOME               |                                                                                                                |                              |                               | 1             |                                        | 03/08/21 09:05 |            |      |  |  |  |  |
| рН                           | к<br>5.88             | Std. Units                                                                                                     |                              |                               | 1             |                                        | 03/08/21 09:05 |            |      |  |  |  |  |
| 6010D ATL ICP                | Analytica<br>Pace Ana | l Method: EPA (                                                                                                | 6010D Pre<br>- Peachtre      | paration Met<br>e Corners, G  | hod: E<br>3A  | PA 3010A                               |                |            |      |  |  |  |  |
| Calcium                      | 32.2                  | mg/L                                                                                                           | 1.0                          | 0.070                         | 1             | 03/12/21 11:05                         | 03/12/21 19:53 | 7440-70-2  |      |  |  |  |  |
| 6020 MET ICPMS               | Analytica<br>Pace Ana | Analytical Method: EPA 6020B Preparation Method: EPA 3005A<br>Pace Analytical Services - Peachtree Corners, GA |                              |                               |               |                                        |                |            |      |  |  |  |  |
| Antimony                     | ND                    | mg/L                                                                                                           | 0.0030                       | 0.00028                       | 1             | 03/12/21 11:07                         | 03/15/21 18:52 | 7440-36-0  |      |  |  |  |  |
| Arsenic                      | ND                    | mg/L                                                                                                           | 0.0050                       | 0.00078                       | 1             | 03/12/21 11:07                         | 03/15/21 18:52 | 7440-38-2  |      |  |  |  |  |
| Barium                       | 0.039                 | mg/L                                                                                                           | 0.0050                       | 0.00071                       | 1             | 03/12/21 11:07                         | 03/15/21 18:52 | 7440-39-3  |      |  |  |  |  |
| Beryllium                    | 0.00056               | mg/L                                                                                                           | 0.00050                      | 0.000046                      | 1             | 03/12/21 11:07                         | 03/15/21 18:52 | 7440-41-7  |      |  |  |  |  |
| Boron                        | 3.6                   | mg/L                                                                                                           | 0.040                        | 0.0052                        | 1             | 03/12/21 11:07                         | 03/15/21 18:52 | 7440-42-8  |      |  |  |  |  |
| Cadmium                      | ND                    | mg/L                                                                                                           | 0.00050                      | 0.00012                       | 1             | 03/12/21 11:07                         | 03/15/21 18:52 | 7440-43-9  |      |  |  |  |  |
| Chromium                     | ND                    | mg/L                                                                                                           | 0.0050                       | 0.00055                       | 1             | 03/12/21 11:07                         | 03/15/21 18:52 | 7440-47-3  |      |  |  |  |  |
| Cobalt                       | 0.0015J               | mg/L                                                                                                           | 0.0050                       | 0.00038                       | 1             | 03/12/21 11:07                         | 03/15/21 18:52 | 7440-48-4  |      |  |  |  |  |
| Lead                         | ND                    | mg/L                                                                                                           | 0.0010                       | 0.000036                      | 1             | 03/12/21 11:07                         | 03/15/21 18:52 | 7439-92-1  |      |  |  |  |  |
| Lithium                      | 0.025J                | mg/L                                                                                                           | 0.030                        | 0.00081                       | 1             | 03/12/21 11:07                         | 03/15/21 18:52 | 7439-93-2  |      |  |  |  |  |
| Molybdenum                   | 0.0011J               | mg/L                                                                                                           | 0.010                        | 0.00069                       | 1             | 03/12/21 11:07                         | 03/15/21 18:52 | 7439-98-7  |      |  |  |  |  |
| Selenium                     | ND                    | mg/L                                                                                                           | 0.0050                       | 0.0016                        | 1             | 03/12/21 11:07                         | 03/15/21 18:52 | 7782-49-2  |      |  |  |  |  |
| 7470 Mercury                 | Analytica<br>Pace Ana | I Method: EPA                                                                                                  | 7470A Pre<br>- Peachtre      | paration Metl<br>e Corners, G | hod: El<br>BA | PA 7470A                               |                |            |      |  |  |  |  |
| Mercury                      | ND                    | mg/L                                                                                                           | 0.00020                      | 0.000078                      | 1             | 03/10/21 13:05                         | 03/11/21 12:08 | 7439-97-6  |      |  |  |  |  |
| 2540C Total Dissolved Solids | Analytica<br>Pace Ana | l Method: SM 2<br>Ilytical Services                                                                            | 450C-2011<br>- Peachtre      | e Corners, G                  | 6A            |                                        |                |            |      |  |  |  |  |
| Total Dissolved Solids       | 592                   | mg/L                                                                                                           | 10.0                         | 10.0                          | 1             |                                        | 03/06/21 12:33 |            |      |  |  |  |  |
| 300.0 IC Anions 28 Days      | Analytica<br>Pace Ana | l Method: EPA :<br>Ilytical Services                                                                           | 300.0 Rev 2<br>s - Asheville | 2.1 1993                      |               |                                        |                |            |      |  |  |  |  |
| Chloride                     | 21                    | ma/l                                                                                                           | 10                           | 0.60                          | 1             |                                        | 03/14/21 23:35 | 16887-00-6 |      |  |  |  |  |
| Fluoride                     | 0.063.1               | mg/L                                                                                                           | 0.10                         | 0.00                          | 1             |                                        | 03/14/21 23:35 | 16984-48-8 |      |  |  |  |  |
| Sulfate                      | 328                   | mg/L                                                                                                           | 7.0                          | 3.5                           | 7             |                                        | 03/15/21 14:48 | 14808-79-8 |      |  |  |  |  |



| Project:          | YATES    |
|-------------------|----------|
| Pace Proiect No.: | 92525931 |

| Sample: FB-1                 | Lab ID:    | 92525931007      | Collecte    | ed: 03/04/2  | 1 14:00  | Received: 03/  | 05/21 09:20 Ma | atrix: Water |     |
|------------------------------|------------|------------------|-------------|--------------|----------|----------------|----------------|--------------|-----|
| -                            |            |                  | Report      |              |          |                |                |              |     |
| Parameters                   | Results    | Units            | Limit       | MDL          | DF       | Prepared       | Analyzed       | CAS No.      | Qua |
| 6010D ATL ICP                | Analytical | Method: EPA 6    | 010D Pre    | paration Met | thod: El | PA 3010A       |                |              |     |
|                              | Pace Ana   | lytical Services | - Peachtre  | e Corners, C | ЗA       |                |                |              |     |
| Calcium                      | ND         | mg/L             | 1.0         | 0.070        | 1        | 03/12/21 11:05 | 03/12/21 20:07 | 7440-70-2    |     |
| 6020 MET ICPMS               | Analytical | Method: EPA 6    | 020B Pre    | paration Met | hod: Ef  | PA 3005A       |                |              |     |
|                              | Pace Ana   | lytical Services | - Peachtre  | e Corners, C | GΑ       |                |                |              |     |
| Antimony                     | ND         | mg/L             | 0.0030      | 0.00028      | 1        | 03/12/21 11:07 | 03/15/21 18:58 | 7440-36-0    |     |
| Arsenic                      | ND         | mg/L             | 0.0050      | 0.00078      | 1        | 03/12/21 11:07 | 03/15/21 18:58 | 7440-38-2    |     |
| Barium                       | ND         | mg/L             | 0.0050      | 0.00071      | 1        | 03/12/21 11:07 | 03/15/21 18:58 | 7440-39-3    |     |
| Beryllium                    | ND         | mg/L             | 0.00050     | 0.000046     | 1        | 03/12/21 11:07 | 03/15/21 18:58 | 7440-41-7    |     |
| Boron                        | ND         | mg/L             | 0.040       | 0.0052       | 1        | 03/12/21 11:07 | 03/15/21 18:58 | 7440-42-8    |     |
| Cadmium                      | ND         | mg/L             | 0.00050     | 0.00012      | 1        | 03/12/21 11:07 | 03/15/21 18:58 | 7440-43-9    |     |
| Chromium                     | ND         | mg/L             | 0.0050      | 0.00055      | 1        | 03/12/21 11:07 | 03/15/21 18:58 | 7440-47-3    |     |
| Cobalt                       | ND         | mg/L             | 0.0050      | 0.00038      | 1        | 03/12/21 11:07 | 03/15/21 18:58 | 7440-48-4    |     |
| Lead                         | ND         | mg/L             | 0.0010      | 0.000036     | 1        | 03/12/21 11:07 | 03/15/21 18:58 | 7439-92-1    |     |
| Lithium                      | ND         | mg/L             | 0.030       | 0.00081      | 1        | 03/12/21 11:07 | 03/15/21 18:58 | 7439-93-2    |     |
| Molybdenum                   | ND         | mg/L             | 0.010       | 0.00069      | 1        | 03/12/21 11:07 | 03/15/21 18:58 | 7439-98-7    |     |
| Selenium                     | ND         | mg/L             | 0.0050      | 0.0016       | 1        | 03/12/21 11:07 | 03/15/21 18:58 | 7782-49-2    |     |
| 7470 Mercury                 | Analytical | Method: EPA 7    | 470A Pre    | paration Met | hod: EF  | PA 7470A       |                |              |     |
|                              | Pace Ana   | lytical Services | - Peachtre  | e Corners, C | βA       |                |                |              |     |
| Mercury                      | ND         | mg/L             | 0.00020     | 0.000078     | 1        | 03/10/21 13:05 | 03/11/21 12:10 | 7439-97-6    |     |
| 2540C Total Dissolved Solids | Analytical | Method: SM 24    | 450C-2011   |              |          |                |                |              |     |
|                              | Pace Ana   | lytical Services | - Peachtre  | e Corners, C | βA       |                |                |              |     |
| Total Dissolved Solids       | ND         | mg/L             | 10.0        | 10.0         | 1        |                | 03/08/21 11:06 |              |     |
| 300.0 IC Anions 28 Days      | Analytical | Method: EPA 3    | 300.0 Rev 2 | 2.1 1993     |          |                |                |              |     |
| -                            | Pace Ana   | lytical Services | - Asheville | •            |          |                |                |              |     |
| Chloride                     | ND         | mg/L             | 1.0         | 0.60         | 1        |                | 03/14/21 23:50 | 16887-00-6   |     |
| Fluoride                     | ND         | mg/L             | 0.10        | 0.050        | 1        |                | 03/14/21 23:50 | 16984-48-8   |     |
| Sulfate                      | ND         | mg/L             | 1.0         | 0.50         | 1        |                | 03/14/21 23:50 | 14808-79-8   |     |
|                              |            | -                |             |              |          |                |                |              |     |



YATES

Project:

### ANALYTICAL RESULTS

| Pace Project No.: 92525931   |            |                  |             |              |          |                |                |              |      |
|------------------------------|------------|------------------|-------------|--------------|----------|----------------|----------------|--------------|------|
| Sample: EB-2                 | Lab ID:    | 92525931008      | Collecte    | ed: 03/04/2  | 1 16:35  | Received: 03/  | 05/21 09:20 Ma | atrix: Water |      |
| _                            |            |                  | Report      |              |          |                |                |              |      |
| Parameters                   | _ Results  | Units            | Limit       | MDL          | DF       | Prepared       | Analyzed       | CAS No.      | Qual |
| 6010D ATL ICP                | Analytical | Method: EPA 6    | 010D Pre    | paration Me  | thod: Ef | PA 3010A       |                |              |      |
|                              | Pace Ana   | lytical Services | - Peachtre  | e Corners, ( | GA       |                |                |              |      |
| Calcium                      | ND         | mg/L             | 1.0         | 0.070        | 1        | 03/12/21 11:05 | 03/12/21 20:12 | 7440-70-2    |      |
| 6020 MET ICPMS               | Analytical | Method: EPA 6    | 020B Prep   | paration Me  | thod: EF | PA 3005A       |                |              |      |
|                              | Pace Ana   | lytical Services | - Peachtre  | e Corners, ( | GA       |                |                |              |      |
| Antimony                     | ND         | mg/L             | 0.0030      | 0.00028      | 1        | 03/12/21 11:07 | 03/15/21 19:03 | 7440-36-0    |      |
| Arsenic                      | ND         | mg/L             | 0.0050      | 0.00078      | 1        | 03/12/21 11:07 | 03/15/21 19:03 | 7440-38-2    |      |
| Barium                       | ND         | mg/L             | 0.0050      | 0.00071      | 1        | 03/12/21 11:07 | 03/15/21 19:03 | 7440-39-3    |      |
| Beryllium                    | ND         | mg/L             | 0.00050     | 0.000046     | 1        | 03/12/21 11:07 | 03/15/21 19:03 | 7440-41-7    |      |
| Boron                        | ND         | mg/L             | 0.040       | 0.0052       | 1        | 03/12/21 11:07 | 03/15/21 19:03 | 7440-42-8    |      |
| Cadmium                      | ND         | mg/L             | 0.00050     | 0.00012      | 1        | 03/12/21 11:07 | 03/15/21 19:03 | 7440-43-9    |      |
| Chromium                     | ND         | mg/L             | 0.0050      | 0.00055      | 1        | 03/12/21 11:07 | 03/15/21 19:03 | 7440-47-3    |      |
| Cobalt                       | ND         | mg/L             | 0.0050      | 0.00038      | 1        | 03/12/21 11:07 | 03/15/21 19:03 | 7440-48-4    |      |
| Lead                         | 0.00022J   | mg/L             | 0.0010      | 0.000036     | 1        | 03/12/21 11:07 | 03/15/21 19:03 | 7439-92-1    |      |
| Lithium                      | ND         | mg/L             | 0.030       | 0.00081      | 1        | 03/12/21 11:07 | 03/15/21 19:03 | 7439-93-2    |      |
| Molybdenum                   | ND         | mg/L             | 0.010       | 0.00069      | 1        | 03/12/21 11:07 | 03/15/21 19:03 | 7439-98-7    |      |
| Selenium                     | ND         | mg/L             | 0.0050      | 0.0016       | 1        | 03/12/21 11:07 | 03/15/21 19:03 | 7782-49-2    |      |
| 7470 Mercury                 | Analytical | Method: EPA 7    | 470A Prep   | paration Met | thod: EF | PA 7470A       |                |              |      |
|                              | Pace Ana   | lytical Services | - Peachtre  | e Corners, ( | GΑ       |                |                |              |      |
| Mercury                      | ND         | mg/L             | 0.00020     | 0.000078     | 1        | 03/10/21 13:05 | 03/11/21 12:13 | 7439-97-6    |      |
| 2540C Total Dissolved Solids | Analytical | Method: SM 24    | 450C-2011   |              |          |                |                |              |      |
|                              | Pace Ana   | lytical Services | - Peachtre  | e Corners, ( | GA       |                |                |              |      |
| Total Dissolved Solids       | ND         | mg/L             | 10.0        | 10.0         | 1        |                | 03/08/21 11:06 |              |      |
| 300.0 IC Anions 28 Days      | Analytical | Method: EPA 3    | 00.0 Rev 2  | 2.1 1993     |          |                |                |              |      |
|                              | Pace Ana   | lytical Services | - Asheville |              |          |                |                |              |      |
| Chloride                     | ND         | mg/L             | 1.0         | 0.60         | 1        |                | 03/15/21 00:50 | 16887-00-6   |      |
| Fluoride                     | ND         | mg/L             | 0.10        | 0.050        | 1        |                | 03/15/21 00:50 | 16984-48-8   |      |
| Sulfate                      | ND         | mg/L             | 1.0         | 0.50         | 1        |                | 03/15/21 00:50 | 14808-79-8   |      |



Project: YATES

Pace Project No.: 92525931

| Sample: YGWC-49              | Lab ID:               | 92525931009                                                                                                    | Collecte                     | ed: 03/04/21                 | 1 14:51       | Received: 03/05/21 09:20 Matrix: Water |                |            |      |  |  |  |
|------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------|---------------|----------------------------------------|----------------|------------|------|--|--|--|
| Parameters                   | Results               | Units                                                                                                          | Report<br>Limit              | MDL                          | DF            | Prepared                               | Analyzed       | CAS No.    | Qual |  |  |  |
| Field Data                   | Analytica             | l Method:                                                                                                      | Charlette                    |                              |               |                                        |                |            |      |  |  |  |
|                              |                       | ayuca Services                                                                                                 | - Chanolle                   | ;                            |               |                                        |                |            |      |  |  |  |
| Performed by                 | CUSTOME               |                                                                                                                |                              |                              | 1             |                                        | 03/08/21 09:05 |            |      |  |  |  |
| рН                           | 5.88                  | Std. Units                                                                                                     |                              |                              | 1             |                                        | 03/08/21 09:05 |            |      |  |  |  |
| 6010D ATL ICP                | Analytica<br>Pace Ana | l Method: EPA e                                                                                                | 6010D Pre<br>- Peachtre      | paration Met<br>e Corners, G | hod: El<br>GA | PA 3010A                               |                |            |      |  |  |  |
| Calcium                      | 13.0                  | mg/L                                                                                                           | 1.0                          | 0.070                        | 1             | 03/12/21 11:05                         | 03/12/21 20:17 | 7440-70-2  |      |  |  |  |
| 6020 MET ICPMS               | Analytica<br>Pace Ana | Analytical Method: EPA 6020B Preparation Method: EPA 3005A<br>Pace Analytical Services - Peachtree Corners, GA |                              |                              |               |                                        |                |            |      |  |  |  |
| Antimony                     | ND                    | mg/L                                                                                                           | 0.0030                       | 0.00028                      | 1             | 03/12/21 11:07                         | 03/15/21 19:09 | 7440-36-0  |      |  |  |  |
| Arsenic                      | ND                    | mg/L                                                                                                           | 0.0050                       | 0.00078                      | 1             | 03/12/21 11:07                         | 03/15/21 19:09 | 7440-38-2  |      |  |  |  |
| Barium                       | 0.069                 | mg/L                                                                                                           | 0.0050                       | 0.00071                      | 1             | 03/12/21 11:07                         | 03/15/21 19:09 | 7440-39-3  |      |  |  |  |
| Beryllium                    | 0.00010J              | mg/L                                                                                                           | 0.00050                      | 0.000046                     | 1             | 03/12/21 11:07                         | 03/15/21 19:09 | 7440-41-7  |      |  |  |  |
| Boron                        | ND                    | mg/L                                                                                                           | 0.040                        | 0.0052                       | 1             | 03/12/21 11:07                         | 03/15/21 19:09 | 7440-42-8  |      |  |  |  |
| Cadmium                      | ND                    | mg/L                                                                                                           | 0.00050                      | 0.00012                      | 1             | 03/12/21 11:07                         | 03/15/21 19:09 | 7440-43-9  |      |  |  |  |
| Chromium                     | 0.0017J               | mg/L                                                                                                           | 0.0050                       | 0.00055                      | 1             | 03/12/21 11:07                         | 03/15/21 19:09 | 7440-47-3  |      |  |  |  |
| Cobalt                       | ND                    | mg/L                                                                                                           | 0.0050                       | 0.00038                      | 1             | 03/12/21 11:07                         | 03/15/21 19:09 | 7440-48-4  |      |  |  |  |
| Lead                         | ND                    | mg/L                                                                                                           | 0.0010                       | 0.000036                     | 1             | 03/12/21 11:07                         | 03/15/21 19:09 | 7439-92-1  |      |  |  |  |
| Lithium                      | 0.0035J               | mg/L                                                                                                           | 0.030                        | 0.00081                      | 1             | 03/12/21 11:07                         | 03/15/21 19:09 | 7439-93-2  |      |  |  |  |
| Molybdenum                   | ND                    | mg/L                                                                                                           | 0.010                        | 0.00069                      | 1             | 03/12/21 11:07                         | 03/15/21 19:09 | 7439-98-7  |      |  |  |  |
| Selenium                     | 0.0058                | mg/L                                                                                                           | 0.0050                       | 0.0016                       | 1             | 03/12/21 11:07                         | 03/15/21 19:09 | 7782-49-2  |      |  |  |  |
| 7470 Mercury                 | Analytica<br>Pace Ana | l Method: EPA                                                                                                  | 7470A Pre<br>- Peachtre      | paration Met                 | hod: El<br>3A | PA 7470A                               |                |            |      |  |  |  |
| Mercury                      | ND                    | mg/L                                                                                                           | 0.00020                      | 0.000078                     | 1             | 03/10/21 13:05                         | 03/11/21 12:22 | 7439-97-6  |      |  |  |  |
| 2540C Total Dissolved Solids | Analytica<br>Pace Ana | I Method: SM 2<br>alytical Services                                                                            | 450C-2011<br>- Peachtre      | e Corners, G                 | θA            |                                        |                |            |      |  |  |  |
| Total Dissolved Solids       | 145                   | mg/L                                                                                                           | 10.0                         | 10.0                         | 1             |                                        | 03/08/21 11:06 |            |      |  |  |  |
| 300.0 IC Anions 28 Days      | Analytica<br>Pace Ana | l Method: EPA 3                                                                                                | 300.0 Rev 2<br>s - Asheville | 2.1 1993                     |               |                                        |                |            |      |  |  |  |
| Chloride                     | 4.1                   | ma/L                                                                                                           | 1.0                          | 0.60                         | 1             |                                        | 03/15/21 01:05 | 16887-00-6 |      |  |  |  |
| Fluoride                     | ND                    | ma/L                                                                                                           | 0.10                         | 0.050                        | 1             |                                        | 03/15/21 01:05 | 16984-48-8 |      |  |  |  |
| Sulfate                      | 75.1                  | ma/L                                                                                                           | 1.0                          | 0.50                         | 1             |                                        | 03/15/21 01:05 | 14808-79-8 |      |  |  |  |



YATES

Project:

### ANALYTICAL RESULTS

| Pace Project No.: 92525931   |            |                |               |              |          |                |                 |              |      |
|------------------------------|------------|----------------|---------------|--------------|----------|----------------|-----------------|--------------|------|
| Sample: FB-02                | Lab ID:    | 9252593101     | D Collecte    | ed: 03/04/2  | 1 15:00  | Received: 03/  | /05/21 09:20 Ma | atrix: Water |      |
|                              |            |                | Report        |              |          |                |                 |              |      |
| Parameters                   | Results    | Units          | Limit         | MDL          | DF       | Prepared       | Analyzed        | CAS No.      | Qual |
| 6010D ATL ICP                | Analytical | Method: EPA    | 6010D Pre     | paration Me  | thod: E  | PA 3010A       |                 |              |      |
|                              | Pace Anal  | ytical Service | s - Peachtre  | e Corners, ( | GΑ       |                |                 |              |      |
| Calcium                      | ND         | mg/L           | 1.0           | 0.070        | 1        | 03/12/21 11:05 | 03/12/21 20:22  | 7440-70-2    |      |
| 6020 MET ICPMS               | Analytical | Method: EPA    | 6020B Pre     | paration Me  | thod: E  | PA 3005A       |                 |              |      |
|                              | Pace Anal  | ytical Service | s - Peachtre  | e Corners, ( | ЗA       |                |                 |              |      |
| Antimony                     | ND         | mg/L           | 0.0030        | 0.00028      | 1        | 03/12/21 11:07 | 03/15/21 19:15  | 7440-36-0    |      |
| Arsenic                      | ND         | mg/L           | 0.0050        | 0.00078      | 1        | 03/12/21 11:07 | 03/15/21 19:15  | 7440-38-2    |      |
| Barium                       | ND         | mg/L           | 0.0050        | 0.00071      | 1        | 03/12/21 11:07 | 03/15/21 19:15  | 7440-39-3    |      |
| Beryllium                    | ND         | mg/L           | 0.00050       | 0.000046     | 1        | 03/12/21 11:07 | 03/15/21 19:15  | 7440-41-7    |      |
| Boron                        | ND         | mg/L           | 0.040         | 0.0052       | 1        | 03/12/21 11:07 | 03/15/21 19:15  | 7440-42-8    |      |
| Cadmium                      | ND         | mg/L           | 0.00050       | 0.00012      | 1        | 03/12/21 11:07 | 03/15/21 19:15  | 7440-43-9    |      |
| Chromium                     | ND         | mg/L           | 0.0050        | 0.00055      | 1        | 03/12/21 11:07 | 03/15/21 19:15  | 7440-47-3    |      |
| Cobalt                       | ND         | ma/L           | 0.0050        | 0.00038      | 1        | 03/12/21 11:07 | 03/15/21 19:15  | 7440-48-4    |      |
| Lead                         | ND         | mg/L           | 0.0010        | 0.000036     | 1        | 03/12/21 11:07 | 03/15/21 19:15  | 7439-92-1    |      |
| Lithium                      | ND         | mg/L           | 0.030         | 0.00081      | 1        | 03/12/21 11:07 | 03/15/21 19:15  | 7439-93-2    |      |
| Molybdenum                   | ND         | mg/L           | 0.010         | 0.00069      | 1        | 03/12/21 11:07 | 03/15/21 19:15  | 7439-98-7    |      |
| Selenium                     | ND         | mg/L           | 0.0050        | 0.0016       | 1        | 03/12/21 11:07 | 03/15/21 19:15  | 7782-49-2    |      |
| 7470 Mercury                 | Analytical | Method: EPA    | 7470A Pre     | paration Met | thod: El | PA 7470A       |                 |              |      |
|                              | Pace Anal  | ytical Service | s - Peachtre  | e Corners, ( | GΑ       |                |                 |              |      |
| Mercury                      | ND         | mg/L           | 0.00020       | 0.000078     | 1        | 03/10/21 13:05 | 03/11/21 12:25  | 7439-97-6    |      |
| 2540C Total Dissolved Solids | Analytical | Method: SM 2   | 2450C-2011    |              |          |                |                 |              |      |
|                              | Pace Anal  | ytical Service | s - Peachtre  | e Corners, ( | GΑ       |                |                 |              |      |
| Total Dissolved Solids       | ND         | mg/L           | 10.0          | 10.0         | 1        |                | 03/08/21 11:06  |              |      |
| 300.0 IC Anions 28 Days      | Analytical | Method: EPA    | 300.0 Rev 2   | 2.1 1993     |          |                |                 |              |      |
|                              | Pace Anal  | ytical Service | s - Asheville | •            |          |                |                 |              |      |
| Chloride                     | ND         | ma/L           | 1.0           | 0.60         | 1        |                | 03/15/21 01:20  | 16887-00-6   |      |
| Fluoride                     | ND         | mg/L           | 0.10          | 0.050        | 1        |                | 03/15/21 01:20  | 16984-48-8   |      |
| Sulfate                      | ND         | mg/L           | 1.0           | 0.50         | 1        |                | 03/15/21 01:20  | 14808-79-8   |      |

**REPORT OF LABORATORY ANALYSIS** 

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



Project: YATES

Pace Project No.: 92525931

| Sample: YGWC-42              | Lab ID:   | 92525931011       | Collecte      | ed: 03/04/21 | 08:45    | Received: 03/  | 05/21 09:20 Matrix: Water |            |      |
|------------------------------|-----------|-------------------|---------------|--------------|----------|----------------|---------------------------|------------|------|
|                              |           |                   | Report        |              |          |                |                           |            |      |
| Parameters                   | Results   | Units             | Limit         | MDL          | DF       | Prepared       | Analyzed                  | CAS No.    | Qual |
| Field Data                   | Analytica | I Method:         |               |              |          |                |                           |            |      |
|                              | Pace Ana  | alytical Services | s - Charlotte | 9            |          |                |                           |            |      |
| Performed by                 | CUSTOME   |                   |               |              | 1        |                | 03/08/21 09:05            |            |      |
| рН                           | 5.59      | Std. Units        |               |              | 1        |                | 03/08/21 09:05            |            |      |
| 6010D ATL ICP                | Analytica | I Method: EPA     | 6010D Pre     | paration Met | hod: E   | PA 3010A       |                           |            |      |
|                              | Pace Ana  | alytical Services | s - Peachtre  | e Corners, C | βA       |                |                           |            |      |
| Calcium                      | 90.7      | mg/L              | 1.0           | 0.070        | 1        | 03/12/21 11:05 | 03/12/21 20:27            | 7440-70-2  |      |
| 6020 MET ICPMS               | Analytica | I Method: EPA     | 6020B Pre     | paration Met | hod: E   | PA 3005A       |                           |            |      |
|                              | Pace Ana  | alytical Services | s - Peachtre  | e Corners, C | <b>A</b> |                |                           |            |      |
| Antimony                     | ND        | ma/L              | 0.0030        | 0.00028      | 1        | 03/12/21 11:07 | 03/15/21 19:20            | 7440-36-0  |      |
| Arsenic                      | ND        | mg/L              | 0.0050        | 0.00078      | 1        | 03/12/21 11:07 | 03/15/21 19:20            | 7440-38-2  |      |
| Barium                       | 0.030     | mg/L              | 0.0050        | 0.00071      | 1        | 03/12/21 11:07 | 03/15/21 19:20            | 7440-39-3  |      |
| Beryllium                    | ND        | mg/L              | 0.00050       | 0.000046     | 1        | 03/12/21 11:07 | 03/15/21 19:20            | 7440-41-7  |      |
| Boron                        | 14.8      | mg/L              | 0.40          | 0.052        | 10       | 03/12/21 11:07 | 03/16/21 16:11            | 7440-42-8  |      |
| Cadmium                      | ND        | mg/L              | 0.00050       | 0.00012      | 1        | 03/12/21 11:07 | 03/15/21 19:20            | 7440-43-9  |      |
| Chromium                     | ND        | mg/L              | 0.0050        | 0.00055      | 1        | 03/12/21 11:07 | 03/15/21 19:20            | 7440-47-3  |      |
| Cobalt                       | 0.0018J   | mg/L              | 0.0050        | 0.00038      | 1        | 03/12/21 11:07 | 03/15/21 19:20            | 7440-48-4  |      |
| Lead                         | ND        | mg/L              | 0.0010        | 0.000036     | 1        | 03/12/21 11:07 | 03/15/21 19:20            | 7439-92-1  |      |
| Lithium                      | 0.059     | mg/L              | 0.030         | 0.00081      | 1        | 03/12/21 11:07 | 03/15/21 19:20            | 7439-93-2  |      |
| Molybdenum                   | 0.00085J  | mg/L              | 0.010         | 0.00069      | 1        | 03/12/21 11:07 | 03/15/21 19:20            | 7439-98-7  |      |
| Selenium                     | 0.048     | mg/L              | 0.0050        | 0.0016       | 1        | 03/12/21 11:07 | 03/15/21 19:20            | 7782-49-2  |      |
| 7470 Mercury                 | Analytica | I Method: EPA     | 7470A Pre     | paration Met | hod: El  | PA 7470A       |                           |            |      |
|                              | Pace Ana  | alytical Services | s - Peachtre  | e Corners, G | βA       |                |                           |            |      |
| Mercury                      | ND        | mg/L              | 0.00020       | 0.000078     | 1        | 03/11/21 15:15 | 03/12/21 09:29            | 7439-97-6  |      |
| 2540C Total Dissolved Solids | Analytica | I Method: SM 2    | 450C-2011     |              |          |                |                           |            |      |
|                              | Pace Ana  | alytical Services | s - Peachtre  | e Corners, G | βA       |                |                           |            |      |
| Total Dissolved Solids       | 501       | mg/L              | 10.0          | 10.0         | 1        |                | 03/08/21 11:06            |            |      |
| 300.0 IC Anions 28 Days      | Analytica | I Method: EPA     | 300.0 Rev 2   | 2.1 1993     |          |                |                           |            |      |
| -                            | Pace Ana  | alytical Services | s - Asheville | •            |          |                |                           |            |      |
| Chloride                     | 2.7       | mg/L              | 1.0           | 0.60         | 1        |                | 03/15/21 01:35            | 16887-00-6 |      |
| Fluoride                     | ND        | mg/L              | 0.10          | 0.050        | 1        |                | 03/15/21 01:35            | 16984-48-8 |      |
| Sulfate                      | 537       | mg/L              | 12.0          | 6.0          | 12       |                | 03/15/21 15:02            | 14808-79-8 |      |



Project: YATES

Pace Project No.: 92525931

| Sample: YGWC-38              | Lab ID:               | 92525931012                        | 2 Collecte                 | ed: 03/04/2                  | 1 13:45        | Received: 03/  | /05/21 09:20 Ma | atrix: Water |      |
|------------------------------|-----------------------|------------------------------------|----------------------------|------------------------------|----------------|----------------|-----------------|--------------|------|
| Parameters                   | Results               | Units                              | Report<br>Limit            | MDL                          | DF             | Prepared       | Analyzed        | CAS No.      | Qual |
| Field Data                   | Analytica<br>Pace Ana | l Method:                          | s - Charlotte              | <u> </u>                     |                |                |                 |              |      |
| Derformed by                 | CUSTOME               |                                    | o onanotic                 | •                            | 4              |                | 02/08/24 00:05  |              |      |
| Fendinied by                 | R                     |                                    |                            |                              | I              |                | 03/06/21 09.05  |              |      |
| рН                           | 5.01                  | Std. Units                         |                            |                              | 1              |                | 03/08/21 09:05  |              |      |
| 6010D ATL ICP                | Analytica<br>Pace Ana | l Method: EPA<br>alytical Service  | 6010D Pre<br>s - Peachtre  | paration Me                  | thod: El<br>GA | PA 3010A       |                 |              |      |
| Calcium                      | 87.0                  | mg/L                               | 1.0                        | 0.070                        | 1              | 03/12/21 11:05 | 03/12/21 20:31  | 7440-70-2    |      |
| 6020 MET ICPMS               | Analytica<br>Pace Ana | l Method: EPA<br>alytical Service  | 6020B Pre<br>s - Peachtre  | paration Met<br>e Corners, C | ihod: El<br>GA | PA 3005A       |                 |              |      |
| Antimony                     | ND                    | mg/L                               | 0.0030                     | 0.00028                      | 1              | 03/12/21 11:07 | 03/15/21 19:26  | 7440-36-0    |      |
| Arsenic                      | ND                    | mg/L                               | 0.0050                     | 0.00078                      | 1              | 03/12/21 11:07 | 03/15/21 19:26  | 7440-38-2    |      |
| Barium                       | 0.016                 | mg/L                               | 0.0050                     | 0.00071                      | 1              | 03/12/21 11:07 | 03/15/21 19:26  | 7440-39-3    |      |
| Beryllium                    | 0.0029                | mg/L                               | 0.00050                    | 0.000046                     | 1              | 03/12/21 11:07 | 03/15/21 19:26  | 7440-41-7    |      |
| Boron                        | 6.4                   | mg/L                               | 0.040                      | 0.0052                       | 1              | 03/12/21 11:07 | 03/15/21 19:26  | 7440-42-8    |      |
| Cadmium                      | 0.0013                | mg/L                               | 0.00050                    | 0.00012                      | 1              | 03/12/21 11:07 | 03/15/21 19:26  | 7440-43-9    |      |
| Chromium                     | ND                    | mg/L                               | 0.0050                     | 0.00055                      | 1              | 03/12/21 11:07 | 03/15/21 19:26  | 7440-47-3    |      |
| Cobalt                       | ND                    | mg/L                               | 0.0050                     | 0.00038                      | 1              | 03/12/21 11:07 | 03/15/21 19:26  | 7440-48-4    |      |
| Lead                         | ND                    | mg/L                               | 0.0010                     | 0.000036                     | 1              | 03/12/21 11:07 | 03/15/21 19:26  | 7439-92-1    |      |
| Lithium                      | 0.0067J               | mg/L                               | 0.030                      | 0.00081                      | 1              | 03/12/21 11:07 | 03/15/21 19:26  | 7439-93-2    |      |
| Molybdenum                   | ND                    | mg/L                               | 0.010                      | 0.00069                      | 1              | 03/12/21 11:07 | 03/15/21 19:26  | 7439-98-7    |      |
| Selenium                     | 0.076                 | mg/L                               | 0.0050                     | 0.0016                       | 1              | 03/12/21 11:07 | 03/15/21 19:26  | 7782-49-2    |      |
| 7470 Mercury                 | Analytica             | I Method: EPA                      | 7470A Pre                  | paration Met                 | hod: El        | PA 7470A       |                 |              |      |
|                              | Pace Ana              | alytical Service                   | s - Peachtre               | e Corners, C                 | GA             |                |                 |              |      |
| Mercury                      | ND                    | mg/L                               | 0.00020                    | 0.000078                     | 1              | 03/11/21 15:15 | 03/12/21 09:38  | 7439-97-6    |      |
| 2540C Total Dissolved Solids | Analytica<br>Pace Ana | l Method: SM 2<br>alytical Service | 2450C-2011<br>s - Peachtre | e Corners, 0                 | GA             |                |                 |              |      |
| Total Dissolved Solids       | 600                   | mg/L                               | 20.0                       | 20.0                         | 1              |                | 03/08/21 11:06  |              |      |
| 300.0 IC Anions 28 Days      | Analytica             | l Method: EPA                      | 300.0 Rev 2                | 2.1 1993                     |                |                |                 |              |      |
|                              | Pace Ana              | alytical Service                   | s - Asheville              | 1                            |                |                |                 |              |      |
| Chloride                     | 3.9                   | mg/L                               | 1.0                        | 0.60                         | 1              |                | 03/15/21 01:50  | 16887-00-6   |      |
| Fluoride                     | ND                    | mg/L                               | 0.10                       | 0.050                        | 1              |                | 03/15/21 01:50  | 16984-48-8   |      |
| Sulfate                      | 356                   | ma/L                               | 8.0                        | 4.0                          | 8              |                | 03/15/21 15:17  | 14808-79-8   |      |



| Project:          | YATES  | 5                      |                                    |                          |                        |                           |                                                  |                   |              |                 |           |              |      |  |
|-------------------|--------|------------------------|------------------------------------|--------------------------|------------------------|---------------------------|--------------------------------------------------|-------------------|--------------|-----------------|-----------|--------------|------|--|
| Pace Project No.: | 925259 | 931                    |                                    |                          |                        |                           |                                                  |                   |              |                 |           |              |      |  |
| QC Batch:         | 6060   | 33                     |                                    | Analy                    | ysis Meth              | iod:                      | EPA 6010D                                        | )                 |              |                 |           |              |      |  |
| QC Batch Method:  | EPA    | 3010A                  |                                    | Analy                    | Analysis Description:  |                           |                                                  | 6010D ATL         |              |                 |           |              |      |  |
|                   |        |                        |                                    | Laboratory:              |                        |                           | Pace Analytical Services - Peachtree Corners, GA |                   |              |                 |           |              |      |  |
| Associated Lab Sa | mples: | 925259310<br>925259310 | 001, 9252593100<br>008, 9252593100 | 2, 9252593<br>9, 9252593 | 31003, 92<br>31010, 92 | 2525931004<br>2525931011  | , 925259310<br>, 925259310                       | )05, 92525<br>112 | 931006, 92   | 525931007       | 7,        |              |      |  |
| METHOD BLANK:     | 31928  | 36                     |                                    |                          | Matrix:                | Water                     |                                                  |                   |              |                 |           |              |      |  |
| Associated Lab Sa | mples: | 92525931<br>92525931   | 001, 9252593100<br>008, 9252593100 | 2, 9252593<br>9, 9252593 | 31003, 92<br>31010, 92 | 2525931004<br>2525931011, | , 925259310<br>, 925259310                       | )05, 92525<br>12  | 931006, 92   | 525931007       | 7,        |              |      |  |
|                   |        |                        |                                    | Blar                     | nk                     | Reporting                 |                                                  |                   |              |                 |           |              |      |  |
| Para              | meter  |                        | Units                              | Res                      | ult                    | Limit                     | MD                                               |                   | Analyzed     | Qu              | ualifiers |              |      |  |
| Calcium           |        |                        | mg/L                               |                          | ND                     | 1                         | .0                                               | 0.070 0           | 3/12/21 19:  | 19              |           |              |      |  |
| LABORATORY CO     | NTROL  | SAMPLE:                | 3192887                            |                          |                        |                           |                                                  |                   |              |                 |           |              |      |  |
|                   |        |                        |                                    | Spike                    | L                      | CS                        | LCS                                              | % F               | lec          |                 |           |              |      |  |
| Para              | meter  |                        | Units                              | Conc.                    | R                      | esult                     | % Rec                                            | Lim               | its (        | Qualifiers      |           |              |      |  |
| Calcium           |        |                        | mg/L                               |                          | 1                      | 1.1                       | 11                                               | 1                 | 80-120       |                 |           |              |      |  |
| MATRIX SPIKE & M  | MATRIX | SPIKE DUP              | LICATE: 3192                       | 890                      |                        | 319289                    | 1                                                |                   |              |                 |           |              |      |  |
|                   |        |                        | 00505000004                        | MS                       | MSD                    |                           | MOD                                              |                   | MOD          | 0/ <b>D</b> -   |           |              |      |  |
| Paramete          | er     | Units                  | 92525936001<br>Result              | Spike<br>Conc.           | Spike<br>Conc.         | MS<br>Result              | MSD<br>Result                                    | MS<br>% Rec       | MSD<br>% Rec | % Rec<br>Limits | RPD       | i∕iax<br>RPD | Qual |  |
| Calcium           |        | mg/L                   | 1.5                                | 1                        |                        | 1 2.6                     | 2.6                                              | 107               | 111          | 75-125          | 2         | 20           |      |  |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:                                                                                                                                                                           | YATES  | 3                                                |                                                       |                                           |                               |                   |             |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------|-------------------------------------------------------|-------------------------------------------|-------------------------------|-------------------|-------------|--|--|--|--|
| Pace Project No.:                                                                                                                                                                  | 92525  | 931                                              |                                                       |                                           |                               |                   |             |  |  |  |  |
| QC Batch:                                                                                                                                                                          | 6060   | 45                                               | Analysis Meth                                         | od: E                                     | PA 6020B                      |                   |             |  |  |  |  |
| QC Batch Method:                                                                                                                                                                   | EPA    | 3005A                                            | Analysis Desc                                         | ription: 60                               | 6020 MET                      |                   |             |  |  |  |  |
|                                                                                                                                                                                    |        |                                                  | Laboratory:                                           | P                                         | ace Analytical Se             | vices - Peachtree | Corners, GA |  |  |  |  |
| Associated Lab Samples: 92525931001, 92525931002, 92525931003, 92525931004, 92525931005, 92525931006, 92525931007, 92525931008, 92525931009, 92525931010, 92525931011, 92525931012 |        |                                                  |                                                       |                                           |                               |                   |             |  |  |  |  |
| METHOD BLANK:                                                                                                                                                                      | 31930  | 05                                               | Matrix:                                               | Water                                     |                               |                   |             |  |  |  |  |
| Associated Lab Sa                                                                                                                                                                  | mples: | 92525931001, 925259310<br>92525931008, 925259310 | 002, 92525931003, 92<br>009, 92525931010, 92<br>Black | 525931004, 9<br>525931011, 9<br>Reporting | 2525931005, 925<br>2525931012 | 25931006, 925259  | 931007,     |  |  |  |  |
| Para                                                                                                                                                                               | meter  | Units                                            | Result                                                | Limit                                     | MDL                           | Analyzed          | Qualifiers  |  |  |  |  |
| Antimony                                                                                                                                                                           |        | ma/L                                             |                                                       | 0.0030                                    | 0.00028                       | 03/15/21 17:43    |             |  |  |  |  |
| Arsenic                                                                                                                                                                            |        | mg/L                                             | ND                                                    | 0.0050                                    | 0.00078                       | 03/15/21 17:43    |             |  |  |  |  |
| Barium                                                                                                                                                                             |        | mg/L                                             | ND                                                    | 0.0050                                    | 0.00071                       | 03/15/21 17:43    |             |  |  |  |  |
| Beryllium                                                                                                                                                                          |        | mg/L                                             | ND                                                    | 0.00050                                   | 0.000046                      | 03/15/21 17:43    |             |  |  |  |  |
| Boron                                                                                                                                                                              |        | mg/L                                             | ND                                                    | 0.040                                     | 0.0052                        | 03/15/21 17:43    |             |  |  |  |  |
| Cadmium                                                                                                                                                                            |        | mg/L                                             | ND                                                    | 0.00050                                   | 0.00012                       | 03/15/21 17:43    |             |  |  |  |  |
| Chromium                                                                                                                                                                           |        | mg/L                                             | ND                                                    | 0.0050                                    | 0.00055                       | 03/15/21 17:43    |             |  |  |  |  |
| Cobalt                                                                                                                                                                             |        | mg/L                                             | ND                                                    | 0.0050                                    | 0.00038                       | 03/15/21 17:43    |             |  |  |  |  |
| Lead                                                                                                                                                                               |        | mg/L                                             | ND                                                    | 0.0010                                    | 0.000036                      | 03/15/21 17:43    |             |  |  |  |  |
| Lithium                                                                                                                                                                            |        | mg/L                                             | ND                                                    | 0.030                                     | 0.00081                       | 03/15/21 17:43    |             |  |  |  |  |
| Molybdenum                                                                                                                                                                         |        | mg/L                                             | ND                                                    | 0.010                                     | 0.00069                       | 03/15/21 17:43    |             |  |  |  |  |
| Selenium                                                                                                                                                                           |        | mg/L                                             | ND                                                    | 0.0050                                    | 0.0016                        | 03/15/21 17:43    |             |  |  |  |  |

#### LABORATORY CONTROL SAMPLE: 3193006

|            |       | Spike | LCS    | LCS   | % Rec  |            |
|------------|-------|-------|--------|-------|--------|------------|
| Parameter  | Units | Conc. | Result | % Rec | Limits | Qualifiers |
| Antimony   | mg/L  | 0.1   | 0.11   | 105   | 80-120 |            |
| Arsenic    | mg/L  | 0.1   | 0.10   | 102   | 80-120 |            |
| Barium     | mg/L  | 0.1   | 0.10   | 102   | 80-120 |            |
| Beryllium  | mg/L  | 0.1   | 0.11   | 106   | 80-120 |            |
| Boron      | mg/L  | 1     | 1.1    | 109   | 80-120 |            |
| Cadmium    | mg/L  | 0.1   | 0.11   | 105   | 80-120 |            |
| Chromium   | mg/L  | 0.1   | 0.11   | 105   | 80-120 |            |
| Cobalt     | mg/L  | 0.1   | 0.10   | 102   | 80-120 |            |
| Lead       | mg/L  | 0.1   | 0.10   | 101   | 80-120 |            |
| Lithium    | mg/L  | 0.1   | 0.11   | 105   | 80-120 |            |
| Molybdenum | mg/L  | 0.1   | 0.10   | 103   | 80-120 |            |
| Selenium   | mg/L  | 0.1   | 0.10   | 102   | 80-120 |            |

| MATRIX SPIKE & MATRIX SPI | IKE DUPL | ICATE: 3193 | 007   |       | 3193008 |        |       |       |        |     |     |      |  |
|---------------------------|----------|-------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|------|--|
|                           |          |             | MS    | MSD   |         |        |       |       |        |     |     |      |  |
|                           |          | 92525931001 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |  |
| Parameter                 | Units    | Result      | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |  |
| Antimony                  | mg/L     | ND          | 0.1   | 0.1   | 0.10    | 0.10   | 103   | 104   | 75-125 | 1   | 20  |      |  |
| Arsenic                   | mg/L     | ND          | 0.1   | 0.1   | 0.10    | 0.10   | 101   | 103   | 75-125 | 2   | 20  |      |  |
| Barium                    | mg/L     | 0.025       | 0.1   | 0.1   | 0.13    | 0.13   | 100   | 101   | 75-125 | 1   | 20  |      |  |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:          | YATES    |
|-------------------|----------|
| Pace Project No.: | 92525931 |

| MATRIX SPIKE & MATRIX SP | IKE DUPL | ICATE: 3193           | 007                  |                       | 3193008      |               |             |              |                 |     |            |      |
|--------------------------|----------|-----------------------|----------------------|-----------------------|--------------|---------------|-------------|--------------|-----------------|-----|------------|------|
| Parameter                | Units    | 92525931001<br>Result | MS<br>Spike<br>Conc. | MSD<br>Spike<br>Conc. | MS<br>Result | MSD<br>Result | MS<br>% Rec | MSD<br>% Rec | % Rec<br>Limits | RPD | Max<br>RPD | Qual |
| Beryllium                | mg/L     | 0.000099J             | 0.1                  | 0.1                   | 0.097        | 0.096         | 97          | 96           | 75-125          | 1   | 20         |      |
| Boron                    | mg/L     | ND                    | 1                    | 1                     | 0.98         | 0.97          | 98          | 97           | 75-125          | 1   | 20         |      |
| Cadmium                  | mg/L     | ND                    | 0.1                  | 0.1                   | 0.11         | 0.10          | 106         | 105          | 75-125          | 1   | 20         |      |
| Chromium                 | mg/L     | ND                    | 0.1                  | 0.1                   | 0.10         | 0.10          | 102         | 101          | 75-125          | 1   | 20         |      |
| Cobalt                   | mg/L     | ND                    | 0.1                  | 0.1                   | 0.10         | 0.099         | 101         | 99           | 75-125          | 2   | 20         |      |
| Lead                     | mg/L     | ND                    | 0.1                  | 0.1                   | 0.099        | 0.10          | 99          | 101          | 75-125          | 2   | 20         |      |
| Lithium                  | mg/L     | ND                    | 0.1                  | 0.1                   | 0.10         | 0.10          | 101         | 99           | 75-125          | 2   | 20         |      |
| Molybdenum               | mg/L     | ND                    | 0.1                  | 0.1                   | 0.098        | 0.099         | 97          | 99           | 75-125          | 1   | 20         |      |
| Selenium                 | mg/L     | ND                    | 0.1                  | 0.1                   | 0.10         | 0.10          | 101         | 104          | 75-125          | 2   | 20         |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:           | YATES  | 5                      |                                    |                            |                   |            |            |              |              |            |            |            |      |
|--------------------|--------|------------------------|------------------------------------|----------------------------|-------------------|------------|------------|--------------|--------------|------------|------------|------------|------|
| Pace Project No.:  | 925259 | 931                    |                                    |                            |                   |            |            |              |              |            |            |            |      |
| QC Batch:          | 6055   | 56                     |                                    | Analy                      | sis Metho         | od:        | EPA 7470A  |              |              |            |            |            |      |
| QC Batch Method:   | EPA    | 7470A                  |                                    | Analy                      | /sis Descr        | iption:    | 7470 Mercu | ury          |              |            |            |            |      |
|                    |        |                        |                                    | Labo                       | ratory:           |            | Pace Analy | tical Servio | ces - Peach  | tree Corne | rs, GA     |            |      |
| Associated Lab Sar | mples: | 925259310<br>925259310 | 001, 9252593100<br>008, 9252593100 | 12, 9252593<br>19, 9252593 | 1003, 925<br>1010 | 525931004, | 925259310  | 05, 92525    | 931006, 92   | 525931007  | 7,         |            |      |
| METHOD BLANK:      | 319011 | 11                     |                                    |                            | Matrix: W         | Vater      |            |              |              |            |            |            |      |
| Associated Lab Sar | mples: | 925259310<br>925259310 | 001, 9252593100<br>008, 9252593100 | 2, 9252593<br>9, 9252593   | 1003, 925<br>1010 | 525931004, | 925259310  | 05, 92525    | 931006, 92   | 525931007  | ,          |            |      |
|                    |        |                        |                                    | Blar                       | nk                | Reporting  |            |              |              |            |            |            |      |
| Para               | meter  |                        | Units                              | Res                        | ult               | Limit      | MD         | L            | Analyzed     | Qı         | ualifiers  |            |      |
| Mercury            |        |                        | mg/L                               |                            | ND                | 0.0002     | 20 0.0     | 000078 (     | )3/11/21 11: | 23         |            |            |      |
| LABORATORY CO      | NTROL  | SAMPLE:                | 3190112                            |                            |                   |            |            |              |              |            |            |            |      |
|                    |        |                        |                                    | Spike                      | LC                | CS         | LCS        | % F          | Rec          |            |            |            |      |
| Para               | meter  |                        | Units                              | Conc.                      | Re                | sult       | % Rec      | Lim          | nits         | Qualifiers |            |            |      |
| Mercury            |        |                        | mg/L                               | 0.002                      | 5                 | 0.0024     | g          | 07           | 80-120       |            |            |            |      |
| MATRIX SPIKE & M   | MATRIX | SPIKE DUP              | LICATE: 3190                       | 113                        |                   | 3190114    | 4          |              |              |            |            |            |      |
|                    |        |                        |                                    | MS                         | MSD               |            |            |              |              |            |            |            |      |
| Danassata          | _      | 1.1.4.11-              | 92526541001                        | Spike                      | Spike             | MS         | MSD        | MS           | MSD          | % Rec      |            | Max        | Quel |
| Paramete           | r      | Units                  | Result                             | Conc.                      | Conc.             | Result     | Result     | % Rec        | % Rec        | Limits     | <u>крр</u> | <u>крр</u> | Qual |
| Mercury            |        | mg/L                   | ND                                 | 0.0025                     | 0.0025            | 0.0023     | 0.0024     | 91           | 94           | 75-125     | 3          | 20         |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:          | YATES            |                 |        |            |           |            |            |              |            |           |     |      |
|-------------------|------------------|-----------------|--------|------------|-----------|------------|------------|--------------|------------|-----------|-----|------|
| Pace Project No.: | 92525931         |                 |        |            |           |            |            |              |            |           |     |      |
| QC Batch:         | 605942           |                 | Analy  | sis Metho  | od:       | EPA 7470A  |            |              |            |           |     |      |
| QC Batch Method:  | EPA 7470A        |                 | Analy  | /sis Descr | iption:   | 7470 Mercu | iry        |              |            |           |     |      |
|                   |                  |                 | Labo   | ratory:    |           | Pace Analy | ical Servi | ices - Peach | tree Corne | ers, GA   |     |      |
| Associated Lab Sa | mples: 92525931  | 011, 9252593101 | 2      |            |           |            |            |              |            |           |     |      |
| METHOD BLANK:     | 3192294          |                 |        | Matrix: W  | Vater     |            |            |              |            |           |     |      |
| Associated Lab Sa | mples: 92525931  | 011, 9252593101 | 2      |            |           |            |            |              |            |           |     |      |
|                   |                  |                 | Blar   | nk         | Reporting |            |            |              |            |           |     |      |
| Para              | meter            | Units           | Res    | ult        | Limit     | MD         | L          | Analyzed     | Q          | ualifiers |     |      |
| Mercury           |                  | mg/L            |        | ND         | 0.0002    | 0.0        | 00078      | 03/12/21 09  | 24         |           |     |      |
|                   |                  |                 |        |            |           |            |            |              |            |           |     |      |
| LABORATORY CO     | NTROL SAMPLE:    | 3192295         |        |            |           |            |            |              |            |           |     |      |
|                   |                  |                 | Spike  | LC         | CS        | LCS        | %          | Rec          |            |           |     |      |
| Para              | meter            | Units           | Conc.  | Re         | sult      | % Rec      | Lir        | nits         | Qualifiers |           |     |      |
| Mercury           |                  | mg/L            | 0.002  | 5          | 0.0024    | 9          | 7          | 80-120       |            |           |     |      |
|                   |                  |                 |        |            |           |            |            |              |            |           |     |      |
| MATRIX SPIKE & M  | MATRIX SPIKE DUP | LICATE: 3192    | 296    |            | 3192297   | 7          |            |              |            |           |     |      |
|                   |                  |                 | MS     | MSD        |           |            |            |              | _          |           |     |      |
| Dana              |                  | 92525931011     | Spike  | Spike      | MS        | MSD        | MS         | MSD          | % Rec      |           | Max | Qual |
| Paramete          |                  |                 | Conc.  | Conc.      | Result    | Result     | % Kec      | % KeC        | LIMITS     | RPD       |     | Qual |
| Mercury           | mg/L             | ND              | 0.0025 | 0.0025     | 0.0024    | 0.0024     | 9          | 7 97         | 75-125     | C         | 20  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:            | YATES  | 5          |                |                  |             |               |                  |          |               |
|---------------------|--------|------------|----------------|------------------|-------------|---------------|------------------|----------|---------------|
| Pace Project No.:   | 92525  | 931        |                |                  |             |               |                  |          |               |
| QC Batch:           | 6047   | 65         |                | Analysis M       | ethod:      | SM 2450C-20   | )11              |          |               |
| QC Batch Method:    | SM 2   | 2450C-2011 |                | Analysis De      | escription: | 2540C Total D | Dissolved Solids | 3        |               |
|                     |        |            |                | Laboratory       | :           | Pace Analytic | al Services - Pe | eachtree | e Corners, GA |
| Associated Lab Sa   | mples: | 92525931   | 001, 925259310 | 02, 92525931003, | 92525931004 | , 92525931005 | 5, 92525931006   | 3        |               |
| METHOD BLANK:       | 31863  | 10         |                | Matrix           | x: Water    |               |                  |          |               |
| Associated Lab Sa   | mples: | 92525931   | 001, 925259310 | 02, 92525931003, | 92525931004 | , 9252593100  | 5, 92525931006   | 3        |               |
|                     |        |            |                | Blank            | Reporting   |               |                  |          |               |
| Para                | meter  |            | Units          | Result           | Limit       | MDL           | Analy            | yzed     | Qualifiers    |
| Total Dissolved Sol | lids   |            | mg/L           | NE               | 0 10        | 0.0           | 10.0 03/06/2     | 1 12:29  |               |
|                     |        |            |                |                  |             |               |                  |          |               |
| LABORATORY CO       | NTROL  | SAMPLE:    | 3186311        |                  |             |               |                  |          |               |
|                     |        |            |                | Spike            | LCS         | LCS           | % Rec            |          |               |
| Para                | meter  |            | Units          | Conc.            | Result      | % Rec         | Limits           | Qua      | alifiers      |
| Total Dissolved Sol | lids   |            | mg/L           | 400              | 371         | 93            | 90-111           | l        |               |
|                     |        |            |                |                  |             |               |                  |          |               |
| SAMPLE DUPLICA      | λΤΕ: 3 | 186312     |                |                  |             |               |                  |          |               |
|                     |        |            |                | 92525346009      | Dup         |               | Max              |          |               |
| Para                | meter  |            | Units          | Result           | Result      | RPD           |                  | '        | Qualifiers    |
| Total Dissolved Sol | lids   |            | mg/L           | 217              | 7 2         | 20            | 1                | 10       |               |
|                     |        |            |                |                  |             |               |                  |          |               |
| SAMPLE DUPLICA      | ATE: 3 | 186313     |                |                  |             |               |                  |          |               |
| _                   |        |            |                | 92525824003      | Dup         |               | Max              |          | 0 11          |
| Para                | meter  |            | Units          | Result           | Result      | KPD           | RPD              | ,<br>    | Qualifiers    |
| Total Dissolved Sol | lids   |            | mg/L           | 45.0             | D 6'        | 1.0           | 30               | 10 D     | )6            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:            | YATES  | 5          |                |                  |             |               |                  |         |             |
|---------------------|--------|------------|----------------|------------------|-------------|---------------|------------------|---------|-------------|
| Pace Project No.:   | 92525  | 931        |                |                  |             |               |                  |         |             |
| QC Batch:           | 6048   | 395        |                | Analysis M       | ethod:      | SM 2450C-20   | )11              |         |             |
| QC Batch Method:    | SM 2   | 2450C-2011 |                | Analysis De      | escription: | 2540C Total D | Dissolved Solids | i       |             |
|                     |        |            |                | Laboratory       | :           | Pace Analytic | al Services - Pe | achtree | Corners, GA |
| Associated Lab Sa   | mples: | 92525931   | 007, 925259310 | 08, 92525931009, | 92525931010 | , 92525931011 | , 92525931012    |         |             |
| METHOD BLANK:       | 31869  | 21         |                | Matrix           | x: Water    |               |                  |         |             |
| Associated Lab Sa   | mples: | 92525931   | 007, 925259310 | 08, 92525931009, | 92525931010 | , 92525931011 | , 92525931012    |         |             |
|                     |        |            |                | Blank            | Reporting   |               |                  |         |             |
| Para                | meter  |            | Units          | Result           | Limit       | MDL           | Analy            | zed     | Qualifiers  |
| Total Dissolved Sol | ids    |            | mg/L           | NE               | 0 10        | 0.0           | 10.0 03/08/21    | 11:05   |             |
|                     |        |            |                |                  |             |               |                  |         |             |
| LABORATORY CO       | NTROL  | SAMPLE:    | 3186922        |                  |             |               |                  |         |             |
|                     |        |            |                | Spike            | LCS         | LCS           | % Rec            |         |             |
| Para                | meter  |            | Units          | Conc.            | Result      | % Rec         | Limits           | Qua     | lifiers     |
| Total Dissolved Sol | ids    |            | mg/L           | 400              | 387         | 97            | 90-111           |         |             |
|                     |        |            |                |                  |             |               |                  |         |             |
| SAMPLE DUPLICA      | ATE: 3 | 186923     |                |                  |             |               |                  |         |             |
| _                   |        |            |                | 92526103001      | Dup         |               | Max              |         |             |
| Para                | meter  |            | Units          | Result           | Result      | RPD           | RPD              |         | Qualifiers  |
| Total Dissolved Sol | ids    |            | mg/L           | 154              | 4 3         | 11            | 68               | 10 D    | 6           |
|                     |        |            |                |                  |             |               |                  |         |             |
| SAMPLE DUPLICA      | ATE: 3 | 186924     |                |                  |             |               |                  |         |             |
| _                   |        |            |                | 92525936007      | Dup         |               | Max              |         | 0 ""        |
| Para                | meter  |            | Units          | Result           | Result      | RPD           | RPD              |         | Qualifiers  |
| Total Dissolved Sol | ids    |            | mg/L           | 856              | 6 8         | 78            | 3                | 10      |             |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:           | YATES          |       |                |            |           |           |     |            |          |            |         |          |          |     |      |
|--------------------|----------------|-------|----------------|------------|-----------|-----------|-----|------------|----------|------------|---------|----------|----------|-----|------|
| Pace Project No.:  | 92525931       |       |                |            |           |           |     |            |          |            |         |          |          |     |      |
| QC Batch:          | 606456         |       |                | Anal       | ysis Meth | nod:      | EF  | PA 300.0 F | Rev 2.1  | 1993       |         |          |          |     |      |
| QC Batch Method:   | EPA 300.0 R    | ev 2. | 1 1993         | Anal       | ysis Desc | cription: | 30  | 0.0 IC Ani | ions     |            |         |          |          |     |      |
|                    |                |       |                | Labo       | oratory:  |           | Pa  | ace Analyt | ical Ser | vices - As | heville |          |          |     |      |
| Associated Lab Sar | mples: 92525   | 9310  | 01, 9252593100 | 2, 9252593 | 31003     |           |     |            |          |            |         |          |          |     |      |
| METHOD BLANK:      | 3195140        |       |                |            | Matrix:   | Water     |     |            |          |            |         |          |          |     |      |
| Associated Lab Sa  | mples: 92525   | 9310  | 01, 9252593100 | 2, 9252593 | 31003     |           |     |            |          |            |         |          |          |     |      |
|                    |                |       |                | Blai       | nk        | Reporting |     |            |          |            |         |          |          |     |      |
| Para               | meter          |       | Units          | Res        | ult       | Limit     |     | MDI        | -        | Analy      | zed     | Qu       | alifiers |     |      |
| Chloride           |                |       | mg/L           |            | ND        |           | 1.0 |            | 0.60     | 03/13/21   | 20:29   |          |          |     |      |
| Fluoride           |                |       | mg/L           |            | ND        | 0.        | 10  |            | 0.050    | 03/13/21   | 20:29   |          |          |     |      |
| Sulfate            |                |       | mg/L           |            | ND        | í         | 1.0 |            | 0.50     | 03/13/21   | 20:29   |          |          |     |      |
| LABORATORY CO      | NTROL SAMPL    | :     | 3195141        |            |           |           |     |            |          |            |         |          |          |     |      |
|                    |                |       |                | Spike      | l         | CS        |     | LCS        | %        | 6 Rec      |         |          |          |     |      |
| Para               | meter          |       | Units          | Conc.      | R         | esult     | 9   | % Rec      | L        | imits      | Qu      | alifiers | _        |     |      |
| Chloride           |                |       | mg/L           | 5          | 50        | 48.5      |     | 97         | 7        | 90-110     |         |          |          |     |      |
| Fluoride           |                |       | mg/L           | 2          | .5        | 2.5       |     | 100        | )        | 90-110     |         |          |          |     |      |
| Sulfate            |                |       | mg/L           | 5          | 50        | 51.4      |     | 103        | 3        | 90-110     |         |          |          |     |      |
| MATRIX SPIKE & N   | MATRIX SPIKE I | DUPL  | _ICATE: 3195   | 142        |           | 319514    | 13  |            |          |            |         |          |          |     |      |
|                    |                |       |                | MS         | MSD       |           |     |            |          |            |         |          |          |     |      |
|                    |                |       | 92525335019    | Spike      | Spike     | MS        |     | MSD        | MS       | MSI        | ) (     | % Rec    |          | Max |      |
| Paramete           | r L            | nits  | Result         | Conc.      | Conc.     | Result    |     | Result     | % Re     | c % Re     | ЭC      | Limits   | RPD      | RPD | Qual |
| Chloride           | n              | ng/L  | 0.99J          | 50         | 5         | 0 52.8    | 3   | 52.3       | 1        | 04         | 103     | 90-110   | 1        | 10  |      |
| Fluoride           | n              | ig/L  | 0.10           | 2.5        | 2.        | 5 2.7     | 7   | 2.7        | 1        | 06         | 104     | 90-110   | 2        | 10  |      |
| Sulfate            | n              | ıg/L  | 9.6            | 50         | 5         | 0 65.5    | 5   | 64.7       | 1        | 12         | 110     | 90-110   | 1        | 10  | M1   |
| MATRIX SPIKE & M   | MATRIX SPIKE I | DUPL  | _ICATE: 3195   | 144        |           | 319514    | 45  |            |          |            |         |          |          |     |      |
|                    |                |       |                | MS         | MSD       |           |     |            |          |            |         |          |          |     |      |
|                    |                |       | 92525346005    | Spike      | Spike     | MS        |     | MSD        | MS       | MSI        | ) (     | % Rec    |          | Max |      |
| Paramete           | r              | nits  | Result         | Conc.      | Conc.     | Result    | _   | Result     | % Re     | c%Re       | ec      | Limits   | RPD      | RPD | Qual |
| Chloride           | n              | ng/L  | 16.6           | 50         | 5         | 0 66.4    | 1   | 68.7       | 1        | 00         | 104     | 90-110   | 3        | 10  |      |
| Fluoride           | n              | ng/L  | ND             | 2.5        | 2.        | 5 2.5     | 5   | 2.6        |          | 98         | 103     | 90-110   | 5        | 10  |      |
| Sulfate            | n              | ng/L  | 88.8           | 50         | 5         | 0 115     | 5   | 117        |          | 53         | 56      | 90-110   | 1        | 10  | M1   |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



| Project:           | YATES    | ;                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |             |           |              |           |             |        |         |          |     |      |
|--------------------|----------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------|-----------|--------------|-----------|-------------|--------|---------|----------|-----|------|
| Pace Project No .: | 925259   | 931                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |             |           |              |           |             |        |         |          |     |      |
| QC Batch:          | 60649    | 96                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Analy             | sis Metho   | d: I      | EPA 300.0 F  | Rev 2.1 1 | 993         |        |         |          |     |      |
| QC Batch Method:   | EPA 3    | 300.0 Rev 2            | 1 1993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Analy             | vsis Descri | ption:    | 300.0 IC Ani | ions      |             |        |         |          |     |      |
|                    |          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Labo              | ratory:     |           | Pace Analvt  | ical Serv | rices - Ash | eville |         |          |     |      |
| Associated Lab Sar | nples:   | 925259310<br>925259310 | 004, 9252593100<br>011, 9252593101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | )5, 9252593<br>12 | 31006, 925  | 25931007, | 9252593100   | 08, 9252  | 5931009,    | 925259 | 931010  | ),       |     |      |
| METHOD BLANK:      | 319531   | 15                     | Analysis Method:         EPA 300.0 Rev 2.1 1993           Rev 2.1 1993         Analysis Description:         300.0 IC Anions           Laboratory:         Pace Analytical Services - Asheville           5931004, 92525931005, 92525931006, 92525931007, 92525931008, 92525931009, 92525931010,           5931011, 92525931005, 92525931007, 92525931008, 92525931009, 92525931010,           593101, 92525931005, 92525931007, 92525931008, 92525931009, 92525931010,           593101, 9252593102           Matrix: Water           593101, 9252593102           Blank         Reporting           Imits         Result           mg/L         ND           ND         0.10         0.050           0.50         03/14/21 21:28           LE:         3195316           LE:         3195316           Qualifiers         Qualifiers           mg/L         50         46.5         93           mg/L         50         46.8         94         90-110           DUPLICATE:         3195317         3195318         Qualifiers           s2525931004         Spike         MS         MSD         MS           s2525931004         Spike         Spike         NS         MSD           mg/L         1.8 |                   |             |           |              |           |             |        |         |          |     |      |
| Associated Lab Sar | nples:   | 925259310<br>925259310 | 004, 9252593100<br>011, 9252593101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | )5, 9252593<br>12 | 31006, 925  | 25931007, | 9252593100   | 08, 9252  | 5931009,    | 925259 | 931010  | ),       |     |      |
| _                  |          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Blai              | nk          | Reporting |              |           |             |        | -       |          |     |      |
| Parar              | neter    |                        | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Res               | ult         | Limit     | MDL          |           | Analyz      | ed     | Qu      | alifiers |     |      |
| Chloride           |          |                        | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | ND          | 1.        | 0            | 0.60      | 03/14/21    | 21:28  |         |          |     |      |
| Fluoride           |          |                        | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | ND          | 0.1       | 0            | 0.050     | 03/14/21    | 21:28  |         |          |     |      |
| Sulfate            |          |                        | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | ND          | 1.        | 0            | 0.50      | 03/14/21    | 21:28  |         |          |     |      |
| LABORATORY CO      | NTROL    | SAMPLE:                | 3195316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |             |           |              |           |             |        |         |          |     |      |
| Parar              | neter    |                        | Units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Spike<br>Conc.    | LC<br>Res   | S<br>Sult | LCS<br>% Rec | %<br>Lii  | Rec<br>mits | Qual   | lifiers |          |     |      |
| Chloride           |          |                        | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                 | 50          | 46.5      | 93           | 3         | 90-110      |        |         | _        |     |      |
| Fluoride           |          |                        | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2                 | .5          | 2.7       | 107          | 7         | 90-110      |        |         |          |     |      |
| Sulfate            |          |                        | mg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                 | 50          | 46.8      | 94           | 1         | 90-110      |        |         |          |     |      |
| MATRIX SPIKE & M   |          | SPIKE DUP              | LICATE: 3195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5317              |             | 3195318   | }            |           |             |        |         |          |     |      |
|                    |          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MS                | MSD         |           |              |           |             |        |         |          |     |      |
|                    |          |                        | 92525931004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Spike             | Spike       | MS        | MSD          | MS        | MSD         | %      | Rec     |          | Max |      |
| Paramete           | r        | Units                  | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Conc.             | Conc.       | Result    | Result       | % Rec     | % Re        | c Li   | mits    | RPD      | RPD | Qual |
| Chloride           |          | mg/L                   | 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50                | 50          | 50.1      | 49.8         | 9         | 7           | 96 9   | 0-110   | 1        | 10  |      |
| Fluoride           |          | mg/L                   | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.5               | 2.5         | 2.8       | 2.8          | 11        | 1 1         | 11 9   | 0-110   | 0        | 10  | M1   |
| Sulfate            |          | mg/L                   | 61.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50                | 50          | 98.6      | 98.0         | 7         | 4           | 73 9   | 0-110   | 1        | 10  | M1   |
| MATRIX SPIKE & M   | /ATRIX : | SPIKE DUP              | LICATE: 3195                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5319              |             | 3195320   | )            |           |             |        |         |          |     |      |
|                    |          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MS                | MSD         |           |              |           |             |        |         |          |     |      |
|                    |          |                        | 92525936002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Spike             | Spike       | MS        | MSD          | MS        | MSD         | %      | Rec     |          | Max |      |
| Paramete           | r        | Units                  | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Conc.             | Conc.       | Result    | Result       | % Rec     | % Re        | c Li   | mits    | RPD      | RPD | Qual |
| Chloride           |          | mg/L                   | 22.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50                | 50          | 67.6      | 70.1         | 8         | 9           | 94 9   | 0-110   | 4        | 10  | M1   |
| Fluoride           |          | mg/L                   | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.5               | 2.5         | 2.4       | 2.6          | 9         | 1           | 97 9   | 0-110   | 6        | 10  |      |
| Sulfate            |          | mg/L                   | 91.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50                | 50          | 126       | 124          | 7         | 0           | 65 9   | 90-110  | 2        | 10  | M1   |
|                    |          |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |             |           |              |           |             |        |         |          |     |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



### QUALIFIERS

Project: YATES Pace Project No.: 92525931

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### ANALYTE QUALIFIERS

D6 The precision between the sample and sample duplicate exceeded laboratory control limits.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.



### QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: YATES Pace Project No.: 92525931

| Lab ID      | Sample ID | QC Batch Method | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|-----------|-----------------|----------|-------------------|---------------------|
| 92525931001 | YGWC-24SA |                 |          |                   |                     |
| 92525931002 | YGWC-36A  |                 |          |                   |                     |
| 92525931004 | YGWC-23S  |                 |          |                   |                     |
| 92525931005 | YGWC-41   |                 |          |                   |                     |
| 92525931006 | YGWC-43   |                 |          |                   |                     |
| 92525931009 | YGWC-49   |                 |          |                   |                     |
| 92525931011 | YGWC-42   |                 |          |                   |                     |
| 92525931012 | YGWC-38   |                 |          |                   |                     |
| 92525931001 | YGWC-24SA | EPA 3010A       | 606033   | EPA 6010D         | 606330              |
| 92525931002 | YGWC-36A  | EPA 3010A       | 606033   | EPA 6010D         | 606330              |
| 92525931003 | DUP-2     | EPA 3010A       | 606033   | EPA 6010D         | 606330              |
| 92525931004 | YGWC-23S  | EPA 3010A       | 606033   | EPA 6010D         | 606330              |
| 92525931005 | YGWC-41   | EPA 3010A       | 606033   | EPA 6010D         | 606330              |
| 92525931006 | YGWC-43   | EPA 3010A       | 606033   | EPA 6010D         | 606330              |
| 92525931007 | FB-1      | EPA 3010A       | 606033   | EPA 6010D         | 606330              |
| 92525931008 | EB-2      | EPA 3010A       | 606033   | EPA 6010D         | 606330              |
| 92525931009 | YGWC-49   | EPA 3010A       | 606033   | EPA 6010D         | 606330              |
| 92525931010 | FB-02     | EPA 3010A       | 606033   | EPA 6010D         | 606330              |
| 92525931011 | YGWC-42   | EPA 3010A       | 606033   | EPA 6010D         | 606330              |
| 92525931012 | YGWC-38   | EPA 3010A       | 606033   | EPA 6010D         | 606330              |
| 92525931001 | YGWC-24SA | EPA 3005A       | 606045   | EPA 6020B         | 606338              |
| 92525931002 | YGWC-36A  | EPA 3005A       | 606045   | EPA 6020B         | 606338              |
| 92525931003 | DUP-2     | EPA 3005A       | 606045   | EPA 6020B         | 606338              |
| 92525931004 | YGWC-23S  | EPA 3005A       | 606045   | EPA 6020B         | 606338              |
| 92525931005 | YGWC-41   | EPA 3005A       | 606045   | EPA 6020B         | 606338              |
| 92525931006 | YGWC-43   | EPA 3005A       | 606045   | EPA 6020B         | 606338              |
| 92525931007 | FB-1      | EPA 3005A       | 606045   | EPA 6020B         | 606338              |
| 92525931008 | EB-2      | EPA 3005A       | 606045   | EPA 6020B         | 606338              |
| 92525931009 | YGWC-49   | EPA 3005A       | 606045   | EPA 6020B         | 606338              |
| 92525931010 | FB-02     | EPA 3005A       | 606045   | EPA 6020B         | 606338              |
| 92525931011 | YGWC-42   | EPA 3005A       | 606045   | EPA 6020B         | 606338              |
| 92525931012 | YGWC-38   | EPA 3005A       | 606045   | EPA 6020B         | 606338              |
| 92525931001 | YGWC-24SA | EPA 7470A       | 605556   | EPA 7470A         | 605621              |
| 92525931002 | YGWC-36A  | EPA 7470A       | 605556   | EPA 7470A         | 605621              |
| 92525931003 | DUP-2     | EPA 7470A       | 605556   | EPA 7470A         | 605621              |
| 92525931004 | YGWC-23S  | EPA 7470A       | 605556   | EPA 7470A         | 605621              |
| 92525931005 | YGWC-41   | EPA 7470A       | 605556   | EPA 7470A         | 605621              |
| 92525931006 | YGWC-43   | EPA 7470A       | 605556   | EPA 7470A         | 605621              |
| 92525931007 | FB-1      | EPA 7470A       | 605556   | EPA 7470A         | 605621              |
| 92525931008 | EB-2      | EPA 7470A       | 605556   | EPA 7470A         | 605621              |
| 92525931009 | YGWC-49   | EPA 7470A       | 605556   | EPA 7470A         | 605621              |
| 92525931010 | FB-02     | EPA 7470A       | 605556   | EPA 7470A         | 605621              |
| 92525931011 | YGWC-42   | EPA 7470A       | 605942   | EPA 7470A         | 606185              |
| 92525931012 | YGWC-38   | EPA 7470A       | 605942   | EPA 7470A         | 606185              |
| 92525931001 | YGWC-24SA | SM 2450C-2011   | 604765   |                   |                     |
| 92525931002 | YGWC-36A  | SM 2450C-2011   | 604765   |                   |                     |



### QUALITY CONTROL DATA CROSS REFERENCE TABLE

| Project:          | YATES    |
|-------------------|----------|
| Pace Project No.: | 92525931 |

| Lab ID      | Sample ID | QC Batch Method        | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|-----------|------------------------|----------|-------------------|---------------------|
| 92525931003 | DUP-2     | SM 2450C-2011          | 604765   |                   |                     |
| 92525931004 | YGWC-23S  | SM 2450C-2011          | 604765   |                   |                     |
| 92525931005 | YGWC-41   | SM 2450C-2011          | 604765   |                   |                     |
| 92525931006 | YGWC-43   | SM 2450C-2011          | 604765   |                   |                     |
| 92525931007 | FB-1      | SM 2450C-2011          | 604895   |                   |                     |
| 92525931008 | EB-2      | SM 2450C-2011          | 604895   |                   |                     |
| 92525931009 | YGWC-49   | SM 2450C-2011          | 604895   |                   |                     |
| 92525931010 | FB-02     | SM 2450C-2011          | 604895   |                   |                     |
| 92525931011 | YGWC-42   | SM 2450C-2011          | 604895   |                   |                     |
| 92525931012 | YGWC-38   | SM 2450C-2011          | 604895   |                   |                     |
| 92525931001 | YGWC-24SA | EPA 300.0 Rev 2.1 1993 | 606456   |                   |                     |
| 92525931002 | YGWC-36A  | EPA 300.0 Rev 2.1 1993 | 606456   |                   |                     |
| 92525931003 | DUP-2     | EPA 300.0 Rev 2.1 1993 | 606456   |                   |                     |
| 92525931004 | YGWC-23S  | EPA 300.0 Rev 2.1 1993 | 606496   |                   |                     |
| 92525931005 | YGWC-41   | EPA 300.0 Rev 2.1 1993 | 606496   |                   |                     |
| 92525931006 | YGWC-43   | EPA 300.0 Rev 2.1 1993 | 606496   |                   |                     |
| 92525931007 | FB-1      | EPA 300.0 Rev 2.1 1993 | 606496   |                   |                     |
| 92525931008 | EB-2      | EPA 300.0 Rev 2.1 1993 | 606496   |                   |                     |
| 92525931009 | YGWC-49   | EPA 300.0 Rev 2.1 1993 | 606496   |                   |                     |
| 92525931010 | FB-02     | EPA 300.0 Rev 2.1 1993 | 606496   |                   |                     |
| 92525931011 | YGWC-42   | EPA 300.0 Rev 2.1 1993 | 606496   |                   |                     |
| 92525931012 | YGWC-38   | EPA 300.0 Rev 2.1 1993 | 606496   |                   |                     |

| 0                                                                                                 | Document Na                         | me:         |                 | Document Revise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ad: October 28, 2020                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------|-------------------------------------|-------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pace Analytical                                                                                   | Sample Condition Upon<br>Document N | Receipt(SCI | JR)             | Issuing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Authority:                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                   | F-CAR-CS-033-F                      | lev.07      |                 | Pace Carolin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | as Quality Office                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| oratory receiving samples:<br>heville Eden Greenwood                                              | Huntersville                        | Raleigh[    | ] Me            | chanicsville                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Atlanta Ker                                                                                                     | nersville                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Jpon Receipt                                                                                      | Power                               | Pro         | ject #:         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| rler:                                                                                             | IPS USPS<br>Other:                  | Geren       |                 | 92525931                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| dy Seal Present? Yes                                                                              | Seals Intact? . Yes                 | No          |                 | Date/Initials Perso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n Examining Contents:                                                                                           | 75/21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ng Material: 🛛 Bubble Wrap                                                                        | Bubble Bags PNone                   | Oth         | er              | Biol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ogical Tissue Frozen?                                                                                           | 174-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| nometer:<br>DIR Gun ID: 230                                                                       | Type of Ice:                        | Vet DBlu    | • 🗆             | tone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Eldo LINIA                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| er Temp: <u>C.</u> Correction<br>Add/Subt                                                         | Factor: $0, 0$<br>2, 0              |             | Ten             | ip should be above<br>Samples out of ten<br>has begun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | freezing to 6°C<br>np criteria. Samples on ici                                                                  | e, cooling process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| A Regulated Soil ( N/A, water sample)<br>amples originate in a quarantine zone within t<br>Yes No | he United States: CA, NY, or SC     | (check map  | s)? Did<br>incl | samples originate fro<br>uding Hawaii and Pue<br>Comm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m a foreign source ('nter<br>rto Rico)? Yes                                                                     | nationally,<br>No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| at it at a standy because 1                                                                       |                                     |             | 1               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Chain of Custody Present?                                                                         |                                     |             | -               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Samples Arrived within Hold Time?                                                                 | Lates LINO                          |             | 3               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | and a set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set o |
| Short Hold Time Analysis (<72 hr.)?                                                               |                                     |             | 4               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Rush Turn Around Time Requested?                                                                  |                                     |             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sufficient Volume?                                                                                | Eres No                             |             | 5.              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Correct Containers Used?<br>-Pace Containers Used?                                                | Tres INO                            |             | 6.              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.149.000.000.000.000.000.000.000.000.000.0                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Containers Intact?                                                                                | Bres DNO                            | DN/A        | 7.              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Dissolved analysis: Samples Field Filtered?                                                       | Yes- No                             | EN/A        | 8.              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sample Labels Match COC?                                                                          | TYes No                             |             | 9.              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -Includes Date/Time/ID/Analysis Matrix                                                            | W                                   |             |                 | and a state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Headspace in VOA Vials (>5-6mm)?                                                                  |                                     | UN/A        | 10.             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 | www.eyeeseeseegeveereegevee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Trip Blank Present?                                                                               | TYes No                             | (IN/A)      | 11.             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Trip Blank Custody Seals Present?                                                                 | Yes No                              | EN/A        |                 | ayanaa ahkinaa ah ayaa ahkinaa ah ay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| COMMENTS/SAMPLE DISCREPANCY                                                                       |                                     |             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Field Data Required                                                                                             | ? []Yes []No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                   |                                     |             | lati            | D of split container                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <:                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| LIENT NOTIFICATION/RESOLUTION                                                                     |                                     |             | LOUT            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Person contacted                                                                                  |                                     | Date/       | fime.           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                   | · · · · · ·                         |             |                 | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Project Manager SCURF Review:                                                                     |                                     |             |                 | vate;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and and the second second second second second second second second second second second second second second s |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                   |                                     |             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| D                          | Document Name:<br>Sample Condition Upon Receip | t(SCUR)   | Document Revised: October 28, 2020<br>Page 2 of 2 |
|----------------------------|------------------------------------------------|-----------|---------------------------------------------------|
| / Pace Analytical          | Document No.:<br>F-CAR-CS-033-Rev.07           |           | Issuing Authority:                                |
| rk top half of box if pH a | nd/or dechlorination is                        | Project # | WO#:92525931                                      |

\*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Due Date: 03/19/21

CLIENT: GA-GA Power

PM: KLH1

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg \*\*Bottom half of box is to list number of bottles

| Item# | BP4U-125 mL Plastic Unpreserved (N/A) (CI-) | BP3U-250 mL Plastic Unpreserved (N/A) | BP2U-500 mL Plastic Unpreserved (N/A) | BP1U-1 liter Plastic Unpreserved {N/A} | BP4S-125 mL Plastic H2SO4 (pH < 2) (CI-) | BP3N-250 mL plastic HNO3 (pH < 2) | BP42-125 mL Piastic ZN Acetate & NaOH (>9) | BP4C-125 mL Plastic NaOH (pH > 12) (CI-) | WGFU-Wide-mouthed Glass jar Unpreserved | AG1U-1 liter Amber Unpreserved (N/A) (CI-) | AG1H-1 liter Amber HCl (pH < 2) | AG3U-250 mL Amber Unpreserved (N/A) (CI-) | AG1S-1 liter Amber H2SO4 (pH < 2) | AG3S-250 mL Amber H2SO4 (pH < 2) | AG3A(DG3A)-250 mL Amber NH4CI (N/A)(CI-) | DG9H-40 mL VOA HCI (N/A) | VG9T-40 mL VOA Na2S2O3 (N/A) | VG9U-40 mL VOA Unp (N/A) | DG9P-40 mL VOA H3PO4 (N/A) | VOAK (6 vials per kit)-5035 kit (N/A) | V/GK (3 vials per kit)-VPH/Gas kit (N/A) | SPST-125 mL Sterile Plastic (N/A – lab) | SP2T-250 mL Sterile Plastic (N/A - lab) | NN | BP3A-250 mL Plastic (NH2)2504 (9.3-9.7) | AGOU-100 mL Amber Unpreserved vials (N/A) | VSGU-20 mL Scintillation vials (N/A) | DG9U-40 mL Amber Unpreserved vials (N/A) |
|-------|---------------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|------------------------------------------|-----------------------------------|--------------------------------------------|------------------------------------------|-----------------------------------------|--------------------------------------------|---------------------------------|-------------------------------------------|-----------------------------------|----------------------------------|------------------------------------------|--------------------------|------------------------------|--------------------------|----------------------------|---------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------|----|-----------------------------------------|-------------------------------------------|--------------------------------------|------------------------------------------|
| 1     | $\backslash$                                | 1                                     | 1                                     |                                        | $\sum$                                   | X                                 | 1                                          | $\sum$                                   |                                         |                                            |                                 |                                           | 1                                 | 7                                | 7                                        |                          |                              |                          |                            |                                       |                                          |                                         |                                         | Z  | $\Delta$                                |                                           |                                      |                                          |
| 2     |                                             | 1                                     | 1                                     |                                        |                                          | N                                 | $\sum$                                     | 1                                        |                                         |                                            |                                 |                                           | 1                                 | 7                                | 1                                        |                          |                              |                          |                            |                                       |                                          |                                         |                                         | K  | $\Delta$                                |                                           |                                      |                                          |
| 3     |                                             | 1                                     | 1                                     |                                        |                                          | N                                 |                                            | 1                                        |                                         |                                            | 1                               |                                           | 7                                 | 1                                | 7                                        |                          |                              |                          |                            |                                       |                                          |                                         |                                         | X  | 1                                       |                                           |                                      |                                          |
| 4     |                                             | 1                                     | 1                                     |                                        |                                          | ix                                |                                            |                                          |                                         |                                            | 1                               |                                           | 1                                 | 1                                | 1                                        |                          |                              |                          |                            |                                       |                                          |                                         |                                         | Z  | X                                       |                                           |                                      |                                          |
| 5     |                                             | 1                                     | 1                                     |                                        |                                          | X                                 |                                            | 1                                        |                                         |                                            | 1                               |                                           | 1                                 | 1                                | 1                                        |                          |                              |                          |                            |                                       |                                          |                                         |                                         | X  | $\mathbf{n}$                            |                                           |                                      |                                          |
| 6     | 1                                           | 1                                     | t                                     |                                        |                                          | K                                 |                                            | 1                                        |                                         |                                            | 1                               |                                           | /                                 | 1                                | 1                                        |                          | 1                            |                          |                            |                                       |                                          |                                         |                                         | X  | X                                       |                                           |                                      |                                          |
| 7     |                                             | 1                                     | 1                                     |                                        |                                          | N                                 |                                            |                                          |                                         |                                            | 1                               |                                           | 1                                 | 1                                |                                          |                          |                              |                          |                            |                                       |                                          |                                         |                                         | X  | X                                       |                                           |                                      |                                          |
| 8     |                                             | 1                                     | 1                                     |                                        |                                          | K                                 |                                            |                                          |                                         |                                            | 1                               |                                           |                                   | 1                                |                                          |                          |                              |                          |                            |                                       |                                          |                                         |                                         | X  | X                                       |                                           |                                      |                                          |
| 9     |                                             |                                       | Ì                                     |                                        | 1                                        | N                                 | 1                                          | 1                                        |                                         |                                            |                                 |                                           |                                   | 1                                | 1                                        |                          |                              |                          |                            |                                       |                                          |                                         |                                         | X  | X                                       |                                           |                                      | _                                        |
| 10    |                                             | 1                                     | 1                                     |                                        | 1                                        | N                                 | 1                                          | 1                                        |                                         |                                            |                                 |                                           | 1                                 | 1                                | 1                                        |                          |                              |                          |                            |                                       |                                          |                                         |                                         | X  | $\mathbf{X}$                            |                                           |                                      |                                          |
| 11    |                                             | 1                                     | 1                                     |                                        |                                          | X                                 |                                            | 1                                        |                                         |                                            |                                 |                                           | 1                                 | 1                                |                                          |                          |                              |                          |                            |                                       |                                          |                                         |                                         | R  | Z                                       |                                           |                                      |                                          |
| 12    |                                             | ſ                                     | 1                                     |                                        | 1                                        | N                                 |                                            | 1                                        |                                         |                                            |                                 |                                           | /                                 | 1                                |                                          |                          |                              |                          |                            |                                       |                                          |                                         |                                         | X  | $\backslash$                            |                                           |                                      |                                          |

|           |                      | pH Ad           | ljustment Log for Pres     | erved Samples                 |                                 |       |
|-----------|----------------------|-----------------|----------------------------|-------------------------------|---------------------------------|-------|
| Sample ID | Type of Preservative | pH upon receipt | Date preservation adjusted | Time preservation<br>adjusted | Amount of Preservative<br>added | Lot # |
|           |                      |                 |                            |                               |                                 |       |
|           |                      |                 |                            |                               |                                 |       |
|           |                      |                 |                            |                               |                                 |       |
|           |                      | s               | ar                         |                               |                                 |       |

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

| 1             | 1 | 11   | 2                   | N. | B  | B                | a, i | 8  | 5  | 8        | 5  | 16         | 15          | 4        | 12        | ITEM#                                                                                                                  |                                      |          | mested             | alt:           | nion, G  | mpany:        | quined .                  | ~                 |
|---------------|---|------|---------------------|----|----|------------------|------|----|----|----------|----|------------|-------------|----------|-----------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------|--------------------|----------------|----------|---------------|---------------------------|-------------------|
|               |   |      | ADDITIONAL COMMENTS |    |    |                  |      |    |    |          |    |            | Names DUD-3 | YGWC-36A | YGWC-24SA | SAMPLE ID<br>One Character peq box.<br>(A-Z, 0-9 /, -1<br>Semple kts must be unique                                    |                                      |          | (770)384-6026 JFax |                | A 30114  | Georgia Power | Client information:       | - Pace Analytical |
|               |   | C    | 10 m                |    |    |                  |      |    |    |          |    |            |             |          |           | Water Wind<br>Water Water<br>Protection<br>Production<br>Production<br>Web<br>Out Out<br>Other<br>Other<br>Traue<br>15 | MATRIXO CODED<br>Draking Walero DAYD |          | Project Name       | Purchase Ord   | Copy 10: | Report To:    | Section B<br>Required Pro |                   |
|               |   |      | 抖音                  | Ē  | -  |                  |      | WT | WT | MI       | WT | WT         | WT          | WT       | TW        | MATRIX CODE (SOD VERIO CO<br>SAMPLE TYPE (G=GRAB                                                                       | cales to left)                       |          | X                  | er #:          |          | Becky S       | lect Inf                  |                   |
|               |   |      | I AN CENSIN         |    |    |                  |      | -  |    |          |    |            | a kard      | (Shiles  | No.       | DATE                                                                                                                   | Τ                                    |          | ates AMA           |                |          | Sleever       | ormstion:                 |                   |
| PRIM          |   |      | OLVINAL             |    |    |                  |      |    |    |          |    |            | 1           | 1235     | 1156      | ART                                                                                                                    | cours                                |          |                    |                |          |               |                           |                   |
| R PULLIE A    |   |      |                     |    |    |                  |      |    |    |          |    |            |             |          |           | DATE                                                                                                                   | CTED                                 |          |                    |                |          |               |                           | The Cha           |
| ND SK         |   | R    | N                   |    |    |                  |      |    |    |          |    |            |             |          |           | TIME                                                                                                                   |                                      |          |                    |                |          |               |                           | lin-of-           |
|               |   | ling | M                   | F  |    |                  |      |    |    |          |    | - <b>-</b> | 1           |          |           | SAMPLE TEMP AT COLLECT                                                                                                 | ON                                   |          |                    | Ц              | _        |               |                           | Custo             |
| 1             |   | Q    |                     |    |    |                  |      |    |    |          |    |            | S           | S        | X         | # OF CONTAINERS                                                                                                        | · · · · ·                            | axe.     | Pacel              | Page           | Comp     | Attent        | Sectio                    | ydy is            |
| er l          |   | G    | S R                 | -  | -  |                  |      | -  |    | -        | -  | -          |             | -        | ~         | H2SO4                                                                                                                  | -                                    | Protite  | Projec             | Quote          | any N    | ion:          |                           | aL                |
| r I           | - | 100  | 1                   |    |    |                  |      |    |    |          |    |            |             |          | X         | HNO3                                                                                                                   | Pre                                  | 3        | Man                |                | ame      |               | (parate                   | EGAI              |
| $\mathbf{D}$  |   | 4    | 1                   |    |    |                  |      |    |    |          |    |            |             |          |           | HC                                                                                                                     | Ser                                  | 1084     | ager:              |                |          |               | 97                        | DO                |
| ¥ I           |   | 2    | 2                   | -  | -  |                  |      |    |    |          | -  | -          |             |          |           | NaOH                                                                                                                   | ative                                | °        | 5                  |                | 1        |               |                           | CUN               |
| a             |   | 1    | 88                  | 1  | -  | +                |      |    |    | <b> </b> |    | -          | -           |          |           | Methanol                                                                                                               | - N                                  |          | evin.h             |                |          |               |                           | AENT              |
| 2             |   | 11   | 869                 | 1  | 1  |                  |      |    |    |          |    |            |             |          |           | Other                                                                                                                  |                                      |          | eming              |                |          |               |                           | A                 |
|               | 1 | a    | BALL                |    |    |                  |      |    |    | 4        | 1. | 1.         |             |          |           | Analyses Test                                                                                                          | YIN                                  | 6        | Oed                |                |          |               |                           | relev             |
| 0324          |   | 1    | CHI                 |    | ** |                  |      | ×  | Ĭ- | Š-       | ľ. | 1          | ×           | ×        | ×         | TDS                                                                                                                    |                                      |          | elabs.             |                |          |               |                           | ant               |
| 1.            |   | 1 fr | 3                   | -  | -  |                  |      | ×  | 1- | X        | 1  | *          | ×           | ×        | ×         | App III/IV Metals                                                                                                      |                                      | Feq      | com,               |                |          |               |                           | fields            |
| 19            |   | 1 th | 10                  | E  |    |                  |      | ×  | 1  | A        | X  | ×          | ×           | ×        | ×         | RAD 9315/9320                                                                                                          | -                                    | in state |                    |                |          |               |                           | mus               |
|               |   | -19  |                     |    |    |                  |      | ľ  |    |          |    | V          |             |          |           |                                                                                                                        |                                      | (And     |                    |                |          |               |                           | t be              |
|               |   | K    | 8                   | -  | -  |                  |      |    |    | -        |    | -          | -           |          |           |                                                                                                                        |                                      | Tals I   |                    |                |          |               |                           | Sm                |
|               |   | 0    | - TR                |    | -  | $\left  \right $ |      |    |    |          |    | -          | -           |          |           |                                                                                                                        |                                      |          | 188                |                |          | Ц             |                           | plete             |
|               |   | 12   |                     |    |    |                  |      |    |    |          |    |            |             |          |           |                                                                                                                        |                                      | A TH     |                    |                |          |               |                           | dac               |
|               |   |      | TER .               |    | -  | -                |      |    |    |          | -  | -          |             |          |           | driine ,                                                                                                               |                                      |          | 10 m               |                | 00       | Г             |                           | curate            |
| MP In G       |   |      |                     | F  | 1  |                  |      |    |    |          |    |            | 1           |          |           | Residual Chiprine (Y/N)                                                                                                | Contraction of the                   |          | Stad               | and the second | C        |               | Page :                    | Ŋ.                |
| ceived on     | 1 |      | 12                  | F  | 1  |                  |      |    |    |          |    |            | 6           | 19       | 44        | - Marine - Marine - Marine - Marine - Marine - Marine - Marine - Marine - Marine - Marine - Marine - Marine - M        | 1.30                                 | GA       | 01:10              | 100            | d        |               |                           |                   |
| N)            |   |      | ALC:                | č. |    |                  |      |    | 1  | 1        | 1  | 1          |             | 1        | 1.        |                                                                                                                        |                                      |          | catior             | - And - Con    |          | Í             | ~                         |                   |
| elody<br>ledD |   |      | 100                 | *  |    |                  |      | 1  |    |          |    | 1          | 1           | S        | 5         |                                                                                                                        | 200                                  |          |                    | 1000           | 8        | 2             |                           |                   |
| olerD<br>N)   |   |      | THOM                |    |    |                  |      |    |    |          |    |            |             | 4        | ど         |                                                                                                                        |                                      |          |                    |                |          | ľ             | *                         |                   |
| mples<br>IctD |   |      |                     |    |    |                  |      |    |    |          |    |            | ļ           | 191      | Cr.       |                                                                                                                        |                                      | E.       |                    |                |          | 0             | 10                        |                   |
| N)            |   |      |                     |    |    | 1                |      |    |    |          |    |            |             |          |           |                                                                                                                        | 1000                                 |          |                    |                |          | ľ             | 3.                        |                   |

|                |           |     |        |                        | R | 8 | 153 | 3              | 8   | 5      | 00     | 17     | 6  | 15 year | 14 ×0    | 13       | 116M #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | Juested Dux | MP:               | Non, GA 30 | iress:                                | Juired Ciler                 | 1                                     |
|----------------|-----------|-----|--------|------------------------|---|---|-----|----------------|-----|--------|--------|--------|----|---------|----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|-------------------|------------|---------------------------------------|------------------------------|---------------------------------------|
|                |           |     |        | ADDATIONNAL CONSIDENTS |   |   |     | e havene state |     |        |        |        |    | 1       |          | YGWC-2   | SAMPLE ID<br>One Character per box.<br>(A-2, D-9 1, -<br>Sample lots must be unique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           | e Date:     | JTTONIAL SSOR Fat | 1114       | Georgia Power<br>1070 Bridoe Mill Ave | nt Information:              | and official con<br>one is sufficient |
|                |           |     | 5      | 8                      |   |   |     |                | -   | -      |        | V      |    | V       | V        | 3S       | MATTRACT<br>Domining Water<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattract<br>Mattra |           | Project #:  | Purchase Order    |            | Copy To:                              | Section is<br>Required Proje |                                       |
|                |           |     | RE     | INCURSER<br>Beternoon  |   |   |     |                | VT  | 5      | 4      | 5      | ন  | 5       | 4        | AL N     | SAMPLE TYPE (G=GRAD C=COMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ë         | Talles      | *                 |            | cky Sleev                             | ct informa                   |                                       |
| T              | 10        |     | N      | DBYINF                 |   |   |     |                |     |        | -      |        |    |         |          | 4        | START                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | WA          |                   |            | æ                                     | ntion:                       |                                       |
| SIGNATU        | NAPLER NA |     | work   | NOULTWIE               |   |   |     |                |     |        |        |        |    |         | <b>_</b> | 212      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |             |                   |            | ł                                     |                              | Тре                                   |
| JRE of SA      | WE AND    | -   | 2      | 0                      | - | ┝ |     |                | -   | -      | 121    |        | -  |         |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |             |                   |            |                                       |                              | Chain-o                               |
| MPLER:         | NOWATL    |     | that 1 | ATE                    |   |   |     |                |     |        |        |        |    |         |          |          | SAMPLE TEMP AT COLLECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           |             |                   |            |                                       |                              | f-Custo                               |
| Cla            |           |     | 1700   | TIME                   |   |   |     |                |     |        |        |        |    |         |          | 2        | # OF CONTAINERS<br>Unpreserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           | ace Prof    | Page Que          | ddness:    | Attention:                            | nvoice in                    | dy is a                               |
| Re             |           |     | 1      | i ter                  |   |   |     |                |     |        |        |        |    |         |          | ~        | H2SO4<br>HNO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           | He #        | Me:               | 11001      | Name:                                 | formatio                     | LEGAL                                 |
| 1V             |           |     | 1      |                        |   |   |     |                |     |        | E D    |        |    | -       |          |          | NaOH Servati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           | 10840       |                   |            |                                       | ¥.                           | DOCU                                  |
| NOUN           |           |     | two    | ACCEPTE                |   |   |     |                |     |        |        |        |    |         |          |          | Na2S2O3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | kevin.her   |                   |            |                                       | 1                            | IMENT.                                |
| SQI            |           |     | 6      | DBYIAS                 |   |   |     |                |     |        |        |        |    |         |          | <u> </u> | Other Analyses Test Y/N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | ting@pa     | ,                 |            |                                       |                              | All rele                              |
|                | <b>Y</b>  |     | -      | FILLIATIO              |   |   |     |                | ××× | ××     | ××     | ×<br>× | ×× | K       | ××       | ××       | TD5<br>Cl, F, SO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           | celabs.c    |                   |            |                                       |                              | vant fi                               |
| TE Signed      |           |     | will   |                        |   |   |     |                | x x | ×<br>× | ×<br>× | ×<br>× | ×× | *       | ×        | ××       | App III/IV Metats<br>RAD 8316/8320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Requested | om,         |                   |            |                                       |                              | elds must                             |
| J              |           |     | -      | R                      |   |   |     |                |     |        |        |        |    |         |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Analyzis  |             |                   |            |                                       |                              | be com                                |
| 5              |           | 111 | 2ª     | 12                     |   |   |     |                |     |        |        |        |    |         |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Develop   | T           | Γ                 |            | _                                     |                              | pleted a                              |
|                |           |     | ach.   | <b>N</b>               | - |   |     |                |     |        |        |        |    |         |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DUA       |             |                   |            |                                       |                              | accurate                              |
| EMP In         | nc        |     |        | 1                      |   |   |     |                |     |        |        |        | 1  |         |          | L        | Residual Chlorine (Y/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           | SIL         |                   | Regu       |                                       | Page :                       | N.                                    |
| ecalve         | d on      |     |        | STATE                  | - |   |     |                |     |        | -      | Γ      |    | Γ,      | 4        | 50       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | e/Loca      |                   | ADDYA      | 2                                     | 4                            |                                       |
| /N)<br>uslody  |           |     |        | PLE COM                |   |   |     |                |     |        |        |        |    |         | 1        | 1.51     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           | tion        |                   | ancy (     | 50                                    | 1                            |                                       |
| colerD<br>(/N) |           |     |        | DITIONS                |   |   |     |                |     |        |        |        |    |         |          | 44       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |             |                   |            | 0                                     | đ                            |                                       |
| amples<br>actC | 5         |     |        | 1                      |   |   |     |                |     |        |        |        |    |         |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |             |                   | P          | M                                     | 5                            |                                       |

|              |           |          |   | -      |            |                  |   |   | 7-00  | 1 T Z - |           | YGWC43 | KOWERT2 | YGWC-41 | X  | HARDEN | SAMPLE ID<br>One Character per box.<br>(A-Z, 0-9 /<br>Sampte kds must be unique |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | lested Due Date: | 10: (770)334-5525 JPax | on, GA 30114     | ress: 1070 Ercher Mill Ave | uined Cilent Information;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |
|--------------|-----------|----------|---|--------|------------|------------------|---|---|-------|---------|-----------|--------|---------|---------|----|--------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|------------------------|------------------|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|              |           |          |   | Jet Cr |            |                  |   |   | NN NN |         | M         | WT     | WT      | WT      | WT | WT     | THE CODE (SSE VAL                                                               | WATRUD<br>Ornavong Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Water<br>Wa | 2            | Project #:       | Purchase Order #:      | vojy 10:         | Report To: Bed             | Section B<br>Required Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |
| ·            |           |          |   |        | Under the  |                  |   |   | 1510  | 14      | l<br>X    | 3/2    |         | 13/     |    |        | SAMPLE TYPE (G=GR                                                               | AB C×COMP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              | Yales R6         |                        |                  | ty Sleever                 | Informatic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
| 1            | 2         | Sug      |   | NV SQL | INTERNI    |                  |   |   | 5     | 30HI V  | +         | 1 145  |         | HOAD)   |    |        | START                                                                           | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                  |                        |                  |                            | ON:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| OTAL UKE     | UNT Name  | ER NAME  |   | P      | C.W        |                  |   |   |       | 1       |           | 0      |         | 40.3    |    |        | DATE                                                                            | LECTED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |                  |                        |                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| OI SAUNPL    | of SAMPL  | AND SIGN |   | 140    | ) Land     |                  |   |   |       |         |           |        |         |         |    |        | TIME                                                                            | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                  |                        |                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -Io-uleu |
| EK:          | Ę.        | ATUR     |   |        |            |                  |   |   | In    | КН      | -         | E T    |         | 5       |    |        | SAMPLE TEMP AT COLL                                                             | CTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1            | 0 0              | -01                    | 20               | 2                          | <b>T</b> (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Cusio    |
| L            | 5         |          |   | Q      | R          |                  |   |   | Ś     | 5       |           | 5      |         | 2       |    |        | Unpreserved                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1            | ace Pro          | ace Qu                 | iompan<br>doress | nention                    | iection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dy is a  |
| N            | R         |          |   |        | 1          |                  |   |   | 12    | 2       |           | <      | -       | <       |    |        | H2SO4                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | and as       | Yeat Ma          | ole:                   | y Name           |                            | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | LEG      |
| 11           | 10        |          |   | 0      |            |                  |   |   | 1     |         | 1         |        |         |         |    |        | HC                                                                              | Tesen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 108          | mager:           |                        | 24               |                            | internet in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se | AL DA    |
| 1            | E         |          |   | 1      | 18         |                  |   |   |       | -       |           |        |         |         |    |        | NaOH<br>Na2S203                                                                 | vative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10           | X                |                        |                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OCUN     |
| 1            | 122       |          |   | - Wer  | BLEF       |                  |   |   |       |         |           |        |         |         |    |        | Methanol                                                                        | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              | vinhe            |                        |                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | IENT.    |
|              | 50        |          |   | 1      | BILIA      | H                |   |   | L     |         |           |        |         |         | T  |        | Other                                                                           | NAL YOU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              | ming @           |                        |                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | All re   |
| 0            | 5         |          |   | A      | The second |                  |   | T | K     | ×       | ŧ         | ×      | 2       | * )     | T  | E      | TDS                                                                             | SI TAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              | uso::lat         |                        |                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | elevar   |
| ATES         |           |          |   | Sw     | 2          |                  |   |   | XX    | XXX     | 1         | ×      |         | * >     |    |        | CI, F, SO4                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RBS          | 35.00m           |                        |                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nt fiek  |
| Igned:       |           |          |   | 12     | 1          |                  |   |   | X     | X       |           | ×      |         | < >     |    |        | RAD 9315/9320                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Plansha<br>A |                  |                        |                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ts mu    |
| N            |           |          | _ | - 100  | -          |                  |   |   |       |         | $\square$ |        | 1       |         |    | -      | b                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d'Anal       |                  |                        |                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | st be    |
| 2%           |           |          |   | 4      | il Re      |                  |   |   |       |         |           | 1      |         |         |    |        |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | YSEF         |                  |                        |                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | comp     |
| 14           |           |          |   | +15    |            | $\left  \right $ |   |   |       |         | -         | -      | -       | _       |    | -      |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Belg         |                  | 1.00                   | Í                | -                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | leted    |
| 10           |           |          |   | 12     | Ĩ          |                  |   |   |       |         |           |        |         |         |    | $\pm$  |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TIN          |                  |                        |                  |                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | accur    |
|              | _         |          |   | + 12   | 142        | $\vdash$         |   | _ |       |         | -         |        | Ţ       |         | _  | -      |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                  |                        |                  | P                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ately.   |
| TEM          | P in C    |          |   |        |            |                  |   |   |       |         | _1        |        |         |         |    |        | Realdual Chiorine (Y/N)                                                         | 13.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              | Stanto           | Regul                  |                  | : efi                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| Rece<br>IceD | lived c   | n        |   |        | N.         |                  |   |   |       |         | 1         | 2      | 15      | 3       |    | I      |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GA           | Loca             | tory A                 | 0                | 1-                         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |
| Cus          | ody<br>dD | -        |   | +-+-   | ECON       |                  |   |   |       | 1       |           | T      | 1       | -       | 11 |        |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | 661              | Dench                  | 00               | P                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| Cool         | erD       |          |   |        | NOIL       |                  | Í |   |       |         | K         | £      | State   | A.W.A   |    | 1      |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |                  |                        |                  | 2                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| Sam          | ples<br>D |          |   |        |            |                  |   | Ì |       |         | 1         |        | 1       | 2       |    |        |                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | 10               |                        | D                | 10                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| (T/N         | 1         |          |   |        |            |                  |   |   |       |         | K         | S      | is is   | in a    |    |        |                                                                                 | 16 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |                  | 6                      |                  | p                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |

88

|                                                                      |          | ADOLUDIAN COMPLETE      |  |      |      |       |     | E8-02       | VGWC49    | WEWC 35A- |        | SAMPLE ID<br>One Character per box.<br>(A.Z. 0.8 /<br>Sample His must be unique |                                           |                         | (770)384-6526 Fax       |                   | IS: 1070 Bridge MIR Ave | any: Georgia Power | n A<br>rad Client information: |
|----------------------------------------------------------------------|----------|-------------------------|--|------|------|-------|-----|-------------|-----------|-----------|--------|---------------------------------------------------------------------------------|-------------------------------------------|-------------------------|-------------------------|-------------------|-------------------------|--------------------|--------------------------------|
|                                                                      | to g     | DNE ESG                 |  | WT   | WT   | WT    | WT  | WT          | WT        | WT        | WT     |                                                                                 | MATRIXCI<br>COOCCI COOCCI<br>des Lo left) | palater                 | Project Name: Y         | Purchase Order #: | Copy To:                | Report To: Becky   | Section B                      |
| SAMPLER W                                                            |          | RANNED BY LANTIN MITTON |  |      |      |       |     | 3-4-21 1500 | 3421451   |           |        |                                                                                 | COLLECT                                   |                         | attes AMA               |                   |                         | Steever            |                                |
| AME AND SIGNATURE                                                    | 1 1245   | - PATE                  |  |      |      |       |     | 8           | স         |           |        | SAMPLE TEMP AT COLLECT                                                          | 0N                                        | Pac                     | Pac                     | No.               | 8                       | LAH<br>MAR         | ie Chain-oi-Custody<br>Sec     |
| othe Pipti                                                           | 45 Chus  | THE                     |  |      |      |       |     |             | V V I     |           |        | Unpreserved<br>H2SO4<br>HNO3<br>HCI<br>NaOH<br>Na2S2O3                          | Preservatives                             | e Profile #: 10840      | e Project Manager: kevi | P Onnie:          | pany Name:              | ace infollation:   | tion C                         |
| CMICZ MTE                                                            | latterde | ALINE AVABUAL           |  | ×××× | ×××× | ××××× | XXX | ×××         | ××××      | 24        | ж<br>Х | Methanol<br>Other<br>Atialysees Test<br>TDS<br>Cl, F, SO4                       | YIN                                       | 8                       | in herring@cacelabs.com |                   |                         |                    | ENT. All relevant fiek         |
| Jane: 3.4.21                                                         | 49 MGL   | 明月                      |  | ×    | ×    | ×     | ×   | ×           | ×         |           | \$     | RAD 8315/9320                                                                   |                                           | Duasted Ansives: Pitton |                         |                   |                         |                    | is must be complete            |
| TEMP in C                                                            | <i>M</i> | THE                     |  |      |      |       |     |             |           |           |        | Basking Chinago area                                                            |                                           |                         | 4                       | Reg               |                         | Page :             | ed accurately.                 |
| Received on<br>(cc)<br>(Y/N)<br>Custody<br>Seated<br>Cooler<br>(Y/N) |          | SAMPLE CONDITIONS       |  |      |      |       |     |             | 04: S. 88 | l         | l      | rroenuuz Ghionne (Y/N)                                                          |                                           | GA                      | the Viscourie           | utationy Agency   | 000                     | 8                  |                                |

÷.

|                                                                      | 111      |                    | 5 10                                   | 100 14 | 01          | 10      | *           | 19     | (IN)  | -      | TITEM #                                                                            |                  | 11                   | to                   | stie                 | nton         | 13                  |                                 |
|----------------------------------------------------------------------|----------|--------------------|----------------------------------------|--------|-------------|---------|-------------|--------|-------|--------|------------------------------------------------------------------------------------|------------------|----------------------|----------------------|----------------------|--------------|---------------------|---------------------------------|
|                                                                      | i i      | ADDITIONAL COMPS   |                                        |        | YGWC.38     | VCWC 42 | YGWC42      | ****** | YOMAN | *CWARD | SAMPLE ID<br>One Character per box.<br>(A-Z, 0-8 /, -<br>Sample lds must be unique |                  |                      | sted Due Date:       |                      | L GA 30114   | any: Georgia: Power | an A<br>and Client Information: |
|                                                                      | 24       | []]<br>[]]         |                                        |        | *           | \$      | ž           | \$     | 8     | ×      |                                                                                    | MATRIXC CODED 19 |                      | Project Name:        | Purchase Order       | Copy To:     | Report To: Br       | Section B<br>Recuired Proje     |
| Scale (5                                                             | A.       |                    |                                        |        | 7 34211345  | -       | 5481245     | -      | -     | 4      | SAMPLE TYPE (G=GRAB                                                                | C=COMP)          |                      | Yates R6             | *                    |              | today Sleever       | rê întermetine                  |
| T NAME AND SIGNATUR<br>T Name of SAMPLER:                            | 348      | MIE                |                                        |        |             |         |             |        |       |        | SAMPLE TEMP AT COLLECT                                                             |                  |                      |                      |                      |              |                     |                                 |
| Kate Pre                                                             | 2 Chr    | <b>N</b> .         | ······································ |        | 1//0        |         | M M         |        |       |        | Unpreserved<br>H2SO4<br>HNO3<br>HCI<br>NaOH                                        | Preserval        | ace Profile #: 10840 | ace Project Manager: | wares:<br>war Quote: | ompany Name: | Wencon:             | action C                        |
|                                                                      | whe that | ACCEPTED BY / AFFL |                                        |        | ×           | *       | ×           | ×      |       | ×      | Na2S203<br>Methanol<br>Other<br>Analyses Tgat                                      | tives            |                      | kevin.heining@pacet  | -                    |              |                     | UMENI. Ali rejeva               |
|                                                                      | talk 27  |                    |                                        |        | X<br>X<br>X | XXX     | ×<br>×<br>× | ××××   | ×     | × ×    | CI, F, SO4<br>App IllisV Metals<br>RAD 9315/9320                                   |                  | Raquestad Accelys    | abs.com,             |                      |              |                     | ant lields must be co           |
|                                                                      | also 1   | ONTE INTE          |                                        |        |             |         |             |        |       | _      |                                                                                    |                  | E FILMAND (TYNE)     | -                    | 1000                 |              |                     | ompleted accurately             |
| VIP In C<br>celved on<br>V)<br>Ilody<br>ledo<br>olero<br>N)<br>moles |          | SAMPLE CONDITIONS  |                                        |        | pH:5.0      | 1       | 04:5.50     |        | 1     | 1      | Residual Chlorine (Y/N)                                                            |                  | GA                   | State / Location     | Regulatory Agency    | 68           | age: (m) Of         |                                 |



Pace Analytical Services, LLC 110 Technology Parkway Peachtree Corners, GA 30092 (770)734-4200

March 17, 2021

Ms. Lauren Petty Southern Co. Services 42 Inverness Center Parkway Birmingham, AL 35242

RE: Project: YATES Pace Project No.: 92525936

Dear Ms. Petty:

Enclosed are the analytical results for sample(s) received by the laboratory on March 05, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Asheville
- Pace Analytical Services Charlotte
- Pace Analytical Services Peachtree Corners, GA

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kandony

Kevin Herring kevin.herring@pacelabs.com 1(704)875-9092 HORIZON Database Administrator

Enclosures

cc: Joju Abraham, Georgia Power-CCR Lauren Coker, Georgia Pwer Geoffrey Gay, ARCADIS - Atlanta Kristen Jurinko Kelley Sharpe, ARCADIS - Atlanta Alex Simpson, Arcadis Samantha Thomas Maribel Vital





Pace Analytical Services, LLC 110 Technology Parkway Peachtree Corners, GA 30092 (770)734-4200

### CERTIFICATIONS

Project: YATES Pace Project No.: 92525936

#### **Pace Analytical Services Charlotte**

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12

#### Pace Analytical Services Asheville

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648 North Carolina Drinking Water Certification #: 37712

#### Pace Analytical Services Peachtree Corners

110 Technology Pkwy, Peachtree Corners, GA 30092 Florida DOH Certification #: E87315 Georgia DW Inorganics Certification #: 812 South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221

North Carolina Wastewater Certification #: 40 South Carolina Certification #: 99030001 Virginia/VELAP Certification #: 460222

North Carolina Certification #: 381 South Carolina Certification #: 98011001



Pace Analytical Services, LLC 110 Technology Parkway Peachtree Corners, GA 30092 (770)734-4200

### SAMPLE SUMMARY

Project: YATES Pace Project No.: 92525936

| Lab ID      | Sample ID | Matrix | Date Collected | Date Received  |
|-------------|-----------|--------|----------------|----------------|
| 92525936001 | YAMW-2    | Water  | 03/03/21 14:10 | 03/05/21 09:20 |
| 92525936002 | YAMW-4    | Water  | 03/03/21 13:05 | 03/05/21 09:20 |
| 92525936003 | YAMW-5    | Water  | 03/04/21 14:15 | 03/05/21 09:20 |
| 92525936004 | YAMW-1    | Water  | 03/03/21 15:15 | 03/05/21 09:20 |
| 92525936005 | PZ-35     | Water  | 03/04/21 15:30 | 03/05/21 09:20 |
| 92525936006 | EB1       | Water  | 03/04/21 16:00 | 03/05/21 09:20 |
| 92525936007 | PZ-37     | Water  | 03/04/21 11:55 | 03/05/21 09:20 |



### SAMPLE ANALYTE COUNT

| Project:<br>Pace Project No | YATES<br>.: 92525936 |                        |          |                      |
|-----------------------------|----------------------|------------------------|----------|----------------------|
| _ab ID                      | Sample ID            | Method                 | Analysts | Analytes<br>Reported |
| 92525936001                 | YAMW-2               | EPA 6010D              | DRB      | 1                    |
|                             |                      | EPA 6020B              | CW1      | 12                   |
|                             |                      | EPA 7470A              | VB       | 1                    |
|                             |                      | SM 2450C-2011          | ALW      | 1                    |
|                             |                      | EPA 300.0 Rev 2.1 1993 | JLH      | 3                    |
| 2525936002                  | YAMW-4               | EPA 6010D              | DRB      | 1                    |
|                             |                      | EPA 6020B              | CW1      | 12                   |
|                             |                      | EPA 7470A              | VB       | 1                    |
|                             |                      | SM 2450C-2011          | ALW      | 1                    |
|                             |                      | EPA 300.0 Rev 2.1 1993 | JLH      | 3                    |
| 2525936003                  | YAMW-5               | EPA 6010D              | DRB      | 1                    |
|                             |                      | EPA 6020B              | CW1      | 12                   |
|                             |                      | EPA 7470A              | VB       | 1                    |
|                             |                      | SM 2450C-2011          | ALW      | 1                    |
|                             |                      | EPA 300.0 Rev 2.1 1993 | JLH      | 3                    |
| 2525936004                  | YAMW-1               | EPA 6010D              | DRB      | 1                    |
|                             |                      | EPA 6020B              | CW1      | 12                   |
|                             |                      | EPA 7470A              | VB       | 1                    |
|                             |                      | SM 2450C-2011          | ALW      | 1                    |
|                             |                      | EPA 300.0 Rev 2.1 1993 | JLH      | 3                    |
| 2525936005                  | PZ-35                | EPA 6010D              | DRB      | 1                    |
|                             |                      | EPA 6020B              | CW1      | 12                   |
|                             |                      | EPA 7470A              | VB       | 1                    |
|                             |                      | SM 2450C-2011          | ALW      | 1                    |
|                             |                      | EPA 300.0 Rev 2.1 1993 | JLH      | 3                    |
| 92525936006                 | EB1                  | EPA 6010D              | DRB      | 1                    |
|                             |                      | EPA 6020B              | CW1      | 12                   |
|                             |                      | EPA 7470A              | VB       | 1                    |
|                             |                      | SM 2450C-2011          | ALW      | 1                    |
|                             |                      | EPA 300.0 Rev 2.1 1993 | JLH      | 3                    |
| 2525936007                  | PZ-37                | EPA 6010D              | DRB      | 1                    |
|                             |                      | EPA 6020B              | CW1      | 12                   |
|                             |                      | EPA 7470A              | VB       | 1                    |
|                             |                      | SM 2450C-2011          | ALW      | 1                    |
|                             |                      | EPA 300.0 Rev 2.1 1993 | JLH      | 3                    |

PASI-A = Pace Analytical Services - Asheville

PASI-C = Pace Analytical Services - Charlotte



### SAMPLE ANALYTE COUNT

| Project:<br>Pace Project No.: | YATES<br>92525936 |        |          |                      |
|-------------------------------|-------------------|--------|----------|----------------------|
| Lab ID S                      | Sample ID         | Method | Analysts | Analytes<br>Reported |

PASI-GA = Pace Analytical Services - Peachtree Corners, GA



## SUMMARY OF DETECTION

Project: YATES

Pace Project No.: 92525936

| Lab Sample ID          | Client Sample ID       |                 |            |              |                |            |
|------------------------|------------------------|-----------------|------------|--------------|----------------|------------|
| Method                 | Parameters             | Result          | Units      | Report Limit | Analyzed       | Qualifiers |
| 92525936001            | YAMW-2                 |                 |            |              |                |            |
|                        | Performed by           | CUSTOME         |            |              | 03/08/21 09:05 |            |
|                        | рН                     | 5.67            | Std. Units |              | 03/08/21 09:05 |            |
| EPA 6010D              | Calcium                | 1.5             | mg/L       | 1.0          | 03/12/21 20:36 |            |
| EPA 6020B              | Barium                 | 0.0082          | mg/L       | 0.0050       | 03/15/21 19:32 |            |
| EPA 6020B              | Boron                  | 0.032J          | ma/L       | 0.040        | 03/15/21 19:32 |            |
| EPA 6020B              | Chromium               | 0.0012J         | ma/L       | 0.0050       | 03/15/21 19:32 |            |
| EPA 6020B              | Cobalt                 | 0.00082J        | ma/l       | 0.0050       | 03/15/21 19:32 |            |
| EPA 6020B              | Lead                   | 0.000080.1      | mg/l       | 0.0010       | 03/15/21 19:32 |            |
| SM 2450C-2011          | Total Dissolved Solids | 40.0            | mg/L       | 10.0         | 03/06/21 12:30 |            |
| EPA 300 0 Rev 2 1 1993 | Chloride               | 25              | mg/L       | 10           | 03/15/21 02:05 |            |
| EPA 300.0 Rev 2.1 1993 | Sulfate                | 7.9             | mg/L       | 1.0          | 03/15/21 02:05 |            |
| 92525936002            | YAMW-4                 |                 |            |              |                |            |
|                        | Performed by           | CUSTOME         |            |              | 03/08/21 09:05 |            |
|                        | -11                    | R               |            |              | 00/00/04 00:05 |            |
|                        | рн<br>Oslainn          | 6.80            | Sta. Units | 1.0          | 03/08/21 09:05 |            |
| EPA 6010D              |                        | 20.6            | mg/L       | 1.0          | 03/12/21 21:05 |            |
| EPA 6020B              | Antimony               | 0.00062J        | mg/L       | 0.0030       | 03/15/21 19:38 |            |
| EPA 6020B              | Arsenic                | 0.00079J        | mg/L       | 0.0050       | 03/15/21 19:38 |            |
| EPA 6020B              | Barium                 | 0.021           | mg/L       | 0.0050       | 03/15/21 19:38 |            |
| EPA 6020B              | Boron                  | 0.81            | mg/L       | 0.040        | 03/15/21 19:38 |            |
| EPA 6020B              | Cobalt                 | 0.0010J         | mg/L       | 0.0050       | 03/15/21 19:38 |            |
| EPA 6020B              | Lead                   | 0.000096J       | mg/L       | 0.0010       | 03/15/21 19:38 |            |
| EPA 6020B              | Lithium                | 0.020J          | mg/L       | 0.030        | 03/15/21 19:38 |            |
| EPA 6020B              | Molybdenum             | 0.0049J         | mg/L       | 0.010        | 03/15/21 19:38 |            |
| SM 2450C-2011          | Total Dissolved Solids | 245             | mg/L       | 10.0         | 03/06/21 12:30 |            |
| EPA 300.0 Rev 2.1 1993 | Chloride               | 22.9            | mg/L       | 1.0          | 03/15/21 02:20 | M1         |
| EPA 300.0 Rev 2.1 1993 | Fluoride               | 0.14            | mg/L       | 0.10         | 03/15/21 02:20 |            |
| EPA 300.0 Rev 2.1 1993 | Sulfate                | 91.7            | mg/L       | 1.0          | 03/15/21 02:20 | M1         |
| 92525936003            | YAMW-5                 |                 |            |              |                |            |
|                        | Performed by           | CUSTOME<br>R    |            |              | 03/08/21 09:05 |            |
|                        | рН                     | 5.32            | Std. Units |              | 03/08/21 09:05 |            |
| EPA 6010D              | ,<br>Calcium           | 53.8            | ma/L       | 1.0          | 03/12/21 21:10 |            |
| EPA 6020B              | Barium                 | 0.039           | ma/L       | 0.0050       | 03/15/21 19:43 |            |
| EPA 6020B              | Bervllium              | 0.00013J        | mg/L       | 0.00050      | 03/15/21 19:43 |            |
| EPA 6020B              | Boron                  | 61              | mg/l       | 0.040        | 03/15/21 19:43 |            |
| EPA 6020B              | Cadmium                | 0.00018.1       | mg/L       | 0.0050       | 03/15/21 10:10 |            |
| EPA 6020B              | Lead                   | 0.000100        | mg/L       | 0.00000      | 03/15/21 10:43 |            |
| EPA 6020B              | Lithium                | 0.0000413       | mg/L       | 0.0010       | 03/15/21 19:43 |            |
| EPA 6020B              | Solonium               | 0.0105          | mg/L       | 0.030        | 03/15/21 19:43 |            |
| SM 2450C-2011          | Total Dissolved Solida | 0.001           | mg/L       | 0.0030       | 03/08/21 13.43 |            |
| SM 2450C-2011          | Chlorida               | 004             | mg/∟       | 20.0         | 03/06/21 11:00 |            |
| EPA 300.0 Rev 2.1 1993 |                        | 3.7             | mg/L       | 1.0          | 03/15/21 03:04 |            |
| EPA 300.0 Rev 2.1 1993 | Suirate                | 340             | mg/∟       | 8.0          | 03/15/21 16:46 |            |
| 92525936004            | YAMW-1                 | <b>•</b> •••••• |            |              |                |            |
|                        | Performed by           | CUSTOME<br>R    |            |              | 03/08/21 09:05 |            |



## SUMMARY OF DETECTION

Project: YATES

Pace Project No.: 92525936

| Lab Sample ID                                                                                                                                                                                                                                                                           | Client Sample ID       |              |            |              |                |            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------|------------|--------------|----------------|------------|
| Method                                                                                                                                                                                                                                                                                  | Parameters             | Result       | Units      | Report Limit | Analyzed       | Qualifiers |
| 92525936004                                                                                                                                                                                                                                                                             | YAMW-1                 |              |            |              |                |            |
|                                                                                                                                                                                                                                                                                         | рН                     | 6.54         | Std. Units |              | 03/08/21 09:05 |            |
| EPA 6010D                                                                                                                                                                                                                                                                               | Calcium                | 6.9          | mg/L       | 1.0          | 03/12/21 21:15 |            |
| EPA 6020B                                                                                                                                                                                                                                                                               | Antimony               | 0.025        | mg/L       | 0.0030       | 03/15/21 20:00 |            |
| EPA 6020B                                                                                                                                                                                                                                                                               | Barium                 | 0.035        | mg/L       | 0.0050       | 03/15/21 20:00 |            |
| EPA 6020B                                                                                                                                                                                                                                                                               | Boron                  | 0.039J       | mg/L       | 0.040        | 03/15/21 20:00 |            |
| EPA 6020B                                                                                                                                                                                                                                                                               | Chromium               | 0.00076J     | mg/L       | 0.0050       | 03/15/21 20:00 |            |
| EPA 6020B                                                                                                                                                                                                                                                                               | Cobalt                 | 0.018        | mg/L       | 0.0050       | 03/15/21 20:00 |            |
| EPA 6020B                                                                                                                                                                                                                                                                               | Lithium                | 0.022J       | mg/L       | 0.030        | 03/15/21 20:00 |            |
| EPA 6020B                                                                                                                                                                                                                                                                               | Molybdenum             | 0.0037J      | mg/L       | 0.010        | 03/15/21 20:00 |            |
| SM 2450C-2011                                                                                                                                                                                                                                                                           | Total Dissolved Solids | 121          | mg/L       | 10.0         | 03/06/21 12:30 |            |
| EPA 300.0 Rev 2.1 1993                                                                                                                                                                                                                                                                  | Chloride               | 6.1          | mg/L       | 1.0          | 03/15/21 03:49 |            |
| EPA 300.0 Rev 2.1 1993                                                                                                                                                                                                                                                                  | Sulfate                | 16.9         | mg/L       | 1.0          | 03/15/21 03:49 |            |
| 92525936005                                                                                                                                                                                                                                                                             | PZ-35                  |              |            |              |                |            |
| :525936004         PA 6010D         PA 6020B         PA 6020B         PA 6020B         PA 6020B         PA 6020B         PA 6020B         PA 6020B         PA 6020B         PA 6020B         PA 6020B         PA 6020B         PA 6020B         PA 300.0 Rev 2.1 1993 <b>!525936005</b> | Performed by           | CUSTOME      |            |              | 03/08/21 09:05 |            |
|                                                                                                                                                                                                                                                                                         | θΗ                     | к<br>5.64    | Std. Units |              | 03/08/21 09:05 |            |
| EPA 6010D                                                                                                                                                                                                                                                                               | Calcium                | 4 4          | ma/l       | 10           | 03/12/21 21:20 |            |
| EPA 6020B                                                                                                                                                                                                                                                                               | Antimony               | 0.00039.1    | ma/l       | 0.0030       | 03/15/21 20:06 |            |
| EPA 6020B                                                                                                                                                                                                                                                                               | Barium                 | 0.033        | mg/L       | 0.0050       | 03/15/21 20:06 |            |
| EPA 6020B                                                                                                                                                                                                                                                                               | Bervllium              | 0.00025.1    | mg/l       | 0.00050      | 03/15/21 20:06 |            |
| EPA 6020B                                                                                                                                                                                                                                                                               | Boron                  | 0.012J       | mg/L       | 0.040        | 03/15/21 20:06 |            |
| EPA 6020B                                                                                                                                                                                                                                                                               | Chromium               | 0.00070J     | mg/L       | 0.0050       | 03/15/21 20:06 |            |
| EPA 6020B                                                                                                                                                                                                                                                                               | Lead                   | 0.00015J     | mg/L       | 0.0010       | 03/15/21 20:06 |            |
| EPA 6020B                                                                                                                                                                                                                                                                               | Lithium                | 0.0015J      | mg/L       | 0.030        | 03/15/21 20:06 |            |
| SM 2450C-2011                                                                                                                                                                                                                                                                           | Total Dissolved Solids | 59.0         | mg/L       | 10.0         | 03/08/21 11:06 |            |
| EPA 300.0 Rev 2.1 1993                                                                                                                                                                                                                                                                  | Chloride               | 6.7          | ma/L       | 1.0          | 03/15/21 04:04 |            |
| EPA 300.0 Rev 2.1 1993                                                                                                                                                                                                                                                                  | Sulfate                | 8.8          | mg/L       | 1.0          | 03/15/21 04:04 |            |
| 92525936007                                                                                                                                                                                                                                                                             | PZ-37                  |              |            |              |                |            |
|                                                                                                                                                                                                                                                                                         | Performed by           | CUSTOME<br>R |            |              | 03/08/21 09:05 |            |
|                                                                                                                                                                                                                                                                                         | рН                     | 5.51         | Std. Units |              | 03/08/21 09:05 |            |
| EPA 6010D                                                                                                                                                                                                                                                                               | Calcium                | 118          | mg/L       | 1.0          | 03/12/21 21:29 |            |
| EPA 6020B                                                                                                                                                                                                                                                                               | Barium                 | 0.036        | mg/L       | 0.0050       | 03/15/21 20:18 |            |
| EPA 6020B                                                                                                                                                                                                                                                                               | Beryllium              | 0.00017J     | mg/L       | 0.00050      | 03/15/21 20:18 |            |
| EPA 6020B                                                                                                                                                                                                                                                                               | Boron                  | 12.4         | mg/L       | 0.40         | 03/16/21 16:17 |            |
| EPA 6020B                                                                                                                                                                                                                                                                               | Cadmium                | 0.00028J     | mg/L       | 0.00050      | 03/15/21 20:18 |            |
| EPA 6020B                                                                                                                                                                                                                                                                               | Cobalt                 | 0.0030J      | mg/L       | 0.0050       | 03/15/21 20:18 |            |
| EPA 6020B                                                                                                                                                                                                                                                                               | Lithium                | 0.028J       | mg/L       | 0.030        | 03/15/21 20:18 |            |
| EPA 6020B                                                                                                                                                                                                                                                                               | Molybdenum             | 0.0024J      | mg/L       | 0.010        | 03/15/21 20:18 |            |
| EPA 6020B                                                                                                                                                                                                                                                                               | Selenium               | 0.27         | mg/L       | 0.0050       | 03/15/21 20:18 |            |
| SM 2450C-2011                                                                                                                                                                                                                                                                           | Total Dissolved Solids | 856          | mg/L       | 20.0         | 03/08/21 11:07 |            |
| EPA 300.0 Rev 2.1 1993                                                                                                                                                                                                                                                                  | Chloride               | 3.9          | mg/L       | 1.0          | 03/15/21 04:34 |            |
| EPA 300.0 Rev 2.1 1993                                                                                                                                                                                                                                                                  | Sulfate                | 485          | mg/L       | 11.0         | 03/15/21 17:00 |            |



| Project: | YATES |
|----------|-------|
|          |       |

Pace Project No.: 92525936

| Sample: YAMW-2               | Lab ID:                | Collected: 03/03/21 14:10 |                              |                              | Received: 03/05/21 09:20 Matrix: Water |                |                |            |      |
|------------------------------|------------------------|---------------------------|------------------------------|------------------------------|----------------------------------------|----------------|----------------|------------|------|
| Parameters                   | Results                | Units                     | Report<br>Limit              | MDL                          | DF                                     | Prepared       | Analyzed       | CAS No.    | Qual |
| Field Data                   | Analytical<br>Pace Ana | Method:                   | - Charlotte                  |                              |                                        |                |                |            |      |
| Performed by                 | CUSTOME                |                           |                              |                              | 1                                      |                | 03/08/21 09:05 |            |      |
| рН                           | 5.67                   | Std. Units                |                              |                              | 1                                      |                | 03/08/21 09:05 |            |      |
| 6010D ATL ICP                | Analytical<br>Pace Ana | Method: EPA               | 6010D Prej<br>- Peachtre     | paration Me<br>e Corners, C  | thod: El<br>GA                         | PA 3010A       |                |            |      |
| Calcium                      | 1.5                    | mg/L                      | 1.0                          | 0.070                        | 1                                      | 03/12/21 11:05 | 03/12/21 20:36 | 7440-70-2  |      |
| 6020 MET ICPMS               | Analytical<br>Pace Ana | Method: EPA               | 6020B Prep<br>- Peachtre     | paration Met<br>e Corners, C | thod: EF<br>GA                         | PA 3005A       |                |            |      |
| Antimony                     | ND                     | mg/L                      | 0.0030                       | 0.00028                      | 1                                      | 03/12/21 11:07 | 03/15/21 19:32 | 7440-36-0  |      |
| Arsenic                      | ND                     | mg/L                      | 0.0050                       | 0.00078                      | 1                                      | 03/12/21 11:07 | 03/15/21 19:32 | 7440-38-2  |      |
| Barium                       | 0.0082                 | mg/L                      | 0.0050                       | 0.00071                      | 1                                      | 03/12/21 11:07 | 03/15/21 19:32 | 7440-39-3  |      |
| Beryllium                    | ND                     | mg/L                      | 0.00050                      | 0.000046                     | 1                                      | 03/12/21 11:07 | 03/15/21 19:32 | 7440-41-7  |      |
| Boron                        | 0.032J                 | mg/L                      | 0.040                        | 0.0052                       | 1                                      | 03/12/21 11:07 | 03/15/21 19:32 | 7440-42-8  |      |
| Cadmium                      | ND                     | mg/L                      | 0.00050                      | 0.00012                      | 1                                      | 03/12/21 11:07 | 03/15/21 19:32 | 7440-43-9  |      |
| Chromium                     | 0.0012J                | mg/L                      | 0.0050                       | 0.00055                      | 1                                      | 03/12/21 11:07 | 03/15/21 19:32 | 7440-47-3  |      |
| Cobalt                       | 0.00082J               | mg/L                      | 0.0050                       | 0.00038                      | 1                                      | 03/12/21 11:07 | 03/15/21 19:32 | 7440-48-4  |      |
| Lead                         | 0.000080J              | mg/L                      | 0.0010                       | 0.000036                     | 1                                      | 03/12/21 11:07 | 03/15/21 19:32 | 7439-92-1  |      |
| Lithium                      | ND                     | mg/L                      | 0.030                        | 0.00081                      | 1                                      | 03/12/21 11:07 | 03/15/21 19:32 | 7439-93-2  |      |
| Molybdenum                   | ND                     | mg/L                      | 0.010                        | 0.00069                      | 1                                      | 03/12/21 11:07 | 03/15/21 19:32 | 7439-98-7  |      |
| Selenium                     | ND                     | mg/L                      | 0.0050                       | 0.0016                       | 1                                      | 03/12/21 11:07 | 03/15/21 19:32 | 7782-49-2  |      |
| 7470 Mercury                 | Analytical<br>Pace Ana | Method: EPA               | 7470A Prep<br>- Peachtre     | paration Met<br>e Corners, C | thod: EF<br>GA                         | PA 7470A       |                |            |      |
| Mercury                      | ND                     | mg/L                      | 0.00020                      | 0.000078                     | 1                                      | 03/11/21 15:15 | 03/12/21 09:41 | 7439-97-6  |      |
| 2540C Total Dissolved Solids | Analytical<br>Pace Ana | Method: SM 2              | 450C-2011<br>- Peachtre      | e Corners, (                 | GA                                     |                |                |            |      |
| Total Dissolved Solids       | 40.0                   | mg/L                      | 10.0                         | 10.0                         | 1                                      |                | 03/06/21 12:30 |            |      |
| 300.0 IC Anions 28 Days      | Analytical<br>Pace Ana | Method: EPA               | 300.0 Rev 2<br>s - Asheville | 2.1 1993                     |                                        |                |                |            |      |
| Chloride                     | 2.5                    | mg/L                      | 1.0                          | 0.60                         | 1                                      |                | 03/15/21 02:05 | 16887-00-6 |      |
| Fluoride                     | ND                     | mg/L                      | 0.10                         | 0.050                        | 1                                      |                | 03/15/21 02:05 | 16984-48-8 |      |
| Sulfate                      | 7.9                    | ma/L                      | 1.0                          | 0.50                         | 1                                      |                | 03/15/21 02:05 | 14808-79-8 |      |



Project: YATES

Pace Project No.: 92525936

| Sample: YAMW-4               | Lab ID:   | 92525936002       | Collecte    | ed: 03/03/21 | 1 13:05    | Received: 03/  | /05/21 09:20 Ma | atrix: Water |      |
|------------------------------|-----------|-------------------|-------------|--------------|------------|----------------|-----------------|--------------|------|
|                              |           |                   | Report      |              |            |                |                 |              |      |
| Parameters                   | Results   | Units             | Limit       | MDL          | DF         | Prepared       | Analyzed        | CAS No.      | Qual |
| Field Data                   | Analytica | I Method:         |             |              |            |                |                 |              |      |
|                              | Pace Ana  | alytical Services | - Charlotte | ;            |            |                |                 |              |      |
| Performed by                 | CUSTOME   |                   |             |              | 1          |                | 03/08/21 09:05  |              |      |
| рН                           | 6.80      | Std. Units        |             |              | 1          |                | 03/08/21 09:05  |              |      |
| 6010D ATL ICP                | Analytica | I Method: EPA     | 6010D Pre   | paration Met | hod: E     | PA 3010A       |                 |              |      |
|                              | Pace Ana  | alytical Services | - Peachtre  | e Corners, G | βA         |                |                 |              |      |
| Calcium                      | 20.6      | mg/L              | 1.0         | 0.070        | 1          | 03/12/21 11:05 | 03/12/21 21:05  | 7440-70-2    |      |
| 6020 MET ICPMS               | Analytica | I Method: EPA     | 6020B Pre   | paration Met | hod: El    | PA 3005A       |                 |              |      |
|                              | Pace Ana  | alytical Services | - Peachtre  | e Corners, C | <b>S</b> A |                |                 |              |      |
| Antimony                     | 0.00062J  | mg/L              | 0.0030      | 0.00028      | 1          | 03/12/21 11:07 | 03/15/21 19:38  | 7440-36-0    |      |
| Arsenic                      | 0.00079J  | mg/L              | 0.0050      | 0.00078      | 1          | 03/12/21 11:07 | 03/15/21 19:38  | 7440-38-2    |      |
| Barium                       | 0.021     | mg/L              | 0.0050      | 0.00071      | 1          | 03/12/21 11:07 | 03/15/21 19:38  | 7440-39-3    |      |
| Beryllium                    | ND        | mg/L              | 0.00050     | 0.000046     | 1          | 03/12/21 11:07 | 03/15/21 19:38  | 7440-41-7    |      |
| Boron                        | 0.81      | mg/L              | 0.040       | 0.0052       | 1          | 03/12/21 11:07 | 03/15/21 19:38  | 7440-42-8    |      |
| Cadmium                      | ND        | mg/L              | 0.00050     | 0.00012      | 1          | 03/12/21 11:07 | 03/15/21 19:38  | 7440-43-9    |      |
| Chromium                     | ND        | mg/L              | 0.0050      | 0.00055      | 1          | 03/12/21 11:07 | 03/15/21 19:38  | 7440-47-3    |      |
| Cobalt                       | 0.0010J   | mg/L              | 0.0050      | 0.00038      | 1          | 03/12/21 11:07 | 03/15/21 19:38  | 7440-48-4    |      |
| Lead                         | 0.000096J | mg/L              | 0.0010      | 0.000036     | 1          | 03/12/21 11:07 | 03/15/21 19:38  | 7439-92-1    |      |
| Lithium                      | 0.020J    | mg/L              | 0.030       | 0.00081      | 1          | 03/12/21 11:07 | 03/15/21 19:38  | 7439-93-2    |      |
| Molybdenum                   | 0.0049J   | mg/L              | 0.010       | 0.00069      | 1          | 03/12/21 11:07 | 03/15/21 19:38  | 7439-98-7    |      |
| Selenium                     | ND        | mg/L              | 0.0050      | 0.0016       | 1          | 03/12/21 11:07 | 03/15/21 19:38  | 7782-49-2    |      |
| 7470 Mercury                 | Analytica | I Method: EPA     | 7470A Pre   | paration Met | hod: El    | PA 7470A       |                 |              |      |
|                              | Pace Ana  | alytical Services | - Peachtre  | e Corners, G | βA         |                |                 |              |      |
| Mercury                      | ND        | mg/L              | 0.00020     | 0.000078     | 1          | 03/11/21 15:15 | 03/12/21 09:43  | 7439-97-6    |      |
| 2540C Total Dissolved Solids | Analytica | I Method: SM 2    | 450C-2011   |              |            |                |                 |              |      |
|                              | Pace Ana  | alytical Services | - Peachtre  | e Corners, C | <b>SA</b>  |                |                 |              |      |
| Total Dissolved Solids       | 245       | mg/L              | 10.0        | 10.0         | 1          |                | 03/06/21 12:30  |              |      |
| 300.0 IC Anions 28 Days      | Analytica | I Method: EPA     | 300.0 Rev 2 | 2.1 1993     |            |                |                 |              |      |
| -                            | Pace Ana  | alytical Services | - Asheville |              |            |                |                 |              |      |
| Chloride                     | 22.9      | mg/L              | 1.0         | 0.60         | 1          |                | 03/15/21 02:20  | 16887-00-6   | M1   |
| Fluoride                     | 0.14      | mg/L              | 0.10        | 0.050        | 1          |                | 03/15/21 02:20  | 16984-48-8   |      |
| Sulfate                      | 91.7      | ma/L              | 1.0         | 0.50         | 1          |                | 03/15/21 02:20  | 14808-79-8   | M1   |



Project: YATES

Pace Project No.: 92525936

| Sample: YAMW-5               | Lab ID:               | 92525936003                         | Collecte                     | ed: 03/04/2                  | 1 14:15        | Received: 03/  | 05/21 09:20 Ma | atrix: Water |      |
|------------------------------|-----------------------|-------------------------------------|------------------------------|------------------------------|----------------|----------------|----------------|--------------|------|
| Parameters                   | Results               | Units                               | Report<br>Limit              | MDL                          | DF             | Prepared       | Analyzed       | CAS No.      | Qual |
| Field Data                   | Analytica<br>Pace Ana | l Method:                           | - Charlotte                  |                              |                |                |                |              |      |
|                              |                       | alytical Services                   |                              | i                            |                |                |                |              |      |
| Performed by                 | R                     |                                     |                              |                              | 1              |                | 03/08/21 09:05 |              |      |
| рН                           | 5.32                  | Std. Units                          |                              |                              | 1              |                | 03/08/21 09:05 |              |      |
| 6010D ATL ICP                | Analytica<br>Pace Ana | l Method: EPA                       | 6010D Pre<br>s - Peachtre    | paration Me                  | thod: El<br>GA | PA 3010A       |                |              |      |
| Calcium                      | 53.8                  | mg/L                                | 1.0                          | 0.070                        | 1              | 03/12/21 11:05 | 03/12/21 21:10 | 7440-70-2    |      |
| 6020 MET ICPMS               | Analytica<br>Pace Ana | l Method: EPA                       | 6020B Pre<br>s - Peachtre    | paration Met<br>e Corners, 0 | thod: Ef<br>GA | PA 3005A       |                |              |      |
| Antimony                     | ND                    | mg/L                                | 0.0030                       | 0.00028                      | 1              | 03/12/21 11:07 | 03/15/21 19:43 | 7440-36-0    |      |
| Arsenic                      | ND                    | mg/L                                | 0.0050                       | 0.00078                      | 1              | 03/12/21 11:07 | 03/15/21 19:43 | 7440-38-2    |      |
| Barium                       | 0.039                 | mg/L                                | 0.0050                       | 0.00071                      | 1              | 03/12/21 11:07 | 03/15/21 19:43 | 7440-39-3    |      |
| Beryllium                    | 0.00013J              | mg/L                                | 0.00050                      | 0.000046                     | 1              | 03/12/21 11:07 | 03/15/21 19:43 | 7440-41-7    |      |
| Boron                        | 6.1                   | mg/L                                | 0.040                        | 0.0052                       | 1              | 03/12/21 11:07 | 03/15/21 19:43 | 7440-42-8    |      |
| Cadmium                      | 0.00018J              | mg/L                                | 0.00050                      | 0.00012                      | 1              | 03/12/21 11:07 | 03/15/21 19:43 | 7440-43-9    |      |
| Chromium                     | ND                    | mg/L                                | 0.0050                       | 0.00055                      | 1              | 03/12/21 11:07 | 03/15/21 19:43 | 7440-47-3    |      |
| Cobalt                       | ND                    | mg/L                                | 0.0050                       | 0.00038                      | 1              | 03/12/21 11:07 | 03/15/21 19:43 | 7440-48-4    |      |
| Lead                         | 0.000041J             | mg/L                                | 0.0010                       | 0.000036                     | 1              | 03/12/21 11:07 | 03/15/21 19:43 | 7439-92-1    |      |
| Lithium                      | 0.016J                | mg/L                                | 0.030                        | 0.00081                      | 1              | 03/12/21 11:07 | 03/15/21 19:43 | 7439-93-2    |      |
| Molybdenum                   | ND                    | mg/L                                | 0.010                        | 0.00069                      | 1              | 03/12/21 11:07 | 03/15/21 19:43 | 7439-98-7    |      |
| Selenium                     | 0.061                 | mg/L                                | 0.0050                       | 0.0016                       | 1              | 03/12/21 11:07 | 03/15/21 19:43 | 7782-49-2    |      |
| 7470 Mercury                 | Analytica<br>Pace Ana | I Method: EPA                       | 7470A Prej<br>s - Peachtre   | paration Met                 | thod: EF<br>GA | PA 7470A       |                |              |      |
| Mercury                      | ND                    | mg/L                                | 0.00020                      | 0.000078                     | 1              | 03/11/21 15:15 | 03/12/21 09:45 | 7439-97-6    |      |
| 2540C Total Dissolved Solids | Analytica<br>Pace Ana | l Method: SM 2<br>alytical Services | 2450C-2011<br>s - Peachtre   | e Corners, (                 | GA             |                |                |              |      |
| Total Dissolved Solids       | 604                   | mg/L                                | 20.0                         | 20.0                         | 1              |                | 03/08/21 11:06 |              |      |
| 300.0 IC Anions 28 Days      | Analytica<br>Pace Ana | I Method: EPA                       | 300.0 Rev 2<br>s - Asheville | 2.1 1993                     |                |                |                |              |      |
| Chloride                     | 3.7                   | mg/L                                | 1.0                          | 0.60                         | 1              |                | 03/15/21 03:04 | 16887-00-6   |      |
| Fluoride                     | ND                    | mg/L                                | 0.10                         | 0.050                        | 1              |                | 03/15/21 03:04 | 16984-48-8   |      |
| Sulfate                      | 340                   | ma/L                                | 8.0                          | 4.0                          | 8              |                | 03/15/21 16:46 | 14808-79-8   |      |


## ANALYTICAL RESULTS

| Project: | YATES |
|----------|-------|
|          |       |

Pace Project No.: 92525936

| Sample: YAMW-1               | Lab ID:                | 92525936004                       | Collecte                   | ed: 03/03/2                  | 1 15:15        | Received: 03/  | /05/21 09:20 Ma | atrix: Water |      |
|------------------------------|------------------------|-----------------------------------|----------------------------|------------------------------|----------------|----------------|-----------------|--------------|------|
| Parameters                   | Results                | Units                             | Report<br>Limit            | MDL                          | DF             | Prepared       | Analyzed        | CAS No.      | Qual |
| Field Data                   | Analytical<br>Pace Ana | Method:                           | - Charlotte                |                              |                |                |                 |              |      |
| Porformed by                 | CUSTOME                |                                   | enanotto                   |                              | 1              |                | 02/08/21 00:05  |              |      |
| r enormed by                 | R                      |                                   |                            |                              |                |                | 03/00/21 09:03  |              |      |
| рН                           | 6.54                   | Std. Units                        |                            |                              | 1              |                | 03/08/21 09:05  |              |      |
| 6010D ATL ICP                | Analytical<br>Pace Ana | Method: EPA 6<br>lytical Services | 010D Prep<br>- Peachtre    | oaration Me<br>e Corners, 0  | thod: EF<br>GA | PA 3010A       |                 |              |      |
| Calcium                      | 6.9                    | mg/L                              | 1.0                        | 0.070                        | 1              | 03/12/21 11:05 | 03/12/21 21:15  | 7440-70-2    |      |
| 6020 MET ICPMS               | Analytical<br>Pace Ana | Method: EPA 6<br>lytical Services | 020B Prep<br>- Peachtre    | oaration Met<br>e Corners, ( | thod: EF<br>GA | PA 3005A       |                 |              |      |
| Antimony                     | 0.025                  | mg/L                              | 0.0030                     | 0.00028                      | 1              | 03/12/21 11:07 | 03/15/21 20:00  | 7440-36-0    |      |
| Arsenic                      | ND                     | mg/L                              | 0.0050                     | 0.00078                      | 1              | 03/12/21 11:07 | 03/15/21 20:00  | 7440-38-2    |      |
| Barium                       | 0.035                  | mg/L                              | 0.0050                     | 0.00071                      | 1              | 03/12/21 11:07 | 03/15/21 20:00  | 7440-39-3    |      |
| Beryllium                    | ND                     | mg/L                              | 0.00050                    | 0.000046                     | 1              | 03/12/21 11:07 | 03/15/21 20:00  | 7440-41-7    |      |
| Boron                        | 0.039J                 | mg/L                              | 0.040                      | 0.0052                       | 1              | 03/12/21 11:07 | 03/15/21 20:00  | 7440-42-8    |      |
| Cadmium                      | ND                     | mg/L                              | 0.00050                    | 0.00012                      | 1              | 03/12/21 11:07 | 03/15/21 20:00  | 7440-43-9    |      |
| Chromium                     | 0.00076J               | mg/L                              | 0.0050                     | 0.00055                      | 1              | 03/12/21 11:07 | 03/15/21 20:00  | 7440-47-3    |      |
| Cobalt                       | 0.018                  | mg/L                              | 0.0050                     | 0.00038                      | 1              | 03/12/21 11:07 | 03/15/21 20:00  | 7440-48-4    |      |
| Lead                         | ND                     | mg/L                              | 0.0010                     | 0.000036                     | 1              | 03/12/21 11:07 | 03/15/21 20:00  | 7439-92-1    |      |
| Lithium                      | 0.022J                 | mg/L                              | 0.030                      | 0.00081                      | 1              | 03/12/21 11:07 | 03/15/21 20:00  | 7439-93-2    |      |
| Molybdenum                   | 0.0037J                | mg/L                              | 0.010                      | 0.00069                      | 1              | 03/12/21 11:07 | 03/15/21 20:00  | 7439-98-7    |      |
| Selenium                     | ND                     | mg/L                              | 0.0050                     | 0.0016                       | 1              | 03/12/21 11:07 | 03/15/21 20:00  | 7782-49-2    |      |
| 7470 Mercury                 | Analytical<br>Pace Ana | Method: EPA 7<br>lytical Services | 7470A Prep<br>- Peachtre   | paration Met<br>e Corners, C | thod: EF<br>GA | PA 7470A       |                 |              |      |
| Mercury                      | ND                     | mg/L                              | 0.00020                    | 0.000078                     | 1              | 03/11/21 15:15 | 03/12/21 09:52  | 7439-97-6    |      |
| 2540C Total Dissolved Solids | Analytical<br>Pace Ana | Method: SM 24<br>lytical Services | 450C-2011<br>- Peachtre    | e Corners, (                 | GA             |                |                 |              |      |
| Total Dissolved Solids       | 121                    | mg/L                              | 10.0                       | 10.0                         | 1              |                | 03/06/21 12:30  |              |      |
| 300.0 IC Anions 28 Days      | Analytical<br>Pace Ana | Method: EPA 3<br>lytical Services | 300.0 Rev 2<br>- Asheville | 2.1 1993                     |                |                |                 |              |      |
| Chloride                     | 61                     | ma/l                              | 10                         | 0.60                         | 1              |                | 03/15/21 03:49  | 16887-00-6   |      |
| Fluoride                     |                        | mg/l                              | 0.10                       | 0.00                         | 1              |                | 03/15/21 03:49  | 16984-48-8   |      |
| Sulfate                      | 16.9                   | ma/L                              | 1.0                        | 0.50                         | 1              |                | 03/15/21 03:49  | 14808-79-8   |      |



YATES

Project:

## ANALYTICAL RESULTS

| Pace Project No.: 92525936   |                        |                                  |                         |              |         |                |                 |              |      |
|------------------------------|------------------------|----------------------------------|-------------------------|--------------|---------|----------------|-----------------|--------------|------|
| Sample: PZ-35                | Lab ID:                | 92525936005                      | Collecte                | ed: 03/04/21 | 1 15:30 | Received: 03/  | /05/21 09:20 Ma | atrix: Water |      |
|                              |                        |                                  | Report                  |              |         |                |                 |              |      |
| Parameters                   | Results                | Units                            | Limit                   | MDL          | DF      | Prepared       | Analyzed        | CAS No.      | Qual |
| Field Data                   | Analytical             | Method:                          |                         |              |         |                |                 |              |      |
|                              | Pace Ana               | ytical Services                  | - Charlotte             | •            |         |                |                 |              |      |
| Performed by                 | CUSTOME                |                                  |                         |              | 1       |                | 03/08/21 09:05  |              |      |
| рН                           | 5.64                   | Std. Units                       |                         |              | 1       |                | 03/08/21 09:05  |              |      |
| 6010D ATL ICP                | Analytical             | Method: EPA                      | 6010D Pre               | paration Met | thod: E | PA 3010A       |                 |              |      |
|                              | Pace Ana               | ytical Services                  | - Peachtre              | e Corners, G | ΒA      |                |                 |              |      |
| Calcium                      | 4.4                    | mg/L                             | 1.0                     | 0.070        | 1       | 03/12/21 11:05 | 03/12/21 21:20  | 7440-70-2    |      |
| 6020 MET ICPMS               | Analytical             | Method: EPA                      | 6020B Prej              | paration Met | hod: E  | PA 3005A       |                 |              |      |
|                              | Pace Ana               | ytical Services                  | - Peachtre              | e Corners, G | ЭA      |                |                 |              |      |
| Antimony                     | 0.00039J               | mg/L                             | 0.0030                  | 0.00028      | 1       | 03/12/21 11:07 | 03/15/21 20:06  | 7440-36-0    |      |
| Arsenic                      | ND                     | ma/L                             | 0.0050                  | 0.00078      | 1       | 03/12/21 11:07 | 03/15/21 20:06  | 7440-38-2    |      |
| Barium                       | 0.033                  | ma/L                             | 0.0050                  | 0.00071      | 1       | 03/12/21 11:07 | 03/15/21 20:06  | 7440-39-3    |      |
| Bervllium                    | 0.00025J               | mg/L                             | 0.00050                 | 0.000046     | 1       | 03/12/21 11:07 | 03/15/21 20:06  | 7440-41-7    |      |
| Boron                        | 0.012J                 | mg/L                             | 0.040                   | 0.0052       | 1       | 03/12/21 11:07 | 03/15/21 20:06  | 7440-42-8    |      |
| Cadmium                      | ND                     | mg/L                             | 0.00050                 | 0.00012      | 1       | 03/12/21 11:07 | 03/15/21 20:06  | 7440-43-9    |      |
| Chromium                     | 0.00070J               | ma/L                             | 0.0050                  | 0.00055      | 1       | 03/12/21 11:07 | 03/15/21 20:06  | 7440-47-3    |      |
| Cobalt                       | ND                     | ma/L                             | 0.0050                  | 0.00038      | 1       | 03/12/21 11:07 | 03/15/21 20:06  | 7440-48-4    |      |
| Lead                         | 0.00015J               | mg/L                             | 0.0010                  | 0.000036     | 1       | 03/12/21 11:07 | 03/15/21 20:06  | 7439-92-1    |      |
| Lithium                      | 0.0015J                | mg/L                             | 0.030                   | 0.00081      | 1       | 03/12/21 11:07 | 03/15/21 20:06  | 7439-93-2    |      |
| Molvbdenum                   | ND                     | ma/L                             | 0.010                   | 0.00069      | 1       | 03/12/21 11:07 | 03/15/21 20:06  | 7439-98-7    |      |
| Selenium                     | ND                     | mg/L                             | 0.0050                  | 0.0016       | 1       | 03/12/21 11:07 | 03/15/21 20:06  | 7782-49-2    |      |
| 7470 Mercury                 | Analytical             | Method: EPA                      | 7470A Prei              | paration Met | hod: E  | PA 7470A       |                 |              |      |
| ,,                           | Pace Ana               | ytical Services                  | - Peachtre              | e Corners, C | GA      | -              |                 |              |      |
| Mercury                      | ND                     | mg/L                             | 0.00020                 | 0.000078     | 1       | 03/11/21 15:15 | 03/12/21 09:55  | 7439-97-6    |      |
| 2540C Total Dissolved Solids | Analytical<br>Pace Ana | Method: SM 2<br>lytical Services | 450C-2011<br>- Peachtre | e Corners, G | GA      |                |                 |              |      |
| Total Dissolved Solids       | 59.0                   | mg/L                             | 10.0                    | 10.0         | 1       |                | 03/08/21 11:06  |              |      |
| 300.0 IC Anions 28 Days      | Analytical             | Method: EPA                      | 300.0 Rev 2             | 2.1 1993     |         |                |                 |              |      |
|                              | Pace Ana               | ytical Services                  | s - Asheville           |              |         |                |                 |              |      |
| Chloride                     | 6.7                    | mg/L                             | 1.0                     | 0.60         | 1       |                | 03/15/21 04:04  | 16887-00-6   |      |
| Fluoride                     | ND                     | mg/L                             | 0.10                    | 0.050        | 1       |                | 03/15/21 04:04  | 16984-48-8   |      |
| Sulfate                      | 8.8                    | mg/L                             | 1.0                     | 0.50         | 1       |                | 03/15/21 04:04  | 14808-79-8   |      |



## ANALYTICAL RESULTS

| Project:          | YATES    |
|-------------------|----------|
| Pace Project No · | 92525936 |

| Sample: EB1                  | Lab ID:    | 92525936006      | Collecte    | ed: 03/04/2  | 1 16:00 | Received: 03/  | /05/21 09:20 Ma | atrix: Water |     |
|------------------------------|------------|------------------|-------------|--------------|---------|----------------|-----------------|--------------|-----|
|                              |            |                  | Report      |              |         |                |                 |              |     |
| Parameters                   | Results    | Units            | Limit       | MDL          | DF      | Prepared       | Analyzed        | CAS No.      | Qua |
| 6010D ATL ICP                | Analytical | Method: EPA 6    | 010D Pre    | paration Met | thod: E | PA 3010A       |                 |              |     |
|                              | Pace Ana   | lytical Services | - Peachtre  | e Corners, C | ЗA      |                |                 |              |     |
| Calcium                      | ND         | mg/L             | 1.0         | 0.070        | 1       | 03/12/21 11:05 | 03/12/21 21:25  | 7440-70-2    |     |
| 6020 MET ICPMS               | Analytical | Method: EPA 6    | 020B Pre    | paration Met | hod: El | PA 3005A       |                 |              |     |
|                              | Pace Ana   | lytical Services | - Peachtre  | e Corners, C | ЭA      |                |                 |              |     |
| Antimony                     | ND         | mg/L             | 0.0030      | 0.00028      | 1       | 03/12/21 11:07 | 03/15/21 20:12  | 7440-36-0    |     |
| Arsenic                      | ND         | mg/L             | 0.0050      | 0.00078      | 1       | 03/12/21 11:07 | 03/15/21 20:12  | 7440-38-2    |     |
| Barium                       | ND         | mg/L             | 0.0050      | 0.00071      | 1       | 03/12/21 11:07 | 03/15/21 20:12  | 7440-39-3    |     |
| Beryllium                    | ND         | mg/L             | 0.00050     | 0.000046     | 1       | 03/12/21 11:07 | 03/15/21 20:12  | 7440-41-7    |     |
| Boron                        | ND         | mg/L             | 0.040       | 0.0052       | 1       | 03/12/21 11:07 | 03/15/21 20:12  | 7440-42-8    |     |
| Cadmium                      | ND         | mg/L             | 0.00050     | 0.00012      | 1       | 03/12/21 11:07 | 03/15/21 20:12  | 7440-43-9    |     |
| Chromium                     | ND         | mg/L             | 0.0050      | 0.00055      | 1       | 03/12/21 11:07 | 03/15/21 20:12  | 7440-47-3    |     |
| Cobalt                       | ND         | mg/L             | 0.0050      | 0.00038      | 1       | 03/12/21 11:07 | 03/15/21 20:12  | 7440-48-4    |     |
| Lead                         | ND         | mg/L             | 0.0010      | 0.000036     | 1       | 03/12/21 11:07 | 03/15/21 20:12  | 7439-92-1    |     |
| Lithium                      | ND         | mg/L             | 0.030       | 0.00081      | 1       | 03/12/21 11:07 | 03/15/21 20:12  | 7439-93-2    |     |
| Molybdenum                   | ND         | mg/L             | 0.010       | 0.00069      | 1       | 03/12/21 11:07 | 03/15/21 20:12  | 7439-98-7    |     |
| Selenium                     | ND         | mg/L             | 0.0050      | 0.0016       | 1       | 03/12/21 11:07 | 03/15/21 20:12  | 7782-49-2    |     |
| 7470 Mercury                 | Analytical | Method: EPA 7    | 470A Pre    | paration Met | hod: El | PA 7470A       |                 |              |     |
|                              | Pace Ana   | lytical Services | - Peachtre  | e Corners, C | ΒA      |                |                 |              |     |
| Mercury                      | ND         | mg/L             | 0.00020     | 0.000078     | 1       | 03/11/21 15:15 | 03/12/21 09:57  | 7439-97-6    |     |
| 2540C Total Dissolved Solids | Analytical | Method: SM 24    | 450C-2011   |              |         |                |                 |              |     |
|                              | Pace Ana   | lytical Services | - Peachtre  | e Corners, C | ЗA      |                |                 |              |     |
| Total Dissolved Solids       | ND         | mg/L             | 10.0        | 10.0         | 1       |                | 03/08/21 11:07  |              |     |
| 300.0 IC Anions 28 Days      | Analytical | Method: EPA 3    | 00.0 Rev 2  | 2.1 1993     |         |                |                 |              |     |
|                              | Pace Ana   | lytical Services | - Asheville |              |         |                |                 |              |     |
| Chloride                     | ND         | mg/L             | 1.0         | 0.60         | 1       |                | 03/15/21 04:19  | 16887-00-6   |     |
| Fluoride                     | ND         | mg/L             | 0.10        | 0.050        | 1       |                | 03/15/21 04:19  | 16984-48-8   |     |
| Sulfate                      | ND         | mg/L             | 1.0         | 0.50         | 1       |                | 03/15/21 04:19  | 14808-79-8   |     |
|                              |            | 5 -              |             |              |         |                |                 |              |     |



YATES

Project:

## ANALYTICAL RESULTS

| Pace Project No.: 92525936   |                        |                  |             |                         |          |                |                 |              |     |
|------------------------------|------------------------|------------------|-------------|-------------------------|----------|----------------|-----------------|--------------|-----|
| Sample: PZ-37                | Lab ID:                | 92525936007      | Collecte    | d: 03/04/2 <sup>-</sup> | 1 11:55  | Received: 03/  | /05/21 09:20 Ma | atrix: Water |     |
| _                            |                        |                  | Report      |                         |          |                |                 |              | _   |
| Parameters                   | Results                | Units            | Limit       | MDL                     |          | Prepared       | Analyzed        | CAS No.      | Qua |
| Field Data                   | Analytical             | Method:          |             |                         |          |                |                 |              |     |
|                              | Pace Ana               | lytical Services | - Charlotte |                         |          |                |                 |              |     |
| Performed by                 | CUSTOME                |                  |             |                         | 1        |                | 03/08/21 09:05  |              |     |
| рН                           | к<br>5.51              | Std. Units       |             |                         | 1        |                | 03/08/21 09:05  |              |     |
| 6010D ATL ICP                | Analytical             | Method: EPA 6    | 010D Prep   | aration Met             | thod: El | PA 3010A       |                 |              |     |
|                              | Pace Ana               | lytical Services | - Peachtree | e Corners, C            | GΑ       |                |                 |              |     |
| Calcium                      | 118                    | mg/L             | 1.0         | 0.070                   | 1        | 03/12/21 11:05 | 03/12/21 21:29  | 7440-70-2    |     |
| 6020 MET ICPMS               | Analytical             | Method: EPA 6    | 020B Prep   | aration Met             | thod: EF | PA 3005A       |                 |              |     |
|                              | Pace Ana               | lytical Services | - Peachtree | e Corners, C            | GΑ       |                |                 |              |     |
| Antimony                     | ND                     | mg/L             | 0.0030      | 0.00028                 | 1        | 03/12/21 11:07 | 03/15/21 20:18  | 7440-36-0    |     |
| Arsenic                      | ND                     | mg/L             | 0.0050      | 0.00078                 | 1        | 03/12/21 11:07 | 03/15/21 20:18  | 7440-38-2    |     |
| Barium                       | 0.036                  | mg/L             | 0.0050      | 0.00071                 | 1        | 03/12/21 11:07 | 03/15/21 20:18  | 7440-39-3    |     |
| Beryllium                    | 0.00017J               | mg/L             | 0.00050     | 0.000046                | 1        | 03/12/21 11:07 | 03/15/21 20:18  | 7440-41-7    |     |
| Boron                        | 12.4                   | mg/L             | 0.40        | 0.052                   | 10       | 03/12/21 11:07 | 03/16/21 16:17  | 7440-42-8    |     |
| Cadmium                      | 0.00028J               | mg/L             | 0.00050     | 0.00012                 | 1        | 03/12/21 11:07 | 03/15/21 20:18  | 7440-43-9    |     |
| Chromium                     | ND                     | mg/L             | 0.0050      | 0.00055                 | 1        | 03/12/21 11:07 | 03/15/21 20:18  | 7440-47-3    |     |
| Cobalt                       | 0.0030J                | mg/L             | 0.0050      | 0.00038                 | 1        | 03/12/21 11:07 | 03/15/21 20:18  | 7440-48-4    |     |
| Lead                         | ND                     | mg/L             | 0.0010      | 0.000036                | 1        | 03/12/21 11:07 | 03/15/21 20:18  | 7439-92-1    |     |
| Lithium                      | 0.028J                 | mg/L             | 0.030       | 0.00081                 | 1        | 03/12/21 11:07 | 03/15/21 20:18  | 7439-93-2    |     |
| Molybdenum                   | 0.0024J                | mg/L             | 0.010       | 0.00069                 | 1        | 03/12/21 11:07 | 03/15/21 20:18  | 7439-98-7    |     |
| Selenium                     | 0.27                   | mg/L             | 0.0050      | 0.0016                  | 1        | 03/12/21 11:07 | 03/15/21 20:18  | 7782-49-2    |     |
| 7470 Mercury                 | Analytical             | Method: EPA 7    | 470A Prep   | aration Met             | hod: EF  | PA 7470A       |                 |              |     |
|                              | Pace Ana               | lytical Services | - Peachtree | e Corners, C            | GΑ       |                |                 |              |     |
| Mercury                      | ND                     | mg/L             | 0.00020     | 0.000078                | 1        | 03/11/21 15:15 | 03/12/21 10:00  | 7439-97-6    |     |
| 2540C Total Dissolved Solids | Analytical<br>Rese Ana | Method: SM 24    | 450C-2011   | Corpora                 | ~ ^      |                |                 |              |     |
|                              | Face Ana               |                  | - reachine  |                         | , AC     |                |                 |              |     |
| Iotal Dissolved Solids       | 856                    | mg/L             | 20.0        | 20.0                    | 1        |                | 03/08/21 11:07  |              |     |
| 300.0 IC Anions 28 Days      | Analytical             | Method: EPA 3    | 800.0 Rev 2 | .1 1993                 |          |                |                 |              |     |
|                              | Pace Ana               | lytical Services | - Asheville |                         |          |                |                 |              |     |
| Chloride                     | 3.9                    | mg/L             | 1.0         | 0.60                    | 1        |                | 03/15/21 04:34  | 16887-00-6   |     |
| Fluoride                     | ND                     | mg/L             | 0.10        | 0.050                   | 1        |                | 03/15/21 04:34  | 16984-48-8   |     |
| Sulfate                      | 485                    | mg/L             | 11.0        | 5.5                     | 11       |                | 03/15/21 17:00  | 14808-79-8   |     |



| Project:           | YATES            |                 |           |            |           |              |             |             |            |           |     |          |
|--------------------|------------------|-----------------|-----------|------------|-----------|--------------|-------------|-------------|------------|-----------|-----|----------|
| Pace Project No.:  | 92525936         |                 |           |            |           |              |             |             |            |           |     |          |
| QC Batch:          | 606033           |                 | Anal      | ysis Metho | d:        | EPA 6010D    |             |             |            |           |     |          |
| QC Batch Method:   | EPA 3010A        |                 | Anal      | ysis Descr | iption:   | 6010D ATL    |             |             |            |           |     |          |
|                    |                  |                 | Labo      | oratory:   |           | Pace Analyt  | ical Servic | es - Peacht | tree Corne | rs, GA    |     |          |
| Associated Lab Sar | mples: 92525936  | 001, 9252593600 | 2, 925259 | 36003, 925 | 25936004  | , 9252593600 | 05, 925259  | 36006, 92   | 525936007  | 7         |     |          |
| METHOD BLANK:      | 3192886          |                 |           | Matrix: W  | /ater     |              |             |             |            |           |     |          |
| Associated Lab Sar | mples: 92525936  | 001, 9252593600 | 2, 925259 | 36003, 925 | 25936004  | , 9252593600 | 05, 925259  | 36006, 92   | 525936007  | 7         |     |          |
|                    |                  |                 | Bla       | nk         | Reporting |              |             |             |            |           |     |          |
| Para               | meter            | Units           | Res       | sult       | Limit     | MDI          | -           | Analyzed    | Qı         | ualifiers |     |          |
| Calcium            |                  | mg/L            |           | ND         | 1         | .0           | 0.070 03    | 3/12/21 19: | 19         |           |     |          |
|                    |                  |                 |           |            |           |              |             |             |            |           |     |          |
| LABORATORY CO      | NTROL SAMPLE:    | 3192887         |           |            |           |              |             |             |            |           |     |          |
|                    |                  |                 | Spike     | LC         | S         | LCS          | % R         | ес          |            |           |     |          |
| Para               | meter            | Units           | Conc.     | Re         | sult      | % Rec        | Limi        | ts (        | Qualifiers |           |     |          |
| Calcium            |                  | mg/L            |           | 1          | 1.1       | 11′          | 8           | 30-120      |            | _         |     |          |
|                    |                  |                 |           |            |           |              |             |             |            |           |     |          |
| MATRIX SPIKE & M   | MATRIX SPIKE DUP | PLICATE: 3192   | 890       |            | 319289    | )1           |             |             |            |           |     |          |
|                    |                  |                 | MS        | MSD        |           |              |             |             |            |           |     |          |
| <b>D</b> .         |                  | 92525936001     | Spike     | Spike      | MS        | MSD          | MS          | MSD         | % Rec      |           | Max | <u> </u> |
| Paramete           | er Units         | Result          | Conc.     | Conc.      | Result    | Result       | % Rec       | % Rec       | Limits     | RPD       | RPD | Qual     |
| Calcium            | mg/L             | . 1.5           | 1         | 1          | 2.6       | 5 2.6        | 107         | 111         | 75-125     | 2         | 20  |          |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:           | YATES  |              |                |                 |             |                    |                    |             |  |
|--------------------|--------|--------------|----------------|-----------------|-------------|--------------------|--------------------|-------------|--|
| Pace Project No.:  | 925259 | 36           |                |                 |             |                    |                    |             |  |
| QC Batch:          | 60604  | 15           |                | Analysis Meth   | nod:        | EPA 6020B          |                    |             |  |
| QC Batch Method:   | EPA 3  | 8005A        |                | Analysis Dese   | cription:   | 6020 MET           |                    |             |  |
|                    |        |              |                | Laboratory:     |             | Pace Analytical Se | rvices - Peachtree | Corners, GA |  |
| Associated Lab Sar | nples: | 92525936001, | , 92525936002, | 92525936003, 92 | 2525936004, | 92525936005, 925   | 25936006, 92525    | 936007      |  |
| METHOD BLANK:      | 319300 | 5            |                | Matrix:         | Water       |                    |                    |             |  |
| Associated Lab Sar | nples: | 92525936001, | , 92525936002, | 92525936003, 92 | 2525936004, | 92525936005, 925   | 25936006, 92525    | 936007      |  |
|                    |        |              |                | Blank           | Reporting   |                    |                    |             |  |
| Parar              | neter  |              | Units          | Result          | Limit       | MDL                | Analyzed           | Qualifiers  |  |
| Antimony           |        |              | mg/L           | ND              | 0.003       | 0.00028            | 03/15/21 17:43     |             |  |
| Arsenic            |        |              | mg/L           | ND              | 0.005       | 0.00078            | 03/15/21 17:43     |             |  |
| Barium             |        |              | mg/L           | ND              | 0.005       | 0.00071            | 03/15/21 17:43     |             |  |
| Beryllium          |        |              | mg/L           | ND              | 0.0005      | 0.000046           | 03/15/21 17:43     |             |  |
| Boron              |        |              | mg/L           | ND              | 0.04        | 0 0.0052           | 03/15/21 17:43     |             |  |
| Cadmium            |        |              | mg/L           | ND              | 0.0005      | 0.00012            | 03/15/21 17:43     |             |  |
| Chromium           |        |              | mg/L           | ND              | 0.005       | 0.00055            | 03/15/21 17:43     |             |  |
| Cobalt             |        |              | mg/L           | ND              | 0.005       | 0.00038            | 03/15/21 17:43     |             |  |
| Lead               |        |              | mg/L           | ND              | 0.001       | 0 0.000036         | 03/15/21 17:43     |             |  |
| Lithium            |        |              | mg/L           | ND              | 0.03        | 0.00081            | 03/15/21 17:43     |             |  |
| Molybdenum         |        |              | mg/L           | ND              | 0.01        | 0 0.00069          | 03/15/21 17:43     |             |  |
| Selenium           |        |              | mg/L           | ND              | 0.005       | 0.0016             | 03/15/21 17:43     |             |  |

#### LABORATORY CONTROL SAMPLE: 3193006

|            |       | Spike | LCS    | LCS   | % Rec  |            |
|------------|-------|-------|--------|-------|--------|------------|
| Parameter  | Units | Conc. | Result | % Rec | Limits | Qualifiers |
| Antimony   | mg/L  | 0.1   | 0.11   | 105   | 80-120 |            |
| Arsenic    | mg/L  | 0.1   | 0.10   | 102   | 80-120 |            |
| Barium     | mg/L  | 0.1   | 0.10   | 102   | 80-120 |            |
| Beryllium  | mg/L  | 0.1   | 0.11   | 106   | 80-120 |            |
| Boron      | mg/L  | 1     | 1.1    | 109   | 80-120 |            |
| Cadmium    | mg/L  | 0.1   | 0.11   | 105   | 80-120 |            |
| Chromium   | mg/L  | 0.1   | 0.11   | 105   | 80-120 |            |
| Cobalt     | mg/L  | 0.1   | 0.10   | 102   | 80-120 |            |
| Lead       | mg/L  | 0.1   | 0.10   | 101   | 80-120 |            |
| Lithium    | mg/L  | 0.1   | 0.11   | 105   | 80-120 |            |
| Molybdenum | mg/L  | 0.1   | 0.10   | 103   | 80-120 |            |
| Selenium   | mg/L  | 0.1   | 0.10   | 102   | 80-120 |            |

| MATRIX SPIKE & MATRIX SP | IKE DUPL | ICATE: 3193 | 007         |              | 3193008 |        |       |       |        |     |     |      |
|--------------------------|----------|-------------|-------------|--------------|---------|--------|-------|-------|--------|-----|-----|------|
|                          |          | 92525931001 | MS<br>Spike | MSD<br>Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Мах |      |
| Parameter                | Units    | Result      | Conc.       | Conc.        | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Antimony                 | mg/L     | ND          | 0.1         | 0.1          | 0.10    | 0.10   | 103   | 104   | 75-125 | 1   | 20  |      |
| Arsenic                  | mg/L     | ND          | 0.1         | 0.1          | 0.10    | 0.10   | 101   | 103   | 75-125 | 2   | 20  |      |
| Barium                   | mg/L     | 0.025       | 0.1         | 0.1          | 0.13    | 0.13   | 100   | 101   | 75-125 | 1   | 20  |      |
| Beryllium                | mg/L     | 0.000099J   | 0.1         | 0.1          | 0.097   | 0.096  | 97    | 96    | 75-125 | 1   | 20  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



Project: YATES Pace Project No.: 92525936

| MATRIX SPIKE & MATRIX SI | PIKE DUPL | ICATE: 3193 | 007   |       | 3193008 |        |       |       |        |     |     |      |
|--------------------------|-----------|-------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                          |           |             | MS    | MSD   |         |        |       |       |        |     |     |      |
|                          |           | 92525931001 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter                | Units     | Result      | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Boron                    | mg/L      | ND          | 1     | 1     | 0.98    | 0.97   | 98    | 97    | 75-125 | 1   | 20  |      |
| Cadmium                  | mg/L      | ND          | 0.1   | 0.1   | 0.11    | 0.10   | 106   | 105   | 75-125 | 1   | 20  |      |
| Chromium                 | mg/L      | ND          | 0.1   | 0.1   | 0.10    | 0.10   | 102   | 101   | 75-125 | 1   | 20  |      |
| Cobalt                   | mg/L      | ND          | 0.1   | 0.1   | 0.10    | 0.099  | 101   | 99    | 75-125 | 2   | 20  |      |
| Lead                     | mg/L      | ND          | 0.1   | 0.1   | 0.099   | 0.10   | 99    | 101   | 75-125 | 2   | 20  |      |
| Lithium                  | mg/L      | ND          | 0.1   | 0.1   | 0.10    | 0.10   | 101   | 99    | 75-125 | 2   | 20  |      |
| Molybdenum               | mg/L      | ND          | 0.1   | 0.1   | 0.098   | 0.099  | 97    | 99    | 75-125 | 1   | 20  |      |
| Selenium                 | mg/L      | ND          | 0.1   | 0.1   | 0.10    | 0.10   | 101   | 104   | 75-125 | 2   | 20  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:                                                                     | TATES                                     |                                                                                |                                                         |                                          |                                                      |                                         |                     |                                       |                               |           |            |      |
|------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------|------------------------------------------------------|-----------------------------------------|---------------------|---------------------------------------|-------------------------------|-----------|------------|------|
| Pace Project No.:                                                            | 92525936                                  |                                                                                |                                                         |                                          |                                                      |                                         |                     |                                       |                               |           |            |      |
| QC Batch:                                                                    | 605942                                    |                                                                                | Analys                                                  | sis Method                               | d:                                                   | EPA 7470A                               |                     |                                       |                               |           |            |      |
| QC Batch Method:                                                             | EPA 7470A                                 |                                                                                | Analys                                                  | sis Descrip                              | ption:                                               | 7470 Mercu                              | ry                  |                                       |                               |           |            |      |
|                                                                              |                                           |                                                                                | Labora                                                  | atory:                                   |                                                      | Pace Analyt                             | ical Serv           | /ices - Peac                          | htree Corn                    | ers, GA   |            |      |
| Associated Lab Sar                                                           | mples: 9252593                            | 6001, 9252593600                                                               | 2, 92525936                                             | 003, 9252                                | 25936004,                                            | 925259360                               | 05, 9252            | 25936006, 9                           | 252593600                     | 7         |            |      |
| METHOD BLANK:                                                                | 3192294                                   |                                                                                | Ν                                                       | Matrix: Wa                               | ater                                                 |                                         |                     |                                       |                               |           |            |      |
| Associated Lab Sar                                                           | mples: 9252593                            | 6001, 9252593600                                                               | 2, 92525936                                             | 003, 9252                                | 25936004,                                            | 925259360                               | 05, 9252            | 25936006, 9                           | 252593600                     | 7         |            |      |
|                                                                              |                                           |                                                                                | Blank                                                   | k l                                      | Reporting                                            |                                         |                     |                                       |                               |           |            |      |
| Parar                                                                        | meter                                     | Units                                                                          | Resul                                                   | t                                        | Limit                                                | MD                                      | _                   | Analyze                               | d C                           | ualifiers | 5          |      |
|                                                                              |                                           |                                                                                |                                                         |                                          | 0.0000                                               |                                         |                     | 00/40/04 0                            |                               |           |            |      |
| Mercury                                                                      |                                           | mg/L                                                                           |                                                         | ND                                       | 0.0002                                               | 0.0                                     | 00078               | 03/12/21 0                            | 9:24                          |           |            |      |
| Mercury                                                                      |                                           | mg/L                                                                           |                                                         | ND                                       | 0.0002                                               | .0 0.0                                  | 00078               | 03/12/21 0                            | 9:24                          |           |            |      |
| LABORATORY CO                                                                | NTROL SAMPLE:                             | mg/L<br>3192295                                                                |                                                         | ND                                       | 0.0002                                               | .0 0.0                                  | 00078               | 03/12/21 0                            | 9:24                          |           |            |      |
| LABORATORY CO                                                                | NTROL SAMPLE:                             | mg/L<br>3192295                                                                | Spike                                                   | LC                                       | 0.0002                                               | LCS                                     | 00078<br>%          | Rec                                   | 9:24                          |           |            |      |
| Mercury<br>LABORATORY CO<br>Parar                                            | NTROL SAMPLE:                             | mg/L<br>3192295<br>Units                                                       | Spike<br>Conc.                                          | ND<br>LC<br>Res                          | S<br>Sult                                            | LCS<br>% Rec                            | 00078<br>%<br>Li    | Rec<br>mits                           | 9:24<br>Qualifiers            |           |            |      |
| Mercury<br>LABORATORY CO<br>Parar<br>Mercury                                 | NTROL SAMPLE:                             | mg/L<br>3192295<br>- Units<br>- mg/L                                           | Spike<br>Conc.<br>0.0025                                | LC<br>Res                                | S<br>Sult<br>0.0024                                  | LCS<br>% Rec<br>9                       | 00078<br>%<br><br>7 | Rec<br>mits<br>80-120                 | 9:24<br>Qualifiers            |           |            |      |
| Mercury<br>LABORATORY CO<br>Parar<br>Mercury                                 | NTROL SAMPLE:                             | mg/L<br>3192295<br>- Units<br>- mg/L                                           | Spike<br>Conc.<br>0.0025                                |                                          | 5:S<br>sult<br>0.0024                                | LCS<br>% Rec<br>9                       | 00078<br><br>7      | Rec<br>mits<br>80-120                 | Qualifiers                    |           |            |      |
| Mercury<br>LABORATORY CO<br>Parar<br>Mercury<br>MATRIX SPIKE & M             | NTROL SAMPLE:<br>meter<br>MATRIX SPIKE DU | mg/L<br>3192295<br>- <u>Units</u><br>mg/L<br>PLICATE: 3192                     | Spike<br>Conc.<br>0.0025                                |                                          | 0.0002<br>S<br>Sult<br>0.0024<br>3192297             | LCS<br>% Rec<br>9                       | 00078<br>           | Rec<br>mits<br>80-120                 | Qualifiers                    |           |            |      |
| Mercury<br>LABORATORY CO<br>Parar<br>Mercury<br>MATRIX SPIKE & M             | NTROL SAMPLE:<br>meter<br>MATRIX SPIKE DU | mg/L<br>3192295<br>- <u>Units</u><br>- <u>mg/L</u><br>PLICATE: 3192            | Spike<br>Conc.<br>0.0025<br>296<br>MS<br>Spike          | ND<br>LC<br>Res<br>MSD<br>Spike          | 0.0002<br>Salt<br>0.0024<br>3192297                  | LCS<br>% Rec<br>9<br>7                  | 00078<br>           | Rec<br>mits<br>80-120                 | 9:24<br>Qualifiers            |           | Max        |      |
| Mercury<br>LABORATORY CO<br>Parar<br>Mercury<br>MATRIX SPIKE & N<br>Paramete | NTROL SAMPLE:<br>meter<br>MATRIX SPIKE DU | mg/L<br>3192295<br>- Units<br>mg/L<br>PLICATE: 3192<br>92525931011<br>s Result | Spike<br>Conc.<br>0.0025<br>296<br>MS<br>Spike<br>Conc. | ND<br>LC<br>Res<br>MSD<br>Spike<br>Conc. | 0.0002<br>Solut<br>0.0024<br>3192297<br>MS<br>Result | LCS<br>% Rec<br>9<br>7<br>MSD<br>Result | 00078<br>           | Rec<br>mits<br>80-120<br>MSD<br>% Rec | Qualifiers<br>% Rec<br>Limits | RPD       | Max<br>RPD | Qual |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:            | YATES  | S          |                  |                |             |                              |                   |          |             |  |  |
|---------------------|--------|------------|------------------|----------------|-------------|------------------------------|-------------------|----------|-------------|--|--|
| Pace Project No.:   | 92525  | 936        |                  |                |             |                              |                   |          |             |  |  |
| QC Batch:           | 6047   | 765        |                  | Analysis Me    | ethod:      | SM 2450C-2                   | 011               |          |             |  |  |
| QC Batch Method:    | SM 2   | 2450C-2011 |                  | Analysis De    | escription: | 2540C Total Dissolved Solids |                   |          |             |  |  |
|                     |        |            |                  | Laboratory     | :           | Pace Analytic                | cal Services - Pe | eachtree | Corners, GA |  |  |
| Associated Lab Sar  | mples: | 92525936   | 6001, 9252593600 | 2, 92525936004 |             |                              |                   |          |             |  |  |
| METHOD BLANK:       | 31863  | 10         |                  | Matrix         | k: Water    |                              |                   |          |             |  |  |
| Associated Lab Sar  | mples: | 92525936   | 001, 9252593600  | 2, 92525936004 |             |                              |                   |          |             |  |  |
|                     |        |            |                  | Blank          | Reporting   |                              |                   |          |             |  |  |
| Parar               | meter  |            | Units            | Result         | Limit       | MDL                          | Analy             | /zed     | Qualifiers  |  |  |
| Total Dissolved Sol | ids    |            | mg/L             | NC             | 0 10        | 0.0                          | 10.0 03/06/2      | 1 12:29  |             |  |  |
|                     |        |            |                  |                |             |                              |                   |          |             |  |  |
| LABORATORY CO       | NTROL  | SAMPLE:    | 3186311          |                |             |                              |                   |          |             |  |  |
|                     |        |            |                  | Spike          | LCS         | LCS                          | % Rec             |          |             |  |  |
| Para                | meter  |            | Units            | Conc.          | Result      | % Rec                        | Limits            | Qua      | alifiers    |  |  |
| Total Dissolved Sol | ids    |            | mg/L             | 400            | 371         | 93                           | 90-111            |          |             |  |  |
|                     |        |            |                  |                |             |                              |                   |          |             |  |  |
| SAMPLE DUPLICA      | TE: 3  | 186312     |                  |                |             |                              |                   |          |             |  |  |
|                     |        |            |                  | 92525346009    | Dup         |                              | Max               |          |             |  |  |
| Para                | meter  |            | Units            | Result         | Result      | RPD                          | RPD               |          | Qualifiers  |  |  |
| Total Dissolved Sol | ids    |            | mg/L             | 217            | 2           | 20                           | 1                 | 10       |             |  |  |
|                     |        |            |                  |                |             |                              |                   |          |             |  |  |
| SAMPLE DUPLICA      | TE: 3  | 186313     |                  |                |             |                              |                   |          |             |  |  |
| _                   |        |            |                  | 92525824003    | Dup         |                              | Max               |          | 0 11        |  |  |
| Parai               | neter  |            | Units            | Result         | Result      | RPD                          | RPD               |          | Qualifiers  |  |  |
| Total Dissolved Sol | ids    |            | mg/L             | 45.0           | ) 61        | .0                           | 30                | 10 D     | 6           |  |  |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:            | YATES   |           |                  |                 |               |             |          |             |         |             |
|---------------------|---------|-----------|------------------|-----------------|---------------|-------------|----------|-------------|---------|-------------|
| Pace Project No.:   | 925259  | 936       |                  |                 |               |             |          |             |         |             |
| QC Batch:           | 60489   | 95        |                  | Analysis M      | lethod:       | SM 2450C-2  | 2011     |             |         |             |
| QC Batch Method:    | SM 24   | 450C-2011 |                  | Analysis D      | escription:   | 2540C Total | Dissolv  | ved Solids  |         |             |
|                     |         |           |                  | Laboratory      | /:            | Pace Analyt | ical Ser | vices - Pea | achtree | Corners, GA |
| Associated Lab Sat  | mples:  | 92525936  | 6003, 9252593600 | 05, 92525936006 | , 92525936007 |             |          |             |         |             |
| METHOD BLANK:       | 318692  | 21        |                  | Matri           | x: Water      |             |          |             |         |             |
| Associated Lab Sar  | mples:  | 92525936  | 6003, 9252593600 | 05, 92525936006 | , 92525936007 |             |          |             |         |             |
|                     |         |           |                  | Blank           | Reporting     |             |          |             |         |             |
| Para                | meter   |           | Units            | Result          | Limit         | MDL         | -        | Analyz      | ed      | Qualifiers  |
| Total Dissolved Sol | ids     |           | mg/L             | N               | D 10          | ).0         | 10.0     | 03/08/21    | 11:05   |             |
|                     |         |           |                  |                 |               |             |          |             |         |             |
| LABORATORY CO       | NTROL   | SAMPLE:   | 3186922          |                 |               |             |          |             |         |             |
|                     |         |           |                  | Spike           | LCS           | LCS         | %        | 6 Rec       |         |             |
| Para                | meter   |           | Units            | Conc.           | Result        | % Rec       | L        | imits       | Qua     | lifiers     |
| Total Dissolved Sol | ids     |           | mg/L             | 400             | 387           | 97          | 7        | 90-111      |         |             |
|                     |         |           |                  |                 |               |             |          |             |         |             |
| SAMPLE DUPLICA      | TE: 31  | 86923     |                  |                 |               |             |          |             |         |             |
|                     |         |           |                  | 92526103001     | Dup           |             |          | Max         |         |             |
| Para                | meter   |           | Units            | Result          | Result        |             | )        | RPD         |         | Qualifiers  |
| Total Dissolved Sol | ids     |           | mg/L             | 15              | 4 3           | 11          | 68       |             | 10 D6   | 6           |
|                     |         |           |                  |                 |               |             |          |             |         |             |
| SAMPLE DUPLICA      | ATE: 31 | 86924     |                  |                 |               |             |          |             |         |             |
|                     |         |           |                  | 92525936007     | 7 Dup         |             |          | Max         |         |             |
| Para                | meter   |           | Units            | Result          | Result        | RPD         | )        | RPD         |         | Qualifiers  |
| Total Dissolved Sol | ids     |           | mg/L             | 85              | 6 8           | 78          | 3        |             | 10      |             |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:       | Y       | ATES           |                 |               |              |           |             |             |              |            |          |     |      |
|----------------|---------|----------------|-----------------|---------------|--------------|-----------|-------------|-------------|--------------|------------|----------|-----|------|
| Pace Project N | No.: 9  | 2525936        |                 |               |              |           |             |             |              |            |          |     |      |
| QC Batch:      |         | 606496         |                 | Anal          | ysis Metho   | d:        | EPA 300.0 F | Rev 2.1 19  | 993          |            |          |     |      |
| QC Batch Met   | thod:   | EPA 300.0 Rev  | 2.1 1993        | Anal          | ysis Descri  | ption:    | 300.0 IC An | ions        |              |            |          |     |      |
|                |         |                |                 | Labo          | oratory:     |           | Pace Analyt | ical Servi  | ces - Ashevi | lle        |          |     |      |
| Associated La  | ıb Samp | les: 9252593   | 6001, 925259360 | 02, 9252593   | 36003, 925   | 25936004, | 925259360   | 05, 92525   | 936006, 92   | 525936007  |          |     |      |
| METHOD BLA     | ANK: 3  | 195315         |                 |               | Matrix: W    | ater      |             |             |              |            |          |     |      |
| Associated La  | b Samp  | les: 9252593   | 6001, 925259360 | 02, 9252593   | 36003, 925   | 25936004, | 925259360   | 05, 92525   | 936006, 92   | 525936007  |          |     |      |
|                |         |                |                 | Bla           | nk           | Reporting |             |             |              |            |          |     |      |
|                | Parame  | ter            | Units           | Res           | ult          | Limit     | MD          | L           | Analyzed     | Qu         | alifiers |     |      |
| Chloride       |         |                | mg/L            |               | ND           | 1.        | 0           | 0.60 0      | 3/14/21 21:  | 28         |          |     |      |
| Fluoride       |         |                | mg/L            |               | ND           | 0.1       | 0           | 0.050 0     | 3/14/21 21:  | 28         |          |     |      |
| Sulfate        |         |                | mg/L            |               | ND           | 1.        | 0           | 0.50 0      | )3/14/21 21: | 28         |          |     |      |
| LABORATORY     | Y CONT  | ROL SAMPLE:    | 3195316         | Snike         |              | · c       |             | % 6         | Pec          |            |          |     |      |
|                | Parame  | ter            | Units           | Conc.         | Res          | sult      | % Rec       | /or<br>Linn | nits (       | Qualifiers |          |     |      |
| Chlorido       |         |                |                 |               |              | 46.5      | 0           | 2           | 00 110       |            | _        |     |      |
| Fluoride       |         |                | mg/L            | 2             | 5            | 40.5      | 9.<br>10    | 3<br>7      | 90-110       |            |          |     |      |
| Sulfate        |         |                | mg/L            | Ę             | 50           | 46.8      | 9           | 4           | 90-110       |            |          |     |      |
|                |         |                |                 |               |              |           |             |             |              |            |          |     |      |
| MATRIX SPIK    | E & MA  | I RIX SPIKE DU | IPLICATE: 319   | 5317          | MOD          | 3195318   | 5           |             |              |            |          |     |      |
|                |         |                | 92525931004     | IVIJ<br>Snika | MSD<br>Snike | MS        | MSD         | MS          | MSD          | % Rec      |          | Max |      |
| Para           | ameter  | Uni            | ts Result       | Conc.         | Conc.        | Result    | Result      | % Rec       | % Rec        | Limits     | RPD      | RPD | Qual |
| Chloride       |         | mg             | /L 1.8          | 50            | 50           | 50.1      | 49.8        | 97          | <b>'</b> 96  | 90-110     | 1        | 10  |      |
| Fluoride       |         | mg             | /L ND           | 2.5           | 2.5          | 2.8       | 2.8         | 111         | 111          | 90-110     | 0        | 10  | M1   |
| Sulfate        |         | mg             | /L 61.7         | 50            | 50           | 98.6      | 98.0        | 74          | 73           | 90-110     | 1        | 10  | M1   |
| MATRIX SPIK    | E & MA  |                | IPLICATE: 319   | 5319          |              | 3195320   | )           |             |              |            |          |     |      |
|                |         |                |                 | MS            | MSD          |           |             |             |              |            |          |     |      |
|                |         |                | 92525936002     | Spike         | Spike        | MS        | MSD         | MS          | MSD          | % Rec      |          | Max |      |
| Para           | ameter  | Uni            | ts Result       | Conc.         | Conc.        | Result    | Result      | % Rec       | % Rec        | Limits     | RPD      | RPD | Qual |
| Chloride       |         | mg             | /L 22.9         | 50            | 50           | 67.6      | 70.1        | 89          | 94           | 90-110     | 4        | 10  | M1   |
| Fluoride       |         | mg             | /L 0.14         | 2.5           | 2.5          | 2.4       | 2.6         | 91          | 97           | 90-110     | 6        | 10  |      |
| Sulfate        |         | mg             | /L 91.7         | 50            | 50           | 126       | 124         | 70          | ) 65         | 90-110     | 2        | 10  | M1   |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



#### QUALIFIERS

| Project:          | YATES    |
|-------------------|----------|
| Pace Project No.: | 92525936 |

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### ANALYTE QUALIFIERS

D6 The precision between the sample and sample duplicate exceeded laboratory control limits.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.



## QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: YATES Pace Project No.: 92525936

| Lab ID      | Sample ID | QC Batch Method        | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|-----------|------------------------|----------|-------------------|---------------------|
| 92525936001 | YAMW-2    |                        |          |                   |                     |
| 92525936002 | YAMW-4    |                        |          |                   |                     |
| 92525936003 | YAMW-5    |                        |          |                   |                     |
| 92525936004 | YAMW-1    |                        |          |                   |                     |
| 92525936005 | PZ-35     |                        |          |                   |                     |
| 92525936007 | PZ-37     |                        |          |                   |                     |
| 92525936001 | YAMW-2    | EPA 3010A              | 606033   | EPA 6010D         | 606330              |
| 92525936002 | YAMW-4    | EPA 3010A              | 606033   | EPA 6010D         | 606330              |
| 92525936003 | YAMW-5    | EPA 3010A              | 606033   | EPA 6010D         | 606330              |
| 92525936004 | YAMW-1    | EPA 3010A              | 606033   | EPA 6010D         | 606330              |
| 92525936005 | PZ-35     | EPA 3010A              | 606033   | EPA 6010D         | 606330              |
| 92525936006 | EB1       | EPA 3010A              | 606033   | EPA 6010D         | 606330              |
| 92525936007 | PZ-37     | EPA 3010A              | 606033   | EPA 6010D         | 606330              |
| 92525936001 | YAMW-2    | EPA 3005A              | 606045   | EPA 6020B         | 606338              |
| 92525936002 | YAMW-4    | EPA 3005A              | 606045   | EPA 6020B         | 606338              |
| 92525936003 | YAMW-5    | EPA 3005A              | 606045   | EPA 6020B         | 606338              |
| 92525936004 | YAMW-1    | EPA 3005A              | 606045   | EPA 6020B         | 606338              |
| 92525936005 | PZ-35     | EPA 3005A              | 606045   | EPA 6020B         | 606338              |
| 92525936006 | EB1       | EPA 3005A              | 606045   | EPA 6020B         | 606338              |
| 92525936007 | PZ-37     | EPA 3005A              | 606045   | EPA 6020B         | 606338              |
| 92525936001 | YAMW-2    | EPA 7470A              | 605942   | EPA 7470A         | 606185              |
| 92525936002 | YAMW-4    | EPA 7470A              | 605942   | EPA 7470A         | 606185              |
| 92525936003 | YAMW-5    | EPA 7470A              | 605942   | EPA 7470A         | 606185              |
| 92525936004 | YAMW-1    | EPA 7470A              | 605942   | EPA 7470A         | 606185              |
| 92525936005 | PZ-35     | EPA 7470A              | 605942   | EPA 7470A         | 606185              |
| 92525936006 | EB1       | EPA 7470A              | 605942   | EPA 7470A         | 606185              |
| 92525936007 | PZ-37     | EPA 7470A              | 605942   | EPA 7470A         | 606185              |
| 92525936001 | YAMW-2    | SM 2450C-2011          | 604765   |                   |                     |
| 92525936002 | YAMW-4    | SM 2450C-2011          | 604765   |                   |                     |
| 92525936003 | YAMW-5    | SM 2450C-2011          | 604895   |                   |                     |
| 92525936004 | YAMW-1    | SM 2450C-2011          | 604765   |                   |                     |
| 92525936005 | PZ-35     | SM 2450C-2011          | 604895   |                   |                     |
| 92525936006 | EB1       | SM 2450C-2011          | 604895   |                   |                     |
| 92525936007 | PZ-37     | SM 2450C-2011          | 604895   |                   |                     |
| 92525936001 | YAMW-2    | EPA 300.0 Rev 2.1 1993 | 606496   |                   |                     |
| 92525936002 | YAMW-4    | EPA 300.0 Rev 2.1 1993 | 606496   |                   |                     |
| 92525936003 | YAMW-5    | EPA 300.0 Rev 2.1 1993 | 606496   |                   |                     |
| 92525936004 | YAMW-1    | EPA 300.0 Rev 2.1 1993 | 606496   |                   |                     |
| 92525936005 | PZ-35     | EPA 300.0 Rev 2.1 1993 | 606496   |                   |                     |
| 92525936006 | EB1       | EPA 300.0 Rev 2.1 1993 | 606496   |                   |                     |
| 92525936007 | PZ-37     | EPA 300.0 Rev 2.1 1993 | 606496   |                   |                     |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Document Name:                                                                                                                                                                                                                                                                                                                                                                                                            | Document Revised: October 28, 2020                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pace Analytical®                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Document No.:                                                                                                                                                                                                                                                                                                                                                                                                             | Issuing Authority:                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | F-CAR-CS-033-Rev.07                                                                                                                                                                                                                                                                                                                                                                                                       | Pace Carolinas Quality Office                                                                                                                                                                                                                                                                                  |
| isheville Eden Greenwood   iample Condition Client Name:   Upon Receipt Iffed Ex   inter: Commercial IPace ody Seal Present? Ives Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: Ing Material: | d       Huntersville       Raleight         Image: Arrow of the section of the sector:       P         UPS       USPS       Image: Arrow of the sector:         Seals Intact?       Image: Arrow of the sector:       Image: Arrow of the sector:         Factor:       Image: Arrow of the sector:       Image: Arrow of the sector:         Factor:       Image: Arrow of the sector:       Image: Arrow of the sector: | h Mechanicsville Atlanta Kernersville<br>Project #:<br>ent<br>WO#: 92525936<br>Date/Initials Person Examining Contents: $\frac{3}{5}/\frac{4}{4}$<br>ther<br>Biological Tissue Frozen?<br>Yes PND N/A<br>Temp should be above freezing to 6°C<br>Samples out of temp criteria. Samples on ice, cooling process |
| er Temp Corrected (°C):<br>A Regulated Soil ( [] N/A, water sample)<br>amples originate in a quarantine zone within t<br>]Yes ]No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ん・O<br>he United States: CA, NY, or SC (check maj                                                                                                                                                                                                                                                                                                                                                                         | has begun ps)? Did samples originate from a foreign source (internationally, including Hawali and Puerto Rico)? Yes No                                                                                                                                                                                         |
| Chain of Custody Brazers?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Pro and fragments                                                                                                                                                                                                                                                                                                                                                                                                         | Comments/Discrepancy:                                                                                                                                                                                                                                                                                          |
| chain or custody Present?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INO UNA                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                              |
| Samples Arrived within Hold Time?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.                                                                                                                                                                                                                                                                                                             |
| Short Hold Time Analysis (<72 hr.)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.                                                                                                                                                                                                                                                                                                             |
| Rush furn Around fime Requested?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.                                                                                                                                                                                                                                                                                                             |
| Sufficient Volume?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Elles No N/A                                                                                                                                                                                                                                                                                                                                                                                                              | 5.                                                                                                                                                                                                                                                                                                             |
| Correct Containers Used?<br>-Pace Containers Used?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ares No N/A                                                                                                                                                                                                                                                                                                                                                                                                               | 6.                                                                                                                                                                                                                                                                                                             |
| Containers Intact?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CHTES DNO DN/A                                                                                                                                                                                                                                                                                                                                                                                                            | 7.                                                                                                                                                                                                                                                                                                             |
| Dissolved analysis: Samples Field Filtered?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.                                                                                                                                                                                                                                                                                                             |
| Sample Labels Match COC?<br>-Includes Date/Time/ID/Analysis Matrix:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ©Yes ⊡no ⊡n/a<br>W                                                                                                                                                                                                                                                                                                                                                                                                        | 9.                                                                                                                                                                                                                                                                                                             |
| Headspace in VOA Vials (>5-6mm)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.                                                                                                                                                                                                                                                                                                            |
| Trip Blank Present?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.                                                                                                                                                                                                                                                                                                            |
| Trip Blank Custody Seals Present?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Liyes Lino Ethia                                                                                                                                                                                                                                                                                                                                                                                                          | Field Data Required? Yes No                                                                                                                                                                                                                                                                                    |
| ENT NOTIFICATION/RESOLUTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                           | Lot ID of split containers:                                                                                                                                                                                                                                                                                    |
| erson contacted:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Date/Ti                                                                                                                                                                                                                                                                                                                                                                                                                   | ime:                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                |
| Project Manager SCURF Review:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                           | Date:                                                                                                                                                                                                                                                                                                          |

| Document No<br>F-CAR-CS-033-Rev.07         Freent<br>Pleast: Unpreserved in the second<br>samples.         Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLB<br>Plastic Unpreserved (N/A)         Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLB<br>Plastic Unpreserved (N/A)         Plastic Unpreserved (N/A)         Plastic Unpreserved (N/A)         Plastic Unpreserved (N/A)         Plastic Unpreserved (N/A)         Plastic Unpreserved (N/A)         Plastic Unpreserved (N/A)         Plastic Unpreserved (N/A)         Plastic Unpreserved (N/A)         Plastic Unpreserved (N/A)         Plastic Unpreserved (N/A)         Plastic Unpreserved (N/A)         Plastic Unpreserved (N/A)         Plastic Unpreserved (N/A)         Plastic Unpreserved (N/A)         Plastic Unpreserved (N/A)         Plastic Unpreserved (N/A)         Plastic Unpreserved (N/A)         Plastic Unpreserved (N/A)         Plastic Unpreserved (N/A)         Plastic Traped colspan="2">Plastic Traped colspan="2">Plastic Traped colspan="2">Plastic Traped colspan="2">Plastic Traped colspan="2" <t< th=""><th>Pace Carolinas Quality Office<br/>WO#: 92525936<br/>PM: KLH1 Due Date: 03/19<br/>CLIENT: GR-GR Power</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pace Carolinas Quality Office<br>WO#: 92525936<br>PM: KLH1 Due Date: 03/19<br>CLIENT: GR-GR Power                                                                                                                                                                                                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| *Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preserved in the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the se | WO#: 92525936<br>PM: KLH1 Due Date: 03/19<br>CLIENT: GR-GA Power                                                                                                                                                                                                                                                                                                                                        |
| Itemit       PP4U-125 mL Piastic Unpreserved (N/A) (CI-)       BP4U-125 mL Piastic Unpreserved (N/A)        BP2U-500 mL Plastic Unpreserved (N/A)       BP1U-1 liter Plastic Unpreserved (N/A)       BP1U-1 liter Plastic Unpreserved (N/A)       BP3W-250 mL Plastic Unpreserved (N/A)       BP45-125 mL Plastic Lunpreserved (N/A)       BP3W-250 mL plastic HN03 (pH < 2) (CI-)       BP42-125 mL Plastic ZN Acetate & NaOH (S9)       BP42-125 mL Plastic ZN Acetate & NaOH (S9)       BP42-125 mL Plastic ZN Acetate & NaOH (S9)       BP42-125 mL Plastic ZN Acetate & NaOH (S9)       BP42-125 mL Plastic ZN Acetate & NaOH (S9)       BP42-125 mL Plastic ZN Acetate & NaOH (S9)       BP42-125 mL Plastic ZN Acetate & NaOH (S9)       BP42-125 mL Plastic ZN Acetate & NaOH (S9)       BP42-125 mL Plastic ZN Acetate & NaOH (S9)       AG1U-1 liter Amber Unpreserved (N/A) (CI-)       AG1U-1 liter Amber HCI (PH < 2)       AG3U-250 mL Amber HCI (PH < 2)       AG3U-250 mL Amber HCI (PH < 2)       AG15-1 liter Amber HCI (PH < 2)       AG3U-250 mL Amber HCI (PH < 2)       AG3U-250 mL Amber HCI (PH < 2)       AG3U-250 mL VOA HCI (N/A) (CI-)       AG3U-40 mL VOA AND (N/A)       VG9U-40 mL VOA Unp (N/A)       VG9U-40 mL VOA Unp (N/A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | E E                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DG9P-40 mL VOA H3PO4 (N/A)<br>VOAK (6 vials per kit)-5035 kit (N/A)<br>V/GK (3 vials per kit)-VPH/Gas kit (N/A)<br>SP5T-125 mL Sterile Plastic (N/A – lab)<br>SP2T-250 mL Sterile Plastic (N/A – lab)<br>T / / / / /<br>BP3A-250 mL Sterile Plastic (NH2)2SO4 (9.3-9.7)<br>BP3A-250 mL Plastic (NH2)2SO4 (9.3-9.7)<br>AGOU-100 mL Amber Unpreserved vials (N/A)<br>VSGU-20 mL Scintillation vials (N/A) |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                         |
| pH Adjustment Log for Preserved Samp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                         |

| Sample ID | Type of Preservative | pH upon receipt | Date preservation adjusted | Time preservation<br>adjusted | Amount of Preservative<br>added | Lot # |
|-----------|----------------------|-----------------|----------------------------|-------------------------------|---------------------------------|-------|
|           |                      |                 |                            |                               |                                 |       |
|           |                      |                 |                            |                               |                                 |       |
|           |                      |                 |                            |                               |                                 |       |

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

|                |       |                     |    |      | -    | -       | -  | and a second |        | and the second |                                                 |                   |                                       | 1            | 2            | 1            | 101      | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | a »                       |                   |
|----------------|-------|---------------------|----|------|------|---------|----|--------------|--------|----------------|-------------------------------------------------|-------------------|---------------------------------------|--------------|--------------|--------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------------------|
|                |       | ADDITIONAL COMMENTS |    | 661  | 2235 | YAWW-1  |    | YAMW-5       | YAMW-4 | YAMW-2         | (A-Z, 0-8', -<br>)<br>Sampia kis must berunique | SAMPLE ID         |                                       |              | Due Date:    |              | A 30114  | Georgia Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Client information:       | HERE PACTLASSACEN |
|                | - W   |                     |    |      |      |         |    |              |        |                | AND<br>General Ont                              | Wiged Wiged Wiged | MATRIXD CODED<br>Drividing WaterD DWD | Intropod as: | Project Name | Purchase Ord | Copy To: | Report To:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Section B<br>Required Pro |                   |
|                | A     | ILLOWER ST          |    | _    | WT   | WT      | WT | WT           | T      | WT             | MATRIX CODE                                     | (see valid co     | des to left)<br>(=COMP)               |              | -            | er#          |          | Becky                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ect in                    |                   |
|                | 1 VF  | SHED B              |    | 10KS | 2    | 543     | Ħ  | (eta)        | 302    | 52             | <b>B</b>                                        | ſ                 | 1                                     | 11           | alles R6     |              |          | Sleever                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | formati                   |                   |
| 18             |       | A LINE              |    | E    | X    | N.      |    | 1 he         | 3      | E.             | R .                                             | STAR              |                                       |              | AMA          |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A                         |                   |
| PRIM           |       | UMIN                |    | 8    | 530  | SIS     |    | 5            | 꺐      | S              | TIME                                            | 의<br>             | COLLE                                 |              |              |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                   |
| NAME           |       |                     |    |      |      |         |    |              |        |                | DATE                                            | m                 | CTED                                  |              |              |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | The C             |
| IND SAM        | 950   | 8                   |    |      |      |         |    |              |        |                | TIME                                            | 18                |                                       |              |              |              | -        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | hain-o            |
| PLER:          | 15    | #                   | ++ |      |      |         | H  | -            |        |                | SAMPLE TEMP                                     | AT COLLECTI       | ON                                    |              |              |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | f-Cus             |
| Da A           | -     | _                   |    | N    | S    | S       | T  | 5            | N      | N              | # OF CONTAIN                                    | RS                |                                       | Page         | Page         | Page         | 200      | Aller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sect                      | tody              |
| 50             | S     | A                   |    | *    | X    | X       | 4  | X            | X      | X              | Unpreserved                                     |                   | -                                     | Profil       | Proje        | Quot         | pany h   | 2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | in o                      | Isal              |
| BH             | TA    |                     | -  | X    | X    | ×       |    | ×            | X      | ×              | HNO3                                            | Parka             | Pr                                    | P.           | ol Mar       |              | lame:    | Contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contra de la contr |                           | EGA               |
| 50             | 19    |                     |    |      |      |         |    |              |        |                | HCI                                             |                   | esen                                  | 1084         | ager:        |              |          | - Contra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ş                         | 5                 |
| D              | 5     | 8                   |    | -    |      | -       | 4_ |              |        |                | NaOH                                            |                   | ative                                 | °            | 7            |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | CUN               |
| S              | R     | CE T                |    |      |      |         | +  |              |        |                | Methanol                                        |                   | N.                                    |              | evin.h       |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | AEN               |
| 2.19           | 4     |                     |    |      |      |         |    |              |        |                | Other                                           |                   |                                       |              | enting       |              |          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           | 2                 |
| - 01           | 1     | 1-                  |    |      | ×    | ×       | ×  |              | XI     | ×              | Analyses                                        | Teat              | Y/N                                   |              | Cerdig       |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | relev             |
| DAT            | 14    | NTIO OF             |    | X    | ×    | ×       | ×  | ×            | ×      | ×              | CI F, 904                                       |                   |                                       |              | tabs.o       |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | anti              |
| E Sq           | 14    |                     |    | X    | ×    | ×       | ×  | ×            | ×      | ×              |                                                 | 3                 |                                       | Reg          | ă            |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | ields             |
| ed:            | - Dre |                     |    | ×    | ×    | ×       | ×  | ×            | ×      | ×              | RAD 9315/932                                    | )                 |                                       |              |              |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | must              |
|                | 12    |                     | +  |      |      |         |    |              |        | _              |                                                 |                   |                                       | <b>9</b>     |              |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | bec               |
|                | 12    |                     |    |      |      |         |    |              |        |                | 7.7.8%                                          |                   |                                       |              |              |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | duio              |
| •              | 2     |                     |    |      |      |         |    |              |        |                |                                                 |                   |                                       |              |              | C.           |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | leted             |
|                | 2     | 1                   |    |      |      | -       | +  |              |        | _              |                                                 |                   |                                       |              | 1            |              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | acou              |
|                |       |                     |    |      |      |         |    |              |        |                | 196)                                            |                   |                                       |              |              | £ .          |          | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Γ.                        | rate              |
| EMP In C       |       |                     |    |      |      | _       | -  | -            |        |                | Residual Chied                                  | 10 (Y/N)          | C. M. C. Market                       |              | 2            | Regi         | 0        | age :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | Y.                |
| aceived on     |       | Sal T               |    |      | -st  | 01      | 1  | 21           | -01    | -              |                                                 | is (ind)          | a com                                 | 0.           |              | Culeti       | 2        | ľ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |                   |
| /N)            |       | PLACE CONTRACT      |    |      | ギリ   | T       |    |              | H .    | Т              |                                                 |                   |                                       |              |              | CL6          | 1.       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |                   |
| aledo          |       | DONC                |    |      | 5    | 5       |    | 5.3          | (i)    | S              |                                                 |                   |                                       |              |              |              | 0        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                   |
| /N)            |       | OKS                 |    |      | 49   | PS<br>S | 1  | 2            | Ő      | ¥              |                                                 |                   |                                       |              |              | N.           |          | 1ª                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |                   |
| amples<br>ectD |       |                     |    | 1    |      |         | 1  |              |        |                |                                                 |                   | 1. 4                                  |              |              |              |          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |                   |

|             |            |                  | E E |       | <del>7</del> . 8 | 49       | <b>\$</b>                              | 17       | Ø  | 5  | *     | 13 13   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del>1</del>             | -          | ine:              | alt:        | Mon. GA 3            | whether       | quired Cli               | 1                                 |
|-------------|------------|------------------|-----|-------|------------------|----------|----------------------------------------|----------|----|----|-------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------|-------------------|-------------|----------------------|---------------|--------------------------|-----------------------------------|
|             |            | ADOTIONAL COMMEN |     |       |                  |          |                                        |          |    |    | WOJSA | 19-71 - | SAMPLE ID<br>One Character per box.<br>(A-Z, 0-9 f, -)<br>Sample Ids must be unique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |            | (770)384-6526 Fax |             | 1070 Bridge Mill Ave | Georgia Power | ent information:         | Pace Arabytical<br>servicensistem |
|             | 2          |                  |     |       |                  |          |                                        |          |    |    |       |         | HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HANDLAND HAN | MALLAND DARW BUNNED DAND | Project #: | Project Name      | Purchase Or | Copy To:             | Report To:    | Section B<br>Required Pr |                                   |
|             |            |                  |     |       | WT               | M        | TW                                     | TW       | TW | TW | M     | M       | MATRIX CODE (see valid c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | odes to left)            |            |                   | der #:      |                      | Becky         | olect ir                 |                                   |
|             |            | Nit              |     |       |                  | +        | -                                      | +        | +  | +  | -     | (v)     | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CRCOMP                   |            | fates I           |             |                      | Sleev         | donna                    |                                   |
|             |            |                  |     |       | 10               |          |                                        | -        |    |    |       | 42      | ATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |            | SWA               | 1           |                      | đ             | ntion;                   |                                   |
| *           |            | FRUNT            |     |       |                  |          |                                        |          |    |    |       | 1150    | TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Q                        |            |                   |             |                      |               |                          |                                   |
| DIT Nam     | $     \nu$ | 12-              |     |       | 1                |          | 1                                      |          |    | -  |       |         | <u>S</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LECTED                   |            |                   |             |                      |               |                          | The                               |
| Eors        |            |                  |     |       | -                | +        | 1                                      | $\vdash$ | 1  | -  |       | -       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |            |                   |             |                      |               |                          | Chain                             |
| MIPLE       | 0.10       | MI               |     |       | -                |          |                                        |          |    |    |       |         | ă 👘                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |            |                   |             |                      |               |                          | 05                                |
| 2           |            |                  |     | -     | -                |          |                                        |          | -  |    |       | 17      | SAMPLE TEMP AT COLLECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ION                      | -          |                   |             |                      |               |                          | usto                              |
| EE"         | 2          |                  |     |       |                  | +        | +                                      | -        |    |    |       | 1       | NOF CONTAINERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          | age F      | age F             | age of      | iomp                 | Intend        | entio                    | dy is                             |
| EF          | 0          |                  |     |       |                  | +        | -                                      |          | 1  |    |       | ~       | H2SO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 1                      | rofile     | T de              | Sel Se      | N YUR                | Stal e        | [ n                      | 8                                 |
| 10          |            | 100              |     | 1.    |                  | -        | ************************************** |          |    |    |       | 1       | HNO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P                        | *          | AMar              |             | ame                  | Maller        |                          | EGA                               |
| 24          |            | * E              |     |       |                  |          |                                        |          |    |    |       |         | HCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | eser                     | 108        | ager              |             |                      | TUON:         | Ē.                       | P.                                |
| 0           |            | I.L              |     |       | _                |          |                                        |          |    |    |       |         | NaOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Vati                     | 6          | 1                 |             |                      |               |                          | 2<br>2                            |
| 1.1.        | 1          | 8                |     |       |                  |          | <u> </u>                               |          |    |    |       |         | Na28203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | les                      |            | loevin            |             |                      |               |                          | ME                                |
| E           |            | J₫⊢              |     |       |                  | +        |                                        | -        | -  | -  |       | -       | Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4 1                      |            |                   |             |                      | 1             |                          | F                                 |
| E.          |            | 12               |     | L     | 1                | -i       | die sies.                              |          |    |    | 1     | -       | Analyses Teat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | YIN                      |            |                   |             |                      |               |                          | JI re                             |
|             |            | 124              |     | T     | ×                | ×        | ×                                      | ×        | ×  | ×  | ×     | ×       | TDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |            |                   |             |                      |               |                          | eva                               |
| TR          | 1 A        | ₹ <u>₹</u>       |     |       | ×                | ×        | ×                                      | ×        | ×  | ×  | ×     | ×       | CI, F, 304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |            |                   |             |                      |               |                          | N Tie                             |
| Sig         | 7          |                  |     | -     | ×                | ×        | ×                                      | ×        | ×  | ×  | ×     | ×       | App III/IV Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                          |            | 3                 |             |                      |               |                          | lds .                             |
| ₽.<br>      | 9          |                  | +   |       |                  | *        | ×                                      | ×        | ×  | ×  | ×     | ×       | RAD 9315/9320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |            |                   |             |                      |               |                          | nust                              |
| A.          |            |                  |     |       |                  | -        |                                        | -        |    |    | -     |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |            |                   |             |                      |               |                          | 8                                 |
| 1           | 1 -5       | 1g -             |     | -     |                  |          |                                        |          |    |    | -     | -       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |            |                   |             |                      |               |                          | com                               |
|             | K          |                  |     | ***** | 1 6. 1           |          |                                        |          |    |    |       | 1       | the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |            |                   |             |                      | 1             |                          | plete                             |
|             | 12         |                  |     |       |                  |          |                                        | 1.774    |    |    |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |            |                   |             |                      |               |                          | 8                                 |
| 3           | A          | Ĩ.               |     |       | -                |          |                                        | -        |    |    |       | _       | and the state of the state of the state of the state of the state of the state of the state of the state of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                        |            |                   |             |                      | _             | _                        | cura                              |
|             |            | A Contraction    | _   | -     | +                |          |                                        |          |    | _  | -     | -       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |            |                   |             |                      | 2             |                          | tely                              |
| EMP In C    |            |                  |     |       | 1                | <u> </u> |                                        |          |    |    | 1     | +       | Residual Chlorine (YAI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          | -          |                   | Requ        |                      | : ebi         |                          |                                   |
| Received on |            | 15               | TT  | 1     | 1                | 1        |                                        |          |    | T  | 4     | 0       | Stating (114)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          | 9          |                   | Sato 1      | 0                    |               |                          |                                   |
| eO<br>Y/N)  |            |                  |     |       |                  |          |                                        |          |    |    |       | ž       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32.                      | 1          |                   | E Age       | 20                   | 2             |                          |                                   |
| Cuslody     |            | 8                |     |       |                  |          |                                        |          |    |    |       | S       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.<br>1. F. 3. S.        | 3          | i                 | Nour        | v<br>n               | N             |                          |                                   |
| CoolerD     |            | D. D.            | 11  | 1     |                  |          |                                        |          |    |    |       | S       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |            |                   |             |                      | 2             | 81                       |                                   |
| 1/N)        |            | ā                |     |       |                  |          |                                        |          |    |    |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2612 8                   |            |                   |             | 5                    |               |                          |                                   |
| Samples     |            | C                |     |       |                  |          |                                        |          |    |    |       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0410.0294              | 22 0,200   | (8)               | 9923        | 100                  |               |                          |                                   |



April 01, 2021

Ms. Lauren Petty Southern Company 42 Inverness Center Parkway Birmingham, AL 35242

RE: Project: YATES RADS Pace Project No.: 92525214

Dear Ms. Petty:

Enclosed are the analytical results for sample(s) received by the laboratory between March 02, 2021 and March 05, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kardony

Kevin Herring kevin.herring@pacelabs.com 1(704)875-9092 HORIZON Database Administrator

Enclosures

cc: Joju Abraham, Georgia Power-CCR Lauren Coker, Georgia Pwer Geoffrey Gay, ARCADIS - Atlanta Kristen Jurinko Kelley Sharpe, ARCADIS - Atlanta Alex Simpson, Arcadis Samantha Thomas Maribel Vital





#### CERTIFICATIONS

Project: YATES RADS Pace Project No.: 92525214

#### Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601 ANAB DOD-ELAP Rad Accreditation #: L2417 Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694 **Delaware Certification** EPA Region 4 DW Rad Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET **Guam Certification** Hawaii Certification Idaho Certification **Illinois Certification** Indiana Certification Iowa Certification #: 391 Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221 Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086 Maine Certification #: 2017020 Maryland Certification #: 308 Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991

Missouri Certification #: 235 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249 Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification Tennessee Certification #: 02867 Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L



#### SAMPLE SUMMARY

Project: YATES RADS Pace Project No.: 92525214

| Lab ID      | Sample ID        | Matrix | Date Collected | Date Received  |
|-------------|------------------|--------|----------------|----------------|
| 92525214001 | YGWA-5I          | Water  | 03/02/21 14:05 | 03/02/21 17:30 |
| 92525214002 | YGWA-5D          | Water  | 03/02/21 14:40 | 03/02/21 17:30 |
| 92525214003 | DUP-1            | Water  | 03/02/21 00:00 | 03/02/21 17:30 |
| 92525214005 | YGWA-14S         | Water  | 03/02/21 11:20 | 03/02/21 17:30 |
| 92525214006 | YGWA-30I         | Water  | 03/01/21 16:25 | 03/02/21 17:30 |
| 92525214007 | FB-01            | Water  | 03/02/21 11:30 | 03/02/21 17:30 |
| 92525214008 | DUP-01           | Water  | 03/02/21 00:00 | 03/02/21 17:30 |
| 92525214009 | FB-01            | Water  | 03/02/21 15:20 | 03/02/21 17:30 |
| 92525214011 | YGWA-40          | Water  | 03/04/21 10:10 | 03/05/21 09:20 |
| 92525214012 | YGWA-17S         | Water  | 03/03/21 12:20 | 03/05/21 09:20 |
| 92525214013 | YGWA-18S         | Water  | 03/03/21 13:50 | 03/05/21 09:20 |
| 92525214014 | YGWA-18I         | Water  | 03/03/21 15:00 | 03/05/21 09:20 |
| 92525214015 | YGWA-39          | Water  | 03/04/21 10:20 | 03/05/21 09:20 |
| 92525214016 | YGWA-1D (030321) | Water  | 03/03/21 14:25 | 03/05/21 09:20 |
| 92525214017 | YGWA-1I (030321) | Water  | 03/03/21 13:35 | 03/05/21 09:20 |
| 92525214018 | YGWA-2I (030321) | Water  | 03/03/21 11:45 | 03/05/21 09:20 |
| 92525214019 | YGWA-3I (030321) | Water  | 03/03/21 17:00 | 03/05/21 09:20 |
| 92525214020 | YGWA-3D (030321) | Water  | 03/03/21 16:00 | 03/05/21 09:20 |
| 92525214021 | EB-02 (03032021) | Water  | 03/03/21 17:15 | 03/05/21 09:20 |
| 92525214022 | YGWA-4I          | Water  | 03/03/21 10:35 | 03/05/21 09:20 |
| 92525214023 | YGWA-20S         | Water  | 03/03/21 09:40 | 03/05/21 09:20 |
| 92525214024 | YGWA-21I         | Water  | 03/03/21 09:35 | 03/05/21 09:20 |



# SAMPLE ANALYTE COUNT

Project:YATES RADSPace Project No.:92525214

| Lab ID      | Sample ID | Method                   | Analysts | Analytes<br>Reported | Laboratory |
|-------------|-----------|--------------------------|----------|----------------------|------------|
| 92525214001 | YGWA-5I   | <br>EPA 9315             | LAL      | 1                    | PASI-PA    |
|             |           | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |           | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92525214002 | YGWA-5D   | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |           | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |           | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92525214003 | DUP-1     | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |           | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |           | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92525214005 | YGWA-14S  | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |           | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |           | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92525214006 | YGWA-30I  | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |           | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |           | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92525214007 | FB-01     | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |           | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |           | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92525214008 | DUP-01    | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |           | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |           | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92525214009 | FB-01     | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |           | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |           | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92525214011 | YGWA-40   | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |           | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |           | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92525214012 | YGWA-17S  | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |           | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |           | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92525214013 | YGWA-18S  | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |           | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |           | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92525214014 | YGWA-18I  | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |           | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |           | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92525214015 | YGWA-39   | EPA 9315                 | LAL      | 1                    | PASI-PA    |



### SAMPLE ANALYTE COUNT

| Project:           | YATES RADS |
|--------------------|------------|
| Pace Project No .: | 92525214   |

| Lab ID      | Sample ID        | Method                   | Analysts | Analytes<br>Reported | Laboratory |
|-------------|------------------|--------------------------|----------|----------------------|------------|
|             |                  | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                  | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92525214016 | YGWA-1D (030321) | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                  | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                  | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92525214017 | YGWA-1I (030321) | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                  | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                  | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92525214018 | YGWA-2I (030321) | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                  | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                  | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92525214019 | YGWA-3I (030321) | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                  | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                  | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92525214020 | YGWA-3D (030321) | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                  | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                  | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92525214021 | EB-02 (03032021) | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                  | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                  | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92525214022 | YGWA-4I          | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                  | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                  | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92525214023 | YGWA-20S         | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                  | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                  | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92525214024 | YGWA-21I         | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |                  | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |                  | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
|             |                  |                          |          |                      |            |

PASI-PA = Pace Analytical Services - Greensburg



Project: YATES RADS

Pace Project No.: 92525214

| Lab Sample ID            | Client Sample ID |                                                    |       |              |                |            |
|--------------------------|------------------|----------------------------------------------------|-------|--------------|----------------|------------|
| Method                   | Parameters       | Result                                             | Units | Report Limit | Analyzed       | Qualifiers |
| 92525214001              | YGWA-5I          |                                                    |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.114 ±<br>0.190<br>(0.428)                        | pCi/L |              | 03/22/21 08:37 |            |
| EPA 9320                 | Radium-228       | C:68% 1:NA<br>0.465 ±<br>0.327<br>(0.633)<br>C:78% | pCi/L |              | 03/18/21 12:44 |            |
| Total Radium Calculation | Total Radium     | 0.579 ±<br>0.517<br>(1.06)                         | pCi/L |              | 03/26/21 14:34 |            |
| 92525214002              | YGWA-5D          |                                                    |       |              |                |            |
| EPA 9315                 | Radium-226       | 1.21 ±<br>0.344<br>(0.294)<br>C:69% T:NA           | pCi/L |              | 03/22/21 08:37 |            |
| EPA 9320                 | Radium-228       | 0.457 ±<br>0.363<br>(0.727)<br>C:76%<br>T:95%      | pCi/L |              | 03/18/21 12:45 |            |
| Total Radium Calculation | Total Radium     | 1.67 ±<br>0.707<br>(1.02)                          | pCi/L |              | 03/26/21 14:34 |            |
| 92525214003              | DUP-1            |                                                    |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.838 ±<br>0.268<br>(0.250)<br>C:76% T:NA          | pCi/L |              | 03/22/21 08:37 |            |
| EPA 9320                 | Radium-228       | 0.784 ±<br>0.426<br>(0.783)<br>C:78%<br>T:87%      | pCi/L |              | 03/18/21 12:45 |            |
| Total Radium Calculation | Total Radium     | 1.62 ±<br>0.694<br>(1.03)                          | pCi/L |              | 03/26/21 14:34 |            |
| 92525214005              | YGWA-14S         |                                                    |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.283 ±<br>0.267<br>(0.565)<br>C:72% T:NA          | pCi/L |              | 03/22/21 08:41 |            |
| EPA 9320                 | Radium-228       | 0.427 ±<br>0.338<br>(0.673)<br>C:76%<br>T:92%      | pCi/L |              | 03/18/21 12:45 |            |
| Total Radium Calculation | Total Radium     | 0.710 ±<br>0.605<br>(1.24)                         | pCi/L |              | 03/26/21 14:37 |            |



Project: YATES RADS

Pace Project No.: 92525214

| Lab Sample ID            | Client Sample ID |                                                             |       |              |                |            |
|--------------------------|------------------|-------------------------------------------------------------|-------|--------------|----------------|------------|
| Method                   | Parameters       | Result                                                      | Units | Report Limit | Analyzed       | Qualifiers |
| 92525214006              | YGWA-30I         |                                                             |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.0562 ±<br>0.172<br>(0.408)                                | pCi/L |              | 03/22/21 08:41 |            |
| EPA 9320                 | Radium-228       | C:79% I:NA<br>0.356 ±<br>0.278<br>(0.545)<br>C:76%<br>T:02% | pCi/L |              | 03/18/21 12:46 |            |
| Total Radium Calculation | Total Radium     | 0.412 ±<br>0.450<br>(0.953)                                 | pCi/L |              | 03/26/21 14:37 |            |
| 92525214007              | FB-01            |                                                             |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.121 ±<br>0.131<br>(0.267)<br>C:78% T:NA                   | pCi/L |              | 03/22/21 08:41 |            |
| EPA 9320                 | Radium-228       | 0.512 ±<br>0.332<br>(0.620)<br>C:73%<br>T:88%               | pCi/L |              | 03/18/21 12:46 |            |
| Total Radium Calculation | Total Radium     | 0.633 ±<br>0.463<br>(0.887)                                 | pCi/L |              | 03/26/21 14:37 |            |
| 92525214008              | DUP-01           |                                                             |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.118 ±<br>0.120<br>(0.237)<br>C·78% T·NA                   | pCi/L |              | 03/22/21 08:48 |            |
| EPA 9320                 | Radium-228       | 0.809 ±<br>0.394<br>(0.692)<br>C:79%<br>T:90%               | pCi/L |              | 03/18/21 12:46 |            |
| Total Radium Calculation | Total Radium     | 0.927 ±<br>0.514<br>(0.929)                                 | pCi/L |              | 03/26/21 14:37 |            |
| 92525214009              | FB-01            |                                                             |       |              |                |            |
| EPA 9315                 | Radium-226       | -0.00506 ±<br>0.0722<br>(0.204)<br>C:84% T:NA               | pCi/L |              | 03/22/21 08:48 |            |
| EPA 9320                 | Radium-228       | 0.675 ±<br>0.361<br>(0.652)<br>C:76%<br>T:96%               | pCi/L |              | 03/18/21 12:46 |            |
| Total Radium Calculation | Total Radium     | 0.675 ±<br>0.433<br>(0.856)                                 | pCi/L |              | 03/26/21 14:37 |            |



Project: YATES RADS

Pace Project No.: 92525214

| Lab Sample ID<br>Method  | Client Sample ID<br>Parameters | Result                                                | Units | Report Limit | Analyzed       | Qualifiers |
|--------------------------|--------------------------------|-------------------------------------------------------|-------|--------------|----------------|------------|
| 92525214011              | YGWA-40                        |                                                       |       |              |                |            |
| EPA 9315                 | Radium-226                     | 0.268 ±<br>0.187<br>(0.319)                           | pCi/L |              | 03/15/21 09:11 |            |
| EPA 9320                 | Radium-228                     | C:74% I:NA<br>0.550 ±<br>0.416<br>(0.827)<br>C:81%    | pCi/L |              | 03/15/21 16:10 |            |
| Total Radium Calculation | Total Radium                   | 0.818 ±<br>0.603<br>(1.15)                            | pCi/L |              | 03/22/21 10:37 |            |
| 92525214012              | YGWA-17S                       |                                                       |       |              |                |            |
| EPA 9315                 | Radium-226                     | 0.192 ±<br>0.156<br>(0.276)<br>C·74% TNA              | pCi/L |              | 03/15/21 09:11 |            |
| EPA 9320                 | Radium-228                     | 0.398 ±<br>0.319<br>(0.627)<br>C:80%<br>T:89%         | pCi/L |              | 03/15/21 16:10 |            |
| Total Radium Calculation | Total Radium                   | 0.590 ±<br>0.475<br>(0.903)                           | pCi/L |              | 03/22/21 10:37 |            |
| 92525214013              | YGWA-18S                       |                                                       |       |              |                |            |
| EPA 9315                 | Radium-226                     | 0.141 ±<br>0.166<br>(0.344)<br>C <sup>.5</sup> 9% TNA | pCi/L |              | 03/15/21 09:16 |            |
| EPA 9320                 | Radium-228                     | 0.211 ±<br>0.322<br>(0.695)<br>C:73%<br>T89%          | pCi/L |              | 03/15/21 16:10 |            |
| Total Radium Calculation | Total Radium                   | 0.352 ±<br>0.488<br>(1.04)                            | pCi/L |              | 03/22/21 10:37 |            |
| 92525214014              | YGWA-18I                       |                                                       |       |              |                |            |
| EPA 9315                 | Radium-226                     | 0.381 ±<br>0.207<br>(0.351)<br>C:65% TNA              | pCi/L |              | 03/15/21 09:16 |            |
| EPA 9320                 | Radium-228                     | 0.184 ±<br>0.282<br>(0.608)<br>C:76%<br>T:92%         | pCi/L |              | 03/15/21 16:10 |            |
| Total Radium Calculation | Total Radium                   | 0.565 ±<br>0.489<br>(0.959)                           | pCi/L |              | 03/22/21 10:37 |            |



Project: YATES RADS

Pace Project No.: 92525214

| Lab Sample ID            | Client Sample ID |                                                       |       |              |                |            |
|--------------------------|------------------|-------------------------------------------------------|-------|--------------|----------------|------------|
| Method                   | Parameters       | Result                                                | Units | Report Limit | Analyzed       | Qualifiers |
| 92525214015              | YGWA-39          |                                                       |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.636 ±<br>0.257<br>(0.332)                           | pCi/L |              | 03/15/21 09:11 |            |
| EPA 9320                 | Radium-228       | C:86% T:NA<br>-0.00538 ±<br>0.293<br>(0.687)<br>C:78% | pCi/L |              | 03/15/21 16:10 |            |
| Total Radium Calculation | Total Radium     | 0.636 ±<br>0.550<br>(1.02)                            | pCi/L |              | 03/22/21 10:37 |            |
| 92525214016              | YGWA-1D (030321) |                                                       |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.265 ±<br>0.193<br>(0.356)<br>C:78% T:NA             | pCi/L |              | 03/15/21 09:13 |            |
| EPA 9320                 | Radium-228       | 0.227 ±<br>0.376<br>(0.819)<br>C:76%<br>T:90%         | pCi/L |              | 03/15/21 16:10 |            |
| Total Radium Calculation | Total Radium     | 0.492 ±<br>0.569<br>(1.18)                            | pCi/L |              | 03/22/21 10:37 |            |
| 92525214017              | YGWA-1I (030321) |                                                       |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.0715 ±<br>0.137<br>(0.315)<br>C:73% T:NA            | pCi/L |              | 03/15/21 09:13 |            |
| EPA 9320                 | Radium-228       | 0.0339 ±<br>0.361<br>(0.831)<br>C:76%<br>T:84%        | pCi/L |              | 03/15/21 16:10 |            |
| Total Radium Calculation | Total Radium     | 0.105 ±<br>0.498<br>(1.15)                            | pCi/L |              | 03/26/21 13:42 |            |
| 92525214018              | YGWA-2I (030321) |                                                       |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.236 ±<br>0.183<br>(0.351)                           | pCi/L |              | 03/15/21 09:13 |            |
| EPA 9320                 | Radium-228       | 0.223 ±<br>0.344<br>(0.744)<br>C:72%<br>T:93%         | pCi/L |              | 03/15/21 16:10 |            |
| Total Radium Calculation | Total Radium     | 0.459 ±<br>0.527<br>(1.10)                            | pCi/L |              | 03/26/21 13:42 |            |



Project: YATES RADS

Pace Project No.: 92525214

| Lab Sample ID            | Client Sample ID |                                                            |       |              |                |            |
|--------------------------|------------------|------------------------------------------------------------|-------|--------------|----------------|------------|
| Method                   | Parameters       | Result                                                     | Units | Report Limit | Analyzed       | Qualifiers |
| 92525214019              | YGWA-3I (030321) |                                                            |       |              |                |            |
| EPA 9315                 | Radium-226       | 1.19 ±<br>0.315<br>(0.200)                                 | pCi/L |              | 03/22/21 09:34 |            |
| EPA 9320                 | Radium-228       | C:81% ENA<br>0.837 ±<br>0.390<br>(0.655)<br>C:82%<br>T-90% | pCi/L |              | 03/19/21 15:13 |            |
| Total Radium Calculation | Total Radium     | 2.03 ±<br>0.705<br>(0.855)                                 | pCi/L |              | 03/26/21 13:42 |            |
| 92525214020              | YGWA-3D (030321) |                                                            |       |              |                |            |
| EPA 9315                 | Radium-226       | 1.88 ±<br>0.434<br>(0.259)<br>C`80% T`NA                   | pCi/L |              | 03/22/21 08:28 |            |
| EPA 9320                 | Radium-228       | 1.70 ±<br>0.544<br>(0.701)<br>C:74%<br>T:90%               | pCi/L |              | 03/19/21 15:13 |            |
| Total Radium Calculation | Total Radium     | 3.58 ±<br>0.978<br>(0.960)                                 | pCi/L |              | 03/26/21 13:42 |            |
| 92525214021              | EB-02 (03032021) |                                                            |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.0547 ±<br>0.0827<br>(0.178)<br>C·78% T·NA                | pCi/L |              | 03/22/21 08:29 |            |
| EPA 9320                 | Radium-228       | 0.157 ±<br>0.333<br>(0.736)<br>C:76%<br>T:95%              | pCi/L |              | 03/19/21 15:13 |            |
| Total Radium Calculation | Total Radium     | 0.212 ±<br>0.416<br>(0.914)                                | pCi/L |              | 03/26/21 13:42 |            |
| 92525214022              | YGWA-4I          |                                                            |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.783 ±<br>0.243<br>(0.164)<br>C:76% T:NA                  | pCi/L |              | 03/22/21 08:30 |            |
| EPA 9320                 | Radium-228       | 0.217 ±<br>0.319<br>(0.687)<br>C:79%<br>T:90%              | pCi/L |              | 03/19/21 15:13 |            |
| Total Radium Calculation | Total Radium     | 1.000 ±<br>0.562<br>(0.851)                                | pCi/L |              | 03/26/21 13:42 |            |



Project: YATES RADS

Pace Project No.: 92525214

| Lab Sample ID            | Client Sample ID |                                                |       |              |                |            |
|--------------------------|------------------|------------------------------------------------|-------|--------------|----------------|------------|
| Method                   | Parameters       | Result                                         | Units | Report Limit | Analyzed       | Qualifiers |
| 92525214023              | YGWA-20S         |                                                |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.133 ±<br>0.114<br>(0.212)<br>C:89% T:NA      | pCi/L |              | 03/22/21 08:30 |            |
| EPA 9320                 | Radium-228       | -0.163 ±<br>0.291<br>(0.711)<br>C:79%<br>T:96% | pCi/L |              | 03/19/21 15:13 |            |
| Total Radium Calculation | Total Radium     | 0.133 ±<br>0.405<br>(0.923)                    | pCi/L |              | 03/26/21 13:42 |            |
| 92525214024              | YGWA-21I         |                                                |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.861 ±<br>0.270<br>(0.318)<br>C:89% T:NA      | pCi/L |              | 03/22/21 08:31 |            |
| EPA 9320                 | Radium-228       | 0.338 ±<br>0.394<br>(0.829)<br>C:72%<br>T:86%  | pCi/L |              | 03/19/21 15:15 |            |
| Total Radium Calculation | Total Radium     | 1.20 ±<br>0.664<br>(1.15)                      | pCi/L |              | 03/26/21 13:56 |            |



Project: YATES RADS

Pace Project No.: 92525214

| Sample: YGWA-5I<br>PWS: | Lab ID: 925252<br>Site ID:  | 214001 Collected: 03/02/21 14:05<br>Sample Type: | Received: | 03/02/21 17:30 N | latrix: Water |      |
|-------------------------|-----------------------------|--------------------------------------------------|-----------|------------------|---------------|------|
| Parameters              | Method                      | Act ± Unc (MDC) Carr Trac                        | Units     | Analyzed         | CAS No.       | Qual |
|                         | Pace Analytical Se          | ervices - Greensburg                             |           |                  |               |      |
| Radium-226              | EPA 9315                    | 0.114 ± 0.190 (0.428)<br>C:68% T:NA              | pCi/L     | 03/22/21 08:37   | 13982-63-3    |      |
|                         | Pace Analytical Se          | ervices - Greensburg                             |           |                  |               |      |
| Radium-228              | EPA 9320                    | 0.465 ± 0.327 (0.633)<br>C:78% T:92%             | pCi/L     | 03/18/21 12:44   | 15262-20-1    |      |
|                         | Pace Analytical Se          | ervices - Greensburg                             |           |                  |               |      |
| Total Radium            | Total Radium<br>Calculation | 0.579 ± 0.517 (1.06)                             | pCi/L     | 03/26/21 14:34   | 7440-14-4     |      |



Project: YATES RADS

Pace Project No.: 92525214

| Sample: YGWA-5D<br>PWS: | Lab ID: 9252<br>Site ID:    | 5214002 Collected: 03/02/21 14:40<br>Sample Type: | Received: | 03/02/21 17:30 N | Aatrix: Water |      |
|-------------------------|-----------------------------|---------------------------------------------------|-----------|------------------|---------------|------|
| Parameters              | Method                      | Act ± Unc (MDC) Carr Trac                         | Units     | Analyzed         | CAS No.       | Qual |
|                         | Pace Analytical             | Services - Greensburg                             |           |                  |               |      |
| Radium-226              | EPA 9315                    | 1.21 ± 0.344 (0.294)<br>C:69% T:NA                | pCi/L     | 03/22/21 08:37   | 13982-63-3    |      |
|                         | Pace Analytical             | Services - Greensburg                             |           |                  |               |      |
| Radium-228              | EPA 9320                    | 0.457 ± 0.363 (0.727)<br>C:76% T:95%              | pCi/L     | 03/18/21 12:45   | 15262-20-1    |      |
|                         | Pace Analytical             | Services - Greensburg                             |           |                  |               |      |
| Total Radium            | Total Radium<br>Calculation | 1.67 ± 0.707 (1.02)                               | pCi/L     | 03/26/21 14:34   | 7440-14-4     |      |



**Total Radium** 

Qual

#### ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: YATES RADS Pace Project No .: 92525214 Sample: DUP-1 Lab ID: 92525214003 Collected: 03/02/21 00:00 Received: 03/02/21 17:30 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac Parameters Method Units Analyzed CAS No. Pace Analytical Services - Greensburg 0.838 ± 0.268 (0.250) EPA 9315 Radium-226 pCi/L 03/22/21 08:37 13982-63-3 C:76% T:NA Pace Analytical Services - Greensburg EPA 9320 0.784 ± 0.426 (0.783) Radium-228 pCi/L 03/18/21 12:45 15262-20-1 C:78% T:87% Pace Analytical Services - Greensburg

1.62 ± 0.694 (1.03)

pCi/L

03/26/21 14:34 7440-14-4

Total Radium

Calculation



Project: YATES RADS

Pace Project No.: 92525214

| Sample: YGWA-14S<br>PWS: | Lab ID: 9252<br>Site ID:    | 5214005 Collected: 03/02/21 11:20<br>Sample Type: | Received: | 03/02/21 17:30 M | latrix: Water |      |
|--------------------------|-----------------------------|---------------------------------------------------|-----------|------------------|---------------|------|
| Parameters               | Method                      | Act ± Unc (MDC) Carr Trac                         | Units     | Analyzed         | CAS No.       | Qual |
|                          | Pace Analytical             | Services - Greensburg                             |           |                  |               |      |
| Radium-226               | EPA 9315                    | 0.283 ± 0.267 (0.565)<br>C:72% T:NA               | pCi/L     | 03/22/21 08:41   | 13982-63-3    |      |
|                          | Pace Analytical             | Services - Greensburg                             |           |                  |               |      |
| Radium-228               | EPA 9320                    | 0.427 ± 0.338 (0.673)<br>C:76% T:92%              | pCi/L     | 03/18/21 12:45   | 15262-20-1    |      |
|                          | Pace Analytical             | Services - Greensburg                             |           |                  |               |      |
| Total Radium             | Total Radium<br>Calculation | 0.710 ± 0.605 (1.24)                              | pCi/L     | 03/26/21 14:37   | 7440-14-4     |      |



Project: YATES RADS

Pace Project No.: 92525214

| Sample: YGWA-30I | Lab ID: 9252521             | 4006 Collected: 03/01/21 16:25       | Received: | 03/02/21 17:30 N | latrix: Water |      |
|------------------|-----------------------------|--------------------------------------|-----------|------------------|---------------|------|
| PWS:             | Site ID:                    | Sample Type:                         |           |                  |               |      |
| Parameters       | Method                      | Act ± Unc (MDC) Carr Trac            | Units     | Analyzed         | CAS No.       | Qual |
|                  | Pace Analytical Ser         | vices - Greensburg                   |           |                  |               |      |
| Radium-226       | EPA 9315                    | 0.0562 ± 0.172 (0.408)<br>C:79% T:NA | pCi/L     | 03/22/21 08:41   | 13982-63-3    |      |
|                  | Pace Analytical Ser         | vices - Greensburg                   |           |                  |               |      |
| Radium-228       | EPA 9320                    | 0.356 ± 0.278 (0.545)<br>C:76% T:92% | pCi/L     | 03/18/21 12:46   | 15262-20-1    |      |
|                  | Pace Analytical Ser         | vices - Greensburg                   |           |                  |               |      |
| Total Radium     | Total Radium<br>Calculation | 0.412 ± 0.450 (0.953)                | pCi/L     | 03/26/21 14:37   | 7440-14-4     |      |



Project: YATES RADS

Pace Project No.: 92525214

| Sample: FB-01 | Lab ID: 925252              | 14007 Collected: 03/02/21 11:30      | Received: | 03/02/21 17:30 | Matrix: Water |      |
|---------------|-----------------------------|--------------------------------------|-----------|----------------|---------------|------|
| PWS:          | Site ID:                    | Sample Type:                         |           |                |               |      |
| Parameters    | Method                      | Act ± Unc (MDC) Carr Trac            | Units     | Analyzed       | CAS No.       | Qual |
|               | Pace Analytical Se          | ervices - Greensburg                 |           |                |               |      |
| Radium-226    | EPA 9315                    | 0.121 ± 0.131 (0.267)<br>C:78% T:NA  | pCi/L     | 03/22/21 08:41 | 13982-63-3    |      |
|               | Pace Analytical Se          | ervices - Greensburg                 |           |                |               |      |
| Radium-228    | EPA 9320                    | 0.512 ± 0.332 (0.620)<br>C:73% T:88% | pCi/L     | 03/18/21 12:46 | 15262-20-1    |      |
|               | Pace Analytical Se          | ervices - Greensburg                 |           |                |               |      |
| Total Radium  | Total Radium<br>Calculation | 0.633 ± 0.463 (0.887)                | pCi/L     | 03/26/21 14:37 | 7440-14-4     |      |



Qual

#### ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: YATES RADS Pace Project No.: 92525214 Sample: DUP-01 Lab ID: 92525214008 Collected: 03/02/21 00:00 Received: 03/02/21 17:30 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac Parameters Method Units Analyzed CAS No. Pace Analytical Services - Greensburg EPA 9315 0.118 ± 0.120 (0.237) Radium-226 pCi/L 03/22/21 08:48 13982-63-3 C:78% T:NA Pace Analytical Services - Greensburg EPA 9320 0.809 ± 0.394 (0.692) Radium-228 pCi/L 03/18/21 12:46 15262-20-1 C:79% T:90% Pace Analytical Services - Greensburg **Total Radium** Total Radium 0.927 ± 0.514 (0.929) pCi/L 03/26/21 14:37 7440-14-4 Calculation



Project: YATES RADS

| Pace Project No.: | 92525214 |
|-------------------|----------|
|-------------------|----------|

| Sample: FB-01 | Lab ID: 9252521             | 4009 Collected: 03/02/21 15:20          | Received: | 03/02/21 17:30 | latrix: Water |      |
|---------------|-----------------------------|-----------------------------------------|-----------|----------------|---------------|------|
| PWS:          | Site ID:                    | Sample Type:                            |           |                |               |      |
| Parameters    | Method                      | Act ± Unc (MDC) Carr Trac               | Units     | Analyzed       | CAS No.       | Qual |
|               | Pace Analytical Ser         | vices - Greensburg                      |           |                |               |      |
| Radium-226    | EPA 9315                    | -0.00506 ± 0.0722 (0.204)<br>C:84% T:NA | pCi/L     | 03/22/21 08:48 | 13982-63-3    |      |
|               | Pace Analytical Ser         | vices - Greensburg                      |           |                |               |      |
| Radium-228    | EPA 9320                    | 0.675 ± 0.361 (0.652)<br>C:76% T:96%    | pCi/L     | 03/18/21 12:46 | 15262-20-1    |      |
|               | Pace Analytical Ser         | vices - Greensburg                      |           |                |               |      |
| Total Radium  | Total Radium<br>Calculation | 0.675 ± 0.433 (0.856)                   | pCi/L     | 03/26/21 14:37 | 7440-14-4     |      |


Project: YATES RADS

Pace Project No.: 92525214

| Sample: YGWA-40<br>PWS: | Lab ID: 925252<br>Site ID:  | 214011 Collected: 03/04/21 10:10<br>Sample Type: | Received: | 03/05/21 09:20 M | fatrix: Water |      |
|-------------------------|-----------------------------|--------------------------------------------------|-----------|------------------|---------------|------|
| Parameters              | Method                      | Act ± Unc (MDC) Carr Trac                        | Units     | Analyzed         | CAS No.       | Qual |
|                         | Pace Analytical Se          | ervices - Greensburg                             |           |                  |               |      |
| Radium-226              | EPA 9315                    | 0.268 ± 0.187 (0.319)<br>C:74% T:NA              | pCi/L     | 03/15/21 09:11   | 13982-63-3    |      |
|                         | Pace Analytical Se          | ervices - Greensburg                             |           |                  |               |      |
| Radium-228              | EPA 9320                    | 0.550 ± 0.416 (0.827)<br>C:81% T:90%             | pCi/L     | 03/15/21 16:10   | 15262-20-1    |      |
|                         | Pace Analytical Se          | ervices - Greensburg                             |           |                  |               |      |
| Total Radium            | Total Radium<br>Calculation | 0.818 ± 0.603 (1.15)                             | pCi/L     | 03/22/21 10:37   | 7440-14-4     |      |



Project: YATES RADS

Pace Project No.: 92525214

| Sample: YGWA-17S<br>PWS: | Lab ID: 92525<br>Site ID:   | <b>214012</b> Collected: 03/03/21 12:20<br>Sample Type: | Received: | 03/05/21 09:20 N | Aatrix: Water |      |
|--------------------------|-----------------------------|---------------------------------------------------------|-----------|------------------|---------------|------|
| Parameters               | Method                      | Act ± Unc (MDC) Carr Trac                               | Units     | Analyzed         | CAS No.       | Qual |
|                          | Pace Analytical S           | ervices - Greensburg                                    |           |                  |               |      |
| Radium-226               | EPA 9315                    | 0.192 ± 0.156 (0.276)<br>C:74% T:NA                     | pCi/L     | 03/15/21 09:11   | 13982-63-3    |      |
|                          | Pace Analytical S           | Services - Greensburg                                   |           |                  |               |      |
| Radium-228               | EPA 9320                    | 0.398 ± 0.319 (0.627)<br>C:80% T:89%                    | pCi/L     | 03/15/21 16:10   | 15262-20-1    |      |
|                          | Pace Analytical S           | Services - Greensburg                                   |           |                  |               |      |
| Total Radium             | Total Radium<br>Calculation | 0.590 ± 0.475 (0.903)                                   | pCi/L     | 03/22/21 10:37   | 7440-14-4     |      |



Project: YATES RADS

Pace Project No.: 92525214

| Sample: YGWA-18S<br>PWS: | Lab ID: 92525<br>Site ID:   | 214013 Collected: 03/03/21 13:50<br>Sample Type: | Received: | 03/05/21 09:20 M | latrix: Water |      |
|--------------------------|-----------------------------|--------------------------------------------------|-----------|------------------|---------------|------|
| Parameters               | Method                      | Act ± Unc (MDC) Carr Trac                        | Units     | Analyzed         | CAS No.       | Qual |
|                          | Pace Analytical S           | Services - Greensburg                            |           |                  | -             |      |
| Radium-226               | EPA 9315                    | 0.141 ± 0.166 (0.344)<br>C:59% T:NA              | pCi/L     | 03/15/21 09:16   | 13982-63-3    |      |
|                          | Pace Analytical S           | Services - Greensburg                            |           |                  |               |      |
| Radium-228               | EPA 9320                    | 0.211 ± 0.322 (0.695)<br>C:73% T:89%             | pCi/L     | 03/15/21 16:10   | 15262-20-1    |      |
|                          | Pace Analytical S           | Services - Greensburg                            |           |                  |               |      |
| Total Radium             | Total Radium<br>Calculation | 0.352 ± 0.488 (1.04)                             | pCi/L     | 03/22/21 10:37   | 7440-14-4     |      |



Project: YATES RADS

Pace Project No.: 92525214

| Sample: YGWA-18I<br>PWS: | Lab ID: 92525<br>Site ID:   | 214014 Collected: 03/03/21 15:00<br>Sample Type: | Received: | 03/05/21 09:20 N | fatrix: Water |      |
|--------------------------|-----------------------------|--------------------------------------------------|-----------|------------------|---------------|------|
| Parameters               | Method                      | Act ± Unc (MDC) Carr Trac                        | Units     | Analyzed         | CAS No.       | Qual |
|                          | Pace Analytical S           | Services - Greensburg                            |           |                  | -             |      |
| Radium-226               | EPA 9315                    | 0.381 ± 0.207 (0.351)<br>C:65% T:NA              | pCi/L     | 03/15/21 09:16   | 13982-63-3    |      |
|                          | Pace Analytical S           | Services - Greensburg                            |           |                  |               |      |
| Radium-228               | EPA 9320                    | 0.184 ± 0.282 (0.608)<br>C:76% T:92%             | pCi/L     | 03/15/21 16:10   | 15262-20-1    |      |
|                          | Pace Analytical S           | Services - Greensburg                            |           |                  |               |      |
| Total Radium             | Total Radium<br>Calculation | 0.565 ± 0.489 (0.959)                            | pCi/L     | 03/22/21 10:37   | 7440-14-4     |      |



Project: YATES RADS

Pace Project No.: 92525214

| Sample: YGWA-39 | Lab ID: 9252                | 5214015 Collected: 03/04/21 10:20       | Received: | 03/05/21 09:20 N | Aatrix: Water |      |
|-----------------|-----------------------------|-----------------------------------------|-----------|------------------|---------------|------|
| F VV 3.         | Sile ID.                    | Sample Type.                            |           |                  |               |      |
| Parameters      | Method                      | Act ± Unc (MDC) Carr Trac               | Units     | Analyzed         | CAS No.       | Qual |
|                 | Pace Analytical             | Services - Greensburg                   |           |                  |               |      |
| Radium-226      | EPA 9315                    | 0.636 ± 0.257 (0.332)<br>C:86% T:NA     | pCi/L     | 03/15/21 09:11   | 13982-63-3    |      |
|                 | Pace Analytical             | Services - Greensburg                   |           |                  |               |      |
| Radium-228      | EPA 9320                    | -0.00538 ± 0.293 (0.687)<br>C:78% T:93% | pCi/L     | 03/15/21 16:10   | 15262-20-1    |      |
|                 | Pace Analytical             | Services - Greensburg                   |           |                  |               |      |
| Total Radium    | Total Radium<br>Calculation | 0.636 ± 0.550 (1.02)                    | pCi/L     | 03/22/21 10:37   | 7440-14-4     |      |



Project: YATES RADS

Pace Project No.: 92525214

| Sample: YGWA-1D (030321)<br>PWS: | Lab ID: 92525<br>Site ID:   | 214016 Collected: 03/03/21 14:25<br>Sample Type: | Received: | 03/05/21 09:20 M | latrix: Water |      |
|----------------------------------|-----------------------------|--------------------------------------------------|-----------|------------------|---------------|------|
| Parameters                       | Method                      | Act ± Unc (MDC) Carr Trac                        | Units     | Analyzed         | CAS No.       | Qual |
|                                  | Pace Analytical S           | Services - Greensburg                            |           |                  |               |      |
| Radium-226                       | EPA 9315                    | 0.265 ± 0.193 (0.356)<br>C:78% T:NA              | pCi/L     | 03/15/21 09:13   | 13982-63-3    |      |
|                                  | Pace Analytical S           | Services - Greensburg                            |           |                  |               |      |
| Radium-228                       | EPA 9320                    | 0.227 ± 0.376 (0.819)<br>C:76% T:90%             | pCi/L     | 03/15/21 16:10   | 15262-20-1    |      |
|                                  | Pace Analytical S           | Services - Greensburg                            |           |                  |               |      |
| Total Radium                     | Total Radium<br>Calculation | 0.492 ± 0.569 (1.18)                             | pCi/L     | 03/22/21 10:37   | 7440-14-4     |      |



Project: YATES RADS

Pace Project No.: 92525214

| <b>Sample: YGWA-1I (030321)</b><br>PWS: | Lab ID: 92525<br>Site ID:   | 214017 Collected: 03/03/21 13:35<br>Sample Type: | Received: | 03/05/21 09:20 N | latrix: Water |      |
|-----------------------------------------|-----------------------------|--------------------------------------------------|-----------|------------------|---------------|------|
| Parameters                              | Method                      | Act ± Unc (MDC) Carr Trac                        | Units     | Analyzed         | CAS No.       | Qual |
|                                         | Pace Analytical S           | Services - Greensburg                            |           |                  | -             |      |
| Radium-226                              | EPA 9315                    | 0.0715 ± 0.137 (0.315)<br>C:73% T:NA             | pCi/L     | 03/15/21 09:13   | 13982-63-3    |      |
|                                         | Pace Analytical             | Services - Greensburg                            |           |                  |               |      |
| Radium-228                              | EPA 9320                    | 0.0339 ± 0.361 (0.831)<br>C:76% T:84%            | pCi/L     | 03/15/21 16:10   | 15262-20-1    |      |
|                                         | Pace Analytical             | Services - Greensburg                            |           |                  |               |      |
| Total Radium                            | Total Radium<br>Calculation | 0.105 ± 0.498 (1.15)                             | pCi/L     | 03/26/21 13:42   | 7440-14-4     |      |



Project: YATES RADS

Pace Project No.: 92525214

| <b>Sample: YGWA-2I (030321)</b><br>PWS: | Lab ID: 92525<br>Site ID:   | <b>214018</b> Collected: 03/03/21 11:45<br>Sample Type: | Received: | 03/05/21 09:20 M | latrix: Water |      |
|-----------------------------------------|-----------------------------|---------------------------------------------------------|-----------|------------------|---------------|------|
| Parameters                              | Method                      | Act ± Unc (MDC) Carr Trac                               | Units     | Analyzed         | CAS No.       | Qual |
|                                         | Pace Analytical S           | Services - Greensburg                                   |           |                  |               |      |
| Radium-226                              | EPA 9315                    | 0.236 ± 0.183 (0.351)<br>C:83% T:NA                     | pCi/L     | 03/15/21 09:13   | 13982-63-3    |      |
|                                         | Pace Analytical S           | Services - Greensburg                                   |           |                  |               |      |
| Radium-228                              | EPA 9320                    | 0.223 ± 0.344 (0.744)<br>C:72% T:93%                    | pCi/L     | 03/15/21 16:10   | 15262-20-1    |      |
|                                         | Pace Analytical S           | Services - Greensburg                                   |           |                  |               |      |
| Total Radium                            | Total Radium<br>Calculation | 0.459 ± 0.527 (1.10)                                    | pCi/L     | 03/26/21 13:42   | 7440-14-4     |      |



Project: YATES RADS

Pace Project No.: 92525214

| <b>Sample: YGWA-3I (030321)</b><br>PWS: | Lab ID: 9252<br>Site ID:    | 5214019 Collected: 03/03/21 17:00<br>Sample Type: | Received: | 03/05/21 09:20 N | Aatrix: Water |      |
|-----------------------------------------|-----------------------------|---------------------------------------------------|-----------|------------------|---------------|------|
| Parameters                              | Method                      | Act ± Unc (MDC) Carr Trac                         | Units     | Analyzed         | CAS No.       | Qual |
|                                         | Pace Analytical             | Services - Greensburg                             |           |                  |               |      |
| Radium-226                              | EPA 9315                    | 1.19 ± 0.315 (0.200)<br>C:81% T:NA                | pCi/L     | 03/22/21 09:34   | 13982-63-3    |      |
|                                         | Pace Analytical             | Services - Greensburg                             |           |                  |               |      |
| Radium-228                              | EPA 9320                    | 0.837 ± 0.390 (0.655)<br>C:82% T:90%              | pCi/L     | 03/19/21 15:13   | 15262-20-1    |      |
|                                         | Pace Analytical             | Services - Greensburg                             |           |                  |               |      |
| Total Radium                            | Total Radium<br>Calculation | 2.03 ± 0.705 (0.855)                              | pCi/L     | 03/26/21 13:42   | 7440-14-4     |      |



Project: YATES RADS

Pace Project No.: 92525214

| <b>Sample: YGWA-3D (030321)</b><br>PWS: | Lab ID: 92525<br>Site ID:   | 5214020 Collected: 03/03/21 16:00<br>Sample Type: | Received: | 03/05/21 09:20 N | Aatrix: Water |      |
|-----------------------------------------|-----------------------------|---------------------------------------------------|-----------|------------------|---------------|------|
| Parameters                              | Method                      | Act ± Unc (MDC) Carr Trac                         | Units     | Analyzed         | CAS No.       | Qual |
|                                         | Pace Analytical             | Services - Greensburg                             |           |                  |               |      |
| Radium-226                              | EPA 9315                    | 1.88 ± 0.434 (0.259)<br>C:80% T:NA                | pCi/L     | 03/22/21 08:28   | 13982-63-3    |      |
|                                         | Pace Analytical             | Services - Greensburg                             |           |                  |               |      |
| Radium-228                              | EPA 9320                    | 1.70 ± 0.544 (0.701)<br>C:74% T:90%               | pCi/L     | 03/19/21 15:13   | 15262-20-1    |      |
|                                         | Pace Analytical             | Services - Greensburg                             |           |                  |               |      |
| Total Radium                            | Total Radium<br>Calculation | 3.58 ± 0.978 (0.960)                              | pCi/L     | 03/26/21 13:42   | 7440-14-4     |      |



Project: YATES RADS

Pace Project No.: 92525214

| Sample: EB-02 (03032021) | Lab ID: 925252              | 14021 Collected: 03/03/21 17:15       | Received: | 03/05/21 09:20 N | Aatrix: Water |      |
|--------------------------|-----------------------------|---------------------------------------|-----------|------------------|---------------|------|
| PWS:                     | Site ID:                    | Sample Type:                          |           |                  |               |      |
| Parameters               | Method                      | Act ± Unc (MDC) Carr Trac             | Units     | Analyzed         | CAS No.       | Qual |
|                          | Pace Analytical Se          | ervices - Greensburg                  |           |                  |               |      |
| Radium-226               | EPA 9315                    | 0.0547 ± 0.0827 (0.178)<br>C:78% T:NA | pCi/L     | 03/22/21 08:29   | 13982-63-3    |      |
|                          | Pace Analytical Se          | ervices - Greensburg                  |           |                  |               |      |
| Radium-228               | EPA 9320                    | 0.157 ± 0.333 (0.736)<br>C:76% T:95%  | pCi/L     | 03/19/21 15:13   | 15262-20-1    |      |
|                          | Pace Analytical Se          | ervices - Greensburg                  |           |                  |               |      |
| Total Radium             | Total Radium<br>Calculation | 0.212 ± 0.416 (0.914)                 | pCi/L     | 03/26/21 13:42   | 7440-14-4     |      |



Project: YATES RADS

Pace Project No.: 92525214

| Sample: YGWA-4I<br>PWS: | Lab ID: 92525<br>Site ID:   | 214022 Collected: 03/03/21 10:35<br>Sample Type: | Received: | 03/05/21 09:20 N | latrix: Water |      |
|-------------------------|-----------------------------|--------------------------------------------------|-----------|------------------|---------------|------|
| Parameters              | Method                      | Act ± Unc (MDC) Carr Trac                        | Units     | Analyzed         | CAS No.       | Qual |
|                         | Pace Analytical S           | Services - Greensburg                            |           |                  |               |      |
| Radium-226              | EPA 9315                    | 0.783 ± 0.243 (0.164)<br>C:76% T:NA              | pCi/L     | 03/22/21 08:30   | 13982-63-3    |      |
|                         | Pace Analytical S           | Services - Greensburg                            |           |                  |               |      |
| Radium-228              | EPA 9320                    | 0.217 ± 0.319 (0.687)<br>C:79% T:90%             | pCi/L     | 03/19/21 15:13   | 15262-20-1    |      |
|                         | Pace Analytical S           | Services - Greensburg                            |           |                  |               |      |
| Total Radium            | Total Radium<br>Calculation | 1.000 ± 0.562 (0.851)                            | pCi/L     | 03/26/21 13:42   | 7440-14-4     |      |



Project: YATES RADS

Pace Project No.: 92525214

| Sample: YGWA-20S<br>PWS: | Lab ID: 92525<br>Site ID:   | <b>214023</b> Collected: 03/03/21 09:40 Sample Type: | Received: | 03/05/21 09:20 N | Aatrix: Water |      |
|--------------------------|-----------------------------|------------------------------------------------------|-----------|------------------|---------------|------|
| Parameters               | Method                      | Act ± Unc (MDC) Carr Trac                            | Units     | Analyzed         | CAS No.       | Qual |
|                          | Pace Analytical S           | Gervices - Greensburg                                |           |                  |               |      |
| Radium-226               | EPA 9315                    | 0.133 ± 0.114 (0.212)<br>C:89% T:NA                  | pCi/L     | 03/22/21 08:30   | 13982-63-3    |      |
|                          | Pace Analytical S           | Services - Greensburg                                |           |                  |               |      |
| Radium-228               | EPA 9320                    | -0.163 ± 0.291 (0.711)<br>C:79% T:96%                | pCi/L     | 03/19/21 15:13   | 15262-20-1    |      |
|                          | Pace Analytical S           | Services - Greensburg                                |           |                  |               |      |
| Total Radium             | Total Radium<br>Calculation | 0.133 ± 0.405 (0.923)                                | pCi/L     | 03/26/21 13:42   | 7440-14-4     |      |



Project: YATES RADS

Pace Project No.: 92525214

| Sample: YGWA-211<br>PWS: | Lab ID: 9252521<br>Site ID: | 4024 Collected: 03/03/21 09:35<br>Sample Type: | Received: | 03/05/21 09:20 N | Aatrix: Water |      |
|--------------------------|-----------------------------|------------------------------------------------|-----------|------------------|---------------|------|
| Parameters               | Method                      | Act ± Unc (MDC) Carr Trac                      | Units     | Analyzed         | CAS No.       | Qual |
|                          | Pace Analytical Ser         | rvices - Greensburg                            |           |                  |               |      |
| Radium-226               | EPA 9315                    | 0.861 ± 0.270 (0.318)<br>C:89% T:NA            | pCi/L     | 03/22/21 08:31   | 13982-63-3    |      |
|                          | Pace Analytical Ser         | rvices - Greensburg                            |           |                  |               |      |
| Radium-228               | EPA 9320                    | 0.338 ± 0.394 (0.829)<br>C:72% T:86%           | pCi/L     | 03/19/21 15:15   | 15262-20-1    |      |
|                          | Pace Analytical Ser         | rvices - Greensburg                            |           |                  |               |      |
| Total Radium             | Total Radium<br>Calculation | 1.20 ± 0.664 (1.15)                            | pCi/L     | 03/26/21 13:56   | 7440-14-4     |      |



| Project:           | YATES  | RADS                               |                                             |                                            |                                          |                 |  |
|--------------------|--------|------------------------------------|---------------------------------------------|--------------------------------------------|------------------------------------------|-----------------|--|
| Pace Project No.:  | 925252 | 14                                 |                                             |                                            |                                          |                 |  |
| QC Batch:          | 43764  | 3                                  | Analysis Method:                            | EPA 9320                                   |                                          |                 |  |
| QC Batch Method:   | EPA 9  | 320                                | Analysis Description                        | : 9320 Radium 22                           | 8                                        |                 |  |
| Associated Lab Sam | nples: | 92525214001, 925252<br>92525214009 | Laboratory:<br>214002, 92525214003, 9252521 | Pace Analytical \$<br>4005, 92525214006, 9 | Services - Greensbu<br>2525214007, 92525 | ırg<br>5214008, |  |
| METHOD BLANK:      | 211254 | 0                                  | Matrix: Water                               |                                            |                                          |                 |  |
| Associated Lab Sam | nples: | 92525214001, 925252<br>92525214009 | 214002, 92525214003, 9252521                | 4005, 92525214006, 9                       | 2525214007, 92525                        | 5214008,        |  |
| Param              | neter  | F                                  | Act ± Unc (MDC) Carr Trac                   | Units                                      | Analyzed                                 | Qualifiers      |  |
| Radium-228         |        | 0.387 ± 0.3                        | 16 (0.633) C:83% T:90%                      | pCi/L                                      | 03/18/21 12:44                           |                 |  |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:           | YATES RADS                 |                                            |                  |                     |            |
|--------------------|----------------------------|--------------------------------------------|------------------|---------------------|------------|
| Pace Project No.:  | 92525214                   |                                            |                  |                     |            |
| QC Batch:          | 437642                     | Analysis Method:                           | EPA 9320         |                     |            |
| QC Batch Method:   | EPA 9320                   | Analysis Description:                      | 9320 Radium 2    | 28                  |            |
|                    |                            | Laboratory:                                | Pace Analytical  | Services - Greensbu | rg         |
| Associated Lab Sar | mples: 925252              | 14019, 92525214020, 92525214021, 925252140 | 22, 92525214023, | 92525214024         |            |
| METHOD BLANK:      | 2112539                    | Matrix: Water                              |                  |                     |            |
| Associated Lab Sai | mples: 925252 <sup>-</sup> | 14019, 92525214020, 92525214021, 925252140 | 22, 92525214023, | 92525214024         |            |
| Para               | neter                      | Act ± Unc (MDC) Carr Trac                  | Units            | Analyzed            | Qualifiers |
| Radium-228         |                            | 0.219 ± 0.271 (0.570) C:75% T:92%          | pCi/L            | 03/19/21 15:12      |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:           | YATES RADS      |                                           |                     |                     |            |  |
|--------------------|-----------------|-------------------------------------------|---------------------|---------------------|------------|--|
| Pace Project No.:  | 92525214        |                                           |                     |                     |            |  |
| QC Batch:          | 437601          | Analysis Method:                          | EPA 9315            |                     |            |  |
| QC Batch Method:   | EPA 9315        | Analysis Description:                     | 9315 Total Radi     | um                  |            |  |
|                    |                 | Laboratory:                               | Pace Analytical     | Services - Greensbu | g          |  |
| Associated Lab Sam | nples: 92525214 | 4019, 92525214020, 92525214021, 925252140 | 022, 92525214023, 9 | 92525214024         |            |  |
| METHOD BLANK:      | 2112394         | Matrix: Water                             |                     |                     |            |  |
| Associated Lab Sam | nples: 92525214 | 4019, 92525214020, 92525214021, 925252140 | 022, 92525214023, 9 | 92525214024         |            |  |
| Param              | neter           | Act ± Unc (MDC) Carr Trac                 | Units               | Analyzed            | Qualifiers |  |
| Radium-226         |                 | 0.0425 ± 0.110 (0.264) C:81% T:NA         | pCi/L               | 03/22/21 08:26      |            |  |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:           | YATES  | RADS                             |           |                                      |                                      |                                           |                 |  |
|--------------------|--------|----------------------------------|-----------|--------------------------------------|--------------------------------------|-------------------------------------------|-----------------|--|
| Pace Project No.:  | 925252 | 14                               |           |                                      |                                      |                                           |                 |  |
| QC Batch:          | 43759  | 9                                |           | Analysis Method:                     | EPA 9315                             |                                           |                 |  |
| QC Batch Method:   | EPA 9  | 315                              |           | Analysis Description:                | 9315 Total Rad                       | ium                                       |                 |  |
| Associated Lab Sam | nples: | 92525214011, 9252<br>92525214018 | 5214012,  | Laboratory:<br>92525214013, 92525214 | Pace Analytical<br>014, 92525214015, | Services - Greensbu<br>92525214016, 92525 | ırg<br>5214017, |  |
| METHOD BLANK:      | 211238 | 9                                |           | Matrix: Water                        |                                      |                                           |                 |  |
| Associated Lab Sam | nples: | 92525214011, 9252<br>92525214018 | 5214012,  | 92525214013, 92525214                | 014, 92525214015,                    | 92525214016, 92525                        | 5214017,        |  |
| Param              | neter  |                                  | Act ± Uno | c (MDC) Carr Trac                    | Units                                | Analyzed                                  | Qualifiers      |  |
| Radium-226         |        | -0.00470                         | ± 0.0712  | (0.214) C:85% T:NA                   | pCi/L                                | 03/15/21 09:18                            |                 |  |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:           | YATES  | RADS                                 |                                            |                                       |                                           |                |  |
|--------------------|--------|--------------------------------------|--------------------------------------------|---------------------------------------|-------------------------------------------|----------------|--|
| Pace Project No.:  | 925252 | 14                                   |                                            |                                       |                                           |                |  |
| QC Batch:          | 43764  | 1                                    | Analysis Method:                           | EPA 9320                              |                                           |                |  |
| QC Batch Method:   | EPA 9  | 320                                  | Analysis Description:                      | 9320 Radium 22                        | 28                                        |                |  |
| Associated Lab Sam | nples: | 92525214011, 92525214<br>92525214018 | Laboratory:<br>012, 92525214013, 925252140 | Pace Analytical<br>14, 92525214015, 9 | Services - Greensbu<br>92525214016, 92525 | irg<br>214017, |  |
| METHOD BLANK:      | 211253 | 8                                    | Matrix: Water                              |                                       |                                           |                |  |
| Associated Lab Sam | nples: | 92525214011, 92525214<br>92525214018 | 012, 92525214013, 925252140                | 14, 92525214015, 9                    | 92525214016, 92525                        | 214017,        |  |
| Param              | neter  | Act                                  | ± Unc (MDC) Carr Trac                      | Units                                 | Analyzed                                  | Qualifiers     |  |
| Radium-228         |        | 0.312 ± 0.330                        | (0.686) C:82% T:90%                        | pCi/L                                 | 03/15/21 16:07                            |                |  |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:           | YATES  | RADS                                            |                                            |                                           |                                          |               |  |
|--------------------|--------|-------------------------------------------------|--------------------------------------------|-------------------------------------------|------------------------------------------|---------------|--|
| Pace Project No.:  | 925252 | 14                                              |                                            |                                           |                                          |               |  |
| QC Batch:          | 43760  | 2                                               | Analysis Method:                           | EPA 9315                                  |                                          |               |  |
| QC Batch Method:   | EPA 9  | 315                                             | Analysis Description:                      | 9315 Total Radiu                          | Im                                       |               |  |
| Associated Lab Sam | nples: | 92525214001, 925252 <sup>-</sup><br>92525214009 | Laboratory:<br>4002, 92525214003, 92525214 | Pace Analytical \$<br>005, 92525214006, 9 | Services - Greensbu<br>2525214007, 92525 | rg<br>214008, |  |
| METHOD BLANK:      | 211239 | 5                                               | Matrix: Water                              |                                           |                                          |               |  |
| Associated Lab Sam | nples: | 92525214001, 925252 <sup>-</sup><br>92525214009 | 4002, 92525214003, 92525214                | 005, 92525214006, 9                       | 2525214007, 92525                        | 214008,       |  |
| Param              | neter  | Ac                                              | t ± Unc (MDC) Carr Trac                    | Units                                     | Analyzed                                 | Qualifiers    |  |
| Radium-226         |        | 0.0514 ± 0.1                                    | 04 (0.242) C:82% T:NA                      | pCi/L                                     | 03/22/21 08:37                           |               |  |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



### QUALIFIERS

Project: YATES RADS Pace Project No.: 92525214

### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.



# QUALITY CONTROL DATA CROSS REFERENCE TABLE

| Project:           | YATES RADS |
|--------------------|------------|
| Pace Project No .: | 92525214   |

| Lab ID      | Sample ID        | QC Batch Method          | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|------------------|--------------------------|----------|-------------------|---------------------|
| 92525214001 | YGWA-5I          | EPA 9315                 | 437602   |                   |                     |
| 92525214002 | YGWA-5D          | EPA 9315                 | 437602   |                   |                     |
| 92525214003 | DUP-1            | EPA 9315                 | 437602   |                   |                     |
| 92525214005 | YGWA-14S         | EPA 9315                 | 437602   |                   |                     |
| 92525214006 | YGWA-30I         | EPA 9315                 | 437602   |                   |                     |
| 92525214007 | FB-01            | EPA 9315                 | 437602   |                   |                     |
| 92525214008 | DUP-01           | EPA 9315                 | 437602   |                   |                     |
| 92525214009 | FB-01            | EPA 9315                 | 437602   |                   |                     |
| 92525214011 | YGWA-40          | EPA 9315                 | 437599   |                   |                     |
| 92525214012 | YGWA-17S         | EPA 9315                 | 437599   |                   |                     |
| 92525214013 | YGWA-18S         | EPA 9315                 | 437599   |                   |                     |
| 92525214014 | YGWA-18I         | EPA 9315                 | 437599   |                   |                     |
| 92525214015 | YGWA-39          | EPA 9315                 | 437599   |                   |                     |
| 92525214016 | YGWA-1D (030321) | EPA 9315                 | 437599   |                   |                     |
| 92525214017 | YGWA-11 (030321) | EPA 9315                 | 437599   |                   |                     |
| 92525214018 | YGWA-2I (030321) | EPA 9315                 | 437599   |                   |                     |
| 92525214019 | YGWA-3I (030321) | EPA 9315                 | 437601   |                   |                     |
| 92525214020 | YGWA-3D (030321) | EPA 9315                 | 437601   |                   |                     |
| 92525214021 | EB-02 (03032021) | EPA 9315                 | 437601   |                   |                     |
| 92525214022 | YGWA-4I          | EPA 9315                 | 437601   |                   |                     |
| 92525214023 | YGWA-20S         | EPA 9315                 | 437601   |                   |                     |
| 92525214024 | YGWA-21I         | EPA 9315                 | 437601   |                   |                     |
| 92525214001 | YGWA-5I          | EPA 9320                 | 437643   |                   |                     |
| 92525214002 | YGWA-5D          | EPA 9320                 | 437643   |                   |                     |
| 92525214003 | DUP-1            | EPA 9320                 | 437643   |                   |                     |
| 92525214005 | YGWA-14S         | EPA 9320                 | 437643   |                   |                     |
| 92525214006 | YGWA-30I         | EPA 9320                 | 437643   |                   |                     |
| 92525214007 | FB-01            | EPA 9320                 | 437643   |                   |                     |
| 92525214008 | DUP-01           | EPA 9320                 | 437643   |                   |                     |
| 92525214009 | FB-01            | EPA 9320                 | 437643   |                   |                     |
| 92525214011 | YGWA-40          | EPA 9320                 | 437641   |                   |                     |
| 92525214012 | YGWA-17S         | EPA 9320                 | 437641   |                   |                     |
| 92525214013 | YGWA-18S         | EPA 9320                 | 437641   |                   |                     |
| 92525214014 | YGWA-18I         | EPA 9320                 | 437641   |                   |                     |
| 92525214015 | YGWA-39          | EPA 9320                 | 437641   |                   |                     |
| 92525214016 | YGWA-1D (030321) | EPA 9320                 | 437641   |                   |                     |
| 92525214017 | YGWA-1I (030321) | EPA 9320                 | 437641   |                   |                     |
| 92525214018 | YGWA-2I (030321) | EPA 9320                 | 437641   |                   |                     |
| 92525214019 | YGWA-3I (030321) | EPA 9320                 | 437642   |                   |                     |
| 92525214020 | YGWA-3D (030321) | EPA 9320                 | 437642   |                   |                     |
| 92525214021 | EB-02 (03032021) | EPA 9320                 | 437642   |                   |                     |
| 92525214022 | YGWA-4I          | EPA 9320                 | 437642   |                   |                     |
| 92525214023 | YGWA-20S         | EPA 9320                 | 437642   |                   |                     |
| 92525214024 | YGWA-21I         | EPA 9320                 | 437642   |                   |                     |
| 92525214001 | YGWA-5I          | Total Radium Calculation | 440666   |                   |                     |
| 92525214002 | YGWA-5D          | Total Radium Calculation | 440666   |                   |                     |



# QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: YATES RADS Pace Project No.: 92525214

| Lab ID      | Sample ID        | QC Batch Method          | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|------------------|--------------------------|----------|-------------------|---------------------|
| 92525214003 | DUP-1            | Total Radium Calculation | 440666   |                   |                     |
| 92525214005 | YGWA-14S         | Total Radium Calculation | 440668   |                   |                     |
| 92525214006 | YGWA-30I         | Total Radium Calculation | 440668   |                   |                     |
| 92525214007 | FB-01            | Total Radium Calculation | 440668   |                   |                     |
| 92525214008 | DUP-01           | Total Radium Calculation | 440668   |                   |                     |
| 92525214009 | FB-01            | Total Radium Calculation | 440668   |                   |                     |
| 92525214011 | YGWA-40          | Total Radium Calculation | 439752   |                   |                     |
| 92525214012 | YGWA-17S         | Total Radium Calculation | 439752   |                   |                     |
| 92525214013 | YGWA-18S         | Total Radium Calculation | 439752   |                   |                     |
| 92525214014 | YGWA-18I         | Total Radium Calculation | 439752   |                   |                     |
| 92525214015 | YGWA-39          | Total Radium Calculation | 439752   |                   |                     |
| 92525214016 | YGWA-1D (030321) | Total Radium Calculation | 439752   |                   |                     |
| 92525214017 | YGWA-1I (030321) | Total Radium Calculation | 440644   |                   |                     |
| 92525214018 | YGWA-2I (030321) | Total Radium Calculation | 440644   |                   |                     |
| 92525214019 | YGWA-3I (030321) | Total Radium Calculation | 440644   |                   |                     |
| 92525214020 | YGWA-3D (030321) | Total Radium Calculation | 440644   |                   |                     |
| 92525214021 | EB-02 (03032021) | Total Radium Calculation | 440644   |                   |                     |
| 92525214022 | YGWA-4I          | Total Radium Calculation | 440644   |                   |                     |
| 92525214023 | YGWA-20S         | Total Radium Calculation | 440644   |                   |                     |
| 92525214024 | YGWA-21I         | Total Radium Calculation | 440647   |                   |                     |

| 10.                                                        | Documen<br>Sample Condition II | t Name:            | Document Revised: October 28, 2020                                                                             |  |  |
|------------------------------------------------------------|--------------------------------|--------------------|----------------------------------------------------------------------------------------------------------------|--|--|
| Pace Analytical                                            | Docume                         | ent No.:           | Issuing Authority:                                                                                             |  |  |
| hanna a sa sa la da sa sa sa sa sa sa sa sa sa sa sa sa sa | F-CAR-CS-0                     | 33-Rev.07          | Pace Carolinas Quality Office                                                                                  |  |  |
| Asheville Eden Greenwood                                   | Huntersville                   | Raleigh            | ] Mechanicsville Atlanta Kernersville                                                                          |  |  |
| Sample Condition Client Name:                              | nover                          | Proje              | WO#: 92525214                                                                                                  |  |  |
| Durier: DFed Ex D<br>Commercial Pace                       | UPS USPS<br>Other:             |                    |                                                                                                                |  |  |
| tody Seal Present? Yes                                     | Seals Intact? . 🗌 Yes          |                    | Date/Initials Person Examining Contents: バイア 3/ 3/ こ                                                           |  |  |
| king Material: Bubble Wrap                                 | Bubble Bags No                 |                    | Biological Tissue Frozen?                                                                                      |  |  |
| IR Gun ID. 230                                             | Type of Ice:                   |                    |                                                                                                                |  |  |
| ler Temp: <u> </u>                                         | Factor: + 0                    |                    | Temp should be above freezing to 5°C                                                                           |  |  |
| lastan constant (re)                                       | 1.0                            | _                  | Samples out of temp criteria. Samples on ice, cooling process                                                  |  |  |
| DA Regulated Soil ( N/A, water sample)                     | 11                             |                    | has begun                                                                                                      |  |  |
| samples originate in a quarantine zone within the Yes No   | e United States: CA, NY, or    | r SC (check maps)? | Did samples originate from a foreign source (internationally,<br>including Hawaii and Puerto Rico)? Yes        |  |  |
| Chain of Custody Present?                                  | 1-                             |                    | comments/ biscrepancy:                                                                                         |  |  |
|                                                            |                                | N/A   1.           |                                                                                                                |  |  |
| Short Hold Time Application (272 by 12                     |                                | <u>□N/A</u> 2.     | a the second second second second second second second second second second second second second second second |  |  |
| Bush Turn Around Time Requested?                           |                                | □ □N/A 3.          |                                                                                                                |  |  |
| Kosh forn Al ound time Requested?                          | LIYes LINO                     | UN/A 4.            |                                                                                                                |  |  |
| Sufficient Volume?                                         | Bres DNo                       | □N/A 5.            |                                                                                                                |  |  |
| -Pace Containers Used?                                     |                                | D □N/A 6.          |                                                                                                                |  |  |
| Containers Intact?                                         |                                |                    |                                                                                                                |  |  |
| Dissolved analysis: Samples Field Filtered?                |                                |                    |                                                                                                                |  |  |
| Sample Labels Match COC?                                   |                                | D []N/A 9.         |                                                                                                                |  |  |
| -Includes Date/Time/ID/Analysis Matrix:                    | V* 1                           |                    |                                                                                                                |  |  |
| Headspace in VOA Vials (>5-6mm)?                           | TYes No                        | 5 1N/A 10          |                                                                                                                |  |  |
| Trip Blank Present?                                        | Yes No                         |                    |                                                                                                                |  |  |
| Trip Blank Custody Seals Present?                          | Yes No                         | - Dyn              |                                                                                                                |  |  |
| OMMENTS/SAMPLE DISCREPANCY                                 |                                |                    | Field Data Required? Yes No                                                                                    |  |  |
|                                                            |                                |                    |                                                                                                                |  |  |
| ENT NOTIFICATION/RESOLUTION                                |                                |                    | Lot ID of split containers:                                                                                    |  |  |
|                                                            |                                |                    |                                                                                                                |  |  |
| erson contacted:                                           |                                | Date/Time:         |                                                                                                                |  |  |
| Project Manager SCURF Review:                              |                                |                    | Date:                                                                                                          |  |  |
|                                                            |                                |                    |                                                                                                                |  |  |

| HP In C<br>shired on             | Aur cance 51212 1100 -1 | ACCEPTED BY ATTENDED ATTE THE SAMPLED |                     |      |        |        |       | x x x x pH · |             | X X X X     |        |   | X X X X |   | HNO3<br>HCI<br>NaOH<br>NaOH<br>Na25203<br>Methanol<br>Other<br>Affalyse<br>TDS<br>I, F, SO4<br>ep III/TV Met<br>AD 9315/93 | ala<br>20                             | Preservatives                                | Requested Analysis Filtoned (Vriv) | manager: kavin.herrivç@pazelabs.com. Suite /, Locettor | Rigulatory Agen                 | Coc          | Page: 1                       | matton:                                                   | GAL DOCUMENT. All relevant fields must be completed accurately. |
|----------------------------------|-------------------------|---------------------------------------|---------------------|------|--------|--------|-------|--------------|-------------|-------------|--------|---|---------|---|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------------|------------------------------------|--------------------------------------------------------|---------------------------------|--------------|-------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------|
| SAMPLER: 12                      | ·2.21 1736              | Mar                                   |                     |      |        |        | C + C | NUX //       | 128         | AA          |        |   |         |   | SAMPLE TEN<br>N OF CONTAI<br>Unpreserved                                                                                   | IPAT COLLEG                           |                                              |                                    | Pace Profit                                            | Page Quol                       | Address:     | Attention;                    | Section C<br>Involce Inf                                  | Nain-of-Custody is a L                                          |
| SAUTCER NAME AN<br>PRINT Name of |                         | ANNALED BALLAFTER (1) DH              |                     |      |        |        | -     | 1 312 -      | T 312 INHO  | 7 312 1405  | -      | - | -       | a | SAMPLET<br>SAMPLET                                                                                                         | PE (G=GRA                             | B C=COMP                                     | 2                                  |                                                        | Yates AMA                       |              | acred Sieewer                 | ect information:                                          | The C                                                           |
|                                  |                         |                                       | ADDITIONAL COMMENTS | 1194 | IN EOS | NA-181 |       | Dul-1        | WAR YOWA SD | May YowA-SI | 16-015 |   |         |   | ) Unter off off Sample ids must be unique Tisue Ta                                                                         | One Character per box. Wied were weet | MATRIXC CODEC<br>Official Days<br>Water With |                                    | Project #:                                             | (770)384-6526 Far Project Name: | Purchase Ord | 1070 Bridge Mill Ave Copy To: | Sent Information: Required Pro<br>Georgia Power Report To | POCHUS/ICO                                                      |

|                                           | (DOITIONAL COMMENTS   | NEWLC ASA | Tempo | TOUCH   | VICINIC-40 | YGWA-17  |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | SAMPLE ID<br>One Character per box.<br>(A.Z. 0-9 /, -   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | annan Mas Deir.      | 1051od Drug Draw | =                 | on, GA 30114  | pany: Georgia Power  | uirad Citent Information;         | A are neurices                     |
|-------------------------------------------|-----------------------|-----------|-------|---------|------------|----------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----------------------|------------------|-------------------|---------------|----------------------|-----------------------------------|------------------------------------|
|                                           | A MAN                 | WT        | WT    | WT      | WT         | WT       | WT    | WT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WT  | 사용 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가                | Minute Cooperation and American Minute Cooperation and American Minute Cooperation and American Minute Cooperation and American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American American | )               | Project #:           | Project Name: Ya | Purchase Order #: | Copy To:      | Report To: Becky S   | Section B<br>Required Protect Int |                                    |
| SAMP(ER) (U<br>PRINT N<br>SHOWAT          |                       |           | 11121 |         |            | 3/1 1218 |       | The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s |     | START                                                   | COLLEG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 | -                    |                  |                   |               | Steever              |                                   |                                    |
| AME AND SIGRATUR                          | 03/2/wat<br>3-2-21    |           |       |         |            |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | SAMPLE TEMP AT COLLEC                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | -SONGL               | A. L.            |                   |               |                      |                                   | The Chain-of-Cus                   |
| affault Total                             | 1730 1/10<br>1730 mic |           |       |         |            | 5/12     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | s OF CONTAINERS<br>Unpreserved<br>H2SO4<br>HNO3<br>HCI  | Presen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 | Page Profile #: 1084 | Page Quote:      | Address:          | Company Name: | Involes information: | Section C                         | CUSTODY / ,<br>stody is a LEGAL DO |
| akis -                                    | Im La                 |           |       |         |            |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | NaOH<br>Na2S2O3<br>Methanol<br>Other<br>Anblyses Test   | ratives X/N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -<br>           | kevin.hening@pa      |                  |                   |               |                      |                                   | Analytical R<br>OCUMENT. All rele  |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1     |                       | × × × × × | × × × | x x x x | X X X X    | XXXX     | X X X | XXXX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | TDS<br>C1, F, 504<br>App III/IV Metats<br>RAD 8315/9320 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P Paguesturd An | celabs.com,          |                  | 1                 |               |                      |                                   | equest Doc                         |
|                                           | 11 13<br>5-221 153    |           |       |         |            |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | shale Employing | 10                   |                  | - Stall           |               |                      | a substance of                    | ument                              |
| AP In C<br>wheed on                       | A D'H C S             |           |       | F       | TG         |          | T     | I.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | RDY | eakiual Chionne (Y/N)                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AN IN           | State / Location     | Index (something |                   | 200 I - (1)   | Pana: 7              | ]                                 | Malak                              |
| ed0<br>Her0<br>I)<br>I)<br>I)<br>I)<br>I) | <u>х</u><br>У         |           |       |         | 5.48       |          |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | 525214                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |                      | A. C.            |                   |               | 2                    |                                   |                                    |

|                |       | 1     | ADDITIONAL COMMENTS |    | CLAR | CNIG-AR. | GINC 3R | OWC1R | emeon | SHOOT | GWA2 | 1-8-01 |     |     | SAMPLE ID<br>Ome Character per box.<br>(A.Z. 0.4 1,-<br>Semple lift must be unique | FOR                |             | 1770)384-6526 Fax |                   | St 1070 Bridge Mill Ave<br>GA 30114 | od Cluent Information:<br>ny: Georgia Power | And Analytical |
|----------------|-------|-------|---------------------|----|------|----------|---------|-------|-------|-------|------|--------|-----|-----|------------------------------------------------------------------------------------|--------------------|-------------|-------------------|-------------------|-------------------------------------|---------------------------------------------|----------------|
|                | - Car | 1 des | RELAND              |    | WT   | МТ       | WT      | WT    | WT    | WT    | WT   | WT     | WT  | WT  | ATRIX CODE (see valid of                                                           | Alternation Cooper | r nojovi ev | Projed Name:      | Purchase Order #: | Copy To:                            | Required Project in<br>Report To: Becky     | Section B      |
|                | X     | N     | D CERMENT           |    |      |          | 1       |       |       | 2     | 2    | X      | 5   | 1   |                                                                                    | LaCOMP             |             | ates Gy           |                   |                                     | Steever                                     |                |
| SIC SAME       |       | NR.   | VINERUN             |    |      | +        |         |       | F     |       | 1510 | 2 152  |     |     | START                                                                              | 00                 |             | - Jamece          |                   |                                     | Ř                                           |                |
| ER NAME        | ł     | Y K   | NON                 |    |      |          |         |       |       |       | Ĩ    | a      |     |     | DATE                                                                               | LECTED             |             | - Up (            |                   |                                     |                                             | The Ct         |
| OF SAMPL       |       | 3/2/  | DATE                |    |      |          |         |       |       |       |      |        |     |     | TIME                                                                               |                    |             | scad.             |                   |                                     |                                             | lain-of-C      |
|                |       | 12    |                     |    |      |          |         |       | l.    |       |      |        |     |     | SAMPLE TEMP AT COLLEC                                                              | TION               | Ļ           | Ļ                 | -                 |                                     |                                             | usto           |
| 5 B            |       | NC    | đ                   | -  | -    | -        | -       | -     |       | -     | ন্য  | UR V   |     | -   | # OF CONTAINERS                                                                    | 1                  | ace P       | aceF              | ace               | anno                                | nvolo                                       | dy is          |
| F              | 0     | 0     | a                   |    | -    | $\vdash$ |         |       |       |       |      |        | 1   | -   | H2SO4                                                                              | -                  | rofile      | no equi           | tuote:            | TY Na                               | e info                                      | Ě              |
| 10             |       |       |                     | 1  |      | 1.1      |         |       | 1     |       | V    | V      | 070 |     | HNO3                                                                               | 2                  | 7           | Mana              |                   | ine:                                | ma                                          | GAL            |
|                | 1     | 12    |                     |    |      |          | -       |       |       |       | 1-21 | 10     | 1   |     | HCI                                                                                | Serv               | 1084        | Qer:              |                   |                                     | ä                                           | 87             |
|                | 8     | 8     | 2                   |    | -    | -        |         |       |       |       | 1    |        | -   | -   | NaOH                                                                               | allive             | ľ           | Ŧ                 |                   | 11                                  |                                             | CU C           |
| 13             | 5     | 1     |                     |    |      |          | -       |       |       |       |      |        | -   | -   | Methanol                                                                           | 15                 |             | h.nive            |                   | 11                                  |                                             | E.             |
|                |       | 202   | 5                   |    |      |          | 1       |       |       |       |      | _      |     |     | Other                                                                              |                    |             | eming             |                   | 11                                  |                                             | 2              |
|                | 8     |       | INT                 |    |      |          | 1       |       |       |       | _    |        |     |     | Analyses Test                                                                      | Y/N                | 1           | Bbad              |                   | 11                                  |                                             | rele           |
| 9              |       |       | 5                   | -  | *    | ×        | ×       | ×     | ×     | ×     | ×    | ×      | ×   | ×   | TOS                                                                                |                    | 8           | alabs             |                   |                                     |                                             | vant           |
|                | -     | V     | -                   |    | ×    | ×        | ×       | ×     | ×     | ×     | ×    | ×      | ×   | ×   | ADD I/I/IIVIV Metals                                                               |                    | 3           | 8                 | +                 | +                                   | -                                           | field          |
| laned:         |       |       |                     |    | ×    | ×        | ×       | ×     | ×     | ×     | ×    | ×      | ×   | ×   | RAD 9315/9320                                                                      |                    | Jested A    |                   |                   |                                     | 1                                           | s must         |
| 2 1            | 114   | N.    |                     |    |      |          |         |       |       |       |      |        |     |     |                                                                                    |                    | inalivals P |                   |                   |                                     |                                             | be com         |
|                | N     | 12    | <b>n</b>            |    |      |          | 1       |       | 111   |       |      | ľ      |     | 17. |                                                                                    |                    |             |                   | t                 | 1                                   | 1                                           | plate          |
|                | 1.7   | 5     |                     |    |      |          |         |       |       | 1. S  |      | 20     |     | 1   |                                                                                    |                    |             |                   |                   |                                     |                                             | dac            |
|                | 064   | 2     | R.                  |    |      |          |         |       |       |       |      | -      |     |     | 1                                                                                  | -                  |             |                   |                   |                                     | <u> </u>                                    | curate         |
| MP in C        | 40    |       |                     |    |      |          |         |       |       |       |      |        |     |     | Residual Chlorine (Y/N)                                                            |                    |             | Stat              | Repu              | Coc                                 | ege :                                       | ¥.             |
| no beviewed on | 4     |       | SVINA               |    |      |          |         |       | 1     |       | 脇    | ,1     |     |     | 2                                                                                  |                    | QA          | 1 Locati          | atory Ap          | -                                   | 4                                           | C              |
| ustody         |       | +     | E COM               |    |      |          |         |       |       |       | 鄹    | 1      |     |     | 3                                                                                  | (                  |             | 8                 | New               | 12                                  | 17                                          |                |
| Disko          | 1     |       | AUDIO I             |    |      | 1.1      |         |       |       |       |      |        |     |     | 2                                                                                  |                    |             |                   | T                 | 2                                   | 9                                           | -              |
| amples<br>actC |       |       | 50                  |    |      |          |         |       |       |       | WG.  |        |     |     | 214                                                                                | 5                  |             |                   |                   | lad                                 | - 10                                        | c              |
| (14)           |       | 1     |                     | _1 |      |          | 1       |       | -     |       | 21   |        |     | -   |                                                                                    | 1                  |             |                   | L                 | 21                                  | -                                           |                |

3

|                                                         |         | 12.                  | 00 12 |     | tf.    | k        | x     | 1     | *         | -   |                                                                                      |                     | _                   | Deres of              | 8                  | ion, G       | ess.                 | ulined                            | Son A              |
|---------------------------------------------------------|---------|----------------------|-------|-----|--------|----------|-------|-------|-----------|-----|--------------------------------------------------------------------------------------|---------------------|---------------------|-----------------------|--------------------|--------------|----------------------|-----------------------------------|--------------------|
|                                                         |         | ADDITIONAL COLDARATS |       |     | CHICAR | CINC-13- | SHONE | CHC-H | GWA-10    |     | SAMPLE (D<br>One Chernetler per boz.<br>(A-Z, 0-97<br>)<br>Sample lds must be enique |                     |                     | Line nate:            | (110):384-6526 Fax | A 30114      | 1070 Sridge Mill Ave | George Prover                     |                    |
|                                                         | 1 als   | RELINOUR             |       |     | WT     | WT       | WT    | WT    | 1         | WT  | MATRIX CODE (See valid of SAMPLE TYPE                                                | United Water Cocces |                     | Project #:            | Project Name: y    |              | Copy To:             | Section B<br>Required Project in  |                    |
| SAMPLER N<br>PRINT N<br>SIOHAT                          | V       | HED BY / AFFELATION  |       |     |        |          |       | 2     | 347110:15 |     | START                                                                                | COLLEG              |                     |                       | ates R6            |              | Sleever              | formation:                        |                    |
| AME AND EXXATLE<br>Armo of SAMPLER:                     | 34-21   | DATE                 |       |     |        |          |       |       |           |     | TIME SAMPLE TEMP AT COLLECT                                                          |                     |                     |                       |                    |              |                      |                                   | The Chain-of-Cus   |
|                                                         | ILYS CA | <b>X</b>             |       |     |        |          |       | ~ /   |           |     | NOF CONTAINERS<br>Unpreserved<br>H2SO4<br>HNO3<br>HCI                                | Preserva            |                     | Page Profile #: 10940 | Paice Quole:       | Company Name | Allention-           | Section C<br>Invoice information: | tody is a LEGAL DO |
| Knowicz                                                 | wlife   | ACCEPTED BY / AFFLU  |       |     | ×      |          |       | ×     |           |     | Na2S203<br>Melhanol<br>Other<br>Analysee Test                                        | atives<br>Y/N       | Inter               | kevin.heming@pade     |                    |              |                      |                                   | CUMENT. All relev  |
| DATE Signed:                                            | At the  | UTION .              |       | *** | X X X  | 7        | X X X | X X X |           | C A | Cl, F, SO4<br>App III/TV Metals<br>RAD 9316/9320                                     |                     | Requested Anal      | labs.com,             |                    |              |                      |                                   | ant fields must be |
| 421                                                     | Othe    |                      |       |     |        |          |       |       |           |     |                                                                                      |                     | nais Pillioned (YM) |                       | and a state        |              |                      |                                   | completed accurat  |
| FEMP in C<br>Received on<br>SeD<br>(Y/N)<br>Cualody     |         | STATE OF STATE       |       | 1   | 1      | 1        | 1     | PH-S  | 1         | R   | esidual Chiorine (Y/N)                                                               |                     | 64                  | State / Location      | Regulatory Agen    | Coc          | Page:                | -                                 | ely.               |
| ated:<br>Sooler::<br>Y/N)<br>Samples<br>Liact::<br>Y/N) |         |                      |       | 1   |        |          |       | 23    |           |     |                                                                                      |                     | Π                   |                       |                    | 1            | 9                    |                                   |                    |

| J                                                                          |                | - ADDITIONIAL COMMENTS        | TGWC-235  | XIIWACHT | fewerzes   | YGWAJB    | YGWA-17S    | XCHARDA | Kompan | XCWAR |     |     |    | SAMPLE ID<br>One Character periboz.<br>(A-Z, 0-9 (, -)<br>Sample Ids must be unique                   |               |                  | led Due Date:                            | 1770)384-6526 Fax: | 1, GA 30114 | st: 1070 Bridge Mill Ave | an A<br>Ind Cilent Information:            | A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STATISTICS AND A STAT |
|----------------------------------------------------------------------------|----------------|-------------------------------|-----------|----------|------------|-----------|-------------|---------|--------|-------|-----|-----|----|-------------------------------------------------------------------------------------------------------|---------------|------------------|------------------------------------------|--------------------|-------------|--------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SJAIPLER NAM<br>PROFF NAM                                                  | John Stearth   | RELINCOLOUSED BY / AFFELA TOO | Strift In | WT T     | DCI CIC TH | 012 121 T | WT 3/3 1220 | WT      | WT     | WT    | WT  | WT  | WT | MATRIX CODE (See valid of<br>SAMPLE TYPE (G=GRAB                                                      |               |                  | Project #: Yates AMA                     | Purchase Order #:  | int free    | Report To: Bedly Steever | Section B<br>Required Project Information: | E .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| a of SAMPLER:                                                              | 3/1121170      |                               |           |          | 5          | 5.        | 2           |         |        |       | 100 |     |    | SAMPLE TEMP AT COLLECT                                                                                | Ю<br>мот      | Fao              | Page                                     | Pao                | Con         | Ane                      | £                                          | e Chain-of-Custody                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| late Supron                                                                | 20 Charles How |                               |           |          | X X        |           |             |         |        |       |     |     |    | Unpreserved<br>H2SO4<br>HNO3<br>HCI<br>NaOH<br>Na2S2O3<br>Methanol<br>Other<br>Alīšiyaes Test.<br>TDS | Preservatives | 2 FTUNE 0: 10840 | e Project Manager: kevin.herring@pacelab | e Quole:           | rpany Name: | ndon:                    | Ston C                                     | is IOUY / Analytical Req                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (4/2) the second                                                           | 150 Harking    |                               |           |          | x          | × × ×     |             |         |        |       | XXX | xxx |    | Ci, F, SO4<br>App III/IV Metals<br>RAD 9315/9320                                                      |               |                  | ok.com                                   |                    |             |                          | n fields must be completed ac              | luest Document                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| EMP In C<br>aceived on<br>eD<br>(/N)<br>ualody<br>ualody<br>colerD<br>(/N) |                | 1 124.05                      |           |          | PH5.89     | 21.19     | 0.1         |         | 1      |       |     |     | R  | esidual Chiorine (Y/N)                                                                                |               | Sate Location    |                                          | Regulatory Agency  | 221         | Page: 2                  | curately.                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| ÷ 11                           | 111      | 1                  |     | 5 10 1 | 1    | ( <b>6</b> 4) | 45     | 1        | les.     | IN      | 17        | ITEM #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | Ű.    | 15            | Iž                | all              |                                               | 2 2                    |
|--------------------------------|----------|--------------------|-----|--------|------|---------------|--------|----------|----------|---------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------|---------------|-------------------|------------------|-----------------------------------------------|------------------------|
|                                |          | ADDITIONAL COMPANY |     |        |      | NOWOOD        | NONCAL | XCHO-12- | YOWG-IT- | TOWNARD | YGWA-39   | SAMPLE ID<br>One Chancier per boz.<br>(A-Z, 0-9 (, -)<br>)<br>Sample (cts must be unique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |       | acq uue Date: | (770)384-6526 Fax | , GA 30114       | ny: Georgia Power<br>s: 1070 Biologe Mill Ave | A A Client information |
| -                              | Jala     | a la               |     |        |      |               | W      | W        | ×        | W       | 5         | Table 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Concertainty 21 Conce | MATROCT CODED |       | Project #:    | Project Name:     | Subj 10.         | Report To:                                    | Section B              |
|                                | 05       | CURSHED            |     | H      | T    | -             | -      | -        | -        | -       | 7<br>11   | SAMPLE TYPE (G+GRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C=COMP)       |       | in            | 1.8               |                  | ect Infon<br>Jecty Ste                        |                        |
| SAMPLER N<br>PRINT N<br>SIGNAT | Vensor   | BY/ (ATTELINION    |     |        |      | +             | -      | 1        |          | -       | 3/41 1020 | START                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0011          |       | 170           | R                 |                  | mation:<br>ever                               |                        |
| ARE AND                        |          |                    |     |        |      |               | +      | -        | -        |         |           | DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CTED          |       | 1             |                   |                  |                                               | The Ch                 |
| MPLER:                         | tath)    | DA DE              |     |        |      | 1             | 1      | +        | -        | 4       | -         | TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               | $\ $  | P             |                   |                  |                                               | ainard                 |
| に常                             | 12       |                    |     |        |      | 1             |        | +        | 1        | -       | Л         | SAMPLE TEMP AT COLLEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TION          |       | 2 2           | P                 | 88               | 2 5 8                                         | ustod                  |
| Re                             | B        | A                  | -   |        |      | +             | +      | +        | -        | -5      | 5         | Unpreserved<br>H2SO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |               |       | ce Proje      | oe Quot           | mpany            | indice in                                     | yisa                   |
| 5                              | 0        |                    |     |        |      | 1             | 1      | 1        | 1        | 1       | V         | HNO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pre           | 1     | d Mana        | R                 | Vame:            | formati                                       | LEGA                   |
| NE                             | 2        |                    |     |        |      |               | 1      | 1        | -        | 1       |           | NaOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | serval        | 10840 | igen:         | 1                 | 11               | 2                                             | DOC                    |
| 00                             | p.       |                    |     |        |      |               |        | -        | +        |         |           | Na28203<br>Methanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ives          | T     | kevin.        | 1                 |                  |                                               | naly                   |
| T M L                          | 1        |                    |     |        |      | 1             | 1      | T        | 1        | 1       | -         | Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |       | heming        |                   | 11               |                                               | VT. A                  |
|                                | in       |                    |     |        | ×    | 1             | K      | Fr       | IF       | ×       | -         | Analyses Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | YAN           |       | Bpace         |                   |                  |                                               | Re                     |
|                                | 2        |                    |     |        | X    | ŀ             | 1      | ł        | k        | ×       | -         | 7, F, SO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |       | 10            | +                 | $\left  \right $ | -                                             | que                    |
|                                | I N M    |                    |     |        | 1    | ŧ             | 1      | 1        | F        | ×       | R         | AD 9316/9320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |       | 3             |                   |                  |                                               | ids m                  |
|                                | 12       |                    | ++  | ++     | -11- | -             | -      | -        |          | 1       | T         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |       |               |                   |                  |                                               | Ust b                  |
|                                | R        |                    | T   |        |      |               | t      |          | -        |         | +         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |       |               |                   |                  |                                               | Com                    |
|                                | R        | ++                 | ++- |        |      | -             | -      | -        | F        |         | Ŧ         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | h     | Ť             | 2                 | -                |                                               | pletec                 |
| 8                              | R        |                    |     |        |      |               |        |          |          |         | +         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PLAN I        |       |               |                   |                  |                                               | 13000                  |
| MP In C                        |          |                    | ++  | ++     | -    |               | -      |          |          |         | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 11    | 2             | 3                 | 1                | P                                             | rately                 |
| alved on                       |          |                    |     |        |      |               | _      |          | _        | -       | Re        | aldual Chiorine (Y/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 1 1 1       |       | <del>2</del>  | Ragu              | 5                | Qe :                                          |                        |
| 4)                             | (Allery) |                    |     |        | 11   |               |        |          |          | 10      | 2         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5             | OA I  | 1000          | atory             | 2                | .1                                            |                        |
| nody<br>nd n                   | 8        |                    |     |        |      | _             |        |          |          | in      | -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1 1         |       |               | 5                 | - (              | 9                                             |                        |
| ()                             | C BOOLUS |                    |     |        | 11   |               | 5      |          |          | 5       | -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34 3          | _     | 4             | The second        | 9                | 2                                             | -                      |
| ipica<br>#G                    |          |                    |     |        |      |               |        |          |          | r       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19 1 2        |       |               |                   |                  |                                               |                        |
|                                | 1        |                    |     |        |      | 1             |        |          | 1        | 1       |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17            | 1     | 11            | Ŕ                 | 5                |                                               | -                      |

| i I                                        |          | and a state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the | 1020320120- 2.5-42 | ****CZI           |    | WANCZE - | TERRIZOS 7 | -  |     | 102020 (030321) | VEWAN 1030321 | YGWA2 05051 | YGWA-1 LOZOZZA | Kenvid Casasa | SAMPLE ID Service<br>One Character periloor.<br>(A-2, L-91, -<br>)<br>Sample lds must belunique | MANTRICC<br>MANTRICC |                   |                    | rested Due Date: |                  | ion, GA 30114 | ress: 1070 Bridge Mill Ave | Nany: Convola Bound | tion A                        |
|--------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------|----|----------|------------|----|-----|-----------------|---------------|-------------|----------------|---------------|-------------------------------------------------------------------------------------------------|----------------------|-------------------|--------------------|------------------|------------------|---------------|----------------------------|---------------------|-------------------------------|
| -                                          | 8        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 124) INT           | WT                | WT | WT       | WT         | WT | WT  | WT              | WT            | WT          | WT             | WT            | 러 음 흙 돌 음 음 감 돌<br>MATRIX CODE (see yaid                                                        | WID COOKE            | n)                | indea w            | Project Name:    | Purchase Order # | ni film       | Report To: Be              | Required Projec     | Section R                     |
|                                            | - flores | CUNTERN / AB CEREM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 375                |                   |    |          |            |    | ¢   | 32 400          | Stude         | Shill SK    | 3 3 1335       | Sh Kis        | SAMPLE TYPE (GaGRA)                                                                             | C=COMP               | ŋ                 |                    | Yales AP-2       | đ                |               | Sty Sleever                | t Information:      |                               |
| T Numeranio sociali<br>T Nume of Schurpter | 15       | ativi juta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                   |    |          |            |    |     |                 | 130           | Ca          |                |               | END                                                                                             | LECTED               |                   |                    |                  |                  |               |                            |                     | The Chain-of-                 |
|                                            |          | THE .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V AS               |                   |    |          |            |    |     | 5               | 54 1          | s<br>x      | SV V           | SN            | SAMPLE TEMP AT COLLEC<br># OF CONTAINERS<br>Unpreserved<br>H2SO4<br>HNO3                        |                      |                   | Pace Profile #     | Pace Project M   | Address:         | Company Nam   | Attention:                 | Section C           | F-CUSTOE                      |
|                                            | harly    | CELEDON V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                   |    |          |            |    |     |                 |               |             | >              | F             | HCI<br>NaOH<br>Na25203<br>Methanol                                                              | reservatives         |                   | 10840              | anager bauts to  |                  | ß             |                            | ation               | Y / Analyti                   |
|                                            | that     | MUNTRAN //B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ×                  | $\langle \rangle$ | )  | R<br>×   |            | XX |     |                 | × ×           |             |                | ××            | Other<br>Analyses Teat<br>TDS<br>CI, F, SO4                                                     | Ý/N                  | 51 S.             | o'speisoedélifeme  |                  |                  |               |                            |                     | . All relevant f              |
| Dougla -                                   | upt 1    | E COL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | x > >              | 1                 |    | X        | XX         | XX | ×   |                 | < × ×         | XXI         | : 3            | ××            | App III/IV Metals<br>RAD 9315/9320                                                              |                      | Requested Analysi | om,                |                  |                  |               |                            |                     | est Docun<br>ields must be co |
|                                            | C PHZX   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                   |    |          |            |    |     |                 |               |             |                |               |                                                                                                 |                      | Fittered (V/N)    | Contraction of the |                  | No. Con          | 1             |                            | _                   | nent<br>mpleted accurat       |
| EMP In C<br>Icelved on<br>D<br>(N)         |          | SAMA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    |                   | 1  | T        | T          |    | 17  | R               |               | 1           | 1              |               | esidual Chiorine (Y/N)                                                                          |                      | Constant By a     | State Public       |                  | Reculatoria      | 220           | Page: U                    |                     | lely.                         |
| Islody<br>neocial<br>olerQ<br>(N)<br>mples |          | CONDITIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N I                |                   |    |          |            |    | 8.3 | 0.              | 1 1.7         | 1 2.3       | 1.1.2          | 1             |                                                                                                 |                      |                   | lige               |                  |                  | 1 17          | 07                         | +                   |                               |

|                                                 |            | ALLESSAND PARTICIPAL | 12 YEWC235 | 11 YGWA2H | VGWA20S     | 3 TOWNIA | WCWA JES | 7 YOWMAY | B YOWASD | S NOWAST | YGWAAI    |          |       | 6     | TTEM #<br>(A.Z. 0.9 / ,-<br>)<br>Semple ids must bejunique              | SAMPLE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                        | -                          | Inested Due Date: Fac | <b>8</b> .        | Interst: 1070 Bridge Mill Ave | npany: Georgia Power  | Stion A                 |
|-------------------------------------------------|------------|----------------------|------------|-----------|-------------|----------|----------|----------|----------|----------|-----------|----------|-------|-------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------|----------------------------|-----------------------|-------------------|-------------------------------|-----------------------|-------------------------|
|                                                 | - Carl     | eterowitan           | WT         | WT D      | WT          | WT       | WT       | WT       | WT       | WT       | WT        | WT       | WT    | WT    | MATRIX CODE<br>SAMPLE TYPE                                              | And a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec | Dating wood Over | (R)<br>7               | Project #:                 | Project Name: Yat     | Purchase Order a- | Copy To:                      | Required Project Info | Section B               |
| SAMPLER ALM                                     |            | ED BY (AFFILATION    |            | SELOPHINE | Cristen Bar |          |          |          |          |          | CCOI MARE | Labor on |       |       | DATE TIME DAT                                                           | START                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | COLLECTE         |                        |                            | es AMA                |                   | actro.                        | Amadon:               | The                     |
| e AND SIGNATURE                                 | Capital 10 | INTE                 |            | S         | 5           |          |          |          |          |          | 5         |          |       |       | SAMPLE TEMP A                                                           | T COLLECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                |                        | 17                         | 7                     | 2 2               | Q Z                           |                       | e Chain-of-Custod       |
| T Allahat                                       | 305 Char   | BOW S                |            | ×         | X           |          |          |          |          |          | XX        |          |       |       | Unpreserved<br>H2SO4<br>HNO3<br>HO1<br>NaOH<br>Na2S2O3                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Preservatives    |                        | abe Profile #: 10840       | top Proved Mananeer   | Schuster          | orroany Name:                 | voice information:    | ly is a LEGAL DOCUMI    |
| Bisativa   S.M                                  | Le flash   | PIEDBY (AFFLIATION   |            |           | XXX         |          | XXXX     | * *      |          |          | x x x     | ××××     | x x x | x x x | Methanol<br>Other<br>Analyses<br>TOS<br>CI, F, SO4<br>App II //V Metals | (ogt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Y/N              | ALC: No                | most seepoed of boundarium |                       |                   |                               |                       | ENT, All relevant field |
| eet ~2 /v/ /                                    | 3/5/2/ 2   | - DAILE              |            | ×         | x           |          | ×        |          |          |          | ×         | ×        | x     | x     | RAD 9315/9320                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | uestad Analysis Fillen | 1                          |                       |                   |                               |                       | ts must be complete     |
| MP in C                                         | als        | 1                    |            |           |             |          |          |          |          |          |           |          |       |       |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | (NOV)                  | 1911 - 191                 |                       | -                 |                               | Pane                  | ed accurately.          |
| Celved on<br>D<br>N)<br>slody<br>meanD<br>olerD |            | SALET LE CO IOTT     | 10         | 1         |             | 1        | 1        | 1        | 1        |          | 01.6.     |          |       |       | Residuși Chlorine                                                       | (Y/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  | 5                      | State (Location            | A trading I wanted    | (igc )            | 0                             | 2                     |                         |
| N)<br>mples<br>ctD<br>N)                        |            | END.                 | 100        | 202       | 3           |          |          |          |          | -        | 2         |          |       |       |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 12                     |                            |                       |                   | the state                     |                       |                         |

PACE Analytical Services Ra-228 Analysis

Face Analytical

# **Quality Control Sample Performance Assessment**

|                                                                                              |                     |                     | Analyst Must Manually Enter All Fields Highlighted in                                            | Yellow.  |          |
|----------------------------------------------------------------------------------------------|---------------------|---------------------|--------------------------------------------------------------------------------------------------|----------|----------|
| lest                                                                                         | Ka-226              | _                   |                                                                                                  |          |          |
| Analyst<br>Date:                                                                             | LAL<br>3/9/2021     |                     | Sample Matrix Spike Control Assessment<br>Sample Collection Date:                                | MS/MSD 1 | MS/MSD 2 |
| Worklist                                                                                     | 59152<br>DW         |                     | Sample I.D.<br>Sample N.D.                                                                       |          |          |
| Method Blank Assessment                                                                      |                     |                     | Sample MSU 1.U.<br>Spike I.D.:                                                                   |          |          |
| MB Sample ID                                                                                 | 2112389             |                     | MS/MSD Decay Corrected Spike Concentration (pCi/mL):                                             | •        |          |
| M/B Counting Uncertainty:                                                                    | c00.0-              |                     | Spike Volume Used in MS (mL):<br>Spike Volume Used in MSD (mL):                                  |          |          |
| MB Numerical Performance Indicator                                                           | 0.214               |                     | MS Aliquot (L. g. F):                                                                            |          |          |
| MB Status vs Numerican indicator.<br>MB Status vs Numerical indicator.<br>MB Status vs. MDC: | N/A<br>Pass         |                     | MS 14194C UNIC (POUL, 9, F).<br>MSD Tanget Conc. (PCML, 9, F):<br>MSD Tanget Conc. (PCML, 9, F): |          |          |
|                                                                                              |                     |                     | MS Spike Uncertainty (calculated):                                                               |          |          |
| Laboratory Control Sample Assessment                                                         | LCSD (Y or N)?      | Å                   | MSD Spike Uncertainty (calculated):                                                              |          |          |
|                                                                                              | LCS59152            | LCSD59152           | Sample Result:                                                                                   |          |          |
| Count Date:<br>Splke (.D.:)                                                                  | 3/15/2021<br>19-033 | 3/15/2021<br>19-033 | Sample Result Counting Uncertainty (pCi/L, g, F):<br>Sample Matrix Soike Result:                 |          |          |
| Decay Corrected Spike Concentration (pCi/mL):                                                | 24.039              | 24.039              | Matrix Spike Result Counting Uncertainty (pCi/L, g, F):                                          |          |          |
| Volume Used (mL):                                                                            | 0.10                | 0.10                | Sample Matrix Spike Duplicate Result:                                                            |          |          |
| Aliquot Volume (L, g, F):                                                                    | 0.504               | 0.504               | Matrix Spike Duplicate Result Counting Uncertainty (pCi/t, g, F):                                |          |          |
| Incertainty (Calculated)                                                                     | 0.057               | 4.707               | MSD Numerical Deformance Indicator                                                               |          |          |
| Result (pCN, q. F):                                                                          | 5.339               | 5.520               | MOU NUMERICAL FERNINGING RECOVERY:                                                               |          |          |
| LCS/LCSD Counting Uncertainty (pCi/L, g, F):                                                 | 0.625               | 0.640               | MSD Percent Recovery:                                                                            |          |          |
| Numerical Performance Indicator:                                                             | 1.77                | 2.29                | MS Status vs Numerical Indicator:                                                                |          |          |
| Percent Recovery:                                                                            | 111.88%             | 115.78%             | MSD Status vs Numerical Indicator                                                                |          |          |
| Status vs Numerical Indicator.                                                               | N/A                 | AN C                | MS Status vs Recovery:                                                                           |          |          |
| Linner of Decovery Limiter                                                                   | SSB1                | 4 7 EV              | MS/NS/ 1 MS/NS/ 1 MS/NS/ 1 MS/NS/                                                                |          |          |
| Lower & Recovery Limits:                                                                     | 75%                 | 75%                 | MS/MSD Lower % Recovery Limits:                                                                  |          |          |
|                                                                                              |                     |                     |                                                                                                  |          |          |
| Duplicate Sample Assessment                                                                  |                     |                     | Matrix Spike/Matrix Spike Duplicate Sample Assessment                                            |          |          |
| Sample 1.D.:                                                                                 | LCS59152            | Enter Duplicate     | Sample I.D.                                                                                      |          |          |
| Duplicate Sample I.D.                                                                        | LCSD59152           | sample IDs if       | Sample MS I.D.                                                                                   |          |          |
| Sample Result (pCi/l, g, F):                                                                 | 5.339               | other than          | Sample MSD I.D.                                                                                  |          |          |
| Sample Result Counting Uncertainty (pCi/L, g, F):                                            | 0.625               | LCS/LCSD in         | Sample Matrix Spike Result:                                                                      |          |          |
| Sample Duplicate Result Counting Uncertainty (pCi/L, g, F):                                  | 9.52U<br>0.640      | The space below.    | marrx spike result Counting Uncertainty (pC/rL, g, F);<br>Sample Matrix Spike Duplicate Result:  |          |          |
| Are sample and/or duplicate results below RL?                                                | 20                  |                     | Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):                                |          |          |
| Duplicate Numerical Performance Indicator.                                                   | -0.396              | 92524756004         | Duplicate Numerical Performance Indicator:                                                       |          |          |
| (Based on the LCS/LCSD Percent Recoveries) Duplicate RPD:                                    | 3.43%               | 92524756004DUP      | (Based on the Percent Recoveries) MS/ MSD Duplicate RPD:                                         |          |          |
| Duplicate Status vs Numerical Indicator.                                                     | N/A                 |                     | MS/ MSD Duplicate Status vs Numerical Indicator:                                                 |          |          |
| Duplicate Status VS KPD.                                                                     | rass<br>25%         |                     | MS/ MSU JUDIICARE STATUS VS KFUT.<br>% RPD Limit:                                                |          |          |

## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

TAR DW QC Printed: 3/15/2021 3:34 PM

12121mm3/15/21

1 of 1

TAR\_59152\_W.xts Total Alpha Radium (R104-3 11Feb2019).xts CME INTRI PACE Analytical Services Ra-228 Analysis

| Cuality Control Samp                                                            | vie Performance Assessment                                              |        |
|---------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------|
| Pace Analytical Test Ra-226                                                     | Analyst Must Manually Enter All Freids Highlighted in Yellow.           |        |
| Analyst LAL<br>Date: 3/9/2021                                                   | Sample Matrix Spike Control Assessment MS/MSD 1 MS/MSD 1 MS/MS          | MISD 2 |
| Worklist 59152<br>Matrix: DW                                                    | Sample I.D.<br>Sample MS I.D.                                           |        |
| Method Blank Assessment                                                         | Sample MSD I.D.<br>Spike I.D.:                                          |        |
| MB Sample ID 2112389                                                            | MS/MSD Decay Corrected Spike Concentration (pC/mL):                     |        |
| MB concentration: -0.005 MB concentration: 0.071                                | Spike Volume Used in MS (mL);<br>Spike Volume Used in MSD (mL);         |        |
| MB MDC: 0.214                                                                   | MS Aliquot (L, g, F).                                                   |        |
| MB Numerical Performance Indicator0.13<br>MB Status vs Numerical Indicator. N/A | MS Target Conc. (pCi/l, g, F):<br>MSD Aliauot (L, g, F):                |        |
| MB Status vs. MDC: Pass                                                         | MSD Target Conc. (pC/I/, g, F):<br>MS coive Threat-airth/ real-rutated/ |        |
|                                                                                 |                                                                         |        |
|                                                                                 | N NOU OPIKE UNCERTAINTY (CARCHARTU).                                    |        |
|                                                                                 | Sample Result Counting Encertainty (nCE) or EV                          |        |
| Spike I.D.: 19-033                                                              | Sample Matrix Spike Result                                              |        |
| Decay Corrected Spike Concentration (pCi/mL): 24.039                            | Matrix Spike Result Counting Uncertainty (pCi/L, g, F):                 |        |
| Volume Used (mL): 0.10                                                          | Sample Matrix Spike Duplicate Result:                                   |        |
| Aliquot Volume (L, g, F): 0.504                                                 | Matrix Spike Duplicate Result Counting Uncertainty (pCi/t, g, F):       |        |
| 13-20-2010 (BULL, 9, F): 4.7 /2                                                 | MCD Numerical Fational Cartemarka                                       |        |
| Uncertainty (Larculated): 0.002<br>Result (nCXI) or FV 5.339                    | WOU NUTIFICAT FORMATION INVESTIGATION                                   |        |
| LCS/LCSD Counting Uncertainty (pCi/L, g, F): 0.625                              | MSD Percent Recovery                                                    |        |
| Numerical Performance Indicator. 1.77                                           | MS Status vs Numerical Indicator:                                       |        |
| Percent Recovery: 111.88%                                                       | MSD Status vs Numerical Indicator:                                      |        |
| Status vs Numerical Indicator: N/A                                              | MSS Status vs Recovery:                                                 |        |
| Linux & Docurrent invite: 1358                                                  | MOU Status vs recovery.                                                 |        |
| Lower % Recovery Limits: 75%                                                    | MS/MSD Lower % Recovery Limits:                                         |        |
|                                                                                 |                                                                         |        |
| Duplicate Sample Assessment                                                     | Matrix Spike/Matrix Spike Duplicate Sample Assessment                   |        |
| Sample I.D.: 92524756004 Enter                                                  | Duplicate Sample I.D.                                                   |        |
| Duplicate Sample 1.D.   92524756004DUP  sam                                     | ple IDs if Sample MS I.D.                                               |        |
| Sample Result (pCVL, g, F): 0.330 00 00 00 00 00 00 00 00 00 00 00 00           | er than Sample MSD i.D.<br>A CSD is                                     |        |
| Sample Dublicate Result (DCVL, 0, F): 0.280 Ithe sp                             | ace below. Matrix Spike Result Counting Uncertainty (pCi/L, g, F):      |        |
| Sample Duplicate Result Counting Uncertainty (pCi/L, g, F): 0.189               | Sample Matrix Spike Duplicate Result:                                   |        |
| Are sample and/or duplicate results below RL? See Below ##                      | Mathrx Spike Duplicate Result Counting Uncertainty (pCi/l., g, F):      |        |
| Duplicate Numerical Performance Indicator: 0.394 925                            | [4756004.] Duplicate Numerical Performance Indicator:                   |        |
|                                                                                 | DOUGHUR Desseu dri me refuerii recoveries) inci mou pupituate nr D.     |        |
| Duplicate Status VS Numerical Indicator. NVA<br>Dunlicate Status vs RPD- Pass   | MS/ MS/ Dublicate Status vs RPD:<br>MS/ MS/ Dublicate Status vs RPD:    |        |
| % RPD Limit: 25%                                                                | % RPD Limit:                                                            |        |

TAR DW QC Printed: 3/15/2021 3:34 PM

12/3/12/21

Page 54 of 61

1 of 1

## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

TAR\_59152\_WXIS Total Alpha Radium (R104-3 11Feb2019).XIS  $OME_3|IS/N_1|$ 

PACE Analytical Services Ra-228 Analysis

| Pace Analytical                                                                                                            |                                               | <u>Analyst Must Manually Enter All Fields Highlighted in Y</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>iliow.</u>         |
|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| lest<br>Analyst<br>Date:                                                                                                   | Ka-226<br>LAL<br>3/10/2021                    | Sample Matrix Spike Control Assessment<br>Sample Collection Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MS/MSD 1 MS/MSD 2     |
| Worklist<br>Matrix:                                                                                                        | 59153<br>DW                                   | Sample I.D.<br>Sample MS I.D.<br>Sample MSD I.D.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |
| ethod Blank Assessment MB Sample ID                                                                                        | 2112394                                       | Spike I.D.:<br>MS/MSD Decay Corrected Spike Concentration (pClimit):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |
| MB concentration:<br>M/B Counting Uncertainty:                                                                             | 0.043                                         | Spike Volume Used in MSD (mL):<br>Spike Volume Used in MSD (mL):<br>MSC Alimined of D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |
| MB Numerical Performance Indicator:                                                                                        | 0.76                                          | MS Target Conc. (c) (1, g, f):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                       |
| MB Status vs Numencial Indicator:<br>MB Status vs. MDC:                                                                    | Pass                                          | MSD Target Conc. (pc2(L, g, F):<br>MSD Target Conc. (pc2(L, g, F):<br>MS Sector I Inconduitive (robendrady)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |
| boratory Control Sample Assessment                                                                                         | LCSD (Y or N)? N                              | MSD Spike Uncertainty (calculated):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |
| Count Date.                                                                                                                | LCS59153 LCSD5                                | 9153 Sample Result Counting Uncertainty (OCi/L. D. F):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |
| Spike I.D.:                                                                                                                | 19-033                                        | Sample Recting Control of the Recting Street streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets streets s |                       |
| Decay Corrected Spike Concentration (pC//mL):<br>Volume Used (mL):                                                         | 24.039<br>0.10                                | matrix spike result counting uncertainty (pourt, g. r.).<br>Sample Matrix Spike Duplicate Result:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |
| Aliquot Volume (1, g, F):                                                                                                  | 0.505                                         | Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):<br>MS Ni medical Derformance Indirator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |
| Uncertainty (Catculated):                                                                                                  | 0.057                                         | MSD Numerical Performance Indicator:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |
| Result (pCi/L, g, F):                                                                                                      | 5.078                                         | MS Percent Recovery:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |
| LCS/LCSU Counting Uncertainty (pCirt., g. r.):<br>Numerical Performance Indicator:                                         | 1.21                                          | MS Status vs Numerical Indicator:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |
| Percent Recovery:                                                                                                          | 106.78%                                       | MSD Status vs Numerical Indicator:<br>MS Status vs Recovery:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |
| Status vs Nutification.                                                                                                    | Pass                                          | MSD Status vs Recovery:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                       |
| Upper % Recovery Limits:<br>Lawer % Recovery Limits:                                                                       | 125%<br>75%                                   | MS/MSD Upper % Recovery Limits:<br>MS/MSD Lower % Recovery Limits:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |
|                                                                                                                            |                                               | Matrix SnikaMatrix Snika Dunlicata Samnja Accacemant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |
| plicate Sample Assessment                                                                                                  |                                               | mauly ophematic opine pupilere cample poccoment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| Sample I.D.:<br>Duplicate Sample I.D.                                                                                      | 92525363011 Enter Du<br>92525363011DUP sample | Sample I.D.<br>Dis if Sample MS.LD.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                       |
| Sample Result Counting Uncertainty (PCVL, 9, F):                                                                           | 0.137 LCS/LC                                  | Sample Matrix Ford                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |
| Sample Duplicate Result Counting Uncertainty (pCiVL, g, F):<br>Sample Duplicate Result Counting Uncertainty (pCiVL, g, F): | 0.103 Une space                               | : DETOW. MAIN'S ONCE RESULT COUNTING UNCERTAINTY (PCML, 9, r./.<br>Sample Matrix Spike Duplicate Result:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |
| Are sample and/or duplicate results below RL?                                                                              | See Below#                                    | Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |
| Duplicate Numerical Performance Indicator<br>Duplicate RPD:                                                                | 64.02% 9252530<br>92525363                    | 011DUP (Based on the Percent Recoveries) MS/ MSD Duplicate RPD:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| Duplicate Status vs Numerical Indicator.                                                                                   | N/A<br>Eaitere                                | MS/ MSD Duplicate Status vs Numerical Indicator:<br>MS/ MSD Dunlicate Status vs RPD:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |
| Cupincate Status VS NFD.                                                                                                   | r all<br>25%                                  | More interesting the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco                                                                                                                                                                                                                                             |                       |
| ## Evaluation of duplicate precision is not applicable if either the s                                                     | sample or duplicate results are               | rbelow the MDC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |
| omments:                                                                                                                   | J                                             | OK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | などし                   |
| 28arch must be reprepted due to unacceptable precision. (N )                                                               | 1211× m41 4                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \C_\                  |
|                                                                                                                            |                                               | A CONTRACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12/22/5WAN            |
|                                                                                                                            |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Total Abda Dadiam (D4 |
|                                                                                                                            |                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |


Pace Analytical

# **Quality Control Sample Performance Assessment**

MS/MSD 2

MS/MSD 1

Sample I.D. Sample MS I.D. Sample MSD I.D.

Sample Collection Date:

Sample Matrix Spike Control Assessment

Spike I.D.:

MS/MSD Decay Corrected Spike Concentration (pCi/mL)

MS Target Conc.(pCi/L, g, F): MSD Aliquot (L, g, F):

MS Aliquot (L. g. F):

Spike Volume Used in MS (mL) Spike Volume Used in MSD (mL)

Analyst Must Manually Enter All Fields Highlighted in Yellow.

| Ra-226<br>LAL<br>3/10/2021<br>59153<br>59153<br>DW<br>2112394<br>0.043<br>0.110<br>0.264<br>0.76<br>0.76<br>Pass<br>0.76<br>Pass<br>0.76<br>Pass                                                                             | 3/22/2021<br>19-033 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Ϋ́                                                                                                                                                                                                                           |                     |
| Test<br>Analyst<br>Date:<br>Worklist:<br>Worklist:<br>Matrix:<br>MB Sample ID<br>MB concentration:<br>MB Numerical Performance Indicator.<br>MB Numerical Performance Indicator.<br>MB Status vs. MDC:<br>MB Status vs. MDC: | Spike I.D.:         |
| fethod Blank Assessment                                                                                                                                                                                                      |                     |

| Sample I.D.                                                       | Enter Duplicate | LCS59153       | Sample I.D.:                                  |
|-------------------------------------------------------------------|-----------------|----------------|-----------------------------------------------|
| Matrix Spike/Matrix Spike Duplicate Sample Assessment             |                 |                | Duplicate Sample Assessment                   |
|                                                                   |                 |                |                                               |
| MS/MSD Lower % Recovery Limits:                                   | 75%             | 75%            | Lower % Recovery Limits                       |
| MS/MSD Upper % Recovery Limits:                                   | 125%            | 125%           | Upper % Recovery Limits:                      |
| MSD Status vs Recovery:                                           | Pass            | Pass           | Status vs Recovery:                           |
| MS Status vs Recovery:                                            | N/A             | N/A            | Status vs Numerical Indicator:                |
| MSD Status vs Numerical Indicator:                                | 104.01%         | 106.78%        | Percent Recovery:                             |
| MS Status vs Numerical Indicator:                                 | 0.73            | 1.21           | Numerical Performance Indicator:              |
| MSD Percent Recovery:                                             | 0.508           | 0.518          | LCS/LCSD Counting Uncertainty (pCi/L, g, F):  |
| MS Percent Recovery:                                              | 4.939           | 5.078          | Result (pCi/L, g, F):                         |
| MSD Numerical Performance Indicator.                              | 0.057           | 0.057          | Uncertainty (Catculated):                     |
| MS Numerical Performance Indicator:                               | 4.749           | 4.756          | Target Conc. (pCi/L, g, F):                   |
| Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): | 0.506           | 0.505          | Aliquot Volume (L, g, F):                     |
| Sample Matrix Spike Duplicate Result:                             | 0.10            | 0.10           | Volume Used (mL):                             |
| Matrix Spike Result Counting Uncertainty (pCi/L, g, F):           | 24.039          | 24.039         | Decay Corrected Spike Concentration (pCi/mL): |
| Sample Matrix Spike Result:                                       | 19-033          | 19-033         | Spike I.D.:                                   |
| Sample Result Counting Uncertainty (pCi/L, g, F):                 | 3/22/2021       | 3/22/2021      | Count Date:                                   |
| Sample Result                                                     | LCSD59153       | LCS59153       |                                               |
| MSD Spike Uncertainty (calculated):                               | ÷<br>۲          | LCSD (Y or N)? | Laboratory Control Sample Assessment          |
| MS Spike Uncertainty (calculated):                                |                 |                |                                               |
| MSD Target Conc. (pCi/L, g, F):                                   |                 | Pass           | MB Status vs. MDC:                            |
|                                                                   |                 |                |                                               |

| licate Sample Assessment                                    |           |                  | Matrix Spike/Matrix Spike Duplicate Sample Assessment            |
|-------------------------------------------------------------|-----------|------------------|------------------------------------------------------------------|
| Samole I.D.:                                                | LCS59153  | Enter Duplicate  | Sample I.D                                                       |
| Duplicate Sample I.D.                                       | LCSD59153 | sample IDs if    | Sample MS I.D                                                    |
| Sample Result (pCi/L, g, F):                                | 5.078     | other than       | Sample MSD I.D                                                   |
| Sample Result Counting Uncertainty (pCi/L, g, F):           | 0.518     | LCS/LCSD in      | Sample Matrix Spike Result                                       |
| Sample Duplicate Result (pCi/L, g, F):                      | 4.939     | the space below. | Matrix Spike Result Counting Uncertainty (pCi/L, g, F)           |
| Sample Duplicate Result Counting Uncertainty (pCi/L, g, F): | 0.508     |                  | Sample Matrix Spike Duplicate Result                             |
| Are sample and/or duplicate results below RL?               | Q         | 1                | Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F) |
| Duplicate Numerical Performance Indicator:                  | 0.375     | 92525363011      | Duplicate Numerical Performance Indicator                        |
| (Based on the LCS/LCSD Percent Recoveries) Duplicate RPD:   | 2.62%     | 92525363011DUP   | (Based on the Percent Recoveries) MS/ MSD Duplicate RPD          |
| Duplicate Status vs Numerical Indicator.                    | NA        |                  | MS/ MSD Duplicate Status vs Numerical Indicator                  |
| Duplicate Status vs RPD:                                    | Pass      |                  | MS/ MSD Duplicate Status vs RPD                                  |
| % RPD Limit                                                 | 25%       |                  | % RPD Limi                                                       |
|                                                             |           |                  |                                                                  |

## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

1 of 1



# **Quality Control Sample Performance Assessment**

| ted in   |
|----------|
| iqhliqh  |
| ields H  |
| r All F  |
| ly Ente  |
| Manual   |
| t Must I |
| Analysi  |
|          |

| 51                                                           | MSD 1 MS/MSD 2                         |                         |                              |                               |                                                      |                                                                  |                       |                                     |                                                           |                                    |                                     |               |                                                   |                                                         |                                       |                                                                   |                                     |                                      |                                        |                                                                                  |                                    |                                |                         |                                                                    |                                                       |                 |                       |                             |                                                                                           |                                                             |                                                                 |                                                          |                                                  |                                                  |   |
|--------------------------------------------------------------|----------------------------------------|-------------------------|------------------------------|-------------------------------|------------------------------------------------------|------------------------------------------------------------------|-----------------------|-------------------------------------|-----------------------------------------------------------|------------------------------------|-------------------------------------|---------------|---------------------------------------------------|---------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------|-------------------------------------|--------------------------------------|----------------------------------------|----------------------------------------------------------------------------------|------------------------------------|--------------------------------|-------------------------|--------------------------------------------------------------------|-------------------------------------------------------|-----------------|-----------------------|-----------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------|--------------------------------------------------|---|
| Analyst Must Manually Enter All Fields Highlighted in Yellov | Samula Matrix Snike Control Assessment | Sample Collection Date: | Sample I.D.<br>Sample M.I.D. | Sample Wou Lu.<br>Spike I.D.: | MS/MSD Decay Corrected Spike Concentration (pCi/mL): | Spike Volume Used in MSD (mL):<br>Soike Volume Used in MSD (mL): | MS Aliquot (L. g. F): | MS Target Conc.(pCi/l., g, F):      | MSD Aliquot (L, g, F);<br>MSD Target Conc. (pCi/L, g, F); | MS Spike Uncertainty (catculated): | MSD Spike Uncertainty (calculated): | Sample Result | Sample Result Counting Uncertainty (pCift, g, F): | Matrix Solke Result Counting Uncertainty (pCi/L, g, F); | Sample Matrix Spike Duplicate Result: | Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): | MS Numerical Performance Indicator: | MSD Numerical Performance Indicator: | MS Percent Recovery:                   | MSU FORCENTS VS Numerical Indicator                                              | MSD Status vs Numerical Indicator. | MS Status vs Recovery:         | MSD Status vs Recovery: | MS/MSD Upper % Recovery Limits:<br>MS/MSD Lower % Recovery Limits: | Matrix Spike/Matrix Spike Duplicate Sample Assessment | Sample I.D.     | Sample MS I.D.        | Sample MSU LU.              | Sample Matrix Spike Result Counting Uncertainty (pCi/L, g, F);                            | Sample Matrix Spike Duplicate Result:                       | Marry Spike pupilcale Result Country Uncertainly (puint, g, r); | (Based on the Percent Recoveries) MS/ MSD Duplicate RPD: | MS/ MSD Duplicate Status vs Numerical Indicator: | MS/ MSD Duplicate Status vs RPD:<br>% RPD I imit |   |
|                                                              |                                        |                         |                              |                               |                                                      |                                                                  |                       |                                     |                                                           |                                    | <b>&gt;</b>                         | LCSD59154     | 3/22/2021                                         | 24.039                                                  | 0.10                                  | 0.505                                                             | 4.756                               | 0.057                                | 4.926                                  | 20c.0                                                                            | 103.59%                            | NA                             | Pass                    | 125%<br>75%                                                        |                                                       | Enter Duplicate | sample IDs if         |                             | the space below.                                                                          | •                                                           |                                                                 |                                                          |                                                  |                                                  |   |
| Ra-226                                                       | 1 41                                   | 3/10/2021               | 59154<br>DW                  |                               | 2112395                                              | 0.051                                                            | 0.242                 | 0.97                                | N/A<br>Pass                                               |                                    | CSD (Y or N)?                       | LCS59154      | 3/22/2021                                         | 24.039                                                  | 0.10                                  | 0.505                                                             | 4.759                               | 0,057                                | 5.732                                  | 0.545<br>3.45                                                                    | 120.45%                            | A/A                            | Pass                    | 125%<br>75%                                                        |                                                       | LCS59154        | LCSD59154             | 5.732                       | 0.343<br>4.926                                                                            | 0.502                                                       | NO CON                                                          | 4. 144<br>15.06%                                         | N/A                                              | Pass<br>25%                                      |   |
| Pace Analytical<br>www.pareness.com                          | Analyst                                | Date:                   | Worklist:<br>Matrix:         | fethod Blank Assessment       | MB Sample ID                                         | MB Concentration:<br>M/B Constinue Uncertainty                   | WB MDC:               | MB Numerical Performance Indicator. | MB Status vs Numerical Indicator:<br>MB Status vs. MDC:   |                                    | aboratory Control Sample Assessment | ·             | Count Date:                                       | Decay Corrected Spike Concentration (oCi/mL):           | Volume Used (mL):                     | Aliquot Volume (L, g, F):                                         | Target Conc. (pCi/L, g, F):         | Uncertainty (Calculated):            | POSILOSI OSILOSI OSILOSI (PCVL, 9, F): | LUS/LUSU COURING UNCERTAINTY (PU/LL, g, F.).;<br>Numerical Performance Indicator | Percent Recovery:                  | Status vs Numerical Indicator. | Status vs Recovery:     | Upper % Recovery Limits:<br>Lower % Recovery Limits:               | Ouplicate Sample Assessment                           | Sample I.D.:    | Duplicate Sample I.D. | Sample Result (pCML, g, F): | sample result counting uncertainty (pCvL, g, F);<br>Sample Duplicate Result (pCvL, g, F); | Sample Duplicate Result Counting Uncertainty (pCi/L, g, F): | Are sample and/or duplicate results below KL?                   | Based on the LCS/LCSD Percent Recoveries) Duplicate RPD: | Duplicate Status vs Numerical Indicator:         | Duplicate Status vs RPD:<br>% RPD I imit-        | - |

## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are befow the MDC.

Comments:

TAR DW QC Printed: 3/22/2021 12:31 PM

1 of 1

TAR\_59154\_W.xts Total Alpha Radium (R104-3 11Feb2019) xts 12 FZZ FEWLAND

|                     |                                                                | MS/MSD 2                               |                         |                               |                 |                                                                      |                               |                                |                                    |                                   |                                                                       |                                     |                |                                                                                  |                                                         |                                       |                                                                                                          |                                                          |                      |                                               |                                  |                                   |                                |                                 |                                 |                                                       |                 |                       |                              |                                                   |                                                                                                   |                                                                   | -                                          |                                                          |                                                  |                         |
|---------------------|----------------------------------------------------------------|----------------------------------------|-------------------------|-------------------------------|-----------------|----------------------------------------------------------------------|-------------------------------|--------------------------------|------------------------------------|-----------------------------------|-----------------------------------------------------------------------|-------------------------------------|----------------|----------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------|-----------------------------------------------|----------------------------------|-----------------------------------|--------------------------------|---------------------------------|---------------------------------|-------------------------------------------------------|-----------------|-----------------------|------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------|--------------------------------------------------|-------------------------|
|                     | Yellow.                                                        | 1 USW/SW                               |                         |                               |                 |                                                                      |                               |                                |                                    |                                   |                                                                       |                                     |                |                                                                                  |                                                         |                                       |                                                                                                          |                                                          |                      |                                               |                                  |                                   |                                |                                 |                                 |                                                       |                 |                       |                              |                                                   |                                                                                                   |                                                                   |                                            |                                                          |                                                  |                         |
| TORMANCE ASSESSMENT | <u>Analyst Must Manually Enter All Fields Highlighted in '</u> | Sample Matrix Spike Control Assessment | Sample Collection Date: | Sample I.D.<br>Sample MS I.D. | Sample MSD (.D. | Aprile I.D.:<br>MS/MSD Decay Corrected Spike Concentration (pCi/mL): | Spike Volume Used in MS (mL): | Spike Volume Used in MSD (mL): | MS Target Conc.(pCi/L, g, F):      | MSD Aliquot (L. g, F):            | MSD Target Conc. (pCi/L, g, F):<br>MS Spike Uncertainty (calculated): | MSD Spike Uncertainty (calculated): | Sample Result: | Sample Result Counting Uncertainty (pCi/L, g, F):<br>Sample Matrix Spike Result: | Matrix Spike Result Counting Uncertainty (pCi/L, g, F): | Sample Matrix Spike Duplicate Result: | Matrix Spike Duplicate Result Counting Uncertainty (PU/L, 9, F):<br>MS Numerical Performance Indicator.) | MSD Numerical Performance Indicator.                     | MS Percent Recovery: | MSD Percent Recovery:                         | MS Status vs Numerical Indicator | MSD Status vs Numerical Indicator | MID Status vs recovery         | MS/MSD Upper % Recovery Limits: | MS/MSD LOWER % RECOVERY LIMITS: | Matrix Spike/Matrix Spike Duplicate Sample Assessment | Sample I.D.     | Sample MS I.D.        | Sample MSD I.D.              | Sample Matrix Spike Result                        | Matrix Spike Result Counting Uncertainty (PU/L, 9, + );<br>Samile Matrix Snike Duniticate Result* | Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F): | Duplicate Numerical Performance Indicator. | (Based on the Percent Recoveries) MS/ MSD Duplicate RPD: | MS/ MSD Duplicate Status vs Numerical Indicator: | RPD Limit               |
| imple rer           |                                                                |                                        |                         |                               |                 |                                                                      |                               |                                |                                    |                                   |                                                                       | Z                                   | LCSD59154      |                                                                                  |                                                         |                                       |                                                                                                          |                                                          |                      |                                               |                                  |                                   |                                |                                 |                                 |                                                       | Enter Duplicate | sample IDs if         | other than                   | LCS/LCSD in                                       | the space below.                                                                                  |                                                                   | 92525214001                                | 92525214001DUP                                           |                                                  |                         |
| ontrol 38           | Ra-776                                                         | TAL                                    | 3/10/2021               | 59154<br>DW                   |                 | 2112395                                                              | 0.051                         | 0.104                          | 0.242                              | A/A                               | Pass                                                                  | CSD (V or N12                       | LCS59154       | 3/22/2021                                                                        | 24.039                                                  | 0.10                                  | 0.505                                                                                                    | 0.057                                                    | 5.732                | 0.549                                         | 3.45                             | 120.45%                           | N/A<br>Dacc                    | 125%                            | 75%                             |                                                       | 92525214001     | 92525214001DUP        | 0.114                        | 0.189                                             | 0.134                                                                                             | See Below ##                                                      | -0.180                                     | 16.34%                                                   | N/A                                              | 25%                     |
|                     | Face Analytical<br>mucrosoft.cm                                | Analvst                                | Date:                   | Worklist                      |                 | Method Blank Assessment<br>MB Samole ID                              | MB concentration:             | M/B Counting Uncertainty:      | MB Numerical Performance Indicator | MB Status vs Numerical Indicator: | MB Status vs. MDC:                                                    | l charton Control Samola Accecement |                | Count Date:                                                                      | Decay Corrected Spike Concentration (pCi/mL):           | Volume Used (mL):                     | Aliquot Volume (L, g, F):                                                                                | Larger Conc. (purc., g, r), -<br>Brownainty (Catculated) | Result (pCiA, g, F): | LCS/LCSD Counting Uncertainty (pCi/l., g, F): | Numerical Performance Indicator: | Percent Recovery:                 | Status vs Numerical Indicator: | Upper & Recovery Limits:        | Lower % Recovery Limits:        | Duplicate Sample Assessment                           | Sample (D.:     | Duplicate Sample I.D. | Sample Result (pCi/L, g, F): | Sample Result Counting Uncertainty (pCi/L, g, F): | Sample Duplicate Result (pCi/L, g, F):                                                            | Sample puppicate result counting uncertaining (porture, 9, r.).   | Duplicate Numerical Performance Indicator: | Duplicate RPD:                                           | Duplicate Status vs Numerical Indicator:         | UUPICATE STATUS VS KPU: |

# Quality Control Sample Performance Assessment

## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

Anna Analitical

# **Quality Control Sample Performance Assessment**

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t Must Manually Enter All Fields Highlighted in Yellow. | Attrix Spike Control Assessment MS/MSD 1 MS/MSD 2<br>Sample Collection Date:<br>Sample I.D.<br>Sample MS I.D.<br>Sample MSD I.D. | Spike I.D.:<br>Spike I.D.:<br>Spike Volume Used in MS (mL):<br>Spike Volume Used in MSD (mL):<br>MS Target Conc. (pc): I, 9, F):<br>MSD Aliquot (L, 9, F):<br>MSD Target Conc. (pC/i, 9, F): | MS Spike Uncertainty (calculated):<br>MSD Snike Uncertainty (calculated): | Sample Result | Sample Result 2 Sigma CSU (pCi/L, g, F):<br>Sample Matrix Spike Result: | Matrix Spike Result 2 Sigma CSU (pCi/L, g, F): | Matrix Spike Duplicate Result Spike Duplicate result.<br>Matrix Spike Duplicate Result 2 Spigne SCU (CiCiI, 9, 5).<br>Mc Numerical Destructions Indications | MSD Numerical Performance Indicator: | MSP Percent Recovery:                                        | MS Status vs Numerical Indicator:                                      | MSD Status vs Numericat Indicator. | MSD Status vs Recovery:<br>MSD Status vs Recovery:  | MS/MSD Upper Secorery Limits:<br>MS/MSD Lower % Recovery Limits: | vike/Matrix Spike Duplicate Sample Assessment | Samole I.D.  | Sample MS I.D.        | Sample MSD I.D.              | Sample Matrix Spike Result:              | Matrix Spike Result 2 Sigma CSU (pCi/L, g, F): | Sampte Matrix Spike Dunicate Result 2 Sigma CSU (nCit) - 0. F):                                             | Duplicate Numerical Performance Indicator; | sed on the Percent Recoveries) MS/ MSD Duplicate RPD:     | MS/ MSD Duplicate Status vs Numerical Indicator: | MC/ MCD Durgicate Status ve DDD- |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------|--------------|-----------------------|------------------------------|------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------|--------------------------------------------------|----------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ra-228                                                  | VAL<br>3/11/2021<br>59157<br>WT                                                                                                  | 2112538<br>0.312<br>0.330<br>0.686<br>1.85<br>Pass<br>Pass                                                                                                                                   | CSD (Y or NP                                                              | LCS59157      | 3/15/2021<br>21-003                                                     | 38.455                                         | 0.810                                                                                                                                                       | 0.233                                | 3.492                                                        | -2.75                                                                  | 73.55%                             | Pass                                                | 135%<br>60%                                                      |                                               | LCS59157 E   | LCSD59157             | 3.492                        | 0.863                                    | 2.971 th                                       | 40/0                                                                                                        | 0.875                                      | 16.54%                                                    | Pass                                             | Dace                             |
| Ra-228<br>VAL<br>3/11/2021<br>59157<br>59157<br>59157<br>59157<br>59157<br>59157<br>59157<br>59157<br>59157<br>59157<br>59157<br>59157<br>573.55%<br>NVA<br>21-003<br>3.455<br>0.10<br>6.886<br>1.85<br>73.55%<br>NVA<br>Pass<br>1.685<br>1.85<br>73.55%<br>NVA<br>Pass<br>1.685<br>1.85<br>73.55%<br>NVA<br>Pass<br>1.685<br>1.685<br>1.85<br>1.85<br>1.437<br>1.003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.1-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003<br>2.2-003 | Pace Analytical memory and the test                     | Analyst<br>Date:<br>Worklist<br>Mathx:                                                                                           | Method Blank Assessment<br>MB Concentration:<br>MB concentration:<br>MB 2000<br>MB Nurmerical Performance Indicator:<br>MB Status vs Nurmerical indicator:<br>MB Status vs. MDC:             | Laboratory Control Samole Assessment                                      |               | Count Date:<br>Spike I.D.:                                              | Decay Corrected Spike Concentration (pCi/mL):  | Volume Used (nL):<br>Aliquot Volume (L, g, F):<br>Transe Corra / Ford                                                                                       | Uncertainty (Calculated):            | Result (pC/I/, g, F):<br>LOSH CED 3 Shama CELL (ACKII, G E): | LOOKLOOD 2 SIGNA COU (POWL, 9, F).<br>Numerical Performance Indicator: | Percent Recovery.                  | Status vs Numencal Indicator:<br>Status vs Recovery | Upper & Recovery Limits:<br>Lower % Recovery Limits:             | Duplicate Sample Assessment                   | Samole I.D.: | Duplicate Sample I.D. | Sample Result (pCi/L, g, F): | Sample Result 2 Sigma CSU (pCift, g, F): | Sample Duplicate Result (pCl/f, g, F):         | oarrpie ∪upiicale Kesuli ∠ orgria ∪o∪ (µ∪v⊾, g, r ). <br>Are samole and/or di inficate restilfs thelow RI ? | Duplicate Numerical Performance Indicator: | (Based on the LCS/LCSD Percent Recoveries) Duplicate RPD: | Duplicate Status vs Numerical Indicator:         | Distincts Station 1000-1         |

## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

1 of 1

3/100

Ra-228 NELAC DW2 Printed: 3/16/2021 9:24 AM

# **Quality Control Sample Performance Assessment**

| Pace Analytical                                           |                |                  | Analyst Must Manually Enter All Fields Highlighted in )              | Yellow.  |          |
|-----------------------------------------------------------|----------------|------------------|----------------------------------------------------------------------|----------|----------|
| Test                                                      | Ra-228         |                  |                                                                      |          |          |
| Analyst                                                   | VAL            |                  | Sample Matrix Spike Control Assessment                               | MS/MSD 1 | MS/MSD 2 |
| Date                                                      | 3/15/2021      |                  | Sample Collection Date:                                              |          |          |
| Morklist.                                                 | 50158          |                  | Cample I D                                                           |          |          |
| Matrix:                                                   | MT N           |                  | Sample MS I.D.                                                       |          |          |
|                                                           |                |                  | Sample MSD I.D.                                                      |          |          |
| Method Blank Assessment                                   |                |                  | Spike I.D.:                                                          |          |          |
| MB Sample ID                                              | 2112539        |                  | MS/MSD Decay Corrected Spike Concentration (pCi/mL):                 |          |          |
| MB concentration:                                         | 0.219          |                  | Spike Volume Used in MS (mL):                                        |          |          |
| M/B 2 Sigma CSU:                                          | 0.271          |                  | Spike Volume Used in MSD (mL):                                       |          |          |
| MB MDC:                                                   | 0.570          |                  | MS Aliquot (L, g, F):                                                |          |          |
| MB Numerical Performance Indicator:                       | 1.59           |                  | MS Target Conc.(pCi/L, g, F):]                                       |          |          |
| MB Status vs Numerical Indicator:<br>MB Status vs. MDC:   | Pass<br>Pass   |                  | MSD Target Conc. (pC/i/L, g, F):<br>MSD Target Conc. (pC/i/L, g, F): |          |          |
|                                                           |                |                  | MS Spike Uncertainty (calculated):                                   |          |          |
| Laboratory Control Sample Assessment                      | LCSD (Y or N)? | <u> </u>         | MSD Spike Uncertainty (calculated):                                  |          |          |
| *                                                         | LCS59158       | LCSD59158        | Sample Result:                                                       |          |          |
| Count Date:                                               | 3/19/2021      | 3/19/2021        | Sample Result 2 Sigma CSU (pCi/L, g, F):                             |          |          |
| Spike I.D.:                                               | 21-003         | 21-003           | Sample Matrix Spike Result:                                          |          |          |
| Decay Corrected Spike Concentration (pCi/mL):             | 38.405         | 38.405           | Matrix Spike Result 2 Sigma CSU (pCi/L, g, F);                       |          |          |
| Volume Used (mL):                                         | 0.10           | 0.10             | Samole Matrix Solke Duplicate Result:                                |          |          |
| Alianot Volume (L. o. F)                                  | 0.804          | 0.813            | Matrix Snike Dunicate Result 2 Sinma CSI (nCi/                       |          |          |
| Target Conc. (pC)(L. g. F):                               | 4.777          | 4.724            | MS Numerical Performance Indicator                                   |          |          |
| Incertainty (Calculated)                                  | 0.234          | 0.231            | MSD Nimerical Performance Indicator                                  |          |          |
| Result (DC//                                              | 3.857          | 3.041            | MS Percent Recovery                                                  |          |          |
| LCS/LCSD 2 Stama CSU (pCi/L, g, F);                       | 0.900          | 0.755            | MSD Percent Recovery:                                                |          |          |
| Numerical Performance indicator:                          | -1.94          | 4.18             | MS Status vs Numerical indicator:                                    |          |          |
| Percent Recovery:                                         | 80.76%         | 64.39%           | MSD Status vs Numerical Indicator.                                   |          |          |
| Status vs Numerical Indicator:                            | N/A            | N/A              | MS Status vs Recovery:                                               |          |          |
| Status vs Recovery:                                       | Pass           | Pass             | MSD Status vs Recovery:                                              |          |          |
| Upper % Recovery Limits:                                  | 135%           | 135%             | MS/MSD Upper % Recovery Limits:                                      |          |          |
| Lower % Recovery Limits:                                  | 60%            | 80%              | MS/MSD Lower % Recovery Limits:                                      |          |          |
|                                                           |                |                  |                                                                      |          |          |
| Duplicate Sample Assessment                               |                |                  | Matrix Spike/Matrix Spike Duplicate Sample Assessment                |          |          |
| Sample I.D.:                                              | LCS59158       | Enter Duplicate  | Sample I.D.                                                          |          |          |
| Duplicate Sample I.D.                                     | LCSD59158      | sample IDs if    | Sample MS LD.                                                        |          |          |
| Sample Result (oCi/L. o. F):                              | 3.857          | other than       | Sample MSD I D                                                       |          |          |
| Sample Result 2 Sigma CSU (pCl/L, g, F):                  | 0.900          | LCS/LCSD in      | Sample Matrix Spike Result:                                          |          |          |
| Sample Duplicate Result (pCi/L, a, F):                    | 3.041          | the space below. | Matrix Spike Result 2 Sigma CSU (pCi/L, g, F);                       |          |          |
| Sample Duplicate Result 2 Sigma CSU (pCi/L, g, F):        | 0.755          | ,                | Sample Matrix Spike Duplicate Result:                                |          |          |
| Are sample and/or duplicate results below RL?             | 0N<br>N        |                  | Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):             |          |          |
| Duplicate Numerical Performance Indicator:                | 1.362          |                  | Duplicate Numerical Performance Indicator:                           |          |          |
| (Based on the LCS/LCSD Percent Recoveries) Duplicate RPD: | 22.55%         |                  | (Based on the Percent Recoveries) MS/ MSD Duplicate RPD:             |          |          |
| Duplicate Status vs Numerical Indicator:                  | Pass           |                  | MS/ MSD Duplicate Status vs Numerical Indicator:                     |          |          |
| Duplicate Status vs RPD:                                  | Pass           |                  | MS/ MSD Duplicate Status vs RPD:                                     |          |          |
| % KPU LIMIC                                               | 36%            |                  | % RPD Limit.                                                         |          |          |

## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC. # Eva.



1 of 1

| 5 | Pace Analytica | New parcelars, con |
|---|----------------|--------------------|
| ø | No.            | •••                |

# **Quality Control Sample Performance Assessment**

|                                                               | MS/MSD 2                                                          |                               |                       |                                                      |                                                                 |                                                            |                                     |                                                           |                                    |                                     |                |                                                                       |                                                |                                       |                                                         |                                     |                                      |                                                            |                                  |                                    |                                |                         |                                 | _                               |                                                       |                |                     |                               |                                          |                                                |                                                    |                                                          |                                                                                                        |                                                                                                       |                                                                       |              |
|---------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------|-----------------------|------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------|------------------------------------|-------------------------------------|----------------|-----------------------------------------------------------------------|------------------------------------------------|---------------------------------------|---------------------------------------------------------|-------------------------------------|--------------------------------------|------------------------------------------------------------|----------------------------------|------------------------------------|--------------------------------|-------------------------|---------------------------------|---------------------------------|-------------------------------------------------------|----------------|---------------------|-------------------------------|------------------------------------------|------------------------------------------------|----------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------|
| Yellow.                                                       | MS/MSD 1                                                          |                               |                       |                                                      |                                                                 |                                                            |                                     |                                                           |                                    |                                     |                |                                                                       |                                                |                                       |                                                         |                                     |                                      |                                                            |                                  |                                    |                                |                         |                                 |                                 |                                                       |                |                     |                               |                                          |                                                |                                                    |                                                          |                                                                                                        |                                                                                                       |                                                                       |              |
| <u>Analyst Must Manually Enter All Fields Highlighted in </u> | Sample Matrix Spike Control Assessment<br>Sample Collection Date: | Sample I.D.<br>Sample MS I.D. | Sample MSD I.D.       | MS/MSD Decay Corrected Spike Concentration (pCi/mL): | Spike Volume Used in MS (mL):<br>Solve Volume Used in MSD (mL): | Spike Volutite Used it MSJ (Inc):<br>MS Aliquot (L, g, F): | MS Target Conc.(pCi/L, g, F):       | MSD Aliquot (L, g, F):<br>MSD Target Conc. (pCi/L, g, F): | MS Spike Uncertainty (calculated): | MSD Spike Uncertainty (calculated): | Sample Result: | odnipie nesul a olgina odo (powa 9, r).<br>Samola Matrix Soike Result | Matrix Spike Result 2 Sigma CSU (pCi/l, g, F): | Sample Matrix Spike Duplicate Result: | Matrix Spike Duplicate Result 2 Sigma CSU (pCVL, g, F): | MS Numerical Performance Indicator: | MSD Numerical Performance Indicator: | MSD Percent Recovery:<br>MSD Percent Recovery:             | MS Status vs Numerical Indicator | MSD Status vs Numericai Indicator: | MS Status vs Recovery:         | MSD Status vs Recovery: | MS/MSD Upper % Recovery Limits: | MO/MOL LOWER % RECOVERY LITHUS. | Matrix Spike/Matrix Spike Duplicate Sample Assessment | C Samula I D   | Samula MS I D       | Sample MSD I.D.               | Sample Matrix Spike Result:              | Matrix Spike Result 2 Sigma CSU (pCi/L, g, F); | Sample Matrix Spike Duplicate Result:              | Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F): | Duplicate Numerical Performance Indicator:<br>(Pased on the Demont Demonstry MCD Duplicate DDD)        | MSX/MSD Dunicate Status vs Numarical Indicator                                                        | MS/ MSD Duplicate Status vs mutiferical mucator.                      | % RPD Limit: |
|                                                               |                                                                   |                               |                       |                                                      |                                                                 |                                                            |                                     |                                                           |                                    | ۲                                   | LCSD59159      | 21-003                                                                | 38.419                                         | 0.10                                  | 0.801                                                   | 4.794                               | 0.235                                | 4.001<br>0.884                                             | -1.70                            | 83.47%                             | MA                             | Pass                    | 135%                            | %.00                            |                                                       | Enter Dunicate | cample IDc if       | other than                    | LCS/LCSD in                              | the space below.                               |                                                    |                                                          |                                                                                                        |                                                                                                       |                                                                       |              |
| Ra-228                                                        | VAL<br>3/15/2021                                                  | 59159<br>WT                   |                       | 2112540                                              | 0.387<br>0.346                                                  | 0.633                                                      | 2.40                                | Warning<br>Pass                                           |                                    | LCSD (Y or N)?                      | LCS59159       | 21-003                                                                | 38.419                                         | 0.10                                  | 0.810                                                   | 4.741                               | 0.232                                | 4.343<br>0.951                                             | -0.79                            | 91,66%                             | NA                             | Pass                    | 135%                            | 80%                             |                                                       | 1.0060160      | 1 05050150          | 4.345                         | 0.951                                    | 4.001                                          | 0.884                                              | 9<br>Z                                                   | 0.519                                                                                                  | Dare                                                                                                  | Pass                                                                  | 36%          |
| Pace Analytical" Test                                         | Analyst<br>Date                                                   | Worklist                      | thad Blank Accessment | MB Sample ID                                         | MB concentration:<br>M/A 3 Simma CSU                            |                                                            | MB Numerical Performance Indicator: | MB Status vs Numerical Indicator:<br>MB Status vs. MDC:   |                                    | boratory Control Sample Assessment  |                | Spike I D -                                                           | Decay Corrected Spike Concentration (pCi/mL):  | Volume Used (mL):                     | Aliquot Volume (L, g, F):                               | Target Conc. (pCVL, g, F):          | Uncertainty (Calculated):            | Result (POVL, 9, F);<br>LCS/LCSD 2 Sinna CSLL/nCi/L of F)· | Numerical Performance Indicator: | Percent Recovery:                  | Status vs Numerical Indicator: | Status vs Recovery:     | Upper % Recovery Limits:        | LOWER % RECOVERY LIMITS.        | plicate Sample Assessment                             | , O I almuco   | Dunicate Sample I D | Sample Result (pCi/) - a. F): | Sample Result 2 Sigma CSU (pCi/L, g, F); | Sample Duplicate Result (pCi/L, g, F):         | Sample Duplicate Result 2 Sigma CSU (pCi/L, g, F): | Are sample and/or duplicate results below RL?            | Duplicate Numerical Performance Indicator:<br>/Based on the LCS/LCS/LDBrown Derroweries/Dunlicate DDD: | (based of the ECO/ECOO Fercent recovered) Duplicate AF D.<br>Dunificate Status ve Numerical Indicator | Dupicare status vs Nutificate Italicator.<br>Duplicate Status vs RPD: | % RPD Limit: |

## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

Comments:

Ra-228 NELAC DW2 Printed: 3/19/2021 11:00 AM

1 of 1

6



Pace Analytical Services, LLC 110 Technology Parkway Peachtree Corners, GA 30092 (770)734-4200

March 26, 2021

Ms. Lauren Petty Southern Company 42 Inverness Center Parkway Birmingham, AL 35242

RE: Project: YATES Pace Project No.: 92525335

Dear Ms. Petty:

Enclosed are the analytical results for sample(s) received by the laboratory between March 02, 2021 and March 05, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Asheville
- Pace Analytical Services Charlotte
- Pace Analytical Services Peachtree Corners, GA

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

the Paper

Tyler Forney for Kevin Herring kevin.herring@pacelabs.com 1(704)875-9092 HORIZON Database Administrator

Enclosures

cc: Joju Abraham, Georgia Power-CCR Lauren Coker, Georgia Pwer Geoffrey Gay, ARCADIS - Atlanta Kristen Jurinko Kelley Sharpe, ARCADIS - Atlanta Alex Simpson, Arcadis Samantha Thomas Maribel Vital





Pace Analytical Services, LLC 110 Technology Parkway Peachtree Corners, GA 30092 (770)734-4200

### CERTIFICATIONS

Project: YATES Pace Project No.: 92525335

### Pace Analytical Services Charlotte

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12

### Pace Analytical Services Asheville

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648 North Carolina Drinking Water Certification #: 37712

### Pace Analytical Services Peachtree Corners

110 Technology Pkwy, Peachtree Corners, GA 30092 Florida DOH Certification #: E87315 Georgia DW Inorganics Certification #: 812 South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221

North Carolina Wastewater Certification #: 40 South Carolina Certification #: 99030001 Virginia/VELAP Certification #: 460222

North Carolina Certification #: 381 South Carolina Certification #: 98011001



Pace Analytical Services, LLC 110 Technology Parkway Peachtree Corners, GA 30092 (770)734-4200

### SAMPLE SUMMARY

Project: YATES Pace Project No.: 92525335

| Lab ID      | Sample ID        | Matrix | Date Collected | Date Received  |
|-------------|------------------|--------|----------------|----------------|
| 92525335001 | YGWA-5I          | Water  | 03/02/21 14:05 | 03/02/21 17:30 |
| 92525335002 | YGWA-5D          | Water  | 03/02/21 14:40 | 03/02/21 17:30 |
| 92525335003 | DUP-1            | Water  | 03/02/21 00:00 | 03/02/21 17:30 |
| 92525335005 | YGWA-14S         | Water  | 03/02/21 11:20 | 03/02/21 17:30 |
| 92525335006 | YGWA-30I         | Water  | 03/01/21 16:25 | 03/02/21 17:30 |
| 92525335007 | FB-01            | Water  | 03/02/21 11:30 | 03/02/21 17:30 |
| 92525335008 | DUP-01           | Water  | 03/02/21 00:00 | 03/02/21 17:30 |
| 92525335009 | FB-01            | Water  | 03/02/21 15:20 | 03/02/21 17:30 |
| 92525335011 | YGWA-40          | Water  | 03/04/21 10:10 | 03/05/21 09:20 |
| 92525335012 | YGWA-17S         | Water  | 03/03/21 12:20 | 03/05/21 09:20 |
| 92525335013 | YGWA-18S         | Water  | 03/03/21 13:50 | 03/05/21 09:20 |
| 92525335014 | YGWA-18I         | Water  | 03/03/21 15:00 | 03/05/21 09:20 |
| 92525335015 | YGWA-39          | Water  | 03/04/21 10:20 | 03/05/21 09:20 |
| 92525335016 | YGWA-1D (030321) | Water  | 03/03/21 14:25 | 03/05/21 09:20 |
| 92525335017 | YGWA-1I (030321) | Water  | 03/03/21 13:35 | 03/05/21 09:20 |
| 92525335018 | YGWA-2I (030321) | Water  | 03/03/21 11:45 | 03/05/21 09:20 |
| 92525335019 | YGWA-3I (030321) | Water  | 03/03/21 17:00 | 03/05/21 09:20 |
| 92525335020 | YGWA-3D (030321) | Water  | 03/03/21 16:00 | 03/05/21 09:20 |
| 92525335021 | EB-02 (03032021) | Water  | 03/03/21 17:15 | 03/05/21 09:20 |
| 92525335022 | YGWA-4I          | Water  | 03/03/21 10:35 | 03/05/21 09:20 |
| 92525335023 | YGWA-20S         | Water  | 03/03/21 09:40 | 03/05/21 09:20 |
| 92525335024 | YGWA-21I         | Water  | 03/04/21 09:35 | 03/05/21 09:20 |



### SAMPLE ANALYTE COUNT

| Lab ID      | Sample ID | Method                 | Analysts | Analytes<br>Reported |
|-------------|-----------|------------------------|----------|----------------------|
| 92525335001 | YGWA-5I   | EPA 6010D              | DRB      | 1                    |
|             |           | EPA 6020B              | CW1      | 12                   |
|             |           | EPA 7470A              | VB       | 1                    |
|             |           | SM 2450C-2011          | ALW      | 1                    |
|             |           | EPA 300.0 Rev 2.1 1993 | JLH      | 3                    |
| 92525335002 | YGWA-5D   | EPA 6010D              | DRB      | 1                    |
|             |           | EPA 6020B              | CW1      | 12                   |
|             |           | EPA 7470A              | VB       | 1                    |
|             |           | SM 2450C-2011          | ALW      | 1                    |
|             |           | EPA 300.0 Rev 2.1 1993 | JLH      | 3                    |
| 92525335003 | DUP-1     | EPA 6010D              | DRB      | 1                    |
|             |           | EPA 6020B              | CW1      | 12                   |
|             |           | EPA 7470A              | VB       | 1                    |
|             |           | SM 2450C-2011          | ALW      | 1                    |
|             |           | EPA 300.0 Rev 2.1 1993 | JLH      | 3                    |
| 92525335005 | YGWA-14S  | EPA 6010D              | DRB      | 1                    |
|             |           | EPA 6020B              | CW1      | 12                   |
|             |           | SM 2450C-2011          | ALW      |                      |
|             |           | EPA 300.0 Rev 2.1 1993 | JLH      | :                    |
| 2525335006  | YGWA-30I  | EPA 6010D              | DRB      | 1                    |
|             |           | EPA 6020B              | CW1      | 12                   |
|             |           | SM 2450C-2011          | ALW      | 1                    |
|             |           | EPA 300.0 Rev 2.1 1993 | JLH      | 3                    |
| 92525335007 | FB-01     | EPA 6010D              | DRB      |                      |
|             |           | EPA 6020B              | CW1      | 1:                   |
|             |           | EPA 7470A              | VB       |                      |
|             |           | SM 2450C-2011          | JRS      |                      |
|             |           | EPA 300.0 Rev 2.1 1993 | JLH      | 3                    |
| 92525335008 | DUP-01    | EPA 6010D              | DRB      | 1                    |
|             |           | EPA 6020B              | CW1      | 12                   |
|             |           | EPA 7470A              | VB       | 1                    |
|             |           | SM 2450C-2011          | JRS      | 1                    |
|             |           | EPA 300.0 Rev 2.1 1993 | JLH      | 3                    |
| 92525335009 | FB-01     | EPA 6010D              | DRB      | ſ                    |
|             |           | EPA 6020B              | CW1      | 12                   |
|             |           | EPA 7470A              | VB       |                      |
|             |           | SM 2450C-2011          | JRS      |                      |



### SAMPLE ANALYTE COUNT

| Project:        | YATES            |                        |          |                      |  |
|-----------------|------------------|------------------------|----------|----------------------|--|
| Pace Project No | o.: 92525335     |                        |          |                      |  |
| Lab ID          | Sample ID        | Method                 | Analysts | Analytes<br>Reported |  |
|                 | _                | EPA 300.0 Rev 2.1 1993 | JLH      | 3                    |  |
| 92525335011     | YGWA-40          | EPA 6010D              | КН       | 1                    |  |
|                 |                  | EPA 6020B              | CW1      | 12                   |  |
|                 |                  | EPA 7470A              | VB       | 1                    |  |
|                 |                  | SM 2450C-2011          | ALW      | 1                    |  |
|                 |                  | EPA 300.0 Rev 2.1 1993 | CDC      | 3                    |  |
| 92525335012     | YGWA-17S         | EPA 6010D              | КН       | 1                    |  |
|                 |                  | EPA 6020B              | CW1      | 12                   |  |
|                 |                  | EPA 7470A              | VB       | 1                    |  |
|                 |                  | SM 2450C-2011          | ALW      | 1                    |  |
|                 |                  | EPA 300.0 Rev 2.1 1993 | CDC      | 3                    |  |
| 92525335013     | YGWA-18S         | EPA 6010D              | КН       | 1                    |  |
|                 |                  | EPA 6020B              | CW1      | 12                   |  |
|                 |                  | EPA 7470A              | VB       | 1                    |  |
|                 |                  | SM 2450C-2011          | ALW      | 1                    |  |
|                 |                  | EPA 300.0 Rev 2.1 1993 | CDC      | 3                    |  |
| 92525335014     | YGWA-18I         | EPA 6010D              | КН       | 1                    |  |
|                 |                  | EPA 6020B              | CW1      | 12                   |  |
|                 |                  | EPA 7470A              | VB       | 1                    |  |
|                 |                  | SM 2450C-2011          | AW1      | 1                    |  |
|                 |                  | EPA 300.0 Rev 2.1 1993 | CDC      | 3                    |  |
| 92525335015     | YGWA-39          | EPA 6010D              | КН       | 1                    |  |
|                 |                  | EPA 6020B              | CW1      | 12                   |  |
|                 |                  | EPA 7470A              | VB       | 1                    |  |
|                 |                  | SM 2450C-2011          | ALW      | 1                    |  |
|                 |                  | EPA 300.0 Rev 2.1 1993 | CDC      | 3                    |  |
| 92525335016     | YGWA-1D (030321) | EPA 6010D              | KH       | 1                    |  |
|                 |                  | EPA 6020B              | CW1      | 12                   |  |
|                 |                  | SM 2450C-2011          | AW1      | 1                    |  |
|                 |                  | EPA 300.0 Rev 2.1 1993 | CDC      | 3                    |  |
| 92525335017     | YGWA-1I (030321) | EPA 6010D              | KH       | 1                    |  |
|                 |                  | EPA 6020B              | CW1      | 12                   |  |
|                 |                  | SM 2450C-2011          | AW1      | 1                    |  |
|                 |                  | EPA 300.0 Rev 2.1 1993 | CDC      | 3                    |  |
| 92525335018     | YGWA-2I (030321) | EPA 6010D              | KH       | 1                    |  |
|                 |                  | EPA 6020B              | CW1      | 12                   |  |
|                 |                  | SM 2450C-2011          | AW1      | 1                    |  |



### SAMPLE ANALYTE COUNT

| Project:        | YATES            |                        |          |                      |
|-----------------|------------------|------------------------|----------|----------------------|
| Pace Project No | o.: 92525335     |                        |          |                      |
| Lab ID          | Sample ID        | Method                 | Analysts | Analytes<br>Reported |
|                 |                  | EPA 300.0 Rev 2.1 1993 | CDC      | 3                    |
| 92525335019     | YGWA-3I (030321) | EPA 6010D              | КН       | 1                    |
|                 |                  | EPA 6020B              | CW1      | 12                   |
|                 |                  | SM 2450C-2011          | AW1      | 1                    |
|                 |                  | EPA 300.0 Rev 2.1 1993 | CDC      | 3                    |
| 92525335020     | YGWA-3D (030321) | EPA 6010D              | KH       | 1                    |
|                 |                  | EPA 6020B              | CW1      | 12                   |
|                 |                  | SM 2450C-2011          | AW1      | 1                    |
|                 |                  | EPA 300.0 Rev 2.1 1993 | CDC      | 3                    |
| 92525335021     | EB-02 (03032021) | EPA 6010D              | KH       | 1                    |
|                 |                  | EPA 6020B              | CW1      | 13                   |
|                 |                  | EPA 7470A              | VB       | 1                    |
|                 |                  | SM 2450C-2011          | AW1      | 1                    |
|                 |                  | EPA 300.0 Rev 2.1 1993 | CDC      | 3                    |
| 92525335022     | YGWA-4I          | EPA 6010D              | КН       | 1                    |
|                 |                  | EPA 6020B              | CW1      | 12                   |
|                 |                  | EPA 7470A              | VB       | 1                    |
|                 |                  | SM 2450C-2011          | AW1      | 1                    |
|                 |                  | EPA 300.0 Rev 2.1 1993 | CDC      | 3                    |
| 92525335023     | YGWA-20S         | EPA 6010D              | KH       | 1                    |
|                 |                  | EPA 6020B              | CW1      | 12                   |
|                 |                  | EPA 7470A              | VB       | 1                    |
|                 |                  | SM 2450C-2011          | AW1      | 1                    |
|                 |                  | EPA 300.0 Rev 2.1 1993 | CDC      | 3                    |
| 2525335024      | YGWA-21I         | EPA 6010D              | KH       | 1                    |
|                 |                  | EPA 6020B              | CW1      | 12                   |
|                 |                  | EPA 7470A              | VB       | 1                    |
|                 |                  | SM 2450C-2011          | ALW      | 1                    |
|                 |                  | EPA 300.0 Rev 2.1 1993 | CDC      | 3                    |

PASI-A = Pace Analytical Services - Asheville

PASI-C = Pace Analytical Services - Charlotte

PASI-GA = Pace Analytical Services - Peachtree Corners, GA



Project: YATES

Pace Project No.: 92525335

| Lab Sample ID          | Client Sample ID       |              |            |              |                |            |
|------------------------|------------------------|--------------|------------|--------------|----------------|------------|
| Method                 | Parameters             | Result       | Units      | Report Limit | Analyzed       | Qualifiers |
| 92525335001            | YGWA-5I                |              |            |              |                |            |
|                        | Performed by           | CUSTOME<br>R |            |              | 03/08/21 09:07 |            |
|                        | рН                     | 5.63         | Std. Units |              | 03/08/21 09:07 |            |
| EPA 6010D              | Calcium                | 2.6          | mg/L       | 1.0          | 03/09/21 02:21 |            |
| EPA 6020B              | Barium                 | 0.019        | mg/L       | 0.0050       | 03/05/21 16:43 |            |
| EPA 6020B              | Boron                  | 0.011J       | mg/L       | 0.040        | 03/05/21 16:43 |            |
| EPA 6020B              | Lead                   | 0.000092J    | mg/L       | 0.0010       | 03/05/21 16:43 |            |
| EPA 6020B              | Lithium                | 0.0031J      | mg/L       | 0.030        | 03/05/21 16:43 |            |
| SM 2450C-2011          | Total Dissolved Solids | 67.0         | mg/L       | 10.0         | 03/04/21 14:30 |            |
| EPA 300.0 Rev 2.1 1993 | Chloride               | 4.3          | mg/L       | 1.0          | 03/06/21 20:37 |            |
| EPA 300.0 Rev 2.1 1993 | Sulfate                | 2.3          | mg/L       | 1.0          | 03/06/21 20:37 |            |
| 92525335002            | YGWA-5D                |              |            |              |                |            |
|                        | Performed by           | CUSTOME<br>R |            |              | 03/08/21 09:07 |            |
|                        | рH                     | 7.15         | Std. Units |              | 03/08/21 09:07 |            |
| EPA 6010D              | Calcium                | 1.6          | mg/L       | 1.0          | 03/09/21 02:41 |            |
| EPA 6020B              | Barium                 | 0.014        | mg/L       | 0.0050       | 03/05/21 16:49 |            |
| EPA 6020B              | Boron                  | 0.0068J      | mg/L       | 0.040        | 03/05/21 16:49 |            |
| EPA 6020B              | Lead                   | 0.000051J    | mg/L       | 0.0010       | 03/05/21 16:49 |            |
| EPA 6020B              | Lithium                | 0.0018J      | mg/L       | 0.030        | 03/05/21 16:49 |            |
| SM 2450C-2011          | Total Dissolved Solids | 52.0         | mg/L       | 10.0         | 03/04/21 14:30 |            |
| EPA 300.0 Rev 2.1 1993 | Chloride               | 3.2          | mg/L       | 1.0          | 03/06/21 21:49 |            |
| EPA 300.0 Rev 2.1 1993 | Sulfate                | 2.6          | mg/L       | 1.0          | 03/06/21 21:49 |            |
| 92525335003            | DUP-1                  |              |            |              |                |            |
| EPA 6010D              | Calcium                | 1.5          | mg/L       | 1.0          | 03/09/21 02:46 |            |
| EPA 6020B              | Antimony               | 0.0015J      | mg/L       | 0.0030       | 03/05/21 17:11 |            |
| EPA 6020B              | Barium                 | 0.014        | mg/L       | 0.0050       | 03/05/21 17:11 |            |
| EPA 6020B              | Boron                  | 0.013J       | mg/L       | 0.040        | 03/05/21 17:11 |            |
| EPA 6020B              | Lead                   | 0.000069J    | mg/L       | 0.0010       | 03/05/21 17:11 |            |
| EPA 6020B              | Lithium                | 0.0016J      | mg/L       | 0.030        | 03/05/21 17:11 |            |
| SM 2450C-2011          | Total Dissolved Solids | 48.0         | mg/L       | 10.0         | 03/04/21 14:30 |            |
| EPA 300.0 Rev 2.1 1993 | Chloride               | 3.0          | mg/L       | 1.0          | 03/06/21 22:04 |            |
| EPA 300.0 Rev 2.1 1993 | Sulfate                | 2.0          | mg/L       | 1.0          | 03/06/21 22:04 |            |
| 92525335005            | YGWA-14S               |              |            |              |                |            |
|                        | Performed by           | CUSTOME<br>R |            |              | 03/08/21 09:07 |            |
|                        | рН                     | 5.49         | Std. Units |              | 03/08/21 09:07 |            |
| EPA 6010D              | Calcium                | 1.2          | mg/L       | 1.0          | 03/09/21 02:56 |            |
| EPA 6020B              | Barium                 | 0.0076       | mg/L       | 0.0050       | 03/05/21 17:23 |            |
| EPA 6020B              | Beryllium              | 0.00018J     | mg/L       | 0.00050      | 03/05/21 17:23 |            |
| EPA 6020B              | Boron                  | 0.017J       | mg/L       | 0.040        | 03/05/21 17:23 |            |
| SM 2450C-2011          | Total Dissolved Solids | 67.0         | mg/L       | 10.0         | 03/04/21 14:30 |            |
| EPA 300.0 Rev 2.1 1993 | Chloride               | 4.9          | mg/L       | 1.0          | 03/06/21 22:32 |            |
| EPA 300.0 Rev 2.1 1993 | Sulfate                | 6.0          | mg/L       | 1.0          | 03/06/21 22:32 |            |



Project: YATES

Pace Project No.: 92525335

| Lab Sample ID          | Client Sample ID       |           |            |              |                |            |
|------------------------|------------------------|-----------|------------|--------------|----------------|------------|
| Method                 | Parameters             | Result    | Units      | Report Limit | Analyzed       | Qualifiers |
| 92525335006            | YGWA-30I               |           |            |              |                |            |
|                        | Performed by           | CUSTOME   |            |              | 03/08/21 09:07 |            |
|                        | рН                     | 5.78      | Std. Units |              | 03/08/21 09:07 |            |
| EPA 6010D              | Calcium                | 1.2       | ma/L       | 1.0          | 03/09/21 03:00 |            |
| EPA 6020B              | Barium                 | 0.0070    | ma/L       | 0.0050       | 03/05/21 17:58 |            |
| EPA 6020B              | Cobalt                 | 0.0061    | ma/L       | 0.0050       | 03/05/21 17:58 |            |
| EPA 6020B              | Lithium                | 0.0011J   | ma/L       | 0.030        | 03/05/21 17:58 |            |
| SM 2450C-2011          | Total Dissolved Solids | 23.0      | ma/L       | 10.0         | 03/04/21 10:19 | D6         |
| EPA 300.0 Rev 2.1 1993 | Chloride               | 1.6       | ma/L       | 1.0          | 03/06/21 22:47 |            |
| EPA 300.0 Rev 2.1 1993 | Sulfate                | 0.88J     | mg/L       | 1.0          | 03/06/21 22:47 |            |
| 92525335007            | FB-01                  |           |            |              |                |            |
| EPA 6010D              | Calcium                | 34.4      | mg/L       | 1.0          | 03/09/21 03:05 |            |
| EPA 6020B              | Barium                 | 0.022     | mg/L       | 0.0050       | 03/05/21 18:04 |            |
| EPA 6020B              | Chromium               | 0.00062J  | mg/L       | 0.0050       | 03/05/21 18:04 |            |
| EPA 6020B              | Lithium                | 0.0016J   | mg/L       | 0.030        | 03/05/21 18:04 |            |
| SM 2450C-2011          | Total Dissolved Solids | 65.0      | mg/L       | 10.0         | 03/05/21 11:04 |            |
| EPA 300.0 Rev 2.1 1993 | Chloride               | 1.6       | mg/L       | 1.0          | 03/06/21 23:01 |            |
| EPA 300.0 Rev 2.1 1993 | Sulfate                | 2.2       | mg/L       | 1.0          | 03/06/21 23:01 |            |
| 92525335008            | DUP-01                 |           |            |              |                |            |
| EPA 6010D              | Calcium                | 1.2       | mg/L       | 1.0          | 03/09/21 03:20 |            |
| EPA 6020B              | Barium                 | 0.0078    | mg/L       | 0.0050       | 03/05/21 18:09 |            |
| EPA 6020B              | Beryllium              | 0.00020J  | mg/L       | 0.00050      | 03/05/21 18:09 |            |
| EPA 6020B              | Boron                  | 0.016J    | mg/L       | 0.040        | 03/05/21 18:09 |            |
| SM 2450C-2011          | Total Dissolved Solids | 32.0      | mg/L       | 10.0         | 03/05/21 11:04 |            |
| EPA 300.0 Rev 2.1 1993 | Chloride               | 5.0       | mg/L       | 1.0          | 03/06/21 23:16 |            |
| EPA 300.0 Rev 2.1 1993 | Sulfate                | 6.1       | mg/L       | 1.0          | 03/06/21 23:16 |            |
| 92525335011            | YGWA-40                |           |            |              |                |            |
|                        | Performed by           | CUSTOME   |            |              | 03/08/21 09:07 |            |
|                        |                        | K         | Ctd Linita |              | 02/08/24 00:07 |            |
|                        | pH<br>Calaium          | 5.23      | Sta. Units | 1.0          | 03/08/21 09:07 |            |
|                        | Dariura                | 4.0       | mg/L       | 1.0          | 03/10/21 05:29 |            |
| EPA 6020B              | Barium                 | 0.032     | mg/L       | 0.0050       | 03/09/21 15:48 |            |
| EPA 6020B              | Beryllium              | 0.00021J  | mg/L       | 0.00050      | 03/09/21 15:48 |            |
| EPA 6020B              | Boron                  | 0.078     | mg/L       | 0.040        | 03/09/21 15:48 |            |
| SM 2450C-2011          | Iotal Dissolved Solids | 57.0      | mg/L       | 10.0         | 03/06/21 12:32 |            |
| EPA 300.0 Rev 2.1 1993 | Chioride               | 4.9       | mg/L       | 1.0          | 03/13/21 17:54 |            |
| EPA 300.0 Rev 2.1 1993 | Suirate                | 21.5      | mg/L       | 1.0          | 03/13/21 17:54 |            |
| 92525335012            | YGWA-17S               | CUSTOME   |            |              | 00/00/04 00:07 |            |
|                        | Performed by           | R         |            |              | 03/08/21 09:07 |            |
|                        | рН                     | 5.52      | Std. Units |              | 03/08/21 09:07 |            |
| EPA 6010D              | Calcium                | 2.5       | mg/L       | 1.0          | 03/10/21 05:59 |            |
| EPA 6020B              | Barium                 | 0.017     | mg/L       | 0.0050       | 03/09/21 15:54 |            |
| EPA 6020B              | Beryllium              | 0.000099J | mg/L       | 0.00050      | 03/09/21 15:54 |            |
| EPA 6020B              | Boron                  | 0.010J    | mg/L       | 0.040        | 03/09/21 15:54 |            |
| EPA 6020B              | Chromium               | 0.00082J  | mg/L       | 0.0050       | 03/09/21 15:54 |            |



Project: YATES

Pace Project No.: 92525335

| Lab Sample ID          | Client Sample ID       |              |            |              |                |            |
|------------------------|------------------------|--------------|------------|--------------|----------------|------------|
| Method                 | Parameters             | Result       | Units      | Report Limit | Analyzed       | Qualifiers |
| 92525335012            | YGWA-17S               |              |            |              |                |            |
| SM 2450C-2011          | Total Dissolved Solids | 57.0         | mg/L       | 10.0         | 03/05/21 15:36 |            |
| EPA 300.0 Rev 2.1 1993 | Chloride               | 7.1          | mg/L       | 1.0          | 03/13/21 18:10 |            |
| EPA 300.0 Rev 2.1 1993 | Sulfate                | 5.2          | mg/L       | 1.0          | 03/13/21 18:10 |            |
| 92525335013            | YGWA-18S               |              |            |              |                |            |
|                        | Performed by           | CUSTOME<br>R |            |              | 03/08/21 09:07 |            |
|                        | рН                     | 5.31         | Std. Units |              | 03/08/21 09:07 |            |
| EPA 6010D              | Calcium                | 0.96J        | mg/L       | 1.0          | 03/10/21 06:03 |            |
| EPA 6020B              | Antimony               | 0.00067J     | mg/L       | 0.0030       | 03/09/21 16:17 |            |
| EPA 6020B              | Barium                 | 0.017        | mg/L       | 0.0050       | 03/09/21 16:17 |            |
| EPA 6020B              | Beryllium              | 0.00011J     | mg/L       | 0.00050      | 03/09/21 16:17 |            |
| EPA 6020B              | Boron                  | 0.0094J      | mg/L       | 0.040        | 03/09/21 16:17 |            |
| EPA 6020B              | Chromium               | 0.0010J      | mg/L       | 0.0050       | 03/09/21 16:17 |            |
| EPA 6020B              | Lead                   | 0.000076J    | mg/L       | 0.0010       | 03/09/21 16:17 |            |
| EPA 6020B              | Lithium                | 0.0021J      | mg/L       | 0.030        | 03/09/21 16:17 |            |
| SM 2450C-2011          | Total Dissolved Solids | 37.0         | mg/L       | 10.0         | 03/05/21 15:36 |            |
| EPA 300.0 Rev 2.1 1993 | Chloride               | 7.2          | mg/L       | 1.0          | 03/13/21 18:56 |            |
| EPA 300.0 Rev 2.1 1993 | Sulfate                | 1.0          | mg/L       | 1.0          | 03/13/21 18:56 |            |
| 92525335014            | YGWA-18I               |              |            |              |                |            |
|                        | Performed by           | CUSTOME<br>R |            |              | 03/08/21 09:07 |            |
|                        | рН                     | 5.89         | Std. Units |              | 03/08/21 09:07 |            |
| EPA 6010D              | Calcium                | 5.2          | mg/L       | 1.0          | 03/10/21 06:08 |            |
| EPA 6020B              | Barium                 | 0.023        | mg/L       | 0.0050       | 03/09/21 16:23 |            |
| EPA 6020B              | Chromium               | 0.00087J     | mg/L       | 0.0050       | 03/09/21 16:23 |            |
| EPA 6020B              | Lithium                | 0.0034J      | mg/L       | 0.030        | 03/09/21 16:23 |            |
| SM 2450C-2011          | Total Dissolved Solids | 95.0         | mg/L       | 10.0         | 03/06/21 13:09 |            |
| EPA 300.0 Rev 2.1 1993 | Chloride               | 7.0          | mg/L       | 1.0          | 03/13/21 19:12 |            |
| 92525335015            | YGWA-39                |              |            |              |                |            |
|                        | Performed by           | CUSTOME<br>R |            |              | 03/08/21 09:07 |            |
|                        | рН                     | 5.54         | Std. Units |              | 03/08/21 09:07 |            |
| EPA 6010D              | Calcium                | 8.2          | mg/L       | 1.0          | 03/10/21 06:13 |            |
| EPA 6020B              | Barium                 | 0.028        | mg/L       | 0.0050       | 03/09/21 16:28 |            |
| EPA 6020B              | Boron                  | 0.033J       | mg/L       | 0.040        | 03/09/21 16:28 |            |
| EPA 6020B              | Cadmium                | 0.00030J     | mg/L       | 0.00050      | 03/09/21 16:28 |            |
| EPA 6020B              | Cobalt                 | 0.00071J     | mg/L       | 0.0050       | 03/09/21 16:28 |            |
| EPA 6020B              | Lithium                | 0.0084J      | mg/L       | 0.030        | 03/09/21 16:28 |            |
| EPA 6020B              | Molybdenum             | 0.0014J      | mg/L       | 0.010        | 03/09/21 16:28 |            |
| SM 2450C-2011          | Total Dissolved Solids | 168          | mg/L       | 10.0         | 03/06/21 12:32 |            |
| EPA 300.0 Rev 2.1 1993 | Chloride               | 4.9          | mg/L       | 1.0          | 03/13/21 19:28 |            |
| EPA 300.0 Rev 2.1 1993 | Sulfate                | 12.0         | mg/L       | 1.0          | 03/13/21 19:28 |            |
| 92525335016            | YGWA-1D (030321)       |              |            |              |                |            |
|                        | Performed by           | CUSTOME      |            |              | 03/08/21 09:07 |            |
|                        | рН                     | к<br>7.20    | Std. Units |              | 03/08/21 09:07 |            |



Project: YATES

Pace Project No.: 92525335

| Lab Sample ID          | Client Sample ID       |              |            |              |                |            |
|------------------------|------------------------|--------------|------------|--------------|----------------|------------|
| Method                 | Parameters             | Result       | Units      | Report Limit | Analyzed       | Qualifiers |
| 92525335016            | YGWA-1D (030321)       |              |            |              |                |            |
| EPA 6010D              | Calcium                | 14.1         | mg/L       | 1.0          | 03/10/21 06:18 |            |
| EPA 6020B              | Barium                 | 0.0068       | mg/L       | 0.0050       | 03/09/21 17:01 |            |
| EPA 6020B              | Lead                   | 0.000056J    | mg/L       | 0.0010       | 03/09/21 17:01 |            |
| EPA 6020B              | Lithium                | 0.012J       | mg/L       | 0.030        | 03/09/21 17:01 |            |
| EPA 6020B              | Molybdenum             | 0.0088J      | mg/L       | 0.010        | 03/09/21 17:01 |            |
| SM 2450C-2011          | Total Dissolved Solids | 99.0         | mg/L       | 10.0         | 03/06/21 13:09 |            |
| EPA 300.0 Rev 2.1 1993 | Chloride               | 0.96J        | mg/L       | 1.0          | 03/13/21 19:43 |            |
| EPA 300.0 Rev 2.1 1993 | Fluoride               | 0.078J       | mg/L       | 0.10         | 03/13/21 19:43 |            |
| EPA 300.0 Rev 2.1 1993 | Sulfate                | 9.0          | mg/L       | 1.0          | 03/13/21 19:43 |            |
| 92525335017            | YGWA-1I (030321)       |              |            |              |                |            |
|                        | Performed by           | CUSTOME      |            |              | 03/08/21 09:07 |            |
|                        | рН                     | 5.38         | Std. Units |              | 03/08/21 09:07 |            |
| EPA 6010D              | Calcium                | 1.8          | mg/L       | 1.0          | 03/10/21 06:23 |            |
| EPA 6020B              | Barium                 | 0.0094       | mg/L       | 0.0050       | 03/09/21 17:07 |            |
| EPA 6020B              | Cobalt                 | 0.0030J      | mg/L       | 0.0050       | 03/09/21 17:07 |            |
| EPA 6020B              | Lithium                | 0.0025J      | mg/L       | 0.030        | 03/09/21 17:07 |            |
| EPA 6020B              | Molybdenum             | 0.0049J      | mg/L       | 0.010        | 03/09/21 17:07 |            |
| SM 2450C-2011          | Total Dissolved Solids | 39.0         | mg/L       | 10.0         | 03/06/21 13:09 |            |
| EPA 300.0 Rev 2.1 1993 | Chloride               | 1.2          | mg/L       | 1.0          | 03/13/21 19:59 |            |
| EPA 300.0 Rev 2.1 1993 | Sulfate                | 4.4          | mg/L       | 1.0          | 03/13/21 19:59 |            |
| 92525335018            | YGWA-2I (030321)       |              |            |              |                |            |
|                        | Performed by           | CUSTOME<br>R |            |              | 03/08/21 09:07 |            |
|                        | рН                     | 7.92         | Std. Units |              | 03/08/21 09:07 |            |
| EPA 6010D              | Calcium                | 25.6         | mg/L       | 1.0          | 03/10/21 06:28 |            |
| EPA 6020B              | Arsenic                | 0.00098J     | mg/L       | 0.0050       | 03/09/21 17:12 |            |
| EPA 6020B              | Barium                 | 0.0041J      | mg/L       | 0.0050       | 03/09/21 17:12 |            |
| EPA 6020B              | Lithium                | 0.0016J      | mg/L       | 0.030        | 03/09/21 17:12 |            |
| EPA 6020B              | Molybdenum             | 0.0074J      | mg/L       | 0.010        | 03/09/21 17:12 |            |
| SM 2450C-2011          | Total Dissolved Solids | 138          | mg/L       | 10.0         | 03/06/21 13:10 |            |
| EPA 300.0 Rev 2.1 1993 | Chloride               | 0.86J        | mg/L       | 1.0          | 03/13/21 20:14 |            |
| EPA 300.0 Rev 2.1 1993 | Fluoride               | 0.085J       | mg/L       | 0.10         | 03/13/21 20:14 |            |
| EPA 300.0 Rev 2.1 1993 | Sulfate                | 10.6         | mg/L       | 1.0          | 03/13/21 20:14 |            |
| 92525335019            | YGWA-3I (030321)       |              |            |              |                |            |
|                        | Performed by           | CUSTOME      |            |              | 03/08/21 09:07 |            |
|                        | рН                     | 8.23         | Std. Units |              | 03/08/21 09:07 |            |
| EPA 6010D              | Calcium                | 20.6         | mg/L       | 1.0          | 03/10/21 06:32 |            |
| EPA 6020B              | Barium                 | 0.0031J      | mg/L       | 0.0050       | 03/09/21 17:18 |            |
| EPA 6020B              | Lithium                | 0.017J       | mg/L       | 0.030        | 03/09/21 17:18 |            |
| EPA 6020B              | Molybdenum             | 0.0036J      | mg/L       | 0.010        | 03/09/21 17:18 |            |
| SM 2450C-2011          | Total Dissolved Solids | 111          | mg/L       | 10.0         | 03/06/21 13:10 |            |
| EPA 300.0 Rev 2.1 1993 | Chloride               | 0.99J        | mg/L       | 1.0          | 03/13/21 21:00 |            |
| EPA 300.0 Rev 2.1 1993 | Fluoride               | 0.10         | mg/L       | 0.10         | 03/13/21 21:00 |            |
| EDA 200 0 Day 0 4 4002 | Sulfato                | 9.6          | ma/l       | 1.0          | 03/13/21 21:00 | M1         |



Project: YATES

Pace Project No.: 92525335

| Lab Sample ID          | Client Sample ID       |              |            |              |                |            |
|------------------------|------------------------|--------------|------------|--------------|----------------|------------|
| Method                 | Parameters             | Result       | Units      | Report Limit | Analyzed       | Qualifiers |
| 92525335020            | YGWA-3D (030321)       |              |            |              |                |            |
|                        | Performed by           | CUSTOME<br>R |            |              | 03/08/21 09:07 |            |
|                        | рН                     | 8.39         | Std. Units |              | 03/08/21 09:07 |            |
| EPA 6010D              | Calcium                | 29.8         | mg/L       | 1.0          | 03/10/21 06:47 |            |
| EPA 6020B              | Barium                 | 0.0064       | mg/L       | 0.0050       | 03/09/21 17:24 |            |
| EPA 6020B              | Lithium                | 0.024J       | mg/L       | 0.030        | 03/09/21 17:24 |            |
| EPA 6020B              | Molybdenum             | 0.013        | mg/L       | 0.010        | 03/09/21 17:24 |            |
| SM 2450C-2011          | Total Dissolved Solids | 137          | mg/L       | 10.0         | 03/06/21 13:10 |            |
| EPA 300.0 Rev 2.1 1993 | Chloride               | 1.1          | mg/L       | 1.0          | 03/13/21 22:18 |            |
| EPA 300.0 Rev 2.1 1993 | Fluoride               | 0.44         | mg/L       | 0.10         | 03/13/21 22:18 |            |
| EPA 300.0 Rev 2.1 1993 | Sulfate                | 7.0          | mg/L       | 1.0          | 03/13/21 22:18 |            |
| 92525335021            | EB-02 (03032021)       |              |            |              |                |            |
| EPA 6010D              | Calcium                | 33.3         | mg/L       | 1.0          | 03/10/21 06:52 |            |
| EPA 6020B              | Barium                 | 0.023        | mg/L       | 0.0050       | 03/09/21 17:29 |            |
| EPA 6020B              | Chromium               | 0.00057J     | mg/L       | 0.0050       | 03/09/21 17:29 |            |
| EPA 6020B              | Lithium                | 0.0016J      | mg/L       | 0.030        | 03/09/21 17:29 |            |
| SM 2450C-2011          | Total Dissolved Solids | 102          | mg/L       | 10.0         | 03/06/21 13:10 |            |
| EPA 300.0 Rev 2.1 1993 | Chloride               | 1.6          | ma/L       | 1.0          | 03/13/21 22:33 |            |
| EPA 300.0 Rev 2.1 1993 | Sulfate                | 2.2          | mg/L       | 1.0          | 03/13/21 22:33 |            |
| 92525335022            | YGWA-4I                |              |            |              |                |            |
|                        | Performed by           | CUSTOME      |            |              | 03/08/21 09:07 |            |
|                        | рН                     | 6.21         | Std. Units |              | 03/08/21 09:07 |            |
| EPA 6010D              | Calcium                | 7.7          | mg/L       | 1.0          | 03/10/21 06:56 |            |
| EPA 6020B              | Barium                 | 0.014        | mg/L       | 0.0050       | 03/09/21 17:35 |            |
| EPA 6020B              | Boron                  | 0.0056J      | mg/L       | 0.040        | 03/09/21 17:35 |            |
| EPA 6020B              | Chromium               | 0.0013J      | mg/L       | 0.0050       | 03/09/21 17:35 |            |
| EPA 6020B              | Lithium                | 0.012J       | mg/L       | 0.030        | 03/09/21 17:35 |            |
| EPA 6020B              | Selenium               | 0.0019J      | mg/L       | 0.0050       | 03/09/21 17:35 |            |
| SM 2450C-2011          | Total Dissolved Solids | 80.0         | mg/L       | 10.0         | 03/06/21 13:11 |            |
| EPA 300.0 Rev 2.1 1993 | Chloride               | 4.1          | ma/L       | 1.0          | 03/13/21 22:49 |            |
| EPA 300.0 Rev 2.1 1993 | Sulfate                | 7.8          | mg/L       | 1.0          | 03/13/21 22:49 |            |
| 92525335023            | YGWA-20S               |              |            |              |                |            |
|                        | Performed by           | CUSTOME      |            |              | 03/08/21 09:07 |            |
|                        | рH                     | 5.89         | Std. Units |              | 03/08/21 09:07 |            |
| EPA 6010D              | Calcium                | 2.4          | mg/L       | 1.0          | 03/10/21 07:01 |            |
| EPA 6020B              | Barium                 | 0.015        | mg/L       | 0.0050       | 03/09/21 17:56 |            |
| EPA 6020B              | Bervllium              | 0.000068J    | ma/L       | 0.00050      | 03/09/21 17:56 |            |
| EPA 6020B              | Lead                   | 0.000045J    | ma/L       | 0.0010       | 03/09/21 17:56 |            |
| SM 2450C-2011          | Total Dissolved Solids | 53.0         | ma/L       | 10.0         | 03/06/21 13:11 |            |
| EPA 300.0 Rev 2.1 1993 | Chloride               | 2.7          | mg/L       | 1.0          | 03/13/21 23:04 |            |
| 92525335024            | YGWA-21I               |              |            |              |                |            |
|                        | Performed by           | CUSTOME<br>R |            |              | 03/08/21 09:07 |            |
|                        | рН                     | 6.80         | Std. Units |              | 03/08/21 09:07 |            |



Project: YATES

Pace Project No.: 92525335

| Lab Sample ID Client Sample ID |                        |          |       |              |                |            |
|--------------------------------|------------------------|----------|-------|--------------|----------------|------------|
| Method                         | Parameters             | Result   | Units | Report Limit | Analyzed       | Qualifiers |
| 92525335024                    | YGWA-21I               |          |       |              |                |            |
| EPA 6010D                      | Calcium                | 8.7      | mg/L  | 1.0          | 03/10/21 07:06 |            |
| EPA 6020B                      | Antimony               | 0.0014J  | mg/L  | 0.0030       | 03/09/21 18:02 |            |
| EPA 6020B                      | Arsenic                | 0.00078J | mg/L  | 0.0050       | 03/09/21 18:02 |            |
| EPA 6020B                      | Barium                 | 0.011    | mg/L  | 0.0050       | 03/09/21 18:02 |            |
| EPA 6020B                      | Boron                  | 0.0079J  | mg/L  | 0.040        | 03/09/21 18:02 |            |
| EPA 6020B                      | Cobalt                 | 0.0065   | mg/L  | 0.0050       | 03/09/21 18:02 |            |
| EPA 6020B                      | Lithium                | 0.0062J  | mg/L  | 0.030        | 03/09/21 18:02 |            |
| SM 2450C-2011                  | Total Dissolved Solids | 110      | mg/L  | 10.0         | 03/06/21 12:32 |            |
| EPA 300.0 Rev 2.1 1993         | Chloride               | 1.8      | mg/L  | 1.0          | 03/13/21 23:20 |            |
| EPA 300.0 Rev 2.1 1993         | Fluoride               | 0.091J   | mg/L  | 0.10         | 03/13/21 23:20 |            |
| EPA 300.0 Rev 2.1 1993         | Sulfate                | 4.5      | mg/L  | 1.0          | 03/13/21 23:20 |            |



Project: YATES

Pace Project No.: 92525335

| Sample: YGWA-5I              | Lab ID:    | 92525335001      | Collecte      | ed: 03/02/21 | 14:05    | Received: 03/  | 02/21 17:30 Ma | atrix: Water |      |
|------------------------------|------------|------------------|---------------|--------------|----------|----------------|----------------|--------------|------|
| _                            |            |                  | Report        |              |          |                |                |              |      |
| Parameters                   | Results    | Units            | Limit         |              | DF       | Prepared       | Analyzed       | CAS No.      | Qual |
| Field Data                   | Analytical | Method:          |               |              |          |                |                |              |      |
|                              | Pace Ana   | lytical Services | - Charlotte   | 9            |          |                |                |              |      |
| Performed by                 | CUSTOME    |                  |               |              | 1        |                | 03/08/21 09:07 |              |      |
| рН                           | 5.63       | Std. Units       |               |              | 1        |                | 03/08/21 09:07 |              |      |
| 6010D ATL ICP                | Analytical | Method: EPA      | 6010D Pre     | paration Met | hod: E   | PA 3010A       |                |              |      |
|                              | Pace Ana   | lytical Services | - Peachtre    | e Corners, G | <b>A</b> |                |                |              |      |
| Calcium                      | 2.6        | mg/L             | 1.0           | 0.070        | 1        | 03/04/21 11:30 | 03/09/21 02:21 | 7440-70-2    |      |
| 6020 MET ICPMS               | Analytical | Method: EPA      | 6020B Pre     | paration Met | hod: E   | PA 3005A       |                |              |      |
|                              | Pace Ana   | lytical Services | - Peachtre    | e Corners, G | <b>A</b> |                |                |              |      |
| Antimony                     | ND         | mg/L             | 0.0030        | 0.00028      | 1        | 03/04/21 11:29 | 03/05/21 16:43 | 7440-36-0    |      |
| Arsenic                      | ND         | mg/L             | 0.0050        | 0.00078      | 1        | 03/04/21 11:29 | 03/05/21 16:43 | 7440-38-2    |      |
| Barium                       | 0.019      | mg/L             | 0.0050        | 0.00071      | 1        | 03/04/21 11:29 | 03/05/21 16:43 | 7440-39-3    |      |
| Beryllium                    | ND         | mg/L             | 0.00050       | 0.000046     | 1        | 03/04/21 11:29 | 03/05/21 16:43 | 7440-41-7    |      |
| Boron                        | 0.011J     | mg/L             | 0.040         | 0.0052       | 1        | 03/04/21 11:29 | 03/05/21 16:43 | 7440-42-8    |      |
| Cadmium                      | ND         | mg/L             | 0.00050       | 0.00012      | 1        | 03/04/21 11:29 | 03/05/21 16:43 | 7440-43-9    |      |
| Chromium                     | ND         | mg/L             | 0.0050        | 0.00055      | 1        | 03/04/21 11:29 | 03/05/21 16:43 | 7440-47-3    |      |
| Cobalt                       | ND         | mg/L             | 0.0050        | 0.00038      | 1        | 03/04/21 11:29 | 03/05/21 16:43 | 7440-48-4    |      |
| Lead                         | 0.000092J  | mg/L             | 0.0010        | 0.000036     | 1        | 03/04/21 11:29 | 03/05/21 16:43 | 7439-92-1    |      |
| Lithium                      | 0.0031J    | mg/L             | 0.030         | 0.00081      | 1        | 03/04/21 11:29 | 03/05/21 16:43 | 7439-93-2    |      |
| Molybdenum                   | ND         | mg/L             | 0.010         | 0.00069      | 1        | 03/04/21 11:29 | 03/05/21 16:43 | 7439-98-7    |      |
| Selenium                     | ND         | mg/L             | 0.0050        | 0.0016       | 1        | 03/04/21 11:29 | 03/05/21 16:43 | 7782-49-2    |      |
| 7470 Mercury                 | Analytical | Method: EPA      | 7470A Pre     | paration Met | hod: El  | PA 7470A       |                |              |      |
|                              | Pace Ana   | lytical Services | - Peachtre    | e Corners, G | βA       |                |                |              |      |
| Mercury                      | ND         | mg/L             | 0.00020       | 0.000078     | 1        | 03/04/21 14:15 | 03/05/21 10:52 | 7439-97-6    |      |
| 2540C Total Dissolved Solids | Analytical | Method: SM 2     | 450C-2011     |              |          |                |                |              |      |
|                              | Pace Ana   | lytical Services | - Peachtre    | e Corners, G | βA       |                |                |              |      |
| Total Dissolved Solids       | 67.0       | mg/L             | 10.0          | 10.0         | 1        |                | 03/04/21 14:30 |              |      |
| 300.0 IC Anions 28 Days      | Analytical | Method: EPA      | 300.0 Rev 2   | 2.1 1993     |          |                |                |              |      |
| -                            | Pace Ana   | lytical Services | s - Asheville | •            |          |                |                |              |      |
| Chloride                     | 4.3        | mg/L             | 1.0           | 0.60         | 1        |                | 03/06/21 20:37 | 16887-00-6   |      |
| Fluoride                     | ND         | mg/L             | 0.10          | 0.050        | 1        |                | 03/06/21 20:37 | 16984-48-8   |      |
| Sulfate                      | 2.3        | ma/L             | 1.0           | 0.50         | 1        |                | 03/06/21 20:37 | 14808-79-8   |      |



Project: YATES

Pace Project No.: 92525335

| Sample: YGWA-5D              | Lab ID:    | 9252533500      | 2 Collecte    | ed: 03/02/21 | 1 14:40 | ) Received: 03/ | 02/21 17:30 Ma | atrix: Water |      |
|------------------------------|------------|-----------------|---------------|--------------|---------|-----------------|----------------|--------------|------|
|                              |            |                 | Report        |              |         |                 |                |              |      |
| Parameters                   | Results    | Units           | Limit         | MDL          | DF      | Prepared        | Analyzed       | CAS No.      | Qual |
| Field Data                   | Analytical | Method:         |               |              |         |                 |                |              |      |
|                              | Pace Ana   | lytical Service | s - Charlotte | 9            |         |                 |                |              |      |
| Performed by                 | CUSTOME    |                 |               |              | 1       |                 | 03/08/21 09:07 |              |      |
| рН                           | 7.15       | Std. Units      |               |              | 1       |                 | 03/08/21 09:07 |              |      |
| 6010D ATL ICP                | Analytical | Method: EPA     | 6010D Pre     | paration Met | hod: E  | PA 3010A        |                |              |      |
|                              | Pace Ana   | lytical Service | s - Peachtre  | e Corners, C | 3A      |                 |                |              |      |
| Calcium                      | 1.6        | mg/L            | 1.0           | 0.070        | 1       | 03/04/21 11:30  | 03/09/21 02:41 | 7440-70-2    |      |
| 6020 MET ICPMS               | Analytical | Method: EPA     | 6020B Pre     | paration Met | hod: E  | PA 3005A        |                |              |      |
|                              | Pace Ana   | lytical Service | s - Peachtre  | e Corners, G | ΒA      |                 |                |              |      |
| Antimony                     | ND         | ma/L            | 0.0030        | 0.00028      | 1       | 03/04/21 11:29  | 03/05/21 16:49 | 7440-36-0    |      |
| Arsenic                      | ND         | mg/L            | 0.0050        | 0.00078      | 1       | 03/04/21 11:29  | 03/05/21 16:49 | 7440-38-2    |      |
| Barium                       | 0.014      | mg/L            | 0.0050        | 0.00071      | 1       | 03/04/21 11:29  | 03/05/21 16:49 | 7440-39-3    |      |
| Bervllium                    | ND         | mg/L            | 0.00050       | 0.000046     | 1       | 03/04/21 11:29  | 03/05/21 16:49 | 7440-41-7    |      |
| Boron                        | 0.0068J    | mg/L            | 0.040         | 0.0052       | 1       | 03/04/21 11:29  | 03/05/21 16:49 | 7440-42-8    |      |
| Cadmium                      | ND         | mg/L            | 0.00050       | 0.00012      | 1       | 03/04/21 11:29  | 03/05/21 16:49 | 7440-43-9    |      |
| Chromium                     | ND         | mg/L            | 0.0050        | 0.00055      | 1       | 03/04/21 11:29  | 03/05/21 16:49 | 7440-47-3    |      |
| Cobalt                       | ND         | mg/L            | 0.0050        | 0.00038      | 1       | 03/04/21 11:29  | 03/05/21 16:49 | 7440-48-4    |      |
| Lead                         | 0.000051J  | mg/L            | 0.0010        | 0.000036     | 1       | 03/04/21 11:29  | 03/05/21 16:49 | 7439-92-1    |      |
| Lithium                      | 0.0018J    | mg/L            | 0.030         | 0.00081      | 1       | 03/04/21 11:29  | 03/05/21 16:49 | 7439-93-2    |      |
| Molybdenum                   | ND         | mg/L            | 0.010         | 0.00069      | 1       | 03/04/21 11:29  | 03/05/21 16:49 | 7439-98-7    |      |
| Selenium                     | ND         | mg/L            | 0.0050        | 0.0016       | 1       | 03/04/21 11:29  | 03/05/21 16:49 | 7782-49-2    |      |
| 7470 Mercury                 | Analytical | Method: EPA     | 7470A Pre     | paration Met | hod: E  | PA 7470A        |                |              |      |
|                              | Pace Ana   | lytical Service | s - Peachtre  | e Corners, G | βA      |                 |                |              |      |
| Mercury                      | ND         | mg/L            | 0.00020       | 0.000078     | 1       | 03/04/21 14:15  | 03/05/21 10:55 | 7439-97-6    |      |
| 2540C Total Dissolved Solids | Analytical | Method: SM      | 2450C-2011    |              |         |                 |                |              |      |
|                              | Pace Ana   | lytical Service | s - Peachtre  | e Corners, G | βA      |                 |                |              |      |
| Total Dissolved Solids       | 52.0       | mg/L            | 10.0          | 10.0         | 1       |                 | 03/04/21 14:30 |              |      |
| 300.0 IC Anions 28 Days      | Analytical | Method: EPA     | 300.0 Rev 2   | 2.1 1993     |         |                 |                |              |      |
| -                            | Pace Ana   | lytical Service | s - Asheville | •            |         |                 |                |              |      |
| Chloride                     | 3.2        | mg/L            | 1.0           | 0.60         | 1       |                 | 03/06/21 21:49 | 16887-00-6   |      |
| Fluoride                     | ND         | mg/L            | 0.10          | 0.050        | 1       |                 | 03/06/21 21:49 | 16984-48-8   |      |
| Sulfate                      | 2.6        | ma/L            | 1.0           | 0.50         | 1       |                 | 03/06/21 21:49 | 14808-79-8   |      |



| Project:              | YATES      |            |                 |             |              |          |                |                |              |      |
|-----------------------|------------|------------|-----------------|-------------|--------------|----------|----------------|----------------|--------------|------|
| Pace Project No.:     | 92525335   |            |                 |             |              |          |                |                |              |      |
| Sample: DUP-1         |            | Lab ID:    | 92525335003     | Collecte    | ed: 03/02/2  | 1 00:00  | Received: 03/  | 02/21 17:30 Ma | atrix: Water |      |
|                       |            |            |                 | Report      |              |          |                |                |              |      |
| Parame                | ters       | Results    | Units           | Limit       | MDL          | DF       | Prepared       | Analyzed       | CAS No.      | Qual |
| 6010D ATL ICP         |            | Analytical | Method: EPA 6   | 010D Pre    | paration Met | thod: EF | PA 3010A       |                |              |      |
|                       |            | Pace Anal  | ytical Services | - Peachtre  | e Corners, C | GΑ       |                |                |              |      |
| Calcium               |            | 1.5        | mg/L            | 1.0         | 0.070        | 1        | 03/04/21 11:30 | 03/09/21 02:46 | 7440-70-2    |      |
| 6020 MET ICPMS        |            | Analytical | Method: EPA 6   | 020B Pre    | paration Met | thod: EF | PA 3005A       |                |              |      |
|                       |            | Pace Anal  | ytical Services | - Peachtre  | e Corners, C | GA       |                |                |              |      |
| Antimony              |            | 0.0015J    | mg/L            | 0.0030      | 0.00028      | 1        | 03/04/21 11:29 | 03/05/21 17:11 | 7440-36-0    |      |
| Arsenic               |            | ND         | mg/L            | 0.0050      | 0.00078      | 1        | 03/04/21 11:29 | 03/05/21 17:11 | 7440-38-2    |      |
| Barium                |            | 0.014      | mg/L            | 0.0050      | 0.00071      | 1        | 03/04/21 11:29 | 03/05/21 17:11 | 7440-39-3    |      |
| Beryllium             |            | ND         | mg/L            | 0.00050     | 0.000046     | 1        | 03/04/21 11:29 | 03/05/21 17:11 | 7440-41-7    |      |
| Boron                 |            | 0.013J     | mg/L            | 0.040       | 0.0052       | 1        | 03/04/21 11:29 | 03/05/21 17:11 | 7440-42-8    |      |
| Cadmium               |            | ND         | mg/L            | 0.00050     | 0.00012      | 1        | 03/04/21 11:29 | 03/05/21 17:11 | 7440-43-9    |      |
| Chromium              |            | ND         | mg/L            | 0.0050      | 0.00055      | 1        | 03/04/21 11:29 | 03/05/21 17:11 | 7440-47-3    |      |
| Cobalt                |            | ND         | mg/L            | 0.0050      | 0.00038      | 1        | 03/04/21 11:29 | 03/05/21 17:11 | 7440-48-4    |      |
| Lead                  |            | 0.000069J  | mg/L            | 0.0010      | 0.000036     | 1        | 03/04/21 11:29 | 03/05/21 17:11 | 7439-92-1    |      |
| Lithium               |            | 0.0016J    | mg/L            | 0.030       | 0.00081      | 1        | 03/04/21 11:29 | 03/05/21 17:11 | 7439-93-2    |      |
| Molybdenum            |            | ND         | mg/L            | 0.010       | 0.00069      | 1        | 03/04/21 11:29 | 03/05/21 17:11 | 7439-98-7    |      |
| Selenium              |            | ND         | mg/L            | 0.0050      | 0.0016       | 1        | 03/04/21 11:29 | 03/05/21 17:11 | 7782-49-2    |      |
| 7470 Mercury          |            | Analytical | Method: EPA 7   | 470A Pre    | paration Met | hod: EF  | PA 7470A       |                |              |      |
|                       |            | Pace Anal  | ytical Services | - Peachtre  | e Corners, C | GΑ       |                |                |              |      |
| Mercury               |            | ND         | mg/L            | 0.00020     | 0.000078     | 1        | 03/04/21 14:15 | 03/05/21 10:57 | 7439-97-6    |      |
| 2540C Total Dissol    | ved Solids | Analytical | Method: SM 24   | 150C-2011   |              |          |                |                |              |      |
|                       |            | Pace Anal  | ytical Services | - Peachtre  | e Corners, C | GA       |                |                |              |      |
| Total Dissolved Solid | ds         | 48.0       | mg/L            | 10.0        | 10.0         | 1        |                | 03/04/21 14:30 |              |      |
| 300.0 IC Anions 28    | Days       | Analytical | Method: EPA 3   | 00.0 Rev 2  | 2.1 1993     |          |                |                |              |      |
|                       |            | Pace Anal  | ytical Services | - Asheville |              |          |                |                |              |      |
| Chloride              |            | 3.0        | ma/L            | 1.0         | 0.60         | 1        |                | 03/06/21 22:04 | 16887-00-6   |      |
| Fluoride              |            | ND         | ma/L            | 0.10        | 0.050        | 1        |                | 03/06/21 22:04 | 16984-48-8   |      |
| Sulfate               |            | 2.0        | mg/L            | 1.0         | 0.50         | 1        |                | 03/06/21 22:04 | 14808-79-8   |      |



Project: YATES

Pace Project No.: 92525335

| Sample: YGWA-14S             | Lab ID: 92525335005 Collected: 03/02/21 11:20 Received: 03/02/21 17:30 Matrix: Water |                 |                 |               |        |                |                                  |                          |      |
|------------------------------|--------------------------------------------------------------------------------------|-----------------|-----------------|---------------|--------|----------------|----------------------------------|--------------------------|------|
| Parameters                   | Results                                                                              | Units           | Report<br>Limit | MDL           | DF     | Prepared       | Analyzed                         | CAS No.                  | Qual |
| Field Data                   | Analytical                                                                           | Method:         |                 |               |        |                |                                  |                          |      |
|                              | Pace Ana                                                                             | lytical Service | s - Charlotte   | 9             |        |                |                                  |                          |      |
| Performed by                 | CUSTOME                                                                              |                 |                 |               | 1      |                | 03/08/21 09:07                   |                          |      |
| рН                           | 5.49                                                                                 | Std. Units      |                 |               | 1      |                | 03/08/21 09:07                   |                          |      |
| 6010D ATL ICP                | Analytical                                                                           | I Method: EPA   | 6010D Pre       | paration Met  | hod: E | PA 3010A       |                                  |                          |      |
|                              | Pace Ana                                                                             | lytical Service | s - Peachtre    | e Corners, C  | βA     |                |                                  |                          |      |
| Calcium                      | 1.2                                                                                  | mg/L            | 1.0             | 0.070         | 1      | 03/04/21 11:30 | 03/09/21 02:56                   | 7440-70-2                |      |
| 6020 MET ICPMS               | Analytical                                                                           | I Method: EPA   | 6020B Pre       | paration Met  | hod: E | PA 3005A       |                                  |                          |      |
|                              | Pace Ana                                                                             | lytical Service | s - Peachtre    | e Corners, C  | βA     |                |                                  |                          |      |
| Antimony                     | ND                                                                                   | mg/L            | 0.0030          | 0.00028       | 1      | 03/04/21 11:29 | 03/05/21 17:23                   | 7440-36-0                |      |
| Arsenic                      | ND                                                                                   | mg/L            | 0.0050          | 0.00078       | 1      | 03/04/21 11:29 | 03/05/21 17:23                   | 7440-38-2                |      |
| Barium                       | 0.0076                                                                               | mg/L            | 0.0050          | 0.00071       | 1      | 03/04/21 11:29 | 03/05/21 17:23                   | 7440-39-3                |      |
| Beryllium                    | 0.00018J                                                                             | mg/L            | 0.00050         | 0.000046      | 1      | 03/04/21 11:29 | 03/05/21 17:23                   | 7440-41-7                |      |
| Boron                        | 0.017J                                                                               | mg/L            | 0.040           | 0.0052        | 1      | 03/04/21 11:29 | 03/05/21 17:23                   | 7440-42-8                |      |
| Cadmium                      | ND                                                                                   | mg/L            | 0.00050         | 0.00012       | 1      | 03/04/21 11:29 | 03/05/21 17:23                   | 7440-43-9                |      |
| Chromium                     | ND                                                                                   | mg/L            | 0.0050          | 0.00055       | 1      | 03/04/21 11:29 | 03/05/21 17:23                   | 7440-47-3                |      |
| Cobalt                       | ND                                                                                   | mg/L            | 0.0050          | 0.00038       | 1      | 03/04/21 11:29 | 03/05/21 17:23                   | 7440-48-4                |      |
| Lead                         | ND                                                                                   | mg/L            | 0.0010          | 0.000036      | 1      | 03/04/21 11:29 | 03/05/21 17:23                   | 7439-92-1                |      |
| Lithium                      | ND                                                                                   | mg/L            | 0.030           | 0.00081       | 1      | 03/04/21 11:29 | 03/05/21 17:23                   | 7439-93-2                |      |
| Molybdenum                   | ND                                                                                   | mg/L            | 0.010           | 0.00069       | 1      | 03/04/21 11:29 | 03/05/21 17:23                   | 7439-98-7                |      |
| Selenium                     | ND                                                                                   | mg/L            | 0.0050          | 0.0016        | 1      | 03/04/21 11:29 | 03/05/21 17:23                   | 7782-49-2                |      |
| 2540C Total Dissolved Solids | Analytical                                                                           | Method: SM 2    | 2450C-2011      |               |        |                |                                  |                          |      |
|                              | Pace Ana                                                                             | lytical Service | s - Peachtre    | e Corners, C  | βA     |                |                                  |                          |      |
| Total Dissolved Solids       | 67.0                                                                                 | mg/L            | 10.0            | 10.0          | 1      |                | 03/04/21 14:30                   |                          |      |
| 300.0 IC Anions 28 Days      | Analytical                                                                           | I Method: EPA   | 300.0 Rev 2     | 2.1 1993      |        |                |                                  |                          |      |
|                              | Pace Ana                                                                             | lytical Service | s - Asheville   | •             |        |                |                                  |                          |      |
| Chloride                     |                                                                                      |                 |                 |               |        |                |                                  |                          |      |
|                              | 4.9                                                                                  | ma/L            | 1.0             | 0.60          | 1      |                | 03/06/21 22:32                   | 16887-00-6               |      |
| Fluoride                     | <b>4.9</b><br>ND                                                                     | mg/L<br>mg/L    | 1.0<br>0.10     | 0.60<br>0.050 | 1<br>1 |                | 03/06/21 22:32<br>03/06/21 22:32 | 16887-00-6<br>16984-48-8 |      |



Project: YATES

Pace Project No.: 92525335

| Sample: YGWA-30I             | Lab ID:                | 92525335006                     | Collecte                     | ed: 03/01/2                  | 1 16:25       | Received: 03/  | /02/21 17:30 Ma | atrix: Water |      |
|------------------------------|------------------------|---------------------------------|------------------------------|------------------------------|---------------|----------------|-----------------|--------------|------|
| Parameters                   | Results                | Units                           | Report<br>Limit              | MDL                          | DF            | Prepared       | Analyzed        | CAS No.      | Qual |
| Field Data                   | Analytical<br>Pace Ana | Method:<br>lvtical Services     | s - Charlotte                | 9                            |               |                |                 |              |      |
| Performed by                 | CUSTOME                | ,                               |                              |                              | 1             |                | 03/08/21 09:07  |              |      |
| рН                           | я<br>5.78              | Std. Units                      |                              |                              | 1             |                | 03/08/21 09:07  |              |      |
| 6010D ATL ICP                | Analytical<br>Pace Ana | Method: EPA                     | 6010D Pre<br>- Peachtre      | paration Me                  | thod: E<br>GA | PA 3010A       |                 |              |      |
| Calcium                      | 1.2                    | mg/L                            | 1.0                          | 0.070                        | 1             | 03/04/21 11:30 | 03/09/21 03:00  | 7440-70-2    |      |
| 6020 MET ICPMS               | Analytical<br>Pace Ana | Method: EPA<br>lytical Services | 6020B Pre<br>s - Peachtre    | paration Met<br>e Corners, 0 | hod: E<br>GA  | PA 3005A       |                 |              |      |
| Antimony                     | ND                     | mg/L                            | 0.0030                       | 0.00028                      | 1             | 03/04/21 11:29 | 03/05/21 17:58  | 7440-36-0    |      |
| Arsenic                      | ND                     | mg/L                            | 0.0050                       | 0.00078                      | 1             | 03/04/21 11:29 | 03/05/21 17:58  | 7440-38-2    |      |
| Barium                       | 0.0070                 | mg/L                            | 0.0050                       | 0.00071                      | 1             | 03/04/21 11:29 | 03/05/21 17:58  | 7440-39-3    |      |
| Beryllium                    | ND                     | mg/L                            | 0.00050                      | 0.000046                     | 1             | 03/04/21 11:29 | 03/05/21 17:58  | 7440-41-7    |      |
| Boron                        | ND                     | mg/L                            | 0.040                        | 0.0052                       | 1             | 03/04/21 11:29 | 03/05/21 17:58  | 7440-42-8    |      |
| Cadmium                      | ND                     | mg/L                            | 0.00050                      | 0.00012                      | 1             | 03/04/21 11:29 | 03/05/21 17:58  | 7440-43-9    |      |
| Chromium                     | ND                     | mg/L                            | 0.0050                       | 0.00055                      | 1             | 03/04/21 11:29 | 03/05/21 17:58  | 7440-47-3    |      |
| Cobalt                       | 0.0061                 | mg/L                            | 0.0050                       | 0.00038                      | 1             | 03/04/21 11:29 | 03/05/21 17:58  | 7440-48-4    |      |
| Lead                         | ND                     | mg/L                            | 0.0010                       | 0.000036                     | 1             | 03/04/21 11:29 | 03/05/21 17:58  | 7439-92-1    |      |
| Lithium                      | 0.0011J                | mg/L                            | 0.030                        | 0.00081                      | 1             | 03/04/21 11:29 | 03/05/21 17:58  | 7439-93-2    |      |
| Molybdenum                   | ND                     | mg/L                            | 0.010                        | 0.00069                      | 1             | 03/04/21 11:29 | 03/05/21 17:58  | 7439-98-7    |      |
| Selenium                     | ND                     | mg/L                            | 0.0050                       | 0.0016                       | 1             | 03/04/21 11:29 | 03/05/21 17:58  | 7782-49-2    |      |
| 2540C Total Dissolved Solids | Analytical             | Method: SM 2                    | 450C-2011                    |                              |               |                |                 |              |      |
|                              | Pace Ana               | lytical Services                | s - Peachtre                 | ee Corners, (                | ЗA            |                |                 |              |      |
| Total Dissolved Solids       | 23.0                   | mg/L                            | 10.0                         | 10.0                         | 1             |                | 03/04/21 10:19  |              | D6   |
| 300.0 IC Anions 28 Days      | Analytical<br>Pace Ana | Method: EPA<br>lytical Services | 300.0 Rev 2<br>s - Asheville | 2.1 1993<br>9                |               |                |                 |              |      |
| Chloride                     | 1.6                    | ma/L                            | 1.0                          | 0.60                         | 1             |                | 03/06/21 22:47  | 16887-00-6   |      |
| Fluoride                     | ND                     | mg/L                            | 0.10                         | 0.050                        | 1             |                | 03/06/21 22:47  | 16984-48-8   |      |
| Sulfate                      | 0.88J                  | mg/L                            | 1.0                          | 0.50                         | 1             |                | 03/06/21 22:47  | 14808-79-8   |      |



YATES

Project:

### ANALYTICAL RESULTS

| Pace Project No.: 92525335   |            |                  |                 |              |          |                |                |              |      |
|------------------------------|------------|------------------|-----------------|--------------|----------|----------------|----------------|--------------|------|
| Sample: FB-01                | Lab ID:    | 92525335007      | Collecte        | ed: 03/02/2  | 1 11:30  | Received: 03/  | 02/21 17:30 Ma | atrix: Water |      |
| Parameters                   | Results    | Units            | Report<br>Limit | MDL          | DF       | Prepared       | Analyzed       | CAS No.      | Qual |
| 6010D ATL ICP                | Analytical | Method: EPA 6    | 010D Pre        | paration Me  | thod: El | PA 3010A       |                |              |      |
|                              | Pace Ana   | lytical Services | - Peachtre      | e Corners, ( | GA       |                |                |              |      |
| Calcium                      | 34.4       | mg/L             | 1.0             | 0.070        | 1        | 03/04/21 11:30 | 03/09/21 03:05 | 7440-70-2    |      |
| 6020 MET ICPMS               | Analytical | Method: EPA 6    | 020B Pre        | paration Me  | thod: El | PA 3005A       |                |              |      |
|                              | Pace Ana   | lytical Services | - Peachtre      | e Corners, ( | ЗA       |                |                |              |      |
| Antimony                     | ND         | mg/L             | 0.0030          | 0.00028      | 1        | 03/04/21 11:29 | 03/05/21 18:04 | 7440-36-0    |      |
| Arsenic                      | ND         | mg/L             | 0.0050          | 0.00078      | 1        | 03/04/21 11:29 | 03/05/21 18:04 | 7440-38-2    |      |
| Barium                       | 0.022      | mg/L             | 0.0050          | 0.00071      | 1        | 03/04/21 11:29 | 03/05/21 18:04 | 7440-39-3    |      |
| Beryllium                    | ND         | mg/L             | 0.00050         | 0.000046     | 1        | 03/04/21 11:29 | 03/05/21 18:04 | 7440-41-7    |      |
| Boron                        | ND         | mg/L             | 0.040           | 0.0052       | 1        | 03/04/21 11:29 | 03/05/21 18:04 | 7440-42-8    |      |
| Cadmium                      | ND         | mg/L             | 0.00050         | 0.00012      | 1        | 03/04/21 11:29 | 03/05/21 18:04 | 7440-43-9    |      |
| Chromium                     | 0.00062J   | mg/L             | 0.0050          | 0.00055      | 1        | 03/04/21 11:29 | 03/05/21 18:04 | 7440-47-3    |      |
| Cobalt                       | ND         | mg/L             | 0.0050          | 0.00038      | 1        | 03/04/21 11:29 | 03/05/21 18:04 | 7440-48-4    |      |
| Lead                         | ND         | mg/L             | 0.0010          | 0.000036     | 1        | 03/04/21 11:29 | 03/05/21 18:04 | 7439-92-1    |      |
| Lithium                      | 0.0016J    | mg/L             | 0.030           | 0.00081      | 1        | 03/04/21 11:29 | 03/05/21 18:04 | 7439-93-2    |      |
| Molybdenum                   | ND         | mg/L             | 0.010           | 0.00069      | 1        | 03/04/21 11:29 | 03/05/21 18:04 | 7439-98-7    |      |
| Selenium                     | ND         | mg/L             | 0.0050          | 0.0016       | 1        | 03/04/21 11:29 | 03/05/21 18:04 | 7782-49-2    |      |
| 7470 Mercury                 | Analytical | Method: EPA 7    | 470A Pre        | paration Me  | thod: EF | PA 7470A       |                |              |      |
|                              | Pace Ana   | lytical Services | - Peachtre      | e Corners, ( | GA       |                |                |              |      |
| Mercury                      | ND         | mg/L             | 0.00020         | 0.000078     | 1        | 03/04/21 14:15 | 03/05/21 11:07 | 7439-97-6    |      |
| 2540C Total Dissolved Solids | Analytical | Method: SM 24    | 450C-2011       |              |          |                |                |              |      |
|                              | Pace Ana   | lytical Services | - Peachtre      | e Corners, ( | ЗA       |                |                |              |      |
| Total Dissolved Solids       | 65.0       | mg/L             | 10.0            | 10.0         | 1        |                | 03/05/21 11:04 |              |      |
| 300.0 IC Anions 28 Days      | Analytical | Method: EPA 3    | 00.0 Rev 2      | 2.1 1993     |          |                |                |              |      |
|                              | Pace Ana   | lytical Services | - Asheville     | ł            |          |                |                |              |      |
| Chloride                     | 1.6        | mg/L             | 1.0             | 0.60         | 1        |                | 03/06/21 23:01 | 16887-00-6   |      |
| Fluoride                     | ND         | mg/L             | 0.10            | 0.050        | 1        |                | 03/06/21 23:01 | 16984-48-8   |      |
| Sulfate                      | 2.2        | mg/L             | 1.0             | 0.50         | 1        |                | 03/06/21 23:01 | 14808-79-8   |      |



| Project: YATES            | ò              |                  |                 |              |         |                |                |              |      |
|---------------------------|----------------|------------------|-----------------|--------------|---------|----------------|----------------|--------------|------|
| Pace Project No.: 92525   | 335            |                  |                 |              |         |                |                |              |      |
| Sample: DUP-01            | Lab ID:        | 92525335008      | Collecte        | ed: 03/02/2  | 1 00:00 | Received: 03/  | 02/21 17:30 Ma | atrix: Water |      |
| Parameters                | Results        | Units            | Report<br>Limit | MDL          | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| 6010D ATL ICP             | Analytical     | Method: EPA 6    | 010D Pre        | paration Met | thod: E | PA 3010A       |                |              |      |
|                           | Pace Ana       | lytical Services | - Peachtre      | e Corners, C | ЗA      |                |                |              |      |
| Calcium                   | 1.2            | mg/L             | 1.0             | 0.070        | 1       | 03/04/21 11:30 | 03/09/21 03:20 | 7440-70-2    |      |
| 6020 MET ICPMS            | Analytical     | Method: EPA 6    | 020B Pre        | paration Met | hod: E  | PA 3005A       |                |              |      |
|                           | Pace Ana       | lytical Services | - Peachtre      | e Corners, C | ЗA      |                |                |              |      |
| Antimony                  | ND             | mg/L             | 0.0030          | 0.00028      | 1       | 03/04/21 11:29 | 03/05/21 18:09 | 7440-36-0    |      |
| Arsenic                   | ND             | mg/L             | 0.0050          | 0.00078      | 1       | 03/04/21 11:29 | 03/05/21 18:09 | 7440-38-2    |      |
| Barium                    | 0.0078         | mg/L             | 0.0050          | 0.00071      | 1       | 03/04/21 11:29 | 03/05/21 18:09 | 7440-39-3    |      |
| Beryllium                 | 0.00020J       | mg/L             | 0.00050         | 0.000046     | 1       | 03/04/21 11:29 | 03/05/21 18:09 | 7440-41-7    |      |
| Boron                     | 0.016J         | mg/L             | 0.040           | 0.0052       | 1       | 03/04/21 11:29 | 03/05/21 18:09 | 7440-42-8    |      |
| Cadmium                   | ND             | mg/L             | 0.00050         | 0.00012      | 1       | 03/04/21 11:29 | 03/05/21 18:09 | 7440-43-9    |      |
| Chromium                  | ND             | mg/L             | 0.0050          | 0.00055      | 1       | 03/04/21 11:29 | 03/05/21 18:09 | 7440-47-3    |      |
| Cobalt                    | ND             | mg/L             | 0.0050          | 0.00038      | 1       | 03/04/21 11:29 | 03/05/21 18:09 | 7440-48-4    |      |
| Lead                      | ND             | mg/L             | 0.0010          | 0.000036     | 1       | 03/04/21 11:29 | 03/05/21 18:09 | 7439-92-1    |      |
| Lithium                   | ND             | mg/L             | 0.030           | 0.00081      | 1       | 03/04/21 11:29 | 03/05/21 18:09 | 7439-93-2    |      |
| Molybdenum                | ND             | mg/L             | 0.010           | 0.00069      | 1       | 03/04/21 11:29 | 03/05/21 18:09 | 7439-98-7    |      |
| Selenium                  | ND             | mg/L             | 0.0050          | 0.0016       | 1       | 03/04/21 11:29 | 03/05/21 18:09 | 7782-49-2    |      |
| 7470 Mercury              | Analytical     | Method: EPA 7    | 470A Prej       | paration Met | hod: El | PA 7470A       |                |              |      |
|                           | Pace Ana       | lytical Services | - Peachtre      | e Corners, C | ЗA      |                |                |              |      |
| Mercury                   | ND             | mg/L             | 0.00020         | 0.000078     | 1       | 03/04/21 14:15 | 03/05/21 11:09 | 7439-97-6    |      |
| 2540C Total Dissolved Sol | ids Analytical | Method: SM 24    | 450C-2011       |              |         |                |                |              |      |
|                           | Pace Ana       | lytical Services | - Peachtre      | e Corners, C | βA      |                |                |              |      |
| Total Dissolved Solids    | 32.0           | mg/L             | 10.0            | 10.0         | 1       |                | 03/05/21 11:04 |              |      |
| 300.0 IC Anions 28 Days   | Analytical     | Method: EPA 3    | 00.0 Rev 2      | 2.1 1993     |         |                |                |              |      |
|                           | Pace Ana       | lytical Services | - Asheville     |              |         |                |                |              |      |
| Chloride                  | 5.0            | mg/L             | 1.0             | 0.60         | 1       |                | 03/06/21 23:16 | 16887-00-6   |      |
| Fluoride                  | ND             | mg/L             | 0.10            | 0.050        | 1       |                | 03/06/21 23:16 | 16984-48-8   |      |
| Sulfate                   | 6.1            | mg/L             | 1.0             | 0.50         | 1       |                | 03/06/21 23:16 | 14808-79-8   |      |



YATES

Project:

### ANALYTICAL RESULTS

| Pace Project No.: 92525335   |            |                 |               |              |          |                |                 |              |      |
|------------------------------|------------|-----------------|---------------|--------------|----------|----------------|-----------------|--------------|------|
| Sample: FB-01                | Lab ID:    | 92525335009     | Collecte      | ed: 03/02/2  | 1 15:20  | Received: 03/  | /02/21 17:30 Ma | atrix: Water |      |
|                              |            |                 | Report        |              |          |                |                 |              |      |
| Parameters                   | Results    | Units           | Limit         | MDL          | DF       | Prepared       | Analyzed        | CAS No.      | Qual |
| 6010D ATL ICP                | Analytical | Method: EPA     | 6010D Pre     | paration Me  | thod: E  | PA 3010A       |                 |              |      |
|                              | Pace Anal  | ytical Services | s - Peachtre  | e Corners, 0 | GA       |                |                 |              |      |
| Calcium                      | ND         | mg/L            | 1.0           | 0.070        | 1        | 03/04/21 11:30 | 03/09/21 03:24  | 7440-70-2    |      |
| 6020 MET ICPMS               | Analytical | Method: EPA     | 6020B Pre     | paration Me  | thod: E  | PA 3005A       |                 |              |      |
|                              | Pace Anal  | ytical Services | s - Peachtre  | e Corners, ( | GA       |                |                 |              |      |
| Antimony                     | ND         | mg/L            | 0.0030        | 0.00028      | 1        | 03/04/21 11:29 | 03/05/21 18:15  | 7440-36-0    |      |
| Arsenic                      | ND         | mg/L            | 0.0050        | 0.00078      | 1        | 03/04/21 11:29 | 03/05/21 18:15  | 7440-38-2    |      |
| Barium                       | ND         | mg/L            | 0.0050        | 0.00071      | 1        | 03/04/21 11:29 | 03/05/21 18:15  | 7440-39-3    |      |
| Beryllium                    | ND         | mg/L            | 0.00050       | 0.000046     | 1        | 03/04/21 11:29 | 03/05/21 18:15  | 7440-41-7    |      |
| Boron                        | ND         | mg/L            | 0.040         | 0.0052       | 1        | 03/04/21 11:29 | 03/05/21 18:15  | 7440-42-8    |      |
| Cadmium                      | ND         | mg/L            | 0.00050       | 0.00012      | 1        | 03/04/21 11:29 | 03/05/21 18:15  | 7440-43-9    |      |
| Chromium                     | ND         | mg/L            | 0.0050        | 0.00055      | 1        | 03/04/21 11:29 | 03/05/21 18:15  | 7440-47-3    |      |
| Cobalt                       | ND         | mg/L            | 0.0050        | 0.00038      | 1        | 03/04/21 11:29 | 03/05/21 18:15  | 7440-48-4    |      |
| Lead                         | ND         | mg/L            | 0.0010        | 0.000036     | 1        | 03/04/21 11:29 | 03/05/21 18:15  | 7439-92-1    |      |
| Lithium                      | ND         | mg/L            | 0.030         | 0.00081      | 1        | 03/04/21 11:29 | 03/05/21 18:15  | 7439-93-2    |      |
| Molybdenum                   | ND         | mg/L            | 0.010         | 0.00069      | 1        | 03/04/21 11:29 | 03/05/21 18:15  | 7439-98-7    |      |
| Selenium                     | ND         | mg/L            | 0.0050        | 0.0016       | 1        | 03/04/21 11:29 | 03/05/21 18:15  | 7782-49-2    |      |
| 7470 Mercury                 | Analytical | Method: EPA     | 7470A Pre     | paration Met | thod: El | PA 7470A       |                 |              |      |
|                              | Pace Anal  | ytical Services | s - Peachtre  | e Corners, 0 | GA       |                |                 |              |      |
| Mercury                      | ND         | mg/L            | 0.00020       | 0.000078     | 1        | 03/04/21 14:15 | 03/05/21 11:11  | 7439-97-6    |      |
| 2540C Total Dissolved Solids | Analytical | Method: SM 2    | 2450C-2011    |              |          |                |                 |              |      |
|                              | Pace Anal  | ytical Services | s - Peachtre  | e Corners, ( | GA       |                |                 |              |      |
| Total Dissolved Solids       | ND         | mg/L            | 10.0          | 10.0         | 1        |                | 03/05/21 11:05  |              |      |
| 300.0 IC Anions 28 Days      | Analytical | Method: EPA     | 300.0 Rev 2   | 2.1 1993     |          |                |                 |              |      |
|                              | Pace Anal  | ytical Services | s - Asheville |              |          |                |                 |              |      |
| Chloride                     | ND         | ma/L            | 1.0           | 0.60         | 1        |                | 03/06/21 23:30  | 16887-00-6   |      |
| Fluoride                     | ND         | ma/L            | 0.10          | 0.050        | 1        |                | 03/06/21 23:30  | 16984-48-8   |      |
| Sulfate                      | ND         | mg/L            | 1.0           | 0.50         | 1        |                | 03/06/21 23:30  | 14808-79-8   |      |



Project: YATES

Pace Project No.: 92525335

| Sample: YGWA-40              | Lab ID:    | 92525335011      | Collecte    | ed: 03/04/21  | 10:10   | Received: 03/  | 05/21 09:20 Ma | atrix: Water |      |
|------------------------------|------------|------------------|-------------|---------------|---------|----------------|----------------|--------------|------|
|                              |            |                  | Report      |               |         |                |                |              |      |
| Parameters                   | Results    | Units            | Limit       | MDL           | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| Field Data                   | Analytical | Method:          |             |               |         |                |                |              |      |
|                              | Pace Ana   | lytical Services | - Charlotte | 9             |         |                |                |              |      |
| Performed by                 | CUSTOME    |                  |             |               | 1       |                | 03/08/21 09:07 |              |      |
| рН                           | 5.23       | Std. Units       |             |               | 1       |                | 03/08/21 09:07 |              |      |
| 6010D ATL ICP                | Analytical | Method: EPA      | 6010D Pre   | paration Met  | hod: E  | PA 3010A       |                |              |      |
|                              | Pace Ana   | lytical Services | - Peachtre  | e Corners, G  | βA      |                |                |              |      |
| Calcium                      | 4.6        | mg/L             | 1.0         | 0.070         | 1       | 03/08/21 10:47 | 03/10/21 05:29 | 7440-70-2    |      |
| 6020 MET ICPMS               | Analytical | Method: EPA      | 6020B Pre   | paration Met  | hod: El | PA 3005A       |                |              |      |
|                              | Pace Ana   | lytical Services | - Peachtre  | e Corners, G  | βA      |                |                |              |      |
| Antimony                     | ND         | mg/L             | 0.0030      | 0.00028       | 1       | 03/08/21 11:57 | 03/09/21 15:48 | 7440-36-0    |      |
| Arsenic                      | ND         | mg/L             | 0.0050      | 0.00078       | 1       | 03/08/21 11:57 | 03/09/21 15:48 | 7440-38-2    |      |
| Barium                       | 0.032      | mg/L             | 0.0050      | 0.00071       | 1       | 03/08/21 11:57 | 03/09/21 15:48 | 7440-39-3    |      |
| Beryllium                    | 0.00021J   | mg/L             | 0.00050     | 0.000046      | 1       | 03/08/21 11:57 | 03/09/21 15:48 | 7440-41-7    |      |
| Boron                        | 0.078      | mg/L             | 0.040       | 0.0052        | 1       | 03/08/21 11:57 | 03/09/21 15:48 | 7440-42-8    |      |
| Cadmium                      | ND         | mg/L             | 0.00050     | 0.00012       | 1       | 03/08/21 11:57 | 03/09/21 15:48 | 7440-43-9    |      |
| Chromium                     | ND         | mg/L             | 0.0050      | 0.00055       | 1       | 03/08/21 11:57 | 03/09/21 15:48 | 7440-47-3    |      |
| Cobalt                       | ND         | mg/L             | 0.0050      | 0.00038       | 1       | 03/08/21 11:57 | 03/09/21 15:48 | 7440-48-4    |      |
| Lead                         | ND         | mg/L             | 0.0010      | 0.000036      | 1       | 03/08/21 11:57 | 03/09/21 15:48 | 7439-92-1    |      |
| Lithium                      | ND         | mg/L             | 0.030       | 0.00081       | 1       | 03/08/21 11:57 | 03/09/21 15:48 | 7439-93-2    |      |
| Molybdenum                   | ND         | mg/L             | 0.010       | 0.00069       | 1       | 03/08/21 11:57 | 03/09/21 15:48 | 7439-98-7    |      |
| Selenium                     | ND         | mg/L             | 0.0050      | 0.0016        | 1       | 03/08/21 11:57 | 03/09/21 15:48 | 7782-49-2    |      |
| 7470 Mercury                 | Analytical | Method: EPA      | 7470A Pre   | paration Meth | hod: El | PA 7470A       |                |              |      |
|                              | Pace Ana   | lytical Services | - Peachtre  | e Corners, G  | βA      |                |                |              |      |
| Mercury                      | ND         | mg/L             | 0.00020     | 0.000078      | 1       | 03/08/21 13:30 | 03/09/21 10:52 | 7439-97-6    |      |
| 2540C Total Dissolved Solids | Analytical | Method: SM 2     | 450C-2011   |               |         |                |                |              |      |
|                              | Pace Ana   | lytical Services | - Peachtre  | e Corners, G  | A       |                |                |              |      |
| Total Dissolved Solids       | 57.0       | mg/L             | 10.0        | 10.0          | 1       |                | 03/06/21 12:32 |              |      |
| 300.0 IC Anions 28 Days      | Analytical | Method: EPA      | 300.0 Rev 2 | 2.1 1993      |         |                |                |              |      |
| -                            | Pace Ana   | lytical Services | - Asheville |               |         |                |                |              |      |
| Chloride                     | 4.9        | mg/L             | 1.0         | 0.60          | 1       |                | 03/13/21 17:54 | 16887-00-6   |      |
| Fluoride                     | ND         | mg/L             | 0.10        | 0.050         | 1       |                | 03/13/21 17:54 | 16984-48-8   |      |
| Sulfate                      | 21.5       | ma/L             | 1.0         | 0.50          | 1       |                | 03/13/21 17:54 | 14808-79-8   |      |



Project: YATES

Pace Project No.: 92525335

| Sample: YGWA-17S             | Lab ID:    | 92525335012      | Collecte    | ed: 03/03/21 | 12:20   | Received: 03/  | 05/21 09:20 Ma | atrix: Water |      |
|------------------------------|------------|------------------|-------------|--------------|---------|----------------|----------------|--------------|------|
|                              |            |                  | Report      |              |         |                |                |              |      |
| Parameters                   | Results    | Units            | Limit       | MDL          | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| Field Data                   | Analytical | Method:          |             |              |         |                |                |              |      |
|                              | Pace Ana   | lytical Services | - Charlotte | 9            |         |                |                |              |      |
| Performed by                 | CUSTOME    |                  |             |              | 1       |                | 03/08/21 09:07 |              |      |
| рН                           | 5.52       | Std. Units       |             |              | 1       |                | 03/08/21 09:07 |              |      |
| 6010D ATL ICP                | Analytical | Method: EPA      | 6010D Pre   | paration Met | hod: El | PA 3010A       |                |              |      |
|                              | Pace Ana   | lytical Services | - Peachtre  | e Corners, G | βA      |                |                |              |      |
| Calcium                      | 2.5        | mg/L             | 1.0         | 0.070        | 1       | 03/08/21 10:47 | 03/10/21 05:59 | 7440-70-2    |      |
| 6020 MET ICPMS               | Analytical | Method: EPA      | 6020B Pre   | paration Met | hod: El | PA 3005A       |                |              |      |
|                              | Pace Ana   | lytical Services | - Peachtre  | e Corners, G | βA      |                |                |              |      |
| Antimony                     | ND         | mg/L             | 0.0030      | 0.00028      | 1       | 03/08/21 11:57 | 03/09/21 15:54 | 7440-36-0    |      |
| Arsenic                      | ND         | mg/L             | 0.0050      | 0.00078      | 1       | 03/08/21 11:57 | 03/09/21 15:54 | 7440-38-2    |      |
| Barium                       | 0.017      | mg/L             | 0.0050      | 0.00071      | 1       | 03/08/21 11:57 | 03/09/21 15:54 | 7440-39-3    |      |
| Beryllium                    | 0.000099J  | mg/L             | 0.00050     | 0.000046     | 1       | 03/08/21 11:57 | 03/09/21 15:54 | 7440-41-7    |      |
| Boron                        | 0.010J     | mg/L             | 0.040       | 0.0052       | 1       | 03/08/21 11:57 | 03/09/21 15:54 | 7440-42-8    |      |
| Cadmium                      | ND         | mg/L             | 0.00050     | 0.00012      | 1       | 03/08/21 11:57 | 03/09/21 15:54 | 7440-43-9    |      |
| Chromium                     | 0.00082J   | mg/L             | 0.0050      | 0.00055      | 1       | 03/08/21 11:57 | 03/09/21 15:54 | 7440-47-3    |      |
| Cobalt                       | ND         | mg/L             | 0.0050      | 0.00038      | 1       | 03/08/21 11:57 | 03/09/21 15:54 | 7440-48-4    |      |
| Lead                         | ND         | mg/L             | 0.0010      | 0.000036     | 1       | 03/08/21 11:57 | 03/09/21 15:54 | 7439-92-1    |      |
| Lithium                      | ND         | mg/L             | 0.030       | 0.00081      | 1       | 03/08/21 11:57 | 03/09/21 15:54 | 7439-93-2    |      |
| Molybdenum                   | ND         | mg/L             | 0.010       | 0.00069      | 1       | 03/08/21 11:57 | 03/09/21 15:54 | 7439-98-7    |      |
| Selenium                     | ND         | mg/L             | 0.0050      | 0.0016       | 1       | 03/08/21 11:57 | 03/09/21 15:54 | 7782-49-2    |      |
| 7470 Mercury                 | Analytical | Method: EPA      | 7470A Pre   | paration Met | hod: EF | PA 7470A       |                |              |      |
|                              | Pace Ana   | lytical Services | - Peachtre  | e Corners, G | βA      |                |                |              |      |
| Mercury                      | ND         | mg/L             | 0.00020     | 0.000078     | 1       | 03/08/21 13:30 | 03/09/21 10:54 | 7439-97-6    |      |
| 2540C Total Dissolved Solids | Analytical | Method: SM 2     | 450C-2011   |              |         |                |                |              |      |
|                              | Pace Ana   | lytical Services | - Peachtre  | e Corners, G | βA      |                |                |              |      |
| Total Dissolved Solids       | 57.0       | mg/L             | 10.0        | 10.0         | 1       |                | 03/05/21 15:36 |              |      |
| 300.0 IC Anions 28 Days      | Analytical | Method: EPA      | 300.0 Rev 2 | 2.1 1993     |         |                |                |              |      |
| -                            | Pace Ana   | lytical Services | - Asheville | •            |         |                |                |              |      |
| Chloride                     | 7.1        | mg/L             | 1.0         | 0.60         | 1       |                | 03/13/21 18:10 | 16887-00-6   |      |
| Fluoride                     | ND         | mg/L             | 0.10        | 0.050        | 1       |                | 03/13/21 18:10 | 16984-48-8   |      |
| Sulfate                      | 5.2        | ma/L             | 1.0         | 0.50         | 1       |                | 03/13/21 18:10 | 14808-79-8   |      |



Project: YATES

Pace Project No.: 92525335

| Sample: YGWA-18S             | Lab ID:    | 92525335013      | Collecte    | ed: 03/03/21 | 13:50   | Received: 03/  | 05/21 09:20 Ma | atrix: Water |      |
|------------------------------|------------|------------------|-------------|--------------|---------|----------------|----------------|--------------|------|
|                              |            |                  | Report      |              |         |                |                |              |      |
| Parameters                   | Results    | Units            | Limit       | MDL          | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| Field Data                   | Analytical | Method:          |             |              |         |                |                |              |      |
|                              | Pace Ana   | lytical Services | - Charlotte | 9            |         |                |                |              |      |
| Performed by                 | CUSTOME    |                  |             |              | 1       |                | 03/08/21 09:07 |              |      |
| рН                           | 5.31       | Std. Units       |             |              | 1       |                | 03/08/21 09:07 |              |      |
| 6010D ATL ICP                | Analytical | Method: EPA 6    | 6010D Pre   | paration Met | hod: El | PA 3010A       |                |              |      |
|                              | Pace Ana   | lytical Services | - Peachtre  | e Corners, G | βA      |                |                |              |      |
| Calcium                      | 0.96J      | mg/L             | 1.0         | 0.070        | 1       | 03/08/21 10:47 | 03/10/21 06:03 | 7440-70-2    |      |
| 6020 MET ICPMS               | Analytical | Method: EPA 6    | 6020B Pre   | paration Met | hod: El | PA 3005A       |                |              |      |
|                              | Pace Ana   | lytical Services | - Peachtre  | e Corners, G | βA      |                |                |              |      |
| Antimony                     | 0.00067J   | mg/L             | 0.0030      | 0.00028      | 1       | 03/08/21 11:57 | 03/09/21 16:17 | 7440-36-0    |      |
| Arsenic                      | ND         | mg/L             | 0.0050      | 0.00078      | 1       | 03/08/21 11:57 | 03/09/21 16:17 | 7440-38-2    |      |
| Barium                       | 0.017      | mg/L             | 0.0050      | 0.00071      | 1       | 03/08/21 11:57 | 03/09/21 16:17 | 7440-39-3    |      |
| Beryllium                    | 0.00011J   | mg/L             | 0.00050     | 0.000046     | 1       | 03/08/21 11:57 | 03/09/21 16:17 | 7440-41-7    |      |
| Boron                        | 0.0094J    | mg/L             | 0.040       | 0.0052       | 1       | 03/08/21 11:57 | 03/09/21 16:17 | 7440-42-8    |      |
| Cadmium                      | ND         | mg/L             | 0.00050     | 0.00012      | 1       | 03/08/21 11:57 | 03/09/21 16:17 | 7440-43-9    |      |
| Chromium                     | 0.0010J    | mg/L             | 0.0050      | 0.00055      | 1       | 03/08/21 11:57 | 03/09/21 16:17 | 7440-47-3    |      |
| Cobalt                       | ND         | mg/L             | 0.0050      | 0.00038      | 1       | 03/08/21 11:57 | 03/09/21 16:17 | 7440-48-4    |      |
| Lead                         | 0.000076J  | mg/L             | 0.0010      | 0.000036     | 1       | 03/08/21 11:57 | 03/09/21 16:17 | 7439-92-1    |      |
| Lithium                      | 0.0021J    | mg/L             | 0.030       | 0.00081      | 1       | 03/08/21 11:57 | 03/09/21 16:17 | 7439-93-2    |      |
| Molybdenum                   | ND         | mg/L             | 0.010       | 0.00069      | 1       | 03/08/21 11:57 | 03/09/21 16:17 | 7439-98-7    |      |
| Selenium                     | ND         | mg/L             | 0.0050      | 0.0016       | 1       | 03/08/21 11:57 | 03/09/21 16:17 | 7782-49-2    |      |
| 7470 Mercury                 | Analytical | Method: EPA 7    | 7470A Pre   | paration Met | hod: EF | PA 7470A       |                |              |      |
|                              | Pace Ana   | lytical Services | - Peachtre  | e Corners, G | βA      |                |                |              |      |
| Mercury                      | ND         | mg/L             | 0.00020     | 0.000078     | 1       | 03/08/21 13:30 | 03/09/21 10:57 | 7439-97-6    |      |
| 2540C Total Dissolved Solids | Analytical | Method: SM 24    | 450C-2011   |              |         |                |                |              |      |
|                              | Pace Ana   | lytical Services | - Peachtre  | e Corners, G | βA      |                |                |              |      |
| Total Dissolved Solids       | 37.0       | mg/L             | 10.0        | 10.0         | 1       |                | 03/05/21 15:36 |              |      |
| 300.0 IC Anions 28 Days      | Analytical | Method: EPA 3    | 300.0 Rev 2 | 2.1 1993     |         |                |                |              |      |
|                              | Pace Ana   | lytical Services | - Asheville | •            |         |                |                |              |      |
| Chloride                     | 7.2        | mg/L             | 1.0         | 0.60         | 1       |                | 03/13/21 18:56 | 16887-00-6   |      |
| Fluoride                     | ND         | mg/L             | 0.10        | 0.050        | 1       |                | 03/13/21 18:56 | 16984-48-8   |      |
| Sulfate                      | 1.0        | mg/L             | 1.0         | 0.50         | 1       |                | 03/13/21 18:56 | 14808-79-8   |      |



Project: YATES

Pace Project No.: 92525335

| Sample: YGWA-18I             | Lab ID:    | 92525335014      | Collecte    | ed: 03/03/21 | 1 15:00 | Received: 03/  | 05/21 09:20 Ma | atrix: Water |      |
|------------------------------|------------|------------------|-------------|--------------|---------|----------------|----------------|--------------|------|
|                              |            |                  | Report      |              |         |                |                |              |      |
| Parameters                   | Results    | Units            | Limit       | MDL          | DF      | Prepared       | Analyzed       | CAS No.      | Qual |
| Field Data                   | Analytical | Method:          |             |              |         |                |                |              |      |
|                              | Pace Ana   | lytical Services | - Charlotte | 9            |         |                |                |              |      |
| Performed by                 | CUSTOME    |                  |             |              | 1       |                | 03/08/21 09:07 |              |      |
| рН                           | 5.89       | Std. Units       |             |              | 1       |                | 03/08/21 09:07 |              |      |
| 6010D ATL ICP                | Analytical | Method: EPA 6    | 6010D Pre   | paration Met | hod: El | PA 3010A       |                |              |      |
|                              | Pace Ana   | lytical Services | - Peachtre  | e Corners, G | βA      |                |                |              |      |
| Calcium                      | 5.2        | mg/L             | 1.0         | 0.070        | 1       | 03/08/21 10:47 | 03/10/21 06:08 | 7440-70-2    |      |
| 6020 MET ICPMS               | Analytical | Method: EPA      | 6020B Pre   | paration Met | hod: El | PA 3005A       |                |              |      |
|                              | Pace Ana   | lytical Services | - Peachtre  | e Corners, G | θA      |                |                |              |      |
| Antimony                     | ND         | ma/L             | 0.0030      | 0.00028      | 1       | 03/08/21 11:57 | 03/09/21 16:23 | 7440-36-0    |      |
| Arsenic                      | ND         | mg/L             | 0.0050      | 0.00078      | 1       | 03/08/21 11:57 | 03/09/21 16:23 | 7440-38-2    |      |
| Barium                       | 0.023      | mg/L             | 0.0050      | 0.00071      | 1       | 03/08/21 11:57 | 03/09/21 16:23 | 7440-39-3    |      |
| Bervllium                    | ND         | mg/L             | 0.00050     | 0.000046     | 1       | 03/08/21 11:57 | 03/09/21 16:23 | 7440-41-7    |      |
| Boron                        | ND         | mg/L             | 0.040       | 0.0052       | 1       | 03/08/21 11:57 | 03/09/21 16:23 | 7440-42-8    |      |
| Cadmium                      | ND         | mg/L             | 0.00050     | 0.00012      | 1       | 03/08/21 11:57 | 03/09/21 16:23 | 7440-43-9    |      |
| Chromium                     | 0.00087J   | mg/L             | 0.0050      | 0.00055      | 1       | 03/08/21 11:57 | 03/09/21 16:23 | 7440-47-3    |      |
| Cobalt                       | ND         | mg/L             | 0.0050      | 0.00038      | 1       | 03/08/21 11:57 | 03/09/21 16:23 | 7440-48-4    |      |
| Lead                         | ND         | mg/L             | 0.0010      | 0.000036     | 1       | 03/08/21 11:57 | 03/09/21 16:23 | 7439-92-1    |      |
| Lithium                      | 0.0034J    | mg/L             | 0.030       | 0.00081      | 1       | 03/08/21 11:57 | 03/09/21 16:23 | 7439-93-2    |      |
| Molybdenum                   | ND         | mg/L             | 0.010       | 0.00069      | 1       | 03/08/21 11:57 | 03/09/21 16:23 | 7439-98-7    |      |
| Selenium                     | ND         | mg/L             | 0.0050      | 0.0016       | 1       | 03/08/21 11:57 | 03/09/21 16:23 | 7782-49-2    |      |
| 7470 Mercury                 | Analytical | Method: EPA      | 7470A Prej  | paration Met | hod: EF | PA 7470A       |                |              |      |
|                              | Pace Ana   | lytical Services | - Peachtre  | e Corners, G | βA      |                |                |              |      |
| Mercury                      | ND         | mg/L             | 0.00020     | 0.000078     | 1       | 03/08/21 13:30 | 03/09/21 10:59 | 7439-97-6    |      |
| 2540C Total Dissolved Solids | Analytical | Method: SM 2     | 450C-2011   |              |         |                |                |              |      |
|                              | Pace Ana   | lytical Services | - Peachtre  | e Corners, G | βA      |                |                |              |      |
| Total Dissolved Solids       | 95.0       | mg/L             | 10.0        | 10.0         | 1       |                | 03/06/21 13:09 |              |      |
| 300.0 IC Anions 28 Days      | Analytical | Method: EPA      | 300.0 Rev 2 | 2.1 1993     |         |                |                |              |      |
| -                            | Pace Ana   | lytical Services | - Asheville |              |         |                |                |              |      |
| Chloride                     | 7.0        | mg/L             | 1.0         | 0.60         | 1       |                | 03/13/21 19:12 | 16887-00-6   |      |
| Fluoride                     | ND         | mg/L             | 0.10        | 0.050        | 1       |                | 03/13/21 19:12 | 16984-48-8   |      |
| Sulfate                      | ND         | mg/L             | 1.0         | 0.50         | 1       |                | 03/13/21 19:12 | 14808-79-8   |      |



Project: YATES

Pace Project No.: 92525335

| Sample: YGWA-39              | Lab ID:    | 9252533501      | 5 Collecte    | ed: 03/04/21 | 10:20    | ) Received: 03/ | 05/21 09:20 Ma | atrix: Water |            |
|------------------------------|------------|-----------------|---------------|--------------|----------|-----------------|----------------|--------------|------------|
| _                            |            |                 | Report        |              |          |                 |                |              | <b>.</b> . |
| Parameters                   | Results    | Units           | Limit         |              | DF       | Prepared        | Analyzed       | CAS No.      | Qual       |
| Field Data                   | Analytical | Method:         |               |              |          |                 |                |              |            |
|                              | Pace Anal  | lytical Service | s - Charlotte | ;            |          |                 |                |              |            |
| Performed by                 | CUSTOME    |                 |               |              | 1        |                 | 03/08/21 09:07 |              |            |
| рН                           | 5.54       | Std. Units      |               |              | 1        |                 | 03/08/21 09:07 |              |            |
| 6010D ATL ICP                | Analytical | Method: EPA     | 6010D Pre     | paration Met | hod: E   | PA 3010A        |                |              |            |
|                              | Pace Anal  | lytical Service | s - Peachtre  | e Corners, G | βA       |                 |                |              |            |
| Calcium                      | 8.2        | mg/L            | 1.0           | 0.070        | 1        | 03/08/21 10:47  | 03/10/21 06:13 | 7440-70-2    |            |
| 6020 MET ICPMS               | Analytical | Method: EPA     | 6020B Pre     | paration Met | hod: E   | PA 3005A        |                |              |            |
|                              | Pace Anal  | lytical Service | s - Peachtre  | e Corners, G | <b>A</b> |                 |                |              |            |
| Antimony                     | ND         | mg/L            | 0.0030        | 0.00028      | 1        | 03/08/21 11:57  | 03/09/21 16:28 | 7440-36-0    |            |
| Arsenic                      | ND         | mg/L            | 0.0050        | 0.00078      | 1        | 03/08/21 11:57  | 03/09/21 16:28 | 7440-38-2    |            |
| Barium                       | 0.028      | mg/L            | 0.0050        | 0.00071      | 1        | 03/08/21 11:57  | 03/09/21 16:28 | 7440-39-3    |            |
| Bervllium                    | ND         | mg/L            | 0.00050       | 0.000046     | 1        | 03/08/21 11:57  | 03/09/21 16:28 | 7440-41-7    |            |
| Boron                        | 0.033J     | mg/L            | 0.040         | 0.0052       | 1        | 03/08/21 11:57  | 03/09/21 16:28 | 7440-42-8    |            |
| Cadmium                      | 0.00030J   | mg/L            | 0.00050       | 0.00012      | 1        | 03/08/21 11:57  | 03/09/21 16:28 | 7440-43-9    |            |
| Chromium                     | ND         | mg/L            | 0.0050        | 0.00055      | 1        | 03/08/21 11:57  | 03/09/21 16:28 | 7440-47-3    |            |
| Cobalt                       | 0.00071J   | mg/L            | 0.0050        | 0.00038      | 1        | 03/08/21 11:57  | 03/09/21 16:28 | 7440-48-4    |            |
| Lead                         | ND         | mg/L            | 0.0010        | 0.000036     | 1        | 03/08/21 11:57  | 03/09/21 16:28 | 7439-92-1    |            |
| Lithium                      | 0.0084J    | mg/L            | 0.030         | 0.00081      | 1        | 03/08/21 11:57  | 03/09/21 16:28 | 7439-93-2    |            |
| Molybdenum                   | 0.0014J    | mg/L            | 0.010         | 0.00069      | 1        | 03/08/21 11:57  | 03/09/21 16:28 | 7439-98-7    |            |
| Selenium                     | ND         | mg/L            | 0.0050        | 0.0016       | 1        | 03/08/21 11:57  | 03/09/21 16:28 | 7782-49-2    |            |
| 7470 Mercury                 | Analytical | Method: EPA     | 7470A Prej    | paration Met | hod: E   | PA 7470A        |                |              |            |
|                              | Pace Anal  | lytical Service | s - Peachtre  | e Corners, G | βA       |                 |                |              |            |
| Mercury                      | ND         | mg/L            | 0.00020       | 0.000078     | 1        | 03/08/21 13:30  | 03/09/21 11:01 | 7439-97-6    |            |
| 2540C Total Dissolved Solids | Analytical | Method: SM      | 2450C-2011    |              |          |                 |                |              |            |
|                              | Pace Anal  | lytical Service | s - Peachtre  | e Corners, G | <b>A</b> |                 |                |              |            |
| Total Dissolved Solids       | 168        | mg/L            | 10.0          | 10.0         | 1        |                 | 03/06/21 12:32 |              |            |
| 300.0 IC Anions 28 Days      | Analytical | Method: EPA     | 300.0 Rev 2   | 2.1 1993     |          |                 |                |              |            |
|                              | Pace Anal  | lytical Service | s - Asheville |              |          |                 |                |              |            |
| Chloride                     | 4.9        | mg/L            | 1.0           | 0.60         | 1        |                 | 03/13/21 19:28 | 16887-00-6   |            |
| Fluoride                     | ND         | mg/L            | 0.10          | 0.050        | 1        |                 | 03/13/21 19:28 | 16984-48-8   |            |
| Sulfate                      | 12.0       | mg/L            | 1.0           | 0.50         | 1        |                 | 03/13/21 19:28 | 14808-79-8   |            |



Project: YATES

Pace Project No.: 92525335

| Sample: YGWA-1D (030321)     | Lab ID:                | 92525335016                     | 6 Collecte                | ed: 03/03/2                    | 1 14:25        | Received: 03/  | 05/21 09:20 Ma | atrix: Water |      |
|------------------------------|------------------------|---------------------------------|---------------------------|--------------------------------|----------------|----------------|----------------|--------------|------|
| Parameters                   | Results                | Units                           | Report<br>Limit           | MDL                            | DF             | Prepared       | Analyzed       | CAS No.      | Qual |
| Field Data                   | Analytical<br>Pace Ana | Method:                         | s - Charlotte             |                                |                |                |                |              |      |
|                              |                        |                                 |                           | 5                              |                |                |                |              |      |
| Performed by                 | CUSTOME                |                                 |                           |                                | 1              |                | 03/08/21 09:07 |              |      |
| рН                           | 7.20                   | Std. Units                      |                           |                                | 1              |                | 03/08/21 09:07 |              |      |
| 6010D ATL ICP                | Analytical<br>Pace Ana | Method: EPA<br>lytical Services | 6010D Pre<br>s - Peachtre | paration Me<br>e Corners, 0    | thod: El<br>GA | PA 3010A       |                |              |      |
| Calcium                      | 14.1                   | mg/L                            | 1.0                       | 0.070                          | 1              | 03/08/21 10:47 | 03/10/21 06:18 | 7440-70-2    |      |
| 6020 MET ICPMS               | Analytical<br>Pace Ana | Method: EPA                     | 6020B Pre<br>s - Peachtre | paration Meter<br>e Corners, 0 | thod: El<br>GA | PA 3005A       |                |              |      |
| Antimony                     | ND                     | mg/L                            | 0.0030                    | 0.00028                        | 1              | 03/08/21 11:57 | 03/09/21 17:01 | 7440-36-0    |      |
| Arsenic                      | ND                     | mg/L                            | 0.0050                    | 0.00078                        | 1              | 03/08/21 11:57 | 03/09/21 17:01 | 7440-38-2    |      |
| Barium                       | 0.0068                 | mg/L                            | 0.0050                    | 0.00071                        | 1              | 03/08/21 11:57 | 03/09/21 17:01 | 7440-39-3    |      |
| Beryllium                    | ND                     | mg/L                            | 0.00050                   | 0.000046                       | 1              | 03/08/21 11:57 | 03/09/21 17:01 | 7440-41-7    |      |
| Boron                        | ND                     | mg/L                            | 0.040                     | 0.0052                         | 1              | 03/08/21 11:57 | 03/09/21 17:01 | 7440-42-8    |      |
| Cadmium                      | ND                     | mg/L                            | 0.00050                   | 0.00012                        | 1              | 03/08/21 11:57 | 03/09/21 17:01 | 7440-43-9    |      |
| Chromium                     | ND                     | mg/L                            | 0.0050                    | 0.00055                        | 1              | 03/08/21 11:57 | 03/09/21 17:01 | 7440-47-3    |      |
| Cobalt                       | ND                     | mg/L                            | 0.0050                    | 0.00038                        | 1              | 03/08/21 11:57 | 03/09/21 17:01 | 7440-48-4    |      |
| Lead                         | 0.000056J              | mg/L                            | 0.0010                    | 0.000036                       | 1              | 03/08/21 11:57 | 03/09/21 17:01 | 7439-92-1    |      |
| Lithium                      | 0.012J                 | mg/L                            | 0.030                     | 0.00081                        | 1              | 03/08/21 11:57 | 03/09/21 17:01 | 7439-93-2    |      |
| Molybdenum                   | 0.0088J                | mg/L                            | 0.010                     | 0.00069                        | 1              | 03/08/21 11:57 | 03/09/21 17:01 | 7439-98-7    |      |
| Selenium                     | ND                     | mg/L                            | 0.0050                    | 0.0016                         | 1              | 03/08/21 11:57 | 03/09/21 17:01 | 7782-49-2    |      |
| 2540C Total Dissolved Solids | Analytical             | Method: SM 2                    | 450C-2011                 |                                |                |                |                |              |      |
|                              | Pace Ana               | lytical Services                | s - Peachtre              | e Corners, (                   | GΑ             |                |                |              |      |
| Total Dissolved Solids       | 99.0                   | mg/L                            | 10.0                      | 10.0                           | 1              |                | 03/06/21 13:09 |              |      |
| 300.0 IC Anions 28 Days      | Analytical             | Method: EPA                     | 300.0 Rev 2               | 2.1 1993                       |                |                |                |              |      |
|                              | Pace Ana               | lytical Services                | s - Asheville             | •                              |                |                |                |              |      |
| Chloride                     | 0.96J                  | mg/L                            | 1.0                       | 0.60                           | 1              |                | 03/13/21 19:43 | 16887-00-6   |      |
| Fluoride                     | 0.078J                 | mg/L                            | 0.10                      | 0.050                          | 1              |                | 03/13/21 19:43 | 16984-48-8   |      |
| Sulfate                      | 9.0                    | mg/L                            | 1.0                       | 0.50                           | 1              |                | 03/13/21 19:43 | 14808-79-8   |      |



Project: YATES

Pace Project No.: 92525335

| Sample: YGWA-1I (030321)     | Lab ID:    | 92525335017      | Collecte        | ed: 03/03/2  | 1 13:35 | 6 Received: 03/ | 05/21 09:20 Ma | atrix: Water |      |
|------------------------------|------------|------------------|-----------------|--------------|---------|-----------------|----------------|--------------|------|
| Parameters                   | Results    | Units            | Report<br>Limit | MDL          | DF      | Prepared        | Analyzed       | CAS No.      | Qual |
| Field Data                   | Analytical | Method:          |                 |              |         |                 |                |              |      |
|                              | Pace Ana   | lytical Services | s - Charlotte   | 9            |         |                 |                |              |      |
| Performed by                 | CUSTOME    |                  |                 |              | 1       |                 | 03/08/21 09:07 |              |      |
| рН                           | 5.38       | Std. Units       |                 |              | 1       |                 | 03/08/21 09:07 |              |      |
| 6010D ATL ICP                | Analytical | Method: EPA      | 6010D Pre       | paration Me  | thod: E | PA 3010A        |                |              |      |
|                              | Pace Ana   | lytical Services | s - Peachtre    | e Corners, ( | GΑ      |                 |                |              |      |
| Calcium                      | 1.8        | mg/L             | 1.0             | 0.070        | 1       | 03/08/21 10:47  | 03/10/21 06:23 | 7440-70-2    |      |
| 6020 MET ICPMS               | Analytical | Method: EPA      | 6020B Pre       | paration Me  | thod: E | PA 3005A        |                |              |      |
|                              | Pace Ana   | lytical Services | s - Peachtre    | e Corners, ( | ЗA      |                 |                |              |      |
| Antimony                     | ND         | mg/L             | 0.0030          | 0.00028      | 1       | 03/08/21 11:57  | 03/09/21 17:07 | 7440-36-0    |      |
| Arsenic                      | ND         | mg/L             | 0.0050          | 0.00078      | 1       | 03/08/21 11:57  | 03/09/21 17:07 | 7440-38-2    |      |
| Barium                       | 0.0094     | mg/L             | 0.0050          | 0.00071      | 1       | 03/08/21 11:57  | 03/09/21 17:07 | 7440-39-3    |      |
| Beryllium                    | ND         | mg/L             | 0.00050         | 0.000046     | 1       | 03/08/21 11:57  | 03/09/21 17:07 | 7440-41-7    |      |
| Boron                        | ND         | mg/L             | 0.040           | 0.0052       | 1       | 03/08/21 11:57  | 03/09/21 17:07 | 7440-42-8    |      |
| Cadmium                      | ND         | mg/L             | 0.00050         | 0.00012      | 1       | 03/08/21 11:57  | 03/09/21 17:07 | 7440-43-9    |      |
| Chromium                     | ND         | mg/L             | 0.0050          | 0.00055      | 1       | 03/08/21 11:57  | 03/09/21 17:07 | 7440-47-3    |      |
| Cobalt                       | 0.0030J    | mg/L             | 0.0050          | 0.00038      | 1       | 03/08/21 11:57  | 03/09/21 17:07 | 7440-48-4    |      |
| Lead                         | ND         | mg/L             | 0.0010          | 0.000036     | 1       | 03/08/21 11:57  | 03/09/21 17:07 | 7439-92-1    |      |
| Lithium                      | 0.0025J    | mg/L             | 0.030           | 0.00081      | 1       | 03/08/21 11:57  | 03/09/21 17:07 | 7439-93-2    |      |
| Molybdenum                   | 0.0049J    | mg/L             | 0.010           | 0.00069      | 1       | 03/08/21 11:57  | 03/09/21 17:07 | 7439-98-7    |      |
| Selenium                     | ND         | mg/L             | 0.0050          | 0.0016       | 1       | 03/08/21 11:57  | 03/09/21 17:07 | 7782-49-2    |      |
| 2540C Total Dissolved Solids | Analytical | Method: SM 2     | 450C-2011       |              |         |                 |                |              |      |
|                              | Pace Ana   | lytical Services | s - Peachtre    | e Corners, ( | GΑ      |                 |                |              |      |
| Total Dissolved Solids       | 39.0       | mg/L             | 10.0            | 10.0         | 1       |                 | 03/06/21 13:09 |              |      |
| 300.0 IC Anions 28 Days      | Analytical | Method: EPA      | 300.0 Rev 2     | 2.1 1993     |         |                 |                |              |      |
|                              | Pace Ana   | lytical Services | s - Asheville   | •            |         |                 |                |              |      |
| Chloride                     | 1.2        | ma/L             | 1.0             | 0.60         | 1       |                 | 03/13/21 19:59 | 16887-00-6   |      |
| Fluoride                     | ND         | mg/L             | 0.10            | 0.050        | 1       |                 | 03/13/21 19:59 | 16984-48-8   |      |
| Sulfate                      | 4.4        | mg/L             | 1.0             | 0.50         | 1       |                 | 03/13/21 19:59 | 14808-79-8   |      |



Project: YATES

Pace Project No.: 92525335

| Sample: YGWA-2I (030321)     | Lab ID:                | 9252533501      | B Collecte                | ed: 03/03/2                  | 1 11:45       | Received: 03/  | /05/21 09:20 Ma | atrix: Water |      |
|------------------------------|------------------------|-----------------|---------------------------|------------------------------|---------------|----------------|-----------------|--------------|------|
| Parameters                   | Results                | Units           | Report<br>Limit           | MDL                          | DF            | Prepared       | Analyzed        | CAS No.      | Qual |
| Field Data                   | Analytical<br>Pace Ana | Method:         | s - Charlotte             | 2                            |               |                |                 |              |      |
| Performed by                 | CUSTOME                |                 | onanotte                  |                              | 1             |                | 03/08/21 09:07  |              |      |
|                              | R                      |                 |                           |                              |               |                |                 |              |      |
| рН                           | 7.92                   | Std. Units      |                           |                              | 1             |                | 03/08/21 09:07  |              |      |
| 6010D ATL ICP                | Analytical<br>Pace Ana | Method: EPA     | 6010D Pre<br>s - Peachtre | paration Me                  | thod: E<br>GA | PA 3010A       |                 |              |      |
| Calcium                      | 25.6                   | mg/L            | 1.0                       | 0.070                        | 1             | 03/08/21 10:47 | 03/10/21 06:28  | 7440-70-2    |      |
| 6020 MET ICPMS               | Analytical<br>Pace Ana | Method: EPA     | 6020B Pre<br>s - Peachtre | paration Met<br>e Corners, 0 | thod: E<br>GA | PA 3005A       |                 |              |      |
| Antimony                     | ND                     | ma/L            | 0.0030                    | 0.00028                      | 1             | 03/08/21 11:57 | 03/09/21 17:12  | 7440-36-0    |      |
| Arsenic                      | 0.00098J               | mg/L            | 0.0050                    | 0.00078                      | 1             | 03/08/21 11:57 | 03/09/21 17:12  | 7440-38-2    |      |
| Barium                       | 0.0041J                | mg/L            | 0.0050                    | 0.00071                      | 1             | 03/08/21 11:57 | 03/09/21 17:12  | 7440-39-3    |      |
| Beryllium                    | ND                     | mg/L            | 0.00050                   | 0.000046                     | 1             | 03/08/21 11:57 | 03/09/21 17:12  | 7440-41-7    |      |
| Boron                        | ND                     | mg/L            | 0.040                     | 0.0052                       | 1             | 03/08/21 11:57 | 03/09/21 17:12  | 7440-42-8    |      |
| Cadmium                      | ND                     | mg/L            | 0.00050                   | 0.00012                      | 1             | 03/08/21 11:57 | 03/09/21 17:12  | 7440-43-9    |      |
| Chromium                     | ND                     | mg/L            | 0.0050                    | 0.00055                      | 1             | 03/08/21 11:57 | 03/09/21 17:12  | 7440-47-3    |      |
| Cobalt                       | ND                     | mg/L            | 0.0050                    | 0.00038                      | 1             | 03/08/21 11:57 | 03/09/21 17:12  | 7440-48-4    |      |
| Lead                         | ND                     | mg/L            | 0.0010                    | 0.000036                     | 1             | 03/08/21 11:57 | 03/09/21 17:12  | 7439-92-1    |      |
| Lithium                      | 0.0016J                | mg/L            | 0.030                     | 0.00081                      | 1             | 03/08/21 11:57 | 03/09/21 17:12  | 7439-93-2    |      |
| Molybdenum                   | 0.0074J                | mg/L            | 0.010                     | 0.00069                      | 1             | 03/08/21 11:57 | 03/09/21 17:12  | 7439-98-7    |      |
| Selenium                     | ND                     | mg/L            | 0.0050                    | 0.0016                       | 1             | 03/08/21 11:57 | 03/09/21 17:12  | 7782-49-2    |      |
| 2540C Total Dissolved Solids | Analytical             | Method: SM 2    | 2450C-2011                |                              |               |                |                 |              |      |
|                              | Pace Ana               | lytical Service | s - Peachtre              | e Corners, (                 | ЗA            |                |                 |              |      |
| Total Dissolved Solids       | 138                    | mg/L            | 10.0                      | 10.0                         | 1             |                | 03/06/21 13:10  |              |      |
| 300.0 IC Anions 28 Days      | Analytical             | Method: EPA     | 300.0 Rev 2               | 2.1 1993                     |               |                |                 |              |      |
|                              | Pace Ana               | lytical Service | s - Asheville             | )                            |               |                |                 |              |      |
| Chloride                     | 0.86J                  | mg/L            | 1.0                       | 0.60                         | 1             |                | 03/13/21 20:14  | 16887-00-6   |      |
| Fluoride                     | 0.085J                 | mg/L            | 0.10                      | 0.050                        | 1             |                | 03/13/21 20:14  | 16984-48-8   |      |
| Sulfate                      | 10.6                   | mg/L            | 1.0                       | 0.50                         | 1             |                | 03/13/21 20:14  | 14808-79-8   |      |



Project: YATES

Pace Project No.: 92525335

| Sample: YGWA-3I (030321)     | Lab ID: 92525335019 Collected: 03/03/21 17:00 Received: 03/05/21 09:20 Matrix: Water |                  |               |              |        |                |                |            |      |  |  |
|------------------------------|--------------------------------------------------------------------------------------|------------------|---------------|--------------|--------|----------------|----------------|------------|------|--|--|
| Parameters                   | Results                                                                              | Units            | Report        | MDI          | DF     | Prenared       | Analyzed       | CAS No     | Qual |  |  |
|                              |                                                                                      |                  |               |              |        |                |                |            |      |  |  |
| Field Data                   | Analytical                                                                           | Method:          |               |              |        |                |                |            |      |  |  |
|                              | Pace Ana                                                                             | lytical Services | s - Charlotte | 9            |        |                |                |            |      |  |  |
| Performed by                 |                                                                                      |                  |               |              | 1      |                | 03/08/21 09:07 |            |      |  |  |
| рН                           | 8.23                                                                                 | Std. Units       |               |              | 1      |                | 03/08/21 09:07 |            |      |  |  |
| 6010D ATL ICP                | Analytical Method: EPA 6010D Preparation Method: EPA 3010A                           |                  |               |              |        |                |                |            |      |  |  |
|                              | Pace Ana                                                                             | lytical Services | s - Peachtre  | e Corners, C | ЭA     |                |                |            |      |  |  |
| Calcium                      | 20.6                                                                                 | mg/L             | 1.0           | 0.070        | 1      | 03/08/21 10:47 | 03/10/21 06:32 | 7440-70-2  |      |  |  |
| 6020 MET ICPMS               | Analytical                                                                           | Method: EPA      | 6020B Pre     | paration Met | hod: E | PA 3005A       |                |            |      |  |  |
|                              | Pace Ana                                                                             | lytical Services | s - Peachtre  | e Corners, C | ЗA     |                |                |            |      |  |  |
| Antimony                     | ND                                                                                   | mg/L             | 0.0030        | 0.00028      | 1      | 03/08/21 11:57 | 03/09/21 17:18 | 7440-36-0  |      |  |  |
| Arsenic                      | ND                                                                                   | mg/L             | 0.0050        | 0.00078      | 1      | 03/08/21 11:57 | 03/09/21 17:18 | 7440-38-2  |      |  |  |
| Barium                       | 0.0031J                                                                              | mg/L             | 0.0050        | 0.00071      | 1      | 03/08/21 11:57 | 03/09/21 17:18 | 7440-39-3  |      |  |  |
| Beryllium                    | ND                                                                                   | mg/L             | 0.00050       | 0.000046     | 1      | 03/08/21 11:57 | 03/09/21 17:18 | 7440-41-7  |      |  |  |
| Boron                        | ND                                                                                   | mg/L             | 0.040         | 0.0052       | 1      | 03/08/21 11:57 | 03/09/21 17:18 | 7440-42-8  |      |  |  |
| Cadmium                      | ND                                                                                   | mg/L             | 0.00050       | 0.00012      | 1      | 03/08/21 11:57 | 03/09/21 17:18 | 7440-43-9  |      |  |  |
| Chromium                     | ND                                                                                   | mg/L             | 0.0050        | 0.00055      | 1      | 03/08/21 11:57 | 03/09/21 17:18 | 7440-47-3  |      |  |  |
| Cobalt                       | ND                                                                                   | mg/L             | 0.0050        | 0.00038      | 1      | 03/08/21 11:57 | 03/09/21 17:18 | 7440-48-4  |      |  |  |
| Lead                         | ND                                                                                   | mg/L             | 0.0010        | 0.000036     | 1      | 03/08/21 11:57 | 03/09/21 17:18 | 7439-92-1  |      |  |  |
| Lithium                      | 0.017J                                                                               | mg/L             | 0.030         | 0.00081      | 1      | 03/08/21 11:57 | 03/09/21 17:18 | 7439-93-2  |      |  |  |
| Molybdenum                   | 0.0036J                                                                              | mg/L             | 0.010         | 0.00069      | 1      | 03/08/21 11:57 | 03/09/21 17:18 | 7439-98-7  |      |  |  |
| Selenium                     | ND                                                                                   | mg/L             | 0.0050        | 0.0016       | 1      | 03/08/21 11:57 | 03/09/21 17:18 | 7782-49-2  |      |  |  |
| 2540C Total Dissolved Solids | Analytical Method: SM 2450C-2011                                                     |                  |               |              |        |                |                |            |      |  |  |
|                              | Pace Ana                                                                             | lytical Services | s - Peachtre  | e Corners, C | ЗA     |                |                |            |      |  |  |
| Total Dissolved Solids       | 111                                                                                  | mg/L             | 10.0          | 10.0         | 1      |                | 03/06/21 13:10 |            |      |  |  |
| 300.0 IC Anions 28 Days      | Analytical Method: EPA 300.0 Rev 2.1 1993                                            |                  |               |              |        |                |                |            |      |  |  |
|                              | Pace Ana                                                                             | lytical Services | s - Asheville | )            |        |                |                |            |      |  |  |
| Chloride                     | 0.99J                                                                                | mg/L             | 1.0           | 0.60         | 1      |                | 03/13/21 21:00 | 16887-00-6 |      |  |  |
| Fluoride                     | 0.10                                                                                 | mg/L             | 0.10          | 0.050        | 1      |                | 03/13/21 21:00 | 16984-48-8 |      |  |  |
| Sulfate                      | 9.6                                                                                  | mg/L             | 1.0           | 0.50         | 1      |                | 03/13/21 21:00 | 14808-79-8 | M1   |  |  |



Project: YATES

Pace Project No.: 92525335

| Lab ID:                                   | Collecte                                                                                                                                                                                                                                                                                     | ed: 03/03/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 16:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Received: 03/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Results                                   | Units                                                                                                                                                                                                                                                                                        | Report<br>Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MDL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Prepared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Analyzed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CAS No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Qual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Analytical                                | Method:                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Pace Ana                                  | lytical Services                                                                                                                                                                                                                                                                             | - Charlotte                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| CUSTOME<br>R                              |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 03/08/21 09:07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 8.39                                      | Std. Units                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 03/08/21 09:07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Analytical<br>Pace Ana                    | Method: EPA                                                                                                                                                                                                                                                                                  | 6010D Pre<br>- Peachtre                                                                                                                                                                                                                                                                                                                                                                                                                                                              | paration Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | thod: El<br>GA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PA 3010A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 29.8                                      | mg/L                                                                                                                                                                                                                                                                                         | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 03/08/21 10:47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 03/10/21 06:47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7440-70-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Analytical<br>Pace Ana                    | Method: EPA                                                                                                                                                                                                                                                                                  | 6020B Pre<br>- Peachtre                                                                                                                                                                                                                                                                                                                                                                                                                                                              | paration Meter<br>e Corners, C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | thod: El<br>GA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PA 3005A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| ND                                        | mg/L                                                                                                                                                                                                                                                                                         | 0.0030                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00028                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 03/08/21 11:57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 03/09/21 17:24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7440-36-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| ND                                        | mg/L                                                                                                                                                                                                                                                                                         | 0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 03/08/21 11:57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 03/09/21 17:24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7440-38-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 0.0064                                    | mg/L                                                                                                                                                                                                                                                                                         | 0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00071                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 03/08/21 11:57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 03/09/21 17:24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7440-39-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| ND                                        | mg/L                                                                                                                                                                                                                                                                                         | 0.00050                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000046                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 03/08/21 11:57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 03/09/21 17:24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7440-41-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| ND                                        | mg/L                                                                                                                                                                                                                                                                                         | 0.040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 03/08/21 11:57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 03/09/21 17:24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7440-42-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| ND                                        | mg/L                                                                                                                                                                                                                                                                                         | 0.00050                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.00012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 03/08/21 11:57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 03/09/21 17:24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7440-43-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| ND                                        | mg/L                                                                                                                                                                                                                                                                                         | 0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 03/08/21 11:57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 03/09/21 17:24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7440-47-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| ND                                        | mg/L                                                                                                                                                                                                                                                                                         | 0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 03/08/21 11:57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 03/09/21 17:24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7440-48-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| ND                                        | mg/L                                                                                                                                                                                                                                                                                         | 0.0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 03/08/21 11:57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 03/09/21 17:24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7439-92-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 0.024J                                    | mg/L                                                                                                                                                                                                                                                                                         | 0.030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00081                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 03/08/21 11:57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 03/09/21 17:24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7439-93-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 0.013                                     | mg/L                                                                                                                                                                                                                                                                                         | 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 03/08/21 11:57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 03/09/21 17:24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7439-98-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| ND                                        | mg/L                                                                                                                                                                                                                                                                                         | 0.0050                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 03/08/21 11:57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 03/09/21 17:24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7782-49-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Analytical Method: SM 2450C-2011          |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Pace Ana                                  | lytical Services                                                                                                                                                                                                                                                                             | - Peachtre                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e Corners, (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ЗA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 137                                       | mg/L                                                                                                                                                                                                                                                                                         | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 03/06/21 13:10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Analytical Method: EPA 300.0 Rev 2.1 1993 |                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Pace Ana                                  | lytical Services                                                                                                                                                                                                                                                                             | - Asheville                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 1.1                                       | ma/L                                                                                                                                                                                                                                                                                         | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 03/13/21 22:18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16887-00-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 0.44                                      | mg/L                                                                                                                                                                                                                                                                                         | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 03/13/21 22:18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16984-48-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| 7.0                                       | mg/L                                                                                                                                                                                                                                                                                         | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 03/13/21 22:18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 14808-79-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                           | Lab ID:<br>Results<br>Analytical<br>Pace Ana<br>CUSTOME<br>R<br>8.39<br>Analytical<br>Pace Ana<br>29.8<br>Analytical<br>Pace Ana<br>ND<br>ND<br>0.0064<br>ND<br>ND<br>ND<br>ND<br>0.0064<br>ND<br>ND<br>ND<br>ND<br>ND<br>0.0064<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND<br>ND | Lab ID:92525335020ResultsUnitsAnalytical Method:Pace Analytical ServicesCUSTOMER8.39Std. UnitsAnalytical Method: EPA 0Pace Analytical Services29.8mg/LAnalytical Method: EPA 0Pace Analytical Services29.8mg/LAnalytical Method: EPA 0Pace Analytical ServicesNDmg/LNDmg/LNDmg/LNDmg/LNDmg/LNDmg/LNDmg/LNDmg/LNDmg/LNDmg/LNDmg/LNDmg/LNDmg/LNDmg/LNDmg/LAnalytical Method: SM 2Pace Analytical Services137mg/LAnalytical Method: EPA 3Pace Analytical Services1.1mg/L0.44mg/L7.0mg/L | Lab ID: 92525335020 Collected Report Limit   Results Units Limit   Analytical Method: Pace Analytical Services - Charlotted CUSTOME R R   8.39 Std. Units Analytical Method: EPA 6010D Prepace Analytical Services - Peachtree 29.8 mg/L 1.0   Analytical Method: EPA 6020B Prepace Analytical Services - Peachtree ND mg/L 0.0030   ND mg/L 0.0030   ND mg/L 0.0050   ND mg/L 0.0050   ND mg/L 0.0050   ND mg/L 0.0050   ND mg/L 0.0050   ND mg/L 0.0050   ND mg/L 0.0050   ND mg/L 0.0050   ND mg/L 0.0050   ND mg/L 0.0050   ND mg/L 0.0050   ND mg/L 0.0050   ND mg/L 0.0050   ND mg/L 0.0050   ND mg/L 0.0050   ND mg/L 0.0050   ND | Lab ID:   92525335020   Collected:   03/03/2     Report   Limit   MDL     Analytical Method:   Pace Analytical Services - Charlotte     CUSTOME   R   8.39   Std. Units     Analytical Method: EPA 6010D   Preparation Me     Pace Analytical Services - Peachtree Corners, O   29.8   mg/L   1.0   0.070     Analytical Method: EPA 6020B   Preparation Me   Pace Analytical Services - Peachtree Corners, O   29.8   mg/L   1.0   0.070     Analytical Method: EPA 6020B   Preparation Me   Pace Analytical Services - Peachtree Corners, O   20.0030   0.00028     ND   mg/L   0.0050   0.00071   Me     Pace Analytical Services - Peachtree Corners, O   ND   mg/L   0.0050   0.00071     ND   mg/L   0.00050   0.00071   ND   mg/L   0.0050   0.00071     ND   mg/L   0.0050   0.00071   ND   mg/L   0.0050   0.00071     ND   mg/L   0.0050   0.00010   0.00052   ND   ND | Lab ID:   92525335020   Collected:   03/03/21 16:00     Report   Imit   MDL   DF     Analytical Method:   Pace Analytical Services - Charlotte   1     CUSTOME   1   R   1     8.39   Std. Units   1   1     Analytical Method: EPA 6010D   Preparation Method: EI   Pace Analytical Services - Peachtree Corners, GA     29.8   mg/L   1.0   0.070   1     Analytical Method: EPA 6020B   Preparation Method: EI   Pace Analytical Services - Peachtree Corners, GA     D   mg/L   0.0030   0.00028   1     ND   mg/L   0.0050   0.00071   1     Analytical Method: EPA 60.005   0.00071   1     ND   mg/L   0.0050   0.00071   1     ND   mg/L   0.0050   0.00071   1     ND   mg/L   0.0050   0.00071   1     ND   mg/L   0.0050   0.00071   1     ND   mg/L   0.00050   0.00012   1 <td>Lab ID:   92525335020   Collected:   03/03/21 16:00   Received:   03/03/21     Results   Units   Limit   MDL   DF   Prepared     Analytical Method:   Pace Analytical Services - Charlotte   1   R   1   R     8.39   Std. Units   1   Analytical Method:   EPA 6010D   Preparation Method:   EPA 3010A     Pace Analytical Services - Peachtree   Corners, GA   29.8   mg/L   1.0   0.070   1   03/08/21 10:47     Analytical Method:   EPA 6020B   Preparation Method:   EPA 3005A   Pace Analytical Services - Peachtree Corners, GA     ND   mg/L   0.0030   0.00028   1   03/08/21 11:57     ND   mg/L   0.0050   0.00071   03/08/21 11:57     ND   mg/L   0.0050   0.00071   03/08/21 11:57     ND   mg/L   0.0050   0.00071   03/08/21 11:57     ND   mg/L   0.0050   0.00012   03/08/21 11:57     ND   mg/L   0.0050   0.00013   03/08/2</td> <td>Lab ID:   92525335020   Collected:   03/03/21 16:00   Received:   03/05/21 09:20   Mail     Results   Units   Limit   MDL   DF   Prepared   Analyzed     Analytical Method:   Pace Analytical Services - Charlotte   03/08/21 09:07   R   03/08/21 09:07     R   1   03/08/21 09:07   R   03/08/21 09:07     Analytical Method:   EPA 6010D   Preparation Method:   EPA 3010A     Pace Analytical Services - Peachtree Corners, GA   29.8   mg/L   1.0   0.070   1   03/08/21 10:47   03/10/21 06:47     Analytical Method:   EPA 6020B   Preparation Method:   EPA 3005A   Pace Analytical Services - Peachtree Corners, GA     ND   mg/L   0.0030   0.00028   1   03/08/21 11:57   03/09/21 17:24     ND   mg/L   0.00050   0.00071   1   03/08/21 11:57   03/09/21 17:24     ND   mg/L   0.00050   0.00071   1   03/08/21 11:57   03/09/21 17:24     ND   mg/L   0.00050   0.00051   0.03/08</td> <td>Lab ID:   92525335020   Collected:   03/03/21 16:00   Received:   03/05/21 09:20   Matrix: Water     Results   Units   Limit   MDL   DF   Prepared   Analyzed   CAS No.     Analytical Method:   Pace Analytical Services - Charlotte   03/08/21 09:07   R   Analytical Services - Charlotte     CUSTOME   1   03/08/21 09:07   R   8.39   Std. Units   1   03/08/21 09:07     Analytical Method:   EPA 6010D   Preparation Method: EPA 3010A   Pace Analytical Services - Peachtree Corners, GA   29.8   mg/L   1.0   0.070   1   03/08/21 10:47   03/10/21 06:47   7440-70-2     Analytical Method:   EPA 6020B   Preparation Method: EPA 3005A   Pace Analytical Services - Peachtree Corners, GA   ND   mg/L   0.0030   0.00028   1   03/08/21 11:57   03/09/21 17:24   7440-38-2     ND   mg/L   0.0050   0.00071   1   03/08/21 11:57   03/09/21 17:24   7440-34-3     ND   mg/L   0.0050   0.00012   1   03/08/21 11:57   03/09/21 17:24</td> | Lab ID:   92525335020   Collected:   03/03/21 16:00   Received:   03/03/21     Results   Units   Limit   MDL   DF   Prepared     Analytical Method:   Pace Analytical Services - Charlotte   1   R   1   R     8.39   Std. Units   1   Analytical Method:   EPA 6010D   Preparation Method:   EPA 3010A     Pace Analytical Services - Peachtree   Corners, GA   29.8   mg/L   1.0   0.070   1   03/08/21 10:47     Analytical Method:   EPA 6020B   Preparation Method:   EPA 3005A   Pace Analytical Services - Peachtree Corners, GA     ND   mg/L   0.0030   0.00028   1   03/08/21 11:57     ND   mg/L   0.0050   0.00071   03/08/21 11:57     ND   mg/L   0.0050   0.00071   03/08/21 11:57     ND   mg/L   0.0050   0.00071   03/08/21 11:57     ND   mg/L   0.0050   0.00012   03/08/21 11:57     ND   mg/L   0.0050   0.00013   03/08/2 | Lab ID:   92525335020   Collected:   03/03/21 16:00   Received:   03/05/21 09:20   Mail     Results   Units   Limit   MDL   DF   Prepared   Analyzed     Analytical Method:   Pace Analytical Services - Charlotte   03/08/21 09:07   R   03/08/21 09:07     R   1   03/08/21 09:07   R   03/08/21 09:07     Analytical Method:   EPA 6010D   Preparation Method:   EPA 3010A     Pace Analytical Services - Peachtree Corners, GA   29.8   mg/L   1.0   0.070   1   03/08/21 10:47   03/10/21 06:47     Analytical Method:   EPA 6020B   Preparation Method:   EPA 3005A   Pace Analytical Services - Peachtree Corners, GA     ND   mg/L   0.0030   0.00028   1   03/08/21 11:57   03/09/21 17:24     ND   mg/L   0.00050   0.00071   1   03/08/21 11:57   03/09/21 17:24     ND   mg/L   0.00050   0.00071   1   03/08/21 11:57   03/09/21 17:24     ND   mg/L   0.00050   0.00051   0.03/08 | Lab ID:   92525335020   Collected:   03/03/21 16:00   Received:   03/05/21 09:20   Matrix: Water     Results   Units   Limit   MDL   DF   Prepared   Analyzed   CAS No.     Analytical Method:   Pace Analytical Services - Charlotte   03/08/21 09:07   R   Analytical Services - Charlotte     CUSTOME   1   03/08/21 09:07   R   8.39   Std. Units   1   03/08/21 09:07     Analytical Method:   EPA 6010D   Preparation Method: EPA 3010A   Pace Analytical Services - Peachtree Corners, GA   29.8   mg/L   1.0   0.070   1   03/08/21 10:47   03/10/21 06:47   7440-70-2     Analytical Method:   EPA 6020B   Preparation Method: EPA 3005A   Pace Analytical Services - Peachtree Corners, GA   ND   mg/L   0.0030   0.00028   1   03/08/21 11:57   03/09/21 17:24   7440-38-2     ND   mg/L   0.0050   0.00071   1   03/08/21 11:57   03/09/21 17:24   7440-34-3     ND   mg/L   0.0050   0.00012   1   03/08/21 11:57   03/09/21 17:24 |  |


Project: YATES

Pace Project No.: 92525335

| Sample: EB-02 (03032021)     | Lab ID:                | 92525335021                       | Collecte                   | ed: 03/03/2                  | 1 17:15        | Received: 03/  | /05/21 09:20 Ma | atrix: Water |      |
|------------------------------|------------------------|-----------------------------------|----------------------------|------------------------------|----------------|----------------|-----------------|--------------|------|
| Parameters                   | Results                | Units                             | Report<br>Limit            | MDL                          | DF             | Prepared       | Analyzed        | CAS No.      | Qual |
| 6010D ATL ICP                | Analytical<br>Pace Ana | Method: EPA 6<br>lytical Services | 010D Pre<br>- Peachtre     | paration Me                  | thod: El<br>GA | PA 3010A       |                 |              |      |
| Calcium                      | 33.3                   | mg/L                              | 1.0                        | 0.070                        | 1              | 03/08/21 10:47 | 03/10/21 06:52  | 7440-70-2    |      |
| 6020 MET ICPMS               | Analytical<br>Pace Ana | Method: EPA 6<br>lytical Services | 020B Pre<br>- Peachtre     | paration Met<br>e Corners, ( | thod: Ef<br>GA | PA 3005A       |                 |              |      |
| Antimony                     | ND                     | mg/L                              | 0.0030                     | 0.00028                      | 1              | 03/08/21 11:57 | 03/09/21 17:29  | 7440-36-0    |      |
| Arsenic                      | ND                     | mg/L                              | 0.0050                     | 0.00078                      | 1              | 03/08/21 11:57 | 03/09/21 17:29  | 7440-38-2    |      |
| Barium                       | 0.023                  | mg/L                              | 0.0050                     | 0.00071                      | 1              | 03/08/21 11:57 | 03/09/21 17:29  | 7440-39-3    |      |
| Beryllium                    | ND                     | mg/L                              | 0.00050                    | 0.000046                     | 1              | 03/08/21 11:57 | 03/09/21 17:29  | 7440-41-7    |      |
| Boron                        | ND                     | mg/L                              | 0.040                      | 0.0052                       | 1              | 03/08/21 11:57 | 03/09/21 17:29  | 7440-42-8    |      |
| Cadmium                      | ND                     | mg/L                              | 0.00050                    | 0.00012                      | 1              | 03/08/21 11:57 | 03/09/21 17:29  | 7440-43-9    |      |
| Chromium                     | 0.00057J               | mg/L                              | 0.0050                     | 0.00055                      | 1              | 03/08/21 11:57 | 03/09/21 17:29  | 7440-47-3    |      |
| Cobalt                       | ND                     | mg/L                              | 0.0050                     | 0.00038                      | 1              | 03/08/21 11:57 | 03/09/21 17:29  | 7440-48-4    |      |
| Lead                         | ND                     | mg/L                              | 0.0010                     | 0.000036                     | 1              | 03/08/21 11:57 | 03/09/21 17:29  | 7439-92-1    |      |
| Lithium                      | 0.0016J                | mg/L                              | 0.030                      | 0.00081                      | 1              | 03/08/21 11:57 | 03/09/21 17:29  | 7439-93-2    |      |
| Molybdenum                   | ND                     | mg/L                              | 0.010                      | 0.00069                      | 1              | 03/08/21 11:57 | 03/09/21 17:29  | 7439-98-7    |      |
| Selenium                     | ND                     | mg/L                              | 0.0050                     | 0.0016                       | 1              | 03/08/21 11:57 | 03/09/21 17:29  | 7782-49-2    |      |
| Thallium                     | ND                     | mg/L                              | 0.0010                     | 0.00014                      | 1              | 03/08/21 11:57 | 03/09/21 17:29  | 7440-28-0    |      |
| 7470 Mercury                 | Analytical<br>Pace Ana | Method: EPA 7                     | 7470A Pre<br>- Peachtre    | paration Met<br>e Corners, 0 | thod: EF<br>GA | PA 7470A       |                 |              |      |
| Mercury                      | ND                     | mg/L                              | 0.00020                    | 0.000078                     | 1              | 03/08/21 13:30 | 03/09/21 11:04  | 7439-97-6    |      |
| 2540C Total Dissolved Solids | Analytical<br>Pace Ana | Method: SM 24<br>lytical Services | 450C-2011<br>- Peachtre    | e Corners, 0                 | GA             |                |                 |              |      |
| Total Dissolved Solids       | 102                    | mg/L                              | 10.0                       | 10.0                         | 1              |                | 03/06/21 13:10  |              |      |
| 300.0 IC Anions 28 Days      | Analytical<br>Pace Ana | Method: EPA 3                     | 300.0 Rev 2<br>- Asheville | 2.1 1993                     |                |                |                 |              |      |
| Chloride                     | 1.6                    | mg/L                              | 1.0                        | 0.60                         | 1              |                | 03/13/21 22:33  | 16887-00-6   |      |
| Fluoride                     | ND                     | mg/L                              | 0.10                       | 0.050                        | 1              |                | 03/13/21 22:33  | 16984-48-8   |      |
| Sulfate                      | 2.2                    | ma/L                              | 1.0                        | 0.50                         | 1              |                | 03/13/21 22:33  | 14808-79-8   |      |
|                              |                        |                                   |                            |                              | -              |                |                 |              |      |



Project: YATES

Pace Project No.: 92525335

| Sample: YGWA-4I              | Lab ID:    | 9252533502      | 2 Collecte    | ed: 03/03/21 | 10:35    | 5 Received: 03/ | 05/21 09:20 Ma | atrix: Water |      |
|------------------------------|------------|-----------------|---------------|--------------|----------|-----------------|----------------|--------------|------|
| Deremetere                   | Deculto    | Linito          | Report        | MDI          |          | Droporod        | Applyzod       |              | Qual |
| Farameters                   |            | Units           |               |              | DF       |                 |                |              | Quai |
| Field Data                   | Analytical | Method:         |               |              |          |                 |                |              |      |
|                              | Pace Ana   | lytical Service | s - Charlotte | 9            |          |                 |                |              |      |
| Performed by                 | CUSTOME    |                 |               |              | 1        |                 | 03/08/21 09:07 |              |      |
| рН                           | 6.21       | Std. Units      |               |              | 1        |                 | 03/08/21 09:07 |              |      |
| 6010D ATL ICP                | Analytical | Method: EPA     | 6010D Pre     | paration Met | hod: E   | PA 3010A        |                |              |      |
|                              | Pace Ana   | lytical Service | s - Peachtre  | e Corners, G | βA       |                 |                |              |      |
| Calcium                      | 7.7        | mg/L            | 1.0           | 0.070        | 1        | 03/08/21 10:47  | 03/10/21 06:56 | 7440-70-2    |      |
| 6020 MET ICPMS               | Analytical | Method: EPA     | 6020B Pre     | paration Met | hod: E   | PA 3005A        |                |              |      |
|                              | Pace Ana   | lytical Service | s - Peachtre  | e Corners, G | βA       |                 |                |              |      |
| Antimony                     | ND         | mg/L            | 0.0030        | 0.00028      | 1        | 03/08/21 11:57  | 03/09/21 17:35 | 7440-36-0    |      |
| Arsenic                      | ND         | mg/L            | 0.0050        | 0.00078      | 1        | 03/08/21 11:57  | 03/09/21 17:35 | 7440-38-2    |      |
| Barium                       | 0.014      | mg/L            | 0.0050        | 0.00071      | 1        | 03/08/21 11:57  | 03/09/21 17:35 | 7440-39-3    |      |
| Beryllium                    | ND         | mg/L            | 0.00050       | 0.000046     | 1        | 03/08/21 11:57  | 03/09/21 17:35 | 7440-41-7    |      |
| Boron                        | 0.0056J    | mg/L            | 0.040         | 0.0052       | 1        | 03/08/21 11:57  | 03/09/21 17:35 | 7440-42-8    |      |
| Cadmium                      | ND         | mg/L            | 0.00050       | 0.00012      | 1        | 03/08/21 11:57  | 03/09/21 17:35 | 7440-43-9    |      |
| Chromium                     | 0.0013J    | mg/L            | 0.0050        | 0.00055      | 1        | 03/08/21 11:57  | 03/09/21 17:35 | 7440-47-3    |      |
| Cobalt                       | ND         | mg/L            | 0.0050        | 0.00038      | 1        | 03/08/21 11:57  | 03/09/21 17:35 | 7440-48-4    |      |
| Lead                         | ND         | mg/L            | 0.0010        | 0.000036     | 1        | 03/08/21 11:57  | 03/09/21 17:35 | 7439-92-1    |      |
| Lithium                      | 0.012J     | mg/L            | 0.030         | 0.00081      | 1        | 03/08/21 11:57  | 03/09/21 17:35 | 7439-93-2    |      |
| Molybdenum                   | ND         | mg/L            | 0.010         | 0.00069      | 1        | 03/08/21 11:57  | 03/09/21 17:35 | 7439-98-7    |      |
| Selenium                     | 0.0019J    | mg/L            | 0.0050        | 0.0016       | 1        | 03/08/21 11:57  | 03/09/21 17:35 | 7782-49-2    |      |
| 7470 Mercury                 | Analytical | Method: EPA     | 7470A Pre     | paration Met | hod: E   | PA 7470A        |                |              |      |
|                              | Pace Ana   | lytical Service | s - Peachtre  | e Corners, C | <b>A</b> |                 |                |              |      |
| Mercury                      | ND         | mg/L            | 0.00020       | 0.000078     | 1        | 03/08/21 13:30  | 03/09/21 11:11 | 7439-97-6    |      |
| 2540C Total Dissolved Solids | Analytical | Method: SM      | 2450C-2011    |              |          |                 |                |              |      |
|                              | Pace Ana   | lytical Service | s - Peachtre  | e Corners, C | 6A       |                 |                |              |      |
| Total Dissolved Solids       | 80.0       | mg/L            | 10.0          | 10.0         | 1        |                 | 03/06/21 13:11 |              |      |
| 300.0 IC Anions 28 Days      | Analytical | Method: EPA     | 300.0 Rev 2   | 2.1 1993     |          |                 |                |              |      |
|                              | Pace Ana   | lytical Service | s - Asheville | •            |          |                 |                |              |      |
| Chloride                     | 4.1        | mg/L            | 1.0           | 0.60         | 1        |                 | 03/13/21 22:49 | 16887-00-6   |      |
| Fluoride                     | ND         | mg/L            | 0.10          | 0.050        | 1        |                 | 03/13/21 22:49 | 16984-48-8   |      |
| Sulfate                      | 7.8        | ma/L            | 1.0           | 0.50         | 1        |                 | 03/13/21 22:49 | 14808-79-8   |      |



Project: YATES

Pace Project No.: 92525335

| Sample: YGWA-20S             | Lab ID:   | 92525335023      | B Collecte    | ed: 03/03/21 | 09:40      | Received: 03/  | 05/21 09:20 Ma | atrix: Water |      |
|------------------------------|-----------|------------------|---------------|--------------|------------|----------------|----------------|--------------|------|
| Damaster                     | Daarika   | 11-1-            | Report        | MDI          |            | Davasa         | Angland        | 040 N        | 0    |
| Parameters                   |           | Units            |               |              | DF         | - Prepared     | Analyzed       |              | Quai |
| Field Data                   | Analytica | I Method:        |               |              |            |                |                |              |      |
|                              | Pace Ana  | alytical Service | s - Charlotte | ;            |            |                |                |              |      |
| Performed by                 | CUSTOME   |                  |               |              | 1          |                | 03/08/21 09:07 |              |      |
| рН                           | 5.89      | Std. Units       |               |              | 1          |                | 03/08/21 09:07 |              |      |
| 6010D ATL ICP                | Analytica | I Method: EPA    | 6010D Pre     | paration Met | hod: E     | PA 3010A       |                |              |      |
|                              | Pace Ana  | alytical Service | s - Peachtre  | e Corners, G | βA         |                |                |              |      |
| Calcium                      | 2.4       | mg/L             | 1.0           | 0.070        | 1          | 03/08/21 10:47 | 03/10/21 07:01 | 7440-70-2    |      |
| 6020 MET ICPMS               | Analytica | I Method: EPA    | 6020B Pre     | paration Met | hod: El    | PA 3005A       |                |              |      |
|                              | Pace Ana  | alytical Service | s - Peachtre  | e Corners, C | SA         |                |                |              |      |
| Antimony                     | ND        | mg/L             | 0.0030        | 0.00028      | 1          | 03/08/21 11:57 | 03/09/21 17:56 | 7440-36-0    |      |
| Arsenic                      | ND        | mg/L             | 0.0050        | 0.00078      | 1          | 03/08/21 11:57 | 03/09/21 17:56 | 7440-38-2    |      |
| Barium                       | 0.015     | mg/L             | 0.0050        | 0.00071      | 1          | 03/08/21 11:57 | 03/09/21 17:56 | 7440-39-3    |      |
| Beryllium                    | 0.000068J | mg/L             | 0.00050       | 0.000046     | 1          | 03/08/21 11:57 | 03/09/21 17:56 | 7440-41-7    |      |
| Boron                        | ND        | mg/L             | 0.040         | 0.0052       | 1          | 03/08/21 11:57 | 03/09/21 17:56 | 7440-42-8    |      |
| Cadmium                      | ND        | mg/L             | 0.00050       | 0.00012      | 1          | 03/08/21 11:57 | 03/09/21 17:56 | 7440-43-9    |      |
| Chromium                     | ND        | mg/L             | 0.0050        | 0.00055      | 1          | 03/08/21 11:57 | 03/09/21 17:56 | 7440-47-3    |      |
| Cobalt                       | ND        | mg/L             | 0.0050        | 0.00038      | 1          | 03/08/21 11:57 | 03/09/21 17:56 | 7440-48-4    |      |
| Lead                         | 0.000045J | mg/L             | 0.0010        | 0.000036     | 1          | 03/08/21 11:57 | 03/09/21 17:56 | 7439-92-1    |      |
| Lithium                      | ND        | mg/L             | 0.030         | 0.00081      | 1          | 03/08/21 11:57 | 03/09/21 17:56 | 7439-93-2    |      |
| Molybdenum                   | ND        | mg/L             | 0.010         | 0.00069      | 1          | 03/08/21 11:57 | 03/09/21 17:56 | 7439-98-7    |      |
| Selenium                     | ND        | mg/L             | 0.0050        | 0.0016       | 1          | 03/08/21 11:57 | 03/09/21 17:56 | 7782-49-2    |      |
| 7470 Mercury                 | Analytica | I Method: EPA    | 7470A Pre     | paration Met | hod: El    | PA 7470A       |                |              |      |
|                              | Pace Ana  | alytical Service | s - Peachtre  | e Corners, G | βA         |                |                |              |      |
| Mercury                      | ND        | mg/L             | 0.00020       | 0.000078     | 1          | 03/08/21 13:30 | 03/09/21 11:13 | 7439-97-6    |      |
| 2540C Total Dissolved Solids | Analytica | I Method: SM 2   | 2450C-2011    |              |            |                |                |              |      |
|                              | Pace Ana  | alytical Service | s - Peachtre  | e Corners, G | <b>S</b> A |                |                |              |      |
| Total Dissolved Solids       | 53.0      | mg/L             | 10.0          | 10.0         | 1          |                | 03/06/21 13:11 |              |      |
| 300.0 IC Anions 28 Days      | Analytica | I Method: EPA    | 300.0 Rev 2   | 2.1 1993     |            |                |                |              |      |
| -                            | Pace Ana  | alytical Service | s - Asheville | •            |            |                |                |              |      |
| Chloride                     | 2.7       | mg/L             | 1.0           | 0.60         | 1          |                | 03/13/21 23:04 | 16887-00-6   |      |
| Fluoride                     | ND        | mg/L             | 0.10          | 0.050        | 1          |                | 03/13/21 23:04 | 16984-48-8   |      |
| Sulfate                      | ND        | ma/L             | 1.0           | 0.50         | 1          |                | 03/13/21 23:04 | 14808-79-8   |      |



Project: YATES

Pace Project No.: 92525335

| Sample: YGWA-21I             | Lab ID:    | 92525335024     | Collecte      | ed: 03/04/21 | 09:35  | 5 Received: 03/ | 05/21 09:20 Ma | atrix: Water |      |
|------------------------------|------------|-----------------|---------------|--------------|--------|-----------------|----------------|--------------|------|
| Paramotoro                   | Poculto    | Linite          | Report        | МП           | DE     | Proparad        | Applyzod       |              | Qual |
|                              |            | Units           |               |              | DF     |                 | Analyzeu       |              | Quai |
| Field Data                   | Analytical | Method:         |               |              |        |                 |                |              |      |
|                              | Pace Anal  | ytical Services | s - Charlotte | )            |        |                 |                |              |      |
| Performed by                 | CUSTOME    |                 |               |              | 1      |                 | 03/08/21 09:07 |              |      |
| рН                           | 6.80       | Std. Units      |               |              | 1      |                 | 03/08/21 09:07 |              |      |
| 6010D ATL ICP                | Analytical | Method: EPA     | 6010D Pre     | paration Met | hod: E | PA 3010A        |                |              |      |
|                              | Pace Anal  | ytical Services | s - Peachtre  | e Corners, G | βA     |                 |                |              |      |
| Calcium                      | 8.7        | mg/L            | 1.0           | 0.070        | 1      | 03/08/21 10:47  | 03/10/21 07:06 | 7440-70-2    |      |
| 6020 MET ICPMS               | Analytical | Method: EPA     | 6020B Pre     | paration Met | hod: E | PA 3005A        |                |              |      |
|                              | Pace Anal  | ytical Services | s - Peachtre  | e Corners, G | βA     |                 |                |              |      |
| Antimony                     | 0.0014J    | mg/L            | 0.0030        | 0.00028      | 1      | 03/08/21 11:57  | 03/09/21 18:02 | 7440-36-0    |      |
| Arsenic                      | 0.00078J   | mg/L            | 0.0050        | 0.00078      | 1      | 03/08/21 11:57  | 03/09/21 18:02 | 7440-38-2    |      |
| Barium                       | 0.011      | mg/L            | 0.0050        | 0.00071      | 1      | 03/08/21 11:57  | 03/09/21 18:02 | 7440-39-3    |      |
| Beryllium                    | ND         | mg/L            | 0.00050       | 0.000046     | 1      | 03/08/21 11:57  | 03/09/21 18:02 | 7440-41-7    |      |
| Boron                        | 0.0079J    | mg/L            | 0.040         | 0.0052       | 1      | 03/08/21 11:57  | 03/09/21 18:02 | 7440-42-8    |      |
| Cadmium                      | ND         | mg/L            | 0.00050       | 0.00012      | 1      | 03/08/21 11:57  | 03/09/21 18:02 | 7440-43-9    |      |
| Chromium                     | ND         | mg/L            | 0.0050        | 0.00055      | 1      | 03/08/21 11:57  | 03/09/21 18:02 | 7440-47-3    |      |
| Cobalt                       | 0.0065     | mg/L            | 0.0050        | 0.00038      | 1      | 03/08/21 11:57  | 03/09/21 18:02 | 7440-48-4    |      |
| Lead                         | ND         | mg/L            | 0.0010        | 0.000036     | 1      | 03/08/21 11:57  | 03/09/21 18:02 | 7439-92-1    |      |
| Lithium                      | 0.0062J    | mg/L            | 0.030         | 0.00081      | 1      | 03/08/21 11:57  | 03/09/21 18:02 | 7439-93-2    |      |
| Molybdenum                   | ND         | mg/L            | 0.010         | 0.00069      | 1      | 03/08/21 11:57  | 03/09/21 18:02 | 7439-98-7    |      |
| Selenium                     | ND         | mg/L            | 0.0050        | 0.0016       | 1      | 03/08/21 11:57  | 03/09/21 18:02 | 7782-49-2    |      |
| 7470 Mercury                 | Analytical | Method: EPA     | 7470A Pre     | paration Met | nod: E | PA 7470A        |                |              |      |
|                              | Pace Anal  | ytical Services | s - Peachtre  | e Corners, G | βA     |                 |                |              |      |
| Mercury                      | ND         | mg/L            | 0.00020       | 0.000078     | 1      | 03/08/21 13:30  | 03/09/21 11:16 | 7439-97-6    |      |
| 2540C Total Dissolved Solids | Analytical | Method: SM 2    | 450C-2011     |              |        |                 |                |              |      |
|                              | Pace Anal  | ytical Services | s - Peachtre  | e Corners, G | 6A     |                 |                |              |      |
| Total Dissolved Solids       | 110        | mg/L            | 10.0          | 10.0         | 1      |                 | 03/06/21 12:32 |              |      |
| 300.0 IC Anions 28 Days      | Analytical | Method: EPA     | 300.0 Rev 2   | 2.1 1993     |        |                 |                |              |      |
|                              | Pace Anal  | ytical Services | s - Asheville |              |        |                 |                |              |      |
| Chloride                     | 1.8        | mg/L            | 1.0           | 0.60         | 1      |                 | 03/13/21 23:20 | 16887-00-6   |      |
| Fluoride                     | 0.091J     | mg/L            | 0.10          | 0.050        | 1      |                 | 03/13/21 23:20 | 16984-48-8   |      |
| Sulfate                      | 4.5        | mg/L            | 1.0           | 0.50         | 1      |                 | 03/13/21 23:20 | 14808-79-8   |      |



| Project:          | YATES  | 6                      |                       |                |                |              |               |              |              |                 |           |            |      |
|-------------------|--------|------------------------|-----------------------|----------------|----------------|--------------|---------------|--------------|--------------|-----------------|-----------|------------|------|
| Pace Project No.: | 92525  | 335                    |                       |                |                |              |               |              |              |                 |           |            |      |
| QC Batch:         | 6042   | 23                     |                       | Anal           | ysis Met       | hod:         | EPA 6010D     | )            |              |                 |           |            |      |
| QC Batch Method:  | EPA    | 3010A                  |                       | Anal           | ysis Des       | cription:    | 6010D ATL     |              |              |                 |           |            |      |
|                   |        |                        |                       | Labo           | oratory:       |              | Pace Analy    | tical Servio | ces - Peach  | ntree Corne     | rs, GA    |            |      |
| Associated Lab Sa | mples: | 925253350<br>925253350 | 01, 9252533500<br>09  | 2, 9252533     | 35003, 9       | 2525335005   | , 925253350   | 006, 92525   | 335007, 92   | 2525335008      | 3,        |            |      |
| METHOD BLANK:     | 31831  | 40                     |                       |                | Matrix:        | Water        |               |              |              |                 |           |            |      |
| Associated Lab Sa | mples: | 925253350<br>925253350 | 01, 9252533500<br>09  | 2, 9252533     | 35003, 9       | 2525335005   | , 925253350   | 006, 92525   | 335007, 92   | 2525335008      | 3,        |            |      |
|                   |        |                        |                       | Bla            | nk             | Reporting    |               |              |              |                 |           |            |      |
| Para              | meter  |                        | Units                 | Res            | ult            | Limit        | MD            |              | Analyzed     | d Qu            | ualifiers |            |      |
| Calcium           |        |                        | mg/L                  |                | ND             | 1            | .0            | 0.070 0      | )3/09/21 01  | :57             |           |            |      |
| LABORATORY CO     | NTROL  | SAMPLE:                | 3183141               |                |                |              |               |              |              |                 |           |            |      |
|                   |        |                        |                       | Spike          |                | LCS          | LCS           | % F          | Rec          |                 |           |            |      |
| Para              | meter  |                        | Units                 | Conc.          | F              | Result       | % Rec         | Lin          | nits         | Qualifiers      |           |            |      |
| Calcium           |        |                        | mg/L                  |                | 1              | 1.0          | 10            | )3           | 80-120       |                 |           |            |      |
| MATRIX SPIKE & M  | MATRIX | SPIKE DUPL             | .ICATE: 3183          | 142            |                | 318314       | 3             |              |              |                 |           |            |      |
|                   |        |                        |                       | MS             | MSD            |              |               |              |              |                 |           |            |      |
| Paramete          | er     | Units                  | 92525335001<br>Result | Spike<br>Conc. | Spike<br>Conc. | MS<br>Result | MSD<br>Result | MS<br>% Rec  | MSD<br>% Rec | % Rec<br>Limits | RPD       | Max<br>RPD | Qual |
| Calcium           |        | mg/L                   | 2.6                   | 1              |                | 1 3.6        | 3.5           | 105          | 5 94         | 4 75-125        | 3         | 20         |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:           | YATES  | 5                    |                                     |                          |                        |                          |                          |                        |                             |                        |           |            |      |
|--------------------|--------|----------------------|-------------------------------------|--------------------------|------------------------|--------------------------|--------------------------|------------------------|-----------------------------|------------------------|-----------|------------|------|
| Pace Project No.:  | 925253 | 335                  |                                     |                          |                        |                          |                          |                        |                             |                        |           |            |      |
| QC Batch:          | 6048   | 93                   |                                     | Anal                     | ysis Meth              | od:                      | EPA 6010                 | C                      |                             |                        |           |            |      |
| QC Batch Method:   | EPA :  | 3010A                |                                     | Anal                     | ysis Desc              | cription:                | 6010D ATI                | _                      |                             |                        |           |            |      |
|                    |        |                      |                                     | Labo                     | oratory:               |                          | Pace Anal                | ytical Serv            | rices - Peach               | tree Corne             | rs, GA    |            |      |
| Associated Lab Sar | mples: | 92525335<br>92525335 | 011, 9252533501:<br>018, 9252533501 | 2, 9252533<br>9, 9252533 | 35013, 92<br>35020, 92 | 2525335014<br>2525335021 | , 92525335<br>, 92525335 | 015, 9252<br>022, 9252 | 5335016, 929<br>5335023, 92 | 525335017<br>525335024 | 7,<br>1   |            |      |
| METHOD BLANK:      | 318689 | 98                   |                                     |                          | Matrix:                | Water                    |                          |                        |                             |                        |           |            |      |
| Associated Lab Sar | mples: | 92525335<br>92525335 | 011, 92525335012<br>018, 9252533501 | 2, 9252533<br>9, 9252533 | 35013, 92<br>35020, 92 | 2525335014<br>2525335021 | , 92525335<br>, 92525335 | 015, 9252<br>022, 9252 | 5335016, 92<br>5335023, 92  | 525335017<br>525335024 | 7,<br>1   |            |      |
|                    |        |                      |                                     | Bla                      | nk                     | Reporting                |                          |                        |                             |                        |           |            |      |
| Para               | meter  |                      | Units                               | Res                      | sult                   | Limit                    | M                        | DL                     | Analyzed                    | Qı                     | ualifiers |            |      |
| Calcium            |        |                      | mg/L                                |                          | ND                     |                          | 1.0                      | 0.070                  | 03/10/21 05:                | 19                     |           |            |      |
| LABORATORY CO      | NTROL  | SAMPLE:              | 3186899                             |                          |                        |                          |                          |                        |                             |                        |           |            |      |
|                    |        |                      |                                     | Spike                    | L                      | CS                       | LCS                      | %                      | Rec                         |                        |           |            |      |
| Parar              | meter  |                      | Units                               | Conc.                    | R                      | esult                    | % Rec                    | Lii                    | mits                        | Qualifiers             |           |            |      |
| Calcium            |        |                      | mg/L                                |                          | 1                      | 0.98J                    |                          | 98                     | 80-120                      |                        |           |            |      |
| MATRIX SPIKE & M   | MATRIX | SPIKE DUP            | PLICATE: 3186                       | 900                      |                        | 318690                   | )1                       |                        |                             |                        |           |            |      |
|                    |        |                      |                                     | MS                       | MSD                    |                          |                          |                        |                             |                        |           |            |      |
| Paramete           | er     | Units                | 92525335011<br>Result               | Spike<br>Conc.           | Spike<br>Conc.         | MS<br>Result             | MSD<br>Result            | MS<br>% Rec            | MSD<br>% Rec                | % Rec<br>Limits        | RPD       | Max<br>RPD | Qual |
| Calcium            |        | mg/L                 | 4.6                                 | 1                        |                        | 1 5.5                    | 5 5.4                    | 9                      | 2 76                        | 75-125                 | 3         | 20         |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:           | YATES  |                                        |                      |            |                |          |           |         |          |               |        |            |
|--------------------|--------|----------------------------------------|----------------------|------------|----------------|----------|-----------|---------|----------|---------------|--------|------------|
| Pace Project No.:  | 925253 | 335                                    |                      |            |                |          |           |         |          |               |        |            |
| OC Batch           | 60422  | 24                                     |                      | Analysis   | Method:        |          | EPA 6020B |         |          |               |        |            |
| OC Batch Method:   |        | 30054                                  |                      | Analysis I | Descripti      | 00.      | 6020 MET  |         |          |               |        |            |
| QC Datch Methou.   | LFA    | 5003A                                  |                      | Analysis   | Descripti      | 011.     |           |         |          | a alatina a C |        | <b>C</b> A |
| Associated Lab Sar | nples: | 9252533500<br>9252533500               | 1, 92525335002,<br>9 | 9252533500 | y.<br>3, 92525 | 335005,  | 925253350 | 06, 925 | 25335007 | , 925253      | 35008, | GA         |
| METHOD BLANK:      | 318314 | 18                                     |                      | Mat        | rix: Wate      | er       |           |         |          |               |        |            |
| Associated Lab Sar | nples: | 9252533500 <sup>-</sup><br>92525335009 | 1, 92525335002,<br>9 | 9252533500 | 3, 92525       | 335005,  | 925253350 | 06, 925 | 25335007 | , 9252533     | 35008, |            |
|                    |        |                                        |                      | Blank      | Re             | eporting |           |         |          |               |        |            |
| Parar              | neter  |                                        | Units                | Result     |                | Limit    | MDI       | L       | Analy    | zed           | Quali  | fiers      |
| Antimony           |        | ·                                      | ma/L                 | N          | 1D             | 0.003    | 0 0.      | 00028   | 03/05/21 | 16:31         |        |            |
| Arsenic            |        |                                        | mg/L                 | Ν          | ١D             | 0.005    | 0 0.      | 00078   | 03/05/21 | 16:31         |        |            |
| Barium             |        |                                        | mg/L                 | Ν          | 1D             | 0.005    | 0 0.      | 00071   | 03/05/21 | 16:31         |        |            |
| Beryllium          |        |                                        | mg/L                 | Ν          | ١D             | 0.0005   | 0.0       | 00046   | 03/05/21 | 16:31         |        |            |
| Boron              |        |                                        | mg/L                 | Ν          | ١D             | 0.04     | 0 0       | 0.0052  | 03/05/21 | 16:31         |        |            |
| Cadmium            |        |                                        | mg/L                 | Ν          | 1D             | 0.0005   | 0 0.      | 00012   | 03/05/21 | 16:31         |        |            |
| Chromium           |        |                                        | mg/L                 | Ν          | 1D             | 0.005    | 0 0.      | 00055   | 03/05/21 | 16:31         |        |            |
| Cobalt             |        |                                        | mg/L                 | Ν          | 1D             | 0.005    | 0 0.      | 00038   | 03/05/21 | 16:31         |        |            |
| Lead               |        |                                        | mg/L                 | Ν          | 1D             | 0.001    | 0 0.0     | 00036   | 03/05/21 | 16:31         |        |            |
| Lithium            |        |                                        | mg/L                 | Ν          | 1D             | 0.03     | 0 0.      | 00081   | 03/05/21 | 16:31         |        |            |
| Molybdenum         |        |                                        | mg/L                 | Ν          | 1D             | 0.01     | 0 0.      | 00069   | 03/05/21 | 16:31         |        |            |
| Selenium           |        |                                        | mg/L                 | Ν          | 1D             | 0.005    | 0 0       | 0.0016  | 03/05/21 | 16:31         |        |            |
| LABORATORY COI     | NTROLS | SAMPLE: 3'                             | 183149               |            |                |          |           |         |          |               |        |            |
|                    |        |                                        |                      | Spike      | LCS            |          | LCS       | %       | 6 Rec    |               |        |            |
| Parar              | neter  |                                        | Units                | Conc.      | Resul          | t        | % Rec     | L       | imits    | Qualit        | fiers  |            |
| Antimony           |        |                                        | mg/L                 | 0.1        |                | 0.10     | 104       | 4       | 80-120   |               |        |            |
| Arsenic            |        |                                        | mg/L                 | 0.1        | (              | 0.096    | 90        | 6       | 80-120   |               |        |            |
| Barium             |        |                                        | mg/L                 | 0.1        | (              | 0.096    | 96        | 6       | 80-120   |               |        |            |
| Beryllium          |        |                                        | mg/L                 | 0.1        | (              | 0.095    | 9         | 5       | 80-120   |               |        |            |
| Boron              |        |                                        | mg/L                 | 1          |                | 0.91     | 9         | 1       | 80-120   |               |        |            |
| Cadmium            |        |                                        | mg/L                 | 0.1        | (              | 0.096    | 90        | 6       | 80-120   |               |        |            |
| Chromium           |        |                                        | mg/L                 | 0.1        | (              | 0.096    | 90        | 6       | 80-120   |               |        |            |
| Cobalt             |        |                                        | mg/L                 | 0.1        | (              | 0.096    | 90        | 6       | 80-120   |               |        |            |
| Lead               |        |                                        | mg/L                 | 0.1        | (              | 0.097    | 9         | 7       | 80-120   |               |        |            |
| Lithium            |        |                                        | mg/L                 | 0.1        | (              | 0.098    | 98        | 8       | 80-120   |               |        |            |

| MATRIX SPIKE & MATRIX S | PIKE DUPLI   | CATE: 3183            | 150                  |                       | 3183151      |               |             |              |                  |        |            |      |
|-------------------------|--------------|-----------------------|----------------------|-----------------------|--------------|---------------|-------------|--------------|------------------|--------|------------|------|
| Parameter               | Units        | 92525335002<br>Result | MS<br>Spike<br>Conc. | MSD<br>Spike<br>Conc. | MS<br>Result | MSD<br>Result | MS<br>% Rec | MSD<br>% Rec | % Rec<br>Limits  | RPD    | Max<br>RPD | Qual |
| Antimony                | mg/L         | ND                    | 0.1                  | 0.1                   | 0.11         | 0.11          | 105         | 106          | 75-125           | 1      | 20         |      |
| Arsenic<br>Barium       | mg/L<br>mg/L | ND<br>0.014           | 0.1                  | 0.1                   | 0.096        | 0.093         | 96<br>96    | 93<br>99     | 75-125<br>75-125 | 3<br>2 | 20<br>20   |      |

0.10

0.097

100

97

80-120

80-120

0.1

0.1

mg/L

mg/L

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**

Molybdenum

Selenium



| Project:          | YATES    |
|-------------------|----------|
| Pace Project No.: | 92525335 |

| MATRIX SPIKE & MATRIX SP | IKE DUPL | ICATE: 3183           | 150                  |                       | 3183151      |               |             |              |                 |     |            |      |
|--------------------------|----------|-----------------------|----------------------|-----------------------|--------------|---------------|-------------|--------------|-----------------|-----|------------|------|
| Parameter                | Units    | 92525335002<br>Result | MS<br>Spike<br>Conc. | MSD<br>Spike<br>Conc. | MS<br>Result | MSD<br>Result | MS<br>% Rec | MSD<br>% Rec | % Rec<br>Limits | RPD | Max<br>RPD | Qual |
| Beryllium                | mg/L     | <br>ND                | 0.1                  | 0.1                   | 0.095        | 0.093         | 95          | 93           | 75-125          | 2   | 20         |      |
| Boron                    | mg/L     | 0.0068J               | 1                    | 1                     | 0.96         | 0.96          | 96          | 96           | 75-125          | 0   | 20         |      |
| Cadmium                  | mg/L     | ND                    | 0.1                  | 0.1                   | 0.096        | 0.096         | 96          | 96           | 75-125          | 1   | 20         |      |
| Chromium                 | mg/L     | ND                    | 0.1                  | 0.1                   | 0.10         | 0.098         | 99          | 98           | 75-125          | 1   | 20         |      |
| Cobalt                   | mg/L     | ND                    | 0.1                  | 0.1                   | 0.099        | 0.097         | 99          | 97           | 75-125          | 2   | 20         |      |
| Lead                     | mg/L     | 0.000051J             | 0.1                  | 0.1                   | 0.098        | 0.095         | 98          | 95           | 75-125          | 3   | 20         |      |
| Lithium                  | mg/L     | 0.0018J               | 0.1                  | 0.1                   | 0.10         | 0.097         | 98          | 95           | 75-125          | 3   | 20         |      |
| Molybdenum               | mg/L     | ND                    | 0.1                  | 0.1                   | 0.10         | 0.10          | 100         | 101          | 75-125          | 0   | 20         |      |
| Selenium                 | mg/L     | ND                    | 0.1                  | 0.1                   | 0.094        | 0.092         | 94          | 92           | 75-125          | 2   | 20         |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:           | YATES             |                        |                                        |                        |                            |                      |                    |                          |                        |                        |            |  |
|--------------------|-------------------|------------------------|----------------------------------------|------------------------|----------------------------|----------------------|--------------------|--------------------------|------------------------|------------------------|------------|--|
| Pace Project No.:  | 925253            | 335                    |                                        |                        |                            |                      |                    |                          |                        |                        |            |  |
| QC Batch:          | 6049 <sup>,</sup> | 16                     |                                        | Analysi                | s Method:                  | E                    | EPA 602            | :0B                      |                        |                        |            |  |
| QC Batch Method:   | EPA 3             | 3005A                  |                                        | Analysi                | s Descriptio               | on: 6                | 6020 ME            | ΞT                       |                        |                        |            |  |
|                    |                   |                        |                                        | Labora                 | tory:                      | F                    | Pace An            | alytical Se              | rvices - Pe            | achtree Cor            | ners, GA   |  |
| Associated Lab Sar | nples:            | 925253350<br>925253350 | 011, 92525335012,<br>018, 92525335019, | 925253350<br>925253350 | )13, 925253<br>)20, 925253 | 35014, 9<br>35021, 9 | 9252533<br>9252533 | 35015, 925<br>35022, 925 | 25335016,<br>25335023, | 925253350<br>925253350 | 17,<br>)24 |  |
| METHOD BLANK:      | 318712            | 28                     |                                        | М                      | latrix: Wate               | r                    |                    |                          |                        |                        |            |  |
| Associated Lab Sar | mples:            | 925253350<br>925253350 | 011, 92525335012,<br>018, 92525335019, | 925253350<br>925253350 | )13, 925253<br>)20, 925253 | 35014, 9<br>35021, 9 | 9252533<br>9252533 | 35015, 925<br>35022, 925 | 25335016,<br>25335023, | 925253350<br>925253350 | 17,<br>)24 |  |
|                    |                   |                        |                                        | Blank                  | Rep                        | porting              |                    |                          |                        |                        |            |  |
| Parar              | neter             |                        | Units                                  | Result                 | L                          | _imit                | I                  | MDL                      | Analyz                 | zed                    | Qualifiers |  |
| Antimony           |                   |                        | mg/L                                   |                        | ND                         | 0.0030               | 5                  | 0.00028                  | 03/09/21               | 15:37                  |            |  |
| Arsenic            |                   |                        | mg/L                                   |                        | ND                         | 0.0050               | C                  | 0.00078                  | 03/09/21               | 15:37                  |            |  |
| Barium             |                   |                        | mg/L                                   |                        | ND                         | 0.0050               | C                  | 0.00071                  | 03/09/21               | 15:37                  |            |  |
| Beryllium          |                   |                        | mg/L                                   |                        | ND                         | 0.00050              | C                  | 0.000046                 | 03/09/21               | 15:37                  |            |  |
| Boron              |                   |                        | mg/L                                   |                        | ND                         | 0.040                | C                  | 0.0052                   | 03/09/21               | 15:37                  |            |  |
| Cadmium            |                   |                        | mg/L                                   |                        | ND                         | 0.00050              | C                  | 0.00012                  | 03/09/21               | 15:37                  |            |  |
| Chromium           |                   |                        | mg/L                                   |                        | ND                         | 0.0050               | C                  | 0.00055                  | 03/09/21               | 15:37                  |            |  |
| Cobalt             |                   |                        | mg/L                                   |                        | ND                         | 0.0050               | C                  | 0.00038                  | 03/09/21               | 15:37                  |            |  |
| Lead               |                   |                        | mg/L                                   |                        | ND                         | 0.0010               | C                  | 0.000036                 | 03/09/21               | 15:37                  |            |  |
| Lithium            |                   |                        | mg/L                                   |                        | ND                         | 0.030                | C                  | 0.00081                  | 03/09/21               | 15:37                  |            |  |
| Molybdenum         |                   |                        | mg/L                                   |                        | ND                         | 0.010                | C                  | 0.00069                  | 03/09/21               | 15:37                  |            |  |
| Selenium           |                   |                        | mg/L                                   |                        | ND                         | 0.0050               | C                  | 0.0016                   | 03/09/21               | 15:37                  |            |  |
| Thallium           |                   |                        | mg/L                                   |                        | ND                         | 0.0010               | D                  | 0.00014                  | 03/09/21               | 15:37                  |            |  |
| LABORATORY CO      | NTROLS            | SAMPLE:                | 3187129                                |                        |                            |                      |                    |                          |                        |                        |            |  |
|                    |                   |                        |                                        | Spike                  | LCS                        |                      | LCS                | 0                        | % Rec                  |                        |            |  |
| Parar              | neter             |                        | Units                                  | Conc.                  | Result                     |                      | % Rec              | ·                        | _imits                 | Qualifier              | s          |  |
| Antimony           |                   |                        | ma/l                                   | 0 1                    | 0                          | 007                  |                    | 07                       | 80 120                 |                        |            |  |

| Parameter  | Units | Conc. | Result | % Rec | Limits | Quaimers |
|------------|-------|-------|--------|-------|--------|----------|
| Antimony   | mg/L  | 0.1   | 0.097  | 97    | 80-120 |          |
| Arsenic    | mg/L  | 0.1   | 0.093  | 93    | 80-120 |          |
| Barium     | mg/L  | 0.1   | 0.094  | 94    | 80-120 |          |
| Beryllium  | mg/L  | 0.1   | 0.098  | 98    | 80-120 |          |
| Boron      | mg/L  | 1     | 1.0    | 104   | 80-120 |          |
| Cadmium    | mg/L  | 0.1   | 0.095  | 95    | 80-120 |          |
| Chromium   | mg/L  | 0.1   | 0.10   | 102   | 80-120 |          |
| Cobalt     | mg/L  | 0.1   | 0.10   | 100   | 80-120 |          |
| Lead       | mg/L  | 0.1   | 0.096  | 96    | 80-120 |          |
| Lithium    | mg/L  | 0.1   | 0.10   | 104   | 80-120 |          |
| Molybdenum | mg/L  | 0.1   | 0.094  | 94    | 80-120 |          |
| Selenium   | mg/L  | 0.1   | 0.091  | 91    | 80-120 |          |
| Thallium   | mg/L  | 0.1   | 0.092  | 92    | 80-120 |          |

| MATRIX SPIKE & MATRIX SPI | KE DUPL | ICATE: 3187 | 130   |       | 3187131 |        |       |       |        |     |     |      |
|---------------------------|---------|-------------|-------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                           |         |             | MS    | MSD   |         |        |       |       |        |     |     |      |
|                           |         | 92525335012 | Spike | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter                 | Units   | Result      | Conc. | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Antimony                  | mg/L    | ND          | 0.1   | 0.1   | 0.094   | 0.096  | 94    | 96    | 75-125 | 1   | 20  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

# **REPORT OF LABORATORY ANALYSIS**



| Project:          | YATES    |
|-------------------|----------|
| Pace Project No.: | 92525335 |

| ATRIX SPIKE & MATRIX SPIKE DUPLICATE: 3187130 3187131 |       |             |       |       |        |        |       |       |        |     |     |      |  |
|-------------------------------------------------------|-------|-------------|-------|-------|--------|--------|-------|-------|--------|-----|-----|------|--|
|                                                       |       |             | MS    | MSD   |        |        |       |       |        |     |     |      |  |
|                                                       |       | 92525335012 | Spike | Spike | MS     | MSD    | MS    | MSD   | % Rec  |     | Max |      |  |
| Parameter                                             | Units | Result      | Conc. | Conc. | Result | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |  |
| Arsenic                                               | mg/L  | ND          | 0.1   | 0.1   | 0.092  | 0.092  | 92    | 92    | 75-125 | 0   | 20  |      |  |
| Barium                                                | mg/L  | 0.017       | 0.1   | 0.1   | 0.11   | 0.11   | 90    | 94    | 75-125 | 3   | 20  |      |  |
| Beryllium                                             | mg/L  | 0.000099J   | 0.1   | 0.1   | 0.093  | 0.095  | 93    | 95    | 75-125 | 3   | 20  |      |  |
| Boron                                                 | mg/L  | 0.010J      | 1     | 1     | 0.98   | 0.99   | 97    | 98    | 75-125 | 2   | 20  |      |  |
| Cadmium                                               | mg/L  | ND          | 0.1   | 0.1   | 0.095  | 0.096  | 95    | 96    | 75-125 | 1   | 20  |      |  |
| Chromium                                              | mg/L  | 0.00082J    | 0.1   | 0.1   | 0.098  | 0.098  | 97    | 97    | 75-125 | 0   | 20  |      |  |
| Cobalt                                                | mg/L  | ND          | 0.1   | 0.1   | 0.095  | 0.095  | 95    | 95    | 75-125 | 0   | 20  |      |  |
| Lead                                                  | mg/L  | ND          | 0.1   | 0.1   | 0.092  | 0.091  | 92    | 91    | 75-125 | 1   | 20  |      |  |
| Lithium                                               | mg/L  | ND          | 0.1   | 0.1   | 0.098  | 0.10   | 97    | 100   | 75-125 | 3   | 20  |      |  |
| Molybdenum                                            | mg/L  | ND          | 0.1   | 0.1   | 0.092  | 0.091  | 92    | 91    | 75-125 | 0   | 20  |      |  |
| Selenium                                              | mg/L  | ND          | 0.1   | 0.1   | 0.089  | 0.087  | 88    | 86    | 75-125 | 2   | 20  |      |  |
| Thallium                                              | mg/L  | ND          | 0.1   | 0.1   | 0.089  | 0.090  | 89    | 90    | 75-125 | 1   | 20  |      |  |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:           | YATES           |                  |            |            |           |             |              |             |            |           |      |      |
|--------------------|-----------------|------------------|------------|------------|-----------|-------------|--------------|-------------|------------|-----------|------|------|
| Pace Project No.:  | 92525335        |                  |            |            |           |             |              |             |            |           |      |      |
| QC Batch:          | 604308          |                  | Analy      | sis Metho  | d:        | EPA 7470A   |              |             |            |           |      |      |
| QC Batch Method:   | EPA 7470A       |                  | Analy      | sis Descri | ption:    | 7470 Mercu  | ıry          |             |            |           |      |      |
|                    |                 |                  | Labor      | atory:     |           | Pace Analy  | tical Servio | ces - Peach | tree Corne | ers, GA   |      |      |
| Associated Lab Sar | nples: 92525335 | 6001, 9252533500 | 2, 9252533 | 5003, 925  | 25335007, | , 925253350 | 08, 92525    | 335009      |            |           |      |      |
| METHOD BLANK:      | 3183676         |                  |            | Matrix: W  | /ater     |             |              |             |            |           |      |      |
| Associated Lab Sar | nples: 92525335 | 001, 9252533500  | 2, 9252533 | 5003, 925  | 25335007, | , 925253350 | 08, 92525    | 335009      |            |           |      |      |
|                    |                 |                  | Blan       | k          | Reporting |             |              |             |            |           |      |      |
| Parar              | neter           | Units            | Resu       | ılt        | Limit     | MD          | L            | Analyzed    | Q          | ualifiers |      |      |
| Mercury            |                 | mg/L             |            | ND         | 0.0002    | 20 0.0      | 00078 0      | 3/05/21 10  | :07        |           |      |      |
|                    |                 |                  |            |            |           |             |              |             |            |           |      |      |
| LABORATORY CO      | NTROL SAMPLE:   | 3183677          |            |            |           |             |              |             |            |           |      |      |
|                    |                 |                  | Spike      | LC         | S         | LCS         | % F          | Rec         |            |           |      |      |
| Parar              | neter           | Units            | Conc.      | Res        | sult      | % Rec       | Lim          | nits        | Qualifiers |           |      |      |
| Mercury            |                 | mg/L             | 0.002      | 5          | 0.0023    | 9           | 2            | 80-120      |            |           |      |      |
|                    |                 |                  |            |            |           |             |              |             |            |           |      |      |
| MATRIX SPIKE & M   | ATRIX SPIKE DUI | PLICATE: 3183    | 678        |            | 318367    | 9           |              |             |            |           |      |      |
|                    |                 | 0050400040       | MS         | MSD        | MO        | MOD         | MC           | MCD         |            |           | Mari |      |
|                    |                 | W/5/463/113      | SDIKE      | Spike      | IVIS      | IVISD       | IVIS         | 10120       | % KeC      |           | wax  |      |
| Paramete           | r Unit:         | Result           | Conc.      | Conc.      | Result    | Result      | % Rec        | % Rec       | Limits     | RPD       | RPD  | Qual |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:          | YATES  | 6                      |                                     |                 |            |           |            |              |             |            |           |         |      |
|-------------------|--------|------------------------|-------------------------------------|-----------------|------------|-----------|------------|--------------|-------------|------------|-----------|---------|------|
| Pace Project No.: | 92525  | 335                    |                                     |                 |            |           |            |              |             |            |           |         |      |
| QC Batch:         | 6049   | 28                     |                                     | Analy           | sis Metho  | d:        | EPA 7470A  |              |             |            |           |         |      |
| QC Batch Method:  | EPA    | 7470A                  |                                     | Analy           | sis Descri | iption:   | 7470 Mercu | ıry          |             |            |           |         |      |
|                   |        |                        |                                     | Labo            | ratory:    |           | Pace Analy | tical Servic | es - Peacht | tree Corne | rs, GA    |         |      |
| Associated Lab Sa | mples: | 925253350<br>925253350 | 011, 92525335012<br>023, 9252533502 | 2, 9252533<br>4 | 5013, 925  | 25335014, | 925253350  | 15, 925253   | 35021, 928  | 525335022  | · ,       |         |      |
| METHOD BLANK:     | 31872  | 60                     |                                     |                 | Matrix: W  | /ater     |            |              |             |            |           |         |      |
| Associated Lab Sa | mples: | 925253350<br>925253350 | 011, 92525335012<br>023, 9252533502 | 2, 9252533<br>4 | 5013, 925  | 25335014, | 925253350  | 15, 925253   | 35021, 925  | 525335022  | ,         |         |      |
|                   |        |                        |                                     | Blar            | nk         | Reporting |            |              |             |            |           |         |      |
| Para              | neter  |                        | Units                               | Res             | ult        | Limit     | MD         | L            | Analyzed    | Qı         | ualifiers |         |      |
| Mercury           |        |                        | mg/L                                |                 | ND         | 0.0002    | 20 0.0     | 00078 03     | 3/09/21 10: | 42         |           |         |      |
| LABORATORY CO     | NTROL  | SAMPLE:                | 3187261                             |                 |            |           |            |              |             |            |           |         |      |
|                   |        |                        |                                     | Spike           | LC         | S         | LCS        | % R          | ес          |            |           |         |      |
| Para              | neter  |                        | Units                               | Conc.           | Re         | sult      | % Rec      | Limi         | ts (        | Qualifiers |           |         |      |
| Mercury           |        |                        | mg/L                                | 0.002           | 5          | 0.0024    | 9          | 4 8          | 30-120      |            |           |         |      |
| MATRIX SPIKE & M  | IATRIX | SPIKE DUP              | LICATE: 31872                       | 262             |            | 318726    | 3          |              |             |            |           |         |      |
|                   |        |                        |                                     | MS              | MSD        |           |            |              |             |            |           |         |      |
| Demonstra         |        | 11-21-                 | 92525375013                         | Spike           | Spike      | MS        | MSD        | MS           | MSD         | % Rec      |           | Max     | 0    |
| Paramete          | r      | Units                  | Result                              | Conc.           | Conc.      | Result    | Result     | % Rec        | % Rec       | LIMITS     |           | <u></u> | Qual |
| Mercury           |        | mg/L                   | ND                                  | 0.0025          | 0.0025     | 0.0023    | 0.0019     | 93           | 78          | 75-125     | 18        | 20      |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:             | YATES           |         |             |             |               |                  |          |               |
|----------------------|-----------------|---------|-------------|-------------|---------------|------------------|----------|---------------|
| Pace Project No.:    | 92525335        |         |             |             |               |                  |          |               |
| QC Batch:            | 604206          |         | Analysis M  | ethod:      | SM 2450C-20   | )11              |          |               |
| QC Batch Method:     | SM 2450C-2011   |         | Analysis De | escription: | 2540C Total E | Dissolved Solids | 5        |               |
|                      |                 |         | Laboratory  | :           | Pace Analytic | al Services - Pe | eachtree | e Corners, GA |
| Associated Lab Sar   | mples: 92525335 | 006     |             |             |               |                  |          |               |
| METHOD BLANK:        | 3183000         |         | Matrix      | : Water     |               |                  |          |               |
| Associated Lab Sar   | mples: 92525335 | 006     |             |             |               |                  |          |               |
|                      |                 |         | Blank       | Reporting   |               |                  |          |               |
| Parar                | neter           | Units   | Result      | Limit       | MDL           | Anal             | yzed     | Qualifiers    |
| Total Dissolved Soli | ids             | mg/L    | ND          | ) 10        | .0            | 10.0 03/04/2     | 1 10:17  |               |
|                      |                 |         |             |             |               |                  |          |               |
| LABORATORY CO        | NTROL SAMPLE:   | 3183001 |             |             |               |                  |          |               |
|                      |                 |         | Spike       | LCS         | LCS           | % Rec            |          |               |
| Parar                | neter           | Units   | Conc.       | Result      | % Rec         | Limits           | Qua      | alifiers      |
| Total Dissolved Soli | ids             | mg/L    | 400         | 387         | 97            | 90-111           |          |               |
|                      |                 |         |             |             |               |                  |          |               |
| SAMPLE DUPLICA       | TE: 3183002     |         |             |             |               |                  |          |               |
|                      |                 |         | 92525485001 | Dup         |               | Max              |          |               |
| Parar                | neter           | Units   | Result      | Result      | RPD           |                  | )        | Qualifiers    |
| Total Dissolved Soli | ids             | mg/L    | 84.0        | ) 85        | .0            | 1                | 10       |               |
|                      |                 |         |             |             |               |                  |          |               |
| SAMPLE DUPLICA       | TE: 3183003     |         |             |             |               |                  |          |               |
|                      |                 |         | 92525335006 | Dup         |               | Max              |          |               |
| Parar                | neter           | Units   | Result      | Result      | RPD           | RPD              | )        | Qualifiers    |
| Total Dissolved Soli | ids             | mg/L    | 23.0        | ) 41        | .0            | 56               | 10 D     | 06            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:            | YATES           |                  |                  |             |               |                  |         |             |
|---------------------|-----------------|------------------|------------------|-------------|---------------|------------------|---------|-------------|
| Pace Project No.:   | 92525335        |                  |                  |             |               |                  |         |             |
| QC Batch:           | 604300          |                  | Analysis Me      | ethod:      | SM 2450C-20   | )11              |         |             |
| QC Batch Method:    | SM 2450C-2011   |                  | Analysis De      | scription:  | 2540C Total E | Dissolved Solids |         |             |
|                     |                 |                  | Laboratory:      |             | Pace Analytic | al Services - Pe | achtree | Corners, GA |
| Associated Lab Sa   | mples: 92525335 | 5001, 9252533500 | 02, 92525335003, | 92525335005 |               |                  |         |             |
| METHOD BLANK:       | 3183609         |                  | Matrix           | : Water     |               |                  |         |             |
| Associated Lab Sa   | mples: 92525335 | 001, 9252533500  | 2, 92525335003,  | 92525335005 |               |                  |         |             |
|                     |                 |                  | Blank            | Reporting   |               |                  |         |             |
| Para                | meter           | Units            | Result           | Limit       | MDL           | Analy            | zed     | Qualifiers  |
| Total Dissolved Sol | ids             | mg/L             | ND               | 10          | .0            | 10.0 03/04/21    | 14:27   |             |
|                     |                 |                  |                  |             |               |                  |         |             |
| LABORATORY CO       | NTROL SAMPLE:   | 3183610          |                  |             |               |                  |         |             |
|                     |                 |                  | Spike            | LCS         | LCS           | % Rec            |         |             |
| Para                | meter           | Units            | Conc             | Result      | % Rec         | Limits           | Qua     | lifiers     |
| Total Dissolved Sol | ids             | mg/L             | 400              | 394         | 98            | 90-111           |         |             |
|                     |                 |                  |                  |             |               |                  |         |             |
| SAMPLE DUPLICA      | ATE: 3183611    |                  |                  |             |               |                  |         |             |
|                     |                 |                  | 92525102001      | Dup         |               | Max              |         |             |
| Para                | meter           | Units            | Result           | Result      | RPD           | RPD              |         | Qualifiers  |
| Total Dissolved Sol | ids             | mg/L             | 175              | 17          | 71            | 2                | 10      |             |
|                     |                 |                  |                  |             |               |                  |         |             |
| SAMPLE DUPLICA      | TE: 3183612     |                  |                  |             |               |                  |         |             |
|                     |                 |                  | 92524831010      | Dup         |               | Max              |         |             |
| Para                | meter           | Units            | Result           | Result      | RPD           | RPD              |         | Qualifiers  |
| Total Dissolved Sol | ids             | mg/L             | 513              | 52          | 20            | 1                | 10      |             |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:            | YATE   | S          |                 |                 |             |                |                  |         |               |
|---------------------|--------|------------|-----------------|-----------------|-------------|----------------|------------------|---------|---------------|
| Pace Project No.:   | 92525  | 5335       |                 |                 |             |                |                  |         |               |
| QC Batch:           | 604    | 527        |                 | Analysis M      | ethod:      | SM 2450C-20    | 11               |         |               |
| QC Batch Method:    | SM :   | 2450C-2011 | l               | Analysis De     | escription: | 2540C Total D  | issolved Solids  |         |               |
|                     |        |            |                 | Laboratory      | :           | Pace Analytica | al Services - Pe | achtree | e Corners, GA |
| Associated Lab Sa   | mples: | 92525335   | 5007, 925253350 | 08, 92525335009 |             |                |                  |         |               |
| METHOD BLANK:       | 31846  | 654        |                 | Matrix          | k: Water    |                |                  |         |               |
| Associated Lab Sa   | mples: | 92525335   | 5007, 925253350 | 08, 92525335009 |             |                |                  |         |               |
|                     |        |            |                 | Blank           | Reporting   |                |                  |         |               |
| Para                | meter  |            | Units           | Result          | Limit       | MDL            | Analy            | zed     | Qualifiers    |
| Total Dissolved Sol | lids   |            | mg/L            | ND              | 0 10        | 0.0            | 10.0 03/05/21    | 11:03   |               |
|                     |        |            |                 |                 |             |                |                  |         |               |
| LABORATORY CO       | NTROL  | SAMPLE:    | 3184655         |                 |             |                |                  |         |               |
|                     |        |            |                 | Spike           | LCS         | LCS            | % Rec            |         |               |
| Para                | meter  |            | Units           | Conc.           | Result      | % Rec          | Limits           | Qua     | alifiers      |
| Total Dissolved Sol | lids   |            | mg/L            | 400             | 375         | 94             | 90-111           |         |               |
|                     |        |            |                 |                 |             |                |                  |         |               |
| SAMPLE DUPLICA      | ۹ΤΕ: 3 | 184656     |                 |                 |             |                |                  |         |               |
| _                   |        |            |                 | 92525799001     | Dup         |                | Max              |         |               |
| Para                | meter  |            | Units           | Result          | Result      | RPD            | RPD              |         | Qualifiers    |
| Total Dissolved Sol | lids   |            | mg/L            | 2090            | ) 196       | 60             | 6                | 10      |               |
|                     |        |            |                 |                 |             |                |                  |         |               |
| SAMPLE DUPLICA      | λTE: 3 | 184657     |                 |                 |             |                |                  |         |               |
| _                   |        |            |                 | 92525341004     | Dup         |                | Max              |         | 0             |
| Para                | meter  |            | Units           | Result          | Result      | RPD            | RPD              |         | Qualifiers    |
| Total Dissolved Sol | lids   |            | mg/L            | 167             | 7 15        | 52             | 9                | 10      |               |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:              | YATES           |                   |             |             |               |        |              |         |             |
|-----------------------|-----------------|-------------------|-------------|-------------|---------------|--------|--------------|---------|-------------|
| Pace Project No.:     | 92525335        |                   |             |             |               |        |              |         |             |
| QC Batch:             | 604626          |                   | Analysis Me | ethod:      | SM 2450C-20   | 011    |              |         |             |
| QC Batch Method:      | SM 2450C-2011   |                   | Analysis De | escription: | 2540C Total I | Dissol | ved Solids   |         |             |
|                       |                 |                   | Laboratory: |             | Pace Analytic | cal Se | rvices - Pea | achtree | Corners, GA |
| Associated Lab Sam    | nples: 92525335 | 5012, 92525335013 |             |             |               |        |              |         |             |
| METHOD BLANK:         | 3185317         |                   | Matrix      | c: Water    |               |        |              |         |             |
| Associated Lab Sam    | nples: 92525335 | 5012, 92525335013 |             |             |               |        |              |         |             |
|                       |                 |                   | Blank       | Reporting   |               |        |              |         |             |
| Param                 | neter           | Units             | Result      | Limit       | MDL           |        | Analyz       | zed     | Qualifiers  |
| Total Dissolved Solid | ds              | mg/L              | ND          | 0 10        | 0.0           | 10.0   | 03/05/21     | 15:33   |             |
|                       |                 | -                 |             |             |               |        |              |         |             |
| LABORATORY CON        | ITROL SAMPLE:   | 3185318           |             |             |               |        |              |         |             |
|                       |                 |                   | Spike       | LCS         | LCS           | %      | 6 Rec        |         |             |
| Param                 | neter           | Units             | Conc.       | Result      | % Rec         | L      | _imits       | Qua     | lifiers     |
| Total Dissolved Solid | ds              | mg/L              | 400         | 390         | 98            |        | 90-111       |         |             |
|                       |                 |                   |             |             |               |        |              |         |             |
| SAMPLE DUPLICAT       | TE: 3185319     |                   |             |             |               |        |              |         |             |
|                       |                 |                   | 92525822001 | Dup         |               |        | Max          |         |             |
| Param                 | neter           | Units             | Result      | Result      | RPD           |        | RPD          |         | Qualifiers  |
| Total Dissolved Solid | ds              | mg/L              | 274         | 2           | 90            | 6      |              | 10      |             |
|                       |                 |                   |             |             |               |        |              |         |             |
| SAMPLE DUPLICAT       | TE: 3185328     |                   |             |             |               |        |              |         |             |
|                       |                 |                   | 92524831016 | Dup         |               |        | Max          |         |             |
| Param                 | neter           | Units             | Result      | Result      | RPD           |        | RPD          |         | Qualifiers  |
| Total Dissolved Solid | ds              | mg/L              | 325         | 5 3         | 54            | 9      |              | 10      |             |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:            | YATES  | i                    |                                    |                      |             |          |            |                 |         |               |
|---------------------|--------|----------------------|------------------------------------|----------------------|-------------|----------|------------|-----------------|---------|---------------|
| Pace Project No.:   | 925253 | 335                  |                                    |                      |             |          |            |                 |         |               |
| QC Batch:           | 6047   | 64                   |                                    | Analysis Mo          | ethod:      | SM 24    | 50C-2011   |                 |         |               |
| QC Batch Method:    | SM 2   | 450C-2011            |                                    | Analysis De          | escription: | 2540C    | Total Dis  | solved Solids   |         |               |
|                     |        |                      |                                    | Laboratory           |             | Pace /   | Analytical | Services - Pea  | achtree | e Corners, GA |
| Associated Lab Sa   | mples: | 92525335<br>92525335 | 014, 9252533501<br>022, 9252533502 | 6, 92525335017,<br>3 | 92525335018 | 8, 92525 | 335019, 9  | 92525335020,    | 92525   | 5335021,      |
| METHOD BLANK:       | 318629 | 95                   |                                    | Matrix               | : Water     |          |            |                 |         |               |
| Associated Lab Sar  | mples: | 92525335<br>92525335 | 014, 9252533501<br>022, 9252533502 | 6, 92525335017,<br>3 | 92525335018 | 8, 92525 | 335019, 9  | 92525335020,    | 92525   | 5335021,      |
|                     |        |                      |                                    | Blank                | Reporting   | l        |            |                 |         |               |
| Para                | neter  |                      | Units                              | Result               | Limit       |          | MDL        | Analyz          | zed     | Qualifiers    |
| Total Dissolved Sol | ids    |                      | mg/L                               | ND                   | 1           | 0.0      | 10         | .0 03/06/21     | 13:06   |               |
|                     |        |                      |                                    |                      |             |          |            |                 |         |               |
| LABORATORY CO       | NTROL  | SAMPLE:              | 3186296                            | 0                    | 1.00        |          | 2          | 0/ D            |         |               |
| Para                | neter  |                      | Units                              | Spike<br>Conc.       | Result      | 8 R      | s<br>ec    | % Rec<br>Limits | Qua     | alifiers      |
| Total Dissolved Sol | ids    |                      | mg/L                               | 400                  | 368         |          | 92         | 90-111          |         |               |
|                     |        |                      |                                    |                      |             |          |            |                 |         |               |
| SAMPLE DUPLICA      | TE: 31 | 86298                |                                    |                      |             |          |            |                 |         |               |
|                     |        |                      |                                    | 92525335021          | Dup         |          |            | Max             |         |               |
| Para                | neter  |                      | Units                              | Result               | Result      |          | RPD        | RPD             |         | Qualifiers    |
| Total Dissolved Sol | ids    |                      | mg/L                               | 102                  | 2 1         | 01       |            | 1               | 10      |               |
|                     |        |                      |                                    |                      |             |          |            |                 |         |               |
| SAMPLE DUPLICA      | TE: 31 | 86336                |                                    |                      | _           |          |            |                 |         |               |
| -                   |        |                      | 11-26-                             | 92525919008          | Dup         |          |            | Max             |         | Our l'ff and  |
| Para                | neter  |                      | Units                              | Result               | Result      |          | RPD        | КРО             |         | Qualifiers    |
| Total Dissolved Sol | ids    |                      | mg/L                               | 267                  | , 2         | 283      |            | 6               | 10      |               |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:            | YATE   | S          |                              |                 |             |             |                                       |           |               |
|---------------------|--------|------------|------------------------------|-----------------|-------------|-------------|---------------------------------------|-----------|---------------|
| Pace Project No.:   | 92525  | 5335       |                              |                 |             |             |                                       |           |               |
| QC Batch:           | 6047   | 765        |                              | Analysis Me     | ethod:      | SM 2450C-2  | 2011                                  |           |               |
| QC Batch Method:    | SM :   | 2450C-2011 |                              | Analysis De     | escription: | 2540C Total | Dissolved Solid                       | ls        |               |
|                     |        |            |                              | Laboratory      |             | Pace Analyt | ical Services - F                     | Peachtree | e Corners, GA |
| Associated Lab Sa   | mples: | 92525335   | 5011, 925253350 <sup>-</sup> | 15, 92525335024 |             |             |                                       |           |               |
| METHOD BLANK:       | 31863  | 310        |                              | Matrix          | k: Water    |             |                                       |           |               |
| Associated Lab Sa   | mples: | 92525335   | 5011, 925253350 <sup>°</sup> | 15, 92525335024 |             |             |                                       |           |               |
|                     |        |            |                              | Blank           | Reporting   |             |                                       |           |               |
| Para                | meter  |            | Units                        | Result          | Limit       | MDI         | _ Ana                                 | lyzed     | Qualifiers    |
| Total Dissolved Sol | lids   |            | mg/L                         |                 | ) 10        | 0.0         | 10.0 03/06/2                          | 21 12:29  |               |
|                     |        |            |                              |                 |             |             |                                       |           |               |
| LABORATORY CO       | NTROL  | SAMPLE:    | 3186311                      |                 |             |             |                                       |           |               |
|                     |        |            |                              | Spike           | LCS         | LCS         | % Rec                                 |           |               |
| Para                | meter  |            | Units                        | Conc.           | Result      | % Rec       | Limits                                | Qua       | alifiers      |
| Total Dissolved Sol | lids   |            | mg/L                         | 400             | 371         | 93          | 3 90-11                               | 1         |               |
|                     |        |            |                              |                 |             |             |                                       |           |               |
| SAMPLE DUPLICA      | λTE: 3 | 186312     |                              |                 | _           |             |                                       |           |               |
| Dara                | motor  |            | Linito                       | 92525346009     | Dup         | חחח         | Ma                                    | x         | Qualifiara    |
| Pala                | meter  |            |                              | Result          |             |             | · · · · · · · · · · · · · · · · · · · |           | Quaimers      |
| Total Dissolved Sol | lids   |            | mg/L                         | 217             | 2 2         | 20          | 1                                     | 10        |               |
| SAMPLE DUPLICA      | ATE: 3 | 186313     |                              |                 |             |             |                                       |           |               |
|                     |        |            |                              | 92525824003     | Dup         |             | Ма                                    | x         |               |
| Para                | meter  |            | Units                        | Result          | Result      | RPD         | ) RP                                  | D         | Qualifiers    |
| Total Dissolved Sol | lids   |            | mg/L                         | 45.0            | ) <u> </u>  | 1.0         | 30                                    | 10 D      | 06            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:     |          | YATES  | 5                      |                        |                |            |             |               |           |              |        |         |          |     |            |
|--------------|----------|--------|------------------------|------------------------|----------------|------------|-------------|---------------|-----------|--------------|--------|---------|----------|-----|------------|
| Pace Project | t No.:   | 92525  | 335                    |                        |                |            |             |               |           |              |        |         |          |     |            |
| QC Batch:    |          | 6045   | 44                     |                        | Anal           | ysis Metho | od:         | EPA 300.0     | Rev 2.1   | 1993         |        |         |          |     |            |
| QC Batch M   | ethod:   | EPA    | 300.0 Rev 2.           | 1 1993                 | Anal           | ysis Desci | iption:     | 300.0 IC Ar   | nions     |              |        |         |          |     |            |
|              |          |        |                        |                        | Labo           | oratory:   |             | Pace Analy    | tical Ser | vices - Ash  | eville |         |          |     |            |
| Associated L | _ab Sarr | nples: | 925253350<br>925253350 | 001, 9252533500<br>009 | 02, 9252533    | 35003, 92  | 525335005,  | 925253350     | 06, 9252  | 25335007,    | 925253 | 335008  | ,        |     |            |
| METHOD BI    | LANK:    | 31847  | 10                     |                        |                | Matrix: V  | Vater       |               |           |              |        |         |          |     |            |
| Associated L | _ab San  | nples: | 925253350<br>925253350 | 001, 9252533500<br>009 | )2, 9252533    | 35003, 92  | 525335005,  | 925253350     | 06, 9252  | 25335007,    | 925253 | 335008  | ,        |     |            |
|              | _        |        |                        |                        | Bla            | nk         | Reporting   |               |           |              |        | ~       |          |     |            |
|              | Param    | neter  |                        | Units                  | Res            | ult        | Limit       | MD            | L         | Analyz       | ed     | Qu      | alifiers |     |            |
| Chloride     |          |        |                        | mg/L                   |                | ND         | 1.          | 0             | 0.60      | 03/06/21     | 20:08  |         |          |     |            |
| Fluoride     |          |        |                        | mg/L                   |                |            | 0.1         | 0             | 0.050     | 03/06/21     | 20:08  |         |          |     |            |
| Sullate      |          |        |                        | ing/∟                  |                | ND         | 1.          | 0             | 0.50      | 03/00/21     | 20.00  |         |          |     |            |
| LABORATO     | RY CON   | NTROL  | SAMPLE:                | 3184711                |                |            |             |               |           |              |        |         |          |     |            |
|              | Param    | neter  |                        | Units                  | Spike<br>Conc. | Li<br>Re   | CS<br>esult | LCS<br>% Rec  | %<br>L    | Rec<br>imits | Qua    | lifiers |          |     |            |
| Chloride     |          |        |                        | mg/L                   | 5              | 50         | 48.3        | 9             | 7         | 90-110       |        |         |          |     |            |
| Fluoride     |          |        |                        | mg/L                   | 2              | .5         | 2.5         | 9             | 8         | 90-110       |        |         |          |     |            |
| Sulfate      |          |        |                        | mg/L                   | 5              | 50         | 48.7        | 9             | 7         | 90-110       |        |         |          |     |            |
| MATRIX SPI   | IKE & M  | IATRIX | SPIKE DUPI             | _ICATE: 3184           | 712            |            | 3184713     | 3             |           |              |        |         |          |     |            |
|              |          |        |                        |                        | MS             | MSD        |             |               |           |              |        |         |          |     |            |
| _            |          |        |                        | 92525335001            | Spike          | Spike      | MS          | MSD           | MS        | MSD          | %      | Rec     |          | Max | - ·        |
| Pa           | rameter  |        | Units                  | Result                 | Conc.          | Conc.      | Result      | Result        | % Rec     | > % Re       | C LI   | imits   | RPD      | RPD | Qual       |
| Chloride     |          |        | mg/L                   | 4.3                    | 50             | 50         | 53.4        | 53.9          | 9         | 98           | 99 9   | 90-110  | 1        | 10  |            |
| Fluoride     |          |        | mg/L                   | ND                     | 2.5            | 2.5        | 2.6         | 2.7           | 10        | 04 1         | 05 9   | 90-110  | 1        | 10  |            |
| Sullate      |          |        | mg/∟                   | 2.3                    | 50             | 50         | 01.0        | 52.4          | :         | 99 1         | 00 8   | 90-110  | I        | 10  |            |
| MATRIX SPI   | IKE & M  | IATRIX | SPIKE DUPI             | _ICATE: 3184           | 714            |            | 318471      | 5             |           |              |        |         |          |     |            |
|              |          |        |                        |                        | MS             | MSD        |             |               |           |              |        | _       |          |     |            |
| D-           | rometer  |        | - المال                | 92525341001            | Spike          | Spike      | MS          | MSD<br>Boguit | MS        | MSD          | %      | Rec     | חחם      | Max | Qual       |
| Ра           | rameter  |        |                        | Kesuit                 | Conc.          | Conc.      | Result      | Result        | % KêC     | ; % Re<br>   | C LI   | Innits  | KPD      | KPD | Quai       |
| Chloride     |          |        | mg/L                   | 5.5                    | 50             | 50         | 54.6        | 54.8          | 9         | 98           | 98 9   | 90-110  | 0        | 10  |            |
| Fluoride     |          |        | mg/L                   | 0.18                   | 2.5            | 2.5        | 3.3         | 3.3           | 12        | ∠4 1<br>¤1   | 25 9   | JU-110  | 1        | 10  | I/I1<br>M1 |
| Sullate      |          |        | mg/L                   | 94.2                   | 50             | 50         | 135         | 130           | (         | וט           | 02 8   | -11U    | 0        | 10  |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



| Project:           | YATES  | 6                      |                        |                |             |           |              |            |             |           |        |          |     |            |
|--------------------|--------|------------------------|------------------------|----------------|-------------|-----------|--------------|------------|-------------|-----------|--------|----------|-----|------------|
| Pace Project No.:  | 92525  | 335                    |                        |                |             |           |              |            |             |           |        |          |     |            |
| QC Batch:          | 6064   | 55                     |                        | Anal           | ysis Metho  | d:        | EPA 300.0 I  | Rev 2.1 1  | 993         |           |        |          |     |            |
| QC Batch Method:   | EPA    | 300.0 Rev 2            | .1 1993                | Anal           | ysis Descri | ption:    | 300.0 IC An  | ions       |             |           |        |          |     |            |
|                    |        |                        |                        | Labo           | oratory:    |           | Pace Analy   | tical Serv | ices - Ash  | eville    |        |          |     |            |
| Associated Lab Sar | mples: | 925253350<br>925253350 | 011, 9252533501<br>018 | 2, 9252533     | 35013, 925  | 25335014, | 925253350    | 15, 9252   | 5335016,    | 925253    | 35017  | ,<br>,   |     |            |
| METHOD BLANK:      | 31951  | 34                     |                        |                | Matrix: W   | ater      |              |            |             |           |        |          |     |            |
| Associated Lab Sar | mples: | 92525335<br>92525335   | 011, 9252533501<br>018 | 2, 9252533     | 35013, 925  | 25335014, | 925253350    | 15, 9252   | 5335016,    | 925253    | 35017  | ,        |     |            |
|                    |        |                        |                        | Bla            | nk          | Reporting |              |            |             |           |        |          |     |            |
| Para               | neter  |                        | Units                  | Res            | sult        | Limit     | MD           | L          | Analyz      | ed        | Qu     | alifiers |     |            |
| Chloride           |        |                        | mg/L                   |                | ND          | 1.        | 0            | 0.60       | 03/13/21    | 12:45     |        |          |     |            |
| Fluoride           |        |                        | mg/L                   |                | ND          | 0.1       | 0            | 0.050      | 03/13/21    | 12:45     |        |          |     |            |
| Sulfate            |        |                        | mg/L                   |                | ND          | 1.        | 0            | 0.50       | 03/13/21    | 12:45     |        |          |     |            |
| LABORATORY CO      | NTROL  | SAMPLE:                | 3195135                |                |             |           |              |            |             |           |        |          |     |            |
| Para               | neter  |                        | Units                  | Spike<br>Conc. | LC<br>Re:   | S<br>Sult | LCS<br>% Rec | %<br>Lir   | Rec<br>nits | Quali     | ifiers |          |     |            |
| Chloride           |        |                        | mg/L                   |                | 50          | 49.8      | 10           | 0          | 90-110      |           |        | _        |     |            |
| Fluoride           |        |                        | mg/L                   | 2              | .5          | 2.6       | 10           | 3          | 90-110      |           |        |          |     |            |
| Sulfate            |        |                        | mg/L                   | Ę              | 50          | 52.8      | 10           | 6          | 90-110      |           |        |          |     |            |
| MATRIX SPIKE & M   | IATRIX | SPIKE DUP              | LICATE: 3195           | 5136           |             | 3195137   | ,            |            |             |           |        |          |     |            |
|                    |        |                        |                        | MS             | MSD         |           |              |            |             |           |        |          |     |            |
| _                  |        |                        | 92525912007            | Spike          | Spike       | MS        | MSD          | MS         | MSD         | %         | Rec    |          | Max | - ·        |
| Paramete           | r      | Units                  | Result                 | Conc.          | Conc.       | Result    | Result       | % Rec      | % Re        | c Lir<br> | nits   | RPD      | RPD | Qual       |
| Chloride           |        | mg/L                   | ND                     | 50             | 50          | 50.5      | 51.0         | 10         | 1 1         | 02 9      | 0-110  | 1        | 10  |            |
| Fluoride           |        | mg/L                   | ND                     | 2.5            | 2.5         | 2.5       | 2.6          | 10         | 2 1         | 03 9      | 0-110  | 1        | 10  |            |
| Sulfate            |        | mg/L                   | ND                     | 50             | 50          | 53.6      | 54.2         | 10         | 7 1         | 08 9      | 0-110  | 1        | 10  |            |
| MATRIX SPIKE & M   | IATRIX | SPIKE DUP              | LICATE: 3195           | 5138           |             | 3195139   | )            |            |             |           |        |          |     |            |
|                    |        |                        |                        | MS             | MSD         |           |              |            |             |           |        |          |     |            |
| _                  |        |                        | 92525919009            | Spike          | Spike       | MS        | MSD          | MS         | MSD         | %         | Rec    |          | Max | <b>.</b> . |
| Paramete           | r      | Units                  | Result                 | Conc.          | Conc.       | Result    | Result       | % Rec      | % Re        | c Lir     | nits   | RPD      | RPD | Qual       |
| Chloride           |        | mg/L                   | 1.6                    | 50             | 50          | 54.1      | 53.7         | 10         | 51          | 04 9      | 0-110  | 1        | 10  |            |
| Fluoride           |        | mg/L                   | 0.12                   | 2.5            | 2.5         | 2.8       | 2.8          | 10         | 61          | 05 9      | 0-110  | 1        | 10  |            |
| Sulfate            |        | mg/L                   | 39.2                   | 50             | 50          | 95.4      | 95.1         | 11.        | 2 1         | 12 9      | 0-110  | 0        | 10  | M1         |
|                    |        |                        |                        |                |             |           |              |            |             |           |        |          |     |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**



| Project: YATES<br>Pace Project No.: 92525335 |        |              |                |             |             |           |             |              |               |            |          |     |            |
|----------------------------------------------|--------|--------------|----------------|-------------|-------------|-----------|-------------|--------------|---------------|------------|----------|-----|------------|
| Pace Project No.:                            | 92525  | 335          |                |             |             |           |             |              |               |            |          |     |            |
| QC Batch:                                    | 6064   | 56           |                | Analy       | sis Metho   | d:        | EPA 300.0 I | Rev 2.1 19   | 93            |            |          |     |            |
| QC Batch Method:                             | EPA    | 300.0 Rev 2. | 1 1993         | Analy       | /sis Descri | ption:    | 300.0 IC An | ions         |               |            |          |     |            |
|                                              |        |              |                | Labo        | ratory:     |           | Pace Analy  | tical Servio | ces - Ashevil | le         |          |     |            |
| Associated Lab Sa                            | mples: | 925253350    | 19, 9252533502 | 20, 9252533 | 85021, 925  | 25335022, | 925253350   | 23, 92525    | 335024        |            |          |     |            |
| METHOD BLANK:                                | 31951  | 40           |                |             | Matrix: W   | ater      |             |              |               |            |          |     |            |
| Associated Lab Sa                            | mples: | 925253350    | 19, 9252533502 | 20, 9252533 | 5021, 925   | 25335022, | 925253350   | 23, 92525    | 335024        |            |          |     |            |
|                                              |        |              |                | Blar        | nk          | Reporting |             |              |               |            |          |     |            |
| Para                                         | meter  |              | Units          | Res         | ult         | Limit     | MD          | L            | Analyzed      | Qu         | alifiers |     |            |
| Chloride                                     |        |              | mg/L           |             | ND          | 1.        | 0           | 0.60 0       | 3/13/21 20:2  | 29         |          |     |            |
| Fluoride                                     |        |              | mg/L           |             | ND          | 0.1       | 0           | 0.050 0      | 3/13/21 20:2  | 29         |          |     |            |
| Sulfate                                      |        |              | mg/L           |             | ND          | 1.        | 0           | 0.50 0       | )3/13/21 20:2 | 29         |          |     |            |
| LABORATORY CC                                | NTROL  | SAMPLE:      | 3195141        |             |             |           |             |              |               |            |          |     |            |
| 5                                            |        |              |                | Spike       | LC          | S         | LCS         | % F          | Rec           |            |          |     |            |
| Para                                         | meter  |              | Units          | Conc.       | Res         | Sult      | % Rec       | Lim          | nits C        | Jualifiers | _        |     |            |
| Chloride                                     |        |              | mg/L           | 5           | 50          | 48.5      | 9           | 7            | 90-110        |            |          |     |            |
| Fluoride                                     |        |              | mg/L           | 2.          | .5          | 2.5       | 10          | 0            | 90-110        |            |          |     |            |
| Suifate                                      |        |              | mg/L           | 5           | 0           | 51.4      | 10          | 3            | 90-110        |            |          |     |            |
| MATRIX SPIKE &                               | MATRIX | SPIKE DUPI   | _ICATE: 3195   | 5142        |             | 3195143   | 3           |              |               |            |          |     |            |
|                                              |        |              |                | MS          | MSD         |           |             |              |               |            |          |     |            |
|                                              |        |              | 92525335019    | Spike       | Spike       | MS        | MSD         | MS           | MSD           | % Rec      |          | Max | <b>•</b> • |
| Paramete                                     | er     | Units        | Result         | Conc.       | Conc.       | Result    | Result      | % Rec        | % Rec         | Limits     | RPD      | RPD | Qual       |
| Chloride                                     |        | mg/L         | 0.99J          | 50          | 50          | 52.8      | 52.3        | 104          | 103           | 90-110     | 1        | 10  |            |
| Fluoride                                     |        | mg/L         | 0.10           | 2.5         | 2.5         | 2.7       | 2.7         | 106          | 5 104         | 90-110     | 2        | 10  |            |
| Suifate                                      |        | mg/L         | 9.6            | 50          | 50          | 65.5      | 64.7        | 112          | 110           | 90-110     | 1        | 10  | MI         |
| MATRIX SPIKE &                               | MATRIX | SPIKE DUPI   | _ICATE: 3195   | 5144        |             | 3195145   | ;           |              |               |            |          |     |            |
|                                              |        |              |                | MS          | MSD         |           |             |              |               |            |          |     |            |
| _                                            |        |              | 92525346005    | Spike       | Spike       | MS        | MSD         | MS           | MSD           | % Rec      |          | Max | <b>.</b> . |
| Paramete                                     | er     | Units        | Result         | Conc.       | Conc.       | Result    | Result      | % Rec        | % Rec         | Limits     | RPD      | RPD | Qual       |
| Chloride                                     |        | mg/L         | 16.6           | 50          | 50          | 66.4      | 68.7        | 100          | 104           | 90-110     | 3        | 10  |            |
| Fluoride                                     |        | mg/L         | ND             | 2.5         | 2.5         | 2.5       | 2.6         | 98           | 103           | 90-110     | 5        | 10  |            |
| Sulfate                                      |        | mg/L         | 88.8           | 50          | 50          | 115       | 117         | 53           | 56            | 90-110     | 1        | 10  | M1         |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

# **REPORT OF LABORATORY ANALYSIS**



#### QUALIFIERS

Project: YATES Pace Project No.: 92525335

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### ANALYTE QUALIFIERS

D6 The precision between the sample and sample duplicate exceeded laboratory control limits.

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.



## QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: YATES Pace Project No.: 92525335

| Lab ID      | Sample ID        | QC Batch Method | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|------------------|-----------------|----------|-------------------|---------------------|
| 92525335001 | YGWA-5I          |                 |          |                   |                     |
| 92525335002 | YGWA-5D          |                 |          |                   |                     |
| 92525335005 | YGWA-14S         |                 |          |                   |                     |
| 92525335006 | YGWA-30I         |                 |          |                   |                     |
| 92525335011 | YGWA-40          |                 |          |                   |                     |
| 92525335012 | YGWA-17S         |                 |          |                   |                     |
| 92525335013 | YGWA-18S         |                 |          |                   |                     |
| 92525335014 | YGWA-18I         |                 |          |                   |                     |
| 92525335015 | YGWA-39          |                 |          |                   |                     |
| 92525335016 | YGWA-1D (030321) |                 |          |                   |                     |
| 92525335017 | YGWA-11 (030321) |                 |          |                   |                     |
| 92525335018 | YGWA-2I (030321) |                 |          |                   |                     |
| 92525335019 | YGWA-3I (030321) |                 |          |                   |                     |
| 92525335020 | YGWA-3D (030321) |                 |          |                   |                     |
| 92525335022 | YGWA-4I          |                 |          |                   |                     |
| 92525335023 | YGWA-20S         |                 |          |                   |                     |
| 92525335024 | YGWA-21I         |                 |          |                   |                     |
| 92525335001 | YGWA-5I          | EPA 3010A       | 604223   | EPA 6010D         | 604309              |
| 92525335002 | YGWA-5D          | EPA 3010A       | 604223   | EPA 6010D         | 604309              |
| 92525335003 | DUP-1            | EPA 3010A       | 604223   | EPA 6010D         | 604309              |
| 92525335005 | YGWA-14S         | EPA 3010A       | 604223   | EPA 6010D         | 604309              |
| 92525335006 | YGWA-30I         | EPA 3010A       | 604223   | EPA 6010D         | 604309              |
| 92525335007 | FB-01            | EPA 3010A       | 604223   | EPA 6010D         | 604309              |
| 92525335008 | DUP-01           | EPA 3010A       | 604223   | EPA 6010D         | 604309              |
| 92525335009 | FB-01            | EPA 3010A       | 604223   | EPA 6010D         | 604309              |
| 92525335011 | YGWA-40          | EPA 3010A       | 604893   | EPA 6010D         | 604969              |
| 92525335012 | YGWA-17S         | EPA 3010A       | 604893   | EPA 6010D         | 604969              |
| 92525335013 | YGWA-18S         | EPA 3010A       | 604893   | EPA 6010D         | 604969              |
| 92525335014 | YGWA-18I         | EPA 3010A       | 604893   | EPA 6010D         | 604969              |
| 92525335015 | YGWA-39          | EPA 3010A       | 604893   | EPA 6010D         | 604969              |
| 92525335016 | YGWA-1D (030321) | EPA 3010A       | 604893   | EPA 6010D         | 604969              |
| 92525335017 | YGWA-1I (030321) | EPA 3010A       | 604893   | EPA 6010D         | 604969              |
| 92525335018 | YGWA-2I (030321) | EPA 3010A       | 604893   | EPA 6010D         | 604969              |
| 92525335019 | YGWA-3I (030321) | EPA 3010A       | 604893   | EPA 6010D         | 604969              |
| 92525335020 | YGWA-3D (030321) | EPA 3010A       | 604893   | EPA 6010D         | 604969              |
| 92525335021 | EB-02 (03032021) | EPA 3010A       | 604893   | EPA 6010D         | 604969              |
| 92525335022 | YGWA-4I          | EPA 3010A       | 604893   | EPA 6010D         | 604969              |
| 92525335023 | YGWA-20S         | EPA 3010A       | 604893   | EPA 6010D         | 604969              |
| 92525335024 | YGWA-21I         | EPA 3010A       | 604893   | EPA 6010D         | 604969              |
| 92525335001 | YGWA-5I          | EPA 3005A       | 604224   | EPA 6020B         | 604329              |
| 92525335002 | YGWA-5D          | EPA 3005A       | 604224   | EPA 6020B         | 604329              |
| 92525335003 | DUP-1            | EPA 3005A       | 604224   | EPA 6020B         | 604329              |
| 92525335005 | YGWA-14S         | EPA 3005A       | 604224   | EPA 6020B         | 604329              |
| 92525335006 | YGWA-30I         | EPA 3005A       | 604224   | EPA 6020B         | 604329              |
| 92525335007 | FB-01            | EPA 3005A       | 604224   | EPA 6020B         | 604329              |
| 92525335008 | DUP-01           | EPA 3005A       | 604224   | EPA 6020B         | 604329              |
| 92525335009 | FB-01            | EPA 3005A       | 604224   | EPA 6020B         | 604329              |



## QUALITY CONTROL DATA CROSS REFERENCE TABLE

| Project:          | YATES    |
|-------------------|----------|
| Pace Project No.: | 92525335 |

|             |                  |                 |          |                   | Analytical |
|-------------|------------------|-----------------|----------|-------------------|------------|
| Lab ID      | Sample ID        | QC Batch Method | QC Batch | Analytical Method | Batch      |
| 92525335011 | YGWA-40          | EPA 3005A       | 604916   | EPA 6020B         | 605023     |
| 92525335012 | YGWA-17S         | EPA 3005A       | 604916   | EPA 6020B         | 605023     |
| 92525335013 | YGWA-18S         | EPA 3005A       | 604916   | EPA 6020B         | 605023     |
| 92525335014 | YGWA-18I         | EPA 3005A       | 604916   | EPA 6020B         | 605023     |
| 92525335015 | YGWA-39          | EPA 3005A       | 604916   | EPA 6020B         | 605023     |
| 92525335016 | YGWA-1D (030321) | EPA 3005A       | 604916   | EPA 6020B         | 605023     |
| 92525335017 | YGWA-1I (030321) | EPA 3005A       | 604916   | EPA 6020B         | 605023     |
| 92525335018 | YGWA-2I (030321) | EPA 3005A       | 604916   | EPA 6020B         | 605023     |
| 92525335019 | YGWA-3I (030321) | EPA 3005A       | 604916   | EPA 6020B         | 605023     |
| 92525335020 | YGWA-3D (030321) | EPA 3005A       | 604916   | EPA 6020B         | 605023     |
| 92525335021 | EB-02 (03032021) | EPA 3005A       | 604916   | EPA 6020B         | 605023     |
| 92525335022 | YGWA-4I          | EPA 3005A       | 604916   | EPA 6020B         | 605023     |
| 92525335023 | YGWA-20S         | EPA 3005A       | 604916   | EPA 6020B         | 605023     |
| 92525335024 | YGWA-21I         | EPA 3005A       | 604916   | EPA 6020B         | 605023     |
| 92525335001 | YGWA-5I          | EPA 7470A       | 604308   | EPA 7470A         | 604504     |
| 92525335002 | YGWA-5D          | EPA 7470A       | 604308   | EPA 7470A         | 604504     |
| 92525335003 | DUP-1            | EPA 7470A       | 604308   | EPA 7470A         | 604504     |
| 92525335007 | FB-01            | EPA 7470A       | 604308   | EPA 7470A         | 604504     |
| 92525335008 | DUP-01           | EPA 7470A       | 604308   | EPA 7470A         | 604504     |
| 92525335009 | FB-01            | EPA 7470A       | 604308   | EPA 7470A         | 604504     |
| 92525335011 | YGWA-40          | EPA 7470A       | 604928   | EPA 7470A         | 605029     |
| 92525335012 | YGWA-17S         | EPA 7470A       | 604928   | EPA 7470A         | 605029     |
| 92525335013 | YGWA-18S         | EPA 7470A       | 604928   | EPA 7470A         | 605029     |
| 92525335014 | YGWA-18I         | EPA 7470A       | 604928   | EPA 7470A         | 605029     |
| 92525335015 | YGWA-39          | EPA 7470A       | 604928   | EPA 7470A         | 605029     |
| 92525335021 | EB-02 (03032021) | EPA 7470A       | 604928   | EPA 7470A         | 605029     |
| 92525335022 | YGWA-4I          | EPA 7470A       | 604928   | EPA 7470A         | 605029     |
| 92525335023 | YGWA-20S         | EPA 7470A       | 604928   | EPA 7470A         | 605029     |
| 92525335024 | YGWA-21I         | EPA 7470A       | 604928   | EPA 7470A         | 605029     |
| 92525335001 | YGWA-5I          | SM 2450C-2011   | 604300   |                   |            |
| 92525335002 | YGWA-5D          | SM 2450C-2011   | 604300   |                   |            |
| 92525335003 | DUP-1            | SM 2450C-2011   | 604300   |                   |            |
| 92525335005 | YGWA-14S         | SM 2450C-2011   | 604300   |                   |            |
| 92525335006 | YGWA-30I         | SM 2450C-2011   | 604206   |                   |            |
| 92525335007 | FB-01            | SM 2450C-2011   | 604527   |                   |            |
| 92525335008 | DUP-01           | SM 2450C-2011   | 604527   |                   |            |
| 92525335009 | FB-01            | SM 2450C-2011   | 604527   |                   |            |
| 92525335011 | YGWA-40          | SM 2450C-2011   | 604765   |                   |            |
| 92525335012 | YGWA-17S         | SM 2450C-2011   | 604626   |                   |            |
| 92525335013 | YGWA-18S         | SM 2450C-2011   | 604626   |                   |            |
| 92525335014 | YGWA-18I         | SM 2450C-2011   | 604764   |                   |            |
| 92525335015 | YGWA-39          | SM 2450C-2011   | 604765   |                   |            |
| 92525335016 | YGWA-1D (030321) | SM 2450C-2011   | 604764   |                   |            |
| 92525335017 | YGWA-1I (030321) | SM 2450C-2011   | 604764   |                   |            |
|             | · ·              |                 |          |                   |            |



## QUALITY CONTROL DATA CROSS REFERENCE TABLE

| Project:          | YATES    |
|-------------------|----------|
| Pace Project No.: | 92525335 |

| Lab ID      | Sample ID        | QC Batch Method        | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|------------------|------------------------|----------|-------------------|---------------------|
| 92525335018 | YGWA-2I (030321) | SM 2450C-2011          | 604764   |                   |                     |
| 92525335019 | YGWA-3I (030321) | SM 2450C-2011          | 604764   |                   |                     |
| 92525335020 | YGWA-3D (030321) | SM 2450C-2011          | 604764   |                   |                     |
| 92525335021 | EB-02 (03032021) | SM 2450C-2011          | 604764   |                   |                     |
| 92525335022 | YGWA-4I          | SM 2450C-2011          | 604764   |                   |                     |
| 92525335023 | YGWA-20S         | SM 2450C-2011          | 604764   |                   |                     |
| 92525335024 | YGWA-21I         | SM 2450C-2011          | 604765   |                   |                     |
| 92525335001 | YGWA-5I          | EPA 300.0 Rev 2.1 1993 | 604544   |                   |                     |
| 92525335002 | YGWA-5D          | EPA 300.0 Rev 2.1 1993 | 604544   |                   |                     |
| 92525335003 | DUP-1            | EPA 300.0 Rev 2.1 1993 | 604544   |                   |                     |
| 92525335005 | YGWA-14S         | EPA 300.0 Rev 2.1 1993 | 604544   |                   |                     |
| 92525335006 | YGWA-30I         | EPA 300.0 Rev 2.1 1993 | 604544   |                   |                     |
| 92525335007 | FB-01            | EPA 300.0 Rev 2.1 1993 | 604544   |                   |                     |
| 92525335008 | DUP-01           | EPA 300.0 Rev 2.1 1993 | 604544   |                   |                     |
| 92525335009 | FB-01            | EPA 300.0 Rev 2.1 1993 | 604544   |                   |                     |
| 92525335011 | YGWA-40          | EPA 300.0 Rev 2.1 1993 | 606455   |                   |                     |
| 92525335012 | YGWA-17S         | EPA 300.0 Rev 2.1 1993 | 606455   |                   |                     |
| 92525335013 | YGWA-18S         | EPA 300.0 Rev 2.1 1993 | 606455   |                   |                     |
| 92525335014 | YGWA-18I         | EPA 300.0 Rev 2.1 1993 | 606455   |                   |                     |
| 92525335015 | YGWA-39          | EPA 300.0 Rev 2.1 1993 | 606455   |                   |                     |
| 92525335016 | YGWA-1D (030321) | EPA 300.0 Rev 2.1 1993 | 606455   |                   |                     |
| 92525335017 | YGWA-1I (030321) | EPA 300.0 Rev 2.1 1993 | 606455   |                   |                     |
| 92525335018 | YGWA-2I (030321) | EPA 300.0 Rev 2.1 1993 | 606455   |                   |                     |
| 92525335019 | YGWA-3I (030321) | EPA 300.0 Rev 2.1 1993 | 606456   |                   |                     |
| 92525335020 | YGWA-3D (030321) | EPA 300.0 Rev 2.1 1993 | 606456   |                   |                     |
| 92525335021 | EB-02 (03032021) | EPA 300.0 Rev 2.1 1993 | 606456   |                   |                     |
| 92525335022 | YGWA-4I          | EPA 300.0 Rev 2.1 1993 | 606456   |                   |                     |
| 92525335023 | YGWA-20S         | EPA 300.0 Rev 2.1 1993 | 606456   |                   |                     |
| 92525335024 | YGWA-21I         | EPA 300.0 Rev 2.1 1993 | 606456   |                   |                     |

| Pana Amatediant                                                   | Document Na<br>Sample Condition Upon                                                                                          | me:<br>Receipt(SCUR) | Document Revised: October 28, 2020<br>Page 1 of 2                                                                                                                                  |
|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - Tale Allaylical                                                 | Document N<br>F-CAR-CS-033-F                                                                                                  | lo.:<br>Rev.07       | Issuing Authority:<br>Pace Carolinas Quality Office                                                                                                                                |
| boratory receiving samples:<br>Asheville Eden Gre                 | enwood 🗌 Huntersville 🗌                                                                                                       | Raleigh 🗌            | Mechanicsville Atlanta Kernersville                                                                                                                                                |
| Upon Receipt                                                      | e:<br>nits hower                                                                                                              | Project              | •• W0#:92525335                                                                                                                                                                    |
| Durier: Fed Ex<br>Commercial Pace                                 | UPS USPS<br>Other:                                                                                                            | Client               |                                                                                                                                                                                    |
| tody Seal Present? Yes                                            | ⊴No Seals Intact? . □Yes                                                                                                      | No                   | Date/Initials Person Examining Contents: <u>1773/3</u> /2                                                                                                                          |
| king Material: Bubble Wra                                         | > □Bubble Bags □None<br>日報                                                                                                    | Other<br>et Blue 1   | Biological Tissue Frozen?                                                                                                                                                          |
| vier Temp: <u> </u>                                               | Type of Ice:<br>Inrection Factor:<br>dd/Subtract (°C)<br><u>4</u> , 0<br>nple)<br>e within the United States: CA, NY, or SC ( | T<br>(check maps)? C | emp should be above freezing to 6°C<br>Samples out of temp criteria. Samples on ice, cooling process<br>has begun<br>Did samples originate from a foreign source (internationally, |
|                                                                   |                                                                                                                               | 1                    | Comments/Discrepancy:                                                                                                                                                              |
| Chain of Custody Present?                                         | Elyes INO                                                                                                                     | □N/A 1.              |                                                                                                                                                                                    |
| Samples Arrived within Hold Time?                                 | Elves DNo                                                                                                                     | □N/A 2.              |                                                                                                                                                                                    |
| Short Hold Time Analysis (<72 hr.)?                               |                                                                                                                               | □N/A 3.              |                                                                                                                                                                                    |
| Rush Turn Around Time Requested                                   |                                                                                                                               | □N/A 4.              |                                                                                                                                                                                    |
| Sufficient Volume?                                                | Pres ONO                                                                                                                      | □N/A 5.              |                                                                                                                                                                                    |
| Correct Containers Used?<br>-Pace Containers Used?                | ☐Yes □No<br>☐Yes □No                                                                                                          | □N/A 6.<br>□N/A      |                                                                                                                                                                                    |
| Containers Intact?                                                | Yes No                                                                                                                        | □N/A 7.              |                                                                                                                                                                                    |
| Dissolved analysis: Samples Field Fil<br>Sample Labels Match COC? | ered? 🛛 Yes 🖾 No<br>Dres 🗆 No                                                                                                 | □N/A 8.<br>□N/A 9.   |                                                                                                                                                                                    |
| -Includes Date/Time/ID/Analysis                                   | Matrix:T                                                                                                                      |                      | 192 - 2010-1 (                                                                                                                                                                     |
| Headspace in VOA Vials (>5-6mm)?                                  | Yes No                                                                                                                        | DN/A 10.             |                                                                                                                                                                                    |
| Trip Blank Present?                                               | Yes No                                                                                                                        | DN/A 11.             |                                                                                                                                                                                    |
| Trip Blank Custody Seals Present?                                 | Yes ☐No                                                                                                                       |                      | Field Data Required?                                                                                                                                                               |
| JENT NOTIFICATION/RESOLUTION                                      |                                                                                                                               | Lot                  | ID of split containers:                                                                                                                                                            |
| Person contacted:                                                 |                                                                                                                               | Date/Time:           |                                                                                                                                                                                    |
| Project Manager SCURF Review:                                     |                                                                                                                               | inter a star         | Date:                                                                                                                                                                              |
| Project Manager SRF Review:                                       |                                                                                                                               |                      | Date:                                                                                                                                                                              |

|                      |                                             |                                       | 1                                     | Pac                                    | )<br>ce An                              | alytic                             | al"                                        |                                          |                                         | San                                        | nple (                          | Doc<br>Condi<br>Do                        | tion L                                   | nt Na<br>J <b>pon</b><br>ent N   | me:<br>Recei<br>0.:                      | pt(SC                    | UR)                          |                          | Doc                        | umer                                  | nt Rev<br>P<br>Issui                     | vised:<br>Page 2<br>ing Au              | Octo<br>of 2<br>uthor                 | ity:      | 8, 202                                  | 20                                        |                                      |                                          |
|----------------------|---------------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|-----------------------------------------|------------------------------------|--------------------------------------------|------------------------------------------|-----------------------------------------|--------------------------------------------|---------------------------------|-------------------------------------------|------------------------------------------|----------------------------------|------------------------------------------|--------------------------|------------------------------|--------------------------|----------------------------|---------------------------------------|------------------------------------------|-----------------------------------------|---------------------------------------|-----------|-----------------------------------------|-------------------------------------------|--------------------------------------|------------------------------------------|
| *(<br>Ve<br>Sa<br>Ex | Chec<br>erific<br>impl<br>ceptic<br>Bot     | k ma<br>ed ar<br>es.<br>ons: V<br>tom | ark t<br>nd w<br>'OA, C<br>half       | op h<br>ithir<br>alifor<br>of b        | maif o<br>the<br>m, TO<br>ox is         | of bo<br>acco<br>oc, oil<br>s to l | and C<br>ist n                             | oH an<br>nce i<br>Grease<br>umb          | nd/o<br>range<br>e, DRO<br>er of        | r dec<br>e for<br>/8019<br>f bot           | chlor<br>pres<br>(wat<br>tles   | F-CAI<br>rinat<br>serva                   | ion i<br>atior                           | <u>)33-R</u><br>S<br>Hg          | ev.07                                    | Pro                      | ject                         | #                        |                            | Pare<br>O<br>KL<br>ENT                | Caro<br>H1                               | 92<br>A-Gf                              | Quali<br>25                           | 25<br>Due | ice<br>53<br>Dat                        | 34                                        | <br>5<br>03/1                        | 6/:                                      |
| kem#                 | BP4U-125 mL Plastic Unpreserved (N/A) (CI-) | BP3U-250 mL Plastic Unpreserved (N/A) | BP2U-500 mL Plastic Unpreserved (N/A) | BP1U-1 liter Plastic Unpreserved (N/A) | BP4S-125 mL Plastic H2SO4 (pH < 2) (CH) | BP3N-250 mL plastic HNO3 (pH < 2)  | BP4Z-125 mL Plastic ZN Acetate & NaOH (>9) | BP4C-125 mL Plastic NaOH {pH > 12} (Cl-) | WGFU-Wide-mouthed Glass jar Unpreserved | AG1U-1 liter Amber Unpreserved (N/A) (CI-) | AG1H-1 liter Amber HC! {pH < 2} | AG3U-250 mL Amber Unpreserved (N/A) (Cl-) | <b>AG15-1</b> liter Amber H2SO4 {pH < 2} | AG35-250 mL Amber H2SO4 (pH < 2) | AG3A(DG3A)-250 mL Amber NH4C! (N/A)(CI-) | DG9H-40 mL VOA HCI (N/A) | VG9T-40 mL VOA Na2S2O3 (N/A) | VG9U-40 mL VOA Unp (N/A) | DG9P-40 mL VOA H3PO4 (N/A) | VOAK (6 vials per kit)-5035 kit (N/A) | V/GK (3 vtals per ktt)-VPH/Gas kit (N/A) | SP5T-125 mL Sterile Plastic (N/A - lab) | SP2T-250 mL Sterile Plastic (N/A-lab) | BPIN      | BP3A-250 mL Plastic (NH2)2SO4 (9.3-9.7) | AG0U-100 mL Amber Unpreserved vials (N/A) | VSGU-20 mL Scintillation vials (N/A) | DG9U-40 mL Amber Unpreserved vials (N/A) |
| *                    |                                             | l                                     | ١                                     |                                        |                                         | X                                  | 1                                          |                                          |                                         |                                            | 1                               |                                           | 1                                        |                                  |                                          |                          |                              |                          |                            |                                       |                                          |                                         |                                       | X         |                                         |                                           |                                      |                                          |
|                      |                                             | l                                     | t                                     |                                        |                                         | X                                  | /                                          |                                          |                                         |                                            | 1                               |                                           |                                          |                                  |                                          |                          |                              |                          |                            |                                       |                                          |                                         |                                       | 2         | $\square$                               |                                           |                                      |                                          |
|                      |                                             | 1                                     | l                                     |                                        |                                         | N                                  | /                                          |                                          |                                         |                                            | 1                               |                                           | 1                                        |                                  | 1                                        |                          |                              |                          |                            |                                       |                                          |                                         |                                       | R         |                                         |                                           |                                      |                                          |

| Sample ID | Type of Preservative | pH Ac<br>pH upon receipt | Ijustment Log for Pres Date preservation adjusted | erved Samples<br>Time preservation<br>adjusted | Amount of Preservative<br>added | Lot # |
|-----------|----------------------|--------------------------|---------------------------------------------------|------------------------------------------------|---------------------------------|-------|
|           |                      |                          |                                                   |                                                |                                 |       |

l

l

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

X

|                              |   |       |      | BLING AND AND AND | 2 Your as | 1 vermen | D YGHARDOS  | YGWAJRI  | 8 YGWA-186- | F YGNALTS- DUP-1 | CHC UMJ) A GENERAL 28 | 5 vanta 16m A-St | A NOWNAL |        |    |          | Sample ids must be unique                   | SAMPLE ID                                    | 598               | -              | juested Due Date:                          | me: (770)384-6526 /Fax | alb:   | ress: 1070 Bridge Mill Ave | rutred Crient Information: | tion A    |
|------------------------------|---|-------|------|-------------------|-----------|----------|-------------|----------|-------------|------------------|-----------------------|------------------|----------|--------|----|----------|---------------------------------------------|----------------------------------------------|-------------------|----------------|--------------------------------------------|------------------------|--------|----------------------------|----------------------------|-----------|
|                              | 6 | ad 1  |      | OWTER             | WT        | WT       | WT          | WT       | WT          | WT               | WT                    | WT               | WT       | WT     | WT | WT       | # g<br># g<br># g<br># g<br>#<br>MATRIX COL | A D Bood A A A A A A A A A A A A A A A A A A | ATTENT Water Days | 2              | Project #:                                 | Project Name:          |        | Copy To:                   | Required Project           | Section B |
|                              |   | N.    | 5    | ANAB COMPANY      |           |          |             |          |             | 3/2              | 312                   | 312              |          |        |    |          | SAMPLE TYP                                  | E (G=GRAB                                    | C=COMP)           | -              |                                            | Yates AMA              |        | y Steever                  | Information                |           |
| PRINT<br>SIGNA               |   | Y     |      | FFLATION          |           |          |             |          |             | 1                | JUNI                  | 1405             |          |        |    |          | TIME                                        | ART                                          | COLLE             |                |                                            |                        |        |                            |                            |           |
| Name of SJ                   |   | 5     | 2    |                   |           |          |             |          | -           |                  |                       |                  |          |        |    | -        | DATE T                                      | N                                            | CTED              |                |                                            |                        |        |                            |                            | The Chair |
| MPLER                        |   | 2.2   | that | A.                |           |          |             | <u> </u> | <u> </u>    | G                | 10                    |                  |          | -      | -  | <u> </u> | SAMPLE TEM                                  |                                              |                   |                |                                            |                        |        |                            |                            | 1-of-C    |
| e m                          |   | -     |      |                   |           |          |             |          |             | 5                | 5                     | 3                |          |        |    | 1        | # OF CONTAIN                                | ERS                                          |                   |                | 2 3                                        | 2 2                    | 2 8    | <u>8</u>                   | 3 1                        | istod     |
| 12G                          |   | C     | 600  | TIME              |           |          |             |          |             | 1                | 1                     | 1                |          | -      |    | 1        | Unpreserved                                 |                                              | 1                 |                |                                            | Ce Que                 | dress: | ention:                    | olce I                     | isa       |
|                              |   | 1     | -    |                   |           |          |             | -        |             | -                | 1                     | 1                |          | -      | -  | +-       | H2SO4                                       |                                              |                   |                | hip #-                                     | ie.                    |        | Name                       | nom                        | LEG       |
| D                            |   | 4     |      |                   |           |          |             |          |             |                  |                       | ~~*              |          |        | 1  | 1        | HCI                                         | 2 - 10100 and - 110 million                  | rese              | I              | alagen                                     |                        | 1      |                            | ations                     | ALD       |
| \$2                          |   | 9     | 2    | 5                 |           |          |             |          |             |                  |                       |                  |          |        |    |          | NaOH                                        |                                              | rvati             | 10             |                                            |                        |        |                            |                            | Q         |
| TAS -                        |   | 1     |      | CLEP              | _         |          |             |          | -           | -                |                       | _                |          | -      |    |          | Na2S2O3                                     |                                              | les               |                | kevin.                                     |                        |        |                            |                            | MEN       |
| A                            |   | 13    | M    | ED BY             |           |          |             |          |             |                  |                       |                  |          |        | 1  |          | Other                                       |                                              | -                 |                | herning                                    |                        |        |                            |                            | T.A       |
| - 12                         | - | 3     |      | INFE              | ~ 1       | 5 1      | <del></del> | -        |             |                  | - 1                   |                  |          |        |    | <b>.</b> | Analyse                                     | Test                                         | YIN               | T              | Bhao                                       |                        |        |                            |                            | l rele    |
|                              |   |       |      | S TO              | ×         | ×        | ×           | ×        | ×           | ×                | ×                     | ×                | ×        | ×<br>× | ×× | ××       | TDS<br>CL.F. SO4                            |                                              | -                 |                | elabs,                                     |                        |        |                            |                            | vant      |
| 8                            |   | 1     |      |                   | ×         | ×        | ×           | ×        | ×           | ×                | ×                     | ×                | ×        | ×      | ×  | ×        | App III/IV Meta                             | ls                                           |                   | Reg            | 11:00                                      |                        |        |                            |                            | lields    |
|                              |   |       |      |                   | ×         | ×        | ×           | ×        | ×           | × )              | ×                     | ×                | ×        | ×      | ×  | ×        | RAD 9315/932                                | 0                                            |                   | estad .        |                                            |                        |        |                            |                            | must      |
|                              |   | 51200 | 5.22 | ONTE              |           |          |             |          | _           |                  |                       |                  |          |        |    |          |                                             | н.<br>                                       |                   | Vrailysis Film |                                            |                        |        |                            |                            | be comple |
|                              | + | 5     | 1    |                   | -         | -        |             |          |             |                  | -                     |                  |          |        |    |          |                                             |                                              |                   | A Pere         |                                            |                        |        |                            |                            | sted a    |
|                              |   | 683   | 600  | TIME              |           |          |             |          |             |                  |                       |                  |          |        |    |          |                                             |                                              |                   | RA)            | 10. 10 10 10 10 10 10 10 10 10 10 10 10 10 |                        |        | C                          |                            | ocurate   |
| MP In C                      |   | 40    |      | T                 | <u> </u>  |          | Ţ           | 1        | Ι           |                  |                       |                  | ĺ        |        |    |          | Residual Chier                              |                                              |                   |                | 36                                         | Ser.                   | 5      | 2                          | Dana -                     | \$        |
| ceived on<br>]<br>N)         |   | 1     |      | SAMPLE            |           |          | T           |          |             | , :              | ¥                     | 2                |          |        |    |          | 2                                           |                                              |                   | AØ             | the S. Liocatto                            | Not Assessed           | 0      |                            |                            |           |
| slody<br>ledD<br>olerD<br>N) |   | Z     |      | NOULONO           |           |          |             |          |             | 6                | 1+                    | 50               |          |        |    |          | 525                                         |                                              |                   |                | a                                          | uch .                  | 1 6    | 1                          | 2                          |           |
| nples<br>ct©<br>N)           |   | X     | ſ    |                   |           |          |             |          |             | ľ                |                       |                  |          |        |    |          | 33                                          |                                              |                   | 1.10           | 22450                                      |                        | 24     | 4                          | 11                         |           |

|                                              |   |           |           | Pool looka coments    | 3 |   | YOWCASA : | TENTCHS | Now-4       | Nones | YGWA47      |       |         |             | SAMPLE ID<br>One Character per box.<br>(A.Z. 0.9 /<br>Semple tds must be unique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | vested Due Date:      | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 | ton, GA 30114 | ress 1070 Action Mill Aug | ulred Cilent Information:         | Ann A Republication  |
|----------------------------------------------|---|-----------|-----------|-----------------------|---|---|-----------|---------|-------------|-------|-------------|-------|---------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------|---------------------------------------------------------------------------------|---------------|---------------------------|-----------------------------------|----------------------|
|                                              | - | w/w       | APA A     |                       |   |   | WT        | WT      | WT          | WT    | WT          | WT    | WT      | WT          | Tissue<br>Common<br>Common<br>Status<br>Status<br>Status<br>MATRIX CODE<br>MATRIX CODE<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status<br>Status | America Contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contr | >                  | Project #:            | Purchase Order #:                                                               | roby to:      | Report To: Beck           | Section is<br>Required Project    |                      |
| SAMP (ER)<br>PRINT                           |   | D         | 5         | NOLLWITEN I ALS OTHER |   |   |           |         |             |       | 3/1 1218    |       |         |             | SAMPLE TYPE (G=GRA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | C=COMP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                    | Yates Amer Up (n      |                                                                                 |               | y Sleever                 | Information:                      |                      |
| NAME AND SIGRATU<br>Name of SAMPLER:         |   | 3 2.21    | 12950     | DATE                  |   |   |           |         |             |       |             |       |         |             | SAMPLE TEMP AT COLLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | adient                |                                                                                 |               |                           |                                   | The Chain-of-Cust    |
| allery T bud                                 |   | 1730 mic  | 1530 1/10 | TIME                  |   |   |           |         |             |       | SV V        |       |         |             | # OF CONTAINERS<br>Unpreserved<br>H2SO4<br>HNO3<br>HC1<br>N2OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Preserva                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | reversioner, 10040 | Pace Project Manager: | Pace Quote:                                                                     | Company Name: | Attention:                | Section C<br>Invoice Information: | ody is a LEGAL DO    |
| akis                                         |   | Innicel   | 5112      | VCOBUED BY I VIEL     |   |   |           | ×       | ×           | ×     | ×           | ×     | ×       | ×           | NaOn<br>Na2S2O3<br>Methanol<br>Other<br>ATTBlyges Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | atives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                    | kevin.herring@pace    |                                                                                 |               |                           |                                   | CUMENT. All relevi   |
|                                              | - | 5/        | 2         | NDON                  |   | > | • •       | x x x   | ×<br>×<br>× | × × × | ×<br>×<br>× | x x x | x x x x | ×<br>×<br>× | Ci, F, SO4<br>App III/iV Metals<br>RAD 9315/9920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Requested Analy    | abs.com,              |                                                                                 |               |                           |                                   | ant fields must be o |
|                                              |   | 12/21 17: | -221 15:  | daie ina              |   |   |           |         |             |       |             |       |         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | als Fillefod (VN)  |                       | 6                                                                               |               |                           |                                   | completed accu       |
| MP in C                                      |   | 30 40     | Ċ,        |                       |   |   |           |         |             |       |             |       |         |             | Residual Chlorine (Y/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | Sine                  | spines                                                                          | 1 205         | Page :                    | 7                                 | irately.             |
| xelved on<br>)<br>)<br>Nody<br>ledC<br>plerC |   | N N       | _         | SAMPLE CONOLD         |   |   |           |         |             | P     | T           |       |         |             | V<br>X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | QA .               | Locations             | thry Agency                                                                     | - 06          | A O                       | 1                                 |                      |
| i)<br>aples<br>x0                            |   | Y         | -         | SNO                   |   |   |           |         |             |       | 40          |       |         |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | 1000                  |                                                                                 |               | X                         |                                   |                      |

Page 59 of 61

|                |         |            |                  |                     | N<br>X  | ł        | 0             | 3        | X       | X       | 7       | K       | B        |     | - K     | *       | i i Em #                  |                                                                 | A.W                                  | -       | uested        | \$   Ħ          | ton. GA | npany:                                | Initiad C                 | thon A     |
|----------------|---------|------------|------------------|---------------------|---------|----------|---------------|----------|---------|---------|---------|---------|----------|-----|---------|---------|---------------------------|-----------------------------------------------------------------|--------------------------------------|---------|---------------|-----------------|---------|---------------------------------------|---------------------------|------------|
|                |         |            |                  | ADDITIONAL COMMENTS | SW-288- | 8445-274 | OWO-PRO-      | - DUP-01 | mer FBO | GWA-301 | GWA-14S | CHARLES |          | SWA | SWA-15- | CHILLER | Semple ids must be unique | SAMPLE ID                                                       |                                      |         | Due Date:     | (77/1)'384 ESOC | 30114   | Georgia Power<br>1070 Britton Mai Ave | lient information:        | PROFESSION |
|                |         |            | A                |                     |         |          |               |          |         |         |         |         |          |     |         |         | Thesaure 375              | Wate Water With<br>Producti Pro<br>Soursound Pro<br>Old OLD OLD | MATRIXC COOED<br>Drinking WaterD DWD |         | Project #:    | Purchase Ord    | way to: | Report To:                            | Section B<br>Required Pro |            |
|                |         |            | THE              | Linda               | NT I    | WT       | WT            | WT       | T       | WT      | WT      | WT      | TW       | WT  | WT      | WT      | MATRIX COD                | E (see valid c                                                  | odes to left)<br>C=COMP)             |         | Y             | er#:            |         | Becky                                 | ject Im                   |            |
|                |         | 0          | N                |                     |         |          |               | V.       | W       | 3       | w       |         | 1        | 1   | 1       | 1       | 8                         |                                                                 | T                                    | 1       | ates A        |                 |         | Steeve                                | format                    |            |
|                | Ter     |            | M                | NI Y                | _       |          | _             | 3        | C.      | -       | 2       |         | <u> </u> |     | -       |         | Ā                         | STAF                                                            |                                      | 11      | T             |                 |         | 1                                     | lon:                      |            |
| 802            | Allerpi |            |                  | D.W.R.              |         | l        |               | 1        | Si      | 223     | 12      |         |          |     |         |         | TIME                      | a                                                               | COL                                  |         | 00            |                 |         |                                       |                           |            |
| INT Name of SA | RNAME   | IV         | $\left  \right $ | 1 <b>2</b> -        |         |          |               |          |         |         |         |         |          |     |         |         | DATE                      | ,<br>,                                                          | ECTED                                |         | 1226          |                 |         |                                       |                           | The C      |
|                | ANDS    |            | 费                | a l                 |         |          |               |          |         |         |         |         |          | 1   |         | Ì       | ALL<br>ML                 | ON                                                              |                                      |         | are a         |                 |         |                                       |                           | hain-c     |
| 200            | ALC: N  |            | 22               | <b>A</b>            | _       |          |               | _        |         | ,       |         |         |          | _   | -       | -       | TH SANDIE TEM             | PAT COLLECT                                                     |                                      |         | 3             |                 |         |                                       |                           | 01-Cu      |
| A CR           | TURE    |            | -                | 1970)<br>(1970)     | -       | +        |               | m        | VI      | л       | 5       |         |          |     |         | -       | # OF CONTAIN              | VERS                                                            |                                      |         | 5 2           | 2               | 20      | 2                                     | 28                        | stod       |
| 16             |         |            | 1.2              | Ĩ                   |         | 1        |               | 1        | 1       | 1       | X       |         |          |     |         |         | Unpreserved               |                                                                 | 1                                    |         |               | 08 Q            | Induce  | tentio                                | volce                     | y is       |
| T              |         |            | 2                |                     |         |          |               |          | -       |         |         |         |          |     |         | 1.00    | H2SO4                     |                                                                 |                                      |         | oject         | vote:           | IY Na   | 2                                     | in o                      | Ē          |
| 11             | 2.      |            | 4                |                     | _       |          | _             | 1        | 1       | 1       | 1       |         |          |     |         |         | HNO3                      |                                                                 | Pre                                  |         | Mana          |                 | Te:     |                                       | matto                     | GAL        |
| Y              |         |            | 22               | 8 F                 | +       | +        | $\rightarrow$ | _        |         |         |         |         |          |     |         |         | HCI                       |                                                                 | -Ner                                 | 0040    | Jer:          |                 |         |                                       | 8                         | DO         |
| Y              |         |            | 6                | 8                   |         |          | -             |          | _       |         |         |         |          |     |         |         | Na25203                   |                                                                 | tive                                 |         | 100           |                 |         |                                       |                           | NUC        |
| 1              |         |            | 2                |                     |         |          |               |          |         |         |         |         |          |     |         |         | Methanol                  |                                                                 | - <sup>60</sup>                      |         | M'UJA         |                 |         |                                       |                           | ENT        |
|                |         |            | 5                | BBR                 |         |          |               |          |         |         |         |         |          |     |         |         | Other                     |                                                                 |                                      |         | <b>Dupu</b> e |                 |         |                                       |                           | 2          |
|                |         |            | 8                | H                   | - I.,   |          |               |          |         |         |         |         |          |     |         |         | Analyse                   | o Teat                                                          | Y/N                                  |         | oed@          |                 |         |                                       |                           | relev      |
| g              | 2       |            | 6                | SE C                |         |          |               | *        | ×       | ×       | ×       | ×       | ×        | ×   | ×       | ×       | TDS                       |                                                                 |                                      | 6.)     | elabs         |                 |         |                                       |                           | vant       |
| TES            |         |            |                  | ×                   | ×       |          | < >           | ĸ        |         |         | ×       | ×       | ×        | x   | ×       | ×       | CI, F, SO4                | ale                                                             |                                      | 77      | COM           |                 |         |                                       |                           | field      |
| Igneo          |         |            |                  | ×                   | ×       |          | < >           | -        | ×       | ×       | ×       | ×       | ×        | ×   | ×       | ×       | RAD 9315/93               | 20                                                              |                                      |         |               |                 |         |                                       |                           | NU S       |
| 2              |         |            |                  |                     |         |          |               |          |         |         |         |         |          |     |         |         |                           |                                                                 |                                      | d'An    |               |                 |         |                                       |                           | ist by     |
|                |         |            | 212              | 2-                  | _       |          |               | -        |         | _       |         |         |          |     |         |         |                           |                                                                 |                                      | No.     |               |                 |         |                                       |                           | COL        |
| 2              |         |            | 2                | - F                 |         | -+-      | +             | +        | -       |         |         |         |          |     |         |         |                           |                                                                 |                                      |         | H             |                 | μ       | 1                                     |                           | nplet      |
| 5              | -+      |            | 0                |                     | $\neg$  | +        | -             | $\neg$   | +       |         |         |         |          |     |         |         |                           | ie <u>-</u>                                                     |                                      |         |               | ACK S           |         |                                       |                           | led a      |
| 2              |         |            | 2                | R C                 |         |          |               |          |         |         |         |         |          |     |         |         |                           |                                                                 |                                      | 3       |               | 11.67           |         |                                       |                           | Coul       |
|                |         |            | C                |                     |         |          |               |          |         |         | _       |         |          |     |         |         |                           |                                                                 |                                      |         | 8             |                 |         | F                                     |                           | ately      |
| EMP In C       | ;       |            | 40               | -                   |         |          | 1             |          |         |         |         |         |          |     |         |         | Residual Chio             | rine (Y/N)                                                      | 10102                                |         |               | Regul           | 200     | age :                                 |                           | -          |
| Received (     | on      |            |                  | SER.                | T       |          | T             | I        | -       | J       | R       |         |          |     |         |         |                           |                                                                 |                                      | QA<br>A | Loc           | atony i         | 1-      |                                       |                           |            |
| Y/N)           |         | _ <b>_</b> | 1                | E Q                 |         |          |               | 1        | 1+      | I       | N       |         |          |     |         |         |                           |                                                                 |                                      |         | ality of      | Ser.            | .       | P                                     |                           |            |
| ealedD         |         |            | 7                | NON I               |         |          |               |          | •       | 5       | 21      |         |          |     |         |         |                           |                                                                 |                                      |         |               | X               | e       | : 0                                   |                           |            |
| Y/N)           |         |            | 1                | 8                   |         |          |               |          |         |         | 5       |         |          |     |         |         |                           |                                                                 |                                      |         |               | 2.2             | 9       | 1                                     |                           |            |
| samples        |         |            | <                |                     |         |          |               |          |         | ost     |         |         |          |     |         |         |                           |                                                                 |                                      |         |               | 1               |         | -                                     |                           |            |

|          |         |   |            |      |              | ADDITIONAL COMMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | Curre-ag         | CMG-12                                     | DE JAND | CHAC-1B | emegar | Reewe | GWA-2    | 1-8-01 |   |          | SAMPLE ID<br>One Character per box.<br>(A.Z. 0-8 /,-<br>Sample ids must be unique |                    |          | sted Due Date | LANDON DESD      | GA 30114 | ny: Georgia Power | n A<br>ed Client information: | Same Aralytical |
|----------|---------|---|------------|------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------------|--------------------------------------------|---------|---------|--------|-------|----------|--------|---|----------|-----------------------------------------------------------------------------------|--------------------|----------|---------------|------------------|----------|-------------------|-------------------------------|-----------------|
|          |         |   | - M        | 1    |              | THE NAME OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTI |   | ×                | W                                          | W       | ×       | W      | ¥     | W        | W      | W | W        | NATRIX CODE (see valid of                                                         | Drinking Water DWD | -        | Project #:    | Purchase Order   | Copy IV: | Report To: Be     | Section B<br>Required Projec  |                 |
|          |         |   | 12         | the  | Λ            | NOUISHE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |                  | 7                                          | -       | -       | 14     | -     | P P      | F      | 7 | 7        | SAMPLE TYPE (G=GRA8                                                               | C=COMP)            |          | Yates (       | 3                |          | city Steev        | t Informa                     |                 |
| T        | 2       |   | $(\Lambda$ | Ø    |              | BYING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   | anatadi distrima |                                            | _       |         | L      |       | N        | 0      | - | -        | STAR                                                                              |                    |          | a macelle     |                  | 1        | er.               | ation:                        |                 |
| SIGNA    | WPLER   |   | U          |      | Ň            | LIATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | -                | -                                          | -       |         |        |       | 0        | 22     |   | -        |                                                                                   | COLLEC             |          | T             |                  |          |                   |                               | Ţ               |
| Name of  | JAME AN |   |            |      | Y            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | -                | -                                          |         | -       |        |       |          |        |   |          | END .                                                                             | B                  |          | 50 30         |                  |          |                   |                               | le Chair        |
| SAMPLE   | D SIGNI |   | 0.0        | 1 HI | 5/10         | DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |                  |                                            |         |         |        |       |          |        |   |          | TIME                                                                              |                    |          | 8             |                  |          |                   |                               | n-of-Cu         |
| N I      | NTURG   | - | 12         | 1    | <pre>#</pre> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                  | +                                          | -       |         |        | -     | of       |        | - |          | SAMPLE TEMP AT COLLECTION                                                         |                    |          | 2 2           | Pa               | 88       | An                | Sec.                          | istody          |
| Ext      |         |   | 15         |      | 3            | TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |                  |                                            |         |         |        |       | 1        | 5      |   |          | Unpreserved                                                                       |                    |          | a Pro         | × Quo            | iness:   | ention:           | olce in                       | 20              |
| 2        |         |   | -          | 5    | Ľ.           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | _                | 1_                                         |         |         |        |       | L        |        | 1 | <u> </u> | H2SO4                                                                             | -                  | 3        | lect M        | Xe:              | Name     |                   | Nom                           | LEG             |
| 12       | 17      |   | 2          | A    | 17           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                  | +                                          | -       |         | -      |       |          | 5      |   | +        | HCI                                                                               | rese               | DL PL    | ađeue         |                  | 33       |                   | ition:                        | ALD             |
| 8        |         |   | 22         | 10   |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                  |                                            |         |         |        |       |          |        |   |          | NaOH                                                                              | Mall               | 1e       |               |                  |          |                   |                               | g               |
| 3        |         |   | 1          | 20   | 1-1          | NOOE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 |                  |                                            | -       |         | 1.4    |       |          |        |   |          | Na2S2O3                                                                           | les                |          | kevin.        |                  |          |                   |                               | MEN             |
|          |         |   | ter.       | 1    | H            | TEDB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | +                | 1-                                         | 1-      |         |        |       |          |        |   | -        | Other                                                                             | -                  |          | heming        |                  |          |                   |                               | T.A             |
|          |         |   | 3          | -    |              | TINH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |                  | al anna an an an an an an an an an an an a |         |         |        |       |          | _      |   |          | Analyses Test                                                                     | Y/N                |          | Bbac          |                  |          |                   |                               | rele            |
|          |         |   |            | 11   |              | LATA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   | ×                | ×                                          | ×       | ×       | ×      | ×××   | ×        | ×      | × | ×        | TDS                                                                               |                    |          | elabs.        |                  | 1        |                   |                               | ant 1           |
|          |         |   |            | V    |              | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | ×                | ×                                          | ×       | ×       | ×      | ×     | ×        | ×      | × | ×        | App 1/11/11/1 Metals                                                              | 1                  | Requ     | com,          |                  |          |                   |                               | ields           |
|          |         |   |            |      |              | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   | ×                | ×                                          | ×       | ×       | ×      | ×     | ×        | ×      | × | ×        | RAD 9315/9320                                                                     |                    | ested /  |               |                  | 10       |                   |                               | must            |
|          |         | + | ×          | 1    | 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                  |                                            | İ       |         |        |       |          |        |   |          |                                                                                   |                    | landy st |               |                  |          |                   |                               | be co           |
|          |         |   | 42         | 1    | 1            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                  |                                            |         |         |        |       |          |        |   | -        |                                                                                   |                    |          |               | Ц                |          |                   |                               | mple            |
|          | -       | + | -          | 6    | 7            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - | -                | -                                          | -       |         |        |       |          |        |   | -        |                                                                                   | -                  | L Pe     |               |                  |          |                   |                               | led a           |
|          |         |   | 230        | 24   | T.           | Ĩ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |   |                  | 1-                                         |         |         |        |       |          | _      |   |          | Annundstoneitille                                                                 |                    | 3        |               |                  |          | r                 | _                             | ocurate         |
| MP In C  |         |   | u.         | T    | +            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                  | 1                                          | -       |         |        |       |          | 14.1   |   |          | Deside al Autorea Alera                                                           |                    | L        | 80            | 1400             |          | 2                 | Page                          | sty.            |
| celved o | on .    | + |            | +    | -            | SAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   | T                | T                                          |         |         |        |       | <b>H</b> | Ē      |   | Γ        | Kesiguai Uniorinė (Y/N)                                                           | N.                 | QA       | te / Loci     | and the party of |          | _                 |                               | ~               |
| N)       |         | _ | T          | 1    |              | PLECO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |   |                  |                                            |         |         |        |       |          | 1      |   |          |                                                                                   |                    |          | noith         | 1.000            | -        | 1                 | 4                             | ما              |
| olerO    |         |   | 2          |      |              | NOTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |                  |                                            |         |         |        |       | V        |        |   |          |                                                                                   |                    |          |               |                  | 10       |                   | g                             |                 |
| mples    |         | 1 | L          | Ţ    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                  |                                            |         |         |        |       | - New    |        |   |          |                                                                                   |                    |          | 15            |                  | 6        |                   |                               | C               |
| N)       |         |   |            | 1    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                  |                                            |         |         |        |       | 3        |        |   |          |                                                                                   |                    |          |               | Ц                | 15       | Ĩ                 | -                             |                 |

42



Pace Analytical Services, LLC 110 Technology Parkway Peachtree Corners, GA 30092 (770)734-4200

March 28, 2021

Ms. Lauren Petty Southern Company 42 Inverness Center Parkway Birmingham, AL 35242

RE: Project: YATES RADS Pace Project No.: 92525896

Dear Ms. Petty:

Enclosed are the analytical results for sample(s) received by the laboratory on March 05, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Karalin ya

Kevin Herring kevin.herring@pacelabs.com 1(704)875-9092 HORIZON Database Administrator

Enclosures

cc: Joju Abraham, Georgia Power-CCR Lauren Coker, Georgia Pwer Geoffrey Gay, ARCADIS - Atlanta Kristen Jurinko Kelley Sharpe, ARCADIS - Atlanta Alex Simpson, Arcadis Samantha Thomas Maribel Vital





Pace Analytical Services, LLC 110 Technology Parkway Peachtree Corners, GA 30092 (770)734-4200

#### CERTIFICATIONS

Project: YATES RADS Pace Project No.: 92525896

#### Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601 ANAB DOD-ELAP Rad Accreditation #: L2417 Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694 **Delaware Certification** EPA Region 4 DW Rad Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET **Guam Certification** Hawaii Certification Idaho Certification **Illinois Certification** Indiana Certification Iowa Certification #: 391 Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221 Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086 Maine Certification #: 2017020 Maryland Certification #: 308 Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991

Missouri Certification #: 235 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249 Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification Tennessee Certification #: 02867 Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L



Pace Analytical Services, LLC 110 Technology Parkway Peachtree Corners, GA 30092 (770)734-4200

#### SAMPLE SUMMARY

Project: YATES RADS Pace Project No.: 92525896

| Lab ID      | Sample ID | Matrix | Date Collected | Date Received  |
|-------------|-----------|--------|----------------|----------------|
| 92525896001 | YGWC-24SA | Water  | 03/03/21 11:50 | 03/05/21 09:20 |
| 92525896002 | YGWC-36A  | Water  | 03/04/21 12:35 | 03/05/21 09:20 |
| 92525896003 | DUP-2     | Water  | 03/03/21 00:00 | 03/05/21 09:20 |
| 92525896004 | YGWC-23S  | Water  | 03/04/21 12:15 | 03/05/21 09:20 |
| 92525896005 | YGWC-41   | Water  | 03/04/21 09:00 | 03/05/21 09:20 |
| 92525896006 | YGWC-43   | Water  | 03/04/21 14:50 | 03/05/21 09:20 |
| 92525896007 | FB-1      | Water  | 03/04/21 14:00 | 03/05/21 09:20 |
| 92525896008 | EB-2      | Water  | 03/04/21 16:35 | 03/05/21 09:20 |
| 92525896009 | YGWC-49   | Water  | 03/04/21 14:51 | 03/05/21 09:20 |
| 92525896010 | FB-02     | Water  | 03/04/21 15:00 | 03/05/21 09:20 |
| 92525896011 | YGWC-42   | Water  | 03/04/21 08:45 | 03/05/21 09:20 |
| 92525896012 | YGWC-38   | Water  | 03/04/21 13:45 | 03/05/21 09:20 |



# SAMPLE ANALYTE COUNT

Project:YATES RADSPace Project No.:92525896

| Lab ID      | Sample ID | Method                   | Analysts | Analytes<br>Reported | Laboratory |
|-------------|-----------|--------------------------|----------|----------------------|------------|
| 92525896001 | YGWC-24SA | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |           | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |           | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92525896002 | YGWC-36A  | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |           | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |           | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92525896003 | DUP-2     | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |           | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |           | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92525896004 | YGWC-23S  | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |           | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |           | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92525896005 | YGWC-41   | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |           | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |           | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92525896006 | YGWC-43   | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |           | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |           | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92525896007 | FB-1      | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |           | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |           | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92525896008 | EB-2      | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |           | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |           | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92525896009 | YGWC-49   | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |           | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |           | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92525896010 | FB-02     | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |           | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |           | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92525896011 | YGWC-42   | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |           | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |           | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92525896012 | YGWC-38   | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |           | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |           | Total Radium Calculation | CMC      | 1                    | PASI-PA    |



#### SAMPLE ANALYTE COUNT

| Pace Project No.: 92525896 | Project:          | YATES RADS |  |  |
|----------------------------|-------------------|------------|--|--|
|                            | Pace Project No.: | 92525896   |  |  |

|        |           |        |          | Analytes |            |
|--------|-----------|--------|----------|----------|------------|
| Lab ID | Sample ID | Method | Analysts | Reported | Laboratory |
|        |           |        |          |          |            |

PASI-PA = Pace Analytical Services - Greensburg


Project: YATES RADS

Pace Project No.: 92525896

| Lab Sample ID            | Client Sample ID |                                                             |       |              |                |            |
|--------------------------|------------------|-------------------------------------------------------------|-------|--------------|----------------|------------|
| Method                   | Parameters       | Result                                                      | Units | Report Limit | Analyzed       | Qualifiers |
| 92525896001              | YGWC-24SA        |                                                             |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.139 ±<br>0.138<br>(0.275)                                 | pCi/L |              | 03/25/21 09:48 |            |
| EPA 9320                 | Radium-228       | C:85% 1:NA<br>0.276 ±<br>0.454<br>(0.991)<br>C:80%<br>T:85% | pCi/L |              | 03/25/21 15:46 |            |
| Total Radium Calculation | Total Radium     | 0.415 ±<br>0.592<br>(1.27)                                  | pCi/L |              | 03/26/21 13:56 |            |
| 92525896002              | YGWC-36A         |                                                             |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.0671 ±<br>0.0999<br>(0.218)<br>C:93% T:NA                 | pCi/L |              | 03/25/21 10:15 |            |
| EPA 9320                 | Radium-228       | -0.226 ±<br>0.464<br>(1.10)<br>C:78%<br>T:88%               | pCi/L |              | 03/25/21 15:46 |            |
| Total Radium Calculation | Total Radium     | 0.0671 ±<br>0.564<br>(1.32)                                 | pCi/L |              | 03/26/21 13:56 |            |
| 92525896003              | DUP-2            |                                                             |       |              |                |            |
| EPA 9315                 | Radium-226       | 4.78 ±<br>0.878<br>(0.257)<br>C:85% T:NA                    | pCi/L |              | 03/25/21 12:25 |            |
| EPA 9320                 | Radium-228       | 0.329 ±<br>0.440<br>(0.941)<br>C:81%<br>T:76%               | pCi/L |              | 03/25/21 15:48 |            |
| Total Radium Calculation | Total Radium     | 5.11 ± 1.32<br>(1.20)                                       | pCi/L |              | 03/26/21 13:56 |            |
| 92525896004              | YGWC-23S         |                                                             |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.230 ±<br>0.209<br>(0.423)<br>C:82% T:NA                   | pCi/L |              | 03/25/21 09:48 |            |
| EPA 9320                 | Radium-228       | 0.541 ±<br>0.461<br>(0.933)<br>C:75%<br>T:79%               | pCi/L |              | 03/25/21 15:48 |            |
| Total Radium Calculation | Total Radium     | 0.771 ±<br>0.670<br>(1.36)                                  | pCi/L |              | 03/26/21 13:56 |            |



Project: YATES RADS

Pace Project No.: 92525896

| Lab Sample ID            | Client Sample ID |                                                    |       |              |                |            |
|--------------------------|------------------|----------------------------------------------------|-------|--------------|----------------|------------|
| Method                   | Parameters       | Result                                             | Units | Report Limit | Analyzed       | Qualifiers |
| 92525896005              | YGWC-41          |                                                    |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.260 ±<br>0.174<br>(0.297)                        | pCi/L |              | 03/25/21 09:48 |            |
| EPA 9320                 | Radium-228       | C:84% T:NA<br>0.968 ±<br>0.491<br>(0.867)<br>C:77% | pCi/L |              | 03/25/21 15:48 |            |
| Total Radium Calculation | Total Radium     | T:80%<br>1.23 ±<br>0.665<br>(1.16)                 | pCi/L |              | 03/26/21 13:56 |            |
| 92525896006              | YGWC-43          |                                                    |       |              |                |            |
| EPA 9315                 | Radium-226       | 4.73 ±<br>0.872<br>(0.278)<br>C:87% TNA            | pCi/L |              | 03/25/21 09:54 |            |
| EPA 9320                 | Radium-228       | 1.29 ±<br>0.544<br>(0.903)<br>C:76%<br>T:85%       | pCi/L |              | 03/25/21 15:48 |            |
| Total Radium Calculation | Total Radium     | 6.02 ± 1.42<br>(1.18)                              | pCi/L |              | 03/26/21 13:56 |            |
| 92525896007              | FB-1             |                                                    |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.135 ±<br>0.137<br>(0.269)<br>C:85% T:NA          | pCi/L |              | 03/25/21 09:48 |            |
| EPA 9320                 | Radium-228       | 0.616 ±<br>0.480<br>(0.955)<br>C:76%<br>T:77%      | pCi/L |              | 03/25/21 15:48 |            |
| Total Radium Calculation | Total Radium     | 0.751 ±<br>0.617<br>(1.22)                         | pCi/L |              | 03/26/21 13:56 |            |
| 92525896008              | EB-2             |                                                    |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.0835 ±<br>0.120<br>(0.261)<br>C:88% TNA          | pCi/L |              | 03/25/21 12:27 |            |
| EPA 9320                 | Radium-228       | 0.815 ±<br>0.506<br>(0.961)<br>C:82%<br>T:73%      | pCi/L |              | 03/25/21 15:48 |            |
| Total Radium Calculation | Total Radium     | 0.899 ±<br>0.626<br>(1.22)                         | pCi/L |              | 03/26/21 13:56 |            |



Project: YATES RADS

Pace Project No.: 92525896

| Lab Sample ID            | Client Sample ID |                                                   |       |              |                |            |
|--------------------------|------------------|---------------------------------------------------|-------|--------------|----------------|------------|
| Method                   | Parameters       | Result                                            | Units | Report Limit | Analyzed       | Qualifiers |
| 92525896009              | YGWC-49          |                                                   |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.207 ±<br>0.133<br>(0.183)                       | pCi/L |              | 03/25/21 08:50 |            |
| EPA 9320                 | Radium-228       | C:79% 1:NA<br>0.372 ±<br>0.474<br>(1.01)<br>C:77% | pCi/L |              | 03/25/21 15:48 |            |
| Total Radium Calculation | Total Radium     | 1:75%<br>0.579 ±<br>0.607<br>(1.19)               | pCi/L |              | 03/26/21 13:56 |            |
| 92525896010              | FB-02            |                                                   |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.0807 ±<br>0.102<br>(0.208)<br>C:80% T:NA        | pCi/L |              | 03/25/21 08:50 |            |
| EPA 9320                 | Radium-228       | 0.189 ±<br>0.409<br>(0.904)<br>C:82%<br>T:77%     | pCi/L |              | 03/25/21 15:48 |            |
| Total Radium Calculation | Total Radium     | 0.270 ±<br>0.511<br>(1.11)                        | pCi/L |              | 03/26/21 13:56 |            |
| 92525896011              | YGWC-42          |                                                   |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.192 ±<br>0.134<br>(0.220)<br>C:89% T:NA         | pCi/L |              | 03/25/21 08:50 |            |
| EPA 9320                 | Radium-228       | 0.830 ±<br>0.440<br>(0.791)<br>C:79%<br>T:86%     | pCi/L |              | 03/25/21 15:48 |            |
| Total Radium Calculation | Total Radium     | 1.02 ±<br>0.574<br>(1.01)                         | pCi/L |              | 03/26/21 13:56 |            |
| 92525896012              | YGWC-38          |                                                   |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.131 ±<br>0.115<br>(0.207)<br>C:89% T.NA         | pCi/L |              | 03/25/21 08:50 |            |
| EPA 9320                 | Radium-228       | 0.685 ±<br>0.396<br>(0.723)<br>C:78%<br>T:87%     | pCi/L |              | 03/25/21 15:48 |            |
| Total Radium Calculation | Total Radium     | 0.816 ±<br>0.511<br>(0.930)                       | pCi/L |              | 03/26/21 13:56 |            |



Project: YATES RADS

Pace Project No.: 92525896

| Sample: YGWC-24SA<br>PWS: | Lab ID: 925258<br>Site ID:  | <b>296001</b> Collected: 03/03/21 11:50<br>Sample Type: | Received: | 03/05/21 09:20 N | latrix: Water |      |
|---------------------------|-----------------------------|---------------------------------------------------------|-----------|------------------|---------------|------|
| Parameters                | Method                      | Act ± Unc (MDC) Carr Trac                               | Units     | Analyzed         | CAS No.       | Qual |
|                           | Pace Analytical Se          | ervices - Greensburg                                    |           |                  |               |      |
| Radium-226                | EPA 9315                    | 0.139 ± 0.138 (0.275)<br>C:85% T:NA                     | pCi/L     | 03/25/21 09:48   | 13982-63-3    |      |
|                           | Pace Analytical Se          | ervices - Greensburg                                    |           |                  |               |      |
| Radium-228                | EPA 9320                    | 0.276 ± 0.454 (0.991)<br>C:80% T:85%                    | pCi/L     | 03/25/21 15:46   | 15262-20-1    |      |
|                           | Pace Analytical Se          | ervices - Greensburg                                    |           |                  |               |      |
| Total Radium              | Total Radium<br>Calculation | 0.415 ± 0.592 (1.27)                                    | pCi/L     | 03/26/21 13:56   | 7440-14-4     |      |



Project: YATES RADS

Pace Project No.: 92525896

| Sample: YGWC-36A<br>PWS: | Lab ID: 9252<br>Site ID:    | 5896002 Collected: 03/04/21 12:35<br>Sample Type: | Received: | 03/05/21 09:20 N | latrix: Water |      |
|--------------------------|-----------------------------|---------------------------------------------------|-----------|------------------|---------------|------|
| Parameters               | Method                      | Act ± Unc (MDC) Carr Trac                         | Units     | Analyzed         | CAS No.       | Qual |
|                          | Pace Analytical             | Services - Greensburg                             |           |                  |               |      |
| Radium-226               | EPA 9315                    | 0.0671 ± 0.0999 (0.218)<br>C:93% T:NA             | pCi/L     | 03/25/21 10:15   | 13982-63-3    |      |
|                          | Pace Analytical             | Services - Greensburg                             |           |                  |               |      |
| Radium-228               | EPA 9320                    | -0.226 ± 0.464 (1.10)<br>C:78% T:88%              | pCi/L     | 03/25/21 15:46   | 15262-20-1    |      |
|                          | Pace Analytical             | Services - Greensburg                             |           |                  |               |      |
| Total Radium             | Total Radium<br>Calculation | 0.0671 ± 0.564 (1.32)                             | pCi/L     | 03/26/21 13:56   | 7440-14-4     |      |



Project: YATES RADS Pace Project No.: 92525896 Sample: DUP-2 Lab ID: 92525896003 Collected: 03/03/21 00:00 Received: 03/05/21 09:20 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac Parameters Method Units Analyzed CAS No. Qual Pace Analytical Services - Greensburg EPA 9315 4.78 ± 0.878 (0.257) Radium-226 pCi/L 03/25/21 12:25 13982-63-3 C:85% T:NA Pace Analytical Services - Greensburg EPA 9320 0.329 ± 0.440 (0.941) Radium-228 pCi/L 03/25/21 15:48 15262-20-1 C:81% T:76% Pace Analytical Services - Greensburg **Total Radium** Total Radium 5.11 ± 1.32 (1.20) pCi/L 03/26/21 13:56 7440-14-4 Calculation



Project: YATES RADS

Pace Project No.: 92525896

| Sample: YGWC-23S<br>PWS: | Lab ID: 9252589<br>Site ID: | Collected: 03/04/21 12:15<br>Sample Type: | Received: | 03/05/21 09:20 M | latrix: Water |      |
|--------------------------|-----------------------------|-------------------------------------------|-----------|------------------|---------------|------|
| Parameters               | Method                      | Act ± Unc (MDC) Carr Trac                 | Units     | Analyzed         | CAS No.       | Qual |
|                          | Pace Analytical Ser         | rvices - Greensburg                       |           |                  |               |      |
| Radium-226               | EPA 9315                    | 0.230 ± 0.209 (0.423)<br>C:82% T:NA       | pCi/L     | 03/25/21 09:48   | 13982-63-3    |      |
|                          | Pace Analytical Ser         | rvices - Greensburg                       |           |                  |               |      |
| Radium-228               | EPA 9320                    | 0.541 ± 0.461 (0.933)<br>C:75% T:79%      | pCi/L     | 03/25/21 15:48   | 15262-20-1    |      |
|                          | Pace Analytical Ser         | rvices - Greensburg                       |           |                  |               |      |
| Total Radium             | Total Radium<br>Calculation | 0.771 ± 0.670 (1.36)                      | pCi/L     | 03/26/21 13:56   | 7440-14-4     |      |



Project: YATES RADS

Pace Project No.: 92525896

| Sample: YGWC-41<br>PWS: | Lab ID: 9252<br>Site ID:    | 5896005 Collected: 03/04/21 09:00<br>Sample Type: | Received: | 03/05/21 09:20 M | latrix: Water |      |
|-------------------------|-----------------------------|---------------------------------------------------|-----------|------------------|---------------|------|
| Parameters              | Method                      | Act ± Unc (MDC) Carr Trac                         | Units     | Analyzed         | CAS No.       | Qual |
|                         | Pace Analytical             | Services - Greensburg                             |           |                  |               |      |
| Radium-226              | EPA 9315                    | 0.260 ± 0.174 (0.297)<br>C:84% T:NA               | pCi/L     | 03/25/21 09:48   | 13982-63-3    |      |
|                         | Pace Analytical             | Services - Greensburg                             |           |                  |               |      |
| Radium-228              | EPA 9320                    | 0.968 ± 0.491 (0.867)<br>C:77% T:80%              | pCi/L     | 03/25/21 15:48   | 15262-20-1    |      |
|                         | Pace Analytical             | Services - Greensburg                             |           |                  |               |      |
| Total Radium            | Total Radium<br>Calculation | 1.23 ± 0.665 (1.16)                               | pCi/L     | 03/26/21 13:56   | 7440-14-4     |      |



Project: YATES RADS

Pace Project No.: 92525896

| Sample: YGWC-43 | Lab ID: 9252                | 5896006 Collected: 03/04/21 14:50<br>Sample Type: | Received: | 03/05/21 09:20 N | latrix: Water |      |
|-----------------|-----------------------------|---------------------------------------------------|-----------|------------------|---------------|------|
| Parameters      | Method                      | Act ± Unc (MDC) Carr Trac                         | Units     | Analyzed         | CAS No.       | Qual |
|                 | Pace Analytical             | Services - Greensburg                             |           |                  |               |      |
| Radium-226      | EPA 9315                    | 4.73 ± 0.872 (0.278)<br>C:87% T:NA                | pCi/L     | 03/25/21 09:54   | 13982-63-3    |      |
|                 | Pace Analytical             | Services - Greensburg                             |           |                  |               |      |
| Radium-228      | EPA 9320                    | 1.29 ± 0.544 (0.903)<br>C:76% T:85%               | pCi/L     | 03/25/21 15:48   | 15262-20-1    |      |
|                 | Pace Analytical             | Services - Greensburg                             |           |                  |               |      |
| Total Radium    | Total Radium<br>Calculation | 6.02 ± 1.42 (1.18)                                | pCi/L     | 03/26/21 13:56   | 7440-14-4     |      |



Project: YATES RADS

| Pace Project No.: 9 | 92525896 |
|---------------------|----------|
|---------------------|----------|

| Sample: FB-1 | Lab ID: 925258              | 96007 Collected: 03/04/21 14:00      | Received: | 03/05/21 09:20 N | latrix: Water |      |
|--------------|-----------------------------|--------------------------------------|-----------|------------------|---------------|------|
| PWS:         | Site ID:                    | Sample Type:                         |           |                  |               |      |
| Parameters   | Method                      | Act ± Unc (MDC) Carr Trac            | Units     | Analyzed         | CAS No.       | Qual |
|              | Pace Analytical Se          | ervices - Greensburg                 |           |                  |               |      |
| Radium-226   | EPA 9315                    | 0.135 ± 0.137 (0.269)<br>C:85% T:NA  | pCi/L     | 03/25/21 09:48   | 13982-63-3    |      |
|              | Pace Analytical Se          | ervices - Greensburg                 |           |                  |               |      |
| Radium-228   | EPA 9320                    | 0.616 ± 0.480 (0.955)<br>C:76% T:77% | pCi/L     | 03/25/21 15:48   | 15262-20-1    |      |
|              | Pace Analytical Se          | ervices - Greensburg                 |           |                  |               |      |
| Total Radium | Total Radium<br>Calculation | 0.751 ± 0.617 (1.22)                 | pCi/L     | 03/26/21 13:56   | 7440-14-4     |      |



Project: YATES RADS

| Pace Project No.: | 92525896 |
|-------------------|----------|
|-------------------|----------|

| Sample: EB-2 | Lab ID: 9252589             | 6008 Collected: 03/04/21 16:35       | Received: | 03/05/21 09:20 N | Aatrix: Water |      |
|--------------|-----------------------------|--------------------------------------|-----------|------------------|---------------|------|
| PWS:         | Site ID:                    | Sample Type:                         |           |                  |               |      |
| Parameters   | Method                      | Act ± Unc (MDC) Carr Trac            | Units     | Analyzed         | CAS No.       | Qual |
|              | Pace Analytical Ser         | vices - Greensburg                   |           |                  |               |      |
| Radium-226   | EPA 9315                    | 0.0835 ± 0.120 (0.261)<br>C:88% T:NA | pCi/L     | 03/25/21 12:27   | 13982-63-3    |      |
|              | Pace Analytical Ser         | vices - Greensburg                   |           |                  |               |      |
| Radium-228   | EPA 9320                    | 0.815 ± 0.506 (0.961)<br>C:82% T:73% | pCi/L     | 03/25/21 15:48   | 15262-20-1    |      |
|              | Pace Analytical Ser         | vices - Greensburg                   |           |                  |               |      |
| Total Radium | Total Radium<br>Calculation | 0.899 ± 0.626 (1.22)                 | pCi/L     | 03/26/21 13:56   | 7440-14-4     |      |



Project: YATES RADS

Pace Project No.: 92525896

| Sample: YGWC-49<br>PWS: | Lab ID: 9252<br>Site ID:    | 5896009 Collected: 03/04/21 14:51<br>Sample Type: | Received: | 03/05/21 09:20 N | latrix: Water |      |
|-------------------------|-----------------------------|---------------------------------------------------|-----------|------------------|---------------|------|
| Parameters              | Method                      | Act ± Unc (MDC) Carr Trac                         | Units     | Analyzed         | CAS No.       | Qual |
|                         | Pace Analytical             | Services - Greensburg                             |           |                  |               |      |
| Radium-226              | EPA 9315                    | 0.207 ± 0.133 (0.183)<br>C:79% T:NA               | pCi/L     | 03/25/21 08:50   | 13982-63-3    |      |
|                         | Pace Analytical             | Services - Greensburg                             |           |                  |               |      |
| Radium-228              | EPA 9320                    | 0.372 ± 0.474 (1.01)<br>C:77% T:75%               | pCi/L     | 03/25/21 15:48   | 15262-20-1    |      |
|                         | Pace Analytical             | Services - Greensburg                             |           |                  |               |      |
| Total Radium            | Total Radium<br>Calculation | 0.579 ± 0.607 (1.19)                              | pCi/L     | 03/26/21 13:56   | 7440-14-4     |      |



Project:YATES RADSPace Project No.:92525896

| Sample: FB-02 | Lab ID: 92525               | <b>896010</b> Collected: 03/04/21 15:00 | Received: | 03/05/21 09:20 N | latrix: Water |      |
|---------------|-----------------------------|-----------------------------------------|-----------|------------------|---------------|------|
| PWS:          | Site ID:                    | Sample Type:                            |           |                  |               |      |
| Parameters    | Method                      | Act ± Unc (MDC) Carr Trac               | Units     | Analyzed         | CAS No.       | Qual |
|               | Pace Analytical S           | ervices - Greensburg                    |           |                  |               |      |
| Radium-226    | EPA 9315                    | 0.0807 ± 0.102 (0.208)<br>C:80% T:NA    | pCi/L     | 03/25/21 08:50   | 13982-63-3    |      |
|               | Pace Analytical S           | ervices - Greensburg                    |           |                  |               |      |
| Radium-228    | EPA 9320                    | 0.189 ± 0.409 (0.904)<br>C:82% T:77%    | pCi/L     | 03/25/21 15:48   | 15262-20-1    |      |
|               | Pace Analytical S           | ervices - Greensburg                    |           |                  |               |      |
| Total Radium  | Total Radium<br>Calculation | 0.270 ± 0.511 (1.11)                    | pCi/L     | 03/26/21 13:56   | 7440-14-4     |      |



Project: YATES RADS

Pace Project No.: 92525896

| Sample: YGWC-42<br>PWS: | Lab ID: 92525<br>Site ID:   | <b>896011</b> Collected: 03/04/21 08:45<br>Sample Type: | Received: | 03/05/21 09:20 N | Aatrix: Water |      |
|-------------------------|-----------------------------|---------------------------------------------------------|-----------|------------------|---------------|------|
| Parameters              | Method                      | Act ± Unc (MDC) Carr Trac                               | Units     | Analyzed         | CAS No.       | Qual |
|                         | Pace Analytical S           | Services - Greensburg                                   |           |                  |               |      |
| Radium-226              | EPA 9315                    | 0.192 ± 0.134 (0.220)<br>C:89% T:NA                     | pCi/L     | 03/25/21 08:50   | 13982-63-3    |      |
|                         | Pace Analytical S           | Services - Greensburg                                   |           |                  |               |      |
| Radium-228              | EPA 9320                    | 0.830 ± 0.440 (0.791)<br>C:79% T:86%                    | pCi/L     | 03/25/21 15:48   | 15262-20-1    |      |
|                         | Pace Analytical S           | Services - Greensburg                                   |           |                  |               |      |
| Total Radium            | Total Radium<br>Calculation | 1.02 ± 0.574 (1.01)                                     | pCi/L     | 03/26/21 13:56   | 7440-14-4     |      |



Project: YATES RADS

Pace Project No.: 92525896

| Sample: YGWC-38 | Lab ID: 9252                | <b>5896012</b> Collected: 03/04/21 13:45 | Received: | 03/05/21 09:20 N | latrix: Water |      |
|-----------------|-----------------------------|------------------------------------------|-----------|------------------|---------------|------|
| PWS:            | Site ID:                    | Sample Type:                             |           |                  |               |      |
| Parameters      | Method                      | Act ± Unc (MDC) Carr Trac                | Units     | Analyzed         | CAS No.       | Qual |
|                 | Pace Analytical             | Services - Greensburg                    |           |                  |               |      |
| Radium-226      | EPA 9315                    | 0.131 ± 0.115 (0.207)<br>C:89% T:NA      | pCi/L     | 03/25/21 08:50   | 13982-63-3    |      |
|                 | Pace Analytical             | Services - Greensburg                    |           |                  |               |      |
| Radium-228      | EPA 9320                    | 0.685 ± 0.396 (0.723)<br>C:78% T:87%     | pCi/L     | 03/25/21 15:48   | 15262-20-1    |      |
|                 | Pace Analytical             | Services - Greensburg                    |           |                  |               |      |
| Total Radium    | Total Radium<br>Calculation | 0.816 ± 0.511 (0.930)                    | pCi/L     | 03/26/21 13:56   | 7440-14-4     |      |



#### **QUALITY CONTROL - RADIOCHEMISTRY**

| Project:           | YATES RADS          | 6                                          |                                                                           |                                                         |                                                                                                      |            |  |  |  |  |
|--------------------|---------------------|--------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------|--|--|--|--|
| Pace Project No.:  | 92525896            |                                            |                                                                           |                                                         |                                                                                                      |            |  |  |  |  |
| QC Batch:          | 438168              |                                            | Analysis Method:                                                          | EPA 9320                                                |                                                                                                      |            |  |  |  |  |
| QC Batch Method:   | EPA 9320            |                                            | Analysis Description:                                                     | 9320 Radium 22                                          | 28                                                                                                   |            |  |  |  |  |
| Associated Lab Sam | nples: 9252<br>9252 | 5896001, 9252589600<br>5896008, 9252589600 | Laboratory:<br>02, 92525896003, 9252589600<br>09, 92525896010, 9252589601 | Pace Analytical<br>04, 92525896005, 9<br>1, 92525896012 | Pace Analytical Services - Greensburg<br>4, 92525896005, 92525896006, 92525896007,<br>1, 92525896012 |            |  |  |  |  |
| METHOD BLANK:      | 2115336             |                                            | Matrix: Water                                                             |                                                         |                                                                                                      |            |  |  |  |  |
| Associated Lab Sam | nples: 9252<br>9252 | 5896001, 9252589600<br>5896008, 9252589600 | 02, 92525896003, 9252589600<br>09, 92525896010, 9252589601                | 04, 92525896005, 9<br>1, 92525896012                    | 92525896006, 925258                                                                                  | 396007,    |  |  |  |  |
| Param              | neter               | Act ±                                      | Unc (MDC) Carr Trac                                                       | Units                                                   | Analyzed                                                                                             | Qualifiers |  |  |  |  |
| Radium-228         |                     | 0.0301 ± 0.353                             | (0.815) C:79% T:75%                                                       | pCi/L                                                   | 03/25/21 12:20                                                                                       |            |  |  |  |  |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### **QUALITY CONTROL - RADIOCHEMISTRY**

| Project:           | YATES  | RADS                                               |                                                                                                                                                                                                  |                                      |                    |            |  |  |
|--------------------|--------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------|------------|--|--|
| Pace Project No.:  | 925258 |                                                    |                                                                                                                                                                                                  |                                      |                    |            |  |  |
| QC Batch:          | 43826  | 4                                                  | Analysis Method:                                                                                                                                                                                 | EPA 9315                             |                    |            |  |  |
| QC Batch Method:   | EPA 9  | 315                                                | Analysis Description:                                                                                                                                                                            | 9315 Total Radiur                    | n                  |            |  |  |
| Associated Lab Sam | ples:  | 92525896001, 9252589600<br>92525896008, 9252589600 | Laboratory: Pace Analytical Services - Greensburg<br>01, 92525896002, 92525896003, 92525896004, 92525896005, 92525896006, 92525896007,<br>08, 92525896009, 92525896010, 92525896011, 92525896012 |                                      |                    |            |  |  |
| METHOD BLANK:      | 211566 | 6                                                  | Matrix: Water                                                                                                                                                                                    |                                      |                    |            |  |  |
| Associated Lab Sam | ples:  | 92525896001, 9252589600<br>92525896008, 9252589600 | 02, 92525896003, 92525896004<br>09, 92525896010, 92525896011                                                                                                                                     | 4, 92525896005, 92<br>1, 92525896012 | 2525896006, 925258 | 96007,     |  |  |
| Param              | neter  | Act ±                                              | Unc (MDC) Carr Trac                                                                                                                                                                              | Units                                | Analyzed           | Qualifiers |  |  |
| Radium-226         |        | 0.0177 ± 0.140                                     | (0.349) C:93% T:NA                                                                                                                                                                               | pCi/L                                | 03/25/21 09:33     |            |  |  |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### QUALIFIERS

#### Project: YATES RADS Pace Project No.: 92525896

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.



## QUALITY CONTROL DATA CROSS REFERENCE TABLE

| Project:          | YATES RADS |
|-------------------|------------|
| Pace Project No.: | 92525896   |

| Lab ID      | Sample ID | QC Batch Method          | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|-----------|--------------------------|----------|-------------------|---------------------|
| 92525896001 | YGWC-24SA | EPA 9315                 | 438264   |                   |                     |
| 92525896002 | YGWC-36A  | EPA 9315                 | 438264   |                   |                     |
| 92525896003 | DUP-2     | EPA 9315                 | 438264   |                   |                     |
| 92525896004 | YGWC-23S  | EPA 9315                 | 438264   |                   |                     |
| 92525896005 | YGWC-41   | EPA 9315                 | 438264   |                   |                     |
| 92525896006 | YGWC-43   | EPA 9315                 | 438264   |                   |                     |
| 92525896007 | FB-1      | EPA 9315                 | 438264   |                   |                     |
| 92525896008 | EB-2      | EPA 9315                 | 438264   |                   |                     |
| 92525896009 | YGWC-49   | EPA 9315                 | 438264   |                   |                     |
| 92525896010 | FB-02     | EPA 9315                 | 438264   |                   |                     |
| 92525896011 | YGWC-42   | EPA 9315                 | 438264   |                   |                     |
| 92525896012 | YGWC-38   | EPA 9315                 | 438264   |                   |                     |
| 92525896001 | YGWC-24SA | EPA 9320                 | 438168   |                   |                     |
| 92525896002 | YGWC-36A  | EPA 9320                 | 438168   |                   |                     |
| 92525896003 | DUP-2     | EPA 9320                 | 438168   |                   |                     |
| 92525896004 | YGWC-23S  | EPA 9320                 | 438168   |                   |                     |
| 92525896005 | YGWC-41   | EPA 9320                 | 438168   |                   |                     |
| 92525896006 | YGWC-43   | EPA 9320                 | 438168   |                   |                     |
| 92525896007 | FB-1      | EPA 9320                 | 438168   |                   |                     |
| 92525896008 | EB-2      | EPA 9320                 | 438168   |                   |                     |
| 92525896009 | YGWC-49   | EPA 9320                 | 438168   |                   |                     |
| 92525896010 | FB-02     | EPA 9320                 | 438168   |                   |                     |
| 92525896011 | YGWC-42   | EPA 9320                 | 438168   |                   |                     |
| 92525896012 | YGWC-38   | EPA 9320                 | 438168   |                   |                     |
| 92525896001 | YGWC-24SA | Total Radium Calculation | 440647   |                   |                     |
| 92525896002 | YGWC-36A  | Total Radium Calculation | 440647   |                   |                     |
| 92525896003 | DUP-2     | Total Radium Calculation | 440647   |                   |                     |
| 92525896004 | YGWC-23S  | Total Radium Calculation | 440647   |                   |                     |
| 92525896005 | YGWC-41   | Total Radium Calculation | 440647   |                   |                     |
| 92525896006 | YGWC-43   | Total Radium Calculation | 440647   |                   |                     |
| 92525896007 | FB-1      | Total Radium Calculation | 440647   |                   |                     |
| 92525896008 | EB-2      | Total Radium Calculation | 440647   |                   |                     |
| 92525896009 | YGWC-49   | Total Radium Calculation | 440647   |                   |                     |
| 92525896010 | FB-02     | Total Radium Calculation | 440647   |                   |                     |
| 92525896011 | YGWC-42   | Total Radium Calculation | 440647   |                   |                     |
| 92525896012 | YGWC-38   | Total Radium Calculation | 440647   |                   |                     |

|                                                                                                                                                     | Document N                                                      | ame:              | (0)                      | Document Revised: October 28, 2020                                                                                                                                                                                                |                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Pace Analytical*                                                                                                                                    | Sample Condition Upon<br>Document I                             | No.:              |                          | Issuing Authority:                                                                                                                                                                                                                |                                                                                                                 |
|                                                                                                                                                     | F-CAR-CS-033-                                                   | Rev.07            |                          | Pace Carolinas Quality Office                                                                                                                                                                                                     |                                                                                                                 |
| ratory receiving samples:<br>neville Eden Greenwood                                                                                                 | Huntersville                                                    | Raleigh[          | ] Me                     | Atlanta Kerners                                                                                                                                                                                                                   | sville 🗌                                                                                                        |
| pon Receipt                                                                                                                                         | rower                                                           | PI                | -                        |                                                                                                                                                                                                                                   |                                                                                                                 |
| fer:Fed ExL<br>ommercialPace                                                                                                                        | PS USPS<br>Other:                                               | Geren             | t                        | 92525896                                                                                                                                                                                                                          |                                                                                                                 |
| dy Seal Present? Yes No-                                                                                                                            | Seals Intact? , 🗌 Yes                                           | DN0               |                          | Date/Initials Person Examining Contents:                                                                                                                                                                                          | 5/21                                                                                                            |
| ng Material: 🗌 Bubble Wrap                                                                                                                          | Bubble Bags None                                                | Oth               | er                       | Biological Tissue Frozen?                                                                                                                                                                                                         | ( Pf-                                                                                                           |
| Trometer: 230                                                                                                                                       | Type of Ice:                                                    | Wet Biu           | e 🗍                      | None Yes HTO UN/A                                                                                                                                                                                                                 |                                                                                                                 |
| r Temp: <u>C</u> Add/Subtr<br>r Temp Corrected (*C):<br>A Regulated Soll ( [] N/A, water sample)<br>amples originate in a quarantine zone within th | rector: $0, 0$<br>2, 0<br>re United States: CA, NY, or 50       | -<br>C (check map | Tem<br> <br> <br>s)? Did | p should be above freezing to 6°C<br>Samples out of temp criteria. Samples on ice, cool<br>has begun<br>samples originate from a foreign source (Internation                                                                      | ling proces:<br>hally,                                                                                          |
| Yes No                                                                                                                                              |                                                                 |                   | incl                     | Comments/Discrepancy:                                                                                                                                                                                                             |                                                                                                                 |
| Chain of Custody Present?                                                                                                                           |                                                                 |                   | 1                        | anna - An Anna Anna Anna Anna Anna Anna                                                                                                                                                                                           |                                                                                                                 |
| Constant of Cuskody Present:                                                                                                                        |                                                                 |                   |                          | annan an an an an an an an an an an an a                                                                                                                                                                                          |                                                                                                                 |
| Short Hold Time Analysis (<77 hr.)?                                                                                                                 |                                                                 |                   | 3                        |                                                                                                                                                                                                                                   | and a state of the second second second second second second second second second second second second second s |
| Rush Turn Around Time Requested?                                                                                                                    |                                                                 |                   | 4.                       | nan an an an an an an an an an an an an                                                                                                                                                                                           |                                                                                                                 |
| Cufficient Volume <sup>3</sup>                                                                                                                      |                                                                 |                   | 5                        | ې ( ۲۰۰۵ د ۲۰۰۵ د ۲۰۰۵ د ۲۰۰۵ د ۲۰۱۹ د ۲۰۰۵ د ۲۰۱۹ د ۲۰۰۵ د ۲۰۱۹ د ۲۰۰۵ د ۲۰۱۹ د ۲۰۰۵ د ۲۰۱۹ د ۲۰۰۵ د ۲۰۱۹ د ۲<br>۲۰۰۹ د ۲۰۰۹ د ۲۰۰۹ د ۲۰۰۹ د ۲۰۰۹ د ۲۰۰۹ د ۲۰۰۹ د ۲۰۰۹ د ۲۰۰۹ د ۲۰۰۹ د ۲۰۰۹ د ۲۰۰۹ د ۲۰۰۹ د ۲۰۰۹ د ۲۰۰۹ د ۲۰۰۹ د |                                                                                                                 |
| Correct Containers Used?<br>-Pace Containers Used?                                                                                                  |                                                                 |                   | 6.                       |                                                                                                                                                                                                                                   |                                                                                                                 |
| Containers Intact?                                                                                                                                  | Fres DNO                                                        | MN/A              | 7.                       |                                                                                                                                                                                                                                   |                                                                                                                 |
| Dissolved analysis: Samoles Field Filtered?                                                                                                         | TYes, DNo                                                       | PINA              | 8.                       | ann agus ann ann ann ann ann ann ann ann ann an                                                                                                                                                                                   |                                                                                                                 |
| Sample Labels Match COC?                                                                                                                            |                                                                 |                   | 9.                       | 7                                                                                                                                                                                                                                 |                                                                                                                 |
| Handsmace in VOA Vials (55-5mm)?                                                                                                                    |                                                                 | TINA              | 10.                      |                                                                                                                                                                                                                                   |                                                                                                                 |
| Trip Blank Present?                                                                                                                                 |                                                                 | DN/A/             | 11.                      | annun an an an an an an an an an an an an an                                                                                                                                                                                      |                                                                                                                 |
| Trip Blank Custody Seals Present?                                                                                                                   | Yes No                                                          | ENIA              |                          |                                                                                                                                                                                                                                   |                                                                                                                 |
| OMMENTS/SAMPLE DISCREPANCY                                                                                                                          |                                                                 |                   |                          | Field Data Required?                                                                                                                                                                                                              | Yes 🗍No                                                                                                         |
|                                                                                                                                                     | مرینی میکند. میکند.<br>مرابع میکند میکند.<br>مرابع میکند میکند. |                   | 1 16                     | ) of colit containare:                                                                                                                                                                                                            |                                                                                                                 |
| IENT NOTIFICATION/RESOLUTION                                                                                                                        |                                                                 |                   | LOCIL                    | Jul spit containers.                                                                                                                                                                                                              |                                                                                                                 |
| Person contacted                                                                                                                                    |                                                                 | Date/T            | me:                      |                                                                                                                                                                                                                                   |                                                                                                                 |
| Desired Managers COURE Desires                                                                                                                      |                                                                 |                   |                          | Date:                                                                                                                                                                                                                             |                                                                                                                 |
| Project Manager SCORP Review:                                                                                                                       |                                                                 |                   |                          |                                                                                                                                                                                                                                   |                                                                                                                 |

| Pace Analytical"   | Document Name:<br>Sample Condition Upon Receipt(SCUR) | Document Revised: October 28, 2020<br>Page 2 of 2   |
|--------------------|-------------------------------------------------------|-----------------------------------------------------|
| - Tace Allalylical | Document No.:<br>F-CAR-CS-033-Rev.07                  | Issuing Authority:<br>Pace Carolinas Quality Office |

\*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Project #

WO#:92525896

Date: 03/26/21

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg \*\*Bottom half of box is to list number of bottles

ſ

| PH: | KLH   | 1     | Due |
|-----|-------|-------|-----|
| CLI | ENT : | GA-GA | Pow |

er

| tems | BP4U-125 mL Plastic Unpreserved (N/A) (Cl-) | BP3U-250 mL Plastic Unpreserved (N/A) | BP2U-500 mL Plastic Unpreserved (N/A) | BP1U-1 liter Plastic Unpreserved (N/A) | BP4S-125 mL Plastic H2SO4 (pH < 2) (CI-) | BP3N-250 mL plastic HNO3 (pH < 2) | BP42-125 mL Plastic ZN Acetate & NaOH (>9) | BP4C-125 mL Plastic NaOH (pH > 12) (CH) | WGFU-Wide-mouthed Glass jar Unpreserved | AG1U-1 liter Amber Unpreserved (N/A) (Ci-) | AG1H-1 liter Amber HCl (pH < 2) | AG3U-250 mL Amber Unpreserved (N/A) (Cl-) | AG1S-1 liter Amber H2SO4 (pH < 2) | AG35-250 mL Amber H2SO4 (pH < 2) | AG3A(DG3A)-250 mL Amber NH4CI (N/A)(CI-) | DG9H-40 mL VOA HCI (N/A) | VG9T-40 mL VOA Na2S2O3 (N/A) | VG9U-40 mL VOA Unp (N/A) | DG9P-40 mL VOA H3PO4 (N/A) | VOAK (6 vials per kit)-5035 kit (N/A) | V/GK (3 vials per kit)-VPH/Gas kit (N/A) | SP5T-125 mL Sterile Plastic (N/A – lab) | SP2T-250 mL Sterije Plastic (N/A – lab) | BUN | BP3A-250 mL Plastic (NH2)2504 (9.3-9.7) | AGOU-100 mL Amber Unpreserved viais (N/A) | VSGU-20 mL Scintillation vials (N/A) | DG9U-40 mL Amber Unpreserved vials {N/A} |
|------|---------------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|------------------------------------------|-----------------------------------|--------------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------------------------|---------------------------------|-------------------------------------------|-----------------------------------|----------------------------------|------------------------------------------|--------------------------|------------------------------|--------------------------|----------------------------|---------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------|-----|-----------------------------------------|-------------------------------------------|--------------------------------------|------------------------------------------|
| 1    | $\square$                                   | 1                                     | 1                                     |                                        | 1                                        | X                                 | 1                                          |                                         |                                         |                                            |                                 |                                           | 1                                 |                                  |                                          |                          |                              |                          |                            |                                       |                                          |                                         |                                         | X   |                                         |                                           |                                      |                                          |
| 2    | 1                                           | 1                                     | 1                                     |                                        |                                          | X                                 | >                                          |                                         |                                         |                                            |                                 |                                           | 1                                 | 1                                |                                          |                          |                              |                          |                            |                                       |                                          |                                         |                                         | 2   | X                                       |                                           |                                      | _                                        |
| 3    | 1                                           | 1                                     | 1                                     |                                        |                                          | N                                 |                                            |                                         |                                         |                                            |                                 |                                           |                                   |                                  |                                          |                          |                              |                          |                            |                                       |                                          |                                         |                                         | X   | X                                       |                                           |                                      |                                          |
| 4    |                                             | 1                                     | 1                                     |                                        |                                          | ix                                | $\square$                                  |                                         |                                         |                                            |                                 |                                           |                                   |                                  |                                          |                          |                              |                          |                            |                                       |                                          |                                         |                                         | X   | X                                       |                                           | 1                                    |                                          |
| 5    |                                             | 1                                     | (                                     |                                        |                                          | Ň                                 |                                            | V                                       |                                         |                                            |                                 |                                           |                                   |                                  |                                          |                          |                              |                          |                            |                                       |                                          |                                         |                                         | X   | X                                       | -                                         |                                      |                                          |
| 6    |                                             | 1                                     | 1                                     |                                        | V                                        | M                                 | V                                          |                                         |                                         |                                            |                                 |                                           |                                   |                                  |                                          |                          |                              |                          |                            |                                       |                                          |                                         |                                         | X   | X                                       |                                           |                                      |                                          |
| 7    |                                             | 1                                     | 1                                     |                                        | V                                        | N                                 |                                            |                                         |                                         |                                            |                                 |                                           | V                                 |                                  | V                                        |                          |                              |                          |                            |                                       |                                          |                                         |                                         | S.  | <                                       |                                           |                                      | -                                        |
| 8    |                                             | 1                                     |                                       |                                        | V                                        | M                                 |                                            |                                         |                                         |                                            |                                 |                                           |                                   | V                                |                                          |                          |                              |                          |                            |                                       |                                          |                                         |                                         | 5   | 2                                       |                                           |                                      |                                          |
| 9    |                                             | 1                                     | Ì                                     |                                        |                                          | M                                 |                                            |                                         |                                         |                                            |                                 |                                           |                                   |                                  |                                          |                          |                              |                          | 1                          |                                       |                                          |                                         |                                         | ST. | X                                       |                                           |                                      | -                                        |
| 10   |                                             | 1                                     | 1                                     |                                        |                                          | N                                 |                                            |                                         |                                         |                                            |                                 |                                           | 1                                 |                                  | 1                                        |                          | 1                            |                          |                            |                                       |                                          |                                         |                                         | (X) | 1                                       |                                           | +                                    | -                                        |
| 11   |                                             | 1                                     | 1                                     |                                        | V                                        | N                                 |                                            |                                         |                                         |                                            | V                               |                                           |                                   |                                  | V                                        |                          |                              |                          | 1                          |                                       |                                          | 1                                       |                                         | 20  | $\langle \uparrow$                      | -                                         |                                      |                                          |
| 12   | V                                           | (                                     | ŧ                                     |                                        | V                                        | V                                 | V                                          | V                                       |                                         |                                            | V                               |                                           | V                                 | V                                | V                                        |                          |                              |                          |                            |                                       |                                          | 1                                       | T                                       | 2   | 1                                       |                                           | 1                                    |                                          |

| and the second second |                      | pH Ac           | justment Log for Pres      | erved Samples                 |                                 |       |
|-----------------------|----------------------|-----------------|----------------------------|-------------------------------|---------------------------------|-------|
| Sample ID             | Type of Preservative | pH upon receipt | Date preservation adjusted | Time preservation<br>adjusted | Amount of Preservative<br>added | Lot # |
|                       |                      |                 |                            |                               |                                 |       |
|                       |                      |                 |                            |                               |                                 |       |
|                       |                      |                 |                            |                               |                                 |       |

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

|                  |                    |                       |   |    |     |   |    |           | 1  | *  | 1.2          | 3      | 14         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |                | 1 12          | 5                 |            | 1×       | 1             | 10                      |                 |
|------------------|--------------------|-----------------------|---|----|-----|---|----|-----------|----|----|--------------|--------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------|---------------|-------------------|------------|----------|---------------|-------------------------|-----------------|
|                  | g 10000000 - 20000 | ADDITIONAL COMPLEXITY |   |    |     |   |    |           |    |    | Smess- DUV-2 | GWC38A | GWC-24SA   | (A-Z, 0-8 /, -<br>Sample kis must be unique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SAMPLE ID                                                                           |                |               | (1/0)384-6526 Fax |            | 30114    | Georgia Power | lient information:      | Face Analytical |
|                  |                    |                       |   |    |     |   |    |           |    |    |              |        |            | Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer of Officer officer of Officer officer officer officer officer officer officer officer officer officer officer officer officer officer officer officer officer officer officer officer officer officer off | Automatic Market Cadimy Master Market Canon Caro Caro Caro Caro Caro Caro Caro Caro | MATHAND CODED  | Project #;    | Project Nam       | Purchase O | Lopy 10: | Report To:    | Section B<br>Required P |                 |
|                  | 一重                 |                       |   |    | 1   | F | WT | WT        | WT | WT | WT           | ¥T.    | WT         | MATRIX COD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E (see velid co                                                                     | indes to left) |               | e                 | der #:     |          | Becky         | roject la               |                 |
|                  |                    |                       |   |    | 1   | 1 | 1  | +         | 1  | 1  | 225          | 8      | . <u>.</u> | B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                     |                |               | fates A           |            |          | Sleeve        | alouna:                 |                 |
|                  |                    | AN' NE                | _ | -  | -   |   |    | -         | -  | -  | F            | ŝ      | Ř.         | H.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | STAR                                                                                |                |               | MA                |            |          | *             | tion:                   |                 |
| PRON             |                    | OLIVIE                |   |    |     |   |    |           |    |    | 3            | 522    | 150        | TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9                                                                                   | COLL           |               |                   |            |          |               |                         |                 |
| R HAM            |                    | 2                     |   |    |     |   |    |           |    |    |              |        |            | DAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                     | ECTED          |               |                   |            |          |               |                         | The             |
| e of SA          | - <del>Q</del>     |                       |   | -  |     |   |    |           |    | -  | -            |        |            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EN                                                                                  | ľ              |               |                   | 1          |          |               |                         | Chair           |
| SIGNA            | 04/20              | NE                    |   |    |     |   |    |           | ļ  |    |              |        |            | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                     |                |               |                   |            |          |               |                         | 200             |
|                  | 2                  |                       | - | +- | -   |   | -  |           |    |    | In           | 5      | UT         | N OF CONTAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AT COLLECT                                                                          | ON             | 2             | 2                 | 7 2        | 0        | 2             | 5 9                     | ustod           |
| To a             | 8                  | THE L                 |   |    |     |   |    |           |    |    |              |        | x          | Unpreserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                     | T              | Se Pr         | Oe Pro            | ace Qu     | ompan    | tientior      | action                  | Y IS            |
| - 25             |                    |                       | _ |    |     |   |    |           |    |    |              |        | X          | H2504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                     |                | 1990 F.       | year w            | ote:       | y Nam    | H. HANNER     | 0                       | LEO             |
| 5                | 10                 |                       |   |    |     |   |    |           |    |    |              |        | _          | HCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | - HETTINGOUT                                                                        | Trese          | 10            | anaoe             |            | 2        |               |                         | ALC             |
| 83               | 2                  | s [                   |   |    |     |   |    |           |    |    |              |        | _          | NaOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                     | vati           | 840           |                   |            |          |               |                         | õ,              |
| 2                | 0                  | 8-                    |   | -  |     |   | -  | <b></b> . |    |    |              |        |            | Na2S203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                     | 185            | NC 4 M        | hauto             |            |          |               |                         | ME              |
| 7                | 0                  |                       |   |    |     |   |    |           |    |    |              |        |            | Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                     | 1              |               |                   | ł          |          |               |                         | A.A             |
|                  | ap                 | IN I                  |   |    |     |   |    | -         |    |    |              |        |            | Analyaa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Tent                                                                                | YIN            | - internation |                   | 1          |          |               |                         | 1 rele          |
| DA               | 24                 | Citilo -              |   |    |     | × | Ĵ- | <u>*</u>  | ţ_ | 1  | ×            | ××     | ×          | TDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                     |                | Anaus         |                   |            |          |               |                         | vant            |
| IE Sg            | R                  | *                     |   |    | 1 1 | × | *  | X         | *  | *  | ×            | ×      | ×          | App III/IV Meta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lş                                                                                  |                | CONT          |                   |            |          |               |                         | fields          |
| ned:             | 4                  |                       |   |    |     | × | 1  | <u>A</u>  | X  | ×  | ×            | ×      | ×          | RAD 9315/932                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                   |                |               |                   |            |          |               |                         | mus             |
| 3                | 121                |                       | + |    |     |   |    |           |    | -  |              | _      | -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ***                                                                                 |                |               |                   |            |          |               |                         | 2 De            |
| ž 🛛              | 121                |                       |   |    |     |   |    |           |    |    |              |        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |                |               |                   |            |          |               |                         | comp            |
| 2                |                    |                       |   |    |     |   |    |           |    |    |              |        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |                | T             | t                 |            |          | -             |                         | nt              |
|                  | R                  |                       | - |    |     | _ |    |           | -  | -  | -+           |        | -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 1100000000000                                                                     | - Tank         |               |                   |            |          |               |                         | 1 200           |
|                  |                    | - m.                  |   |    |     |   |    |           |    |    |              |        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |                |               |                   | (8)<br>(1) |          | E             | ٦                       | wate            |
| EMP In G         |                    |                       |   |    |     |   |    |           |    |    |              |        | _          | Dealdysi Ohlari                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |                | 2             |                   | Reo        | ~        | Page          |                         | Ş.              |
| Received on      |                    | s F                   | T |    | T   | T | T  | 1         |    | T  |              | 10     | 2          | Residual Chion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ne (Y/N)                                                                            |                | G. C.         |                   | ACC INFO   | 9        | 1             |                         |                 |
| eD<br>Y/N)       |                    | 月日                    |   |    |     | 1 | 1  | 1         | 1  | 1  |              | Ĭ.     | 7          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     | 1.1.1          | A             |                   | V AGe      | P        | h             |                         |                 |
| uslody<br>saledO |                    | CONEC .               |   |    |     | 1 |    |           | 1  | 1  | 1            | n      | 5          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |                |               |                   | 8          | 02       |               |                         |                 |
| r/N)             |                    | INCOM S               |   |    |     |   |    |           |    |    |              | 3      | 3          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |                |               |                   | ¥.         | -        | R             |                         |                 |
| amples<br>tactD  |                    |                       |   |    |     |   |    |           |    | -  |              |        | 1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |                |               |                   |            |          | 6.0           |                         |                 |

| Name         Part of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s                                                                                                                                                                                                                                                      |                     |            |                    |             |           |                        | No. | EX    | 8 | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon | 8    | 8  | 60 | 7  | G     | 5 404 | a Xee | 3      | IIEM #                                                                    |                                               |               | -     | juested Du | me                | 30:          | Non, GA 30           | ipany.        | juined Cile     | tion A     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------|--------------------|-------------|-----------|------------------------|-----|-------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|----|----|-------|-------|-------|--------|---------------------------------------------------------------------------|-----------------------------------------------|---------------|-------|------------|-------------------|--------------|----------------------|---------------|-----------------|------------|
| Sector b         Sector b         Sector b         Sector b         Sector b           Sector b         Sector b         Mail of The Legislation of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the Sector of the                                                                                                                                                                                                                                                                                                                             | 2010-000            |            |                    | uguni kungu |           | ADDITIONNAL CONSIGNETS |     |       | - |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |    |    |    |       | 1     |       | NOWC-L | One Character per box.<br>(A-Z, 0-9 ),-<br>)<br>Semple ids must be unique | SAMPLE ID                                     |               |       | e Date:    | (770)334-6526 Fax |              | 1070 Bridge Mill Ave | Georgia Power | nt Information: | TACK HARAN |
| North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation         North Rest Columnation<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |            |                    |             | 2         | 8                      |     |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |    |    |    |       |       |       | ů<br>l | Net and a second state                                                    | WaterD Write<br>Product Pro<br>SalissingD SLC | MATRIXD CODED |       | Project #: | Project Name      | Purchase Ord | Copy To:             | Report To:    | Required Pro    | 0          |
| Norm     Norm       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention       Norm     Intervention<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |            |                    |             | 5         | LINOUI                 |     |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WT   | WT | WT | WT | WT    | WT    | WT    | WT     | MATRIX CODE (                                                             | GerGRAB                                       | des to lef    | 0     |            | *                 | er #:        |                      | Becky         | yect in         |            |
| Image: Section C         Section C           Image: Section C         Image: Section C           Image: Section C         Image: Section C           Image: Section C         Image: Section C           Image: Section C         Image: Section C           Image: Section C         Image: Section C           Image: Section C         Image: Section C           Image: Section C         Image: Section C           Image: Section C         Image: Section C           Image: Section C         Image: Section C           Image: Section C         Image: Section C           Image: Section C         Image: Section C           Image: Section C         Image: Section C           Image: Section C         Image: Section C           Image: Section C         Image: Section C           Image: Section C         Image: Section C           Image: Section C         Image: Section C           Image: Section C         Image: Section C           Image: Section C         Image: Section C           Image: Section C         Image: Section C           Image: Section C         Image: Section C           Image: Section C         Image: Section C           Image: Section C         Image: Section C           Image: Section C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |            |                    |             | D         | SHED E                 |     | 1     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |    | t  | T  | 1     |       | 1     | 12     | 8                                                                         | (                                             |               |       |            | ates A            | Ł            |                      | Sleeve        | format          |            |
| Section C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice C       Notice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     | 1.0        |                    |             | Ś         | BY I NS                |     | -     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | ļ  | ļ  | _  |       | -     |       | T.     | Ā                                                                         | STN                                           |               |       |            | A                 |              |                      | R             | tion:           |            |
| Section C       Register and the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the                                                                                                                                                                                                                                                                                      | 8 7                 |            |                    |             | 3         | FILMT                  |     |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |    |    |    |       |       |       | 2      | TIME                                                                      | 4                                             | 8             |       |            |                   |              |                      |               |                 |            |
| Section C       Norther Information       Information of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of th                                                                                                                                                                                                                                                                                                                       | MATU                |            |                    |             | 245       | 8                      |     |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |    |    |    | 1     | -     | +     | 100    | D                                                                         |                                               | LECTE         |       |            |                   |              |                      |               |                 | Ţ          |
| Savenue     Reserved       Internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet internet                                                                                                                                                                                                                                                                                                           | RE of               |            |                    |             | 2         | (C) (                  |     | -     | - |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | _  |    | ļ  | -     | -     | -     |        | JE .                                                                      | m<br>H                                        | 8             |       |            |                   |              |                      |               |                 | e Cha      |
| Section C     Section C       Image: Section C     Image: Section C       Image: Section C     Image: Section C       Image: Section C     Image: Section C       Image: Section C     Image: Section C       Image: Section C     Image: Section C       Image: Section C     Image: Section C       Image: Section C     Image: Section C       Image: Section C     Image: Section C       Image: Section C     Image: Section C       Image: Section C     Image: Section C       Image: Section C     Image: Section C       Image: Section C     Image: Section C       Image: Section C     Image: Section C       Image: Section C     Image: Section C       Image: Section C     Image: Section C       Image: Section C     Image: Section C       Image: Section C     Image: Section C       Image: Section C     Image: Section C       Image: Section C     Image: Section C       Image: Section C     Image: Section C       Image: Section C     Image: Section C       Image: Section C     Image: Section C       Image: Section C     Image: Section C       Image: Section C     Image: Section C       Image: Section C     Image: Section C       Image: Section C     Image: Section C       Image: Section C </td <td>SAMP</td> <td>0 20</td> <td></td> <td></td> <td>24</td> <td>DAT</td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>L.</td> <td></td> <td>TIME</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ain-of</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SAMP                | 0 20       |                    |             | 24        | DAT                    |     |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1    |    |    |    |       |       | L.    |        | TIME                                                                      |                                               |               |       |            |                   |              |                      |               |                 | ain-of     |
| Section C       Removed information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information:       Namedia information: <td></td> <td>NATU</td> <td></td> <td></td> <td>12</td> <td>m</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>SAMPLE TEMP AT</td> <td>COLLECT</td> <td>CN NO</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-Cust</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     | NATU       |                    |             | 12        | m                      | -   |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |    |    |    |       |       |       | 1      | SAMPLE TEMP AT                                                            | COLLECT                                       | CN NO         |       |            |                   |              |                      |               |                 | -Cust      |
| Analyse     Test     Nach     Nach       Proprior     Nach     Nach     Nach       Proprior     Nach     Nach     Nach       Proprior     Nach     Nach     Nach       Proprior     Nach     Nach     Nach       Proprior     Nach     Nach     Nach       Proprior     Nach     Nach     Nach       Nach     Nach     Nach     Nach       Nach     Nach     Nach     Nach       Nach     Nach     Nach     Nach       Nach     Nach     Nach     Nach       Nach     Nach     Nach     Nach       Nach     Nach     Nach     Nach       Nach     Nach     Nach     Nach       Nach     Nach     Nach     Nach       Nach     Nach     Nach     Nach       Nach     Nach     Nach     Nach       Nach     Nach     Nach     Nach       Nach     Nach     Nach     Nach       Nach     Nach     Nach     Nach       Nach     Nach     Nach     Nach       Nach     Nach     Nach     Nach       Nach     Nach     Nach     Nach       N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1E                  | RE         |                    |             | 3         | 3                      | -   | -     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |    |    |    |       |       |       | S      | # OF CONTAINERS                                                           | S                                             | 1             |       | Page       | Page              | Addin        | Sumo                 | Atten         | Sect            | lody i     |
| Progenities (VIN)<br>Regeneration (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities (VIN)<br>Progenities | JA                  |            |                    |             | 8         | ħ.                     | -   |       | - | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |    |    | -  | -     | -     |       | 1      | H2SO4                                                                     |                                               |               |       | Profile    | Quole             |              | oany N               | tion:         |                 | sat        |
| DATE segment     Marci     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marcin     Marc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0 1                 |            |                    |             | 2         |                        |     |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |    |    |    |       |       |       | 3      | HNO3                                                                      |                                               | P             |       | A model    |                   |              | ame:                 |               | or mat          | EGA        |
| NACH     NACH       NACH     NaCS203       NacS203     NacS203       Methanol     Other       Other     Analysee Test       YIN     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X        X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X       X     X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Akr                 |            |                    |             | 2         | 100                    |     | F and |   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1    |    |    | N. |       |       | L     |        | нсі                                                                       | *******                                       | esen          |       | 1084       |                   |              |                      |               | 5               | Do 1       |
| Image: Section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of t                                                                                                                                                                                                                                       | 31                  |            |                    |             | (1)       | 2                      |     |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |    | -  |    | -     | -     | -     | -      | NaOH                                                                      |                                               | rativ         |       | Ö .        |                   |              |                      |               |                 | č          |
| DATE signed:     Control     Request to set     Y/N       DATE signed:     Control     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X     X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18                  | 14         |                    |             | Š         | ğ                      | +   | -     | - | -+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -+   |    |    |    |       |       |       |        | Na2S203                                                                   |                                               | 8             | П     | levin.     |                   |              |                      |               |                 | MEN        |
| Ontring     Analyses Test     Y/N       Image: State of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state                                                                                                                                                                                                                                                                               | 52                  | 1          |                    |             | 12        |                        |     |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |    |    |    |       | 1     |       |        | Other                                                                     |                                               |               | 11    | nenth      |                   |              |                      |               |                 | A.F        |
| DATE Squeet of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of t                                                                                                                                                                                                                      | Å                   |            |                    |             | 11        | ŝ                      |     |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |    |    |    |       | L     |       |        | Analyses T                                                                | est                                           | YIN           | Ħ     | 9@p        |                   |              |                      |               |                 | ll ret     |
| ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J, F, SO4<br>ATE segmet: C (J,                                                           |                     |            | Social Contraction | 10          | pig.      | S                      |     |       |   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×    | ×  | ×  | ×  | ×     | *     | K     | ×      | TDS                                                                       |                                               |               |       | celat      |                   |              |                      |               |                 | evan       |
| Solones:     A     A     A     A     A     App III/IV Metals       Gradination     A     A     A     A     App III/IV Metals       File     A     A     A     A     App III/IV Metals       File     A     A     A     A     App III/IV Metals       File     A     A     A     A     App III/IV Metals       File     A     A     A     A     App III/IV Metals       File     A     A     A     A     App III/IV Metals       File     A     A     A     App III/IV Metals     App III/IV Metals       File     A     A     A     A     App III/IV Metals       File     A     A     A     App III/IV Metals       File     A     A     A     App III/IV Metals       File     A     A     A     App III/IV Metals       File     A     A     A     App III/IV Metals       File     A     A     A     App III/IV Metals       File     A     A     A     App III/IV Metals       File     A     A     A     App III/IV Metals       File     A     A     A     A       File     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ATE                 |            |                    |             | 12        | 2 L                    | _   | -     | - | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ×    | ×  | ×  | ×  | ×     | 1     | r.    | ×      | CI, F, SO4                                                                |                                               |               |       | S.001      |                   |              |                      |               |                 | I fiel     |
| A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A     A <td>Signe</td> <td></td> <td>l</td> <td></td> <td>B</td> <td>- F</td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td>&lt; 12</td> <td>×</td> <td>×</td> <td>×</td> <td>×</td> <td>1</td> <td>£</td> <td>×</td> <td>App III/IV Metals</td> <td>4.8.9. a. 1</td> <td></td> <td>ques</td> <td>ľ</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>ds n</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Signe               |            | l                  |             | B         | - F                    | -   |       | - | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | < 12 | ×  | ×  | ×  | ×     | 1     | £     | ×      | App III/IV Metals                                                         | 4.8.9. a. 1                                   |               | ques  | ľ          |                   |              |                      |               |                 | ds n       |
| EMP In C<br>Leceived on<br>eC<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)<br>(A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e<br>al             |            |                    | X           |           | ľ                      |     |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |    |    |    |       | -     | *     |        | 1010 0010/0020                                                            |                                               |               | A De  |            |                   |              |                      | L             |                 | Les C      |
| Image: Stress of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second                                                                                                                                                                                                                                       | 2                   |            |                    | 17          | 3         |                        |     |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |    |    |    |       | 1     |       |        |                                                                           |                                               |               | R     |            |                   |              |                      |               |                 | beo        |
| EMP In C     Residual Chlorine (Y/N)     Residual Chlorine (Y/N)       Iteratived on edition (Y/N)     Iteratived on edition (Y/N)     Iteratived on edition (Y/N)       Stated Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di gooler Di                                                                                                                                                                                                                                                                                                                        | S                   |            |                    | 1           | 4         |                        |     |       |   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |    |    |    |       |       |       |        |                                                                           |                                               |               |       |            |                   |              |                      |               |                 | duc        |
| TEMP In C Received on Page Page Page Page Page Page Page Page                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |            | -                  | +-+         | 3         |                        | -   | -     | - | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -    | -  | 5  |    |       |       | -     |        |                                                                           |                                               |               | and a |            | Π                 |              |                      | ٩.            |                 | eled       |
| TEMP In C     Residual Chlorine (Y/N)     Residual Chlorine (Y/N)       Received on e0<br>Y/N)     Page     Page       Y/N)     Y/N     Y/N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |            |                    | 17          | 9         |                        | -   | +     |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -    | -+ |    | -  |       | -     | _     |        | ······                                                                    |                                               |               | S     |            |                   |              |                      |               |                 | 80         |
| EEMP In C     Residual Chilorine (Y/N)     Residual Chilorine (Y/N)       Received on eD     A       Page     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C     C       C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     | 762<br>552 |                    | 19          | 9         | "  -                   |     |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -+   | -  |    | -  |       |       |       |        | •                                                                         |                                               |               |       |            |                   |              |                      | E             |                 | urate      |
| Recalved on the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to the transformed to t                                                                                                                                                                                                                      | EMP In C            | -          |                    |             |           | T                      |     |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1    |    | 1  |    |       |       |       |        |                                                                           |                                               | 151           |       |            |                   | 22           |                      | Page          |                 | ly.        |
| All Constants of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se                                                                                                                                                                                                                      | Janahund            |            |                    |             |           |                        |     |       |   | - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T    | -r |    |    | بعصمه | ·     |       |        | Residual Chiorine                                                         | (Y/N)                                         |               |       |            |                   |              |                      |               |                 |            |
| Subledy<br>leated()<br>cooler()<br>Y(N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | cell                | on         |                    |             | - Address |                        |     |       |   | in f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 1  |    |    |       | 1     | 1     | 20     |                                                                           |                                               |               | A     | Loca       |                   | ž (          | 2                    | 1             | 11              |            |
| ealedQ<br>CoolerD<br>Y/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T/N)<br>Cuslody     | -          |                    | ++          |           | 8                      |     |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |    |    |    |       |       |       | er.    |                                                                           |                                               | 1             |       | tion.      |                   |              | 2                    | ľ             | 2               |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ealed()<br>Cooler() |            |                    |             |           | DITIO                  |     |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |    |    |    |       | 1     | •     | 1      |                                                                           |                                               | 11            | 1     |            |                   | 1            | -                    | Q             | ő,              |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Y/N)                |            | -                  | +           | _         | ١.<br>١                |     |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |    |    |    |       |       |       | 2      |                                                                           |                                               |               |       |            |                   |              | 2                    | Γ             |                 |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tactC               |            | 120                |             |           |                        |     |       |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |    |    |    |       |       |       |        |                                                                           | 1                                             | 5             |       |            |                   | P            | 2                    | S             |                 |            |

| •           |           |      |                      | 2.2 | 0          | 60   | 14       | 9  | M             | *      | ω                    | Ŋ  | -      | ITEM #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                                                    | 1         | quest         | 1.                | all:          | Iness                | milup                  | Hon       |
|-------------|-----------|------|----------------------|-----|------------|------|----------|----|---------------|--------|----------------------|----|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------------------------------------|-----------|---------------|-------------------|---------------|----------------------|------------------------|-----------|
|             |           |      | ADDITIONAL COLORENTS |     | e transfer | 1-00 | 1 2 -    |    | YGWC43        | NOWERZ | YGWC-1               |    |        | (A-Z, 0-9 ,<br>)<br>Sample Ids must be unique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SAMPLE ID        |                                                    |           | led Due Date: | (770)384-6526 Fax | GA 30114      | 1070 Bridge Mill Ave | vd Client information: | A         |
|             |           | Ja   | 1                    |     |            |      |          |    |               |        |                      |    |        | Tomes 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Wrate Water Word | MATRIXD CODED<br>Drending WaterD DWD<br>WaterD DWD |           | Project #:    | Project Name      |               | Coov To              | Required Pr            | Contion D |
|             |           | R    | CINCHER              |     |            | 舌    | S        | TW | WT            | WT     |                      |    |        | MATRIX CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (see valid       | codes to jet                                       |           |               | der #:            |               | Becky                | oject Im               |           |
|             |           | 5-20 | HED BY               |     |            | 215  | 13       |    | 3/2           | 4      | 2                    |    | 5      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |                                                    |           | ALCS NO       |                   |               | Sleever              | formati                |           |
|             |           | 0500 | UNTEL                |     |            | 5    | L.L.     |    | 4             | -      | <u>5</u><br><u>7</u> | -  |        | 1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | START            |                                                    |           |               |                   |               |                      | 97.                    |           |
| PLERN       |           | 2A   | WIDM                 |     | _          | 3    | 8        |    | 8             |        | 3                    | -  | INIT   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | OULEC                                              | $\ $      |               |                   |               |                      |                        |           |
| AME AN      | $\square$ |      |                      |     |            |      |          |    |               |        |                      |    | DATE   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | g                | TED                                                |           |               |                   |               |                      |                        | The Ct    |
| SANPL       |           | 3/4  | Dial                 |     |            |      |          |    |               |        |                      |    | TIME   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6                |                                                    |           |               |                   |               |                      |                        | nain-of   |
| ER:         |           | 21   |                      |     |            | 1    |          |    | -             |        |                      |    | s      | AMPLE TEMP /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AT COLLEC        | TION                                               | 11        |               |                   |               |                      |                        | HCust     |
| S           |           | 0    | 展                    |     |            | K    | 10       | -  | 3             | 1      | +                    | -  | H<br>U | OF CONTAINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RS               | 1                                                  | Pace P    | Page Pr       | Page Q            | <b>Nodres</b> | Anendo               | Section                | ody is    |
| R -         |           | P    |                      |     |            | R    | V        | _  | <             | -      | 1.                   | -  | H      | 2504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                                    | offile #: | roject M      | uote:             | ny Nam        | ž                    | n C                    | a LEO     |
| 10          |           | 0    |                      |     |            | 7    |          | Z  | $\rightarrow$ |        |                      |    | н      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 46-4             | Teser                                              | 108       | anagen        |                   | 8             |                      | ation:                 | AL D      |
| E           |           | N    | à -                  |     | -          |      |          | +  | +             |        | +                    | +- | N      | aOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  | vative                                             | ð         | Z             |                   |               |                      |                        | OCUN      |
| 2           |           | R    |                      |     | -          |      |          |    |               |        |                      | 1  | M      | ethanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | - <sup>o</sup>                                     |           | vinhe         |                   |               |                      |                        | IEN       |
| 6           |           | 10   | BTIN                 |     |            |      |          | 1  |               |        |                      |    | 01     | Ansluges                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tool             | -                                                  |           | ming@         |                   |               |                      |                        | Alin      |
| 2           |           | 家    |                      |     |            | R    | ×        | ×  | T             | ×      | M                    | Ŧ  | TO     | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | a opt.           | A MARIN                                            |           | puccila       |                   |               |                      |                        | Bleva     |
|             | i I       | N.   | ₽ L                  |     | -          | XX   | X        | ×  | -             | ×      | ×                    | 1  | CI,    | F, SO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  |                                                    | 8         | S.com         |                   |               |                      |                        | It field  |
| 2.4.2       |           | M    | t                    |     |            | 8    | X        | ×  | *             | ×      | ×                    | 1  | RA     | D 9315/9320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ······           |                                                    | Plansty.  |               |                   |               |                      |                        | ts mu     |
|             |           | Yer  |                      |     |            |      | <u>[</u> | -  | 1             |        |                      | -  | 1-     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                                                    | N         |               | 1                 |               |                      |                        | st be     |
|             | -         | RI.  |                      |     |            |      |          |    |               |        |                      | 1  | -      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | -                                                  | A MAR     |               |                   |               |                      |                        | Comp      |
| -           |           | 5    | 4                    |     | _          |      | _        | -  | -             |        |                      | -  | 1_     | Yearna Abayeraa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                                                    | 副十        |               |                   | T             |                      |                        | vieted    |
|             |           | B    |                      |     |            |      |          | +  |               | -      | 1                    | +  | +      | delated and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |                  | -                                                  | FIN       |               | ALL ALL AND A     |               |                      |                        | 3001      |
|             |           | PL   |                      |     |            |      |          | 1  |               |        |                      | [  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                                                    |           |               |                   |               | 5                    | ٦                      | Irately   |
| PinC        |           |      | ŀ                    |     |            |      |          |    |               | 1      | 1                    | 1  | Res    | Idual Chiedre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (YAN)            | 141.00                                             |           | 9             | Reg               |               | age                  |                        | *         |
| eived on    |           |      |                      |     |            | F    |          | 5  | ¢,            | -7     | J                    | 1  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (1.1.1)          |                                                    | CA        |               | datory.           | 0             | ſ                    |                        |           |
| l)<br>lody  |           |      |                      |     |            |      |          | G  |               | p:     | 1                    | 1  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                                                    |           |               | Agen              | 0             | V                    | 1                      |           |
| edD<br>lerD |           |      |                      |     |            |      |          | à  | il .          | Ser.   | 1,                   | 1  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                                                    |           |               | 2                 | 3             | 0                    |                        |           |
| ples        |           |      |                      |     |            |      | 4        | 25 | L             | 6      |                      |    |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |                                                    |           |               |                   |               |                      |                        |           |
| AL I        |           |      | 91                   |     |            | Ì    |          | -  | 12            | June   | 1                    |    | 1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  | 1025000                                            |           |               | 1                 | CO            | 10                   |                        |           |

Page 29 of 31

88.

|           |      |                     | 8      | 8 3                                           | 12 | )<br>B | 19 | 10       | 2 | la    | U      | 4         | 4         | ITEM #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | Jľ        | queste                  | Ne:            | Iton, (              | Teden            | quine                       |                  |
|-----------|------|---------------------|--------|-----------------------------------------------|----|--------|----|----------|---|-------|--------|-----------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------|-------------------------|----------------|----------------------|------------------|-----------------------------|------------------|
|           |      | ADOLUMANT COMPARIES |        |                                               |    |        |    |          |   | +8-02 | YGWC49 | ACHIC DEA | Xem Clark | SAMPLE ID<br>One Character per box.<br>(A-Z, 0-9 /, -<br>)<br>Sample ids must be unique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         | -         | vd Due Date:            | 1770 YBM ASSE  | 1070 Eridge Mill Ave | 1: Georgia Power | A<br>I Client Information:  | Mat Stritte dama |
|           | 100  | Later - 1           |        |                                               |    | 8      | ×  |          | 8 | 8     |        | 5         | 5         | Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tresse<br>Tr |         | tradicial | Project Marre:          | Purchase Order | Copy To:             | Report To: B     | Section B<br>Required Proje |                  |
|           | N    |                     |        |                                               | 1  | 1      |    | -        | - | -     | H N    |           | 1         | SAMPLE TYPE (B2GRAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C=COMP) |           | Yate                    | *              |                      | they ste         | ct Infor                    |                  |
|           | IN.  | DIBNIA              |        |                                               |    |        |    |          |   | 4.21  | 42     |           |           | DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |           | S AMA                   |                |                      | ever             | mation:                     |                  |
| PRI       |      | IL MTELS            |        |                                               |    |        |    |          |   | 15m   | F      | Ι         |           | TIME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8       |           |                         |                |                      |                  |                             |                  |
| NT NAME   |      | B                   |        |                                               |    |        |    | -        |   |       |        |           | 1         | DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | LECTED  |           |                         |                |                      |                  |                             | Ine              |
| of SAM    | 4    | 2                   | $\neg$ |                                               |    |        |    | +        |   |       |        |           | $\square$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |           | ſ                       |                |                      |                  |                             | Chain-           |
| PLER:     | 2    | .A                  | -      |                                               | -  |        |    | <b> </b> |   | -     |        |           |           | TI<br>SAMPLE TEMP AT COLLEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TION    |           |                         |                |                      |                  |                             | of-Cus           |
| ST A      | 16   |                     |        |                                               | -  |        |    |          |   | S     | 5      |           | 1         | # OF CONTAINERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | Pace      | Page                    | Page           | 18                   | Atta             | 18                          | stody            |
| 1 ST      | 5    | 「「「」                | -+     |                                               | -  | 1      |    |          |   |       | 7      | -         | -         | Unpreserved<br>H2SO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 1     | Profile   | Projec                  | Quote          | pany N               | TRANSIT          | in c                        | IsaL             |
| No T      |      |                     |        |                                               |    |        |    |          |   | 1     | N      |           |           | HNO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pre     | *         | t Mana                  |                | ame:                 | ALDer            |                             | EGAL             |
| 5         | 1 St |                     | -      | _ _                                           |    | -      |    |          |   |       |        |           |           | HCI<br>NaOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Serva   | 10840     | ger:                    |                |                      | SUC              |                             | DOC              |
| E .       | 1 M  | 6                   |        |                                               |    |        |    |          |   |       |        |           | 7.6.6.1   | Na2S203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tives   |           | Kev                     |                |                      |                  |                             | UME              |
| 2         |      | B GEILA             | -      |                                               |    |        |    |          |   | _     |        | -         |           | Methanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7       |           | n.herri                 |                | 11                   |                  |                             | NT.              |
| 12        | 来    | at l                |        |                                               |    |        |    |          |   |       |        |           |           | Analysee Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | YIN     |           | nd sign                 | 1              |                      | L                |                             | ul rel           |
| 2         | 25C  | E.                  |        |                                               | _  | ××     | ×  | ×        | X | ×     | ×      | 2         | ٢         | TDS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |         |           | Celabs                  |                |                      |                  |                             | evant            |
|           | L.   | ¥                   |        |                                               |    | ×      | ×  | ×        | × | ×     | ×      |           | k         | App III/IV Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |           | 8                       |                |                      |                  |                             | field            |
| ined.     | ta   |                     |        |                                               |    | ×      | ×  | ×        | × | ×     | ×      |           | Ł         | RAD 9315/9320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |           |                         |                |                      |                  |                             | s mus            |
| 2         | 12   |                     |        | +                                             |    |        |    | -        |   |       | -      | -         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |           |                         |                |                      |                  |                             | tbe              |
|           | 5    | SH L                |        |                                               |    |        |    |          |   |       |        |           |           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |           |                         |                |                      |                  |                             | omp              |
|           | - 70 |                     |        |                                               |    |        |    | _        |   | -     | -      | _         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | Π         | 1                       |                |                      | ale:             |                             | leted            |
|           | 0    | M                   |        |                                               |    | 1      |    |          |   |       |        |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |           | 100                     |                |                      |                  |                             | accur            |
|           |      |                     |        |                                               |    | _      |    |          |   |       | -      |           | -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |           |                         | 1              |                      | Pa               | ٦                           | ately.           |
| MPINC     |      |                     |        | ا میں اور اور اور اور اور اور اور اور اور اور |    |        |    |          |   | l     | L      |           |           | Residual Chlorine (Y/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |         |           | 1                       | Raquida        |                      | e:               |                             |                  |
| Celved on |      | SAUR                |        |                                               |    |        |    |          |   | 11    | S.     | 1         | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.44    | GA        | 1                       | DORY A         | 00                   | C                | -                           |                  |
| stody     |      | ECO                 |        |                                               |    |        |    |          |   |       | S      | 1         | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         | 1000      | È.                      | pancy          | 0                    | ŕ                | 1                           |                  |
| olerD     |      | NOULON NO           |        |                                               |    |        |    | 1        |   |       | 2      |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |           |                         | 2<br>C         | P                    | 2                |                             |                  |
| mples     |      | <b>母</b> .          |        |                                               |    |        |    |          |   | C     | N      |           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |           | No. of Concession, Name | C X            |                      | ł.               |                             |                  |
| N)        |      | 12                  |        |                                               |    |        |    |          |   |       |        | 1         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (/elsi  |           |                         | ×.             | 10                   | N                | 1                           |                  |

١.,

| •              |       |                     | J        | 0 9 | 09 N | 9      | 14       |        | 100 | M           | -       | IIEM #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                   | 11             | Les                | #              | ton s    | 1                 |                               |
|----------------|-------|---------------------|----------|-----|------|--------|----------|--------|-----|-------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------|--------------------|----------------|----------|-------------------|-------------------------------|
|                |       | NOOTINAAL COMPLETIT |          |     |      | YGWC38 | NCHIC-42 | YGWC42 |     | YGMA-IR     | *CWARD- | SAMPLE ID<br>One Character per box.<br>(A-Z, 0-8 /, -<br>)<br>Sample lds must be unique                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                   |                | (770)384-6526 Fax: |                | GA 30114 | ny: Georgia Power | n A<br>ed Client information: |
|                | 100   | · 严                 |          |     |      | ×      | W        | ×      | 5   | 8           | ×       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MATRIXC CODED<br>Drawing WaterO DWD<br>WaterO DWD | in topological | Projed Name        | Purchase Order | Copy To: | Report To: B      | Section B                     |
| •              | 1     | XE                  |          |     |      | ਕ      | 7        | 17     | 7   | 3           | 4       | SAMPLE TYPE (G=GRAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | C=COMP)                                           | 11             | Ya                 | 7.75           |          | S Vocas           |                               |
| Î              | M     |                     |          |     |      | 342    |          | 4.5    |     |             |         | RA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                   | 1              | tes R6             |                |          | loever            |                               |
| 18             | WI    | I.M.                |          |     |      | 51113  |          | 81     |     |             |         | START                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                   |                |                    |                |          | MIX               |                               |
| PRINT          |       | MOIL                |          |     |      | 5      |          | 云      |     | _           |         | Mining and a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec | Court                                             |                |                    | 1              |          |                   |                               |
| NAME           |       |                     |          |     |      |        |          |        |     |             |         | DATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CIED                                              |                |                    | ľ              |          |                   | The                           |
| or SAL         | W     |                     |          |     |      |        |          |        | +   | -           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                |                    |                |          |                   | Chain                         |
| MPLER MPLER    | 5     | <b>1</b>            |          |     | -    |        |          | _      | _   |             | _       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                |                    |                |          |                   | 9-10                          |
| K              | E     |                     |          |     |      | 5      |          | জ      |     | +           | -       | SAMPLE TEMP AT COLLEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TION                                              | P              | 3                  | 93             | 81       | 15                | ustod                         |
| 44             | 7     | , M                 |          |     |      |        |          | 1      |     |             | 1       | Unpreserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                   | CE Pro         | The Pro            | diess:         | neduc    | olce I            | y is a                        |
| 10-            |       |                     |          |     |      | 4      | -        | 1      |     | +           | -       | H2SO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                   | 100            | ed M               |                | Nam      | morn              | C LEG                         |
| 100            | J.    |                     |          |     |      |        |          | -7     |     |             |         | нсі                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tese                                              | 12             | anage              |                | 19       | ation:            | AL D                          |
| 12             | \$    | 2                   |          |     |      | _      | _        |        | 1   | _           |         | NaOH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Vativ                                             | ð              | 2                  |                |          |                   | ÖQ                            |
| 10             | k     |                     | +        |     |      | -      |          | -      |     |             | +       | Na2S2O3<br>Methanol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | es                                                |                | Kevin              |                |          |                   | MEN                           |
| E.             | a     | 50 BY               |          |     |      |        |          |        |     |             | -+      | Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                 |                |                    |                | 1        |                   | T.N                           |
| $   2^{\perp}$ | and a | INT                 | <u> </u> |     | 1 15 | . 11   | U 15     | . 1.   |     | <u>Г т.</u> |         | Analyage Test                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | YIN                                               |                | 0                  |                |          |                   | l rele                        |
| DAT            | A     | -                   | ┢┉┟╸     | ++  |      |        |          | < >    | H×  | ×           |         | TDS<br>CL F. 804                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                   |                |                    |                |          |                   | vant                          |
| Esign          | J.    |                     |          |     | >    | < >    |          | ( )    | X   | ×           | Ħ,      | App III/SV Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |                |                    |                |          |                   | fields                        |
| ed:            | 1 the | -                   |          | +   | >    | < >    |          | < ×    | 1 × | 13          | 1       | AD 9315/9320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |                |                    |                |          |                   | mus                           |
|                | -P    |                     |          |     |      |        |          | -      |     | -           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                |                    |                |          |                   | be                            |
| 1              | 6     | MIE                 |          |     |      |        |          |        |     |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                |                    |                | 1        |                   | comp                          |
| -              | - 2   |                     |          |     |      | _      |          | -      | _   |             | +       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                |                    |                |          |                   | leted                         |
|                |       | 1                   |          |     |      | 1      | +        | +      | +   | -           | -       | 1014-0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                   |                |                    |                |          |                   | acc                           |
|                |       | 89.<br>             |          |     |      |        |          |        |     |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                |                    |                |          |                   |                               |
| EMP in C       |       |                     |          |     |      |        |          |        | 1   |             | R       | es dual Chlorine (VAI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                   | St             |                    | Sing           |          | age               | *                             |
| leceived on    |       | 2                   |          |     | Tto  |        | . to     |        | T   | Т           | ť       | and offering (T/N)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                   | 10             |                    | Laby           | 2        |                   |                               |
| (/N)           |       | 0 TG                |          |     | 11.  | S-     | 17       | 51     | 1   | 1           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   | ocatio         |                    |                | )1       | P                 |                               |
| aledO          |       | CADAC               |          |     |      | 2      |          | 2      |     | 1           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   | ð              |                    | ٩ľ             | 2        |                   | 10                            |
| (/N)           |       | CHO SHO             |          |     | 1 19 | 2      | R        | 5      |     |             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                   |                |                    |                |          | g                 |                               |
| enthice        |       |                     |          |     |      |        | 1        |        |     | 1           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NY States                                         | 1 18           | 111                |                | 1        |                   | 1                             |



Pace Analytical Services, LLC 110 Technology Parkway Peachtree Corners, GA 30092 (770)734-4200

March 28, 2021

Ms. Lauren Petty Southern Company 42 Inverness Center Parkway Birmingham, AL 35242

RE: Project: YATES RADS Pace Project No.: 92525905

Dear Ms. Petty:

Enclosed are the analytical results for sample(s) received by the laboratory on March 05, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Karalin ya

Kevin Herring kevin.herring@pacelabs.com 1(704)875-9092 HORIZON Database Administrator

Enclosures

cc: Joju Abraham, Georgia Power-CCR Lauren Coker, Georgia Pwer Geoffrey Gay, ARCADIS - Atlanta Kristen Jurinko Kelley Sharpe, ARCADIS - Atlanta Alex Simpson, Arcadis Samantha Thomas Maribel Vital





Pace Analytical Services, LLC 110 Technology Parkway Peachtree Corners, GA 30092 (770)734-4200

#### CERTIFICATIONS

Project: YATES RADS Pace Project No.: 92525905

#### Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601 ANAB DOD-ELAP Rad Accreditation #: L2417 Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694 **Delaware Certification** EPA Region 4 DW Rad Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET **Guam Certification** Hawaii Certification Idaho Certification **Illinois Certification** Indiana Certification Iowa Certification #: 391 Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221 Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086 Maine Certification #: 2017020 Maryland Certification #: 308 Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991

Missouri Certification #: 235 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249 Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification Tennessee Certification #: 02867 Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L



### SAMPLE SUMMARY

Project: YATES RADS Pace Project No.: 92525905

| Lab ID      | Sample ID | Matrix | Date Collected | Date Received  |
|-------------|-----------|--------|----------------|----------------|
| 92525905001 | YAMW-2    | Water  | 03/03/21 14:10 | 03/05/21 09:20 |
| 92525905002 | YAMW-4    | Water  | 03/03/21 13:05 | 03/05/21 09:20 |
| 92525905003 | YAMW-5    | Water  | 03/04/21 14:15 | 03/05/21 09:20 |
| 92525905004 | YAMW-1    | Water  | 03/03/21 15:15 | 03/05/21 09:20 |
| 92525905005 | PZ-35     | Water  | 03/04/21 15:30 | 03/05/21 09:20 |
| 92525905006 | EB1       | Water  | 03/04/21 16:00 | 03/05/21 09:20 |
| 92525905007 | PZ-37     | Water  | 03/04/21 11:55 | 03/05/21 09:20 |



# SAMPLE ANALYTE COUNT

Project:YATES RADSPace Project No.:92525905

| Lab ID      | Sample ID | Method                   | Analysts | Analytes<br>Reported | Laboratory |
|-------------|-----------|--------------------------|----------|----------------------|------------|
| 92525905001 | YAMW-2    | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |           | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |           | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92525905002 | YAMW-4    | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |           | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |           | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92525905003 | YAMW-5    | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |           | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |           | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92525905004 | YAMW-1    | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |           | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |           | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92525905005 | PZ-35     | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |           | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |           | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92525905006 | EB1       | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |           | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |           | Total Radium Calculation | CMC      | 1                    | PASI-PA    |
| 92525905007 | PZ-37     | EPA 9315                 | CLA      | 1                    | PASI-PA    |
|             |           | EPA 9320                 | VAL      | 1                    | PASI-PA    |
|             |           | Total Radium Calculation | CMC      | 1                    | PASI-PA    |

PASI-PA = Pace Analytical Services - Greensburg



Project: YATES RADS

Pace Project No.: 92525905

| Lab Sample ID            | Client Sample ID |                                               |       |              |                |            |
|--------------------------|------------------|-----------------------------------------------|-------|--------------|----------------|------------|
| Method                   | Parameters       | Result                                        | Units | Report Limit | Analyzed       | Qualifiers |
| 92525905001              | YAMW-2           |                                               |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.101 ±<br>0.102<br>(0.188)                   | pCi/L |              | 03/25/21 08:50 |            |
| EPA 9320                 | Radium-228       | 0.462 ±<br>0.393<br>(0.795)<br>C:80%          | pCi/L |              | 03/25/21 12:21 |            |
| Total Radium Calculation | Total Radium     | 0.563 ±<br>0.495<br>(0.983)                   | pCi/L |              | 03/26/21 14:34 |            |
| 92525905002              | YAMW-4           |                                               |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.252 ±<br>0.159<br>(0.242)<br>C:72% T:NA     | pCi/L |              | 03/25/21 08:50 |            |
| EPA 9320                 | Radium-228       | 0.822 ±<br>0.449<br>(0.823)<br>C:80%<br>T:80% | pCi/L |              | 03/25/21 12:21 |            |
| Total Radium Calculation | Total Radium     | 1.07 ±<br>0.608<br>(1.07)                     | pCi/L |              | 03/26/21 14:34 |            |
| 92525905003              | YAMW-5           |                                               |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.479 ±<br>0.208<br>(0.275)<br>C:84% T:NA     | pCi/L |              | 03/25/21 08:50 |            |
| EPA 9320                 | Radium-228       | 0.979 ±<br>0.406<br>(0.656)<br>C:81%<br>T:89% | pCi/L |              | 03/25/21 12:21 |            |
| Total Radium Calculation | Total Radium     | 1.46 ±<br>0.614<br>(0.931)                    | pCi/L |              | 03/26/21 14:34 |            |
| 92525905004              | YAMW-1           |                                               |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.131 ±<br>0.146<br>(0.301)<br>C·79% TNA      | pCi/L |              | 03/26/21 08:05 |            |
| EPA 9320                 | Radium-228       | 0.246 ±<br>0.446<br>(0.975)<br>C:81%<br>T:71% | pCi/L |              | 03/23/21 13:46 |            |
| Total Radium Calculation | Total Radium     | 0.377 ±<br>0.592<br>(1.28)                    | pCi/L |              | 03/26/21 14:34 |            |



Project: YATES RADS

Pace Project No.: 92525905

| Lab Sample ID            | Client Sample ID |                                                        |       |              |                |            |
|--------------------------|------------------|--------------------------------------------------------|-------|--------------|----------------|------------|
| Method                   | Parameters       | Result                                                 | Units | Report Limit | Analyzed       | Qualifiers |
| 92525905005              | PZ-35            |                                                        |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.131 ±<br>0.116<br>(0.213)<br>C:96% T:NA              | pCi/L |              | 03/26/21 08:05 |            |
| EPA 9320                 | Radium-228       | 0.266 ±<br>0.375<br>(0.806)<br>C:85%<br>T:83%          | pCi/L |              | 03/23/21 13:46 |            |
| Total Radium Calculation | Total Radium     | 0.397 ±<br>0.491<br>(1.02)                             | pCi/L |              | 03/26/21 14:34 |            |
| 92525905006              | EB1              |                                                        |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.0452 ±<br>0.0923<br>(0.215)<br>C:83% T.NA            | pCi/L |              | 03/26/21 08:05 |            |
| EPA 9320                 | Radium-228       | 0.393 ±<br>0.346<br>(0.695)<br>C:82%<br>T:77%          | pCi/L |              | 03/23/21 13:46 |            |
| Total Radium Calculation | Total Radium     | 0.438 ±<br>0.438<br>(0.910)                            | pCi/L |              | 03/26/21 14:34 |            |
| 92525905007              | PZ-37            |                                                        |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.868 ±<br>0.271<br>(0.307)<br>C <sup>.</sup> 79% T.NA | pCi/L |              | 03/26/21 08:10 |            |
| EPA 9320                 | Radium-228       | 0.626 ±<br>0.363<br>(0.662)<br>C:78%<br>T:92%          | pCi/L |              | 03/23/21 13:47 |            |
| Total Radium Calculation | Total Radium     | 1.49 ±<br>0.634<br>(0.969)                             | pCi/L |              | 03/26/21 14:34 |            |



Project: YATES RADS

Pace Project No.: 92525905

| Sample: YAMW-2<br>PWS: | Lab ID: 92525<br>Site ID:   | 905001 Collected: 03/03/21 14:10<br>Sample Type: | Received: | 03/05/21 09:20 N | fatrix: Water |      |
|------------------------|-----------------------------|--------------------------------------------------|-----------|------------------|---------------|------|
| Parameters             | Method                      | Act ± Unc (MDC) Carr Trac                        | Units     | Analyzed         | CAS No.       | Qual |
|                        | Pace Analytical S           | Gervices - Greensburg                            |           |                  |               |      |
| Radium-226             | EPA 9315                    | 0.101 ± 0.102 (0.188)<br>C:85% T:NA              | pCi/L     | 03/25/21 08:50   | 13982-63-3    |      |
|                        | Pace Analytical S           | Services - Greensburg                            |           |                  |               |      |
| Radium-228             | EPA 9320                    | 0.462 ± 0.393 (0.795)<br>C:80% T:79%             | pCi/L     | 03/25/21 12:21   | 15262-20-1    |      |
|                        | Pace Analytical S           | Services - Greensburg                            |           |                  |               |      |
| Total Radium           | Total Radium<br>Calculation | 0.563 ± 0.495 (0.983)                            | pCi/L     | 03/26/21 14:34   | 7440-14-4     |      |



Project: YATES RADS

Pace Project No.: 92525905

| Sample: YAMW-4<br>PWS: | Lab ID: 9252<br>Site ID:    | 5905002 Collected: 03/03/21 13:05<br>Sample Type: | Received: | 03/05/21 09:20 M | latrix: Water |      |
|------------------------|-----------------------------|---------------------------------------------------|-----------|------------------|---------------|------|
| Parameters             | Method                      | Act ± Unc (MDC) Carr Trac                         | Units     | Analyzed         | CAS No.       | Qual |
|                        | Pace Analytical             | Services - Greensburg                             |           |                  |               |      |
| Radium-226             | EPA 9315                    | 0.252 ± 0.159 (0.242)<br>C:72% T:NA               | pCi/L     | 03/25/21 08:50   | 13982-63-3    |      |
|                        | Pace Analytical             | Services - Greensburg                             |           |                  |               |      |
| Radium-228             | EPA 9320                    | 0.822 ± 0.449 (0.823)<br>C:80% T:80%              | pCi/L     | 03/25/21 12:21   | 15262-20-1    |      |
|                        | Pace Analytical             | Services - Greensburg                             |           |                  |               |      |
| Total Radium           | Total Radium<br>Calculation | 1.07 ± 0.608 (1.07)                               | pCi/L     | 03/26/21 14:34   | 7440-14-4     |      |



Project: YATES RADS

Pace Project No.: 92525905

| Sample: YAMW-5 | Lab ID: 925259              | <b>05003</b> Collected: 03/04/21 14:15 | Received: | 03/05/21 09:20 | Aatrix: Water |      |
|----------------|-----------------------------|----------------------------------------|-----------|----------------|---------------|------|
| PWS:           | Site ID:                    | Sample Type:                           |           |                |               |      |
| Parameters     | Method                      | Act ± Unc (MDC) Carr Trac              | Units     | Analyzed       | CAS No.       | Qual |
|                | Pace Analytical Se          | rvices - Greensburg                    |           |                |               |      |
| Radium-226     | EPA 9315                    | 0.479 ± 0.208 (0.275)<br>C:84% T:NA    | pCi/L     | 03/25/21 08:50 | 13982-63-3    |      |
|                | Pace Analytical Se          | rvices - Greensburg                    |           |                |               |      |
| Radium-228     | EPA 9320                    | 0.979 ± 0.406 (0.656)<br>C:81% T:89%   | pCi/L     | 03/25/21 12:21 | 15262-20-1    |      |
|                | Pace Analytical Se          | rvices - Greensburg                    |           |                |               |      |
| Total Radium   | Total Radium<br>Calculation | 1.46 ± 0.614 (0.931)                   | pCi/L     | 03/26/21 14:34 | 7440-14-4     |      |



Project: YATES RADS

Pace Project No.: 92525905

| Sample: YAMW-1<br>PWS: | Lab ID: 925259<br>Site ID:  | 05004 Collected: 03/03/21 15:15<br>Sample Type: | Received: | 03/05/21 09:20 N | latrix: Water |      |
|------------------------|-----------------------------|-------------------------------------------------|-----------|------------------|---------------|------|
| Parameters             | Method                      | Act ± Unc (MDC) Carr Trac                       | Units     | Analyzed         | CAS No.       | Qual |
|                        | Pace Analytical Se          | rvices - Greensburg                             |           |                  |               |      |
| Radium-226             | EPA 9315                    | 0.131 ± 0.146 (0.301)<br>C:79% T:NA             | pCi/L     | 03/26/21 08:05   | 13982-63-3    |      |
|                        | Pace Analytical Se          | rvices - Greensburg                             |           |                  |               |      |
| Radium-228             | EPA 9320                    | 0.246 ± 0.446 (0.975)<br>C:81% T:71%            | pCi/L     | 03/23/21 13:46   | 15262-20-1    |      |
|                        | Pace Analytical Se          | rvices - Greensburg                             |           |                  |               |      |
| Total Radium           | Total Radium<br>Calculation | 0.377 ± 0.592 (1.28)                            | pCi/L     | 03/26/21 14:34   | 7440-14-4     |      |


#### ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: YATES RADS Pace Project No.: 92525905 Sample: PZ-35 Lab ID: 92525905005 Collected: 03/04/21 15:30 Received: 03/05/21 09:20 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac Parameters Method Units Analyzed CAS No. Qual Pace Analytical Services - Greensburg EPA 9315 0.131 ± 0.116 (0.213) Radium-226 pCi/L 03/26/21 08:05 13982-63-3 C:96% T:NA Pace Analytical Services - Greensburg EPA 9320 0.266 ± 0.375 (0.806) Radium-228 pCi/L 03/23/21 13:46 15262-20-1 C:85% T:83% Pace Analytical Services - Greensburg **Total Radium** Total Radium 0.397 ± 0.491 (1.02) pCi/L 03/26/21 14:34 7440-14-4 Calculation



#### **ANALYTICAL RESULTS - RADIOCHEMISTRY**

Project: YATES RADS

| Pace I | Project | No.: | 92525905 |
|--------|---------|------|----------|
|--------|---------|------|----------|

| Sample: EB1  | Lab ID: 9252590             | Collected: 03/04/21 16:00             | Received: | 03/05/21 09:20 N | latrix: Water |      |
|--------------|-----------------------------|---------------------------------------|-----------|------------------|---------------|------|
| PWS:         | Site ID:                    | Sample Type:                          |           |                  |               |      |
| Parameters   | Method                      | Act ± Unc (MDC) Carr Trac             | Units     | Analyzed         | CAS No.       | Qual |
|              | Pace Analytical Serv        | vices - Greensburg                    |           |                  |               |      |
| Radium-226   | EPA 9315                    | 0.0452 ± 0.0923 (0.215)<br>C:83% T:NA | pCi/L     | 03/26/21 08:05   | 13982-63-3    |      |
|              | Pace Analytical Serv        | vices - Greensburg                    |           |                  |               |      |
| Radium-228   | EPA 9320                    | 0.393 ± 0.346 (0.695)<br>C:82% T:77%  | pCi/L     | 03/23/21 13:46   | 15262-20-1    |      |
|              | Pace Analytical Serv        | vices - Greensburg                    |           |                  |               |      |
| Total Radium | Total Radium<br>Calculation | 0.438 ± 0.438 (0.910)                 | pCi/L     | 03/26/21 14:34   | 7440-14-4     |      |



#### ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: YATES RADS Pace Project No.: 92525905 Sample: PZ-37 Lab ID: 92525905007 Collected: 03/04/21 11:55 Received: 03/05/21 09:20 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac Parameters Method Units Analyzed CAS No. Qual Pace Analytical Services - Greensburg EPA 9315 0.868 ± 0.271 (0.307) Radium-226 pCi/L 03/26/21 08:10 13982-63-3 C:79% T:NA Pace Analytical Services - Greensburg EPA 9320 0.626 ± 0.363 (0.662) Radium-228 pCi/L 03/23/21 13:47 15262-20-1 C:78% T:92% Pace Analytical Services - Greensburg **Total Radium** Total Radium 1.49 ± 0.634 (0.969) pCi/L 03/26/21 14:34 7440-14-4 Calculation



| Project:           | YATES RADS      |                 |                       |                 |                      |            |  |
|--------------------|-----------------|-----------------|-----------------------|-----------------|----------------------|------------|--|
| Pace Project No.:  | 92525905        |                 |                       |                 |                      |            |  |
| QC Batch:          | 438168          |                 | Analysis Method:      | EPA 9320        |                      |            |  |
| QC Batch Method:   | EPA 9320        |                 | Analysis Description: | 9320 Radium 22  | 28                   |            |  |
|                    |                 |                 | Laboratory:           | Pace Analytical | Services - Greensbur | g          |  |
| Associated Lab Sar | mples: 92525905 | 001, 9252590500 | 2, 92525905003        |                 |                      |            |  |
| METHOD BLANK:      | 2115336         |                 | Matrix: Water         |                 |                      |            |  |
| Associated Lab Sar | mples: 92525905 | 001, 9252590500 | 2, 92525905003        |                 |                      |            |  |
| Parar              | meter           | Act ± l         | Inc (MDC) Carr Trac   | Units           | Analyzed             | Qualifiers |  |
| Radium-228         |                 | 0.0301 ± 0.353  | (0.815) C:79% T:75%   | pCi/L           | 03/25/21 12:20       |            |  |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:           | YATES RADS      |                  |                       |                 |                      |            |  |
|--------------------|-----------------|------------------|-----------------------|-----------------|----------------------|------------|--|
| Pace Project No.:  | 92525905        |                  |                       |                 |                      |            |  |
| QC Batch:          | 438264          |                  | Analysis Method:      | EPA 9315        |                      |            |  |
| QC Batch Method:   | EPA 9315        |                  | Analysis Description: | 9315 Total Radi | um                   |            |  |
|                    |                 |                  | Laboratory:           | Pace Analytical | Services - Greensbur | g          |  |
| Associated Lab Sar | mples: 92525905 | 001, 92525905002 | 2, 92525905003        |                 |                      |            |  |
| METHOD BLANK:      | 2115666         |                  | Matrix: Water         |                 |                      |            |  |
| Associated Lab Sar | mples: 92525905 | 001, 92525905002 | 2, 92525905003        |                 |                      |            |  |
| Parar              | neter           | Act ± U          | nc (MDC) Carr Trac    | Units           | Analyzed             | Qualifiers |  |
| Radium-226         |                 | 0.0177 ± 0.140 ( | (0.349) C:93% T:NA    | pCi/L           | 03/25/21 09:33       |            |  |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:           | YATES RADS      |                                                         |                   |                     |            |  |
|--------------------|-----------------|---------------------------------------------------------|-------------------|---------------------|------------|--|
| Pace Project No.:  | 92525905        |                                                         |                   |                     |            |  |
| QC Batch:          | 438266          | Analysis Method:                                        | EPA 9315          |                     |            |  |
| QC Batch Method:   | EPA 9315        | Analysis Description:                                   | 9315 Total Radiu  | m                   |            |  |
|                    |                 | Laboratory:                                             | Pace Analytical S | ervices - Greensbur | g          |  |
| Associated Lab San | nples: 92525905 | 5004, 92525905005, 92525905006, 9252590500 <sup>°</sup> | 7                 |                     |            |  |
| METHOD BLANK:      | 2115671         | Matrix: Water                                           |                   |                     |            |  |
| Associated Lab San | nples: 92525905 | i004, 92525905005, 92525905006, 9252590500 <sup>°</sup> | 7                 |                     |            |  |
| Paran              | neter           | Act ± Unc (MDC) Carr Trac                               | Units             | Analyzed            | Qualifiers |  |
| Radium-226         |                 | 0.142 ± 0.131 (0.243) C:77% T:NA                        | pCi/L             | 03/26/21 08:05      |            |  |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:           | YATES RADS      |                                            |                    |                      |            |
|--------------------|-----------------|--------------------------------------------|--------------------|----------------------|------------|
| Pace Project No.:  | 92525905        |                                            |                    |                      |            |
| QC Batch:          | 438169          | Analysis Method:                           | EPA 9320           |                      |            |
| QC Batch Method:   | EPA 9320        | Analysis Description:                      | 9320 Radium 228    |                      |            |
|                    |                 | Laboratory:                                | Pace Analytical Se | ervices - Greensburg | g          |
| Associated Lab San | nples: 92525905 | 004, 92525905005, 92525905006, 92525905007 |                    |                      |            |
| METHOD BLANK:      | 2115337         | Matrix: Water                              |                    |                      |            |
| Associated Lab San | nples: 92525905 | 004, 92525905005, 92525905006, 92525905007 |                    |                      |            |
| Paran              | neter           | Act ± Unc (MDC) Carr Trac                  | Units              | Analyzed             | Qualifiers |
| Radium-228         |                 | 0.429 ± 0.325 (0.634) C:80% T:90%          | pCi/L              | 03/23/21 13:45       |            |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### QUALIFIERS

#### Project: YATES RADS Pace Project No.: 92525905

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.



#### QUALITY CONTROL DATA CROSS REFERENCE TABLE

| Project:          | YATES RADS |
|-------------------|------------|
| Pace Project No.: | 92525905   |

| Lab ID      | Sample ID | QC Batch Method          | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|-----------|--------------------------|----------|-------------------|---------------------|
| 92525905001 | YAMW-2    | EPA 9315                 | 438264   |                   |                     |
| 92525905002 | YAMW-4    | EPA 9315                 | 438264   |                   |                     |
| 92525905003 | YAMW-5    | EPA 9315                 | 438264   |                   |                     |
| 92525905004 | YAMW-1    | EPA 9315                 | 438266   |                   |                     |
| 92525905005 | PZ-35     | EPA 9315                 | 438266   |                   |                     |
| 92525905006 | EB1       | EPA 9315                 | 438266   |                   |                     |
| 92525905007 | PZ-37     | EPA 9315                 | 438266   |                   |                     |
| 92525905001 | YAMW-2    | EPA 9320                 | 438168   |                   |                     |
| 92525905002 | YAMW-4    | EPA 9320                 | 438168   |                   |                     |
| 92525905003 | YAMW-5    | EPA 9320                 | 438168   |                   |                     |
| 92525905004 | YAMW-1    | EPA 9320                 | 438169   |                   |                     |
| 92525905005 | PZ-35     | EPA 9320                 | 438169   |                   |                     |
| 92525905006 | EB1       | EPA 9320                 | 438169   |                   |                     |
| 92525905007 | PZ-37     | EPA 9320                 | 438169   |                   |                     |
| 92525905001 | YAMW-2    | Total Radium Calculation | 440666   |                   |                     |
| 92525905002 | YAMW-4    | Total Radium Calculation | 440666   |                   |                     |
| 92525905003 | YAMW-5    | Total Radium Calculation | 440666   |                   |                     |
| 92525905004 | YAMW-1    | Total Radium Calculation | 440666   |                   |                     |
| 92525905005 | PZ-35     | Total Radium Calculation | 440666   |                   |                     |
| 92525905006 | EB1       | Total Radium Calculation | 440666   |                   |                     |
| 92525905007 | PZ-37     | Total Radium Calculation | 440666   |                   |                     |

| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Document Name:                                                                                                                                                                                                                                                                                                                                                                                            |                           | Document Revised: October 28, 2020                                                                  |                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------|
| Pace Analytical*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sample Condition Upon Receipt                                                                                                                                                                                                                                                                                                                                                                             | SCUR)                     | Page 1 of 2<br>Issuing Authority:                                                                   |                                        |
| 1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F-CAR-CS-033-Rev.07                                                                                                                                                                                                                                                                                                                                                                                       |                           | Pace Carolinas Quality Office                                                                       |                                        |
| Sample Condition Eden Greenwood   Sample Condition Client Name:   Upon Receipt Fed Ex Image: Client Name:   urier: Image: Client Name: Image: Client Name:   Commercial Image: Client Name: Image: Client Name:   Commercial Image: Client Name: Image: Client Name:   King Material: Image: Client Name: Image: Client Name:   King Material: Image: Client Name: Image: Client Name:   Image: Commercial Image: Client Name: Image: Client Name:   King Material: Image: Client Name: Image: Client Name:   Image: Client Name: Image: Client Name: Image: Client Name:   Image: Client Name: Image: Client Name: Image: Client Name:   Image: Client Name: Image: Client Name: Image: Client Name:   Image: Client Name: Image: Client Name: Image: Client Name:   Image: Client Name: Image: Client Name: Image: Client Name:   Image: Client Name: Image: Client Name: Image: Client Name:   Image: Client Name: Image: Client Name: Image: Client Name:   Image: Client Name: Image: Client | I Huntersville Raleig   I Huntersville Raleig   I I Huntersville Raleig   I I Huntersville Raleig   I I Huntersville Raleig   I I I I   I I I I   I I I I   I I I I   I I I I   I I I I   I I I I   I I I I   I I I I   I I I I   I I I I   I I I I   I I I I   I I I I   I I I I   I I I I   I I I I   I I I I <th>h Me<br/>Project #:<br/>ent</th> <th>chanicsville Atlanta Kerner</th> <th>sville</th> | h Me<br>Project #:<br>ent | chanicsville Atlanta Kerner                                                                         | sville                                 |
| ler Temp Corrected (°C):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.0                                                                                                                                                                                                                                                                                                                                                                                                       | L<br>h                    | Sinolia de adore inecting to o o o<br>Samples out of temp criteria. Samples on ice, coo<br>as begun | ling process                           |
| A Regulated Soil ( 🔲 N/A, water sample)<br>samples originate in a quarantine zone within th<br>Yes 🛛 No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e United States: CA, NY, or SC (check ma                                                                                                                                                                                                                                                                                                                                                                  | aps)? Did s<br>inclu      | amples originate from a foreign source ("internation<br>ding Hawaii and Puerto Rico)? 	Yes          | ally,                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | and the second second second second second second second second second second second second second second second                                                                                                                                                                                                                                                                                          |                           | Comments/Discrepancy:                                                                               |                                        |
| Chain of Custody Present?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                           | 1.                        |                                                                                                     | 119/01                                 |
| Samples Arrived within Hold Time?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dres DNO DN/A                                                                                                                                                                                                                                                                                                                                                                                             | 2.                        |                                                                                                     |                                        |
| Short Hold Time Analysis (<72 hr.)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                           | 3.                        |                                                                                                     | ************************************** |
| Rush Turn Around Time Requested?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Yes No DN/A                                                                                                                                                                                                                                                                                                                                                                                               | 4.                        | anna agus an an an an an an an an an an an an an                                                    | •                                      |
| Sufficient Volume?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Eres INO IN/A                                                                                                                                                                                                                                                                                                                                                                                             | 5.                        |                                                                                                     |                                        |
| Correct Containers Used?<br>-Pace Containers Used?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ares No N/A                                                                                                                                                                                                                                                                                                                                                                                               | 6.                        | 1975 1975 - Million av and Amerika Saka Amerikaan                                                   |                                        |
| Containers Intact?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                           | 7.                        |                                                                                                     |                                        |
| Dissolved analysis: Samples Field Filtered?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TYES DNO DINA                                                                                                                                                                                                                                                                                                                                                                                             | 8.                        |                                                                                                     |                                        |
| Sample Labels Match COC?<br>-Includes Date/Time/ID/Analysis Matrix:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ©Tres ⊡No ⊡N/A<br>                                                                                                                                                                                                                                                                                                                                                                                        | 9.                        |                                                                                                     |                                        |
| Headspace in VOA Vials (>5-6mm)?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Yes DNO DN/                                                                                                                                                                                                                                                                                                                                                                                               | 10.                       | Managaru - akasterrati                                                                              |                                        |
| Trip Blank Present?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ves No MA                                                                                                                                                                                                                                                                                                                                                                                                 | 11,                       |                                                                                                     |                                        |
| Trip Blank Custody Seals Present?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                           | <u> </u>                  |                                                                                                     |                                        |
| OMMENTS/SAMPLE DISCREPANCY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                           |                           | Field Data Required?                                                                                | es 🛄No                                 |
| ine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                           | Lot ID a                  | f split containers:                                                                                 |                                        |
| ient notification/resolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                           |                           |                                                                                                     |                                        |
| erson contacted:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Date/1                                                                                                                                                                                                                                                                                                                                                                                                    | îme:                      |                                                                                                     |                                        |
| Project Manager SCURF Review:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                           |                           | Date:                                                                                               |                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                           |                           |                                                                                                     |                                        |

| Programme and     | Document Name:<br>Sample Condition Upon Receipt(SCUR) | Document Revised: October 28, 2020<br>Page 2 of 2   |
|-------------------|-------------------------------------------------------|-----------------------------------------------------|
| / Pace Analytical | Document No.:<br>F-CAR-CS-033-Rev.07                  | Issuing Authority:<br>Pace Carolinas Quality Office |

\*Check mark top half of box if pH and/or dechlorination is verified and within the acceptance range for preservation samples.

Project #

WO#: 92525905 PM: KLH1 Due Date: 03/26/21

CLIENT: GA-GA Power

Exceptions: VOA, Coliform, TOC, Oil and Grease, DRO/8015 (water) DOC, LLHg \*\*Bottom half of box is to list number of bottles

| ltem# | BP4U-125 mL Plastic Unpreserved (N/A) (CI-) | BP3U-250 mL Plastic Unpreserved (N/A) | BP2U-500 mL Plastic Unpreserved (N/A) | BP1U-1 liter Plastic Unpreserved (N/A) | BP45-125 mL Plastic H2SO4 (pH < 2) (CI-) | BP3N-250 mL plastic HNO3 (pH < 2) | 8P4Z-125 mL Plastic ZN Acetate & NaOH (>9) | BP4C-125 mL Plastic NaOH (pH > 12) (CI-) | WGFU-Wide-mouthed Glass jar Unpreserved | AG1U-1 liter Amber Unpreserved (N/A) (CI-) | AG1H-1 liter Amber HCI (pH < 2) | AG3U-250 mL Amber Unpreserved (N/A) (CI-) | AG1S-1 liter Amber H2SO4 (pH < 2) | AG35-250 mL Amber H2SO4 (pH < 2) | AG3A(DG3A)-250 mL Amber NH4Cl (N/A)(Cl-) | DG9H-40 mL VOA HCI (N/A) | VG9T-40 mL VOA Na2S2O3 (N/A) | VG9U-40 mL VOA Unp (N/A) | DG9P-40 mL VOA H3PO4 (N/A) | VOAK (6 vials per kit)-5035 kit (N/A) | V/GK (3 vials per kit)-VPH/Gas kit (N/A) | SPST-125 mL Sterile Plastic (N/A - lab) | SP2T-250 mL Sterile Plasfic (N/A - (ab) | SV/N      | BP3A-250 mL Plastic (NH2)25O4 (9.3-9.7) | AGOU-100 mL Amber Unpreserved vials (N/A) | VSGU-20 mL Scintillation vials (N/A) | DG9U-40 mL Amber Unpreserved vials (N/A) |
|-------|---------------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|------------------------------------------|-----------------------------------|--------------------------------------------|------------------------------------------|-----------------------------------------|--------------------------------------------|---------------------------------|-------------------------------------------|-----------------------------------|----------------------------------|------------------------------------------|--------------------------|------------------------------|--------------------------|----------------------------|---------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------|-----------|-----------------------------------------|-------------------------------------------|--------------------------------------|------------------------------------------|
| 1     | $\backslash$                                | 1                                     | 1                                     |                                        | $\backslash$                             | X                                 | $\backslash$                               |                                          |                                         |                                            |                                 |                                           | 1                                 |                                  | 1                                        |                          |                              |                          |                            |                                       |                                          |                                         |                                         | À         |                                         |                                           |                                      |                                          |
| 2     | $\backslash$                                | l                                     | 1                                     |                                        |                                          | X                                 |                                            |                                          |                                         |                                            | $\backslash$                    |                                           |                                   | $\backslash$                     | $\backslash$                             |                          |                              |                          |                            |                                       |                                          |                                         |                                         | A         | $\square$                               |                                           |                                      |                                          |
| 3     |                                             | (                                     | 1                                     |                                        |                                          | X                                 |                                            |                                          |                                         |                                            |                                 |                                           | 1                                 |                                  | $\backslash$                             |                          |                              |                          |                            |                                       |                                          |                                         |                                         | 2         |                                         |                                           |                                      |                                          |
| 4     |                                             | 1                                     | (                                     |                                        |                                          | X                                 |                                            |                                          |                                         |                                            |                                 |                                           | 1                                 | $\square$                        |                                          |                          |                              |                          | E                          |                                       |                                          |                                         |                                         | A         |                                         |                                           |                                      |                                          |
| 5     |                                             | 1                                     | 1                                     |                                        |                                          | X                                 |                                            |                                          |                                         |                                            |                                 |                                           |                                   |                                  |                                          |                          |                              |                          |                            |                                       |                                          |                                         |                                         | ×         |                                         |                                           |                                      |                                          |
| 6     |                                             | }                                     | 1                                     |                                        |                                          | X                                 | $\sum$                                     |                                          |                                         |                                            |                                 |                                           |                                   | V                                |                                          |                          |                              |                          |                            |                                       |                                          |                                         |                                         | A         | V                                       |                                           |                                      |                                          |
| 7     |                                             | 1                                     | 1                                     |                                        | $\backslash$                             | X                                 | 1                                          | $\backslash$                             |                                         |                                            |                                 |                                           |                                   | $\bigvee$                        |                                          |                          |                              |                          |                            |                                       |                                          |                                         |                                         | X         |                                         |                                           |                                      |                                          |
| 8     | $\backslash$                                |                                       |                                       |                                        | $\backslash$                             | 1                                 |                                            | $\backslash$                             | E                                       |                                            |                                 |                                           |                                   |                                  |                                          |                          |                              |                          |                            |                                       |                                          |                                         |                                         | $\square$ |                                         |                                           |                                      |                                          |
| 9     | $\backslash$                                |                                       |                                       |                                        | $\square$                                |                                   |                                            |                                          |                                         |                                            | V                               |                                           |                                   | V                                |                                          |                          |                              |                          |                            |                                       |                                          |                                         |                                         |           |                                         |                                           |                                      |                                          |
| 10    |                                             |                                       |                                       |                                        | V                                        |                                   |                                            | $\square$                                |                                         |                                            |                                 |                                           | $\backslash$                      |                                  | V                                        |                          |                              |                          |                            |                                       |                                          |                                         |                                         |           |                                         |                                           |                                      |                                          |
| 11    |                                             |                                       |                                       |                                        | $\square$                                |                                   |                                            |                                          |                                         |                                            |                                 |                                           |                                   | V                                | V                                        |                          |                              |                          |                            |                                       |                                          |                                         |                                         |           |                                         |                                           |                                      |                                          |
| 12    |                                             |                                       |                                       |                                        | V                                        |                                   |                                            |                                          |                                         |                                            |                                 |                                           | V                                 | V                                |                                          |                          |                              |                          |                            |                                       |                                          |                                         |                                         |           |                                         |                                           |                                      |                                          |

| pH Adjustment Log for Preserved Samples |                      |                 |                            |                               |                                 |       |  |  |  |  |  |  |
|-----------------------------------------|----------------------|-----------------|----------------------------|-------------------------------|---------------------------------|-------|--|--|--|--|--|--|
| Sample ID                               | Type of Preservative | pH upon receipt | Date preservation adjusted | Time preservation<br>adjusted | Amount of Preservative<br>added | Lot # |  |  |  |  |  |  |
|                                         |                      |                 |                            | 444                           |                                 |       |  |  |  |  |  |  |
|                                         |                      |                 |                            |                               |                                 |       |  |  |  |  |  |  |
|                                         |                      |                 |                            |                               |                                 |       |  |  |  |  |  |  |

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

|                | T            | 11 | 11             | 1                   | N  | - | 5 . 10      | 00      | 7                                     | ማ     | Cn.    | *  | ω      | N)     | 1      | ITEM #                       |                                                                  |                                          | 11       | Juest        |             | nton,    | mpan          | aninh a                  | ŧ                |
|----------------|--------------|----|----------------|---------------------|----|---|-------------|---------|---------------------------------------|-------|--------|----|--------|--------|--------|------------------------------|------------------------------------------------------------------|------------------------------------------|----------|--------------|-------------|----------|---------------|--------------------------|------------------|
| -              |              |    |                | VODITIONAL COMMENTS |    |   |             |         | EB1                                   | 72.35 | YAMW-1 |    | YAMW-S | YAMWA  | YAMW-2 | Sample Ids must be unique    | SAMPLE ID                                                        |                                          |          | d Due Date:  |             | SA 30114 | Georgia Power | s Client Information:    | Arace Arabytical |
|                |              |    | 4              |                     |    |   |             |         |                                       |       |        |    |        |        |        | AND<br>Office<br>Tesue<br>13 | Witherd With<br>Production PPO<br>Soursound SLD<br>Soursound SLD | MATRIXO CODED<br>Ortmong WaterD DAYO     | a reduce | Project Name | Purchase On | uopy 10: | Report To:    | Section B<br>Required Pr |                  |
|                |              | 9  | $\mathfrak{P}$ | 100                 |    |   |             |         |                                       | WT    | T      | -  | WT     | A      | WT     | MATRIX CODE                  | (see valid co                                                    | des to left)                             |          | 1            | der #:      |          | Becky         | oject ti                 |                  |
|                |              |    | 鬥              |                     |    |   |             | -       | 2                                     | ð.    | Sr.    | -  | 8      | 100    | 82     | SAMPLE TYPE                  | (G=GRAB (                                                        | C=COMP)                                  |          | Yales I      |             |          | Sleev         | norma                    |                  |
|                |              |    |                | BYIA                |    |   |             |         | 2 E                                   | XX    | 13/102 |    | Hay    | Strand | 101    | ATE                          | STA                                                              |                                          |          | RE-AM        |             |          | R.            | illion:                  |                  |
| 2 3            | SAME         |    |                | THEN.               |    |   |             |         | 8                                     | 153   | SIS    |    | 1<br>L | E      | M      | TIME                         | \$                                                               | 8                                        |          | A            |             |          |               |                          |                  |
| CHATL          | CRR NJ       |    |                | Đ,                  |    |   | -           | +       | 15                                    | 2     | -      |    | 0.     | 0.     |        | 8                            |                                                                  | LECTE                                    |          |              |             | -        |               |                          | T                |
| JRE of         |              |    |                |                     |    |   |             | -       |                                       |       |        |    | -      |        |        | Ĩ                            | EN A                                                             | 8                                        |          |              |             |          |               |                          | e Cha            |
| SAMP           | NO SIO       |    | 30             | E.                  |    | 1 | 1           |         |                                       |       |        |    |        |        |        | TIME                         | ļ                                                                |                                          |          |              |             |          |               |                          | 10-01-           |
|                | 1 Star       |    | 5              | *                   |    |   |             |         | 1                                     |       |        | 1  |        |        |        | SAMPLE TEMP                  | L<br>AT COLLECTI                                                 | ION                                      |          |              |             |          |               |                          | Cust             |
| 5              | R            |    | -              |                     |    |   |             |         | n                                     | S     | S      |    | S      | N      | ~      | # OF CONTAINE                | RS                                                               | -                                        | Page     | Page         | See         | Com      | Allen         | Sacts                    | ody p            |
| Sig            | 1962         |    | 81             | Ă.                  | -  |   | -           |         | *                                     | X     | X      | 4  | X      | X      | X      | H2SO4                        |                                                                  | -                                        | Profil   | Proje        | Quote       | bany h   | SON:          |                          | sal              |
| To             |              |    | ~              |                     | -  |   |             | -       | Y                                     | ×     | ×      |    | X      | X      | ×      | HNO3                         |                                                                  | P                                        | 37       | X Mar        |             | lame:    |               | oma                      | EGA              |
| Set            |              |    | 10             |                     |    |   |             |         |                                       |       |        |    |        |        |        | HCI                          |                                                                  | esen                                     | 108      | ager:        |             |          |               | <b>N</b>                 | LDC              |
| 20             | 3.6          |    | 20             | ,                   |    |   |             |         |                                       |       |        |    |        |        |        | NaOH                         |                                                                  | vativ                                    | ō        |              |             |          |               |                          | CU               |
| N              |              |    | 2              | 8                   | -  |   |             | -       |                                       | _     |        | +- |        | -      |        | Na2S203                      |                                                                  | - S                                      |          | cevin.l      |             |          |               |                          | MEN              |
| 1              |              |    | 12             |                     |    |   |             |         |                                       |       |        | +  |        |        |        | Other                        | -w,                                                              | -                                        |          | henin        |             |          |               |                          | TA               |
|                | 8 - 11<br>24 | -  | 7              | ŝ                   |    |   |             | 4       | لــــــــــــــــــــــــــــــــــــ |       |        |    |        | ·!     |        | Analyses                     | Teat                                                             | Y/N                                      | 1        | ed (2) 6     |             |          |               |                          | I rele           |
|                | 6            |    | 24             | Ē                   |    |   |             |         | ×                                     | ×     | ×      | ×  | ×      | ×      | ×      | TDS                          |                                                                  |                                          |          | oplab        |             |          |               |                          | vani             |
| ATE            |              |    | 3              | ŝ                   |    |   |             | meanona | ×                                     | ×     | ×      | ×  | ×      | ×      | ×      | CI, F, SO4                   |                                                                  |                                          | 2        | 5.00m        |             |          |               |                          | field            |
| lane           |              |    | ()             |                     | -+ |   |             | -       | X                                     | ×     | ×      | ×  | ×      | ×      | ×      | RAD 9315/9320                | 3<br>,                                                           | -                                        | a en     |              |             |          |               |                          | ls m             |
|                |              |    | N.             |                     |    |   |             |         |                                       |       | ~~~~   |    |        |        |        |                              |                                                                  |                                          | ed Ag    |              |             |          |               |                          | stb              |
|                |              |    | 3              |                     |    |   |             |         |                                       |       |        |    |        |        |        |                              |                                                                  |                                          | anys.    |              |             |          | 1             |                          | eco              |
|                |              |    |                | 5                   |    |   |             | -       |                                       | -     |        |    |        |        |        |                              |                                                                  |                                          |          |              | 4           |          |               |                          | mple             |
| 9              |              | +  | R              | <u></u>             | -  |   |             | -       |                                       | _     |        | -  |        |        |        |                              |                                                                  |                                          | 2        |              | K           |          |               |                          | ited a           |
|                |              |    | S              | 1                   |    |   |             |         |                                       |       | -      |    |        |        |        |                              |                                                                  |                                          | YEN      |              | ţ           |          |               |                          | accu             |
|                |              |    | 1. Ber         |                     |    |   | NOOL HINDRO |         |                                       |       |        |    |        |        |        |                              |                                                                  |                                          |          |              | 1           |          | L             |                          | rateh            |
| MP In C        | :            |    |                |                     | Ι  |   |             | 1       |                                       |       |        |    |        |        |        | Pasidual Chief               | A MAN                                                            | da Managara                              |          | 12           | Rag         | 0        | aha           |                          | ×                |
| aceived        | on .         | ++ | -              | -                   | T  | 1 | 1           | T       |                                       | _     | 1      | +  | 2      | 101    | c.     | Residuel CDiofir             | Hei (T/N)                                                        | a an an an an an an an an an an an an an | o        | 8            | ulator      | Q        | ľ             |                          |                  |
| 0<br>(N)       |              |    |                | MARCE               |    |   |             |         | p                                     | Ŧ     | T      |    |        | Ŧ      | T      |                              |                                                                  | 1.0                                      | 1        | 0000         | N.S.        | 10       | -             |                          |                  |
| Islody<br>aled | -            |    |                | 8                   |    |   |             |         |                                       | "S    | 5      |    | S      | σ)     | Ś      |                              |                                                                  | 1                                        |          | 8            | No.         | 6        | 1             |                          |                  |
| DolerD         |              |    |                | 10inc               |    |   |             |         |                                       | 5     | 5      |    | 32     | 8      | 5      |                              |                                                                  |                                          |          |              |             |          | ç             | 2                        |                  |
| amples         |              |    |                | <b>1</b>            |    |   |             |         |                                       | -     |        |    | Ĩ      | -      |        |                              |                                                                  | K. Art.                                  |          |              |             |          |               |                          |                  |
| acto           |              |    |                | 12.                 |    |   |             |         |                                       |       |        | 11 |        |        |        |                              |                                                                  | 1.0.1                                    |          | 1            |             |          | C             | 11                       |                  |

|                                        |     |     |              | ADDITICHAN, COMMENTS |        |   |      | 8       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |          |    | 5 Vencut | 4 NOWO JEA | 3 W PZ-57 | Sample kis must be unique                                   | MATTRXC<br>Drawsg W |           | rested Due Date: |                   | ess: 1070 Bridge Mill Ave<br>on, GA 30114 | pany: Georgia Power | ion A<br>uired Client Information: | ALL ALL ALL ALL ALL ALL ALL ALL ALL ALL |
|----------------------------------------|-----|-----|--------------|----------------------|--------|---|------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|----|----------|------------|-----------|-------------------------------------------------------------|---------------------|-----------|------------------|-------------------|-------------------------------------------|---------------------|------------------------------------|-----------------------------------------|
|                                        |     | 100 | Wat          |                      | -      |   |      | WT      | WT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | WT     | WT       | WT | WT       | WT         | WT        | 려 吕 홈 홋 홈 홈 홈<br>제 吕 홈 홋 홈 홈 홈<br>MATRIX CODE (See Valid of | odes to left)       | Friday at | Project Name:    | Purchase Order #: | Copy To:                                  | Report To: Beck     | Section B<br>Required Project      |                                         |
|                                        |     |     | 11           |                      | -      |   |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | -        |    |          | -          | 00        | SAMPLE TYPE (G=GRAB                                         | C*COMP)             |           | Yates A          |                   |                                           | y Sleew             | Informa                            |                                         |
| 1 60                                   |     |     | K            | BLIN                 | -      |   |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | -        | -  | -        |            | 481       | ATE                                                         |                     |           | MA               |                   |                                           | 8                   | tion                               |                                         |
| and PR                                 |     |     | /.           | FILMIN               |        |   |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |          |    |          |            | 155       | TIME                                                        | Sout                |           |                  |                   |                                           |                     |                                    |                                         |
| MT Maine                               |     |     | 1'           | ¥                    |        |   |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |          |    |          |            |           | DATE                                                        | ECTED               |           |                  |                   |                                           |                     |                                    | Ine C                                   |
| OT SAM                                 |     |     | 22           | 8                    |        |   |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |          |    |          |            |           | TIME                                                        | 1                   |           |                  |                   |                                           |                     |                                    | ain-o                                   |
| IPLER                                  |     |     | 12:1         | E -                  | +      | - | -    |         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | $\vdash$ | -  |          | -          |           | SAMPLE TEMP AT COLLEC                                       | TION                |           |                  |                   |                                           |                     |                                    | I-Cus                                   |
|                                        |     |     | ε            |                      |        |   |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |          |    |          |            | S         | # OF CONTAINERS                                             | -                   | Page      | Page             | Page              | 8                                         | Atten               | Sect                               | lody                                    |
| 3                                      |     | i   | হি           |                      | -      |   |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | -        | -  |          |            | 1         | Unpreserved                                                 | -                   | Profil    | Proje            | Quot              | pany b                                    | dion:               |                                    | sal                                     |
| To                                     | -+- |     | -            |                      | 1      |   |      | *****   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |          |    | -        |            | 1         | HNO3                                                        | P                   | e.#       | ot Mai           | R                 | lame:                                     |                     |                                    | EGA                                     |
| Ad.                                    |     | 1   | 0            | Ì                    |        |   |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |          |    |          |            |           | HCI                                                         | eser                | 108       | hager            |                   |                                           | 1000                | 5                                  | PD                                      |
| 3                                      |     | t.  | N            |                      | i cast |   |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |          |    | 1        |            |           | NaOH                                                        | vativ               | ô         |                  |                   |                                           |                     |                                    | ğ                                       |
| 2.                                     | 6   |     |              | 8                    |        |   | _    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |          |    |          | -          |           | Na2S2O3                                                     | S                   |           | cevin.           |                   |                                           |                     |                                    | MEN                                     |
| E .                                    |     | 1   | à            |                      | +      |   |      |         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -      |          | -  |          |            |           | Other                                                       | -                   |           | herrin           |                   |                                           |                     |                                    | T.A                                     |
| E.                                     |     |     | 71           | U'IN                 |        |   | I    |         | le constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constantion de la constant | 1      | l        | 1  | Linnet   |            |           | Analysee Teat                                               | Y/N                 |           | 9@pa             |                   |                                           |                     |                                    | li rele                                 |
|                                        |     |     | L            | šΕ                   |        |   |      | ×       | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ×      | ×        | ×  | ×        | ×          | ×         | TDS                                                         | 1                   |           | celab            |                   |                                           |                     |                                    | van                                     |
|                                        |     |     | 24           | Se                   | -      |   | 1    | ×       | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ×      | ×        | ×  | ×        | ×          | ×         | Ci, F, 904                                                  |                     | 2         | S.COIT           |                   |                                           |                     |                                    | field                                   |
|                                        |     |     | N            | 14-                  | -      |   |      | ×       | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ×      | ×        | ×  | ×        | ×          | ×         | App III/IV Metals                                           | +                   | 8         | -                |                   |                                           |                     |                                    | ds m                                    |
|                                        |     |     | Ň            | 1                    |        |   |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |          |    |          |            |           | W WIND DUC                                                  |                     | ad A      |                  |                   |                                           |                     |                                    | ust t                                   |
| 2                                      |     | 1   | रेप          | 34                   |        |   |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |          |    |          |            |           |                                                             |                     |           |                  |                   |                                           |                     |                                    | x o                                     |
|                                        |     | 1   | 21           |                      |        |   |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |          |    |          |            |           |                                                             |                     |           |                  | 1                 |                                           |                     |                                    | Auble                                   |
| -                                      |     |     | 2            |                      |        |   |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | 1        |    |          |            |           |                                                             |                     | Daug      |                  | 0.00              |                                           |                     |                                    | eted                                    |
|                                        |     |     | 5            | - 1                  | -      |   | -    |         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -      | -        | -  | -        |            |           |                                                             |                     | TINE      | K                |                   |                                           |                     |                                    | accu                                    |
|                                        |     | 1   | 3            | M                    |        |   | -    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |          |    |          | -          | -         | TAM STATE STOLEN                                            | +                   |           |                  |                   |                                           | Ē                   |                                    | Irate                                   |
| MP In C                                |     |     |              |                      | 1      |   | 1    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |          |    |          |            |           | Dealdup Able to Aver                                        |                     | 10°.      |                  | Reg               |                                           | 1-ade               |                                    | Y                                       |
| ceived on                              | ++  |     | _            |                      | 1      | T | -1   | -       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | -        |    |          | L          | -         | residual Crititine (Y/N)                                    |                     | 0         | de P             | Lange             | 6                                         | ľ                   |                                    |                                         |
| Received on<br>ceD<br>(Y/N)<br>Cuslody |     |     | and the same | 1                    |        |   |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |          |    |          |            | ¥         |                                                             |                     | >         | ocati            | XAD               | 2                                         | 100                 | 10                                 |                                         |
|                                        |     |     | _            | 8                    |        |   |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |          |    |          |            | S         |                                                             | 1 3 A               |           | 3                | NUCL.             | R                                         | 1                   |                                    |                                         |
| olerD                                  |     |     |              | COLDO                |        |   |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |          |    |          |            | in        |                                                             | 124                 | 5         |                  | 50                | 1                                         | Ş                   | 2                                  |                                         |
| N)<br>mples                            |     | ++  | -            | Č,                   |        |   |      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |          |    |          |            |           |                                                             |                     |           |                  |                   | 5                                         | 1                   |                                    |                                         |
|                                        |     |     |              | 82.54                | 1      | 1 | - 11 | 11.11.6 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 - 50 | 1 I I I  |    |          |            |           |                                                             | 1.000               |           | 100              |                   | 100                                       | 11                  | 3 H.                               |                                         |

# May 2021 PZ-37D

2021 Semiannual Groundwater and Corrective Action Report Plant Yates AP-3, A, B, B' and R6 CCR Landfill Newnan, GA



# Georgia Power Co. – Plant Yates

# **DATA REVIEW**

Metals, Radium, and General Chemistry Analyses SDGs #92538831 and 92538834

Analyses Performed By: Pace Analytical Services - Asheville, North Carolina Pace Analytical Services - Peachtree Corners, Georgia Pace Analytical Services - Greensburg, Pennsylvania

Report #41952R Review Level: Tier II Project: 30052922.00004

# **SUMMARY**

This data quality assessment summarizes the review of Sample Delivery Group (SDG) #92538834 for samples collected in association with the Georgia Power Company – Plant Yates. The review was conducted as a Tier II evaluation and included review of data package completeness. Only analytical data associated with constituents of concern were reviewed for this validation. Field documentation was not included in this review. Included with this assessment are the chain of custody form and a table summarizing the data validation qualifiers. Analyses were performed on the following samples:

|           |             |         | Sample             |               |     | Analys | sis         |
|-----------|-------------|---------|--------------------|---------------|-----|--------|-------------|
| Sample ID | Lab ID      | Matrix  | Collection<br>Date | Parent Sample | RAD | МЕТ    | GEN<br>CHEM |
|           | 92538831001 | \A/=+== | F/40/0004          |               | v   | V      | Y           |
| PZ-37D    | 92538834001 | vvater  | 5/13/2021          |               | X   | X      | X           |
|           | 92538831002 |         | E / 4 0 / 0 0 0 4  |               | X   | V      | V           |
| FB-1      | 92538834002 | vvater  | 5/13/2021          |               | X   | Х      | Х           |
|           | 92538831003 |         | = / 10/000 /       |               |     | N/     | N/          |
| EB-1      | 92538834003 | Water   | 5/13/2021          |               | X   | Х      | Х           |
|           | 92538831004 |         | - / /              |               |     |        |             |
| DUP-1     | 92538834004 | Water   | 5/13/2021          | PZ-37D        | X   | Х      | Х           |

Notes:

- Metals and total dissolved solids (TDS) analysis performed by Pace Analytical Services Peachtree Corners, Georgia.
- Anions (chloride, fluoride, and sulfate) analysis performed by Pace Analytical Services Asheville, North Carolina.
- 3. Radium analysis performed by Pace Analytical Services Greensburg, Pennsylvania.
- 4. pH analysis performed as a field measurement.

### ANALYTICAL DATA PACKAGE DOCUMENTATION

The table below is the evaluation of the data package completeness.

|     |                                                     | Rep | orted | Perfor<br>Acce | mance<br>ptable | Not      |
|-----|-----------------------------------------------------|-----|-------|----------------|-----------------|----------|
|     | Items Reviewed                                      | No  | Yes   | No             | Yes             | Required |
| 1.  | Sample receipt condition                            |     | Х     |                | Х               |          |
| 2.  | Requested analyses and sample results               |     | Х     |                | Х               |          |
| 3.  | Master tracking list                                |     | Х     |                | Х               |          |
| 4.  | Methods of analysis                                 |     | Х     |                | Х               |          |
| 5.  | Reporting limits                                    |     | Х     |                | Х               |          |
| 6.  | Sample collection date                              |     | Х     |                | Х               |          |
| 7.  | Laboratory sample received date                     |     | Х     |                | Х               |          |
| 8.  | Sample preservation verification (as applicable)    |     | Х     |                | Х               |          |
| 9.  | Sample preparation/extraction/analysis dates        |     | Х     |                | Х               |          |
| 10. | Fully executed Chain-of-Custody (COC) form          |     | Х     |                | Х               |          |
| 11. | Narrative summary of QA or sample problems provided |     | Х     |                | Х               |          |
| 12. | Data Package Completeness and Compliance            |     | X     |                | Х               |          |

Note:

QA - Quality Assurance

#### **INORGANIC ANALYSIS INTRODUCTION**

Analyses were performed according to United States Environmental Protection Agency (USEPA) SW-846 Methods 6010D, 6020B, 7470A, 9315, and 9320; Standard Method (SM) SM4500-H+ B and SM2540C; and USEPA Method 300.0. Data were reviewed in accordance with USEPA Region IV Data Validation Standard Operating Procedures for Contract Laboratory Program Inorganic Data by Inductively Coupled Plasma–Atomic Emission Spectroscopy and Inductively Coupled Plasma–Mass Spectroscopy (September 2011, Rev. 2), USEPA Region IV Data Validation Standard Operating Procedures for Contract Laboratory Program Mercury Data by Cold Vapor Atomic Absorption (September 2011, Rev. 2), and the National Functional Guidelines for Inorganic Superfund Methods Data Review (January2017).

The data review process is an evaluation of data on a technical basis rather than a determination of contract compliance. As such, the standards against which the data are being weighed may differ from those specified in the analytical method. It is assumed that the data package represents the best efforts of the laboratory and that it was already subjected to adequate and sufficient quality review prior to submission.

During the review process, laboratory qualified and unqualified data are verified against the supporting documentation. Based on this evaluation, qualifier codes may be added, deleted, or modified by the data reviewer. Results are qualified with the following codes in accordance with the USEPA National Functional Guidelines:

- Concentration (C) Qualifiers
  - U The analyte was analyzed for but not detected. The associated value is the analyte instrument detection limit.
  - J The reported value was obtained from a reading less than the reporting limit (RL), but greater than or equal to the method detection limit (MDL).
- Quantitation (Q) Qualifiers
  - E The reported value is estimated due to the presence of interference.
  - N Spiked sample recovery is not within control limits.
  - \* Duplicate analysis is not within control limits.
- Validation Qualifiers
  - J The analyte was positively identified; however, the associated numerical value is an estimated concentration only.
  - UJ The analyte was not detected above the reported sample detection limit. However, the reported limit is approximate and may or may not represent the actual limit of detection.
  - UB Analyte considered non-detect at the listed value due to associated blank contamination.
  - R The sample results are rejected.

Two facts should be noted by all data users. First, the "R" flag means that the associated value is unusable. In other words, due to significant quality control (QC) problems, the analysis is invalid and provides no information as to whether the compound is present or not. "R" values should not appear on data tables because they cannot be relied upon, even as a last resort. The second fact to keep in mind is that no compound concentration, even if it has passed all QC tests, is guaranteed to be accurate. Strict QC serves to increase confidence in data but any value potentially contains error.

#### METALS ANALYSES

# 1. Holding Times

The specified holding times for the following methods are presented in the following table.

| Method                | Matrix | Holding Time                         | Preservation                                        |
|-----------------------|--------|--------------------------------------|-----------------------------------------------------|
| SW-846<br>6010D/6020B | Water  | 180 days from collection to analysis | Cool to <6°C; preserved to a pH of less than 2 s.u. |
| SW-846 7470A          | Water  | 28 days from collection to analysis  | Cool to <6°C; preserved to a pH of less than 2 s.u. |

Note:

s.u. = Standard units

All samples were analyzed within the specified holding times.

# 2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

All analytes exhibited a concentration less than the MDL, with the exception of the compounds listed in the following table. Sample results less than the BAL associated with the following sample locations were qualified as listed in the following table.

| Samp   | ole Locations   | Analytes              | Sample Result                                                                  | Qualification  |
|--------|-----------------|-----------------------|--------------------------------------------------------------------------------|----------------|
| PZ-37D |                 | Antimony (EB, FB, MB) | Detected sample results <rl <bal<="" and="" td=""><td>"UB" at the RL</td></rl> | "UB" at the RL |
| DUP-1  |                 |                       |                                                                                |                |
| Note:  |                 |                       |                                                                                |                |
| EB     | Equipment blank |                       |                                                                                |                |
| FB     | Field blank     |                       |                                                                                |                |
| MB     | Method blank    |                       |                                                                                |                |
| RL     | Reporting limit |                       |                                                                                |                |

# 3. Matrix Spike/Matrix Spike Duplicate (MS/MSD)/Laboratory Duplicate Analysis

MS/MSD and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

#### DATA REVIEW REPORT

# 3.1 MS/MSD Analysis

All metal analytes must exhibit a percent recovery within the established acceptance limits of 75% to 125%. The MS recovery control limits do not apply for MS performed on sample locations where the analyte's concentration detected in the parent sample exceeds the MS concentration by a factor of four or greater.

The MS/MSD analysis performed using sample PZ-37D in association with SW-846 6020B and SW-846 7470A analysis exhibited recoveries within the control limits.

MS/MSD analysis was not performed using a sample from this SDG in association with SW-846 6010D analysis.

# 3.2 Laboratory Duplicate Analysis

The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the RL. A control limit of 20% for water matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of one times the RL is applied for water matrices.

MS/MSD analysis was performed using sample PZ-37D in association with SW-846 6020B and SW-846 7470A analysis in replacement of laboratory duplicate analysis. The MS/MSD recoveries exhibited acceptable RPDs.

Laboratory duplicate analysis was not performed using a sample from this SDG in association with SW-846 6010D analysis.

# 4. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 35% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

| Sample ID/Duplicate ID | Analyte    | Sample<br>Result | Duplicate<br>Result | RPD  |
|------------------------|------------|------------------|---------------------|------|
|                        | Calcium    | 68.3             | 71.6                | 4.7% |
|                        | Boron      | 1.3              | 1.2                 | 8.0% |
|                        | Barium     | 0.015            | 0.015               |      |
| PZ-37D / DUP-1         | Lead       | 0.000049 J       | 0.000040 J          |      |
|                        | Lithium    | 0.011 J          | 0.011 J             | AC   |
|                        | Molybdenum | 0.0042 J         | 0.0040 J            |      |

Results for duplicate samples are summarized in the following table.

Notes:

AC = Acceptable

#### DATA REVIEW REPORT

The differences in the results between the parent sample PZ-37D and field duplicate sample DUP-1 were acceptable.

# 5. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The analytes associated with the LCS analysis must exhibit a percent recovery between the control limits of 80% and 120%.

The LCS analysis exhibited recoveries within the control limits.

### 6. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

# DATA VALIDATION CHECKLIST FOR METALS

| METALS: SW-846 6010D/6020B/7470A                        | Repo       | orted | Performance<br>Acceptable |     | Not      |
|---------------------------------------------------------|------------|-------|---------------------------|-----|----------|
|                                                         | No         | Yes   | No                        | Yes | Required |
| Inductively Coupled Plasma-Atomic Emission Spectrometer | ry (ICP-AE | S)    |                           |     |          |
| Inductively Coupled Plasma-Mass Spectrometry (ICP-MS)   | )          |       |                           |     |          |
| Cold Vapor Atomic Absorption (CVAA)                     |            |       |                           |     |          |
| Tier II Validation                                      |            |       |                           |     |          |
| Holding Times                                           |            | Х     |                           | Х   |          |
| Reporting limits (units)                                |            | Х     |                           | Х   |          |
| Blanks                                                  |            |       |                           |     |          |
| A. Method Blanks                                        |            | Х     | Х                         |     |          |
| B. Equipment/Field Blanks                               |            | Х     | Х                         |     |          |
| Laboratory Control Sample (LCS) %R                      |            | Х     |                           | Х   |          |
| Matrix Spike (MS) %R                                    |            | Х     |                           | Х   |          |
| Matrix Spike Duplicate (MSD) %R                         |            | Х     |                           | Х   |          |
| MS/MSD Precision (RPD)                                  |            | Х     |                           | Х   |          |
| Field/Lab Duplicate (RPD)                               |            | Х     |                           | Х   |          |
| Reporting Limit Verification                            |            | Х     |                           | Х   |          |
| Notes:                                                  |            |       |                           |     |          |

%R Percent recovery

RPD Relative percent difference

#### GENERAL CHEMISTRY ANALYSES

# 1. Holding Times

The specified holding times for the following methods are presented in the following table.

| Method                                         | Matrix | Holding Time                        | Preservation |
|------------------------------------------------|--------|-------------------------------------|--------------|
| pH by SM4500-H+ B                              | Water  | ASAP                                | Cool to <6°C |
| Total Dissolved Solids by SM2540C              | Water  | 7 days from collection to analysis  | Cool to <6°C |
| Chloride, Fluoride, and Sulfate by USEPA 300.0 | Water  | 28 days from collection to analysis | Cool to <6°C |

All samples were analyzed within the specified holding times.

# 2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Rinse blanks measure contamination of samples during field operations.

A blank action level (BAL) of five times the concentration of a detected compound in an associated blank is calculated for QA blanks containing concentrations greater than the method detection limit (MDL). The BAL is compared to the associated sample results to determine the appropriate qualification of the sample results, if needed.

Analytes were not detected above the MDL in the associated blanks; therefore, detected sample results were not associated with blank contamination.

# 3. Matrix Spike/Matrix Spike Duplicate (MS/MSD)/Laboratory Duplicate Analysis

MS/MSD and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

### 3.1 MS/MSD Analysis

All analytes must exhibit a percent recovery within the established acceptance limits of 75% to 125%. The MS/MSD recovery control limits do not apply for MS/MSD performed on sample locations where the analyte's concentration detected in the parent sample exceeds the MS/MSD concentration by a factor of four or greater. In instance where this is true, the data will not be qualified even if the percent recovery does not meet the control limits and the laboratory flag will be removed.

The MS/MSD performed on sample location PZ-37D exhibited recoveries within control limits with the exception presented in the table below.

#### DATA REVIEW REPORT

| Sample Location | Analyte | MS Recovery | MSD Recovery |
|-----------------|---------|-------------|--------------|
| PZ-37D          | Sulfate | 56%         | 42%          |

The criteria used to evaluate the MS/MSD recoveries are presented in the following table. In the case of an MS/MSD deviation, the sample results are qualified as documented in the table below.

| Control limit                      | Sample Result | Qualification |
|------------------------------------|---------------|---------------|
|                                    | Non-detect    | UJ            |
| MS/MSD percent recovery 30% to 74% | Detect        | J             |
|                                    | Non-detect    | R             |
| MS/MSD percent recovery <30%       | Detect        | J             |
|                                    | Non-detect    | No Action     |
| MS/MSD percent recovery >125%      | Detect        | J             |

# 3.2 Laboratory Duplicate Analysis

The laboratory duplicate relative percent difference (RPD) criterion is applied when parent and duplicate sample concentrations are greater than or equal to 5 times the RL. A control limit of 20% for water matrices is applied when the criteria above is true. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of one times the RL is applied for water matrices.

Laboratory duplicate analysis was not performed using a sample from this SDG in association with TDS analysis.

MS/MSD analysis was performed using samples PZ-37D in association with anion analysis in replacement of laboratory duplicate analysis. The MS/MSD recoveries exhibited acceptable RPDs.

### 4. Field Duplicate Analysis

Field duplicate analysis is used to assess the overall precision of the field sampling procedures and analytical method. A control limit of 35% for water matrices is applied to the RPD between the parent sample and the field duplicate. In the instance when the parent and/or duplicate sample concentrations are less than or equal to 5 times the RL, a control limit of two times the RL is applied for water matrices.

Results for duplicate samples are summarized in the following table.

| Sample ID/Duplicate ID | Analyte  | Sample<br>Result | Duplicate<br>Result | RPD   |
|------------------------|----------|------------------|---------------------|-------|
|                        | TDS      | 381              | 383                 | 0.5%  |
|                        | Sulfate  | 178              | 154                 | 14.5% |
| PZ-37D7 D0P-1          | Chloride | 4.0              | 3.9                 |       |
|                        | Fluoride | 0.12             | 0.12                | AC    |

Notes:

AC = Acceptable

The differences in the results between the parent sample PZ-37D and field duplicate sample DUP-1 were acceptable.

# 5. Laboratory Control Sample (LCS) Analysis

The LCS analysis is used to assess the accuracy of the analytical method independent of matrix interferences. The analytes associated with the LCS analysis must exhibit a percent recovery between the control limits of 80% and 120%.

The LCS analysis exhibited recoveries within the control limits.

# 6. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

# DATA REVIEW REPORT

# DATA VALIDATION CHECKLIST FOR GENERAL CHEMISTRY

| General Chemistry: SM4500-H+ B, SM2540C, | Rep | orted | Perfor<br>Accep | mance<br>otable | Not<br>Required |  |
|------------------------------------------|-----|-------|-----------------|-----------------|-----------------|--|
| USEPA 300.0                              | No  | Yes   | No              | Yes             | Required        |  |
| Miscellaneous Instrumentation            |     |       |                 |                 |                 |  |
| Tier II Validation                       |     |       |                 |                 |                 |  |
| Holding times                            |     | х     |                 | Х               |                 |  |
| Reporting limits (units)                 |     | х     |                 | Х               |                 |  |
| Blanks                                   |     |       |                 |                 |                 |  |
| A. Method Blanks                         |     | х     |                 | Х               |                 |  |
| B. Equipment blanks                      |     | Х     |                 | Х               |                 |  |
| Laboratory Control Sample (LCS) %R       |     | Х     |                 | Х               |                 |  |
| Matrix Spike (MS) %R                     |     | Х     | Х               |                 |                 |  |
| Matrix Spike Duplicate (MSD) %R          |     | Х     | Х               |                 |                 |  |
| MS/MSD Precision (RPD)                   |     | Х     |                 | Х               |                 |  |
| Field/Lab Duplicate (RPD)                |     | Х     |                 | Х               |                 |  |
| Dilution Factor                          |     | Х     |                 | Х               |                 |  |
| Moisture Content                         | Х   |       |                 |                 | Х               |  |
| Notes:                                   |     |       |                 |                 |                 |  |

%R Percent recovery

RPD Relative percent difference

#### RADIOLOGICAL ANALYSES

# 1. Holding Times

The specified holding times for the following methods are presented in the following table.

| Method                       | Matrix | Holding Time                         | Preservation                          |
|------------------------------|--------|--------------------------------------|---------------------------------------|
| Radium-226 by SW-846<br>9315 | Water  | 180 days from collection to analysis | Preserved to a pH of less than 2 s.u. |
| Radium-228 by SW-846<br>9320 | Water  | 180 days from collection to analysis | Preserved to a pH of less than 2 s.u. |

Note:

s.u. = Standard units

All samples were analyzed within the specified holding times.

# 2. Blank Contamination

Quality assurance (QA) blanks (i.e., method and field/rinse blanks) are prepared to identify any contamination which may have been introduced into the samples during sample preparation or field activity. Method blanks measure laboratory contamination. Field/rinse blanks measure contamination of samples during field operations.

Blank results should be verified to be accurately reported and that tolerance limits (+/- 2 sigma or standard deviation) were not exceeded; and blank results verified to be less than the reporting limit (RL) of 1 pCi/L.

For blanks to be considered not applicable, verify net blank results are less than the associated uncertainty by evaluating the blank results based on the following three criteria. If either of these criteria is true, the blank is considered not suspect of contamination (or non-detect).

- 1. Is the blank result less than the uncertainty and less than the minimum detectable concentration (MDC)?
- 2. Does the blank have an uncertainty greater than the result (or indistinguishable from background) or does the blank result fall between its uncertainty and its MDC?

If the blank QC results fall outside the appropriate tolerance limits or if the net blank results are not less than the associated uncertainty, the following equation for normalized absolute difference (NAD) should be used in determining the effect of possible blank contamination on the sample results:

Normalized absolute difference  $_{MethodBlank} = \frac{|Sample - Blank|}{\sqrt{(U_{Sample})^2 + (U_{Blank})^2}}$ 

Where:

 $U_{Sample}$  = uncertainty of the sample  $U_{Blank}$  = uncertainty of the blank Sample = concentration of isotope in sample Blank = concentration of isotope in blank

| Normalized Absolute Difference | Qualification |
|--------------------------------|---------------|
| > 2.58                         | None          |
| 1.96 > x < 2.58                | J             |
| x < 1.96                       | J*            |

\* = Minimally the result should be qualified as estimated, J; however, if other quality indicators are deficient the validator may determine the result should be qualified as rejected, R

Radium-228, Radium-226, and total Radium were detected in the QA blanks, however, the activities were measured as less than the uncertainty and MDC or between the uncertainty and MDC as described above. Hence, the blank results are considered non-detect and no qualification of the results was required.

# 3. Matrix Spike (MS)/Laboratory Duplicate Analysis

MS and laboratory duplicate data are used to assess the precision and accuracy of the analytical method.

# 3.1 MS Analysis

MS samples are not typically analyzed for gamma spectral content due to the inability of the laboratory to homogenize spike material with the sample.

If performed, the spike analysis must exhibit a percent recovery within the control limits of 70% to 130%. The MS recovery control limits do not apply for MS performed on sample locations where the analyte's concentration detected in the parent sample exceeds the MS concentration by a factor of four or greater. In instance where this is true, the data will not be qualified even if the percent recovery does not meet the control limits.

In the event the recovery is outside of this limit, a numerical indicator to make assessments is calculated, with a limit of < +/-3 sigma for either.

The numerical performance indicator for a matrix spike sample is calculated by:

$$Z_{MS} = \frac{x - x_0 - c}{\sqrt{u^2(x) + u^2(x_0) + u^2(c)}}$$

Where:

x = measured concentration of the spiked sample.

 $x_0$  = measured concentration of the unspiked sample.

c = spike concentration added.

 $u^{2}(x)$ ,  $u^{2}(x0)$ ,  $u^{2}(c)$  = the squares of the respective standard uncertainties of these values.

MS performance for all matrices is acceptable when the numerical performance indicator calculation yields a value between +/-3 sigma. Warning limits have been established as +/- 2 sigma.

MS analysis was not performed using a sample from this SDG.

# 3.2 Laboratory Duplicate Analysis

Duplicate analyses are indicators of laboratory precision based on each sample matrix. For replicate analysis results to be considered in agreement the duplicate error ratio (DER) must be less than 2.13. In

the event the DER is outside of the limit of 2.13, a numerical indicator to make assessments is calculated, with a limit of +/- 3 sigma or standard deviation.

The numerical performance indicator for laboratory duplicates is calculated by:

$$Z_{\text{Dup}} = \frac{x_1 - x_2}{\sqrt{u^2(x_1) + u^2(x_2)}}$$

Where:

 $x_1$ ,  $x_2$  = two measured activity concentrations.

 $u^{2}(x_{1}), u^{2}(x_{2})$  = the combined standard uncertainty of each measurement squared.

Duplicate sample performance is acceptable when the numerical performance indicator calculation yields a value between +/- 3 sigma. Warning limits have been established as +/- 2 sigma.

Laboratory duplicate analysis was not performed using a sample from this SDG.

# 4. Field Duplicate Analysis

The field duplicate sample analysis is used to assess the overall precision of the field sampling procedures and analytical method. For results greater than five times the MDC, a control limit of 35 percent for water matrices is applied to the RPD between the parent and field duplicate sample results. If the parent and field duplicate sample results are less than five times the MDC, for water matrices a control limit of two times the MDC is applied to the difference between the results.

| Sample ID/Duplicate ID | Analyte      | Sample Result | Duplicate Result | RPD  |  |
|------------------------|--------------|---------------|------------------|------|--|
|                        | Radium-226   | 2.70 ± 0.530  | 2.47 ± 0.489     | 8.9% |  |
| PZ-37D / DUP-1         | Radium-228   | 2.66 ± 0.740  | 1.70 ± 0.569     |      |  |
|                        | Total Radium | 5.36 ± 1.27   | 4.17 ± 1.06      | AU   |  |

The field duplicate sample results are summarized in the following table.

Notes:

AC = Acceptable

The differences in the results between the parent sample PZ-37D and field duplicate sample DUP-1 were acceptable.

# 5. Tracer or Carrier

Tracers and carriers are used in radiological separation methods to provide evaluation of chemical separation. Chemical yield is evaluated through the recovery of chemical species spiked into samples. Yield is evaluated radiometrically with a tracer and gravimetrically with a carrier. A control limit of 30% to 110% is applied to each sample spiked with either a carrier and/or a tracer.

The tracer and carrier analyses exhibited recoveries within the control limits.

#### DATA REVIEW REPORT

# 6. Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) Analysis

The LCS/LCSD analysis is used to assess the precision and accuracy of the analytical method independent of matrix interferences. The analytes associated with the LCS/LCSD analysis must exhibit a percent recovery between the control limits of 60% to 135%. In the event the recovery is outside of this limit, a numerical indicator to make assessments is calculated, with a limit of +/- 3 sigma.

The numerical performance indicator for a laboratory control sample is calculated

by:

$$Z_{\text{LCS}} = \frac{x - c}{\sqrt{u^2(x) + u^2(c)}}$$

Where:

x = Analytical result of the LCS

c = Known concentration of the LCS

 $u^{2}(x)$  = combined standard uncertainty of the result squared.

 $u^{2}(c)$  = combined standard uncertainty of the LCS value squared.

LCS performance is acceptable when the numerical performance indicator calculation yields a value between +/- 3 sigma. Warning limits have been established as +/- 2 sigma.

The LCS/LCSD analysis exhibited recoveries within the control limits.

### 7. Isotope Identification

For sample results to be considered "non-detect", evaluate data based on the following two criteria. If either one of these criteria is true, the sample result is considered "non-detect".

- 1. Sample result is less than the uncertainty and less than the MDC/MDA; or
- 2. Sample has an uncertainty greater than the result (or indistinguishable from background) or result falls between its uncertainty and its MDC/MDA.

Based on the above criteria sample results should be considered non-detect as follows:

• FB-1 and EB-1 - Radium-226, Radium-228, and total Radium

### 8. System Performance and Overall Assessment

Overall system performance was acceptable. Other than for those deviations specifically mentioned in this review, the overall data quality is within the guidelines specified in the method.

# DATA REVIEW REPORT

# DATA VALIDATION CHECKLIST FOR RADIOLOGICALS

| RADIOLOGICALS: SW-846 9315/9320            | Repo | orted | Perfor<br>Acce | mance<br>ptable | Not      |  |
|--------------------------------------------|------|-------|----------------|-----------------|----------|--|
|                                            | No   | Yes   | No             | Yes             | Required |  |
| Gas-Flow Proportional System               |      |       |                |                 |          |  |
| Tier II Validation                         |      |       |                |                 |          |  |
| Holding Times                              |      | Х     |                | Х               |          |  |
| Activity, +/- uncertainty, MDC/MDA         |      | Х     |                | Х               |          |  |
| Blanks                                     |      |       |                |                 |          |  |
| A. Method Blanks                           |      | Х     |                | Х               |          |  |
| B. Equipment/Field Blanks                  |      | Х     |                | Х               |          |  |
| Carrier (Surrogate) %R                     |      | Х     |                | Х               |          |  |
| Tracer (Surrogate) %R                      |      | Х     |                | Х               |          |  |
| Laboratory Control Sample (LCS)            |      | Х     |                | Х               |          |  |
| Laboratory Control Sample Duplicate (LCSD) |      | Х     |                | Х               |          |  |
| LCS/LCSD Precision (RPD)                   |      | Х     |                | Х               |          |  |
| Matrix Spike (MS) %R                       | Х    |       |                |                 | Х        |  |
| Matrix Spike Duplicate (MSD) %R            | Х    |       |                |                 | Х        |  |
| MS/MSD Precision (RPD)                     | Х    |       |                |                 | Х        |  |
| Field/Lab Duplicate (RPD)                  |      | Х     |                | Х               |          |  |

Notes:

%R Percent recovery

RPD Relative percent difference

VALIDATION PERFORMED BY: Jennifer Singer

SIGNATURE:

knnifer Ainger

DATE: July 20, 2021

PEER REVIEW: Dennis Capria

DATE: August 6, 2021

# CHAIN OF CUSTODY / DATA QUALIFIER SUMMARY TABLE



| Pace Analytical                                                                                                 |                                                          |                           |            |              | CHA<br>The Ch | <b>in-of</b>                 | -C                      | US<br>dy is   | <b>TO</b><br>a LE | <b>DY</b><br>GAL | DOCI       | UME      | NT. A    | ali F<br>Il rel | <b>tec</b><br>leval | <b>ue</b><br>nt fiel | <b>St</b><br>Ids r | <b>Do</b><br>nust | be cor    | ent<br>npleted | d acc         | urate             | ely. |                        |         |                          | in the second second second second second second second second second second second second second second second |  |  |
|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------|------------|--------------|---------------|------------------------------|-------------------------|---------------|-------------------|------------------|------------|----------|----------|-----------------|---------------------|----------------------|--------------------|-------------------|-----------|----------------|---------------|-------------------|------|------------------------|---------|--------------------------|-----------------------------------------------------------------------------------------------------------------|--|--|
| A<br>d Client Information:                                                                                      | Section B<br>Required Pro                                | oject in                  | formation: |              |               |                              | S<br>Ir                 | ection        | n C<br>Infor      | matior           | 1:         |          |          |                 |                     |                      |                    |                   |           |                |               |                   | Page |                        | ĩ       | Of                       | 1                                                                                                               |  |  |
| /: Georgia Power                                                                                                | Report To:                                               | Becky                     | Steever    |              |               | and the second second second | A                       | ttentic       | n.                |                  |            | _        |          | _               |                     |                      |                    |                   |           |                |               | -                 |      |                        |         |                          |                                                                                                                 |  |  |
| 1070 Bridge Mill Ave                                                                                            | Copy To:                                                 |                           |            |              |               | en alle e                    | C                       | отра          | ny Na             | me:              |            |          |          | _               | _                   |                      |                    | _                 |           |                |               | _                 |      |                        |         |                          |                                                                                                                 |  |  |
| GA 30114                                                                                                        | Burchase Or                                              | tor #                     |            |              |               |                              |                         | ddres         | S                 |                  |            |          |          |                 |                     |                      |                    |                   |           | 1207           | Series Series | Regulatory Agency |      |                        |         |                          |                                                                                                                 |  |  |
| (770)384-6526 Fax                                                                                               | Project Name                                             | . V                       | ates       |              |               |                              |                         | ace P         | noiect            | Manan            | er.        | koul     | n horde  |                 | nonin               | be cou               | -                  | -                 |           | 12500          |               | Care be           |      | tata /                 |         |                          |                                                                                                                 |  |  |
| ed Due Date                                                                                                     | Project #:                                               |                           | ans        |              |               |                              | P                       | ace P         | rofile            | #: 1             | 0840       | REVI     | 1.Jein   | BGb             | avera               | 105.001              |                    |                   |           |                |               |                   |      | Late /                 | 2A      |                          | Straptore at an                                                                                                 |  |  |
|                                                                                                                 |                                                          |                           |            |              | 50.00         |                              |                         |               | -                 |                  |            |          |          | 招               |                     | R                    | adna               | sted /            | Instysts  | Filtere        |               | 1                 |      | 00.041                 | - Com   | 6. S.                    | Carlos and                                                                                                      |  |  |
|                                                                                                                 | CODED                                                    | es to left)               |            | COLLE        | ECTED         |                              | 3                       |               | <u> </u>          | Pres             | ervat      | ives     |          | NVA             |                     |                      |                    |                   |           |                |               |                   |      |                        |         | 19.2                     |                                                                                                                 |  |  |
| SAMPLE ID<br>One Character per box.<br>{A-Z, 0-9 /,-<br>Sample ids must be unique                               | WTO<br>WWD<br>PO<br>SLO<br>OLC<br>WPJ<br>AR<br>OTO<br>TS | ATRIX CODE (see valid cod | ST         | ART          | E             | NO                           | WPLE TEMP AT COLLECTION | OF CONTAINERS | 2504              | NO3              | aoh        | a2S2O3   | ethanoi  | Analwaea Teat   | pp III & IV Metals  | SC                   | I, F, SO4          | AD 9315/9320      |           |                |               |                   |      | esidual Chiorine (Y.N) |         |                          |                                                                                                                 |  |  |
|                                                                                                                 |                                                          | 20                        | DATE       | TIME         | DATE          | TIME                         | 2                       | * 3           | Ŧ                 | II:              | r z        | Ż        | 2 (      |                 | 4                   | F                    | ō                  | 2                 |           | _              | $\square$     |                   | +    | α,                     | -       | -                        |                                                                                                                 |  |  |
| PZ-37D (051321)                                                                                                 |                                                          |                           | 513        | 1230         |               |                              |                         |               |                   |                  |            |          |          |                 | N                   | X                    | $\omega$           | X                 |           |                |               |                   |      |                        |         |                          |                                                                                                                 |  |  |
| FB-01 (051321)                                                                                                  |                                                          |                           | 513        | 1130         |               |                              |                         |               |                   |                  |            |          |          |                 | R                   | X                    | R                  | A                 |           |                |               |                   |      |                        |         | 1                        |                                                                                                                 |  |  |
| 28-01 (05132)                                                                                                   |                                                          |                           | 513        | 183          |               |                              |                         |               |                   |                  |            |          |          |                 | ¥                   | X                    | K                  | 8                 |           |                |               |                   |      | ] [                    |         |                          |                                                                                                                 |  |  |
| DUP-01 (051321)                                                                                                 |                                                          |                           | 512        | 6-           |               |                              |                         |               |                   |                  |            |          |          |                 | ¥                   | X                    | K                  | DA-               | -         |                |               |                   |      |                        |         |                          |                                                                                                                 |  |  |
|                                                                                                                 |                                                          |                           |            | 1            |               |                              |                         |               |                   |                  |            |          |          |                 |                     |                      |                    | 8                 |           |                |               |                   |      | 11                     |         |                          |                                                                                                                 |  |  |
|                                                                                                                 |                                                          | $\vdash$                  |            |              |               |                              | +                       | -             | +                 | ++               | +          | +        |          |                 |                     | +                    | $\square$          | -                 | +         |                |               | +                 | +    | łŀ                     |         |                          |                                                                                                                 |  |  |
|                                                                                                                 |                                                          | $\vdash$                  | -          |              |               |                              | +                       |               | -                 | ++               |            |          |          | 4               | L                   | -                    |                    | _                 | +         | _              |               | _                 | _    |                        |         |                          |                                                                                                                 |  |  |
|                                                                                                                 |                                                          |                           |            |              |               |                              |                         |               |                   |                  |            |          |          | 1               |                     |                      |                    |                   |           |                |               |                   |      |                        |         |                          |                                                                                                                 |  |  |
|                                                                                                                 |                                                          |                           |            |              |               |                              |                         |               |                   |                  |            | Τ        |          |                 |                     |                      |                    |                   |           |                |               |                   |      | 11                     |         |                          |                                                                                                                 |  |  |
| 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - |                                                          |                           |            |              |               |                              | -                       | +             | -                 | ++               | +          | +        | $\vdash$ | -               | F                   | -                    |                    |                   | +         |                |               | +                 | +    | ┨┠                     |         |                          |                                                                                                                 |  |  |
|                                                                                                                 |                                                          |                           | _          | ļ            |               |                              |                         |               |                   |                  |            |          |          |                 | L                   |                      |                    |                   |           |                |               |                   |      |                        |         |                          |                                                                                                                 |  |  |
|                                                                                                                 |                                                          |                           |            |              | 1             |                              |                         |               |                   |                  |            |          |          |                 |                     |                      |                    |                   |           |                |               |                   |      |                        |         |                          |                                                                                                                 |  |  |
|                                                                                                                 |                                                          |                           | -          |              |               |                              | -                       |               | -                 | ++               | +-         |          |          | -               |                     | +                    |                    |                   | +-        |                | Н             |                   | +    | 1 1                    |         |                          |                                                                                                                 |  |  |
|                                                                                                                 |                                                          | $\square$                 |            |              |               |                              |                         |               |                   |                  |            |          |          |                 |                     |                      |                    |                   |           |                |               |                   |      |                        |         |                          |                                                                                                                 |  |  |
|                                                                                                                 |                                                          |                           |            |              |               |                              |                         |               |                   |                  |            |          |          |                 |                     |                      |                    |                   |           |                |               |                   |      |                        |         |                          |                                                                                                                 |  |  |
| ADDITIONAL COMMENTS                                                                                             | 1                                                        | RELINCI                   | ASHED BY ( | AFFILIATIC   |               | DATE                         | 100                     | TH            | Æ                 | 14/1927          |            | ACC      | EPTED    | BY              | AFE                 | ATION                | 1.50               | 111               | 10 639    | ATE            | Neger         | TIME              | 1    | BORT                   | SAMPLE  | CONDITION                | 8                                                                                                               |  |  |
|                                                                                                                 | -                                                        | Plan Sher                 |            | 1            |               | . 12.                        | 7                       | Section 2     | adra ch           | - 4              | Stars Circ | 3 // A A | -        | 7               |                     | -                    | - de-load          | - 35 - 14         | 54. SP(50 |                | Self-         | a and             | -    |                        |         | Contract of the second   |                                                                                                                 |  |  |
|                                                                                                                 | -Bar                                                     | MY S                      | run        | Arca         | es            | 5/14                         | 21                      | 04'           | D                 | 1                | u          | L        | ~        | en              | 0                   | e                    | -                  |                   | 51        | 1416           | 6             | 930               | 212  | 2                      | 4       | N                        | 17                                                                                                              |  |  |
|                                                                                                                 |                                                          | `                         | 1          | and a second | 20.9          |                              | 4                       | -             |                   |                  |            |          |          |                 |                     |                      |                    |                   |           |                |               |                   |      |                        |         |                          |                                                                                                                 |  |  |
|                                                                                                                 |                                                          |                           |            |              |               |                              | -                       |               |                   | 1                |            |          |          |                 |                     |                      |                    |                   |           |                |               |                   | +    |                        |         |                          |                                                                                                                 |  |  |
|                                                                                                                 |                                                          | -                         |            |              | •             |                              | +                       |               |                   | 1                |            |          |          |                 |                     |                      |                    |                   |           |                | 1             |                   | +    | _                      |         |                          |                                                                                                                 |  |  |
|                                                                                                                 |                                                          |                           |            | SAMPLE       | R NAME        | AND SIGN                     | IATUR                   | æ             |                   |                  |            |          |          |                 | aller in            |                      |                    |                   |           |                | and the       | See E             |      |                        | £       |                          |                                                                                                                 |  |  |
|                                                                                                                 |                                                          |                           |            | PRI          | NT Name       | of SAMPL                     | ER:                     | B             | ecu               |                  | 341        | 10       | m        |                 |                     |                      |                    |                   |           |                |               |                   |      | E C                    | vedo    | \$ <u>5</u> 5            | 8                                                                                                               |  |  |
|                                                                                                                 |                                                          |                           |            | SKG          | NATURE        | of SAMPL                     | ER:                     | _             | V                 | te               | 1          |          |          |                 | Т                   | DAT                  | E Sig              | 27                | 141       | 21             |               |                   |      | TEMP                   | Cen Cen | Custo<br>Sealed<br>Coole | Samp                                                                                                            |  |  |

Page 16 of 18



| SDG      | Sample ID | Method      | Analyte  | Result | Units    | Validation Qualifier | Reason for Validation Qualifier                 |
|----------|-----------|-------------|----------|--------|----------|----------------------|-------------------------------------------------|
| 92538831 |           |             |          | No     | qualifie | rs assigned          |                                                 |
| 92538834 | PZ-37D    | SW846 6020B | Antimony | 0.0030 | mg/L     | UB                   | Blank contamination                             |
|          |           | EPA 300.0   | Sulfate  | 178    | mg/L     | J                    | MS %R <lcl, %r="" <lcl<="" msd="" td=""></lcl,> |
|          | DUP-1     | SW846 6020B | Antimony | 0.0030 | mg/L     | UB                   | Blank contamination                             |

### Abbreviations:

%R = percent recovery LCL = lower control limit mg/L = milligrams per liter MS = matrix spike MSD = matrix spike duplicate

# Qualifiers:

J = estimated result UB = not detected due to blank contamination

\\arcadis-us.com\OfficeData\Syracuse-NY\Project\_Data\Project Chemistry\Data Validation Reports\2021\41501-42000\41952\Qualified Data 41952T



Pace Analytical Services, LLC 110 Technology Parkway Peachtree Corners, GA 30092 (770)734-4200

May 21, 2021

Ms. Lauren Petty Southern Company 42 Inverness Center Parkway Birmingham, AL 35242

RE: Project: YATES Pace Project No.: 92538834

#### Dear Ms. Petty:

Enclosed are the analytical results for sample(s) received by the laboratory on May 14, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network:

- Pace Analytical Services Asheville
- Pace Analytical Services Charlotte
- Pace Analytical Services Peachtree Corners, GA

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kein Stury

Kevin Herring kevin.herring@pacelabs.com 1(704)875-9092 HORIZON Database Administrator

Enclosures

cc: Joju Abraham, Georgia Power-CCR Lauren Coker, Georgia Pwer Geoffrey Gay, ARCADIS - Atlanta Kristen Jurinko Kelley Sharpe, ARCADIS - Atlanta Alex Simpson, Arcadis Samantha Thomas Maribel Vital




Pace Analytical Services, LLC 110 Technology Parkway Peachtree Corners, GA 30092 (770)734-4200

#### CERTIFICATIONS

Project: YATES Pace Project No.: 92538834

#### Pace Analytical Services Charlotte

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 Louisiana/NELAP Certification # LA170028 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12

#### Pace Analytical Services Asheville

2225 Riverside Drive, Asheville, NC 28804 Florida/NELAP Certification #: E87648 North Carolina Drinking Water Certification #: 37712

#### Pace Analytical Services Peachtree Corners

110 Technology Pkwy, Peachtree Corners, GA 30092 Florida DOH Certification #: E87315 Georgia DW Inorganics Certification #: 812 South Carolina Certification #: 99006001 Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 Virginia/VELAP Certification #: 460221

North Carolina Wastewater Certification #: 40 South Carolina Certification #: 99030001 Virginia/VELAP Certification #: 460222

North Carolina Certification #: 381 South Carolina Certification #: 98011001



## SAMPLE SUMMARY

Project: YATES Pace Project No.: 92538834

| Lab ID      | Sample ID | Matrix | Date Collected | Date Received  |
|-------------|-----------|--------|----------------|----------------|
| 92538834001 | PZ-37D    | Water  | 05/13/21 12:30 | 05/14/21 09:30 |
| 92538834002 | FB-1      | Water  | 05/13/21 11:30 | 05/14/21 09:30 |
| 92538834003 | EB-1      | Water  | 05/13/21 18:30 | 05/14/21 09:30 |
| 92538834004 | DUP-1     | Water  | 05/13/21 00:00 | 05/14/21 09:30 |



## SAMPLE ANALYTE COUNT

| Project:        | YATES       |                        |          |                      |
|-----------------|-------------|------------------------|----------|----------------------|
| Pace Project No | .: 92538834 |                        |          |                      |
| Lab ID          | Sample ID   | Method                 | Analysts | Analytes<br>Reported |
| 92538834001     | PZ-37D      | EPA 6010D              | KH       | 1                    |
|                 |             | EPA 6020B              | CW1      | 13                   |
|                 |             | EPA 7470A              | VB       | 1                    |
|                 |             | SM 2540C-2011          | ALW      | 1                    |
|                 |             | EPA 300.0 Rev 2.1 1993 | CDC      | 3                    |
| 92538834002     | FB-1        | EPA 6010D              | KH       | 1                    |
|                 |             | EPA 6020B              | CW1      | 13                   |
|                 |             | EPA 7470A              | VB       | 1                    |
|                 |             | SM 2540C-2011          | ALW      | 1                    |
|                 |             | EPA 300.0 Rev 2.1 1993 | CDC      | 3                    |
| 92538834003     | EB-1        | EPA 6010D              | KH       | 1                    |
|                 |             | EPA 6020B              | CW1      | 13                   |
|                 |             | EPA 7470A              | VB       | 1                    |
|                 |             | SM 2540C-2011          | ALW      | 1                    |
|                 |             | EPA 300.0 Rev 2.1 1993 | CDC      | 3                    |
| 92538834004     | DUP-1       | EPA 6010D              | KH       | 1                    |
|                 |             | EPA 6020B              | CW1      | 13                   |
|                 |             | EPA 7470A              | VB       | 1                    |
|                 |             | SM 2540C-2011          | ALW      | 1                    |
|                 |             | EPA 300.0 Rev 2.1 1993 | CDC      | 3                    |

PASI-A = Pace Analytical Services - Asheville PASI-C = Pace Analytical Services - Charlotte

PASI-GA = Pace Analytical Services - Peachtree Corners, GA



## SUMMARY OF DETECTION

Project: YATES

Pace Project No.: 92538834

| Lab Sample ID          | Client Sample ID       |              |            |              |                |            |
|------------------------|------------------------|--------------|------------|--------------|----------------|------------|
| Method                 | Parameters             | Result       | Units      | Report Limit | Analyzed       | Qualifiers |
| 92538834001            | PZ-37D                 |              |            |              |                |            |
|                        | Performed by           | CUSTOME<br>R |            |              | 05/14/21 14:40 |            |
|                        | рН                     | 7.79         | Std. Units |              | 05/14/21 14:40 |            |
| EPA 6010D              | Calcium                | 68.3         | mg/L       | 1.0          | 05/18/21 16:27 |            |
| EPA 6020B              | Antimony               | 0.00052J     | mg/L       | 0.0030       | 05/19/21 14:44 | В          |
| EPA 6020B              | Barium                 | 0.015        | mg/L       | 0.0050       | 05/19/21 14:44 |            |
| EPA 6020B              | Boron                  | 1.3          | mg/L       | 0.040        | 05/19/21 14:44 |            |
| EPA 6020B              | Lead                   | 0.000049J    | mg/L       | 0.0010       | 05/19/21 14:44 |            |
| EPA 6020B              | Lithium                | 0.011J       | mg/L       | 0.030        | 05/19/21 14:44 |            |
| EPA 6020B              | Molybdenum             | 0.0042J      | mg/L       | 0.010        | 05/19/21 14:44 |            |
| SM 2540C-2011          | Total Dissolved Solids | 381          | mg/L       | 10.0         | 05/19/21 08:19 |            |
| EPA 300.0 Rev 2.1 1993 | Chloride               | 4.0          | mg/L       | 1.0          | 05/18/21 01:17 |            |
| EPA 300.0 Rev 2.1 1993 | Fluoride               | 0.12         | mg/L       | 0.10         | 05/18/21 01:17 | M1         |
| EPA 300.0 Rev 2.1 1993 | Sulfate                | 178          | mg/L       | 3.0          | 05/18/21 15:11 | M1         |
| 92538834002            | FB-1                   |              |            |              |                |            |
| EPA 6020B              | Antimony               | 0.0019J      | mg/L       | 0.0030       | 05/19/21 15:06 | В          |
| EPA 6020B              | Boron                  | 0.0092J      | mg/L       | 0.040        | 05/19/21 15:06 |            |
| 92538834003            | EB-1                   |              |            |              |                |            |
| EPA 6020B              | Antimony               | 0.00067J     | mg/L       | 0.0030       | 05/19/21 15:12 | В          |
| EPA 6020B              | Boron                  | 0.0052J      | mg/L       | 0.040        | 05/19/21 15:12 |            |
| 92538834004            | DUP-1                  |              |            |              |                |            |
| EPA 6010D              | Calcium                | 71.6         | mg/L       | 1.0          | 05/18/21 17:24 |            |
| EPA 6020B              | Antimony               | 0.00044J     | mg/L       | 0.0030       | 05/19/21 15:18 | В          |
| EPA 6020B              | Barium                 | 0.015        | mg/L       | 0.0050       | 05/19/21 15:18 |            |
| EPA 6020B              | Boron                  | 1.2          | mg/L       | 0.040        | 05/19/21 15:18 |            |
| EPA 6020B              | Lead                   | 0.000040J    | mg/L       | 0.0010       | 05/19/21 15:18 |            |
| EPA 6020B              | Lithium                | 0.011J       | mg/L       | 0.030        | 05/19/21 15:18 |            |
| EPA 6020B              | Molybdenum             | 0.0040J      | mg/L       | 0.010        | 05/19/21 15:18 |            |
| SM 2540C-2011          | Total Dissolved Solids | 383          | mg/L       | 10.0         | 05/19/21 08:19 |            |
| EPA 300.0 Rev 2.1 1993 | Chloride               | 3.9          | mg/L       | 1.0          | 05/18/21 02:24 |            |
| EPA 300.0 Rev 2.1 1993 | Fluoride               | 0.12         | mg/L       | 0.10         | 05/18/21 02:24 |            |
| EPA 300.0 Rev 2.1 1993 | Sulfate                | 154          | mg/L       | 3.0          | 05/18/21 15:56 |            |



| Pace Project No.:         92538834           Sample:         PZ-37D         Lab ID:         92538834001         Collected:         05/13/21         12:30         Received:         05/14/21         09:30         Matrix:         Water           Parameters         Results         Units         Limit         MDL         DF         Prepared         Analyzed         CAS           Field Data         Analytical Method:<br>Pace Analytical Services - Charlotte         D         DF         Prepared         Analyzed         CAS           Performed by         CUSTOME<br>R         1         05/14/21         14:40         O           G010D ATL ICP         Analytical Method: EPA 6010D         Preparation Method: EPA 3010A<br>Pace Analytical Services - Peachtree Corners, GA         Calcium         68.3         mg/L         1.0         0.13         1         05/18/21         16:27         7440-7           G020 MET ICPMS         Analytical Method: EPA 6020B         Preparation Method: EPA 3005A<br>Pace Analytical Services - Peachtree Corners, GA         O         0.00052J         mg/L         0.0030         0.00028         1         05/18/21         13:16         05/19/21         14:44         7440-3           Antimony         0.0052J         mg/L         0.0050         0.00078         1         05/18/   |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Sample:         PZ-37D         Lab ID:         92538834001         Collected:         05/13/21         12:30         Received:         05/14/21         09:30         Matrix:         Water           Parameters         Results         Units         Limit         MDL         DF         Prepared         Analyzed         CAS           Field Data         Analytical Method:<br>Pace Analytical Services - Charlotte         P         Prepared         Analyzed         CAS           Performed by         CUSTOME<br>PH         1         05/14/21         05/14/21         14:40           6010D ATL ICP         Analytical Method: EPA 6010D         Preparation Method: EPA 3010A<br>Pace Analytical Services - Peachtree Corners, GA         05/18/21         10:27         7440-7           6020 MET ICPMS         Analytical Method: EPA 6020B         Preparation Method: EPA 3005A<br>Pace Analytical Services - Peachtree Corners, GA         05/18/21         13:16         05/19/21         14:44         7440-3           Antimony         0.00052J         mg/L         0.0030         0.00028         1         05/18/21         13:16         05/19/21         14:44         7440-3           Arsenic         ND         mg/L         0.0030         0.00028         1         05/18/21         13:16         05/19/21         14:44 |          |
| ParametersResultsUnitsReport<br>LimitMDLDFPreparedAnalyzedCASField DataAnalytical Method:<br>Pace Analytical Services - CharlottePerformed byCUSTOME<br>R105/14/21 14:40pH7.79Std. Units105/14/21 14:406010D ATL ICPAnalytical Method: EPA 6010D<br>Pace Analytical Services - Peachtree Corners, GAEPA 3010A<br>Pace Analytical Services - Peachtree Corners, GACalcium68.3mg/L1.00.13105/18/21 10:0705/18/21 16:277440-76020 MET ICPMSAnalytical Method: EPA 6020B<br>Pace Analytical Services - Peachtree Corners, GAAnalytical Method: EPA 6020B<br>Preparation Method: EPA 3005A<br>Pace Analytical Services - Peachtree Corners, GAAntimony0.00052Jmg/L0.00300.00028105/18/21 13:1605/19/21 14:447440-3ArsenicNDmg/L0.00500.00078105/18/21 13:1605/19/21 14:447440-3Barium0.015mg/L0.00500.00071105/18/21 13:1605/19/21 14:447440-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | er       |
| ParametersResultsUnitsLimitMDLDFPreparedAnalyzedCASField DataAnalytical Method:<br>Pace Analytical Services - CharlottePerformed byCUSTOME<br>R105/14/21 14:40pH7.79Std. Units105/14/21 14:406010D ATL ICPAnalytical Method: EPA 6010D<br>Pace Analytical Services - Peachtree Corners, GAEPA 3010A<br>Pace Analytical Services - Peachtree Corners, GACalcium68.3mg/L1.00.13105/18/21 10:0705/18/21 16:277440-76020 MET ICPMSAnalytical Method: EPA 6020B<br>Pace Analytical Services - Peachtree Corners, GAAnalytical Services - Peachtree Corners, GAAntimony0.00052Jmg/L0.00300.00028105/18/21 13:1605/19/21 14:447440-3ArsenicNDmg/L0.00500.00078105/18/21 13:1605/19/21 14:447440-3Barium0.0155mg/L0.00500.00078105/18/21 13:1605/19/21 14:447440-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |
| Field Data       Analytical Method:<br>Pace Analytical Services - Charlotte       1       05/14/21 14:40         Performed by       CUSTOME<br>R       1       05/14/21 14:40       1         pH       7.79       Std. Units       1       05/14/21 14:40       1         6010D ATL ICP       Analytical Method: EPA 6010D       Preparation Method: EPA 3010A       Pace Analytical Services - Peachtree Corners, GA       1       05/18/21 10:07       05/18/21 16:27       7440-7         Calcium       68.3       mg/L       1.0       0.13       1       05/18/21 10:07       05/18/21 16:27       7440-7         6020 MET ICPMS       Analytical Method: EPA 6020B       Preparation Method: EPA 3005A       Pace Analytical Services - Peachtree Corners, GA       1       05/18/21 13:16       05/19/21 14:44       7440-3         Antimony       0.00052J       mg/L       0.0030       0.00028       1       05/18/21 13:16       05/19/21 14:44       7440-3         Arsenic       ND       mg/L       0.0050       0.00071       1       05/18/21 13:16       05/19/21 14:44       7440-3                                                                                                                                                                                                                                                      | No. Qual |
| Pace Analytical Services - Charlotte         Performed by       CUSTOME<br>R       1       05/14/21 14:40         pH       7.79       Std. Units       1       05/14/21 14:40         6010D ATL ICP       Analytical Method: EPA 6010D Preparation Method: EPA 3010A<br>Pace Analytical Services - Peachtree Corners, GA       EPA 3010A         Calcium       68.3       mg/L       1.0       0.13       1       05/18/21 10:07       05/18/21 16:27       7440-7         6020 MET ICPMS       Analytical Method: EPA 6020B Preparation Method: EPA 3005A<br>Pace Analytical Services - Peachtree Corners, GA       Image: Corners, GA       Image: Corners, GA         Antimony       0.00052J       mg/L       0.0030       0.00028       1       05/18/21 13:16       05/19/21 14:44       7440-3         Arsenic       ND       mg/L       0.0050       0.00078       1       05/18/21 13:16       05/19/21 14:44       7440-3         Out       mg/L       0.0050       0.00071       1       05/18/21 13:16       05/19/21 14:44       7440-3                                                                                                                                                                                                                                                                                                       |          |
| Performed by       CUSTOME<br>R       O5/14/21 14:40       O5/14/21 14:40         pH       7.79       Std. Units       1       05/14/21 14:40       05/14/21 14:40         6010D ATL ICP       Analytical Method: EPA 6010D Preparation Method: EPA 3010A<br>Pace Analytical Services - Peachtree Corners, GA       I       05/18/21 10:07       05/18/21 16:27       7440-7         6020 MET ICPMS       Analytical Method: EPA 6020B Preparation Method: EPA 3005A<br>Pace Analytical Services - Peachtree Corners, GA       I       05/18/21 10:07       05/18/21 16:27       7440-7         Antimony       0.00052J       mg/L       0.0030       0.0028       1       05/18/21 13:16       05/19/21 14:44       7440-3         Antimony       0.015       mg/L       0.0050       0.00078       1       05/18/21 13:16       05/19/21 14:44       7440-3         Barium       0.015       mg/L       0.0050       0.00071       1       05/18/21 13:16       05/19/21 14:44       7440-3                                                                                                                                                                                                                                                                                                                                                              |          |
| pH       7.79       Std. Units       1       05/14/21 14:40         6010D ATL ICP       Analytical Method: EPA 6010D Preparation Method: EPA 3010A<br>Pace Analytical Services - Peachtree Corners, GA       EPA 3010A         Calcium       68.3       mg/L       1.0       0.13       1       05/18/21 10:07       05/18/21 16:27       7440-7         6020 MET ICPMS       Analytical Method: EPA 6020B       Preparation Method: EPA 3005A       Pace Analytical Services - Peachtree Corners, GA         Antimony       0.00052J       mg/L       0.0030       0.00028       1       05/18/21 13:16       05/19/21 14:44       7440-3         Arsenic       ND       mg/L       0.0050       0.00071       1       05/18/21 13:16       05/19/21 14:44       7440-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| 6010D ATL ICP       Analytical Method: EPA 6010D       Preparation Method: EPA 3010A         Pace Analytical Services - Peachtree Corners, GA       Calcium       68.3       mg/L       1.0       0.13       1       05/18/21 10:07       05/18/21 16:27       7440-7         6020 MET ICPMS       Analytical Method: EPA 6020B       Preparation Method: EPA 3005A       Pace Analytical Services - Peachtree Corners, GA         Antimony       0.00052J       mg/L       0.0030       0.00028       1       05/18/21 13:16       05/19/21 14:44       7440-3         Arsenic       ND       mg/L       0.0050       0.00071       1       05/18/21 13:16       05/19/21 14:44       7440-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| Pace Analytical Services - Peachtree Corners, GA           Calcium         68.3         mg/L         1.0         0.13         1         05/18/21 10:07         05/18/21 16:27         7440-7           6020 MET ICPMS         Analytical Method: EPA 6020B         Preparation Method: EPA 3005A         Pace Analytical Services - Peachtree Corners, GA           Antimony         0.00052J         mg/L         0.0030         0.00028         1         05/18/21 13:16         05/19/21 14:44         7440-3           Arsenic         ND         mg/L         0.0050         0.00078         1         05/18/21 13:16         05/19/21 14:44         7440-3           Barium         0.015         mg/L         0.0050         0.00071         1         05/18/21 13:16         05/19/21 14:44         7440-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
| Calcium       68.3       mg/L       1.0       0.13       1       05/18/21 10:07       05/18/21 16:27       7440-7         6020 MET ICPMS       Analytical Method: EPA 6020B       Preparation Method: EPA 3005A       EPA 3005A         Pace Analytical Services - Peachtree Corners, GA         Antimony       0.00052J       mg/L       0.0030       0.00028       1       05/18/21 13:16       05/19/21 14:44       7440-3         Arsenic       ND       mg/L       0.0050       0.00071       1       05/18/21 13:16       05/19/21 14:44       7440-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| 6020 MET ICPMS         Analytical Method: EPA 6020B         Preparation Method: EPA 3005A           Pace Analytical Services - Peachtree Corners, GA           Antimony         0.00052J         mg/L         0.0030         0.00028         1         05/18/21 13:16         05/19/21 14:44         7440-3           Arsenic         ND         mg/L         0.0050         0.00078         1         05/18/21 13:16         05/19/21 14:44         7440-3           Barium         0.015         mg/L         0.0050         0.00071         1         05/18/21 13:16         05/19/21 14:44         7440-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -2       |
| Descention         Pace Analytical Services - Peachtree Corners, GA           Antimony         0.00052J         mg/L         0.0030         0.00028         1         05/18/21         13:16         05/19/21         14:44         7440-3           Arsenic         ND         mg/L         0.0050         0.00078         1         05/18/21         13:16         05/19/21         14:44         7440-3           Barium         0.015         mg/L         0.0050         0.00071         1         05/18/21         13:16         05/19/21         14:44         7440-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |
| Antimony         0.00052J         mg/L         0.0030         0.00028         1         05/18/21         13:16         05/19/21         14:44         7440-3           Arsenic         ND         mg/L         0.0050         0.00078         1         05/18/21         13:16         05/19/21         14:44         7440-3           Barium         0.015         mg/L         0.0050         0.00078         1         05/18/21         13:16         05/19/21         14:44         7440-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |
| Arsenic         ND         mg/L         0.0050         0.00078         1         05/18/21         13:16         05/19/21         14:44         7440-3           Barium         0.015         mg/L         0.0050         0.00078         1         05/18/21         13:16         05/19/21         14:44         7440-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0 B     |
| Barium 0,015 mg/l 0,0050 0,00071 1, 05/18/21 13:16, 05/19/21 14:44, 7440-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -2       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -3       |
| Beryllium ND mg/L 0.00050 0.000046 1 05/18/21 13:16 05/19/21 14:44 7440-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -7       |
| Boron <b>1.3</b> mg/L 0.040 0.0052 1 05/18/21 13:16 05/19/21 14:44 7440-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -8       |
| Cadmium ND mg/L 0.00050 0.00012 1 05/18/21 13:16 05/19/21 14:44 7440-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -9       |
| Chromium ND mg/L 0.0050 0.00055 1 05/18/21 13:16 05/19/21 14:44 7440-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -3       |
| Cobalt ND mg/L 0.0050 0.00038 1 05/18/21 13:16 05/19/21 14:44 7440-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -4       |
| Lead 0.000049J mg/L 0.0010 0.000036 1 05/18/21 13:16 05/19/21 14:44 7439-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1       |
| Lithium 0.011J mg/L 0.030 0.00081 1 05/18/21 13:16 05/19/21 14:44 7439-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -2       |
| Molybdenum 0.0042J mg/L 0.010 0.00069 1 05/18/21 13:16 05/19/21 14:44 7439-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -7       |
| Selenium ND mg/L 0.0050 0.0016 1 05/18/21 13:16 05/19/21 14:44 7782-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -2       |
| Thallium         ND         mg/L         0.0010         0.00014         1         05/18/21         13:16         05/19/21         14:44         7440-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -0       |
| 7470 Mercury Analytical Method: EPA 7470A Preparation Method: EPA 7470A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |
| Pace Analytical Services - Peachtree Corners, GA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| Mercury ND mg/L 0.00020 0.000078 1 05/18/21 14:00 05/19/21 11:03 7439-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -6       |
| 2540C Total Dissolved Solids Analytical Method: SM 2540C-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |
| Pace Analytical Services - Peachtree Corners, GA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |
| Total Dissolved Solids         381         mg/L         10.0         10.0         1         05/19/21         08:19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |
| <b>300.0 IC Anions 28 Days</b> Analytical Method: EPA 300.0 Rev 2.1 1993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |
| Pace Analytical Services - Asheville                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |
| Chloride <b>4.0</b> ma/L 1.0 0.60 1 05/18/21 01:17 16887-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0-6      |
| Fluoride <b>0.12</b> mg/L 0.10 0.050 1 05/18/21 01:17 16984-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8-8 M1   |
| Sulfate <b>178</b> mg/L 3.0 1.5 3 05/18/21 15:11 14808-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9-8 M1   |



| Project:          | YATES    |
|-------------------|----------|
| Pace Project No.: | 92538834 |

| Sample: FB-1                 | Lab ID:    | 92538834002      | Collecte    | ed: 05/13/2  | 1 11:30  | Received: 05/  | 14/21 09:30 Ma | atrix: Water |      |
|------------------------------|------------|------------------|-------------|--------------|----------|----------------|----------------|--------------|------|
| _                            | _          |                  | Report      |              |          | _              |                |              |      |
| Parameters                   | Results    | Units            | Limit       | MDL          | DF       | Prepared       | Analyzed       | CAS No.      | Qual |
| 6010D ATL ICP                | Analytical | Method: EPA 6    | 010D Pre    | paration Me  | thod: EF | PA 3010A       |                |              |      |
|                              | Pace Ana   | lytical Services | - Peachtre  | e Corners, 0 | GA       |                |                |              |      |
| Calcium                      | ND         | mg/L             | 1.0         | 0.13         | 1        | 05/18/21 10:07 | 05/18/21 16:37 | 7440-70-2    |      |
| 6020 MET ICPMS               | Analytical | Method: EPA 6    | 020B Pre    | paration Me  | thod: EF | PA 3005A       |                |              |      |
|                              | Pace Ana   | lytical Services | - Peachtre  | e Corners, ( | GΑ       |                |                |              |      |
| Antimony                     | 0.0019J    | mg/L             | 0.0030      | 0.00028      | 1        | 05/18/21 13:16 | 05/19/21 15:06 | 7440-36-0    | В    |
| Arsenic                      | ND         | mg/L             | 0.0050      | 0.00078      | 1        | 05/18/21 13:16 | 05/19/21 15:06 | 7440-38-2    |      |
| Barium                       | ND         | mg/L             | 0.0050      | 0.00071      | 1        | 05/18/21 13:16 | 05/19/21 15:06 | 7440-39-3    |      |
| Beryllium                    | ND         | mg/L             | 0.00050     | 0.000046     | 1        | 05/18/21 13:16 | 05/19/21 15:06 | 7440-41-7    |      |
| Boron                        | 0.0092J    | mg/L             | 0.040       | 0.0052       | 1        | 05/18/21 13:16 | 05/19/21 15:06 | 7440-42-8    |      |
| Cadmium                      | ND         | mg/L             | 0.00050     | 0.00012      | 1        | 05/18/21 13:16 | 05/19/21 15:06 | 7440-43-9    |      |
| Chromium                     | ND         | mg/L             | 0.0050      | 0.00055      | 1        | 05/18/21 13:16 | 05/19/21 15:06 | 7440-47-3    |      |
| Cobalt                       | ND         | mg/L             | 0.0050      | 0.00038      | 1        | 05/18/21 13:16 | 05/19/21 15:06 | 7440-48-4    |      |
| Lead                         | ND         | mg/L             | 0.0010      | 0.000036     | 1        | 05/18/21 13:16 | 05/19/21 15:06 | 7439-92-1    |      |
| Lithium                      | ND         | mg/L             | 0.030       | 0.00081      | 1        | 05/18/21 13:16 | 05/19/21 15:06 | 7439-93-2    |      |
| Molybdenum                   | ND         | mg/L             | 0.010       | 0.00069      | 1        | 05/18/21 13:16 | 05/19/21 15:06 | 7439-98-7    |      |
| Selenium                     | ND         | mg/L             | 0.0050      | 0.0016       | 1        | 05/18/21 13:16 | 05/19/21 15:06 | 7782-49-2    |      |
| Thallium                     | ND         | mg/L             | 0.0010      | 0.00014      | 1        | 05/18/21 13:16 | 05/19/21 15:06 | 7440-28-0    |      |
| 7470 Mercury                 | Analytical | Method: EPA 7    | 470A Pre    | paration Met | thod: EF | PA 7470A       |                |              |      |
|                              | Pace Ana   | lytical Services | - Peachtre  | e Corners, ( | GA       |                |                |              |      |
| Mercury                      | ND         | mg/L             | 0.00020     | 0.000078     | 1        | 05/18/21 14:00 | 05/19/21 11:12 | 7439-97-6    |      |
| 2540C Total Dissolved Solids | Analytical | Method: SM 25    | 540C-2011   |              |          |                |                |              |      |
|                              | Pace Ana   | lytical Services | - Peachtre  | e Corners, ( | GΑ       |                |                |              |      |
| Total Dissolved Solids       | ND         | mg/L             | 10.0        | 10.0         | 1        |                | 05/19/21 08:19 |              |      |
| 300.0 IC Anions 28 Days      | Analytical | Method: EPA 3    | 00.0 Rev 2  | 2.1 1993     |          |                |                |              |      |
|                              | Pace Ana   | lytical Services | - Asheville | •            |          |                |                |              |      |
| Chloride                     | ND         | mg/L             | 1.0         | 0.60         | 1        |                | 05/18/21 01:57 | 16887-00-6   |      |
| Fluoride                     | ND         | mg/L             | 0.10        | 0.050        | 1        |                | 05/18/21 01:57 | 16984-48-8   |      |
| Sulfate                      | ND         | mg/L             | 1.0         | 0.50         | 1        |                | 05/18/21 01:57 | 14808-79-8   |      |
|                              |            |                  |             |              |          |                |                |              |      |



| Project:              | YATES      |            |                 |             |                         |          |                |                |              |      |
|-----------------------|------------|------------|-----------------|-------------|-------------------------|----------|----------------|----------------|--------------|------|
| Pace Project No.:     | 92538834   |            |                 |             |                         |          |                |                |              |      |
| Sample: EB-1          |            | Lab ID:    | 92538834003     | Collected   | d: 05/13/2 <sup>,</sup> | 1 18:30  | Received: 05/  | 14/21 09:30 Ma | atrix: Water |      |
|                       |            |            |                 | Report      |                         |          |                |                |              |      |
| Parame                | ters       | Results    | Units           | Limit       | MDL                     | DF       | Prepared       | Analyzed       | CAS No.      | Qual |
| 6010D ATL ICP         |            | Analytical | Method: EPA 6   | 010D Prep   | aration Met             | thod: EF | PA 3010A       |                |              |      |
|                       |            | Pace Anal  | ytical Services | - Peachtree | Corners, C              | GΑ       |                |                |              |      |
| Calcium               |            | ND         | mg/L            | 1.0         | 0.13                    | 1        | 05/18/21 10:07 | 05/18/21 16:41 | 7440-70-2    |      |
| 6020 MET ICPMS        |            | Analytical | Method: EPA 6   | 020B Prep   | aration Met             | thod: EF | PA 3005A       |                |              |      |
|                       |            | Pace Anal  | ytical Services | - Peachtree | Corners, C              | ΞA       |                |                |              |      |
| Antimony              |            | 0 00067.1  | ma/l            | 0.0030      | 0 00028                 | 1        | 05/18/21 13.16 | 05/19/21 15.12 | 7440-36-0    | в    |
| Arsenic               |            |            | mg/L            | 0.0050      | 0.00020                 | 1        | 05/18/21 13:16 | 05/19/21 15:12 | 7440-38-2    | D    |
| Barium                |            | ND         | mg/L            | 0.0050      | 0.00071                 | 1        | 05/18/21 13:16 | 05/19/21 15:12 | 7440-39-3    |      |
| Bervllium             |            | ND         | ma/L            | 0.00050     | 0.000046                | 1        | 05/18/21 13:16 | 05/19/21 15:12 | 7440-41-7    |      |
| Boron                 |            | 0.0052J    | ma/L            | 0.040       | 0.0052                  | 1        | 05/18/21 13:16 | 05/19/21 15:12 | 7440-42-8    |      |
| Cadmium               |            | ND         | ma/L            | 0.00050     | 0.00012                 | 1        | 05/18/21 13:16 | 05/19/21 15:12 | 7440-43-9    |      |
| Chromium              |            | ND         | mg/L            | 0.0050      | 0.00055                 | 1        | 05/18/21 13:16 | 05/19/21 15:12 | 7440-47-3    |      |
| Cobalt                |            | ND         | mg/L            | 0.0050      | 0.00038                 | 1        | 05/18/21 13:16 | 05/19/21 15:12 | 7440-48-4    |      |
| Lead                  |            | ND         | mg/L            | 0.0010      | 0.000036                | 1        | 05/18/21 13:16 | 05/19/21 15:12 | 7439-92-1    |      |
| Lithium               |            | ND         | mg/L            | 0.030       | 0.00081                 | 1        | 05/18/21 13:16 | 05/19/21 15:12 | 7439-93-2    |      |
| Molybdenum            |            | ND         | mg/L            | 0.010       | 0.00069                 | 1        | 05/18/21 13:16 | 05/19/21 15:12 | 7439-98-7    |      |
| Selenium              |            | ND         | mg/L            | 0.0050      | 0.0016                  | 1        | 05/18/21 13:16 | 05/19/21 15:12 | 7782-49-2    |      |
| Thallium              |            | ND         | mg/L            | 0.0010      | 0.00014                 | 1        | 05/18/21 13:16 | 05/19/21 15:12 | 7440-28-0    |      |
| 7470 Mercury          |            | Analytical | Method: EPA 7   | 470A Prep   | aration Met             | hod: EP  | A 7470A        |                |              |      |
|                       |            | Pace Anal  | ytical Services | - Peachtree | Corners, C              | GΑ       |                |                |              |      |
| Mercury               |            | ND         | mg/L            | 0.00020     | 0.000078                | 1        | 05/18/21 14:00 | 05/19/21 11:15 | 7439-97-6    |      |
| 2540C Total Dissol    | ved Solids | Analytical | Method: SM 25   | 540C-2011   |                         |          |                |                |              |      |
|                       |            | Pace Anal  | ytical Services | - Peachtree | Corners, C              | GΑ       |                |                |              |      |
| Total Dissolved Solid | ds         | ND         | mg/L            | 10.0        | 10.0                    | 1        |                | 05/19/21 08:19 |              |      |
| 300.0 IC Anions 28    | Days       | Analytical | Method: EPA 3   | 00.0 Rev 2. | 1 1993                  |          |                |                |              |      |
|                       |            | Pace Anal  | ytical Services | - Asheville |                         |          |                |                |              |      |
| Chloride              |            | ND         | mg/L            | 1.0         | 0.60                    | 1        |                | 05/18/21 02:11 | 16887-00-6   |      |
| Fluoride              |            | ND         | mg/L            | 0.10        | 0.050                   | 1        |                | 05/18/21 02:11 | 16984-48-8   |      |
| Sulfate               |            | ND         | mg/L            | 1.0         | 0.50                    | 1        |                | 05/18/21 02:11 | 14808-79-8   |      |



| Project: YATES               |              |               |             |              |          |                |                |              |      |
|------------------------------|--------------|---------------|-------------|--------------|----------|----------------|----------------|--------------|------|
| Pace Project No.: 92538834   |              |               |             |              |          |                |                |              |      |
| Sample: DUP-1                | Lab ID: 9    | 2538834004    | Collecte    | ed: 05/13/2  | 1 00:00  | Received: 05/  | 14/21 09:30 Ma | atrix: Water |      |
|                              |              |               | Report      |              |          |                |                |              |      |
| Parameters                   | Results      | Units         | Limit       | MDL          | DF       | Prepared       | Analyzed       | CAS No.      | Qual |
| 6010D ATL ICP                | Analytical N | lethod: EPA 6 | 010D Pre    | paration Me  | thod: Ef | PA 3010A       |                |              |      |
|                              | Pace Analyt  | ical Services | - Peachtre  | e Corners, ( | GA       |                |                |              |      |
| Calcium                      | 71.6         | mg/L          | 1.0         | 0.13         | 1        | 05/18/21 10:07 | 05/18/21 17:24 | 7440-70-2    |      |
| 6020 MET ICPMS               | Analytical M | lethod: EPA 6 | 020B Pre    | paration Met | thod: EF | PA 3005A       |                |              |      |
|                              | Pace Analyt  | ical Services | - Peachtre  | e Corners, ( | GΑ       |                |                |              |      |
| Antimony                     | 0.00044J     | mg/L          | 0.0030      | 0.00028      | 1        | 05/18/21 13:16 | 05/19/21 15:18 | 7440-36-0    | В    |
| Arsenic                      | ND           | mg/L          | 0.0050      | 0.00078      | 1        | 05/18/21 13:16 | 05/19/21 15:18 | 7440-38-2    |      |
| Barium                       | 0.015        | mg/L          | 0.0050      | 0.00071      | 1        | 05/18/21 13:16 | 05/19/21 15:18 | 7440-39-3    |      |
| Beryllium                    | ND           | mg/L          | 0.00050     | 0.000046     | 1        | 05/18/21 13:16 | 05/19/21 15:18 | 7440-41-7    |      |
| Boron                        | 1.2          | mg/L          | 0.040       | 0.0052       | 1        | 05/18/21 13:16 | 05/19/21 15:18 | 7440-42-8    |      |
| Cadmium                      | ND           | mg/L          | 0.00050     | 0.00012      | 1        | 05/18/21 13:16 | 05/19/21 15:18 | 7440-43-9    |      |
| Chromium                     | ND           | mg/L          | 0.0050      | 0.00055      | 1        | 05/18/21 13:16 | 05/19/21 15:18 | 7440-47-3    |      |
| Cobalt                       | ND           | mg/L          | 0.0050      | 0.00038      | 1        | 05/18/21 13:16 | 05/19/21 15:18 | 7440-48-4    |      |
| Lead                         | 0.000040J    | mg/L          | 0.0010      | 0.000036     | 1        | 05/18/21 13:16 | 05/19/21 15:18 | 7439-92-1    |      |
| Lithium                      | 0.011J       | mg/L          | 0.030       | 0.00081      | 1        | 05/18/21 13:16 | 05/19/21 15:18 | 7439-93-2    |      |
| Molybdenum                   | 0.0040J      | mg/L          | 0.010       | 0.00069      | 1        | 05/18/21 13:16 | 05/19/21 15:18 | 7439-98-7    |      |
| Selenium                     | ND           | mg/L          | 0.0050      | 0.0016       | 1        | 05/18/21 13:16 | 05/19/21 15:18 | 7782-49-2    |      |
| Thallium                     | ND           | mg/L          | 0.0010      | 0.00014      | 1        | 05/18/21 13:16 | 05/19/21 15:18 | 7440-28-0    |      |
| 7470 Mercury                 | Analytical M | lethod: EPA 7 | 470A Pre    | paration Met | hod: EF  | PA 7470A       |                |              |      |
|                              | Pace Analyt  | ical Services | - Peachtre  | e Corners, ( | GΑ       |                |                |              |      |
| Mercury                      | ND           | mg/L          | 0.00020     | 0.000078     | 1        | 05/18/21 14:00 | 05/19/21 11:24 | 7439-97-6    |      |
| 2540C Total Dissolved Solids | Analytical M | lethod: SM 25 | 540C-2011   |              |          |                |                |              |      |
|                              | Pace Analyt  | ical Services | - Peachtre  | e Corners, ( | ЗA       |                |                |              |      |
| Total Dissolved Solids       | 383          | mg/L          | 10.0        | 10.0         | 1        |                | 05/19/21 08:19 |              |      |
| 300.0 IC Anions 28 Days      | Analytical N | lethod: EPA 3 | 00.0 Rev 2  | 2.1 1993     |          |                |                |              |      |
|                              | Pace Analyt  | ical Services | - Asheville |              |          |                |                |              |      |
| Chloride                     | 3.9          | mg/L          | 1.0         | 0.60         | 1        |                | 05/18/21 02:24 | 16887-00-6   |      |
| Fluoride                     | 0.12         | mg/L          | 0.10        | 0.050        | 1        |                | 05/18/21 02:24 | 16984-48-8   |      |
| Sulfate                      | 154          | mg/L          | 3.0         | 1.5          | 3        |                | 05/18/21 15:56 | 14808-79-8   |      |
|                              | -            | 0             |             | -            | -        |                |                |              |      |

**REPORT OF LABORATORY ANALYSIS** 

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



| Project:          | YATES            |                 |            |            |           |             |             |             |            |           |     |      |
|-------------------|------------------|-----------------|------------|------------|-----------|-------------|-------------|-------------|------------|-----------|-----|------|
| Pace Project No.: | 92538834         |                 |            |            |           |             |             |             |            |           |     |      |
| QC Batch:         | 621064           |                 | Anal       | ysis Metho | od:       | EPA 6010D   |             |             |            |           |     |      |
| QC Batch Method:  | EPA 3010A        |                 | Anal       | ysis Descr | ription:  | 6010D ATL   |             |             |            |           |     |      |
|                   |                  |                 | Labo       | oratory:   |           | Pace Analyt | ical Servic | es - Peach  | tree Corne | rs, GA    |     |      |
| Associated Lab Sa | mples: 92538834  | 001, 9253883400 | 2, 9253883 | 34003, 925 | 538834004 |             |             |             |            |           |     |      |
| METHOD BLANK:     | 3267639          |                 |            | Matrix: V  | Vater     |             |             |             |            |           |     |      |
| Associated Lab Sa | mples: 92538834  | 001, 9253883400 | 2, 9253883 | 34003, 925 | 538834004 |             |             |             |            |           |     |      |
|                   |                  |                 | Bla        | nk         | Reporting |             |             |             |            |           |     |      |
| Para              | meter            | Units           | Res        | ult        | Limit     | MDI         | -           | Analyzed    | Qı         | ualifiers |     |      |
| Calcium           |                  | mg/L            |            | ND         | 1         | .0          | 0.13 0      | 5/18/21 15: | 25         |           |     |      |
| LABORATORY CO     | NTROL SAMPLE:    | 3267640         |            |            |           |             |             |             |            |           |     |      |
|                   |                  |                 | Spike      | L          | CS        | LCS         | % R         | lec         |            |           |     |      |
| Para              | meter            | Units           | Conc.      | Re         | sult      | % Rec       | Lim         | its         | Qualifiers |           |     |      |
| Calcium           |                  | mg/L            |            | 1          | 1.1       | 107         | 7           | 80-120      |            | _         |     |      |
| MATRIX SPIKE & I  | MATRIX SPIKE DUF | PLICATE: 3267   | 641        |            | 326764    | 2           |             |             |            |           |     |      |
|                   |                  |                 | MS         | MSD        |           |             |             |             |            |           |     |      |
|                   |                  | 92538933001     | Spike      | Spike      | MS        | MSD         | MS          | MSD         | % Rec      |           | Max |      |
| Paramete          | er Units         | Result          | Conc.      | Conc.      | Result    | Result      | % Rec       | % Rec       | Limits     | RPD       | RPD | Qual |
| Calcium           | mg/L             | . 33100<br>ug/L | 1          | 1          | 34.8      | 33.8        | 167         | 75          | 75-125     | 3         | 20  | M1   |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:           | YATES  | 6                         |                 |            |                    |                    |             |  |
|--------------------|--------|---------------------------|-----------------|------------|--------------------|--------------------|-------------|--|
| Pace Project No.:  | 92538  | 834                       |                 |            |                    |                    |             |  |
| QC Batch:          | 6211   | 35                        | Analysis Meth   | nod:       | EPA 6020B          |                    |             |  |
| QC Batch Method:   | EPA    | 3005A                     | Analysis Desc   | cription:  | 6020 MET           |                    |             |  |
|                    |        |                           | Laboratory:     |            | Pace Analytical Se | rvices - Peachtree | Corners, GA |  |
| Associated Lab Sar | mples: | 92538834001, 92538834002, | 92538834003, 92 | 2538834004 | -                  |                    |             |  |
| METHOD BLANK:      | 32680  | 34                        | Matrix:         | Water      |                    |                    |             |  |
| Associated Lab Sar | mples: | 92538834001, 92538834002, | 92538834003, 92 | 2538834004 |                    |                    |             |  |
|                    |        |                           | Blank           | Reporting  |                    |                    |             |  |
| Parar              | neter  | Units                     | Result          | Limit      | MDL                | Analyzed           | Qualifiers  |  |
| Antimony           |        | mg/L                      | 0.00070J        | 0.003      | 0 0.00028          | 05/19/21 14:26     |             |  |
| Arsenic            |        | mg/L                      | ND              | 0.005      | 0 0.00078          | 05/19/21 14:26     |             |  |
| Barium             |        | mg/L                      | ND              | 0.005      | 0 0.00071          | 05/19/21 14:26     |             |  |
| Beryllium          |        | mg/L                      | ND              | 0.0005     | 0 0.000046         | 05/19/21 14:26     |             |  |
| Boron              |        | mg/L                      | ND              | 0.04       | 0 0.0052           | 05/19/21 14:26     |             |  |
| Cadmium            |        | mg/L                      | ND              | 0.0005     | 0 0.00012          | 05/19/21 14:26     |             |  |
| Chromium           |        | mg/L                      | ND              | 0.005      | 0 0.00055          | 05/19/21 14:26     |             |  |
| Cobalt             |        | mg/L                      | ND              | 0.005      | 0 0.00038          | 05/19/21 14:26     |             |  |
| Lead               |        | mg/L                      | ND              | 0.001      | 0 0.000036         | 05/19/21 14:26     |             |  |
| Lithium            |        | mg/L                      | ND              | 0.03       | 0 0.00081          | 05/19/21 14:26     |             |  |
| Molybdenum         |        | mg/L                      | ND              | 0.01       | 0 0.00069          | 05/19/21 14:26     |             |  |
| Selenium           |        | mg/L                      | ND              | 0.005      | 0 0.0016           | 05/19/21 14:26     |             |  |
| Thallium           |        | mg/L                      | ND              | 0.001      | 0 0.00014          | 05/19/21 14:26     |             |  |
|                    |        |                           |                 |            |                    |                    |             |  |

#### LABORATORY CONTROL SAMPLE: 3268035

|            |       | Spike | LCS    | LCS   | % Rec  |            |
|------------|-------|-------|--------|-------|--------|------------|
| Parameter  | Units | Conc. | Result | % Rec | Limits | Qualifiers |
| Antimony   | mg/L  | 0.1   | 0.10   | 105   | 80-120 |            |
| Arsenic    | mg/L  | 0.1   | 0.099  | 99    | 80-120 |            |
| Barium     | mg/L  | 0.1   | 0.099  | 99    | 80-120 |            |
| Beryllium  | mg/L  | 0.1   | 0.10   | 101   | 80-120 |            |
| Boron      | mg/L  | 1     | 1.0    | 104   | 80-120 |            |
| Cadmium    | mg/L  | 0.1   | 0.10   | 102   | 80-120 |            |
| Chromium   | mg/L  | 0.1   | 0.097  | 97    | 80-120 |            |
| Cobalt     | mg/L  | 0.1   | 0.097  | 97    | 80-120 |            |
| Lead       | mg/L  | 0.1   | 0.099  | 99    | 80-120 |            |
| Lithium    | mg/L  | 0.1   | 0.10   | 101   | 80-120 |            |
| Molybdenum | mg/L  | 0.1   | 0.10   | 101   | 80-120 |            |
| Selenium   | mg/L  | 0.1   | 0.096  | 96    | 80-120 |            |
| Thallium   | mg/L  | 0.1   | 0.098  | 98    | 80-120 |            |

| MATRIX SPIKE & MATRIX SP | ICATE: 3268  | 036            |             | 3268037      |              |              |            |            |                  |        |          |      |
|--------------------------|--------------|----------------|-------------|--------------|--------------|--------------|------------|------------|------------------|--------|----------|------|
|                          |              | 92538834001    | MS<br>Spike | MSD<br>Spike | MS           | MSD          | MS         | MSD        | % Rec            |        | Мах      |      |
| Parameter                | Units        | Result         | Conc.       | Conc.        | Result       | Result       | % Rec      | % Rec      | Limits           | RPD    | RPD      | Qual |
| Antimony<br>Arsenic      | mg/L<br>mg/L | 0.00052J<br>ND | 0.1<br>0.1  | 0.1<br>0.1   | 0.10<br>0.10 | 0.11<br>0.10 | 103<br>101 | 105<br>102 | 75-125<br>75-125 | 2<br>1 | 20<br>20 |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: YATES Pace Project No.: 92538834

| MATRIX SPIKE & MATRIX SPIK | E DUPL | ICATE: 3268 | 036<br>MS | MSD   | 3268037 |        |       |       |        |     |     |      |
|----------------------------|--------|-------------|-----------|-------|---------|--------|-------|-------|--------|-----|-----|------|
|                            |        | 92538834001 | Spike     | Spike | MS      | MSD    | MS    | MSD   | % Rec  |     | Max |      |
| Parameter                  | Units  | Result      | Conc.     | Conc. | Result  | Result | % Rec | % Rec | Limits | RPD | RPD | Qual |
| Barium                     | mg/L   | 0.015       | 0.1       | 0.1   | 0.11    | 0.11   | 95    | 98    | 75-125 | 3   | 20  |      |
| Beryllium                  | mg/L   | ND          | 0.1       | 0.1   | 0.091   | 0.091  | 91    | 91    | 75-125 | 0   | 20  |      |
| Boron                      | mg/L   | 1.3         | 1         | 1     | 2.5     | 2.4    | 118   | 114   | 75-125 | 2   | 20  |      |
| Cadmium                    | mg/L   | ND          | 0.1       | 0.1   | 0.10    | 0.10   | 101   | 102   | 75-125 | 1   | 20  |      |
| Chromium                   | mg/L   | ND          | 0.1       | 0.1   | 0.098   | 0.10   | 97    | 100   | 75-125 | 3   | 20  |      |
| Cobalt                     | mg/L   | ND          | 0.1       | 0.1   | 0.098   | 0.10   | 98    | 102   | 75-125 | 4   | 20  |      |
| Lead                       | mg/L   | 0.000049J   | 0.1       | 0.1   | 0.096   | 0.097  | 96    | 97    | 75-125 | 1   | 20  |      |
| Lithium                    | mg/L   | 0.011J      | 0.1       | 0.1   | 0.10    | 0.10   | 91    | 92    | 75-125 | 1   | 20  |      |
| Molybdenum                 | mg/L   | 0.0042J     | 0.1       | 0.1   | 0.10    | 0.11   | 99    | 104   | 75-125 | 5   | 20  |      |
| Selenium                   | mg/L   | ND          | 0.1       | 0.1   | 0.10    | 0.10   | 101   | 101   | 75-125 | 0   | 20  |      |
| Thallium                   | mg/L   | ND          | 0.1       | 0.1   | 0.096   | 0.097  | 96    | 97    | 75-125 | 1   | 20  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:          | YATES            |                 |              |            |           |            |             |              |            |           |     |      |
|-------------------|------------------|-----------------|--------------|------------|-----------|------------|-------------|--------------|------------|-----------|-----|------|
| Pace Project No.: | 92538834         |                 |              |            |           |            |             |              |            |           |     |      |
| QC Batch:         | 621085           |                 | Analy        | sis Metho  | d:        | EPA 7470A  |             |              |            |           |     |      |
| QC Batch Method:  | EPA 7470A        |                 | Analy        | sis Descri | ption:    | 7470 Mercu | iry         |              |            |           |     |      |
|                   |                  |                 | Labor        | atory:     |           | Pace Analy | tical Servi | ces - Peach  | tree Corne | ers, GA   |     |      |
| Associated Lab Sa | mples: 92538834  | 001, 9253883400 | 02, 92538834 | 4003, 925  | 38834004  |            |             |              |            |           |     |      |
| METHOD BLANK:     | 3267704          |                 |              | Matrix: W  | ater      |            |             |              |            |           |     |      |
| Associated Lab Sa | mples: 92538834  | 001, 9253883400 | 02, 92538834 | 4003, 925  | 38834004  |            |             |              |            |           |     |      |
|                   |                  |                 | Blan         | k          | Reporting |            |             |              |            |           |     |      |
| Para              | meter            | Units           | Resu         | ılt        | Limit     | MD         | L           | Analyzed     | Q          | ualifiers |     |      |
| Mercury           |                  | mg/L            |              | ND         | 0.0002    | 20 0.0     | 00078       | 05/19/21 10: | :53        |           |     |      |
|                   |                  |                 |              |            |           |            |             |              |            |           |     |      |
| LABORATORY CO     | NTROL SAMPLE:    | 3267705         |              |            |           |            |             |              |            |           |     |      |
|                   |                  |                 | Spike        | LC         | S         | LCS        | %           | Rec          |            |           |     |      |
| Para              | meter            | Units           | Conc.        | Res        | sult      | % Rec      | Lir         | nits         | Qualifiers |           |     |      |
| Mercury           |                  | mg/L            | 0.002        | 5          | 0.0024    | 9          | 6           | 80-120       |            | _         |     |      |
|                   |                  |                 |              |            |           |            |             |              |            |           |     |      |
| MATRIX SPIKE & M  | MATRIX SPIKE DUP | PLICATE: 3267   | 706          |            | 326770    | 7          |             |              |            |           |     |      |
|                   |                  |                 | MS           | MSD        |           |            |             |              | _          |           |     |      |
| Demonstra         |                  | 92538834001     | Spike        | Spike      | MS        | MSD        | MS          | MSD          | % Rec      | 000       | Max | 0    |
| Paramete          |                  | S Result        | Conc.        | Conc.      | Result    | Result     | % Rec       | % Rec        | LIMITS     | KPD       | KPD | Qual |
| Mercury           |                  |                 | 0.0005       | 0.0005     | 0 0000    | 0 0004     | 0           | n ne         | 75 405     | 2         | 20  |      |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:            | YATES         |                  |                  |             |               |                  |                    |
|---------------------|---------------|------------------|------------------|-------------|---------------|------------------|--------------------|
| Pace Project No.:   | 92538834      |                  |                  |             |               |                  |                    |
| QC Batch:           | 621303        |                  | Analysis M       | ethod:      | SM 2540C-20   | 11               |                    |
| QC Batch Method:    | SM 2540C-20   | 11               | Analysis De      | escription: | 2540C Total D | issolved Solids  |                    |
|                     |               |                  | Laboratory       | :           | Pace Analytic | al Services - Pe | achtree Corners, G |
| Associated Lab Sa   | mples: 925388 | 34001, 925388340 | 02, 92538834003, | 92538834004 |               |                  |                    |
| METHOD BLANK:       | 3269201       |                  | Matrix           | x: Water    |               |                  |                    |
| Associated Lab Sa   | mples: 925388 | 34001, 925388340 | 02, 92538834003, | 92538834004 |               |                  |                    |
|                     |               |                  | Blank            | Reporting   |               |                  |                    |
| Para                | meter         | Units            | Result           | Limit       | MDL           | Analy            | zed Qualifie       |
| Total Dissolved Sol | ids           | mg/L             | ND               | D 10.       | .0            | 10.0 05/19/21    | 08:18              |
|                     |               |                  |                  |             |               |                  |                    |
| LABORATORY CO       | NTROL SAMPLE  | : 3269202        |                  |             |               |                  |                    |
|                     |               |                  | Spike            | LCS         | LCS           | % Rec            |                    |
| Para                | meter         | Units            | Conc.            | Result      | % Rec         | Limits           | Qualifiers         |
| Total Dissolved Sol | ids           | mg/L             | 400              | 397         | 99            | 90-111           |                    |
|                     |               |                  |                  |             |               |                  |                    |
| SAMPLE DUPLICA      | TE: 3269203   |                  |                  |             |               |                  |                    |
| _                   |               |                  | 92538698003      | Dup         |               | Max              |                    |
| Para                | meter         | Units            | Result           | Result      | RPD           | RPD              | Qualifiers         |
| Total Dissolved Sol | ids           | mg/L             | 56.0             | ) 71.       | .0            | 24               | 10 D6              |
|                     |               |                  |                  |             |               |                  |                    |
| SAMPLE DUPLICA      | TE: 3269204   |                  |                  |             |               |                  |                    |
| _                   |               |                  | 92539203003      | Dup         |               | Max              | o ""               |
| Para                | meter         | Units            | Result           | Result      | RPD           | RPD              | Qualifiers         |
| Total Dissolved Sol | ids           | mg/L             | 76.0             | 96.         | .0            | 23               | 10 D6              |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



| Project:          | YATES    |             |                |             |             |           |             |            |               |            |           |     |      |
|-------------------|----------|-------------|----------------|-------------|-------------|-----------|-------------|------------|---------------|------------|-----------|-----|------|
| Pace Project No.: | 925388   | 34          |                |             |             |           |             |            |               |            |           |     |      |
| QC Batch:         | 62093    | 8           |                | Anal        | ysis Metho  | d:        | EPA 300.0   | Rev 2.1    | 1993          |            |           |     |      |
| QC Batch Method:  | EPA 3    | 00.0 Rev 2. | 1 1993         | Analy       | ysis Descri | ption:    | 300.0 IC Ar | nions      |               |            |           |     |      |
|                   |          |             |                | Labo        | oratory:    |           | Pace Analy  | tical Serv | /ices - Ashev | ille       |           |     |      |
| Associated Lab Sa | imples:  | 925388340   | 01, 9253883400 | 02, 9253883 | 34003, 925  | 38834004  |             |            |               |            |           |     |      |
| METHOD BLANK:     | 326715   | 5           |                |             | Matrix: W   | ater      |             |            |               |            |           |     |      |
| Associated Lab Sa | mples:   | 925388340   | 01, 9253883400 | 02, 9253883 | 34003, 925  | 38834004  |             |            |               |            |           |     |      |
|                   |          |             |                | Blai        | nk          | Reporting |             |            |               |            |           |     |      |
| Para              | meter    |             | Units          | Res         | ult         | Limit     | MD          | L          | Analyzed      | Qı         | ualifiers |     |      |
| Chloride          |          |             | mg/L           |             | ND          | 1         | .0          | 0.60       | 05/17/21 21   | :42        |           |     |      |
| Fluoride          |          |             | mg/L           |             | ND          | 0.1       | 0           | 0.050      | 05/17/21 21   | :42        |           |     |      |
| Sulfate           |          |             | mg/L           |             | ND          | 1         | .0          | 0.50       | 05/17/21 21:  | :42        |           |     |      |
| LABORATORY CC     | ONTROL S | SAMPLE:     | 3267156        |             |             |           |             |            |               |            |           |     |      |
|                   |          |             |                | Spike       | LC          | S         | LCS         | %          | Rec           |            |           |     |      |
| Para              | meter    |             | Units          | Conc.       | Res         | sult      | % Rec       | Li         | mits          | Qualifiers |           |     |      |
| Chloride          |          |             | mg/L           | 5           | 50          | 49.6      | 9           | 9          | 90-110        |            |           |     |      |
| Fluoride          |          |             | mg/L           | 2           | .5          | 2.4       | 9           | 8          | 90-110        |            |           |     |      |
| Sulfate           |          |             | mg/L           | 5           | 50          | 48.3      | 9           | 7          | 90-110        |            |           |     |      |
| MATRIX SPIKE & I  | MATRIX S |             | LICATE: 3267   | '157        |             | 326715    | 8           |            |               |            |           |     |      |
|                   |          |             |                | MS          | MSD         |           |             |            |               |            |           |     |      |
|                   |          |             | 92538495031    | Spike       | Spike       | MS        | MSD         | MS         | MSD           | % Rec      |           | Max |      |
| Paramete          | ər       | Units       | Result         | Conc.       | Conc.       | Result    | Result      | % Rec      | % Rec         | Limits     | RPD       | RPD | Qual |
| Chloride          |          | mg/L        | ND             | 50          | 50          | 50.6      | 50.6        | 10         | 01 101        | 90-110     | 0         | 10  |      |
| Fluoride          |          | mg/L        | ND             | 2.5         | 2.5         | 2.5       | 2.5         | ç          | 99 98         | 90-110     | 0         | 10  |      |
| Sulfate           |          | mg/L        | ND             | 50          | 50          | 49.2      | 49.1        | ę          | 98 98         | 90-110     | 0         | 10  |      |
| MATRIX SPIKE &    | MATRIX S |             | LICATE: 3267   | '159        |             | 326716    | 0           |            |               |            |           |     |      |
|                   |          |             |                | MS          | MSD         |           |             |            |               |            |           |     |      |
| _                 |          |             | 92538834001    | Spike       | Spike       | MS        | MSD         | MS         | MSD           | % Rec      |           | Max |      |
| Paramete          | er       | Units       | Result         | Conc.       | Conc.       | Result    | Result      | % Rec      | % Rec         | Limits     | RPD       | RPD | Qual |
| Chloride          |          | mg/L        | 4.0            | 50          | 50          | 54.1      | 55.3        | 10         | 00 103        | 90-110     | 2         | 10  |      |
| Fluoride          |          | mg/L        | 0.12           | 2.5         | 2.5         | 2.3       | 2.4         | 8          | 39 90         | 90-110     | 2         | 10  | M1   |
| Sulfate           |          | mg/L        | 178            | 50          | 50          | 206       | 199         | Ę          | 56 42         | 90-110     | 4         | 10  | M1   |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

# **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.



#### QUALIFIERS

Project: YATES Pace Project No.: 92538834

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### ANALYTE QUALIFIERS

B Analyte was detected in the associated method blank.

- D6 The precision between the sample and sample duplicate exceeded laboratory control limits.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.



## QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: YATES Pace Project No.: 92538834

| Lab ID      | Sample ID | QC Batch Method        | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|-----------|------------------------|----------|-------------------|---------------------|
| 92538834001 | PZ-37D    |                        |          |                   |                     |
| 92538834001 | PZ-37D    | EPA 3010A              | 621064   | EPA 6010D         | 621124              |
| 92538834002 | FB-1      | EPA 3010A              | 621064   | EPA 6010D         | 621124              |
| 92538834003 | EB-1      | EPA 3010A              | 621064   | EPA 6010D         | 621124              |
| 92538834004 | DUP-1     | EPA 3010A              | 621064   | EPA 6010D         | 621124              |
| 92538834001 | PZ-37D    | EPA 3005A              | 621135   | EPA 6020B         | 621237              |
| 92538834002 | FB-1      | EPA 3005A              | 621135   | EPA 6020B         | 621237              |
| 92538834003 | EB-1      | EPA 3005A              | 621135   | EPA 6020B         | 621237              |
| 92538834004 | DUP-1     | EPA 3005A              | 621135   | EPA 6020B         | 621237              |
| 92538834001 | PZ-37D    | EPA 7470A              | 621085   | EPA 7470A         | 621197              |
| 92538834002 | FB-1      | EPA 7470A              | 621085   | EPA 7470A         | 621197              |
| 92538834003 | EB-1      | EPA 7470A              | 621085   | EPA 7470A         | 621197              |
| 92538834004 | DUP-1     | EPA 7470A              | 621085   | EPA 7470A         | 621197              |
| 92538834001 | PZ-37D    | SM 2540C-2011          | 621303   |                   |                     |
| 92538834002 | FB-1      | SM 2540C-2011          | 621303   |                   |                     |
| 92538834003 | EB-1      | SM 2540C-2011          | 621303   |                   |                     |
| 92538834004 | DUP-1     | SM 2540C-2011          | 621303   |                   |                     |
| 92538834001 | PZ-37D    | EPA 300.0 Rev 2.1 1993 | 620938   |                   |                     |
| 92538834002 | FB-1      | EPA 300.0 Rev 2.1 1993 | 620938   |                   |                     |
| 92538834003 | EB-1      | EPA 300.0 Rev 2.1 1993 | 620938   |                   |                     |
| 92538834004 | DUP-1     | EPA 300.0 Rev 2.1 1993 | 620938   |                   |                     |

|                                                                                                     |                                |              | -              |               |                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------|--------------------------------|--------------|----------------|---------------|----------------------------------------------------------------------------------------------------------------------------------|
| 67                                                                                                  | D                              | ocument      | Name:          | (scup)        | Document Revised: October 28, 2020                                                                                               |
| Pace Analytical                                                                                     | Sample Con                     | Document     | t No.:         | (JSCOR)       | Issuing Authority:                                                                                                               |
|                                                                                                     | F-C                            | AR-CS-03     | 3-Rev.07       |               | Pace Carolinas Quality Office                                                                                                    |
| boratory receiving samples:<br>Asheville Eden Greenwood                                             | I 🗌 Hunters                    | ville 🗌      | Ralei          | gh 🗌          | Mechanicsville Atlanta Kernersville                                                                                              |
| Sample Condition<br>Upon Receipt<br>G-COr 9. 01                                                     | power                          |              |                | Projec        | WO#:92538834                                                                                                                     |
| Durier: Fed Ex U                                                                                    |                                | ;<br>::      | 90             | ient          | 92538834                                                                                                                         |
| tody Seal Present? Yes No                                                                           | Seals Intact?                  | ☐Yes         | DNO            |               | Date/Initials Person Examining Contents: 19 5/14                                                                                 |
| king Material: □Bubble Wrap [<br>rmometer:<br>□ IR Gun ID: <u>230</u>                               | Bubble Bags                    | Avone<br>ce: | e □ 0<br>wet □ | Other<br>Blue | Biological Jissue Frozen?                                                                                                        |
| oler Temp: <u>212</u> Correction<br>Add/Subtra                                                      | Factor: ±<br>act (°C) ±<br>210 | 0,2          | _              |               | Temp should be above freezing to 6°C<br>Samples out of temp criteria. Samples on ice, cooling proce<br>has begun                 |
| DA Regulated Soil ( 🔲 N/A, water sample)<br>samples originate in a quarantine zone within th<br>Yes | e United States: C/            | A, NY, or S( | C (check m     | aps)?         | Did samples originate from a foreign source (internationally,<br>including Hawaii and Puerto Rico)? Yes<br>Comments/Discrepancy: |
|                                                                                                     | []War                          |              |                | 1             |                                                                                                                                  |
|                                                                                                     |                                |              |                |               |                                                                                                                                  |
| Samples Arrived within Hold Time?                                                                   | Wes                            |              |                | 2.            |                                                                                                                                  |
| Short Hold Time Analysis (<72 hr.)? Rush Turn Around Time Requested?                                | [_]Yes<br>□]Yes                | DINO         |                | 4.            |                                                                                                                                  |
| Sufficient Volume?                                                                                  |                                |              |                | 5.            |                                                                                                                                  |
| Correct Containers Used?                                                                            | Difes                          |              |                | 6,            |                                                                                                                                  |
| -Pace Containers Used?                                                                              | Yes                            | No           | □n/A           |               |                                                                                                                                  |
| Containers Intact?                                                                                  | <b>V</b> Yes                   | □No          |                | 7.            |                                                                                                                                  |
| Dissolved analysis: Samples Field Filtered?                                                         | ☐ Yes                          | DNO          | □n/A           | 8.            |                                                                                                                                  |
| Sample Labels Match COC?                                                                            | Mes                            | □No          | ∐n/a           | 9.            |                                                                                                                                  |
| -Includes Date/Time/ID/Analysis Matrix:                                                             |                                |              | ,              |               |                                                                                                                                  |
| Headspace in VOA Vials (>5-6mm)?<br>Trip Blank Present?                                             | ☐Yes<br>☐Yes                   | □No<br>□No   |                | 10.<br>11.    |                                                                                                                                  |
| Trip Blank Custody Seals Present?                                                                   | Yes                            | No           |                |               |                                                                                                                                  |
| COMMENTS/SAMPLE DISCREPANCY                                                                         |                                |              |                |               | Field Data Required? 🛛 Yes 🗍 No                                                                                                  |
|                                                                                                     |                                |              |                | Lo            | t ID of split containers:                                                                                                        |
| IENT NOTIFICATION/RESOLUTION                                                                        |                                |              |                |               |                                                                                                                                  |
| Person contacted:                                                                                   |                                |              | Date/1         | lime:         |                                                                                                                                  |
|                                                                                                     |                                |              |                |               | Deter                                                                                                                            |
| Project Manager SCURF Review:                                                                       |                                |              |                |               | Date:                                                                                                                            |
| Project Manager SCURF Review:                                                                       |                                |              |                |               | Date:                                                                                                                            |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,             |              |                  |                 |                |         |                |                |                 |             |                       |              |                         |                         |               |                                                  |                               |                 |              |                 |             |                       |                                          |              | 2000        |            |          |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------|------------------|-----------------|----------------|---------|----------------|----------------|-----------------|-------------|-----------------------|--------------|-------------------------|-------------------------|---------------|--------------------------------------------------|-------------------------------|-----------------|--------------|-----------------|-------------|-----------------------|------------------------------------------|--------------|-------------|------------|----------|-------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |              | 1                | Pace            | e Ana          | lytica  | a/             |                |                 | Sam         | ple Co                | Doci         | ion Uj                  | t Nam<br>pon R<br>nt No | ne:<br>.eceip | eceipt(SCUR) Page 2 of 2<br>· Issuing Authority: |                               |                 |              |                 |             |                       | ,                                        |              |             |            |          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |              |                  |                 |                | -       |                |                |                 |             | F                     | -CAR         | -CS-0                   | 33-Re                   | v.07          |                                                  | Pace Carolinas Quality Office |                 |              |                 |             |                       |                                          | ce           |             |            |          |             |
| c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | heck          | (ma<br>d an  | rk to<br>d wit   | p ha            | alf of         | box     | if pl          | H an           | d/or            | dec<br>for  | hlori                 | nati<br>erva | on is<br>tion           |                         |               | Proj                                             | ect #                         | ŧ [             | WC           | )#              | :9          | )2                    | 53                                       | 38           | 83          | 34         |          |             |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mple          | eran<br>es.  |                  |                 | the            | acce    | pran           |                | ange            | 101         | <b>P</b> 1 C 0        |              |                         |                         |               |                                                  |                               |                 | PM :         | KLH             | 1           |                       | Du                                       | e Da         | ate:        | 05         | /28      | /21         |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | eptio<br>Bott | ns: Vi<br>om | DA, Co<br>half ( | oliforr<br>of b | n, TO<br>ox is | to li   | and G<br>st ทเ | imb            | , DRO,<br>er of | /8015       | (wate<br>t <b>les</b> | r) DO        | C, LLF                  | łg                      |               |                                                  |                               |                 | CLIE         | NT :            | GA          | -GA                   | Pow                                      | er           |             |            |          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (cl-)         | 1            | 1                |                 | -              |         | (6<) H         | 3              | served          | (c-)        |                       | (A) (CI-)    |                         |                         | (A)(CI-)      |                                                  |                               |                 |              |                 | 0           | Land Statement of the | (                                        |              | (2)         | ls (N/A)   |          | (N/A)       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | erved (N/P    | /N) pava     | erved (N/A       | ved (N/A)       | рН < 2) (Cl    | pH < 2) | ate & NaO      | pH > 12) (C    | jar Unpre       | Inved (N/A) | < 2)                  | served (N/   | pH < 2)                 | (pH < 2)                | NH4CI (N/     |                                                  | (N/A)                         |                 | (V)          | kit (N/A)       | as kit (N/A | (del – A/N            | (N/A – lab                               |              | 504 (9.3-9  | served via | Is (N/A) | erved vials |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Unpres        | Unpres       | Unpres           | upresei         | H2SO4          | HNO3 (  | ZN Acet        | HOEN           | d Glass         | Unprese     | HCI (pH               | r Unpre      | 12504 (                 | HZSOA                   | Ambei         | (N/A)                                            | 25203                         | N/N) di         | PO4 (N       | { <b>}-5035</b> | )/HJ/-(     | Plastic               | Plastic                                  |              | (ZHN)       | r Unpre    | ation vi | Unpres      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Plastic       | Plastic      | Plastic          | lastic U        | Plastic        | plastic | Plastic        | Plastic        | mouthe          | Amber I     | Amber                 | . Ambei      | mber I                  | Amber                   | -250 ml       | VOA HC                                           | IOA Na                        | VOA Ur          | VOA H3       | s per kli       | per kit     | Sterile               | . Sterile                                | 5            | Plastic     | L Ambe     | Scintill | Amber       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 125 mL        | 250 mL       | 500 mL           | 1 liter P       | 125 mL         | 250 mL  | 125 ml         | 125 mL         | -Wide-          | 1 liter /   | l liter /             | .250 ml      | 1 liter /               | 250 mL                  | (DG3A)        | 40 mL                                            | 40 mL \                       | 40 mL           | 40 mL        | (6 vials        | (3 vials    | 125 mL                | 250 ml                                   | 11           | -250 ml     | -100 m     | -20 mL   | -40 mL      |
| And a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec | BP4U-         | BP3U-        | BP2U-            | BP1U-           | BP4S-1         | BP3N-   | BP4Z-:         | BP4C-          | WGFU            | AGIU        | AG1H-                 | AG3U         | AG15-                   | AG3S-                   | AG3A          | DG9H                                             | VG9T-                         | VG9U            | DG9P         | VOAK            | V/GK        | SPST-                 | SP2T-                                    | 0            | BP3A        | AGOU       | vsgu     | D690        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\square$     | 1            | 1                |                 | $\backslash$   | X       | /              | $\backslash$   |                 |             |                       |              | $\mathbb{N}$            | $\backslash$            | $\backslash$  |                                                  |                               |                 |              |                 |             |                       |                                          | X.           | $\sum$      |            |          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\square$     | ١            | j                |                 | $\square$      | V       | 1              | $\backslash$   |                 |             | $\sum$                | C            | 1                       | $\langle \cdot \rangle$ | $\square$     |                                                  |                               |                 |              |                 |             |                       |                                          | R            | $\sum$      |            |          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sum$        | ١            | 1                |                 | K              | N       | $\square$      | $\square$      |                 |             | N                     |              | $\backslash$            |                         | N             |                                                  | 1                             | <b>Þ</b>        |              |                 |             |                       |                                          | 2            | $\bigwedge$ |            |          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sum$        | 1            | 1                |                 | $\overline{)}$ | X       | $\overline{)}$ | $\overline{)}$ | <b>*</b>        |             | N                     |              | N                       | 1                       | $\backslash$  |                                                  |                               |                 |              |                 | <b>X</b>    |                       |                                          | R            | $\bigwedge$ |            |          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\sum$        |              |                  |                 | Ń              | N       | $\overline{)}$ | N              |                 |             | N                     |              | X                       | N                       | X             | ×                                                |                               |                 |              |                 |             |                       |                                          | N            | N           |            |          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\square$     |              |                  |                 | K              | K       | $\square$      | N              | 1               |             | N                     | 1            | $\overline{\backslash}$ | N                       | X             |                                                  |                               |                 |              |                 |             |                       |                                          | $\bigwedge$  | N           |            |          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\square$     |              |                  |                 | N              | N       | N              |                |                 |             | N                     |              | N                       | N                       | N             |                                                  |                               |                 |              |                 |             |                       |                                          | N            | N           |            |          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\square$     |              |                  |                 | $\backslash$   | N       | N              | N              |                 |             | $\backslash$          |              | 1                       | N                       | N             |                                                  |                               |                 |              |                 |             |                       | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | $\backslash$ |             |            |          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\square$     |              |                  |                 | N              | N       | N              | N              |                 |             | N                     |              | $\wedge$                | N                       | N             |                                                  | 2                             |                 |              |                 |             |                       |                                          | $\backslash$ | $\square$   |            |          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\square$     |              |                  |                 | $\backslash$   | N       | N              | K              |                 |             | N                     |              | N                       | Ν                       | N             |                                                  |                               |                 |              |                 |             |                       |                                          | $\square$    | $\square$   |            |          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\square$     |              |                  |                 | $\backslash$   | N       | N              | N              |                 |             | N                     |              | $\backslash$            | N                       | N             |                                                  |                               |                 |              |                 |             |                       |                                          | $\square$    | $\square$   |            |          |             |
| ľ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\backslash$  |              |                  |                 | $\backslash$   | N       | N              | N              | J               |             | $\backslash$          |              | N                       | $\sum$                  | N             |                                                  |                               |                 |              |                 |             |                       |                                          | $\square$    | $\square$   |            |          |             |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               |              | -                |                 |                |         |                |                | p               | H Ad        | ljust                 | me           | nt Lo                   | og fo                   | or Pr         | esei                                             | ved                           | Sar             | nple         | s               |             |                       |                                          |              |             |            |          | - 1911/1/2  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ample         | ID           | Тур              | be of 1         | Preser         | vative  | F F            | нир            | on rec          | eipt        | Dat                   | e pre        | servat                  | ion ac                  | ljusted       | 1                                                | Time<br>a                     | prese<br>adjust | rvatio<br>ed | n               | An          | nount                 | of Pro<br>adde                           | eserva<br>d  | tive        |            | Lot      | #           |
| Í                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -             |              |                  |                 |                |         |                |                |                 |             |                       |              |                         |                         |               |                                                  |                               |                 |              |                 |             |                       |                                          |              |             |            |          | ****        |

Nate: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

|                                 |         |     |       | ADDITIONAL COMMENTS | SAMPLE ID<br>Che Character per box.<br>(AZ, USI,.<br>Sample Ide must be unique<br>PZ-3TD (0513Z1)<br>EB-01 (0513Z1)<br>DuP-01 (0513Z1)<br>DuP-01 (0513Z1) |               | isted Due Date | c (770)3F4-6526 Fax | n, GA 30114    | ss: 1070 Bridge Mill Ave | any: Georgia Power | n A<br>red Client Information: | Pace Analytical |
|---------------------------------|---------|-----|-------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------|---------------------|----------------|--------------------------|--------------------|--------------------------------|-----------------|
|                                 | -       |     | Berly | B                   | · · · · · · · · · · · · · · · · · · ·                                                                                                                     |               | Project #:     | Project Name:       | Purchase Order | Copy To:                 | Report To: Be      | Section B<br>Required Project  |                 |
|                                 |         |     | 6     | MOUN                | SAMPLE TYPE (G=GRAB C=COMP)                                                                                                                               |               |                | Yat                 | *              |                          | cky SI             | et info                        |                 |
|                                 |         |     | 3     | SHED                | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                     | 11            |                | Ĩ                   |                | ł                        | teeve              | Amati                          |                 |
| <b>-</b>                        | 50      | -   | 3     | HN I VB             |                                                                                                                                                           |               |                |                     |                |                          |                    | 01                             |                 |
| - 56 12                         | AMPLI   |     | R     | FILIATIO            |                                                                                                                                                           |               |                |                     |                |                          |                    |                                |                 |
| NT Name                         | ER NAME |     | A.    | 2                   | ECTED                                                                                                                                                     |               |                |                     |                |                          |                    |                                | 다.<br>다.        |
| of SAL                          | ANDS    |     | 5     | g                   | NO TIME                                                                                                                                                   |               |                |                     |                |                          |                    |                                | ain-of          |
| AP LE                           | AND     |     | 14/2  | Ħ                   | SAMPLE TEMP AT COLLECTION                                                                                                                                 |               |                |                     |                |                          |                    |                                | Č,              |
|                                 | Type -  |     | B     | 1000                | # OF CONTAINERS                                                                                                                                           |               | Pa             | Pa                  |                | 8                        | Atte               |                                | g B             |
| 18                              | 1       |     | 5     |                     | Unpreserved                                                                                                                                               |               | 2 Pro          | * Pro               | Iress:         | npany                    | ntion              | olce I                         | is a            |
| 12                              |         |     | P     |                     | H2SO4                                                                                                                                                     |               | 10.4           | Yeat N              | ote:           | Nan                      | -                  | niom                           | <b>E</b>        |
| d.                              |         |     | 6     |                     | НИОЗ ТОТА                                                                                                                                                 |               |                | Aanag               |                |                          |                    | natio                          | ž i             |
| WLP                             |         |     | 6     |                     |                                                                                                                                                           |               | DRAD           | e.                  |                |                          |                    | 2                              | S Z             |
| 131                             |         |     | 8     | 2                   |                                                                                                                                                           |               |                |                     |                |                          |                    |                                | UM              |
| 8                               |         |     | 6     | ČĘ,                 | Methanol                                                                                                                                                  |               |                |                     |                |                          |                    |                                | 22              |
| 11                              |         |     | 0     | FED B               | Other                                                                                                                                                     |               |                | Printo              |                |                          |                    |                                | ≧ 2             |
|                                 |         |     | 2     | YIN                 | Analyses Test Y/N                                                                                                                                         | Surger of     | K              | Cona                |                |                          |                    |                                |                 |
|                                 |         |     | 2     | FRLM                | R R R App III & IV Metals                                                                                                                                 | Distantion of |                | xelab.              |                |                          |                    |                                | eq.             |
| ATE                             |         |     | (     | NON                 |                                                                                                                                                           | 3             |                | 8                   |                |                          |                    |                                | field           |
| , sê                            |         |     |       |                     | Ci, F, SO4                                                                                                                                                | Treat         |                |                     |                |                          |                    |                                | ã d             |
| 2                               | 10.1    |     |       | 101%                |                                                                                                                                                           | V Pe          |                |                     |                |                          |                    |                                | SE C            |
| 4                               | 100     | ++- | 5     | LULLIN<br>LULLIN    |                                                                                                                                                           | ualty at      |                |                     |                |                          |                    |                                | 6 0 <b>U</b>    |
| 14                              |         |     | 1     | DATE                |                                                                                                                                                           | 1             | 1              |                     |                |                          | $\Box$             |                                | mple<br>IEII    |
|                                 |         |     | 2     |                     |                                                                                                                                                           | 2 a           |                | Charles -           | 1000           |                          |                    |                                | Ĕ 1             |
|                                 |         |     | 60    | 1                   |                                                                                                                                                           | <b>KN</b>     |                |                     | 04040          |                          |                    |                                | acc             |
|                                 |         |     | 30    | A                   |                                                                                                                                                           |               |                | 10/01               |                | 1                        | I                  |                                | 1 at            |
|                                 | 1 문.    | ++- | 2     | 200                 |                                                                                                                                                           | 100           |                |                     | 2              |                          |                    | Page                           | ły              |
| TEMP in C                       |         |     | 22    |                     | Residual Chiorine (Y/N)                                                                                                                                   |               |                | State               | gulat          |                          |                    |                                |                 |
| Received o                      | 'n      |     | 4     | SANDLE              |                                                                                                                                                           |               | A              | Location            | ony Agen       |                          |                    | •                              |                 |
| Custody<br>Sealed D<br>Cooler D | -†-     |     | 3     | CONDITIO            |                                                                                                                                                           | 0             |                | Superior Superior   | SA             |                          |                    | ç                              |                 |
| (Y/N)<br>Samples                | -+      |     |       | NS                  |                                                                                                                                                           |               |                | 8                   |                | 1                        |                    | 6                              | 1 1             |



Pace Analytical Services, LLC 110 Technology Parkway Peachtree Corners, GA 30092 (770)734-4200

June 29, 2021

Ms. Lauren Petty Southern Company 42 Inverness Center Parkway Birmingham, AL 35242

RE: Project: YATES RADS Pace Project No.: 92538831

Dear Ms. Petty:

Enclosed are the analytical results for sample(s) received by the laboratory on May 14, 2021. The results relate only to the samples included in this report. Results reported herein conform to the applicable TNI/NELAC Standards and the laboratory's Quality Manual, where applicable, unless otherwise noted in the body of the report.

The test results provided in this final report were generated by each of the following laboratories within the Pace Network: • Pace Analytical Services - Greensburg

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Kein Hung

Kevin Herring kevin.herring@pacelabs.com 1(704)875-9092 HORIZON Database Administrator

Enclosures

cc: Joju Abraham, Georgia Power-CCR Lauren Coker, Georgia Pwer Geoffrey Gay, ARCADIS - Atlanta Kristen Jurinko Kelley Sharpe, ARCADIS - Atlanta Alex Simpson, Arcadis Samantha Thomas Maribel Vital





Pace Analytical Services, LLC 110 Technology Parkway Peachtree Corners, GA 30092 (770)734-4200

#### CERTIFICATIONS

Project: YATES RADS Pace Project No.: 92538831

#### Pace Analytical Services Pennsylvania

1638 Roseytown Rd Suites 2,3&4, Greensburg, PA 15601 ANAB DOD-ELAP Rad Accreditation #: L2417 Alabama Certification #: 41590 Arizona Certification #: AZ0734 Arkansas Certification California Certification #: 04222CA Colorado Certification #: PA01547 Connecticut Certification #: PH-0694 **Delaware Certification** EPA Region 4 DW Rad Florida/TNI Certification #: E87683 Georgia Certification #: C040 Florida: Cert E871149 SEKS WET **Guam Certification** Hawaii Certification Idaho Certification **Illinois Certification** Indiana Certification Iowa Certification #: 391 Kansas/TNI Certification #: E-10358 Kentucky Certification #: KY90133 KY WW Permit #: KY0098221 KY WW Permit #: KY0000221 Louisiana DHH/TNI Certification #: LA180012 Louisiana DEQ/TNI Certification #: 4086 Maine Certification #: 2017020 Maryland Certification #: 308 Massachusetts Certification #: M-PA1457 Michigan/PADEP Certification #: 9991

Missouri Certification #: 235 Montana Certification #: Cert0082 Nebraska Certification #: NE-OS-29-14 Nevada Certification #: PA014572018-1 New Hampshire/TNI Certification #: 297617 New Jersey/TNI Certification #: PA051 New Mexico Certification #: PA01457 New York/TNI Certification #: 10888 North Carolina Certification #: 42706 North Dakota Certification #: R-190 Ohio EPA Rad Approval: #41249 Oregon/TNI Certification #: PA200002-010 Pennsylvania/TNI Certification #: 65-00282 Puerto Rico Certification #: PA01457 Rhode Island Certification #: 65-00282 South Dakota Certification Tennessee Certification #: 02867 Texas/TNI Certification #: T104704188-17-3 Utah/TNI Certification #: PA014572017-9 USDA Soil Permit #: P330-17-00091 Vermont Dept. of Health: ID# VT-0282 Virgin Island/PADEP Certification Virginia/VELAP Certification #: 9526 Washington Certification #: C868 West Virginia DEP Certification #: 143 West Virginia DHHR Certification #: 9964C Wisconsin Approve List for Rad Wyoming Certification #: 8TMS-L



## SAMPLE SUMMARY

Project: YATES RADS Pace Project No.: 92538831

| Lab ID      | Sample ID | Matrix | Date Collected | Date Received  |
|-------------|-----------|--------|----------------|----------------|
| 92538831001 | PZ-37D    | Water  | 05/13/21 12:30 | 05/14/21 09:30 |
| 92538831002 | FB-1      | Water  | 05/13/21 11:30 | 05/14/21 09:30 |
| 92538831003 | EB-1      | Water  | 05/13/21 18:30 | 05/14/21 09:30 |
| 92538831004 | DUP-1     | Water  | 05/13/21 00:00 | 05/14/21 09:30 |



## SAMPLE ANALYTE COUNT

| Project:           | YATES RADS |  |
|--------------------|------------|--|
| Pace Project No .: | 92538831   |  |

| Lab ID      | Sample ID | Method                   | Analysts | Analytes<br>Reported | Laboratory |
|-------------|-----------|--------------------------|----------|----------------------|------------|
| 92538831001 | PZ-37D    | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |           | EPA 9320                 | JC2      | 1                    | PASI-PA    |
|             |           | Total Radium Calculation | RMK      | 1                    | PASI-PA    |
| 92538831002 | FB-1      | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |           | EPA 9320                 | JC2      | 1                    | PASI-PA    |
|             |           | Total Radium Calculation | RMK      | 1                    | PASI-PA    |
| 92538831003 | EB-1      | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |           | EPA 9320                 | JC2      | 1                    | PASI-PA    |
|             |           | Total Radium Calculation | RMK      | 1                    | PASI-PA    |
| 92538831004 | DUP-1     | EPA 9315                 | LAL      | 1                    | PASI-PA    |
|             |           | EPA 9320                 | JC2      | 1                    | PASI-PA    |
|             |           | Total Radium Calculation | RMK      | 1                    | PASI-PA    |

PASI-PA = Pace Analytical Services - Greensburg



# SUMMARY OF DETECTION

Project: YATES RADS

Pace Project No.: 92538831

| Lab Sample ID            | Client Sample ID |                                                   |       |              |                |            |
|--------------------------|------------------|---------------------------------------------------|-------|--------------|----------------|------------|
| Method                   | Parameters       | Result                                            | Units | Report Limit | Analyzed       | Qualifiers |
| 92538831001              | PZ-37D           |                                                   |       |              |                |            |
| EPA 9315                 | Radium-226       | 2.70 ±<br>0.530<br>(0.161)                        | pCi/L |              | 06/25/21 10:34 |            |
| EPA 9320                 | Radium-228       | C:83% T:NA<br>2.66 ±<br>0.740<br>(0.762)<br>C:64% | pCi/L |              | 06/07/21 11:16 |            |
| Total Radium Calculation | Total Radium     | 1:78%<br>5.36 ± 1.27<br>(0.923)                   | pCi/L |              | 06/28/21 17:08 |            |
| 92538831002              | FB-1             |                                                   |       |              |                |            |
| EPA 9315                 | Radium-226       | 0.0225 ±<br>0.220<br>(0.600)<br>C:88% TNA         | pCi/L |              | 06/04/21 08:46 |            |
| EPA 9320                 | Radium-228       | 0.487 ±<br>0.440<br>(0.891)<br>C:60%              | pCi/L |              | 06/07/21 11:16 |            |
| Total Radium Calculation | Total Radium     | 0.510 ±<br>0.660<br>(1.49)                        | pCi/L |              | 06/21/21 20:12 |            |
| 92538831003              | EB-1             |                                                   |       |              |                |            |
| EPA 9315                 | Radium-226       | -0.0213 ±<br>0.200<br>(0.591)<br>C:92% T:NA       | pCi/L |              | 06/04/21 08:46 |            |
| EPA 9320                 | Radium-228       | 0.247 ±<br>0.316<br>(0.669)<br>C:68%<br>T:85%     | pCi/L |              | 06/07/21 11:16 |            |
| Total Radium Calculation | Total Radium     | 0.247 ±<br>0.516<br>(1.26)                        | pCi/L |              | 06/21/21 20:12 |            |
| 92538831004              | DUP-1            |                                                   |       |              |                |            |
| EPA 9315                 | Radium-226       | 2.47 ±<br>0.489<br>(0.154)<br>C:91% T:NA          | pCi/L |              | 06/25/21 10:34 |            |
| EPA 9320                 | Radium-228       | 1.70 ±<br>0.569<br>(0.728)<br>C:63%<br>T:78%      | pCi/L |              | 06/07/21 11:16 |            |
| Total Radium Calculation | Total Radium     | 4.17 ± 1.06<br>(0.882)                            | pCi/L |              | 06/28/21 17:08 |            |



#### ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: YATES RADS Pace Project No.: 92538831 Sample: PZ-37D Lab ID: 92538831001 Collected: 05/13/21 12:30 Received: 05/14/21 09:30 Matrix: Water PWS: Site ID: Sample Type: Act ± Unc (MDC) Carr Trac Parameters Method Units Analyzed CAS No. Qual Pace Analytical Services - Greensburg 2.70 ± 0.530 (0.161) EPA 9315 Radium-226 pCi/L 06/25/21 10:34 13982-63-3 C:83% T:NA Pace Analytical Services - Greensburg EPA 9320 2.66 ± 0.740 (0.762) Radium-228 pCi/L 06/07/21 11:16 15262-20-1 C:64% T:78% Pace Analytical Services - Greensburg **Total Radium** Total Radium 5.36 ± 1.27 (0.923) pCi/L 06/28/21 17:08 7440-14-4 Calculation



### ANALYTICAL RESULTS - RADIOCHEMISTRY

Project: YATES RADS

| Pace Project No.: 9 | 2538831 |  |
|---------------------|---------|--|
|---------------------|---------|--|

| Sample: FB-1 | Lab ID: 92538               | 831002 Collected: 05/13/21 11:30     | Received: | 05/14/21 09:30 M | latrix: Water |      |
|--------------|-----------------------------|--------------------------------------|-----------|------------------|---------------|------|
| PWS:         | Site ID:                    | Sample Type:                         |           |                  |               |      |
| Parameters   | Method                      | Act ± Unc (MDC) Carr Trac            | Units     | Analyzed         | CAS No.       | Qual |
|              | Pace Analytical S           | Services - Greensburg                |           |                  |               |      |
| Radium-226   | EPA 9315                    | 0.0225 ± 0.220 (0.600)<br>C:88% T:NA | pCi/L     | 06/04/21 08:46   | 13982-63-3    |      |
|              | Pace Analytical S           | Services - Greensburg                |           |                  |               |      |
| Radium-228   | EPA 9320                    | 0.487 ± 0.440 (0.891)<br>C:60% T:79% | pCi/L     | 06/07/21 11:16   | 15262-20-1    |      |
|              | Pace Analytical S           | Services - Greensburg                |           |                  |               |      |
| Total Radium | Total Radium<br>Calculation | 0.510 ± 0.660 (1.49)                 | pCi/L     | 06/21/21 20:12   | 7440-14-4     |      |



#### ANALYTICAL RESULTS - RADIOCHEMISTRY

Project:YATES RADSPace Project No.:92538831

| Sample: EB-1 | Lab ID: 92538               | <b>3831003</b> Collected: 05/13/21 18:30 | Received: | 05/14/21 09:30 N | latrix: Water |      |
|--------------|-----------------------------|------------------------------------------|-----------|------------------|---------------|------|
| PWS:         | Site ID:                    | Sample Type:                             |           |                  |               |      |
| Parameters   | Method                      | Act ± Unc (MDC) Carr Trac                | Units     | Analyzed         | CAS No.       | Qual |
|              | Pace Analytical             | Services - Greensburg                    |           |                  |               |      |
| Radium-226   | EPA 9315                    | -0.0213 ± 0.200 (0.591)<br>C:92% T:NA    | pCi/L     | 06/04/21 08:46   | 13982-63-3    |      |
|              | Pace Analytical             | Services - Greensburg                    |           |                  |               |      |
| Radium-228   | EPA 9320                    | 0.247 ± 0.316 (0.669)<br>C:68% T:85%     | pCi/L     | 06/07/21 11:16   | 15262-20-1    |      |
|              | Pace Analytical             | Services - Greensburg                    |           |                  |               |      |
| Total Radium | Total Radium<br>Calculation | 0.247 ± 0.516 (1.26)                     | pCi/L     | 06/21/21 20:12   | 7440-14-4     |      |



Matrix: Water

CAS No.

Qual

#### **ANALYTICAL RESULTS - RADIOCHEMISTRY**

Project: YATES RADS Pace Project No.: 92538831 Sample: DUP-1 Lab ID: 92538831004 Collected: 05/13/21 00:00 Received: 05/14/21 09:30 PWS: Site ID: Sample Type: Parameters Method Act ± Unc (MDC) Carr Trac Units Analyzed Pace Analytical Services - Greensburg EPA 9315 2.47 ± 0.489 (0.154) Radium-226 pCi/L 06/25/21 10:34 13982-63-3 C:91% T:NA Pace Analytical Services - Greensburg

| Radium-228   | EPA 9320                    | 1.70 ± 0.569 (0.728)<br>C:63% T:78% | pCi/L | 06/07/21 11:16 15262-20-1 |
|--------------|-----------------------------|-------------------------------------|-------|---------------------------|
|              | Pace Analytica              | l Services - Greensburg             |       |                           |
| Total Radium | Total Radium<br>Calculation | 4.17 ± 1.06 (0.882)                 | pCi/L | 06/28/21 17:08 7440-14-4  |



#### **QUALITY CONTROL - RADIOCHEMISTRY**

| Project:           | YATES RADS      |                                            |                   |                      |            |  |
|--------------------|-----------------|--------------------------------------------|-------------------|----------------------|------------|--|
| Pace Project No.:  | 92538831        |                                            |                   |                      |            |  |
| QC Batch:          | 449716          | Analysis Method:                           | EPA 9320          |                      |            |  |
| QC Batch Method:   | EPA 9320        | Analysis Description:                      | 9320 Radium 22    | 8                    |            |  |
|                    |                 | Laboratory:                                | Pace Analytical S | Services - Greensbur | g          |  |
| Associated Lab San | nples: 92538831 | 001, 92538831002, 92538831003, 92538831004 | 4                 |                      |            |  |
| METHOD BLANK:      | 2170082         | Matrix: Water                              |                   |                      |            |  |
| Associated Lab San | nples: 92538831 | 001, 92538831002, 92538831003, 92538831004 | 4                 |                      |            |  |
| Paran              | neter           | Act ± Unc (MDC) Carr Trac                  | Units             | Analyzed             | Qualifiers |  |
| Radium-228         |                 | 0.470 ± 0.364 (0.712) C:62% T:85%          | pCi/L             | 06/07/21 11:17       |            |  |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



## **QUALITY CONTROL - RADIOCHEMISTRY**

| Project:           | YATES RADS      |                                            |                    |                      |            |  |
|--------------------|-----------------|--------------------------------------------|--------------------|----------------------|------------|--|
| Pace Project No.:  | 92538831        |                                            |                    |                      |            |  |
| QC Batch:          | 450480          | Analysis Method:                           | EPA 9315           |                      |            |  |
| QC Batch Method:   | EPA 9315        | Analysis Description:                      | 9315 Total Radiun  | n                    |            |  |
|                    |                 | Laboratory:                                | Pace Analytical Se | ervices - Greensburg | g          |  |
| Associated Lab San | nples: 92538831 | 001, 92538831002, 92538831003, 92538831004 |                    |                      |            |  |
| METHOD BLANK:      | 2173868         | Matrix: Water                              |                    |                      |            |  |
| Associated Lab San | nples: 92538831 | 001, 92538831002, 92538831003, 92538831004 |                    |                      |            |  |
| Paran              | neter           | Act ± Unc (MDC) Carr Trac                  | Units              | Analyzed             | Qualifiers |  |
| Radium-226         |                 | 0.274 ± 0.327 (0.673) C:95% T:NA           | pCi/L              | 06/04/21 08:45       |            |  |

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### QUALIFIERS

Project: YATES RADS Pace Project No.: 92538831

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit - The lowest concentration value that meets project requirements for quantitative data with known precision and bias for a specific analyte in a specific matrix.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Act - Activity

Unc - Uncertainty: SDWA = 1.96 sigma count uncertainty, all other matrices = Expanded Uncertainty (95% confidence interval). Gamma Spec = Expanded Uncertainty (95.4% Confidence Interval)

(MDC) - Minimum Detectable Concentration

Trac - Tracer Recovery (%)

Carr - Carrier Recovery (%)

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.



## QUALITY CONTROL DATA CROSS REFERENCE TABLE

| Project:           | YATES RADS |
|--------------------|------------|
| Pace Project No .: | 92538831   |

| Lab ID      | Sample ID | QC Batch Method          | QC Batch | Analytical Method | Analytical<br>Batch |
|-------------|-----------|--------------------------|----------|-------------------|---------------------|
| 92538831001 | PZ-37D    | EPA 9315                 | 450480   |                   |                     |
| 92538831002 | FB-1      | EPA 9315                 | 450480   |                   |                     |
| 92538831003 | EB-1      | EPA 9315                 | 450480   |                   |                     |
| 92538831004 | DUP-1     | EPA 9315                 | 450480   |                   |                     |
| 92538831001 | PZ-37D    | EPA 9320                 | 449716   |                   |                     |
| 92538831002 | FB-1      | EPA 9320                 | 449716   |                   |                     |
| 92538831003 | EB-1      | EPA 9320                 | 449716   |                   |                     |
| 92538831004 | DUP-1     | EPA 9320                 | 449716   |                   |                     |
| 92538831001 | PZ-37D    | Total Radium Calculation | 454327   |                   |                     |
| 92538831002 | FB-1      | Total Radium Calculation | 453438   |                   |                     |
| 92538831003 | EB-1      | Total Radium Calculation | 453438   |                   |                     |
| 92538831004 | DUP-1     | Total Radium Calculation | 454327   |                   |                     |

| ~                                                                                                 | D                               | ocument      | Name:               |               | Document Revised: October 28, 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------|---------------------------------|--------------|---------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pace Analytical                                                                                   | Sample Con                      | dition Up    | on Receip           | t(SCUR)       | Page 1 of 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| A accretatytical                                                                                  | F-C                             | AR-CS-03     | it No.:<br>3-Rev.07 |               | Pace Carolinas Quality Office                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| boratory receiving samples:<br>Asheville Eden Greenwoo                                            | d 🗌 Hunters                     | ville 🗌      | ] Ralei             | gh 🗌          | Mechanicsville Atlanta Kernersvil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sample Condition<br>Upon Receipt<br>G-COV 9. 01                                                   | power                           |              |                     | Projec        | , WO# : 92536651                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Commercial                                                                                        |                                 | er:          |                     | nent          | 92538831                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| tody Seal Present? Yes                                                                            | Seals Intact?                   | <b>∐</b> Yes | Dire                | 5             | Date/Initials Person Examining Contents: 州 データ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| cking Material: Bubble Wrap<br>ermometer:<br>IR Gun ID: 230                                       | Bubble Bags                     |              | e 🗌 (<br>hvvet 🗆    | Other<br>Blue | Biological Jissue Frozen?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| vler Temp: <u>212</u> Correction<br>Add/Subt                                                      | Factor: +<br>ract (°C) +<br>2.0 | 0,2          | _                   |               | Temp should be above freezing to 6°C<br>Samples out of temp criteria. Samples on ice, cooling p<br>has begun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DA Regulated Soil (  N/A, water sample)<br>samples originate in a quarantine zone within t<br>Yes | he United States: CA            | A, NY, or S  | C (check m          | iaps)?        | Did samples originate from a foreign source (internationally,<br>including Hawaii and Puerto Rico)? Yes<br>Comments/Discrepancy:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Chain of Custody Present?                                                                         | Fres                            |              |                     | 1.            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Samples Arrived within Hold Time?                                                                 | Dies                            |              |                     | 2.            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Short Hold Time Analysis (<72 hr.)?                                                               | ☐Yes                            | Dino         |                     | 3.            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Rush Turn Around Time Requested?                                                                  | Yes                             | DINO         |                     | 4.            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Sufficient Volume?                                                                                | Pres                            | No           |                     | 5.            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Correct Containers Used?<br>-Pace Containers Used?                                                | Pres<br>Ves                     |              | □n/a<br>□n/a        | 6,            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Containers Intact?                                                                                | Ves                             | No           |                     | 7.            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Dissolved analysis: Samples Field Filtered?                                                       | Yes                             | DNo          |                     | 8.            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Sample Labels Match COC?                                                                          | Ja√<br>∂a√                      | □No          | ∐N/A                | 9.            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -includes bace interior Analysis Matrix                                                           |                                 |              | de                  | 10            | 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - |
| Trip Blank Present?                                                                               | ⊥ Yes                           |              | DIN/A               | 11.           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Trip Blank Custody Seals Present?                                                                 | Yes                             | No           |                     |               | Field Data Required?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                   |                                 |              |                     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| IENT NOTIFICATION/RESOLUTION                                                                      |                                 |              |                     | Lot           | ID of split containers:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                   |                                 |              |                     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                   |                                 |              | Date/1              | Time:         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Person contacted:                                                                                 |                                 |              | _ Date/1            | lime: _       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Project Manager SCURF Review:                                                                     |                                 |              | _ Date/1            | fime: _       | Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

|             |                                             |                                       |                                       |                                        |                                          |                                   |                                            |                                          | <del></del>                             |                                            |                                 |                                            |                                   | N                                |                                          |                          |                              |                          | Deri                       |                                       | t Doui                                   |                                         | Detak                                   |                         | 2020                                    |                                           |                                      |                                          |
|-------------|---------------------------------------------|---------------------------------------|---------------------------------------|----------------------------------------|------------------------------------------|-----------------------------------|--------------------------------------------|------------------------------------------|-----------------------------------------|--------------------------------------------|---------------------------------|--------------------------------------------|-----------------------------------|----------------------------------|------------------------------------------|--------------------------|------------------------------|--------------------------|----------------------------|---------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------|-----------------------------------------|-------------------------------------------|--------------------------------------|------------------------------------------|
|             |                                             |                                       | ø                                     | 2                                      | o A na                                   | Nation                            | a/                                         |                                          |                                         | Sam                                        | ple Co                          | onditi                                     | lon Uj                            | on R                             | ne:<br>.eceip                            | t(SCL                    | JR)                          |                          | Doct                       | Inen                                  | Pa                                       | ige 2                                   | of 2                                    | Jei 20,                 | , 2020                                  |                                           |                                      |                                          |
|             |                                             |                                       | /                                     | 1 200                                  |                                          | iy acc                            |                                            |                                          |                                         |                                            | F                               | Do<br>CAR                                  | -CS-O                             | nt No<br>33-Re                   | .:<br>v.07                               |                          |                              |                          |                            | Pace                                  | Carol                                    | inas C                                  | Qualit                                  | ty:<br>ty Otfic         | ce                                      |                                           |                                      |                                          |
| *<br>V<br>S | Check<br>erifie                             | k ma<br>d an<br>es.                   | rk to<br>d wi                         | op ha<br>thin                          | alf of<br>the                            | box<br>acce                       | if pl<br>ptan                              | H an<br>ice r                            | d/or<br>ange                            | dec<br>for                                 | hlori<br>pres                   | nati<br>erva                               | on is<br>ition                    |                                  |                                          | Proj                     | ect #                        |                          | 10<br>1: K                 | # :                                   | 9                                        | 25                                      | 53                                      | 88                      | 33                                      | 1                                         |                                      |                                          |
| E<br>a      | *Boti                                       | ns: V<br>tom                          | 0A, Ca<br>half                        | oliforr<br>of b                        | n, TO<br>ox is                           | to li                             | and G<br><b>st กเ</b>                      | rease,<br>umb                            | , DRO<br>er of                          | /8015<br>bot                               | (wate<br>tles                   | r) DO                                      | C, LLF                            | g                                |                                          |                          |                              | CL                       | IEN                        | IT :                                  | GA-(                                     | GA P                                    | one                                     | r Dat                   |                                         | 06/                                       | 07/2                                 | 21                                       |
| ternat      | BP4U-125 mL Plastic Unpreserved (N/A) (CI-) | BP3U-250 mL Plastic Unpreserved (N/A) | BP2U-500 mL Plastic Unpreserved (N/A) | BP1U-1 liter Plastic Unpreserved (N/A) | BP4S-125 mL Plastic H2SO4 (pH < 2) (Cl-) | BP3N-250 mL plastic HNO3 (pH < 2) | BP4Z-125 mL Plastic ZN Acetate & NaOH (>9) | BP4C-125 mL Plastic NaOH (pH > 12) (Cl-) | WGFU-Wide-mouthed Glass jar Unpreserved | AG1U-1 liter Amber Unpreserved (N/A) (CI-) | AG1H-1 liter Amber HCI (pH < 2) | AG3U-250 ml. Amber Unpreserved (N/A) (CI-) | AG1S-1 liter Amber H2SO4 (pH < 2) | AG3S-250 mL Amber H2SO4 (pH < 2) | AG3A(DG3A)-250 mL Amber NH4Cl {N/A)(Cl-) | DG9H-40 mL VOA HCI (N/A) | VG9T-40 mL VOA Na252O3 (N/A) | VG9U-40 mL VOA Unp (N/A) | DG9P-40 mL VOA H3PO4 (N/A) | VOAK (6 vials per kit)-5035 kit (N/A) | V/GK (3 vials per kit)-VPH/Gas kit (N/A) | SP5T-125 mL Sterile Plastic (N/A - lab) | SP2T-250 mL Sterile Plastic (N/A - lab) | GPIN                    | BP3A-250 mL Plastic (NH2)2504 (9.3-9.7) | AGOU-100 mL Amber Unpreserved vials (N/A) | VSGU-20 mL Scintillation vials (N/A) | DG9U-40 mL Amber Unpreserved vials (N/A) |
| 1           | $\overline{)}$                              | 1                                     | ١                                     |                                        | $\overline{)}$                           | Y                                 | $\overline{)}$                             | $\overline{)}$                           |                                         |                                            | X                               |                                            | $\overline{\langle}$              | $\overline{\langle}$             | $\overline{)}$                           |                          |                              |                          |                            |                                       |                                          |                                         |                                         | X                       | 1                                       |                                           |                                      |                                          |
| 2           | $\left \right\rangle$                       | 1                                     | 1                                     |                                        | K                                        | V                                 |                                            | $\overline{)}$                           |                                         |                                            | K                               |                                            | K                                 | 1                                | K                                        |                          |                              |                          | -                          | Ī                                     |                                          |                                         |                                         | R                       | 7                                       |                                           |                                      |                                          |
| 3           | K                                           | 1                                     | 1                                     |                                        | K.                                       | V                                 | Ŕ                                          | Ń                                        |                                         |                                            | Ń                               |                                            | N                                 |                                  | K                                        | 4                        | 1                            | <b>A</b>                 |                            | 1                                     | 1                                        |                                         |                                         | 2                       | N                                       | ł                                         |                                      | -                                        |
| 4           | $\overline{)}$                              |                                       | 1                                     |                                        | K                                        | 1                                 | K                                          | K                                        |                                         |                                            | R                               |                                            | K                                 | 1                                | $\sum$                                   |                          |                              | 1                        |                            |                                       | -                                        |                                         |                                         | 2                       | K                                       | 1                                         |                                      |                                          |
| 5           | $\left \right\rangle$                       |                                       | ,<br>,                                |                                        | $\langle \rangle$                        | 1                                 | $\overline{)}$                             | $\langle \rangle$                        | <u> </u>                                |                                            | $\langle \rangle$               |                                            | $\langle \rangle$                 | $\langle \rangle$                | $\langle \rangle$                        | ¥                        |                              |                          |                            | <u> </u>                              |                                          |                                         |                                         | K                       | K                                       | ¥                                         | -                                    |                                          |
| 6           | $\overline{)}$                              |                                       | 1                                     |                                        | (                                        | $\left( \right)$                  | $\langle \rangle$                          | $\langle \rangle$                        |                                         |                                            | $\langle \cdot \rangle$         |                                            | $\overline{)}$                    | $\overline{)}$                   | K)                                       | <u> </u>                 |                              |                          | 1                          |                                       | 1                                        | <u> </u>                                |                                         | $\overline{\mathbf{X}}$ | $\overline{)}$                          |                                           |                                      |                                          |
| 7           | $\left \right\rangle$                       |                                       |                                       |                                        | $\overline{)}$                           | $\langle \rangle$                 | $\left( \right)$                           | $\leftarrow$                             | ┥                                       |                                            | $\langle \rangle$               |                                            | (                                 | $\langle \cdot \rangle$          | K                                        | \<br>                    |                              |                          |                            |                                       |                                          |                                         |                                         | $\mathbf{k}$            | $\langle \rangle$                       | <b>.</b>                                  | -                                    | <u> </u>                                 |
| 8           | $\langle \rangle$                           | ¥                                     |                                       |                                        | $\left\{ \right\}$                       | $\left( \right)$                  | $\left\{ \right\}$                         | R                                        | 1                                       |                                            | $\left \right\rangle$           |                                            | K                                 | $\overline{)}$                   | K                                        | <u> </u>                 |                              |                          |                            |                                       |                                          |                                         |                                         | $\overline{\mathbf{X}}$ | $\langle \rangle$                       | ١.                                        |                                      | -                                        |
| 9           | $\mathbb{R}$                                | ¥                                     | <b>.</b>                              |                                        | $\langle \cdot \rangle$                  | $\left( \right)$                  | K                                          | $\left( \right)$                         |                                         | +                                          | K                               | <u> </u>                                   | K                                 | $\left\{ \right\}$               | K                                        | <u> </u>                 | 3                            | -                        |                            | -                                     |                                          | 1                                       |                                         | $\mathbf{k}$            | K                                       |                                           |                                      |                                          |
| 10          | $\left \right\rangle$                       | ┥                                     | +                                     |                                        | $\left \right\rangle$                    | $\left\{ \right\}$                | $\left\{ \right\}$                         | $\leftarrow$                             | ┥                                       |                                            | $\left\{ \right\}$              | ¥                                          | $\left  \right\rangle$            | 6                                | $\left( \right)$                         | 1                        | <u> </u>                     | 1                        |                            |                                       | -                                        | _                                       |                                         | $\mathbf{k}$            | $\left\{ \right\}$                      | ¥                                         |                                      |                                          |
| 11          | $\left \right\rangle$                       | <b>\</b>                              |                                       |                                        | $\left  \right\rangle$                   | $\left\{ \right\}$                | $\left\{ \right\}$                         | 1                                        | <b>\</b>                                |                                            | 1                               | ـ                                          | 1                                 | $\left\{ \right\}$               | $\left( \right)$                         |                          |                              |                          |                            |                                       |                                          |                                         |                                         | $\left( \right)$        | $\left\{ \right\}$                      |                                           |                                      |                                          |
| 12          | $\left\{ \right\}$                          | ┥                                     |                                       |                                        | $\left \right\rangle$                    | $\left\{ \right\}$                | $\left\{ \right\}$                         | $\left\{ \right\}$                       | 4                                       |                                            | $\left( \right)$                | -                                          | $\left\langle \right\rangle$      | $\left\{ \right\}$               | K                                        | <u>\</u>                 | 1                            |                          | 1                          | <u> </u>                              |                                          | +                                       |                                         | $\left  \right\rangle$  | $\left\{ \right\}$                      | +                                         | +                                    |                                          |
|             | $\square$                                   | J                                     |                                       | 1                                      | $\square$                                | $\sum$                            | $\overline{1}$                             | $\sum$                                   | 1                                       | <u> </u>                                   | $\sum$                          |                                            | $\square$                         | 17                               | 1)                                       | <u> </u>                 |                              |                          |                            | 1                                     | <u> </u>                                 | 1                                       |                                         |                         | 17                                      | J                                         | <u> </u>                             | 1                                        |
|             |                                             | 10                                    | 1                                     |                                        |                                          |                                   |                                            |                                          | р                                       | HAC                                        | just                            | me                                         | nt Lo                             | og fo                            | or Pr                                    | ese                      | rved                         | Sar                      | nple                       | 25                                    | ۵۳                                       | nount                                   | of Pr                                   | pserva                  | tive                                    | 1                                         | Lot                                  | *                                        |
|             | pample                                      | 210                                   | TY1                                   | pe of I                                | rreser                                   | vative                            |                                            | н ирс                                    | on rec                                  | eipt                                       | Dat                             | e pre                                      | selvat                            | ion ac                           | 105(80                                   | -                        | inne                         | adjust                   | ed                         |                                       |                                          |                                         | adde                                    | d                       |                                         |                                           |                                      |                                          |

Nate: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. Out of hold, incorrect preservative, out of temp, incorrect containers.

|                                      | K      | ADDITIONAL COMMENTS                     |          | Dup-01 (051321) | (25150) (05152) | 128-01 (05:521) | PZ-37D (05134) | Sample ids must be unique  | MATRIXO CODED |         | isted Due Date: Project #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | r /770/344 6596 Fax Prived Na | SS: 1070 Binge Mil Ave Juoyy Iu: | any: Georgia Power Report To: | red Cilent Information: Required | Face Analytical | 2 |
|--------------------------------------|--------|-----------------------------------------|----------|-----------------|-----------------|-----------------|----------------|----------------------------|---------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------|-------------------------------|----------------------------------|-----------------|---|
|                                      | May    | RELA                                    | +        | <br>_           | _               |                 |                | MATRIX CODE (see valid cod | es to left)   |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Order #                       |                                  | Bec                           | Project                          |                 | l |
|                                      | 8      | IQUIS                                   |          |                 |                 |                 |                | SAMPLE TYPE (G=GRAB C=     | COMP)         |         | Igit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Vala                          | 1                                | ky Ste                        | Infon                            |                 | l |
| S AN                                 | When   | 190 BY / NIFILI                         |          | -415-           | 81 21 K         | 5/13/10         | 5/12/12:       | START                      | g             |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                  | iever                         | mation:                          |                 |   |
| PLER NAME<br>PRINT Name<br>SIGNATURE | CB2    | ATHON                                   |          | <br>            | 30              | 8               | 8.             | El DATE                    | NLECTED       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                  |                               |                                  | The Ch          |   |
| of SAMPLER                           | 2/11/5 | DATE                                    |          |                 |                 |                 |                | SAMPLE TEMP AT COLLECTION  |               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                  |                               |                                  | ain-of-Cus      |   |
|                                      | C.     |                                         |          |                 |                 |                 |                | # OF CONTAINERS            |               |         | Pao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Pace                          | Com                              | Atter                         | Invo                             | lody            | ļ |
| 1 El                                 | ET 1   | TIME                                    | <br>     |                 |                 |                 |                | Unpreserved                |               |         | Prof                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Quo                           | VUED                             | tion:                         | ice In                           | is a l          |   |
| HE -                                 |        | 建的                                      |          | <br>-           |                 |                 |                | H2SO4                      | -             |         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               | Name                             |                               | forma                            | EG              | Į |
| a M                                  | 2      |                                         |          |                 |                 |                 |                | нсі                        | resei         | 5       | - AUB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | noner                         |                                  |                               | tion:                            |                 | ł |
| 124                                  | 8      |                                         |          |                 |                 |                 |                | NaOH                       | Vativ         |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                  |                               |                                  | DCU             | Ì |
| 00                                   | 6      | CCEP                                    |          | -               |                 |                 |                | Na2S2O3                    | 8             |         | CUNAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                                  |                               |                                  | MEN             | ł |
| \ <b>7</b>                           | 0      | TEDB                                    |          | <br>            |                 |                 |                | Other                      |               |         | Buuna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                                  |                               |                                  |                 | l |
|                                      | 2      | VINE                                    |          |                 |                 |                 |                | Analyses Test              | Y/N           | No.     | Gibao                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                                  |                               |                                  | relev           | Į |
| 0                                    |        | TMUS                                    |          | 8               | I               | Z               |                | App III & IV Metals        |               |         | erabs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                               |                                  |                               |                                  | ant i           |   |
| ATES                                 | (.     | 2                                       | + -      | R               | £               | 5               | Ě              | CI, F, SO4                 |               | Raq     | will,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                                  |                               |                                  | ields           |   |
|                                      |        | <b>推行</b>                               |          | X               | 2               | X               | X              | RAD 9315/9320              |               | ested   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                  |                               |                                  | mus             |   |
|                                      |        |                                         |          | (               |                 |                 |                |                            |               | Anah    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                  |                               |                                  |                 |   |
|                                      | 1/5    | g                                       | +-+-     | <br>+           | _               |                 |                |                            |               | a sta   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                  |                               |                                  |                 |   |
| adrit.                               | 112    | #                                       | <br>1-1- |                 |                 | _               | _              |                            |               |         | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |                                  |                               |                                  | lete            | ŀ |
| 1997<br>1997                         | 9      |                                         |          |                 |                 |                 |                | *****                      |               | RN      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |                                  |                               |                                  | acc             |   |
|                                      | 3 5 (  | R.                                      |          | <br>_           | _               |                 | _              |                            | <u> </u>      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | A DECK                           | 1                             |                                  |                 |   |
| 1944                                 |        | San San San San San San San San San San |          | <br>            | -               |                 |                |                            |               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 2                           |                                  |                               | Page                             | Ϋ́              |   |
| EMP in C                             | 27     |                                         |          | ا <u>ا ا</u>    |                 |                 | _              | Residual Chlorine (Y/N)    |               | and the | 1 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A STORE                       |                                  |                               |                                  | -               |   |
| Received on<br>xeD<br>Y/N)           | 7      | SAMPLE CI                               |          |                 |                 |                 |                |                            |               | 5       | Tonanon -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |                                  |                               | -                                |                 |   |
| iealedD<br>SocierD<br>Y/N)           | 5      | DND(TIONS                               |          |                 |                 |                 |                |                            |               |         | Contraction of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the loc |                               |                                  |                               | ç                                |                 |   |
| itactC<br>Y/N)                       |        |                                         |          |                 |                 |                 |                |                            |               |         | account of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               | Collins and                      |                               | -                                |                 |   |

TAR\_60915\_W.xls Total Alpha Radium (ENV-FRM-GBUR-0142 R0).xls

ymul8/21

1 of 1

6

Comments:

| Pace Analytical<br>www.peededes.com                                                                    | Ra-336               |                      | Analyst Must Manually Enter All Fields Highlighted in Yello                                                | <u>ow.</u> |          |
|--------------------------------------------------------------------------------------------------------|----------------------|----------------------|------------------------------------------------------------------------------------------------------------|------------|----------|
| Analyst<br>Date:                                                                                       | LAL<br>6/4/2021      |                      | Sample Matrix Spike Control Assessment MS/<br>Sample Collection Date:                                      | S/MSD 1    | MS/MSD 2 |
| Worklist<br>Matrix:                                                                                    | 60915<br>DW          |                      | Sample I.D.<br>Sample MS I.D.                                                                              |            |          |
| Method Blank Assessment                                                                                |                      |                      | Sample MSD I.D.                                                                                            |            |          |
| MB Sample ID                                                                                           | 2173868              |                      | MS/MSD Decay Corrected Spike Concentration (pCi/mL):                                                       |            |          |
| MB concentration:                                                                                      | 0.274                |                      | Spike Volume Used in MS (mL):                                                                              |            |          |
| M/B Counting Uncertainty:                                                                              | 0.325                |                      | Spike Volume Used in MSD (mL):<br>MS Alicut (L. g. F):                                                     |            |          |
| MB Numerical Performance Indicator                                                                     | 1.66                 |                      | MS Target Conc.(pCi/L, g, F):                                                                              |            |          |
| MB Status vs Numerical Indicator:                                                                      | N/A                  |                      | MSD Tarnet Conc. (nCiA or EV                                                                               |            |          |
|                                                                                                        |                      |                      | MS Spike Uncertainty (calculated):                                                                         |            |          |
| Laboratory Control Sample Assessment                                                                   | CSD (Y or N)?        | Y                    | MSD Spike Uncertainty (calculated):                                                                        |            |          |
| Count Date:                                                                                            | 6/4/20/21            | 6/4/2021             | Sample Result Counting Uncertainty (pCi/L_g. F):                                                           |            |          |
| Spike I.D.:                                                                                            | 19-033               | 19-033               | Sample Matrix Spike Result                                                                                 |            |          |
| Decay Corrected Spike Concentration (pCi/mL):                                                          | 24.037               | 24.037               | Matrix Spike Result Counting Uncertainty (pCi/L, g, F):                                                    |            |          |
| Aliquid Volume (L. d. F):                                                                              | 0.10                 | 0,10                 | Sample Matrix Spike Duplicate Result:<br>Matrix Spike Duplicate Result Counting Uncertainty (pCI/L. g. F): |            |          |
| Target Conc. (pCi/L, g, F):                                                                            | 4.738                | 4.794                | MS Numerical Performance Indicator:                                                                        |            |          |
| Uncertainty (Calculated):                                                                              | 0.057                | 0.058                | MSD Numerical Performance Indicator:                                                                       |            |          |
| LCS/LCSD Counting Uncertainty (pCi/L, g, F):                                                           | 0.897                | 0.930                | MSD Percent Recovery:                                                                                      |            |          |
| Numerical Performance Indicator:                                                                       | -0.18                | 0.39                 | MS Status vs Numerical Indicator:                                                                          |            |          |
| Percent Recovery:                                                                                      | 98.30%               | 1U3.84%              | MSD Status vs Nutrierical indicator:                                                                       |            |          |
| Status vs Numerical Indicator:                                                                         | Pass                 | Pass                 | MSD Status vs Recovery:                                                                                    |            |          |
| Upper % Recovery Limits:                                                                               | 125%                 | 125%                 | MS/MSD Upper % Recovery Limits:                                                                            |            |          |
|                                                                                                        | 0,01                 | 1070                 | Mis/Mis/ Lower // Necovery Linnis.                                                                         |            |          |
| Duplicate Sample Assessment                                                                            |                      |                      | Matrix Spike/Matrix Spike Duplicate Sample Assessment                                                      |            |          |
| Sample I.D.:                                                                                           | LCS60915             |                      | Sample I.D.                                                                                                |            |          |
| Sample Result (pCi/L, g, F):                                                                           | 4.657                |                      | Sample MSD I.D.                                                                                            |            |          |
| Sample Result Counting Uncertainty (pCi/L, g, F):                                                      | 0,897                |                      | Sample Matrix Spike Result:                                                                                |            |          |
| Sample Duplicate Result (pCi/L, g, F):                                                                 | 4.978                |                      | Matrix Spike Result Counting Uncertainty (pCi/L, g, F):                                                    |            |          |
| Are sample and/or duplicate results below RL?                                                          | NO                   |                      | Matrix Spike Duplicate Result Counting Uncertainty (pCi/L, g, F):                                          |            |          |
| Duplicate Numerical Performance Indicator.                                                             | -0.487               |                      | Duplicate Numerical Performance Indicator:                                                                 |            |          |
| (pased on the LCO/LCOD) Felcent Recoveries/ publicate RFD.<br>Dublicate Status vs Numerical Indicator: | N/A                  |                      | MS/ MSD Duplicate Status vs Numerical Indicator:                                                           |            |          |
| Duplicate Status vs RPD:                                                                               | Pass                 |                      | MS/ MSD Duplicate Status vs RPD:                                                                           |            |          |
| ## Evaluation of dunlicate precision is not applicable if either the sa                                | mole or dunlicate r  | esults are helow the |                                                                                                            |            |          |
| ## Evaluation of dublicate precision is not applicable if either the se                                | imple or duplicate r | esuits are below ind |                                                                                                            |            |          |

**Quality Control Sample Performance Assessment** 

Pace Analytical Services, Inc. Total Alpha Radium QC Assessment

Page 17 of 18


Comments:

## Evaluation of duplicate precision is not applicable if either the sample or duplicate results are below the MDC.

| Bana Analytical                                          |               |                  | · · · · · · · · · · · · · · · · · · ·                                                           |      |          |
|----------------------------------------------------------|---------------|------------------|-------------------------------------------------------------------------------------------------|------|----------|
| www.pacedaba.com                                         | Ra-228        |                  | Analyst must manually chter An Fleids righnighted in Tehow.                                     |      |          |
| Analyst                                                  | JC2           |                  | Sample Matrix Spike Control Assessment MS/MSI                                                   | SD 1 | MS/MSD 2 |
| Date:                                                    | 6/3/2021      |                  | Sample Collection Date:                                                                         |      |          |
| Worklist                                                 | 60773         |                  | Sample I.D.                                                                                     |      |          |
| Matrix:                                                  | W I           |                  |                                                                                                 |      |          |
| Method Blank Assessment                                  |               |                  | Spike 1.D.:                                                                                     |      |          |
| MB Sample ID                                             | 2170082       |                  | MS/MSD Decay Corrected Spike Concentration (pCi/mL):                                            | -    |          |
| MB concentration:                                        | 0.470         |                  | Spike Volume Used in MS (mL):                                                                   |      |          |
| M/B 2 Sigma CSU:                                         | 0.364         |                  | Spike Volume Used in MSD (mL):<br>MS Aliciust /1 or E):                                         |      |          |
| MR Numerical Performance Indicator                       | 2 53          |                  | MS Target Conc. (pCi/L, g, F):                                                                  |      |          |
| MB Status vs Numerical Indicator:                        | Warning       |                  | MSD Aliquot (L, g, F):                                                                          |      |          |
| MB Status vs. MDC:                                       | Pass          |                  | MSD Target Conc. (pCi/l., g, F):                                                                |      |          |
| aboratory Control Sample Assessment                      | CSD /Y or N/2 | Y                | MSD Spike Uncertainty (concurrent);                                                             |      |          |
|                                                          | LCS60773      | LCSD60773        | Sample Result:                                                                                  |      |          |
| Count Date:                                              | 6/7/2021      | 6/7/2021         | Sample Result 2 Sigma CSU (pCi/L, g, F):                                                        |      |          |
|                                                          | 37 407        | 37 407           | Matrix Spike Result 2 Sigma CSU (nCi/L or F):                                                   |      |          |
| Volume Used (mL):                                        | 0.10          | 0.10             | Sample Matrix Spike Duplicate Result:                                                           |      |          |
| Aliquot Volume (L, g, F):<br>Tarnet Conc. (bCi/L, g, F): | 0.816         | 0.852<br>4.392   | Matrix Spike Duplicate Result 2 Sigma CSU (pCi/L, g, F):<br>MS Numerical Performance Indicator: |      |          |
| Uncertainty (Calculated):                                | 0.225         | 0.215            | MSD Numerical Performance Indicator:                                                            |      |          |
| Result (pCi/L, g, F):                                    | 4.404         | 4.759            | MSD Percent Recovery:                                                                           |      |          |
| Numerical Performance Indicator:                         | -0.34         | 0.67             | MS Status vs Numerical Indicator:                                                               |      |          |
| Percent Recovery:                                        | 96.08%        | 108.37%          | MSD Status vs Numerical Indicator:                                                              |      |          |
| Status vs Numerical Indicator:                           | N/A           | N/A              | MS Status vs Recovery:                                                                          |      |          |
| Status vs Recovery:                                      | Pass          | Pass             | MSD Status vs Recovery:                                                                         |      |          |
| Upper % Recovery Limits:<br>Lower % Recovery Limits:     | 135%<br>60%   | 135%<br>60%      | MS/MSU Upper % Recovery Limits:<br>MS/MSD Lower % Recovery Limits:                              |      |          |
|                                                          |               |                  | Matrix SnikoMatrix Snika Dunlingta Sample Assassment                                            |      |          |
| Dubinate Sample Assessment                               |               |                  |                                                                                                 |      |          |
| Sample I.D.:                                             | LCS60773      | Enter Duplicate  | Sample I.D.                                                                                     |      |          |
| Sample Desuit (nCi/l or EV)                              | 4 404         | other than       | Sample MSD 1.D.                                                                                 |      |          |
| Sample Result 2 Sigma CSU (pCi/L, g, F):                 | 1.013         | LCS/LCSD in      | Sample Matrix Spike Result:                                                                     |      |          |
| Sample Duplicate Result (pCi/L, g, F):                   | 4.759         | the space below. | Matrix Spike Result 2 Sigma CSU (pCi/L, g, F):                                                  |      |          |
| Sample Duplicate Result 2 Sigma CSU (pCi/L, g, F):       | 1.051         |                  | Sample Matrix Spike Duplicate Result 3 Sinna CSU (aCi/L a EV                                    |      |          |
| Dunitate Numerical Deformance Indicator                  | _0 477        |                  | Dunlicate Numerical Performance Indicator                                                       |      |          |
| Based on the LCS/LCSD Percent Recoveries) Duplicate RPD: | 12.02%        |                  | (Based on the Percent Recoveries) MS/ MSD Duplicate RPD:                                        |      |          |
| Duplicate Status vs Numerical Indicator:                 | Pass          |                  | MS/ MSD Duplicate Status vs Numerical Indicator:                                                |      |          |
| Duplicate Status vs RPD:<br>% RPD Limit:                 | Pass<br>36%   |                  | MS/ MSU Duplicate Status vs KPD:<br>% RPD Limit                                                 |      |          |
|                                                          |               |                  |                                                                                                 |      |          |

**Quality Control Sample Performance Assessment** 



**Statistical Analysis** 

2021 Semiannual Groundwater and Corrective Action Report Plant Yates AP-3, A, B, B' and R6 CCR Landfill Newnan, GA Appendix III Statistically Significant Increase Summary (March 2021)

| Appendix III Parameter | March 2021                                   |
|------------------------|----------------------------------------------|
| Boron                  | YGWC-23S, YGWC-38, YGWC-41, YGWC-42, YGWC-43 |
| Calcium                | YGWC-38, YGWC-42                             |
| Chloride               | YGWC-24SA                                    |
| рН                     | YGWC-41                                      |
| Sulfate                | YGWC-38, YGWC-42, YGWC-43                    |
| Total Dissolved Solids | YGWC-38, YGWC-41, YGWC-42, YGWC-43           |

#### GROUNDWATER STATS CONSULTING



August 24, 2021

Southern Company Services Attn: Ms. Lauren Coker 241 Ralph McGill Blvd NE, Bin 10160 Atlanta, GA 30308-3374

#### Re: Plant Yates Ash Management Area (AMA) and R6 CCR Landfill March 2021 Statistical Analysis

Dear Ms. Coker,

Groundwater Stats Consulting, formerly the statistical consulting division of Sanitas Technologies, is pleased to provide the March 2021 semi-annual Groundwater Detection and Assessment Monitoring statistical analysis for Georgia Power Company's Plant Yates Ash Management Area (AMA) and R6 CCR Landfill. The analysis complies with the federal rule for the Disposal of Coal Combustion Residuals from Electric Utilities (CCR Rule, 2015), the Georgia Environmental Protection Division (EPD) Rules for Solid Waste Management Chapter 391-3-4-.10, and follows the United States Environmental Protection Agency (USEPA) Unified Guidance (2009).

Sampling for the Appendix III parameters began in 2016, and at least 8 background samples were collected at each of the groundwater monitoring wells. Semi-annual sampling of the majority of Appendix IV constituents has been performed for several years in accordance with the Georgia Department of Natural Resources, Environmental Protection Division groundwater monitoring regulations. A list of all parameters is provided below.

The monitoring well network, as provided by Southern Company Services, consists of the following:

- **Upgradient wells:** 
  - **AP-1:** YGWA-47
  - AP-2: YGWA-1D, YGWA-1I, YGWA-2I, YGWA-3D, YGWA-3I, YGWA-14S and, YGWA-30I
  - **Gypsum Landfill:** GWA-2
  - AMA-R6: YGWA-17S, YGWA-18I, YGWA-18S, YGWA-20S, YGWA-21I, YGWA-39, YGWA-40, YGWA-4I, YGWA-5D, and YGWA-5I
- Downgradient wells: YGWC-23S, YGWC-24SA, YGWC-36A, YGWC-38, YGWC-41, YGWC-42, YGWC-43, YGWC-49
- Delineation wells: YAMW-1, YAMW-2, YAMW-4, YAMW-5, PZ-35, and PZ-37

Combined upgradient well data from all units at Plant Yates are utilized to construct statistical limits for Appendix III and IV parameters. When a minimum of 4 samples is available, delineation wells are evaluated using confidence intervals for the Appendix IV constituents.

Well YGWC-24SA was installed in June 2020 as a replacement well for YGWC-24S and well YGWC-36A was installed in September 2020 as a replacement well for YGWC-36 to supplement existing data for each respective well. In all cases, concentrations from both wells are below established MCLs. When a minimum of 8 samples have been collected from new well YGWC-36A, the Mann-Whitney test of medians will be used to evaluate whether the medians of data from both wells are statistically significant differences, the historical record will be truncated so that only data from new well YGWC-36A are evaluated in the confidence interval comparisons to respective Groundwater Protection Standards. Throughout this report, well YGWC-24SA and well YGWC-36A refers to data from both wells YGWC-36 and YGWC-36A.

All data were sent electronically to Groundwater Stats Consulting, and the statistical analysis was reviewed Kristina Rayner, Groundwater Statistician and Founder of Groundwater Stats Consulting.

The CCR program consists of the constituents listed below. The terms "parameters" and "constituents" are used interchangeably.

• **Appendix III** (Detection Monitoring) - boron, calcium, chloride, fluoride, pH, sulfate, and TDS

 Appendix IV (Assessment Monitoring) – antimony, arsenic, barium, beryllium, cadmium, chromium, cobalt, combined radium 226 + 228, fluoride, lead, lithium, mercury, molybdenum, selenium, and thallium

Note that when there are no detections present in downgradient wells for a given constituent, statistical analyses are not required. A summary of Appendix IV downgradient and delineation well/constituent pairs with 100% non-detects follows this letter. Additionally, when Appendix IV constituents are not detected during a scheduled Scan event, no statistical analyses are required during the semi-annual sample event. During the annual Scan event conducted in February 2021, thallium was not detected; therefore, it was not required to be sampled during the subsequent event. In some cases, upgradient wells at a given unit were not sampled for all constituents if no detections were present at downgradient wells for that particular unit. The following constituents were not detected during their respective Scan events at other Plant Yates units; therefore, upgradient wells at the units listed below were not sampled for these constituents:

- Yates Gypsum Landfill: molybdenum
- Yates AP-1: cadmium, mercury, selenium, and thallium
- Yates AP-2: mercury and thallium

Combined upgradient well data from all units at Plant Yates are utilized to construct statistical limits for Appendix III and IV parameters. The absence of samples from upgradient wells will affect the sample size of the combined background data set that is used for interwell limits among all units at Plant Yates; however, the calculated limits should be not be affected greatly.

For all constituents, a substitution of the most recent reporting limit is used for non-detect data and this generally gives the most conservative limit in each case. In time series plots, a single reporting limit substitution is used across all wells for a given parameter since the wells are plotted as a group. For interwell prediction and tolerance limits, a single reporting limit substitution is used across upgradient wells for a given parameter. Regarding the case of cobalt, due to varying detection limits in individual wells, the most recent reporting limit of 0.005 mg/L was substituted across all wells for all calculations and reports.

Time series plots for Appendix III and IV parameters at all wells are provided for the purpose of screening data at these wells (Figure A). Additionally, a separate section of box plots is included for all constituents at upgradient and downgradient wells (Figure B). The time series plots are used to initially screen for suspected outliers and trends, while the box plots provide visual representation of variation within individual wells and between

all wells. Values in background which have been flagged as outliers may be seen in a lighter font and as a disconnected symbol on the graphs. A summary of flagged outliers follows this report (Figure C).

#### Summary of Statistical Methods – Appendix III and IV Parameters:

Based on the April 2019 evaluation and state and federal regulatory requirements described below, the following methods were selected for Appendix III and IV constituents:

- Appendix III: Interwell prediction limits, combined with a 1-of-2 resample plan for boron, calcium, chloride, fluoride, pH, sulfate, and TDS
- Appendix IV: Confidence intervals on downgradient well data compared against Ground Water Protections Standards (GWPS) for each Appendix IV constituent

The distribution of data is tested using the Shapiro-Wilk/Shapiro-Francia test for normality. Parametric prediction limits (or tolerance limits or confidence intervals as applicable) are utilized when the screened historical data follow a normal or transformed-normal distribution. When data cannot be normalized or the majority of data are non-detects, a nonparametric test is utilized. While the false positive rate associated with the parametric limits is based on an annual 10% (5% per semi-annual event) as recommended by the EPA Unified Guidance (2009), the false positive rate associated with the nonparametric limits is dependent upon the available background sample size, number of future comparisons, and verification resample plan. The following approaches are used for handling non-detects (USEPA, 2009):

- No statistical analyses are required on wells and analytes containing 100% nondetects (USEPA Unified Guidance, 2009, Chapter 6).
- When data contain <15% non-detects in background, simple substitution of onehalf the reporting limit is utilized in the statistical analysis. The reporting limit utilized for non-detects is the most recent practical quantification limit (PQL) as reported by the laboratory.
- When data contain between 15-50% non-detects, the Kaplan-Meier non-detect adjustment is applied to the background data. This technique adjusts the mean and standard deviation of the historical concentrations to account for concentrations below the reporting limit.
- Nonparametric prediction limits are used on data containing greater than 50% non-detects.

Natural systems continuously evolve due to physical changes made to the environment. Examples include capping a landfill, paving areas near a well, or lining a drainage channel to prevent erosion. Periodic updating of background statistical limits is necessary to accommodate these types of changes. In the interwell case, prediction limits are updated with upgradient well data during each event after careful screening for any new outliers. In some cases, the earlier portion of data are deselected prior to construction of limits to provide sensitive limits that will rapidly detect changes in groundwater quality. Even though the data are excluded from the calculation, the values will continue to be reported and shown in tables and graphs.

#### Summary of Background Screening Conducted in April 2019

#### Outlier and Trend Testing

Time series plots were used to identify suspected outliers, or extreme values that would result in limits that are not representative of the current background data population. Suspected outliers at all wells for Appendix III and Appendix IV parameters were formally tested using Tukey's box plot method and, when identified, flagged in the computer database with "o" and deselected prior to construction of statistical limits.

Using the Tukey box plot method, several outliers were identified. When the most recent value is identified as an outlier, values are not flagged in the database at this time as they may represent a possible trend. If future values do not remain at similar concentrations, these values will be flagged as outliers and deselected. Several low values exist in the data sets and appear on the graphs as possible low outliers relative to the laboratory's Practical Quantitation Limit. However, these values are observed trace values (i.e. measurements reported by the laboratory between the Method Detection Limit and the Practical Quantitation Limit) and, therefore, were not flagged as outliers.

During the time of the screening, none of the outliers identified by Tukey's method were flagged in the database as all values were either similar to remaining measurements within the same well and neighboring wells, or the values were reported non-detects. Later, when all upgradient wells were pooled to construct statistical limits, one detected value of 6.3 s.u. for pH at well YGWA-47 (an upgradient well from AP-1) was flagged as an outlier because it was unusually high during a single event compared to all other values at neighboring wells. When any values are flagged in the database as outliers, they are plotted in a disconnected and lighter symbol on the time series graph. The accompanying data pages will display the flagged value in a lighter font as well. A substitution of the most recent reporting limit was applied when varying detection limits existed in data.

When the reporting limit was higher than the CCR-rule specified levels discussed below, non-detects were substituted with one half the reporting limit.

No obvious seasonal patterns were observed on the time series plots for any of the detected data; therefore, no deseasonalizing adjustments were made to the data. When seasonal patterns are observed, data may be deseasonalized so that the resulting limits will correctly account for the seasonality as a predictable pattern rather than random variation or a release.

While trends may be identified by visual inspection, a quantification of the trend and its significance is needed. The Sen's Slope/Mann Kendall trend test was used to evaluate all data at each well to identify statistically significant increasing or decreasing trends and the results of those findings were submitted with the screening. In the absence of suspected contamination, significant trending data are typically not included as part of the background data used for construction of prediction limits. This step serves to eliminate the trend and, thus, reduce variation in background. When statistically significant decreasing trends are present, all available data are evaluated to determine whether earlier concentration levels are significantly different than current reported concentrations and will be deselected as necessary. When any records of data are truncated for the reasons above, a summary report will be provided to show the date ranges used in construction of the statistical limits.

The results of the trend analyses showed several statistically significant decreasing and increasing trends for the Appendix III parameters. Most of the trends noted were relatively low in magnitude when compared to average concentrations, and the background time period is short with only two years of record, making it difficult to separate trends from normal year-to-year variation; therefore, no adjustments were made to the data sets. If the observed decreasing or increasing trends persist over a longer time frame, some records may need to be truncated.

#### <u>Appendix III – Determination of Spatial Variation</u>

The Analysis of Variance (ANOVA) was used to statistically evaluate differences in average concentrations among upgradient wells, which assists in identifying the most appropriate statistical approach. Interwell tests, which compare downgradient well data to statistical limits constructed from pooled upgradient well data, are appropriate when average concentrations are similar across upgradient wells. Intrawell tests, which compare compliance data from a single well to screened historical data within the same well, are appropriate when upgradient wells exhibit spatial variation; when statistical limits constructed from upgradient wells are not representative of the current background data

population; and when downgradient water quality is unimpacted compared to upgradient water quality for the same parameter.

The ANOVA identified variation among upgradient well data for all Appendix III parameters. These constituents were further evaluated during the screening for the appropriateness of intrawell or interwell methods for each constituent. However, interwell methods will be used for all Appendix III constituents in accordance with Georgia EPD requirements.

#### Statistical Analysis of Appendix III Parameters – March 2021

All Appendix III parameters were analyzed using interwell prediction limits. Background (upgradient) well data were re-assessed for potential outliers during this analysis. Values in background which have been flagged as outliers may be seen in a lighter font and as a disconnected symbol on the graphs. No new values were flagged for Appendix III parameters, and a summary of flagged outliers follows this report (Figure C).

Interwell prediction limits, combined with a 1-of-2 resample plan, were constructed using all historical pooled upgradient well data through March 2021 (Figure D). Interwell prediction limits pool upgradient well data to establish a background limit for an individual constituent. The most recent sample from each downgradient well is compared to the background limit to determine whether there are statistically significant increases (SSIs). Note that reporting limit changes during this analysis occurred for boron (from <0.1 mg/L to <0.04 mg/L), but there were no changes in statistical limits.

In the event of an initial exceedance of compliance well data, the 1-of-2 resample plan allows for collection of one additional sample to determine whether the initial exceedance is confirmed. When a resample confirms the initial exceedance, a statistically significant increase is identified and further research would be required to identify the cause of the exceedance (i.e. impact from the site, natural variation, or an off-site source). If the resample falls within the statistical limit, the initial exceedance is considered to be a false positive result and, therefore, no exceedance is noted and no further action is necessary. If no resample is collected, the original result is considered a confirmed exceedance. A summary table of the interwell prediction limits follows this letter (Figure D). Prediction limit exceedances were noted for the following Appendix III well/constituent pairs:

- Boron: YGWC-23S, YGWC-38, YGWC-41, YGWC-42, and YGWC-43
- Calcium: YGWC-38 and YGWC-42
- Chloride: YGWC-24SA
- pH: YGWC-41

- Sulfate: YGWC-38, YGWC-42, and YGWC-43
- TDS: YGWC-38, YGWC-41, YGWC-42, and YGWC-43

When prediction limit exceedances are identified in downgradient wells, data are further evaluated using the Sen's Slope/Mann Kendall trend test to determine whether concentrations are statistically increasing, decreasing, or stable (Figure E). Upgradient wells are included in the trend analyses for all parameters found to exceed their prediction limit in downgradient wells to identify whether similar patterns exist upgradient of the site. Upgradient trends are an indication of natural variability in groundwater unrelated to practices at the site. Both a summary and complete graphical results of the trend tests follow this report. Statistically significant trends were identified for the following downgradient and associated upgradient well/constituent pairs:

Increasing:

- Boron: YGWC-43
- Calcium: YGWA-1D, GWA-2, YGWA-17S, and YGWA-21I (all upgradient)
- Chloride: YGWA-17S and YGWA-20S (both upgradient)
- pH: YGWA-21I (upgradient)
- Sulfate: YGWA-1D (upgradient), GWA-2 (upgradient), YGWA-3D (upgradient), YGWA-5I (upgradient), and YGWC-43
- TDS: YGWC-43

Decreasing:

- Boron: YGWA-21I (upgradient), YGWC-38, and YGWC-41
- Calcium: YGWA-1I (upgradient), YGWA-5D (upgradient), YGWA-18S (upgradient), YGWA-40 (upgradient), YGWA-47 (upgradient), YGWC-38, and YGWC-42
- Chloride: YGWA-3D, YGWA-3I, YGWA-5D, and YGWA-47 (all upgradient)
- pH: YGWA-5D, YGWA-18S, and YGWA-39 (all upgradient)
- Sulfate: YGWA-5D (upgradient), YGWA-39 (upgradient), YGWA-40 (upgradient), YGWA-47 (upgradient), YGWC-38, YGWC-41, and YGWC-42
- TDS: YGWA-5D (upgradient), YGWA-40 (upgradient), YGWA-47 (upgradient), YGWC-38, YGWC-41, and YGWC-42

#### Statistical Analysis of Appendix IV Parameters – March 2021

For analysis of Appendix IV parameters, confidence intervals for each downgradient well/constituent were compared against corresponding Groundwater Protection

Standards (GWPS). GWPS were developed as described below. Data from upgradient wells for Appendix IV parameters are reassessed for outliers during each analysis.

A high value for cobalt at upgradient well GWA-2, 0.21 mg/L from March 2021, along with high values 0.20 mg/L and 0.16 mg/L from August and September 2020, were two orders of magnitude higher than the other values for that well. The August and September 2020 values were flagged during the previous analysis, and the March 2021 value was flagged as an outlier during this analysis in order to maintain limits that were conservative from a regulatory perspective. However, since three observations were reported at this level, further study may indicate that the values should not be flagged for future analyses. A summary of flagged outliers follows this report (Figure C).

First, interwell tolerance limits were used to calculate site-specific background limits from all available pooled upgradient well data for Appendix IV constituents (Figure F). Parametric tolerance limits are used when data follow a normal or transformed-normal distribution. When data contained greater than 50% non-detects or did not follow a normal or transformed-normal distribution, non-parametric tolerance limits were used. When the alpha level (or false positive rate) for a nonparametric limit is shown as NaN in the results table, it indicates that the background sample size is large enough such that the resulting alpha level (or false positive rate) is too small to display in the results table. The background limits were then used when determining the Groundwater Protection Standard (GWPS) under 40 CFR §257.95(h) and Georgia EPD Rule 391-3-4-.10(6)(a).

As described in 40 CFR §257.95(h) (1-3), the Federal GWPS is:

- The maximum contaminant level (MCL) established under §141.62 and §141.66 of this title
- Where an MCL has not been established for a constituent, CCR-rule specified levels have been specified for cobalt (0.006 mg/L), lead (0.015 mg/L), lithium (0.040 mg/L), and molybdenum (0.100 mg/L)
- The respective background level for a constituent when the background level is higher than the MCL or Federal CCR Rule identified GWPS

On July 30, 2018, USEPA revised the Federal CCR rule updating GWPS for cobalt, lead, lithium, and molybdenum as described above in 40 CFR §257.95(h)(2). Georgia EPD has not incorporated the updated GWPS into the current Georgia EPD Rules for Solid Waste Management 391-3-4-.10(6)(a); therefore, for sites regulated under Georgia EPD Rules, the State GWPS is:

- The MCL or
- The background concentration when an MCL is not established or when the background concentration is higher than the MCL.

Following the above Georgia EPD Rule requirements and the CCR Rule, Federal and State GWPS were established for Appendix IV constituents for the March 2021 sample event (Figure G). To complete the statistical comparison to GWPS, confidence intervals were constructed for each of the detected Appendix IV constituents in each downgradient well using all historical data through March 2021 according to both Federal and State rules (Figures H and I, respectively). Delineation wells were included when a minimum of 4 samples were available. Note that while a GWPS is established for thallium, no statistical comparison with confidence intervals is required because this constituent was not sampled.

The Sanitas software was used to calculate the tolerance limits and the confidence intervals. Those confidence intervals were compared to the GWPS established using the CCR Rules for the federal requirements and the Georgia EPD Rules 391-3-4-.10(6)(a) for the State requirements. Only when the entire confidence interval is above a GWPS is the downgradient well/constituent pair considered to exceed its respective standard. If there is an exceedance of the GWPS, a statistically significant level (SSL) exceedance is identified. Note that reporting limits decreased for the following constituents during this analysis:

- Beryllium from <0.003 mg/L to <0.0005 mg/L
- Cadmium from <0.0025 mg/L to <0.0005 mg/L
- Chromium from <0.01 mg/L to <0.005 mg/L
- Lead from <0.005 mg/L to <0.001 mg/L
- Mercury from <0.0005 mg/L to <0.0002 mg/L
- Selenium from <0.01 mg/L to <0.005 mg/L

As a result, background limits were lower for these constituents as compared to the previous analysis. However, in all cases for Federal and State confidence intervals, except for lead, which uses the background limit as the GWPS, the established MCL and/or CCR Rule Specified levels were higher than the background limits. Therefore, the GWPS were not affected. Summaries of confidence intervals and complete graphical results follow this letter. For both federal and state confidence intervals, exceedances were noted for the following well/constituent pairs:

Federal:

- Beryllium: YGWC-38
- Selenium: YGWC-38 and PZ-37

State:

- Beryllium: YGWC-38
- Selenium: YGWC-38 and PZ-37

Thank you for the opportunity to assist you in the statistical analysis of groundwater quality for Plant Yates Ash Management Area (AMA) and R6 CCR Landfill. If you have any questions or comments, please feel free to contact us.

For Groundwater Stats Consulting,

llin

Andrew T. Collins Project Manager

Kristina Rayner

Kristina L. Rayner Groundwater Statistician

#### 100% Non-Detects: Appendix IV Downgradient and Delineation Wells

Analysis Run 5/6/2021 9:04 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Antimony (mg/L) YAMW-2

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG

Arsenic (mg/L) YAMW-1, YAMW-2

Beryllium (mg/L) YAMW-4

Cadmium (mg/L) YAMW-2, YAMW-4, YGWC-43, YGWC-24SA

Chromium (mg/L) YAMW-5

Cobalt (mg/L) YGWC-23S, YGWC-38, YGWC-24SA

Fluoride (mg/L) YAMW-1, YAMW-2, YAMW-5, PZ-35

Lithium (mg/L) YAMW-2, YGWC-24SA

Mercury (mg/L) YAMW-1, YAMW-2, YAMW-4, YAMW-5, PZ-35, YGWC-24SA, YGWC-36A

Molybdenum (mg/L) YAMW-2, YAMW-5, YGWC-23S, YGWC-38, YGWC-41, YGWC-24SA

Selenium (mg/L) YAMW-2, YGWC-43, PZ-35, YGWC-24SA

Thallium (mg/L) YAMW-1, YAMW-2, YAMW-4, YAMW-5, YGWC-23S, YGWC-38, YGWC-41, YGWC-42, YGWC-43, PZ-35, PZ-37, YGWC-24SA, YGWC-36A

# Appendix III Interwell Prediction Limits - Significant Results

| Constituent                   | Well      | Upper Lim. | Lower Lim. | Date     | Observ. | <u>Sig.</u> Bg N | <u>Bg Mean</u> | Std. Dev. | <u>%NDs</u> ND | Adj. <u>Trar</u> | nsform Alpha |       | Method                      |
|-------------------------------|-----------|------------|------------|----------|---------|------------------|----------------|-----------|----------------|------------------|--------------|-------|-----------------------------|
| Boron (mg/L)                  | YGWC-23S  | 0.16       | n/a        | 3/4/2021 | 1.2     | Yes 293          | n/a            | n/a       | 45.73 n/a      | n/a              | 0.000        | 04917 | NP Inter (normality) 1 of 2 |
| Boron (mg/L)                  | YGWC-38   | 0.16       | n/a        | 3/4/2021 | 6.4     | Yes 293          | n/a            | n/a       | 45.73 n/a      | n/a              | 0.000        | 04917 | NP Inter (normality) 1 of 2 |
| Boron (mg/L)                  | YGWC-41   | 0.16       | n/a        | 3/4/2021 | 4       | Yes 293          | n/a            | n/a       | 45.73 n/a      | n/a              | 0.000        | 04917 | NP Inter (normality) 1 of 2 |
| Boron (mg/L)                  | YGWC-42   | 0.16       | n/a        | 3/4/2021 | 14.8    | Yes 293          | n/a            | n/a       | 45.73 n/a      | n/a              | 0.000        | 04917 | NP Inter (normality) 1 of 2 |
| Boron (mg/L)                  | YGWC-43   | 0.16       | n/a        | 3/4/2021 | 3.6     | Yes 293          | n/a            | n/a       | 45.73 n/a      | n/a              | 0.000        | 04917 | NP Inter (normality) 1 of 2 |
| Calcium (mg/L)                | YGWC-38   | 37         | n/a        | 3/4/2021 | 87      | Yes 293          | n/a            | n/a       | 1.024 n/a      | n/a              | 0.000        | 04917 | NP Inter (normality) 1 of 2 |
| Calcium (mg/L)                | YGWC-42   | 37         | n/a        | 3/4/2021 | 90.7    | Yes 293          | n/a            | n/a       | 1.024 n/a      | n/a              | 0.000        | 04917 | NP Inter (normality) 1 of 2 |
| Chloride (mg/L)               | YGWC-24SA | 7.9        | n/a        | 3/3/2021 | 8.6     | Yes 293          | n/a            | n/a       | 0 n/a          | n/a              | 0.000        | 04917 | NP Inter (normality) 1 of 2 |
| pH (S.U.)                     | YGWC-41   | 8.39       | 4.86       | 3/4/2021 | 4.69    | Yes 373          | n/a            | n/a       | 0 n/a          | n/a              | 0.000        | 09834 | NP Inter (normality) 1 of 2 |
| Sulfate (mg/L)                | YGWC-38   | 160        | n/a        | 3/4/2021 | 356     | Yes 293          | n/a            | n/a       | 6.143 n/a      | n/a              | 0.000        | 04917 | NP Inter (normality) 1 of 2 |
| Sulfate (mg/L)                | YGWC-42   | 160        | n/a        | 3/4/2021 | 537     | Yes 293          | n/a            | n/a       | 6.143 n/a      | n/a              | 0.000        | 04917 | NP Inter (normality) 1 of 2 |
| Sulfate (mg/L)                | YGWC-43   | 160        | n/a        | 3/4/2021 | 328     | Yes 293          | n/a            | n/a       | 6.143 n/a      | n/a              | 0.000        | 04917 | NP Inter (normality) 1 of 2 |
| Total Dissolved Solids (mg/L) | YGWC-38   | 221.5      | n/a        | 3/4/2021 | 600     | Yes 293          | 10.01          | 2.574     | 0.6826 Non     | e sqrt           | (x) 0.000    | 9403  | Param Inter 1 of 2          |
| Total Dissolved Solids (mg/L) | YGWC-41   | 221.5      | n/a        | 3/4/2021 | 224     | Yes 293          | 10.01          | 2.574     | 0.6826 Non     | e sqrt           | (x) 0.000    | 9403  | Param Inter 1 of 2          |
| Total Dissolved Solids (mg/L) | YGWC-42   | 221.5      | n/a        | 3/4/2021 | 501     | Yes 293          | 10.01          | 2.574     | 0.6826 Non     | e sqrt           | (x) 0.000    | 9403  | Param Inter 1 of 2          |
| Total Dissolved Solids (mg/L) | YGWC-43   | 221.5      | n/a        | 3/4/2021 | 592     | Yes 293          | 10.01          | 2.574     | 0.6826 Non     | e sqrt           | (x) 0.000    | 9403  | Param Inter 1 of 2          |
|                               |           |            |            |          |         |                  |                |           |                |                  |              |       |                             |

## Appendix III Interwell Prediction Limits - All Results

| Constituent                   | Well      | Upper Lim | Lower Lim. | Date     | Observ. | Sig. | <u>Bg N</u> | <u>Bg Mean</u> | Std. Dev. | <u>%NDs</u> | <u>ND Adj.</u> | Transforr | n <u>Alpha</u> | Method                      |
|-------------------------------|-----------|-----------|------------|----------|---------|------|-------------|----------------|-----------|-------------|----------------|-----------|----------------|-----------------------------|
| Boron (mg/L)                  | YGWC-23S  | 0.16      | n/a        | 3/4/2021 | 1.2     | Yes  | 293         | n/a            | n/a       | 45.73       | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Boron (mg/L)                  | YGWC-38   | 0.16      | n/a        | 3/4/2021 | 6.4     | Yes  | 293         | n/a            | n/a       | 45.73       | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Boron (mg/L)                  | YGWC-41   | 0.16      | n/a        | 3/4/2021 | 4       | Yes  | 293         | n/a            | n/a       | 45.73       | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Boron (mg/L)                  | YGWC-42   | 0.16      | n/a        | 3/4/2021 | 14.8    | Yes  | 293         | n/a            | n/a       | 45.73       | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Boron (mg/L)                  | YGWC-43   | 0.16      | n/a        | 3/4/2021 | 3.6     | Yes  | 293         | n/a            | n/a       | 45.73       | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Boron (mg/L)                  | YGWC-49   | 0.16      | n/a        | 3/4/2021 | 0.04ND  | No   | 293         | n/a            | n/a       | 45.73       | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Boron (mg/L)                  | YGWC-24SA | 0.16      | n/a        | 3/3/2021 | 0.04ND  | No   | 293         | n/a            | n/a       | 45.73       | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Boron (mg/L)                  | YGWC-36A  | 0.16      | n/a        | 3/4/2021 | 0.0088J | No   | 293         | n/a            | n/a       | 45.73       | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Calcium (mg/L)                | YGWC-23S  | 37        | n/a        | 3/4/2021 | 10.2    | No   | 293         | n/a            | n/a       | 1.024       | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Calcium (mg/L)                | YGWC-38   | 37        | n/a        | 3/4/2021 | 87      | Yes  | 293         | n/a            | n/a       | 1.024       | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Calcium (mg/L)                | YGWC-41   | 37        | n/a        | 3/4/2021 | 16.4    | No   | 293         | n/a            | n/a       | 1.024       | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Calcium (mg/L)                | YGWC-42   | 37        | n/a        | 3/4/2021 | 90.7    | Yes  | 293         | n/a            | n/a       | 1.024       | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Calcium (mg/L)                | YGWC-43   | 37        | n/a        | 3/4/2021 | 32.2    | No   | 293         | n/a            | n/a       | 1.024       | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Calcium (mg/L)                | YGWC-49   | 37        | n/a        | 3/4/2021 | 13      | No   | 293         | n/a            | n/a       | 1.024       | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Calcium (mg/L)                | YGWC-24SA | 37        | n/a        | 3/3/2021 | 2.4     | No   | 293         | n/a            | n/a       | 1.024       | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Calcium (mg/L)                | YGWC-36A  | 37        | n/a        | 3/4/2021 | 5.6     | No   | 293         | n/a            | n/a       | 1.024       | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Chloride (mg/L)               | YGWC-23S  | 7.9       | n/a        | 3/4/2021 | 1.8     | No   | 293         | n/a            | n/a       | 0           | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Chloride (mg/L)               | YGWC-38   | 7.9       | n/a        | 3/4/2021 | 3.9     | No   | 293         | n/a            | n/a       | 0           | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Chloride (mg/L)               | YGWC-41   | 7.9       | n/a        | 3/4/2021 | 3.4     | No   | 293         | n/a            | n/a       | 0           | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Chloride (mg/L)               | YGWC-42   | 7.9       | n/a        | 3/4/2021 | 2.7     | No   | 293         | n/a            | n/a       | 0           | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Chloride (mg/L)               | YGWC-43   | 7.9       | n/a        | 3/4/2021 | 2.1     | No   | 293         | n/a            | n/a       | 0           | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Chloride (mg/L)               | YGWC-49   | 7.9       | n/a        | 3/4/2021 | 4.1     | No   | 293         | n/a            | n/a       | 0           | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Chloride (mg/L)               | YGWC-24SA | 7.9       | n/a        | 3/3/2021 | 8.6     | Yes  | 293         | n/a            | n/a       | 0           | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Chloride (mg/L)               | YGWC-36A  | 7.9       | n/a        | 3/4/2021 | 6.6     | No   | 293         | n/a            | n/a       | 0           | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Fluoride (mg/L)               | YGWC-23S  | 0.68      | n/a        | 3/4/2021 | 0.1ND   | No   | 362         | n/a            | n/a       | 68.51       | n/a            | n/a       | 0.00004917     | NP Inter (NDs) 1 of 2       |
| Fluoride (mg/L)               | YGWC-38   | 0.68      | n/a        | 3/4/2021 | 0.1ND   | No   | 362         | n/a            | n/a       | 68.51       | n/a            | n/a       | 0.00004917     | NP Inter (NDs) 1 of 2       |
| Fluoride (mg/L)               | YGWC-41   | 0.68      | n/a        | 3/4/2021 | 0.1ND   | No   | 362         | n/a            | n/a       | 68.51       | n/a            | n/a       | 0.00004917     | NP Inter (NDs) 1 of 2       |
| Fluoride (mg/L)               | YGWC-42   | 0.68      | n/a        | 3/4/2021 | 0.1ND   | No   | 362         | n/a            | n/a       | 68.51       | n/a            | n/a       | 0.00004917     | NP Inter (NDs) 1 of 2       |
| Fluoride (mg/L)               | YGWC-43   | 0.68      | n/a        | 3/4/2021 | 0.063J  | No   | 362         | n/a            | n/a       | 68.51       | n/a            | n/a       | 0.00004917     | NP Inter (NDs) 1 of 2       |
| Fluoride (mg/L)               | YGWC-49   | 0.68      | n/a        | 3/4/2021 | 0.1ND   | No   | 362         | n/a            | n/a       | 68.51       | n/a            | n/a       | 0.00004917     | NP Inter (NDs) 1 of 2       |
| Fluoride (mg/L)               | YGWC-24SA | 0.68      | n/a        | 3/3/2021 | 0.1ND   | No   | 362         | n/a            | n/a       | 68.51       | n/a            | n/a       | 0.00004917     | NP Inter (NDs) 1 of 2       |
| Fluoride (mg/L)               | YGWC-36A  | 0.68      | n/a        | 3/4/2021 | 0.1ND   | No   | 362         | n/a            | n/a       | 68.51       | n/a            | n/a       | 0.00004917     | NP Inter (NDs) 1 of 2       |
| pH (S.U.)                     | YGWC-23S  | 8.39      | 4.86       | 3/4/2021 | 5.44    | No   | 373         | n/a            | n/a       | 0           | n/a            | n/a       | 0.00009834     | NP Inter (normality) 1 of 2 |
| pH (S.U.)                     | YGWC-38   | 8.39      | 4.86       | 3/4/2021 | 5.01    | No   | 373         | n/a            | n/a       | 0           | n/a            | n/a       | 0.00009834     | NP Inter (normality) 1 of 2 |
| рН (S.U.)                     | YGWC-41   | 8.39      | 4.86       | 3/4/2021 | 4.69    | Yes  | 373         | n/a            | n/a       | 0           | n/a            | n/a       | 0.00009834     | NP Inter (normality) 1 of 2 |
| pH (S.U.)                     | YGWC-42   | 8.39      | 4.86       | 3/4/2021 | 5.59    | No   | 373         | n/a            | n/a       | 0           | n/a            | n/a       | 0.00009834     | NP Inter (normality) 1 of 2 |
| pH (S.U.)                     | YGWC-43   | 8.39      | 4.86       | 3/4/2021 | 5.88    | No   | 373         | n/a            | n/a       | 0           | n/a            | n/a       | 0.00009834     | NP Inter (normality) 1 of 2 |
| pH (S.U.)                     | YGWC-49   | 8.39      | 4.86       | 3/4/2021 | 5.88    | No   | 373         | n/a            | n/a       | 0           | n/a            | n/a       | 0.00009834     | NP Inter (normality) 1 of 2 |
| pH (S.U.)                     | YGWC-24SA | 8.39      | 4.86       | 3/3/2021 | 5.7     | No   | 373         | n/a            | n/a       | 0           | n/a            | n/a       | 0.00009834     | NP Inter (normality) 1 of 2 |
| pH (S.U.)                     | YGWC-36A  | 8.39      | 4.86       | 3/4/2021 | 5.67    | No   | 373         | n/a            | n/a       | 0           | n/a            | n/a       | 0.00009834     | NP Inter (normality) 1 of 2 |
| Sulfate (mg/L)                | YGWC-23S  | 160       | n/a        | 3/4/2021 | 61.7    | No   | 293         | n/a            | n/a       | 6.143       | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Sulfate (mg/L)                | YGWC-38   | 160       | n/a        | 3/4/2021 | 356     | Yes  | 293         | n/a            | n/a       | 6.143       | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Sulfate (mg/L)                | YGWC-41   | 160       | n/a        | 3/4/2021 | 117     | No   | 293         | n/a            | n/a       | 6.143       | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Sulfate (mg/L)                | YGWC-42   | 160       | n/a        | 3/4/2021 | 537     | Yes  | 293         | n/a            | n/a       | 6.143       | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Sulfate (mg/L)                | YGWC-43   | 160       | n/a        | 3/4/2021 | 328     | Yes  | 293         | n/a            | n/a       | 6.143       | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Sulfate (mg/L)                | YGWC-49   | 160       | n/a        | 3/4/2021 | 75.1    | No   | 293         | n/a            | n/a       | 6.143       | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Sulfate (mg/L)                | YGWC-24SA | 160       | n/a        | 3/3/2021 | 0.5ND   | No   | 293         | n/a            | n/a       | 6.143       | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Sulfate (mg/L)                | YGWC-36A  | 160       | n/a        | 3/4/2021 | 6.3     | No   | 293         | n/a            | n/a       | 6.143       | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Total Dissolved Solids (mg/L) | YGWC-23S  | 221.5     | n/a        | 3/4/2021 | 96      | No   | 293         | 10.01          | 2.574     | 0.682       | 6 None         | sqrt(x)   | 0.0009403      | Param Inter 1 of 2          |
| Total Dissolved Solids (mg/L) | YGWC-38   | 221.5     | n/a        | 3/4/2021 | 600     | Yes  | 293         | 10.01          | 2.574     | 0.682       | 6 None         | sqrt(x)   | 0.0009403      | Param Inter 1 of 2          |
| Total Dissolved Solids (mg/L) | YGWC-41   | 221.5     | n/a        | 3/4/2021 | 224     | Yes  | 293         | 10.01          | 2.574     | 0.682       | 6 None         | sqrt(x)   | 0.0009403      | Param Inter 1 of 2          |
| Total Dissolved Solids (mg/L) | YGWC-42   | 221.5     | n/a        | 3/4/2021 | 501     | Yes  | 293         | 10.01          | 2.574     | 0.682       | 6 None         | sqrt(x)   | 0.0009403      | Param Inter 1 of 2          |
| Total Dissolved Solids (mg/L) | YGWC-43   | 221.5     | n/a        | 3/4/2021 | 592     | Yes  | 293         | 10.01          | 2.574     | 0.682       | 6 None         | sqrt(x)   | 0.0009403      | Param Inter 1 of 2          |
| Total Dissolved Solids (mg/L) | YGWC-49   | 221.5     | n/a        | 3/4/2021 | 145     | No   | 293         | 10.01          | 2.574     | 0.682       | 6 None         | sqrt(x)   | 0.0009403      | Param Inter 1 of 2          |
| Total Dissolved Solids (mg/L) | YGWC-24SA | 221.5     | n/a        | 3/3/2021 | 70      | No   | 293         | 10.01          | 2.574     | 0.682       | 6 None         | sqrt(x)   | 0.0009403      | Param Inter 1 of 2          |
| Total Dissolved Solids (mg/L) | YGWC-36A  | 221.5     | n/a        | 3/4/2021 | 69      | No   | 293         | 10.01          | 2.574     | 0.682       | 6 None         | sqrt(x)   | 0.0009403      | Param Inter 1 of 2          |

# Appendix III Trend Tests - Prediction Limits Exceedances - Significant Results

| Constituent                   | Well          | Slope     | Calc. | Critical | Sig. | N  | <u>%NDs</u> | Normality | Xform | Alpha | Method |
|-------------------------------|---------------|-----------|-------|----------|------|----|-------------|-----------|-------|-------|--------|
| Boron (mg/L)                  | YGWA-21I (bg) | -0.006801 | -60   | -58      | Yes  | 16 | 56.25       | n/a       | n/a   | 0.01  | NP     |
| Boron (mg/L)                  | YGWC-38       | -4.08     | -56   | -43      | Yes  | 13 | 0           | n/a       | n/a   | 0.01  | NP     |
| Boron (mg/L)                  | YGWC-41       | -2.779    | -44   | -43      | Yes  | 13 | 0           | n/a       | n/a   | 0.01  | NP     |
| Boron (mg/L)                  | YGWC-43       | 0.7481    | 72    | 43       | Yes  | 13 | 0           | n/a       | n/a   | 0.01  | NP     |
| Calcium (mg/L)                | YGWA-17S (bg) | 0.118     | 59    | 58       | Yes  | 16 | 0           | n/a       | n/a   | 0.01  | NP     |
| Calcium (mg/L)                | YGWA-18S (bg) | -0.0863   | -67   | -58      | Yes  | 16 | 0           | n/a       | n/a   | 0.01  | NP     |
| Calcium (mg/L)                | YGWA-21I (bg) | 1.232     | 68    | 58       | Yes  | 16 | 0           | n/a       | n/a   | 0.01  | NP     |
| Calcium (mg/L)                | YGWA-40 (bg)  | -0.9737   | -45   | -43      | Yes  | 13 | 7.692       | n/a       | n/a   | 0.01  | NP     |
| Calcium (mg/L)                | YGWA-5D (bg)  | -2.574    | -62   | -58      | Yes  | 16 | 0           | n/a       | n/a   | 0.01  | NP     |
| Calcium (mg/L)                | YGWC-38       | -30.07    | -64   | -43      | Yes  | 13 | 0           | n/a       | n/a   | 0.01  | NP     |
| Calcium (mg/L)                | YGWC-42       | -11.87    | -44   | -43      | Yes  | 13 | 0           | n/a       | n/a   | 0.01  | NP     |
| Calcium (mg/L)                | YGWA-47 (bg)  | -2.036    | -56   | -43      | Yes  | 13 | 7.692       | n/a       | n/a   | 0.01  | NP     |
| Calcium (mg/L)                | GWA-2 (bg)    | 4.949     | 63    | 48       | Yes  | 14 | 7.143       | n/a       | n/a   | 0.01  | NP     |
| Calcium (mg/L)                | YGWA-1D (bg)  | 0.7865    | 60    | 58       | Yes  | 16 | 0           | n/a       | n/a   | 0.01  | NP     |
| Calcium (mg/L)                | YGWA-1I (bg)  | -0.1168   | -63   | -58      | Yes  | 16 | 0           | n/a       | n/a   | 0.01  | NP     |
| Chloride (mg/L)               | YGWA-17S (bg) | 0.3002    | 76    | 58       | Yes  | 16 | 0           | n/a       | n/a   | 0.01  | NP     |
| Chloride (mg/L)               | YGWA-20S (bg) | 0.189     | 71    | 58       | Yes  | 16 | 0           | n/a       | n/a   | 0.01  | NP     |
| Chloride (mg/L)               | YGWA-5D (bg)  | -0.9116   | -83   | -58      | Yes  | 16 | 0           | n/a       | n/a   | 0.01  | NP     |
| Chloride (mg/L)               | YGWA-47 (bg)  | -0.5003   | -45   | -43      | Yes  | 13 | 0           | n/a       | n/a   | 0.01  | NP     |
| Chloride (mg/L)               | YGWA-3D (bg)  | -0.06529  | -59   | -58      | Yes  | 16 | 0           | n/a       | n/a   | 0.01  | NP     |
| Chloride (mg/L)               | YGWA-3I (bg)  | -0.05699  | -66   | -58      | Yes  | 16 | 0           | n/a       | n/a   | 0.01  | NP     |
| pH (S.U.)                     | YGWA-18S (bg) | -0.05702  | -88   | -81      | Yes  | 20 | 0           | n/a       | n/a   | 0.01  | NP     |
| pH (S.U.)                     | YGWA-21I (bg) | 0.2015    | 107   | 81       | Yes  | 20 | 0           | n/a       | n/a   | 0.01  | NP     |
| pH (S.U.)                     | YGWA-39 (bg)  | -0.2384   | -89   | -58      | Yes  | 16 | 0           | n/a       | n/a   | 0.01  | NP     |
| pH (S.U.)                     | YGWA-5D (bg)  | -0.09849  | -78   | -74      | Yes  | 19 | 0           | n/a       | n/a   | 0.01  | NP     |
| Sulfate (mg/L)                | YGWA-39 (bg)  | -3.687    | -48   | -43      | Yes  | 13 | 0           | n/a       | n/a   | 0.01  | NP     |
| Sulfate (mg/L)                | YGWA-40 (bg)  | -12.05    | -54   | -43      | Yes  | 13 | 0           | n/a       | n/a   | 0.01  | NP     |
| Sulfate (mg/L)                | YGWA-5D (bg)  | -3.891    | -96   | -58      | Yes  | 16 | 0           | n/a       | n/a   | 0.01  | NP     |
| Sulfate (mg/L)                | YGWA-5I (bg)  | 0.09335   | 70    | 58       | Yes  | 16 | 0           | n/a       | n/a   | 0.01  | NP     |
| Sulfate (mg/L)                | YGWC-38       | -145.1    | -67   | -43      | Yes  | 13 | 0           | n/a       | n/a   | 0.01  | NP     |
| Sulfate (mg/L)                | YGWC-42       | -113.1    | -49   | -43      | Yes  | 13 | 0           | n/a       | n/a   | 0.01  | NP     |
| Sulfate (mg/L)                | YGWC-43       | 54        | 56    | 43       | Yes  | 13 | 0           | n/a       | n/a   | 0.01  | NP     |
| Sulfate (mg/L)                | YGWA-47 (bg)  | -25.19    | -71   | -43      | Yes  | 13 | 0           | n/a       | n/a   | 0.01  | NP     |
| Sulfate (mg/L)                | GWA-2 (bg)    | 25.64     | 66    | 48       | Yes  | 14 | 0           | n/a       | n/a   | 0.01  | NP     |
| Sulfate (mg/L)                | YGWA-1D (bg)  | 1.091     | 76    | 58       | Yes  | 16 | 0           | n/a       | n/a   | 0.01  | NP     |
| Sulfate (mg/L)                | YGWA-3D (bg)  | 0.4938    | 60    | 58       | Yes  | 16 | 0           | n/a       | n/a   | 0.01  | NP     |
| Total Dissolved Solids (mg/L) | YGWA-40 (bg)  | -18.83    | -48   | -43      | Yes  | 13 | 0           | n/a       | n/a   | 0.01  | NP     |
| Total Dissolved Solids (mg/L) | YGWA-5D (bg)  | -18.77    | -74   | -58      | Yes  | 16 | 0           | n/a       | n/a   | 0.01  | NP     |
| Total Dissolved Solids (mg/L) | YGWC-38       | -198      | -48   | -43      | Yes  | 13 | 0           | n/a       | n/a   | 0.01  | NP     |
| Total Dissolved Solids (mg/L) | YGWC-41       | -134.8    | -62   | -43      | Yes  | 13 | 0           | n/a       | n/a   | 0.01  | NP     |
| Total Dissolved Solids (mg/L) | YGWC-42       | -168.3    | -56   | -43      | Yes  | 13 | 0           | n/a       | n/a   | 0.01  | NP     |
| Total Dissolved Solids (mg/L) | YGWC-43       | 111.1     | 70    | 43       | Yes  | 13 | 0           | n/a       | n/a   | 0.01  | NP     |
| Total Dissolved Solids (mg/L) | YGWA-47 (bg)  | -14.88    | -54   | -43      | Yes  | 13 | 0           | n/a       | n/a   | 0.01  | NP     |

# Appendix III Trend Tests - Prediction Limits Exceedances - All Results

| Constituent     | Well          | Slope      | Calc | Critical | Sia | N  | %NDs  | Normality | Xform | Alpha | Method |
|-----------------|---------------|------------|------|----------|-----|----|-------|-----------|-------|-------|--------|
| Boron (mg/L)    | YGWA-17S (ba) | -0.0002497 | -11  | -58      | No  | 16 | 12.5  | n/a       | n/a   | 0.01  | NP     |
| Boron (mg/L)    | YGWA-18I (bg) | 0          | -34  | -58      | No  | 16 | 75    | n/a       | n/a   | 0.01  | NP     |
| Boron (mg/L)    | YGWA-18S (bg) | -0 0003285 | -14  | -58      | No  | 16 | 12.5  | n/a       | n/a   | 0.01  | NP     |
| Boron (mg/L)    | YGWA-20S (bg) | 0          | -15  | -58      | No  | 16 | 87.5  | n/a       | n/a   | 0.01  | NP     |
| Boron (mg/L)    | YGWA-211 (bg) | -0.006801  | -60  | -58      | Yes | 16 | 56.25 | n/a       | n/a   | 0.01  | NP     |
| Boron (mg/L)    | YGWA-39 (ba)  | 0.002402   | 14   | 43       | No  | 13 | 7.692 | n/a       | n/a   | 0.01  | NP     |
| Boron (ma/L)    | YGWA-40 (bg)  | -0.02279   | -41  | -43      | No  | 13 | 0     | n/a       | n/a   | 0.01  | NP     |
| Boron (ma/L)    | YGWA-41 (bg)  | 0          | -17  | -58      | No  | 16 | 62.5  | n/a       | n/a   | 0.01  | NP     |
| Boron (ma/L)    | YGWA-5D (ba)  | 0.0001974  | 12   | 58       | No  | 16 | 12.5  | n/a       | n/a   | 0.01  | NP     |
| Boron (mg/L)    | YGWA-5I (bg)  | -0.0019    | -46  | -58      | No  | 16 | 56.25 | n/a       | n/a   | 0.01  | NP     |
| Boron (mg/L)    | YGWC-23S      | -0.1172    | -38  | -58      | No  | 16 | 0     | n/a       | n/a   | 0.01  | NP     |
| Boron (mg/L)    | YGWC-38       | -4.08      | -56  | -43      | Yes | 13 | 0     | n/a       | n/a   | 0.01  | NP     |
| Boron (mg/L)    | YGWC-41       | -2.779     | -44  | -43      | Yes | 13 | 0     | n/a       | n/a   | 0.01  | NP     |
| Boron (mg/L)    | YGWC-42       | -1.536     | -37  | -43      | No  | 13 | 0     | n/a       | n/a   | 0.01  | NP     |
| Boron (mg/L)    | YGWC-43       | 0.7481     | 72   | 43       | Yes | 13 | 0     | n/a       | n/a   | 0.01  | NP     |
| Boron (mg/L)    | YGWA-47 (bg)  | -0.001291  | -39  | -43      | No  | 13 | 0     | n/a       | n/a   | 0.01  | NP     |
| Boron (mg/L)    | GWA-2 (bg)    | 0          | 5    | 48       | No  | 14 | 57 14 | n/a       | n/a   | 0.01  | NP     |
| Boron (mg/L)    | YGWA-14S (bg) | -0.00131   | -37  | -58      | No  | 16 | 12.5  | n/a       | n/a   | 0.01  | NP     |
| Boron (mg/L)    | YGWA-1D (bg)  | 0          | -2   | -58      | No  | 16 | 25    | n/a       | n/a   | 0.01  | NP     |
| Boron (mg/L)    | YGWA-11 (bg)  | 0          | -23  | -58      | No  | 16 | 68 75 | n/a       | n/a   | 0.01  | NP     |
| Boron (mg/L)    | YGWA-21 (bg)  | 0          | -23  | -58      | No  | 16 | 75    | n/a       | n/a   | 0.01  |        |
| Boron (mg/L)    | YGWA-30L(bg)  | 0          | -28  | -58      | No  | 16 | 81 25 | n/a       | n/a   | 0.01  |        |
| Boron (mg/L)    | YGW(A 3D (bg) | 0          | -20  | -50      | No  | 16 | 56.25 | n/a       | n/a   | 0.01  |        |
| Boron (mg/L)    | YGWA-3L (bg)  | 0          | -0   | -50      | No  | 16 | 97.5  | n/a       | n/a   | 0.01  |        |
| Coloium (mg/L)  |               | 0 449      | -23  | -00      | NO  | 10 | o7.5  | n/a       | n/a   | 0.01  |        |
|                 |               | 0.00400    | 10   | 50       | Tes | 10 | 0     | 11/a      | n/a   | 0.01  |        |
|                 | YGWA-181 (bg) | 0.02122    | 10   | 56       | NO  | 10 | 0     | n/a       | n/a   | 0.01  | NP     |
|                 |               | -0.0863    | -07  | -38      | res | 16 | 0     | n/a       | n/a   | 0.01  |        |
|                 |               | 0.09145    | 54   | 58       | NO  | 10 | 0     | n/a       | n/a   | 0.01  | NP     |
|                 | YGWA-211 (bg) | 1.232      | 68   | 58       | Yes | 16 | 0     | n/a       | n/a   | 0.01  | NP     |
|                 |               | 0.4473     | 13   | 43       | NO  | 13 | 0     | n/a       | n/a   | 0.01  | NP     |
|                 | YGWA-40 (bg)  | -0.9/3/    | -45  | -43      | Yes | 13 | 7.692 | n/a       | n/a   | 0.01  | NP     |
|                 | YGWA-4I (bg)  | 0.2746     | 37   | 58       | NO  | 16 | 0     | n/a       | n/a   | 0.01  | NP     |
| Calcium (mg/L)  | YGWA-5D (bg)  | -2.574     | -62  | -58      | Yes | 16 | 0     | n/a       | n/a   | 0.01  | NP     |
| Calcium (mg/L)  | YGWA-5I (bg)  | 0.09171    | 50   | 58       | No  | 16 | 0     | n/a       | n/a   | 0.01  | NP     |
| Calcium (mg/L)  | YGWC-38       | -30.07     | -64  | -43      | Yes | 13 | 0     | n/a       | n/a   | 0.01  | NP     |
| Calcium (mg/L)  | YGWC-42       | -11.87     | -44  | -43      | Yes | 13 | 0     | n/a       | n/a   | 0.01  | NP     |
| Calcium (mg/L)  | YGWA-47 (bg)  | -2.036     | -56  | -43      | Yes | 13 | 7.692 | n/a       | n/a   | 0.01  | NP     |
| Calcium (mg/L)  | GWA-2 (bg)    | 4.949      | 63   | 48       | Yes | 14 | 7.143 | n/a       | n/a   | 0.01  | NP     |
| Calcium (mg/L)  | YGWA-14S (bg) | -0.03659   | -46  | -58      | No  | 16 | 0     | n/a       | n/a   | 0.01  | NP     |
| Calcium (mg/L)  | YGWA-1D (bg)  | 0.7865     | 60   | 58       | Yes | 16 | 0     | n/a       | n/a   | 0.01  | NP     |
| Calcium (mg/L)  | YGWA-1I (bg)  | -0.1168    | -63  | -58      | Yes | 16 | 0     | n/a       | n/a   | 0.01  | NP     |
| Calcium (mg/L)  | YGWA-2I (bg)  | 0.5792     | 38   | 58       | No  | 16 | 0     | n/a       | n/a   | 0.01  | NP     |
| Calcium (mg/L)  | YGWA-30I (bg) | 0          | -6   | -58      | No  | 16 | 0     | n/a       | n/a   | 0.01  | NP     |
| Calcium (mg/L)  | YGWA-3D (bg)  | 0.7746     | 48   | 58       | No  | 16 | 0     | n/a       | n/a   | 0.01  | NP     |
| Calcium (mg/L)  | YGWA-3I (bg)  | 0.43       | 27   | 58       | No  | 16 | 0     | n/a       | n/a   | 0.01  | NP     |
| Chloride (mg/L) | YGWA-17S (bg) | 0.3002     | 76   | 58       | Yes | 16 | 0     | n/a       | n/a   | 0.01  | NP     |
| Chloride (mg/L) | YGWA-18I (bg) | 0.05099    | 35   | 58       | No  | 16 | 0     | n/a       | n/a   | 0.01  | NP     |
| Chloride (mg/L) | YGWA-18S (bg) | 0.2082     | 50   | 58       | No  | 16 | 0     | n/a       | n/a   | 0.01  | NP     |
| Chloride (mg/L) | YGWA-20S (bg) | 0.189      | 71   | 58       | Yes | 16 | 0     | n/a       | n/a   | 0.01  | NP     |
| Chloride (mg/L) | YGWA-21I (bg) | -0.1117    | -28  | -58      | No  | 16 | 0     | n/a       | n/a   | 0.01  | NP     |
| Chloride (mg/L) | YGWA-39 (bg)  | 0.2329     | 13   | 43       | No  | 13 | 0     | n/a       | n/a   | 0.01  | NP     |
| Chloride (mg/L) | YGWA-40 (bg)  | 0.1751     | 26   | 43       | No  | 13 | 0     | n/a       | n/a   | 0.01  | NP     |
| Chloride (mg/L) | YGWA-4I (bg)  | 0.1099     | 36   | 58       | No  | 16 | 0     | n/a       | n/a   | 0.01  | NP     |
| Chloride (mg/L) | YGWA-5D (bg)  | -0.9116    | -83  | -58      | Yes | 16 | 0     | n/a       | n/a   | 0.01  | NP     |
| Chloride (mg/L) | YGWA-5I (bg)  | 0          | -1   | -58      | No  | 16 | 0     | n/a       | n/a   | 0.01  | NP     |

# Appendix III Trend Tests - Prediction Limits Exceedances - All Results<sup>2</sup>

| Constituent                   | Well          | <u>Slope</u> | Calc. | <u>Critical</u> | <u>Sig.</u> | N  | <u>%NDs</u> | Normality | <u>Xform</u> | <u>Alpha</u> | Method |
|-------------------------------|---------------|--------------|-------|-----------------|-------------|----|-------------|-----------|--------------|--------------|--------|
| Chloride (mg/L)               | YGWA-47 (bg)  | -0.5003      | -45   | -43             | Yes         | 13 | 0           | n/a       | n/a          | 0.01         | NP     |
| Chloride (mg/L)               | GWA-2 (bg)    | 0.1272       | 29    | 48              | No          | 14 | 0           | n/a       | n/a          | 0.01         | NP     |
| Chloride (mg/L)               | YGWA-14S (bg) | 0.1626       | 30    | 58              | No          | 16 | 0           | n/a       | n/a          | 0.01         | NP     |
| Chloride (mg/L)               | YGWA-1D (bg)  | -0.02735     | -40   | -58             | No          | 16 | 0           | n/a       | n/a          | 0.01         | NP     |
| Chloride (mg/L)               | YGWA-1I (bg)  | -0.02869     | -33   | -58             | No          | 16 | 0           | n/a       | n/a          | 0.01         | NP     |
| Chloride (mg/L)               | YGWA-2I (bg)  | -0.05296     | -45   | -58             | No          | 16 | 0           | n/a       | n/a          | 0.01         | NP     |
| Chloride (mg/L)               | YGWA-30I (bg) | 0            | -21   | -58             | No          | 16 | 0           | n/a       | n/a          | 0.01         | NP     |
| Chloride (mg/L)               | YGWA-3D (bg)  | -0.06529     | -59   | -58             | Yes         | 16 | 0           | n/a       | n/a          | 0.01         | NP     |
| Chloride (mg/L)               | YGWA-3I (bg)  | -0.05699     | -66   | -58             | Yes         | 16 | 0           | n/a       | n/a          | 0.01         | NP     |
| Chloride (mg/L)               | YGWC-24SA     | 0.4282       | 54    | 58              | No          | 16 | 0           | n/a       | n/a          | 0.01         | NP     |
| pH (S.U.)                     | YGWA-17S (bg) | -0.005007    | -36   | -74             | No          | 19 | 0           | n/a       | n/a          | 0.01         | NP     |
| pH (S.U.)                     | YGWA-18I (bg) | -0.01164     | -23   | -81             | No          | 20 | 0           | n/a       | n/a          | 0.01         | NP     |
| pH (S.U.)                     | YGWA-18S (bg) | -0.05702     | -88   | -81             | Yes         | 20 | 0           | n/a       | n/a          | 0.01         | NP     |
| pH (S.U.)                     | YGWA-20S (bg) | 0.03         | 81    | 81              | No          | 20 | 0           | n/a       | n/a          | 0.01         | NP     |
| pH (S.U.)                     | YGWA-21I (bg) | 0.2015       | 107   | 81              | Yes         | 20 | 0           | n/a       | n/a          | 0.01         | NP     |
| pH (S.U.)                     | YGWA-39 (bg)  | -0.2384      | -89   | -58             | Yes         | 16 | 0           | n/a       | n/a          | 0.01         | NP     |
| pH (S.U.)                     | YGWA-40 (bg)  | 0.005552     | 4     | 58              | No          | 16 | 0           | n/a       | n/a          | 0.01         | NP     |
| pH (S.U.)                     | YGWA-4I (bg)  | -0.02017     | -44   | -81             | No          | 20 | 0           | n/a       | n/a          | 0.01         | NP     |
| pH (S.U.)                     | YGWA-5D (bg)  | -0.09849     | -78   | -74             | Yes         | 19 | 0           | n/a       | n/a          | 0.01         | NP     |
| pH (S.U.)                     | YGWA-5I (bg)  | 0            | -7    | -81             | No          | 20 | 0           | n/a       | n/a          | 0.01         | NP     |
| pH (S.U.)                     | YGWC-41       | 0.04117      | 13    | 53              | No          | 15 | 0           | n/a       | n/a          | 0.01         | NP     |
| pH (S.U.)                     | YGWA-47 (bg)  | -0.0262      | -37   | -48             | No          | 14 | 0           | n/a       | n/a          | 0.01         | NP     |
| pH (S.U.)                     | GWA-2 (bg)    | -0.03439     | -128  | -139            | No          | 29 | 0           | n/a       | n/a          | 0.01         | NP     |
| pH (S.U.)                     | YGWA-14S (bg) | -0.003962    | -13   | -81             | No          | 20 | 0           | n/a       | n/a          | 0.01         | NP     |
| pH (S.U.)                     | YGWA-1D (bg)  | -0.06046     | -60   | -81             | No          | 20 | 0           | n/a       | n/a          | 0.01         | NP     |
| pH (S.U.)                     | YGWA-1I (bg)  | -0.05767     | -78   | -81             | No          | 20 | 0           | n/a       | n/a          | 0.01         | NP     |
| pH (S.U.)                     | YGWA-2I (bg)  | 0.005696     | 10    | 81              | No          | 20 | 0           | n/a       | n/a          | 0.01         | NP     |
| pH (S.U.)                     | YGWA-30I (bg) | 0.002608     | 7     | 81              | No          | 20 | 0           | n/a       | n/a          | 0.01         | NP     |
| pH (S.U.)                     | YGWA-3D (bg)  | -0.006892    | -11   | -81             | No          | 20 | 0           | n/a       | n/a          | 0.01         | NP     |
| pH (S.U.)                     | YGWA-3I (bg)  | -0.03856     | -36   | -81             | No          | 20 | 0           | n/a       | n/a          | 0.01         | NP     |
| Sulfate (mg/L)                | YGWA-17S (bg) | 0.1322       | 51    | 58              | No          | 16 | 0           | n/a       | n/a          | 0.01         | NP     |
| Sulfate (mg/L)                | YGWA-18I (bg) | -0.2007      | -54   | -58             | No          | 16 | 25          | n/a       | n/a          | 0.01         | NP     |
| Sulfate (mg/L)                | YGWA-18S (bg) | -0.1939      | -48   | -58             | No          | 16 | 12.5        | n/a       | n/a          | 0.01         | NP     |
| Sulfate (mg/L)                | YGWA-20S (bg) | 0            | 24    | 58              | No          | 16 | 62.5        | n/a       | n/a          | 0.01         | NP     |
| Sulfate (mg/L)                | YGWA-21I (bg) | -0.2852      | -25   | -58             | No          | 16 | 0           | n/a       | n/a          | 0.01         | NP     |
| Sulfate (mg/L)                | YGWA-39 (bg)  | -3.687       | -48   | -43             | Yes         | 13 | 0           | n/a       | n/a          | 0.01         | NP     |
| Sulfate (mg/L)                | YGWA-40 (bg)  | -12.05       | -54   | -43             | Yes         | 13 | 0           | n/a       | n/a          | 0.01         | NP     |
| Sulfate (mg/L)                | YGWA-4I (bg)  | 0.1751       | 39    | 58              | No          | 16 | 0           | n/a       | n/a          | 0.01         | NP     |
| Sulfate (mg/L)                | YGWA-5D (bg)  | -3.891       | -96   | -58             | Yes         | 16 | 0           | n/a       | n/a          | 0.01         | NP     |
| Sulfate (mg/L)                | YGWA-5I (bg)  | 0.09335      | 70    | 58              | Yes         | 16 | 0           | n/a       | n/a          | 0.01         | NP     |
| Sulfate (mg/L)                | YGWC-38       | -145.1       | -67   | -43             | Yes         | 13 | 0           | n/a       | n/a          | 0.01         | NP     |
| Sulfate (mg/L)                | YGWC-42       | -113.1       | -49   | -43             | Yes         | 13 | 0           | n/a       | n/a          | 0.01         | NP     |
| Sulfate (mg/L)                | YGWC-43       | 54           | 56    | 43              | Yes         | 13 | 0           | n/a       | n/a          | 0.01         | NP     |
| Sulfate (mg/L)                | YGWA-47 (bg)  | -25.19       | -71   | -43             | Yes         | 13 | 0           | n/a       | n/a          | 0.01         | NP     |
| Sulfate (mg/L)                | GWA-2 (ba)    | 25.64        | 66    | 48              | Yes         | 14 | 0           | n/a       | n/a          | 0.01         | NP     |
| Sulfate (mg/L)                | YGWA-14S (bg) | 0.09469      | 17    | 58              | No          | 16 | 0           | n/a       | n/a          | 0.01         | NP     |
| Sulfate (mg/L)                | YGWA-1D (bg)  | 1.091        | 76    | 58              | Yes         | 16 | 0           | n/a       | n/a          | 0.01         | NP     |
| Sulfate (mg/L)                | YGWA-1I (bg)  | -0.2947      | -23   | -58             | No          | 16 | 0           | n/a       | n/a          | 0.01         | NP     |
| Sulfate (mg/L)                | YGWA-2I (bg)  | 0.1728       | 11    | 58              | No          | 16 | 0           | n/a       | n/a          | 0.01         | NP     |
| Sulfate (mg/L)                | YGWA-301 (ba) | -0.08892     | -28   | -58             | No          | 16 | -           | n/a       | n/a          | 0.01         | NP     |
| Sulfate (mg/L)                | YGWA-3D (ba)  | 0.4938       | 60    | 58              | Yes         | 16 | 0           | n/a       | n/a          | 0.01         | NP     |
| Sulfate (mg/L)                | YGWA-3I (bg)  | 0.6094       | 45    | 58              | No          | 16 | 0           | n/a       | n/a          | 0.01         | NP     |
| Total Dissolved Solids (mg/L) | YGWA-17S (bg) | 4 826        | 22    | 58              | No          | 16 | 0           | n/a       | n/a          | 0.01         | NP     |
| Total Dissolved Solids (mg/L) | YGWA-18I (ba) | -2.316       | -19   | -58             | No          | 16 | 0           | n/a       | n/a          | 0.01         | NP     |
| Total Dissolved Solids (mg/L) | YGWA-18S (bg) | 3.74         | 25    | 58              | No          | 16 | 0           | n/a       | n/a          | 0.01         | NP     |
|                               |               |              |       |                 |             | -  |             |           |              |              |        |

# Appendix III Trend Tests - Prediction Limits Exceedances - All Results<sup>3</sup>

| Constituent                   | Well          | Slope  | Calc. | <u>Critical</u> | <u>Sig.</u> | <u>N</u> | <u>%NDs</u> | Normality | <u>Xform</u> | <u>Alpha</u> | Method |
|-------------------------------|---------------|--------|-------|-----------------|-------------|----------|-------------|-----------|--------------|--------------|--------|
| Total Dissolved Solids (mg/L) | YGWA-20S (bg) | 3.156  | 31    | 58              | No          | 16       | 0           | n/a       | n/a          | 0.01         | NP     |
| Total Dissolved Solids (mg/L) | YGWA-21I (bg) | 15.05  | 46    | 58              | No          | 16       | 0           | n/a       | n/a          | 0.01         | NP     |
| Total Dissolved Solids (mg/L) | YGWA-39 (bg)  | 17.14  | 28    | 43              | No          | 13       | 0           | n/a       | n/a          | 0.01         | NP     |
| Total Dissolved Solids (mg/L) | YGWA-40 (bg)  | -18.83 | -48   | -43             | Yes         | 13       | 0           | n/a       | n/a          | 0.01         | NP     |
| Total Dissolved Solids (mg/L) | YGWA-4I (bg)  | 1.119  | 8     | 58              | No          | 16       | 0           | n/a       | n/a          | 0.01         | NP     |
| Total Dissolved Solids (mg/L) | YGWA-5D (bg)  | -18.77 | -74   | -58             | Yes         | 16       | 0           | n/a       | n/a          | 0.01         | NP     |
| Total Dissolved Solids (mg/L) | YGWA-5I (bg)  | -1.204 | -7    | -58             | No          | 16       | 0           | n/a       | n/a          | 0.01         | NP     |
| Total Dissolved Solids (mg/L) | YGWC-38       | -198   | -48   | -43             | Yes         | 13       | 0           | n/a       | n/a          | 0.01         | NP     |
| Total Dissolved Solids (mg/L) | YGWC-41       | -134.8 | -62   | -43             | Yes         | 13       | 0           | n/a       | n/a          | 0.01         | NP     |
| Total Dissolved Solids (mg/L) | YGWC-42       | -168.3 | -56   | -43             | Yes         | 13       | 0           | n/a       | n/a          | 0.01         | NP     |
| Total Dissolved Solids (mg/L) | YGWC-43       | 111.1  | 70    | 43              | Yes         | 13       | 0           | n/a       | n/a          | 0.01         | NP     |
| Total Dissolved Solids (mg/L) | YGWA-47 (bg)  | -14.88 | -54   | -43             | Yes         | 13       | 0           | n/a       | n/a          | 0.01         | NP     |
| Total Dissolved Solids (mg/L) | GWA-2 (bg)    | 29.32  | 40    | 48              | No          | 14       | 0           | n/a       | n/a          | 0.01         | NP     |
| Total Dissolved Solids (mg/L) | YGWA-14S (bg) | 2.021  | 18    | 58              | No          | 16       | 0           | n/a       | n/a          | 0.01         | NP     |
| Total Dissolved Solids (mg/L) | YGWA-1D (bg)  | 1.869  | 13    | 58              | No          | 16       | 0           | n/a       | n/a          | 0.01         | NP     |
| Total Dissolved Solids (mg/L) | YGWA-1I (bg)  | -3.828 | -26   | -58             | No          | 16       | 0           | n/a       | n/a          | 0.01         | NP     |
| Total Dissolved Solids (mg/L) | YGWA-2I (bg)  | -3.302 | -32   | -58             | No          | 16       | 0           | n/a       | n/a          | 0.01         | NP     |
| Total Dissolved Solids (mg/L) | YGWA-30I (bg) | 2.131  | 17    | 58              | No          | 16       | 12.5        | n/a       | n/a          | 0.01         | NP     |
| Total Dissolved Solids (mg/L) | YGWA-3D (bg)  | 1.956  | 12    | 58              | No          | 16       | 0           | n/a       | n/a          | 0.01         | NP     |
| Total Dissolved Solids (mg/L) | YGWA-3I (bg)  | 0.9644 | 5     | 58              | No          | 16       | 0           | n/a       | n/a          | 0.01         | NP     |
|                               |               |        |       |                 |             |          |             |           |              |              |        |

# Upper Tolerance Limits Summary Table

| Constituent                       | Upper Lim. | Lower Lim. | <u>Sig.</u> | <u>Bg N</u> | <u>Bg Mean</u> | Std. Dev. | <u>%NDs</u> | ND Adj. | Transform | <u>Alpha</u> | Method              |
|-----------------------------------|------------|------------|-------------|-------------|----------------|-----------|-------------|---------|-----------|--------------|---------------------|
| Antimony (mg/L)                   | 0.0047     | n/a        | n/a         | 315         | n/a            | n/a       | 86.03       | n/a     | n/a       | NaN          | NP Inter(NDs)       |
| Arsenic (mg/L)                    | 0.005      | n/a        | n/a         | 363         | n/a            | n/a       | 77.96       | n/a     | n/a       | NaN          | NP Inter(NDs)       |
| Barium (mg/L)                     | 0.071      | n/a        | n/a         | 363         | n/a            | n/a       | 3.03        | n/a     | n/a       | NaN          | NP Inter(normality) |
| Beryllium (mg/L)                  | 0.0005     | n/a        | n/a         | 347         | n/a            | n/a       | 81.27       | n/a     | n/a       | NaN          | NP Inter(NDs)       |
| Cadmium (mg/L)                    | 0.0005     | n/a        | n/a         | 347         | n/a            | n/a       | 95.68       | n/a     | n/a       | NaN          | NP Inter(NDs)       |
| Chromium (mg/L)                   | 0.0093     | n/a        | n/a         | 315         | n/a            | n/a       | 77.46       | n/a     | n/a       | NaN          | NP Inter(NDs)       |
| Cobalt (mg/L)                     | 0.035      | n/a        | n/a         | 360         | n/a            | n/a       | 69.72       | n/a     | n/a       | NaN          | NP Inter(NDs)       |
| Combined Radium 226 + 228 (pCi/L) | 6.92       | n/a        | n/a         | 342         | n/a            | n/a       | 0           | n/a     | n/a       | NaN          | NP Inter(normality) |
| Fluoride (mg/L)                   | 0.68       | n/a        | n/a         | 362         | n/a            | n/a       | 68.51       | n/a     | n/a       | NaN          | NP Inter(NDs)       |
| Lead (mg/L)                       | 0.0013     | n/a        | n/a         | 317         | n/a            | n/a       | 82.65       | n/a     | n/a       | NaN          | NP Inter(NDs)       |
| Lithium (mg/L)                    | 0.03       | n/a        | n/a         | 342         | n/a            | n/a       | 27.49       | n/a     | n/a       | NaN          | NP Inter(normality) |
| Mercury (mg/L)                    | 0.0002     | n/a        | n/a         | 278         | n/a            | n/a       | 93.17       | n/a     | n/a       | NaN          | NP Inter(NDs)       |
| Molybdenum (mg/L)                 | 0.014      | n/a        | n/a         | 306         | n/a            | n/a       | 59.8        | n/a     | n/a       | NaN          | NP Inter(NDs)       |
| Selenium (mg/L)                   | 0.005      | n/a        | n/a         | 345         | n/a            | n/a       | 91.59       | n/a     | n/a       | NaN          | NP Inter(NDs)       |
| Thallium (mg/L)                   | 0.001      | n/a        | n/a         | 298         | n/a            | n/a       | 96.64       | n/a     | n/a       | NaN          | NP Inter(NDs)       |

|                                | YATES AMA | -R6 GWPS  |            |         |        |
|--------------------------------|-----------|-----------|------------|---------|--------|
|                                |           | CCR-Rule  | Background | Federal | State  |
| Constituent Name               | MCL       | Specified | Limit      | GWPS    | GWPS   |
| Antimony, Total (mg/L)         | 0.006     |           | 0.0047     | 0.006   | 0.006  |
| Arsenic, Total (mg/L)          | 0.01      |           | 0.005      | 0.01    | 0.01   |
| Barium, Total (mg/L)           | 2         |           | 0.071      | 2       | 2      |
| Beryllium, Total (mg/L)        | 0.004     |           | 0.0005     | 0.004   | 0.004  |
| Cadmium, Total (mg/L)          | 0.005     |           | 0.0005     | 0.005   | 0.005  |
| Chromium, Total (mg/L)         | 0.1       |           | 0.0093     | 0.1     | 0.1    |
| Cobalt, Total (mg/L)           |           | 0.006     | 0.035      | 0.035   | 0.035  |
| Combined Radium, Total (pCi/L) | 5         |           | 6.92       | 6.92    | 6.92   |
| Fluoride, Total (mg/L)         | 4         |           | 0.68       | 4       | 4      |
| Lead, Total (mg/L)             |           | 0.015     | 0.0013     | 0.015   | 0.0013 |
| Lithium, Total (mg/L)          |           | 0.04      | 0.03       | 0.04    | 0.03   |
| Mercury, Total (mg/L)          | 0.002     |           | 0.0002     | 0.002   | 0.002  |
| Molybdenum, Total (mg/L)       |           | 0.1       | 0.014      | 0.1     | 0.014  |
| Selenium, Total (mg/L)         | 0.05      |           | 0.005      | 0.05    | 0.05   |
| Thallium, Total (mg/L)         | 0.002     |           | 0.001      | 0.002   | 0.002  |

\*Grey cell indicates Background Limit is higher than MCL or CCR Rule Specified Level

\*MCL = Maximum Contaminant Level

\*CCR = Coal Combustion Residual

\*GWPS = Groundwater Protection Standard

## Federal Confidence Intervals - Significant Results

| Constituent      | Well    | Upper Lim. | Lower Lim. | Compliance | <u>Sig.</u> | <u>N</u> | Mean     | Std. Dev. | <u>%NDs</u> | <u>ND Adj.</u> | Transform | <u>Alpha</u> | Method         |
|------------------|---------|------------|------------|------------|-------------|----------|----------|-----------|-------------|----------------|-----------|--------------|----------------|
| Beryllium (mg/L) | YGWC-38 | 0.005497   | 0.004113   | 0.004      | Yes         | 14       | 0.004743 | 0.001073  | 0           | None           | x^2       | 0.01         | Param.         |
| Selenium (mg/L)  | YGWC-38 | 0.249      | 0.076      | 0.05       | Yes         | 14       | 0.1755   | 0.07444   | 0           | None           | No        | 0.01         | NP (normality) |
| Selenium (mg/L)  | PZ-37   | 0.3047     | 0.2211     | 0.05       | Yes         | 11       | 0.2629   | 0.0502    | 0           | None           | No        | 0.01         | Param.         |

### Federal Confidence Intervals - All Results

| Constituent      | Well      | Upper Lim. | Lower Lim. | Compliance | <u>Sig.</u> | <u>N</u> | Mean      | Std. Dev.  | <u>%NDs</u>   | <u>ND Adj.</u> | Transform | <u>Alpha</u> | Method         |
|------------------|-----------|------------|------------|------------|-------------|----------|-----------|------------|---------------|----------------|-----------|--------------|----------------|
| Antimony (mg/L)  | YAMW-1    | 0.025      | 0.00037    | 0.006      | No          | 5        | 0.006874  | 0.0102     | 60            | None           | No        | 0.031        | NP (NDs)       |
| Antimony (mg/L)  | YGWC-23S  | 0.003      | 0.00085    | 0.006      | No          | 16       | 0.002541  | 0.0009916  | 81.25         | None           | No        | 0.01         | NP (NDs)       |
| Antimony (mg/L)  | YGWC-38   | 0.003      | 0.00061    | 0.006      | No          | 13       | 0.002312  | 0.001105   | 69.23         | None           | No        | 0.01         | NP (NDs)       |
| Antimony (mg/L)  | YGWC-41   | 0.003      | 0.0014     | 0.006      | No          | 13       | 0.002877  | 0.0004438  | 92.31         | None           | No        | 0.01         | NP (NDs)       |
| Antimony (mg/L)  | YGWC-42   | 0.003      | 0.00053    | 0.006      | No          | 13       | 0.00281   | 0.0006851  | 92.31         | None           | No        | 0.01         | NP (NDs)       |
| Antimony (mg/L)  | YGWC-43   | 0.003      | 0.00031    | 0.006      | No          | 13       | 0.002793  | 0.0007461  | 92.31         | None           | No        | 0.01         | NP (NDs)       |
| Antimony (mg/L)  | YGWC-49   | 0.003      | 0.0011     | 0.006      | No          | 13       | 0.002664  | 0.0008287  | 84.62         | None           | No        | 0.01         | NP (NDs)       |
| Antimony (mg/L)  | PZ-35     | 0.003      | 0.00039    | 0.006      | No          | 5        | 0.002478  | 0.001167   | 80            | None           | No        | 0.031        | NP (NDs)       |
| Antimony (mg/L)  | PZ-37     | 0.003      | 0.0014     | 0.006      | No          | 11       | 0.002614  | 0.0008911  | 81.82         | None           | No        | 0.006        | NP (NDs)       |
| Antimony (mg/L)  | YGWC-24SA | 0.003      | 0.0009     | 0.006      | No          | 16       | 0.002869  | 0.000525   | 93.75         | None           | No        | 0.01         | NP (NDs)       |
| Antimony (mg/L)  | YGWC-36A  | 0.0041     | 0.0014     | 0.006      | No          | 16       | 0.004256  | 0.006491   | 50            | None           | No        | 0.01         | NP (normality) |
| Arsenic (mg/L)   | YGWC-23S  | 0.005      | 0.0012     | 0.01       | No          | 18       | 0.004789  | 0.0008957  | 94.44         | None           | No        | 0.01         | NP (NDs)       |
| Arsenic (mg/L)   | YGWC-38   | 0.00212    | 0.0007623  | 0.01       | No          | 14       | 0.001676  | 0.001497   | 14.29         | None           | ln(x)     | 0.01         | Param.         |
| Arsenic (mg/L)   | YGWC-41   | 0.005      | 0.00062    | 0.01       | No          | 14       | 0.00288   | 0.002208   | 50            | None           | No        | 0.01         | NP (normality) |
| Arsenic (mg/L)   | YGWC-42   | 0.003139   | 0.00143    | 0.01       | No          | 14       | 0.002355  | 0.001306   | 14.29         | None           | sqrt(x)   | 0.01         | Param.         |
| Arsenic (mg/L)   | YGWC-43   | 0.005      | 0.00099    | 0.01       | No          | 14       | 0.004086  | 0.001819   | 78.57         | None           | No        | 0.01         | NP (NDs)       |
| Arsenic (mg/L)   | YGWC-49   | 0.005      | 0.00086    | 0.01       | No          | 13       | 0.004035  | 0.001835   | 76.92         | None           | No        | 0.01         | NP (NDs)       |
| Arsenic (mg/L)   | PZ-35     | 0.005      | 0.00069    | 0.01       | No          | 6        | 0.003608  | 0.002158   | 66.67         | None           | No        | 0.0155       | NP (NDs)       |
| Arsenic (mg/L)   | PZ-37     | 0.005      | 0.0008     | 0.01       | No          | 11       | 0.002504  | 0.001995   | 36.36         | None           | No        | 0.006        | NP (normality) |
| Arsenic (mg/L)   | YGWC-24SA | 0.005      | 0.0015     | 0.01       | No          | 18       | 0.004806  | 0.000825   | 94.44         | None           | No        | 0.01         | NP (NDs)       |
| Arsenic (mg/L)   | YGWC-36A  | 0.005      | 0.00088    | 0.01       | No          | 18       | 0.004041  | 0.001847   | 77.78         | None           | No        | 0.01         | NP (NDs)       |
| Barium (mg/L)    | YAMW-1    | 0.04981    | 0.02919    | 2          | No          | 6        | 0.0395    | 0.007503   | 0             | None           | No        | 0.01         | Param.         |
| Barium (mg/L)    | YGWC-23S  | 0.04499    | 0.02913    | 2          | No          | 18       | 0.03706   | 0.01311    | 0             | None           | No        | 0.01         | Param.         |
| Barium (mg/L)    | YGWC-38   | 0.0239     | 0.01832    | 2          | No          | 14       | 0.02111   | 0.003941   | 0             | None           | No        | 0.01         | Param.         |
| Barium (mɑ/L)    | YGWC-41   | 0.03029    | 0.0206     | 2          | No          | 14       | 0.02544   | 0.00684    | 0             | None           | No        | 0.01         | Param.         |
| Barium (mɑ/L)    | YGWC-42   | 0.04675    | 0.03191    | 2          | No          | 14       | 0.03933   | 0.01047    | 0             | None           | No        | 0.01         | Param.         |
| Barium (mɑ/L)    | YGWC-43   | 0.03572    | 0.01774    | 2          | No          | 14       | 0.02673   | 0.01269    | 0             | None           | No        | 0.01         | Param.         |
| Barium (mɑ/L)    | YGWC-49   | 0.07999    | 0.06987    | 2          | No          | 13       | 0.07493   | 0.006807   | 0             | None           | No        | 0.01         | Param.         |
| Barium (mɑ/L)    | PZ-35     | 0.063      | 0.032      | 2          | No          | 6        | 0.04      | 0.01166    | 0             | None           | No        | 0.0155       | NP (normality) |
| Barium (mɑ/L)    | PZ-37     | 0.05778    | 0.04078    | 2          | No          | 11       | 0.04928   | 0.0102     | 0             | None           | No        | 0.01         | Param.         |
| Barium (mɑ/L)    | YGWC-24SA | 0.0203     | 0.0189     | 2          | No          | 18       | 0.02053   | 0.003411   | 0             | None           | No        | 0.01         | NP (normality) |
| Barium (mɑ/L)    | YGWC-36A  | 0.04411    | 0.03184    | 2          | No          | 18       | 0.03797   | 0.01014    | 0             | None           | No        | 0.01         | Param.         |
| Bervllium (ma/L) | YAMW-1    | 0.0005     | 0.000058   | 0.004      | No          | 6        | 0.0004047 | 0.0001776  | 66.67         | None           | No        | 0.0155       | NP (NDs)       |
| Beryllium (mg/L) | YAMW-5    | 0.0002156  | 0.00005244 | 0.004      | No          | 4        | 0.000134  | 0.00003593 | 0             | None           | No        | 0.01         | Param.         |
| Bervllium (ma/L) | YGWC-23S  | 0.0005     | 0.000081   | 0.004      | No          | 18       | 0.0002109 | 0.0001859  | 27.78         | None           | No        | 0.01         | NP (normality) |
| Bervllium (mg/L) | YGWC-38   | 0.005497   | 0.004113   | 0.004      | Yes         | 14       | 0.004743  | 0.001073   | 0             | None           | x^2       | 0.01         | Param.         |
| Bervllium (ma/L) | YGWC-41   | 0.0038     | 0.002      | 0.004      | No          | 14       | 0.003     | 0.000862   | 0             | None           | No        | 0.01         | NP (normality) |
| Beryllium (mg/L) | YGWC-42   | 0.0005     | 0.000067   | 0.004      | No          | 14       | 0.0003503 | 0.0002087  | 64.29         | None           | No        | 0.01         | NP (NDs)       |
| Beryllium (mg/L) | YGWC-43   | 0.00053    | 0.0003     | 0.004      | No          | 14       | 0 0004286 | 0.000133   | 42.86         | None           | No        | 0.01         | NP (normality) |
| Beryllium (mg/L) | YGWC-49   | 0.00013    | 0.0001     | 0.004      | No          | 13       | 0.0001408 | 0.0001088  | 7 692         | None           | No        | 0.01         | NP (normality) |
| Beryllium (mg/L) | P7-35     | 0.0004361  | 0.0002224  | 0.004      | No          | 7        | 0.0003871 | 0.0001188  | 28.57         | Kaplan-Meier   | No        | 0.01         | Param          |
| Beryllium (mg/L) | P7-37     | 0.0003331  | 0.0002091  | 0.004      | No          | 11       | 0.0003355 | 0.0001069  | 18 18         | Kaplan-Meier   | No        | 0.01         | Param          |
| Beryllium (mg/L) | YGWC-24SA | 0.00016    | 0.0001     | 0.004      | No          | 18       | 0.0001811 | 0.000149   | 16.67         | None           | No        | 0.01         | NP (normality) |
| Beryllium (mg/L) | YGWC-36A  | 0.0003195  | 0.0001904  | 0.004      | No          | 18       | 0.0002549 | 0.0001067  | 5 556         | None           | No        | 0.01         | Param          |
| Codmium (mg/L)   |           | 0.0005     | 0.00013    | 0.005      | No          | 6        | 0.0002040 | 0.000104   | 50            | None           | No        | 0.0155       | NP (normality) |
| Cadmium (mg/L)   | YGWC 225  | 0.0005     | 0.00013    | 0.005      | No          | 19       | 0.0003233 | 0.000194   | 04.44         | None           | No        | 0.0133       |                |
| Cadmium (mg/L)   | YGWC 28   | 0.0003     | 0.00007    | 0.005      | No          | 14       | 0.0004701 | 0.0006140  | 94.44         | None           | NO        | 0.01         | Derem          |
| Cadmium (mg/L)   | YGWC 41   | 0.002790   | 0.002139   | 0.005      | No          | 14       | 0.00233   | 0.0001446  | 29.57         | None           | No.       | 0.01         | ND (normality) |
| Cadmium (mg/L)   | YGWC 42   | 0.0005     | 0.00017    | 0.005      | No          | 14       | 0.0002000 | 0.0001667  | 12.96         | Nono           | No        | 0.01         | NP (normality) |
| Cadmium (mg/L)   | VGWC 40   | 0.0005     | 0.00017    | 0.005      | No          | 14       | 0.0003704 | 0.0001100  | +2.00         | Nono           | No        | 0.01         |                |
| Cadmium (mg/L)   | D7 25     | 0.0005     | 0.00007    | 0.005      | No          | 13<br>6  | 0.0004609 | 0.0001193  | ສ∠.ວI<br>ຄວວວ | None           | No        | 0.01         |                |
| Cadmium (mg/L)   | FZ-00     | 0.00000000 | 0.00016    | 0.005      | NO<br>No    | U<br>11  | 0.0004707 | 0.0001388  | 03.33         | Kanlan M-i     | No        | 0.01         | NF (NDS)       |
| Cadmium (mg/L)   | FZ-31     | 0.0006329  | 0.0002453  | 0.005      |             | 11       | 0.0004727 | 0.0002328  | 10.10         | napian-Meier   | No        | 0.01         | Param.         |
| Caumium (mg/L)   |           | 0.0005     | 0.00015    | 0.005      | INO         | 18       | 0.0002433 | 0.0001722  | 22.22         | None           | NO        | 0.01         | NP (normality) |
| Chromium (mg/L)  |           | 0.001163   | 0.0003768  | 0.1        |             | 4        | 0.00077   | 0.0001732  | U             | None           | No        | 0.01         | Faram.         |
| Gniomium (mg/L)  | 1600-235  | 0.005      | 0.0008     | U. I       | INO         | 14       | 0.003296  | 0.002061   | o1.14         | NOUG           | NO        | 0.01         | INP (INDS)     |

### Federal Confidence Intervals - All Results

| Constituent                       | Well      | Upper Lim. | Lower Lim. | Compliance | <u>Sig.</u> | N  | Mean      | Std. Dev. | <u>%NDs</u> | ND Adj.      | Transform | <u>Alpha</u> | Method         |
|-----------------------------------|-----------|------------|------------|------------|-------------|----|-----------|-----------|-------------|--------------|-----------|--------------|----------------|
| Chromium (mg/L)                   | YGWC-38   | 0.005      | 0.00065    | 0.1        | No          | 14 | 0.004368  | 0.001607  | 85.71       | None         | No        | 0.01         | NP (NDs)       |
| Chromium (mg/L)                   | YGWC-41   | 0.005      | 0.00039    | 0.1        | No          | 14 | 0.004671  | 0.001232  | 92.86       | None         | No        | 0.01         | NP (NDs)       |
| Chromium (mg/L)                   | YGWC-42   | 0.005      | 0.0013     | 0.1        | No          | 14 | 0.004095  | 0.001807  | 78.57       | None         | No        | 0.01         | NP (NDs)       |
| Chromium (mg/L)                   | YGWC-43   | 0.005      | 0.00071    | 0.1        | No          | 14 | 0.003755  | 0.002043  | 71.43       | None         | No        | 0.01         | NP (NDs)       |
| Chromium (mg/L)                   | YGWC-49   | 0.002      | 0.0014     | 0.1        | No          | 12 | 0.001958  | 0.0009839 | 8.333       | None         | No        | 0.01         | NP (normality) |
| Chromium (mg/L)                   | PZ-35     | 0.0012     | 0.0006     | 0.1        | No          | 4  | 0.0007775 | 0.0002852 | 0           | None         | No        | 0.0625       | NP (normality) |
| Chromium (mg/L)                   | PZ-37     | 0.005      | 0.0017     | 0.1        | No          | 11 | 0.004055  | 0.001633  | 72.73       | None         | No        | 0.006        | NP (NDs)       |
| Chromium (mg/L)                   | YGWC-24SA | 0.005      | 0.0011     | 0.1        | No          | 14 | 0.004153  | 0.001684  | 78.57       | None         | No        | 0.01         | NP (NDs)       |
| Chromium (mg/L)                   | YGWC-36A  | 0.005      | 0.0013     | 0.1        | No          | 14 | 0.004034  | 0.001699  | 71.43       | None         | No        | 0.01         | NP (NDs)       |
| Cobalt (mg/L)                     | YAMW-1    | 0.02859    | 0.004268   | 0.035      | No          | 7  | 0.01643   | 0.01106   | 28.57       | Kaplan-Meier | No        | 0.01         | Param.         |
| Cobalt (mg/L)                     | YGWC-41   | 0.005      | 0.00069    | 0.035      | No          | 14 | 0.003742  | 0.002072  | 71.43       | Kaplan-Meier | No        | 0.01         | NP (NDs)       |
| Cobalt (mg/L)                     | YGWC-42   | 0.0025     | 0.0017     | 0.035      | No          | 14 | 0.0022    | 0.0008927 | 7.143       | None         | No        | 0.01         | NP (normality) |
| Cobalt (mg/L)                     | YGWC-43   | 0.005      | 0.0016     | 0.035      | No          | 14 | 0.00325   | 0.001688  | 42.86       | None         | No        | 0.01         | NP (normality) |
| Cobalt (mg/L)                     | YGWC-49   | 0.005      | 0.0006     | 0.035      | No          | 13 | 0.003654  | 0.002103  | 69.23       | None         | No        | 0.01         | NP (NDs)       |
| Cobalt (mg/L)                     | PZ-35     | 0.0059     | 0.005      | 0.035      | No          | 6  | 0.00515   | 0.0003674 | 83.33       | None         | No        | 0.0155       | NP (NDs)       |
| Cobalt (mg/L)                     | PZ-37     | 0.0129     | 0.004336   | 0.035      | No          | 11 | 0.008618  | 0.005139  | 0           | None         | No        | 0.01         | Param.         |
| Cobalt (mg/L)                     | YGWC-36A  | 0.005      | 0.0006     | 0.035      | No          | 18 | 0.003761  | 0.002058  | 72.22       | None         | No        | 0.01         | NP (NDs)       |
| Combined Radium 226 + 228 (pCi/L) | YAMW-1    | 0.8723     | 0.2073     | 6.92       | No          | 5  | 0.5398    | 0.1984    | 0           | None         | No        | 0.01         | Param.         |
| Combined Radium 226 + 228 (pCi/L) | YGWC-23S  | 0.8108     | 0.3587     | 6.92       | No          | 18 | 0.5848    | 0.3736    | 0           | None         | No        | 0.01         | Param.         |
| Combined Radium 226 + 228 (pCi/L) | YGWC-38   | 1.326      | 0.5981     | 6.92       | No          | 14 | 0.962     | 0.5138    | 0           | None         | No        | 0.01         | Param.         |
| Combined Radium 226 + 228 (pCi/L) | YGWC-41   | 1.374      | 0.6299     | 6.92       | No          | 14 | 1.032     | 0.5676    | 0           | None         | sqrt(x)   | 0.01         | Param.         |
| Combined Radium 226 + 228 (pCi/L) | YGWC-42   | 2.942      | 1.277      | 6.92       | No          | 14 | 2.11      | 1.175     | 0           | None         | No        | 0.01         | Param.         |
| Combined Radium 226 + 228 (pCi/L) | YGWC-43   | 4.059      | 1.333      | 6.92       | No          | 14 | 2.696     | 1.924     | 0           | None         | No        | 0.01         | Param.         |
| Combined Radium 226 + 228 (pCi/L) | YGWC-49   | 1.175      | 0.4779     | 6.92       | No          | 13 | 0.8266    | 0.469     | 0           | None         | No        | 0.01         | Param.         |
| Combined Radium 226 + 228 (pCi/L) | PZ-35     | 1.075      | -0.04565   | 6.92       | No          | 5  | 0.5146    | 0.3343    | 0           | None         | No        | 0.01         | Param.         |
| Combined Radium 226 + 228 (pCi/L) | PZ-37     | 2.039      | 1.437      | 6.92       | No          | 11 | 1.749     | 0.4126    | 0           | None         | ln(x)     | 0.01         | Param.         |
| Combined Radium 226 + 228 (pCi/L) | YGWC-24SA | 0.7865     | 0.4799     | 6.92       | No          | 18 | 0.6332    | 0.2534    | 0           | None         | No        | 0.01         | Param.         |
| Combined Radium 226 + 228 (pCi/L) | YGWC-36A  | 1.095      | 0.5456     | 6.92       | No          | 18 | 0.8205    | 0.4544    | 0           | None         | No        | 0.01         | Param.         |
| Fluoride (mg/L)                   | YGWC-23S  | 0.12       | 0.049      | 4          | No          | 19 | 0.09468   | 0.02023   | 84.21       | None         | No        | 0.01         | NP (NDs)       |
| Fluoride (mg/L)                   | YGWC-38   | 0.24       | 0.034      | 4          | No          | 15 | 0.1616    | 0.1178    | 60          | None         | No        | 0.01         | NP (NDs)       |
| Fluoride (mg/L)                   | YGWC-41   | 0.11       | 0.1        | 4          | No          | 15 | 0.1007    | 0.002582  | 86.67       | None         | No        | 0.01         | NP (NDs)       |
| Fluoride (mg/L)                   | YGWC-42   | 0.1        | 0.06       | 4          | No          | 15 | 0.08607   | 0.02601   | 73.33       | None         | No        | 0.01         | NP (NDs)       |
| Fluoride (mg/L)                   | YGWC-43   | 0.1159     | 0.05777    | 4          | No          | 15 | 0.1069    | 0.05423   | 26.67       | Kaplan-Meier | sqrt(x)   | 0.01         | Param.         |
| Fluoride (mg/L)                   | YGWC-49   | 0.14       | 0.06       | 4          | No          | 14 | 0.09929   | 0.02702   | 57.14       | Kaplan-Meier | No        | 0.01         | NP (NDs)       |
| Fluoride (mg/L)                   | PZ-37     | 0.31       | 0.1        | 4          | No          | 11 | 0.1773    | 0.1198    | 63.64       | None         | No        | 0.006        | NP (NDs)       |
| Fluoride (mg/L)                   | YGWC-24SA | 0.1        | 0.098      | 4          | No          | 19 | 0.09637   | 0.01535   | 89.47       | None         | No        | 0.01         | NP (NDs)       |
| Fluoride (mg/L)                   | YGWC-36A  | 0.1        | 0.09       | 4          | No          | 19 | 0.09242   | 0.03298   | 63.16       | None         | No        | 0.01         | NP (NDs)       |
| Lead (mg/L)                       | YAMW-1    | 0.001      | 0.00019    | 0.015      | No          | 5  | 0.000838  | 0.0003622 | 80          | None         | No        | 0.031        | NP (NDs)       |
| Lead (mg/L)                       | YGWC-23S  | 0.001      | 0.00021    | 0.015      | No          | 16 | 0.0008016 | 0.0003629 | 75          | None         | No        | 0.01         | NP (NDs)       |
| Lead (mg/L)                       | YGWC-38   | 0.001      | 0.0001     | 0.015      | No          | 14 | 0.0008071 | 0.0003832 | 78.57       | None         | No        | 0.01         | NP (NDs)       |
| Lead (mg/L)                       | YGWC-41   | 0.0011     | 0.00012    | 0.015      | No          | 14 | 0.0007541 | 0.0004218 | 64.29       | None         | No        | 0.01         | NP (NDs)       |
| Lead (mg/L)                       | YGWC-42   | 0.001      | 0.00009    | 0.015      | No          | 14 | 0.0007422 | 0.0004243 | 71.43       | None         | No        | 0.01         | NP (NDs)       |
| Lead (mg/L)                       | YGWC-43   | 0.001      | 80000.0    | 0.015      | No          | 14 | 0.0008682 | 0.000335  | 85.71       | None         | No        | 0.01         | NP (NDs)       |
| Lead (mg/L)                       | YGWC-49   | 0.001      | 0.000059   | 0.015      | No          | 13 | 0.0009276 | 0.000261  | 92.31       | None         | No        | 0.01         | NP (NDs)       |
| Lead (mg/L)                       | PZ-35     | 0.001      | 0.000087   | 0.015      | No          | 5  | 0.0006474 | 0.0004833 | 60          | None         | No        | 0.031        | NP (NDs)       |
| Lead (mg/L)                       | PZ-37     | 0.001      | 0.000088   | 0.015      | No          | 11 | 0.0006066 | 0.0004535 | 54.55       | None         | No        | 0.006        | NP (NDs)       |
| Lead (mg/L)                       | YGWC-24SA | 0.001      | 0.00036    | 0.015      | No          | 16 | 0.0009008 | 0.0002768 | 87.5        | None         | No        | 0.01         | NP (NDs)       |
| Lead (mg/L)                       | YGWC-36A  | 0.000658   | 0.0002358  | 0.015      | No          | 16 | 0.0004956 | 0.0004239 | 12.5        | None         | x^(1/3)   | 0.01         | Param.         |
| Lithium (mg/L)                    | YAMW-1    | 0.0235     | 0.0006154  | 0.04       | No          | 6  | 0.01255   | 0.008417  | 16.67       | Kaplan-Meier | No        | 0.01         | Param.         |
| Lithium (ma/L)                    | YGWC-23S  | 0.0026     | 0.0018     | 0.04       | No          | 18 | 0.002994  | 0.003057  | 5.556       | None         | No        | 0.01         | NP (normality) |
| Lithium (mg/L)                    | YGWC-38   | 0.008994   | 0.007591   | 0.04       | No          | 14 | 0.008293  | 0.0009903 | 0           | None         | No        | 0.01         | Param.         |
| Lithium (mg/L)                    | YGWC-41   | 0.0044     | 0.0025     | 0.04       | No          | 14 | 0.004314  | 0.003188  | 7.143       | None         | No        | 0.01         | NP (normalitv) |
| Lithium (mg/L)                    | YGWC-42   | 0.0478     | 0.02983    | 0.04       | No          | 14 | 0.03881   | 0.01268   | 0           | None         | No        | 0.01         | Param.         |
| Lithium (mg/L)                    | YGWC-43   | 0.01912    | 0.01164    | 0.04       | No          | 14 | 0.01538   | 0.005279  | 0           | None         | No        | 0.01         | Param.         |
| Lithium (mg/L)                    | YGWC-49   | 0.0039     | 0.0035     | 0.04       | No          | 13 | 0.003708  | 0.0002465 | 0           | None         | No        | 0.01         | NP (normality) |
|                                   | -         | -          | -          |            |             |    |           |           |             |              |           |              | . ,            |

### Federal Confidence Intervals - All Results

| Constituent       | Well     | Upper Lim. | Lower Lim. | Compliance | <u>Sig.</u> | <u>N</u> | Mean      | Std. Dev.  | <u>%NDs</u> | <u>ND Adj.</u> | Transform | <u>Alpha</u> | Method         |
|-------------------|----------|------------|------------|------------|-------------|----------|-----------|------------|-------------|----------------|-----------|--------------|----------------|
| Lithium (mg/L)    | PZ-35    | 0.015      | 0.001      | 0.04       | No          | 6        | 0.005133  | 0.006226   | 16.67       | None           | No        | 0.0155       | NP (normality) |
| Lithium (mg/L)    | PZ-37    | 0.03042    | 0.02345    | 0.04       | No          | 11       | 0.02679   | 0.004677   | 9.091       | None           | x^2       | 0.01         | Param.         |
| Lithium (mg/L)    | YGWC-36A | 0.006884   | 0.003471   | 0.04       | No          | 18       | 0.005478  | 0.002992   | 5.556       | None           | x^(1/3)   | 0.01         | Param.         |
| Mercury (mg/L)    | YGWC-23S | 0.0002     | 0.00015    | 0.002      | No          | 13       | 0.0001883 | 0.00003045 | 5 84.62     | None           | No        | 0.01         | NP (NDs)       |
| Mercury (mg/L)    | YGWC-38  | 0.0002     | 0.00008    | 0.002      | No          | 11       | 0.0001743 | 0.00005804 | 81.82       | None           | No        | 0.006        | NP (NDs)       |
| Mercury (mg/L)    | YGWC-41  | 0.0002     | 0.0002     | 0.002      | No          | 11       | 0.0001873 | 0.00004221 | 90.91       | None           | No        | 0.006        | NP (NDs)       |
| Mercury (mg/L)    | YGWC-42  | 0.0002     | 0.0002     | 0.002      | No          | 11       | 0.0001862 | 0.00004583 | 3 90.91     | None           | No        | 0.006        | NP (NDs)       |
| Mercury (mg/L)    | YGWC-43  | 0.0002     | 0.0002     | 0.002      | No          | 11       | 0.0001865 | 0.00004462 | 2 90.91     | None           | No        | 0.006        | NP (NDs)       |
| Mercury (mg/L)    | YGWC-49  | 0.0002     | 0.00014    | 0.002      | No          | 10       | 0.0001801 | 0.0000459  | 80          | None           | No        | 0.011        | NP (NDs)       |
| Mercury (mg/L)    | PZ-37    | 0.0002     | 0.0002     | 0.002      | No          | 11       | 0.0001873 | 0.00004221 | 90.91       | None           | No        | 0.006        | NP (NDs)       |
| Molybdenum (mg/L) | YAMW-1   | 0.004895   | 0.001572   | 0.1        | No          | 4        | 0.004925  | 0.003462   | 25          | Kaplan-Meier   | No        | 0.01         | Param.         |
| Molybdenum (mg/L) | YGWC-42  | 0.01       | 0.00094    | 0.1        | No          | 14       | 0.00525   | 0.004314   | 42.86       | None           | No        | 0.01         | NP (normality) |
| Molybdenum (mg/L) | YGWC-43  | 0.01       | 0.0011     | 0.1        | No          | 14       | 0.005679  | 0.004493   | 50          | None           | No        | 0.01         | NP (normality) |
| Molybdenum (mg/L) | YGWC-49  | 0.01       | 0.0007     | 0.1        | No          | 12       | 0.009225  | 0.002685   | 91.67       | None           | No        | 0.01         | NP (NDs)       |
| Molybdenum (mg/L) | PZ-35    | 0.01       | 0.0019     | 0.1        | No          | 4        | 0.007975  | 0.00405    | 75          | None           | No        | 0.0625       | NP (NDs)       |
| Molybdenum (mg/L) | PZ-37    | 0.01       | 0.0016     | 0.1        | No          | 11       | 0.004818  | 0.004118   | 36.36       | None           | No        | 0.006        | NP (normality) |
| Molybdenum (mg/L) | YGWC-36A | 0.01       | 0.0025     | 0.1        | No          | 14       | 0.007071  | 0.003747   | 57.14       | None           | No        | 0.01         | NP (NDs)       |
| Selenium (mg/L)   | YAMW-1   | 0.0025     | 0.0019     | 0.05       | No          | 6        | 0.0024    | 0.0002449  | 83.33       | None           | No        | 0.0155       | NP (NDs)       |
| Selenium (mg/L)   | YAMW-4   | 0.016      | 0.0018     | 0.05       | No          | 4        | 0.0057    | 0.006875   | 50          | None           | No        | 0.0625       | NP (normality) |
| Selenium (mg/L)   | YAMW-5   | 0.08521    | 0.01079    | 0.05       | No          | 4        | 0.048     | 0.01639    | 0           | None           | No        | 0.01         | Param.         |
| Selenium (mg/L)   | YGWC-23S | 0.03964    | 0.02677    | 0.05       | No          | 18       | 0.03321   | 0.01064    | 0           | None           | No        | 0.01         | Param.         |
| Selenium (mg/L)   | YGWC-38  | 0.249      | 0.076      | 0.05       | Yes         | 14       | 0.1755    | 0.07444    | 0           | None           | No        | 0.01         | NP (normality) |
| Selenium (mg/L)   | YGWC-41  | 0.06577    | 0.04363    | 0.05       | No          | 14       | 0.0547    | 0.01563    | 0           | None           | No        | 0.01         | Param.         |
| Selenium (mg/L)   | YGWC-42  | 0.05735    | 0.04038    | 0.05       | No          | 14       | 0.04886   | 0.01198    | 0           | None           | No        | 0.01         | Param.         |
| Selenium (mg/L)   | YGWC-49  | 0.00899    | 0.006583   | 0.05       | No          | 13       | 0.007646  | 0.00198    | 7.692       | None           | x^2       | 0.01         | Param.         |
| Selenium (mg/L)   | PZ-37    | 0.3047     | 0.2211     | 0.05       | Yes         | 11       | 0.2629    | 0.0502     | 0           | None           | No        | 0.01         | Param.         |
| Selenium (mg/L)   | YGWC-36A | 0.002744   | 0.001829   | 0.05       | No          | 18       | 0.002433  | 0.0005931  | 33.33       | Kaplan-Meier   | No        | 0.01         | Param.         |

# State Confidence Intervals - Significant Results

| Constituent      | Well    | Upper Lim. | Lower Lim. | Compliance | <u>Sig.</u> | <u>N</u> | Mean     | Std. Dev. | <u>%NDs</u> | ND Adj. | Transform | Alpha | Method         |
|------------------|---------|------------|------------|------------|-------------|----------|----------|-----------|-------------|---------|-----------|-------|----------------|
| Beryllium (mg/L) | YGWC-38 | 0.005497   | 0.004113   | 0.004      | Yes         | 14       | 0.004743 | 0.001073  | 0           | None    | x^2       | 0.01  | Param.         |
| Selenium (mg/L)  | YGWC-38 | 0.249      | 0.076      | 0.05       | Yes         | 14       | 0.1755   | 0.07444   | 0           | None    | No        | 0.01  | NP (normality) |
| Selenium (mg/L)  | PZ-37   | 0.3047     | 0.2211     | 0.05       | Yes         | 11       | 0.2629   | 0.0502    | 0           | None    | No        | 0.01  | Param.         |

### State Confidence Intervals - All Results

| Constituent       | Well      | Upper Lim. | Lower Lim. | Compliance | Sig.  | N       | Mean      | Std. Dev.  | <u>%NDs</u>    | <u>ND Adj.</u> | Transform | <u>Alpha</u> | Method         |
|-------------------|-----------|------------|------------|------------|-------|---------|-----------|------------|----------------|----------------|-----------|--------------|----------------|
| Antimony (mg/L)   | YAMW-1    | 0.025      | 0.00037    | 0.006      | No    | 5       | 0.006874  | 0.0102     | 60             | None           | No        | 0.031        | NP (NDs)       |
| Antimony (mg/L)   | YGWC-23S  | 0.003      | 0.00085    | 0.006      | No    | 16      | 0.002541  | 0.0009916  | 81.25          | None           | No        | 0.01         | NP (NDs)       |
| Antimony (mg/L)   | YGWC-38   | 0.003      | 0.00061    | 0.006      | No    | 13      | 0.002312  | 0.001105   | 69.23          | None           | No        | 0.01         | NP (NDs)       |
| Antimony (mg/L)   | YGWC-41   | 0.003      | 0.0014     | 0.006      | No    | 13      | 0.002877  | 0.0004438  | 92.31          | None           | No        | 0.01         | NP (NDs)       |
| Antimony (mg/L)   | YGWC-42   | 0.003      | 0.00053    | 0.006      | No    | 13      | 0.00281   | 0.0006851  | 92.31          | None           | No        | 0.01         | NP (NDs)       |
| Antimony (mg/L)   | YGWC-43   | 0.003      | 0.00031    | 0.006      | No    | 13      | 0.002793  | 0.0007461  | 92.31          | None           | No        | 0.01         | NP (NDs)       |
| Antimony (mg/L)   | YGWC-49   | 0.003      | 0.0011     | 0.006      | No    | 13      | 0.002664  | 0.0008287  | 84.62          | None           | No        | 0.01         | NP (NDs)       |
| Antimony (mg/L)   | PZ-35     | 0.003      | 0.00039    | 0.006      | No    | 5       | 0.002478  | 0.001167   | 80             | None           | No        | 0.031        | NP (NDs)       |
| Antimony (mg/L)   | PZ-37     | 0.003      | 0.0014     | 0.006      | No    | 11      | 0.002614  | 0.0008911  | 81.82          | None           | No        | 0.006        | NP (NDs)       |
| Antimony (mg/L)   | YGWC-24SA | 0.003      | 0.0009     | 0.006      | No    | 16      | 0.002869  | 0.000525   | 93.75          | None           | No        | 0.01         | NP (NDs)       |
| Antimony (mg/L)   | YGWC-36A  | 0.0041     | 0.0014     | 0.006      | No    | 16      | 0.004256  | 0.006491   | 50             | None           | No        | 0.01         | NP (normality) |
| Arsenic (mg/L)    | YGWC-23S  | 0.005      | 0.0012     | 0.01       | No    | 18      | 0.004789  | 0.0008957  | 94.44          | None           | No        | 0.01         | NP (NDs)       |
| Arsenic (mg/L)    | YGWC-38   | 0.00212    | 0.0007623  | 0.01       | No    | 14      | 0.001676  | 0.001497   | 14.29          | None           | ln(x)     | 0.01         | Param.         |
| Arsenic (mg/L)    | YGWC-41   | 0.005      | 0.00062    | 0.01       | No    | 14      | 0.00288   | 0.002208   | 50             | None           | No        | 0.01         | NP (normality) |
| Arsenic (mg/L)    | YGWC-42   | 0.003139   | 0.00143    | 0.01       | No    | 14      | 0.002355  | 0.001306   | 14.29          | None           | sqrt(x)   | 0.01         | Param.         |
| Arsenic (mg/L)    | YGWC-43   | 0.005      | 0.00099    | 0.01       | No    | 14      | 0.004086  | 0.001819   | 78.57          | None           | No        | 0.01         | NP (NDs)       |
| Arsenic (mg/L)    | YGWC-49   | 0.005      | 0.00086    | 0.01       | No    | 13      | 0.004035  | 0.001835   | 76.92          | None           | No        | 0.01         | NP (NDs)       |
| Arsenic (mg/L)    | PZ-35     | 0.005      | 0.00069    | 0.01       | No    | 6       | 0.003608  | 0.002158   | 66.67          | None           | No        | 0.0155       | NP (NDs)       |
| Arsenic (mg/L)    | PZ-37     | 0.005      | 0.0008     | 0.01       | No    | 11      | 0.002504  | 0.001995   | 36.36          | None           | No        | 0.006        | NP (normality) |
| Arsenic (mg/L)    | YGWC-24SA | 0.005      | 0.0015     | 0.01       | No    | 18      | 0.004806  | 0.000825   | 94.44          | None           | No        | 0.01         | NP (NDs)       |
| Arsenic (mg/L)    | YGWC-36A  | 0.005      | 0.00088    | 0.01       | No    | 18      | 0.004041  | 0.001847   | 77.78          | None           | No        | 0.01         | NP (NDs)       |
| Barium (mg/L)     | YAMW-1    | 0.04981    | 0.02919    | 2          | No    | 6       | 0.0395    | 0.007503   | 0              | None           | No        | 0.01         | Param.         |
| Barium (mɑ/L)     | YGWC-23S  | 0.04499    | 0.02913    | 2          | No    | 18      | 0.03706   | 0.01311    | 0              | None           | No        | 0.01         | Param.         |
| Barium (mg/L)     | YGWC-38   | 0.0239     | 0.01832    | 2          | No    | 14      | 0.02111   | 0.003941   | 0              | None           | No        | 0.01         | Param.         |
| Barium (mg/L)     | YGWC-41   | 0.03029    | 0.0206     | 2          | No    | 14      | 0.02544   | 0.00684    | 0              | None           | No        | 0.01         | Param.         |
| Barium (mg/L)     | YGWC-42   | 0.04675    | 0.03191    | 2          | No    | 14      | 0.03933   | 0.01047    | 0              | None           | No        | 0.01         | Param.         |
| Barium (mg/L)     | YGWC-43   | 0.03572    | 0.01774    | 2          | No    | 14      | 0.02673   | 0.01269    | 0              | None           | No        | 0.01         | Param.         |
| Barium (mg/L)     | YGWC-49   | 0.07999    | 0.06987    | 2          | No    | 13      | 0.07493   | 0.006807   | 0              | None           | No        | 0.01         | Param.         |
| Barium (mg/L)     | PZ-35     | 0.063      | 0.032      | 2          | No    | 6       | 0.04      | 0.01166    | 0              | None           | No        | 0.0155       | NP (normality) |
| Barium (mg/L)     | PZ-37     | 0.05778    | 0.04078    | 2          | No    | - 11    | 0.04928   | 0.0102     | 0              | None           | No        | 0.01         | Param.         |
| Barium (mg/L)     | YGWC-24SA | 0.0203     | 0.0189     | 2          | No    | 18      | 0 02053   | 0.003411   | 0              | None           | No        | 0.01         | NP (normality) |
| Barium (mg/L)     | YGWC-36A  | 0.04411    | 0.03184    | 2          | No    | 18      | 0.03797   | 0.01014    | 0              | None           | No        | 0.01         | Param          |
| Bervllium (mg/L)  | YAMW-1    | 0.0005     | 0.000058   | - 0.004    | No    | 6       | 0 0004047 | 0.0001776  | 66 67          | None           | No        | 0.0155       | NP (NDs)       |
| Beryllium (mg/L)  | YAMW-5    | 0.0002156  | 0 00005244 | 0.004      | No    | 4       | 0.000134  | 0.00003593 | 3.0            | None           | No        | 0.01         | Param          |
| Beryllium (mg/L)  | YGWC-23S  | 0.0005     | 0.000081   | 0.004      | No    | 18      | 0.0002109 | 0.0001859  | 27 78          | None           | No        | 0.01         | NP (normality) |
| Beryllium (mg/l ) | YGWC-38   | 0.005497   | 0.004113   | 0.004      | Yes   | 14      | 0.004743  | 0.001073   | 0              | None           | x^2       | 0.01         | Param.         |
| Beryllium (ma/L)  | YGWC-41   | 0.0038     | 0.002      | 0.004      | No    | 14      | 0.003     | 0.000862   | 0              | None           | No.       | 0.01         | NP (normality) |
| Beryllium (mg/L)  | YGWC-42   | 0.0005     | 0.000067   | 0.004      | No    | 14      | 0.0003503 | 0.0002087  | 64 29          | None           | No        | 0.01         |                |
| Beryllium (mg/L)  | YGWC-43   | 0.00053    | 0.0003     | 0.004      | No    | 14      | 0.0004286 | 0.000133   | 12.86          | None           | No        | 0.01         | NP (normality) |
| Beryllium (mg/L)  | YGWC-49   | 0.00033    | 0.0003     | 0.004      | No    | 13      | 0.0004200 | 0.0001088  | 7 602          | None           | No        | 0.01         | NP (normality) |
| Beryllium (mg/L)  | P7-35     | 0.00013    | 0.0001     | 0.004      | No    | 7       | 0.0001400 | 0.0001188  | 28.57          | Kanlan-Meier   | No        | 0.01         | Param          |
| Beryllium (mg/L)  | PZ-37     | 0.0004301  | 0.0002224  | 0.004      | No    | '<br>11 | 0.0003355 | 0.0001069  | 18 18          | Kaplan-Meier   | No        | 0.01         | Param          |
| Bonyllium (mg/L)  | YGWC 2484 | 0.00016    | 0.0002031  | 0.004      | No    | 10      | 0.0001911 | 0.000140   | 16.67          | Nono           | No        | 0.01         | ND (normality) |
| Beryllium (mg/L)  | YCWC 264  | 0.00010    | 0.0001     | 0.004      | No    | 10      | 0.0001511 | 0.000149   | 10.07<br>E EEC | None           | No        | 0.01         | Derem          |
| Codmium (mg/L)    | YANNA 1   | 0.0005195  | 0.0001904  | 0.004      | No    | 10      | 0.0002349 | 0.0001067  | 5.550          | None           | No        | 0.0155       | Parani.        |
| Cadmium (mg/L)    | TAMW-1    | 0.0005     | 0.00013    | 0.005      | NO No | 0       | 0.0003233 | 0.000194   | 50             | None           | No        | 0.0155       |                |
| Cadmium (mg/L)    | YGWC-23S  | 0.0005     | 0.00007    | 0.005      | NO    | 18      | 0.0004761 | 0.0001014  | 94.44          | None           | NO        | 0.01         | NP (NDS)       |
| Cadmium (mg/L)    | YGWC-38   | 0.002798   | 0.002139   | 0.005      | NO    | 14      | 0.00235   | 0.0006149  | 0              | None           | x^4       | 0.01         | Param.         |
| Cadmium (mg/L)    | YGWC-41   | 0.0005     | 0.00017    | 0.005      | NO No | 14      | 0.0002886 | 0.0001446  | 28.57          | None           | NO        | 0.01         | NP (normality) |
|                   | rGWC-42   | 0.0006     | 0.00017    | 0.005      | NO    | 14      | 0.0003764 | 0.0001667  | 42.86          | None           | INO       | 0.01         | NP (normality) |
| Caomium (mg/L)    | rGWC-49   | 0.0005     | 0.00007    | 0.005      | NO    | 13      | 0.0004669 | 0.0001193  | 92.31          | ivone          | INO       | 0.01         |                |
|                   | PZ-35     | 0.0005     | 0.00016    | 0.005      | NO    | 6       | 0.0004433 | 0.0001388  | 83.33          | None           | INO       | 0.0155       | NP (NDS)       |
| Cadmium (mg/L)    | PZ-37     | 0.0006329  | 0.0002453  | 0.005      | No    | 11      | 0.0004727 | 0.0002328  | 18.18          | Kaplan-Meier   | No        | 0.01         | Param.         |
| Cadmium (mg/L)    | YGWC-36A  | 0.0005     | 0.00015    | 0.005      | No    | 18      | 0.0002433 | 0.0001453  | 22.22          | None           | No        | 0.01         | NP (normality) |
| Chromium (mg/L)   | YAMW-1    | 0.001163   | 0.0003768  | U.1        | No    | 4       | 0.00077   | 0.0001732  | 0              | None           | No        | 0.01         | Param.         |
| Chromium (mg/L)   | YGWC-23S  | 0.005      | 0.0008     | 0.1        | No    | 14      | 0.003296  | 0.002061   | 57.14          | None           | No        | 0.01         | NP (NDs)       |

### State Confidence Intervals - All Results

| Constituent                       | Well      | Upper Lim. | Lower Lim. | Compliance  | <u>Sig.</u> | <u>N</u> | Mean      | Std. Dev. | <u>%NDs</u> | ND Adj.      | Transform | <u>Alpha</u> | Method         |
|-----------------------------------|-----------|------------|------------|-------------|-------------|----------|-----------|-----------|-------------|--------------|-----------|--------------|----------------|
| Chromium (mg/L)                   | YGWC-38   | 0.005      | 0.00065    | 0.1         | No          | 14       | 0.004368  | 0.001607  | 85.71       | None         | No        | 0.01         | NP (NDs)       |
| Chromium (mg/L)                   | YGWC-41   | 0.005      | 0.00039    | 0.1         | No          | 14       | 0.004671  | 0.001232  | 92.86       | None         | No        | 0.01         | NP (NDs)       |
| Chromium (mg/L)                   | YGWC-42   | 0.005      | 0.0013     | 0.1         | No          | 14       | 0.004095  | 0.001807  | 78.57       | None         | No        | 0.01         | NP (NDs)       |
| Chromium (mg/L)                   | YGWC-43   | 0.005      | 0.00071    | 0.1         | No          | 14       | 0.003755  | 0.002043  | 71.43       | None         | No        | 0.01         | NP (NDs)       |
| Chromium (mg/L)                   | YGWC-49   | 0.002      | 0.0014     | 0.1         | No          | 12       | 0.001958  | 0.0009839 | 8.333       | None         | No        | 0.01         | NP (normality) |
| Chromium (mg/L)                   | PZ-35     | 0.0012     | 0.0006     | 0.1         | No          | 4        | 0.0007775 | 0.0002852 | 0           | None         | No        | 0.0625       | NP (normality) |
| Chromium (mg/L)                   | PZ-37     | 0.005      | 0.0017     | 0.1         | No          | 11       | 0.004055  | 0.001633  | 72.73       | None         | No        | 0.006        | NP (NDs)       |
| Chromium (mg/L)                   | YGWC-24SA | 0.005      | 0.0011     | 0.1         | No          | 14       | 0.004153  | 0.001684  | 78.57       | None         | No        | 0.01         | NP (NDs)       |
| Chromium (mg/L)                   | YGWC-36A  | 0.005      | 0.0013     | 0.1         | No          | 14       | 0.004034  | 0.001699  | 71.43       | None         | No        | 0.01         | NP (NDs)       |
| Cobalt (mg/L)                     | YAMW-1    | 0.02859    | 0.004268   | 0.035       | No          | 7        | 0.01643   | 0.01106   | 28.57       | Kaplan-Meier | No        | 0.01         | Param.         |
| Cobalt (mg/L)                     | YGWC-41   | 0.005      | 0.00069    | 0.035       | No          | 14       | 0.003742  | 0.002072  | 71.43       | Kaplan-Meier | No        | 0.01         | NP (NDs)       |
| Cobalt (mg/L)                     | YGWC-42   | 0.0025     | 0.0017     | 0.035       | No          | 14       | 0.0022    | 0.0008927 | 7.143       | None         | No        | 0.01         | NP (normality) |
| Cobalt (mg/L)                     | YGWC-43   | 0.005      | 0.0016     | 0.035       | No          | 14       | 0.00325   | 0.001688  | 42.86       | None         | No        | 0.01         | NP (normality) |
| Cobalt (mg/L)                     | YGWC-49   | 0.005      | 0.0006     | 0.035       | No          | 13       | 0.003654  | 0.002103  | 69.23       | None         | No        | 0.01         | NP (NDs)       |
| Cobalt (mg/L)                     | PZ-35     | 0.0059     | 0.005      | 0.035       | No          | 6        | 0.00515   | 0.0003674 | 83.33       | None         | No        | 0.0155       | NP (NDs)       |
| Cobalt (mg/L)                     | PZ-37     | 0.0129     | 0.004336   | 0.035       | No          | 11       | 0.008618  | 0.005139  | 0           | None         | No        | 0.01         | Param.         |
| Cobalt (mg/L)                     | YGWC-36A  | 0.005      | 0.0006     | 0.035       | No          | 18       | 0.003761  | 0.002058  | 72.22       | None         | No        | 0.01         | NP (NDs)       |
| Combined Radium 226 + 228 (pCi/L) | YAMW-1    | 0.8723     | 0.2073     | 6.92        | No          | 5        | 0.5398    | 0.1984    | 0           | None         | No        | 0.01         | Param.         |
| Combined Radium 226 + 228 (pCi/L) | YGWC-23S  | 0.8108     | 0.3587     | 6.92        | No          | 18       | 0.5848    | 0.3736    | 0           | None         | No        | 0.01         | Param.         |
| Combined Radium 226 + 228 (pCi/L) | YGWC-38   | 1.326      | 0.5981     | 6.92        | No          | 14       | 0.962     | 0.5138    | 0           | None         | No        | 0.01         | Param.         |
| Combined Radium 226 + 228 (pCi/L) | YGWC-41   | 1.374      | 0.6299     | 6.92        | No          | 14       | 1.032     | 0.5676    | 0           | None         | sqrt(x)   | 0.01         | Param.         |
| Combined Radium 226 + 228 (pCi/L) | YGWC-42   | 2.942      | 1.277      | 6.92        | No          | 14       | 2.11      | 1.175     | 0           | None         | No        | 0.01         | Param.         |
| Combined Radium 226 + 228 (pCi/L) | YGWC-43   | 4.059      | 1.333      | 6.92        | No          | 14       | 2.696     | 1.924     | 0           | None         | No        | 0.01         | Param.         |
| Combined Radium 226 + 228 (pCi/L) | YGWC-49   | 1.175      | 0.4779     | 6.92        | No          | 13       | 0.8266    | 0.469     | 0           | None         | No        | 0.01         | Param.         |
| Combined Radium 226 + 228 (pCi/L) | PZ-35     | 1.075      | -0.04565   | 6.92        | No          | 5        | 0.5146    | 0.3343    | 0           | None         | No        | 0.01         | Param.         |
| Combined Radium 226 + 228 (pCi/L) | PZ-37     | 2.039      | 1.437      | 6.92        | No          | - 11     | 1.749     | 0.4126    | 0           | None         | ln(x)     | 0.01         | Param.         |
| Combined Radium 226 + 228 (pCi/L) | YGWC-24SA | 0.7865     | 0.4799     | 6.92        | No          | 18       | 0.6332    | 0.2534    | 0           | None         | No        | 0.01         | Param.         |
| Combined Radium 226 + 228 (pCi/L) | YGWC-36A  | 1.095      | 0.5456     | 6.92        | No          | 18       | 0.8205    | 0.4544    | 0           | None         | No        | 0.01         | Param.         |
| Fluoride (mg/L)                   | YGWC-23S  | 0.12       | 0.049      | 4           | No          | 19       | 0.09468   | 0.02023   | 84.21       | None         | No        | 0.01         | NP (NDs)       |
| Fluoride (mg/L)                   | YGWC-38   | 0.24       | 0.034      | 4           | No          | 15       | 0.1616    | 0.1178    | 60          | None         | No        | 0.01         | NP (NDs)       |
| Fluoride (mg/L)                   | YGWC-41   | 0.11       | 0.1        | 4           | No          | 15       | 0.1007    | 0.002582  | 86.67       | None         | No        | 0.01         | NP (NDs)       |
| Fluoride (mg/L)                   | YGWC-42   | 0.1        | 0.06       | 4           | No          | 15       | 0.08607   | 0.02601   | 73 33       | None         | No        | 0.01         | NP (NDs)       |
| Fluoride (mg/L)                   | YGWC-43   | 0 1159     | 0.05777    | 4           | No          | 15       | 0 1069    | 0.05423   | 26.67       | Kanlan-Meier | sart(x)   | 0.01         | Param          |
| Fluoride (mg/L)                   | YGWC-49   | 0.14       | 0.06       | 4           | No          | 14       | 0.09929   | 0.02702   | 57 14       | Kaplan-Meier | No.       | 0.01         | NP (NDs)       |
| Fluoride (mg/L)                   | P7-37     | 0.31       | 0.1        | 4           | No          | 11       | 0 1773    | 0 1198    | 63.64       | None         | No        | 0.006        | NP (NDs)       |
| Fluoride (mg/L)                   | YGWC-24SA | 0.1        | 0.098      | 4           | No          | 19       | 0.09637   | 0.01535   | 89.47       | None         | No        | 0.01         | NP (NDs)       |
| Fluoride (mg/L)                   | YGWC-364  | 0.1        | 0.030      | 4           | No          | 10       | 0.09242   | 0.013308  | 63.16       | None         | No        | 0.01         |                |
| Lood (mg/L)                       |           | 0.001      | 0.00010    | -<br>0.0012 | No          | 5        | 0.00242   | 0.000250  | 90          | None         | No        | 0.031        |                |
| Lead (mg/L)                       |           | 0.001      | 0.00019    | 0.0013      | No          | J<br>16  | 0.0008016 | 0.0003022 | 75          | None         | No        | 0.031        |                |
| Lead (mg/L)                       | YGWC 28   | 0.001      | 0.00021    | 0.0013      | No          | 14       | 0.0008010 | 0.0003029 | 79 57       | None         | No        | 0.01         |                |
| Lead (mg/L)                       | YGWC 41   | 0.001      | 0.0001     | 0.0013      | No          | 14       | 0.0007541 | 0.0003032 | 64.20       | None         | No        | 0.01         |                |
| Lead (mg/L)                       | YGWC 42   | 0.001      | 0.00012    | 0.0013      | No          | 14       | 0.0007341 | 0.0004210 | 71 42       | None         | No        | 0.01         |                |
| Lead (mg/L)                       | YGWC 42   | 0.001      | 0.00009    | 0.0013      | No          | 14       | 0.0007422 | 0.0004243 | 71.43       | None         | No        | 0.01         |                |
| Lead (mg/L)                       | YGWC-43   | 0.001      | 0.00008    | 0.0013      | NO          | 14       | 0.0008082 | 0.000335  | 00.04       | None         | NO        | 0.01         | NP (NDs)       |
| Lead (mg/L)                       | YGWC-49   | 0.001      | 0.000059   | 0.0013      | NO          | 13       | 0.0009276 | 0.000261  | 92.31       | None         | NO        | 0.01         | NP (NDS)       |
| Lead (mg/L)                       | PZ-35     | 0.001      | 0.000087   | 0.0013      | No          | 5        | 0.0006474 | 0.0004833 | 60          | None         | No        | 0.031        | NP (NDs)       |
| Lead (mg/L)                       | PZ-37     | 0.001      | 0.000088   | 0.0013      | NO          | 11       | 0.0006066 | 0.0004535 | 54.55       | None         | NO        | 0.006        | NP (NDS)       |
| Lead (mg/L)                       | YGWC-24SA | 0.001      | 0.00036    | 0.0013      | No          | 16       | 0.0009008 | 0.0002768 | 87.5        | None         | No        | 0.01         | NP (NDs)       |
| Lead (mg/L)                       | YGWC-36A  | 0.000658   | 0.0002358  | 0.0013      | NO          | 16       | 0.0004956 | 0.0004239 | 12.5        | None         | x^(1/3)   | 0.01         | Param.         |
| Litnium (mg/L)                    | YAMW-1    | 0.0235     | 0.0006154  | 0.03        | No          | б        | 0.01255   | 0.008417  | 16.67       | Kaplan-Meier | No        | 0.01         | Param.         |
| Litnium (mg/L)                    | YGWC-23S  | 0.0026     | 0.0018     | 0.03        | No          | 18       | 0.002994  | 0.003057  | 5.556       | None         | No        | 0.01         | NP (normality) |
| Lithium (mg/L)                    | YGWC-38   | 0.008994   | 0.007591   | 0.03        | No          | 14       | 0.008293  | 0.0009903 | 0           | None         | No        | 0.01         | Param.         |
| Lithium (mg/L)                    | YGWC-41   | 0.0044     | 0.0025     | 0.03        | No          | 14       | 0.004314  | 0.003188  | 7.143       | None         | No        | 0.01         | NP (normality) |
| Lithium (mg/L)                    | YGWC-42   | 0.0478     | 0.02983    | 0.03        | No          | 14       | 0.03881   | 0.01268   | 0           | None         | No        | 0.01         | Param.         |
| Lithium (mg/L)                    | YGWC-43   | 0.01912    | 0.01164    | 0.03        | No          | 14       | 0.01538   | 0.005279  | 0           | None         | No        | 0.01         | Param.         |
| Lithium (mg/L)                    | YGWC-49   | 0.0039     | 0.0035     | 0.03        | No          | 13       | 0.003708  | 0.0002465 | 0           | None         | No        | 0.01         | NP (normality) |

### State Confidence Intervals - All Results

| Constituent       | Well     | Upper Lim. | Lower Lim. | Compliance | <u>Sig.</u> | <u>N</u> | Mean      | Std. Dev.  | <u>%NDs</u> | ND Adj.      | Transform | <u>Alpha</u> | Method         |
|-------------------|----------|------------|------------|------------|-------------|----------|-----------|------------|-------------|--------------|-----------|--------------|----------------|
| Lithium (mg/L)    | PZ-35    | 0.015      | 0.001      | 0.03       | No          | 6        | 0.005133  | 0.006226   | 16.67       | None         | No        | 0.0155       | NP (normality) |
| Lithium (mg/L)    | PZ-37    | 0.03042    | 0.02345    | 0.03       | No          | 11       | 0.02679   | 0.004677   | 9.091       | None         | x^2       | 0.01         | Param.         |
| Lithium (mg/L)    | YGWC-36A | 0.006884   | 0.003471   | 0.03       | No          | 18       | 0.005478  | 0.002992   | 5.556       | None         | x^(1/3)   | 0.01         | Param.         |
| Mercury (mg/L)    | YGWC-23S | 0.0002     | 0.00015    | 0.002      | No          | 13       | 0.0001883 | 0.00003045 | 84.62       | None         | No        | 0.01         | NP (NDs)       |
| Mercury (mg/L)    | YGWC-38  | 0.0002     | 80000.0    | 0.002      | No          | 11       | 0.0001743 | 0.00005804 | 81.82       | None         | No        | 0.006        | NP (NDs)       |
| Mercury (mg/L)    | YGWC-41  | 0.0002     | 0.0002     | 0.002      | No          | 11       | 0.0001873 | 0.00004221 | 90.91       | None         | No        | 0.006        | NP (NDs)       |
| Mercury (mg/L)    | YGWC-42  | 0.0002     | 0.0002     | 0.002      | No          | 11       | 0.0001862 | 0.00004583 | 90.91       | None         | No        | 0.006        | NP (NDs)       |
| Mercury (mg/L)    | YGWC-43  | 0.0002     | 0.0002     | 0.002      | No          | 11       | 0.0001865 | 0.00004462 | 90.91       | None         | No        | 0.006        | NP (NDs)       |
| Mercury (mg/L)    | YGWC-49  | 0.0002     | 0.00014    | 0.002      | No          | 10       | 0.0001801 | 0.0000459  | 80          | None         | No        | 0.011        | NP (NDs)       |
| Mercury (mg/L)    | PZ-37    | 0.0002     | 0.0002     | 0.002      | No          | 11       | 0.0001873 | 0.00004221 | 90.91       | None         | No        | 0.006        | NP (NDs)       |
| Molybdenum (mg/L) | YAMW-1   | 0.004895   | 0.001572   | 0.014      | No          | 4        | 0.004925  | 0.003462   | 25          | Kaplan-Meier | No        | 0.01         | Param.         |
| Molybdenum (mg/L) | YGWC-42  | 0.01       | 0.00094    | 0.014      | No          | 14       | 0.00525   | 0.004314   | 42.86       | None         | No        | 0.01         | NP (normality) |
| Molybdenum (mg/L) | YGWC-43  | 0.01       | 0.0011     | 0.014      | No          | 14       | 0.005679  | 0.004493   | 50          | None         | No        | 0.01         | NP (normality) |
| Molybdenum (mg/L) | YGWC-49  | 0.01       | 0.0007     | 0.014      | No          | 12       | 0.009225  | 0.002685   | 91.67       | None         | No        | 0.01         | NP (NDs)       |
| Molybdenum (mg/L) | PZ-35    | 0.01       | 0.0019     | 0.014      | No          | 4        | 0.007975  | 0.00405    | 75          | None         | No        | 0.0625       | NP (NDs)       |
| Molybdenum (mg/L) | PZ-37    | 0.01       | 0.0016     | 0.014      | No          | 11       | 0.004818  | 0.004118   | 36.36       | None         | No        | 0.006        | NP (normality) |
| Molybdenum (mg/L) | YGWC-36A | 0.01       | 0.0025     | 0.014      | No          | 14       | 0.007071  | 0.003747   | 57.14       | None         | No        | 0.01         | NP (NDs)       |
| Selenium (mg/L)   | YAMW-1   | 0.0025     | 0.0019     | 0.05       | No          | 6        | 0.0024    | 0.0002449  | 83.33       | None         | No        | 0.0155       | NP (NDs)       |
| Selenium (mg/L)   | YAMW-4   | 0.016      | 0.0018     | 0.05       | No          | 4        | 0.0057    | 0.006875   | 50          | None         | No        | 0.0625       | NP (normality) |
| Selenium (mg/L)   | YAMW-5   | 0.08521    | 0.01079    | 0.05       | No          | 4        | 0.048     | 0.01639    | 0           | None         | No        | 0.01         | Param.         |
| Selenium (mg/L)   | YGWC-23S | 0.03964    | 0.02677    | 0.05       | No          | 18       | 0.03321   | 0.01064    | 0           | None         | No        | 0.01         | Param.         |
| Selenium (mg/L)   | YGWC-38  | 0.249      | 0.076      | 0.05       | Yes         | 14       | 0.1755    | 0.07444    | 0           | None         | No        | 0.01         | NP (normality) |
| Selenium (mg/L)   | YGWC-41  | 0.06577    | 0.04363    | 0.05       | No          | 14       | 0.0547    | 0.01563    | 0           | None         | No        | 0.01         | Param.         |
| Selenium (mg/L)   | YGWC-42  | 0.05735    | 0.04038    | 0.05       | No          | 14       | 0.04886   | 0.01198    | 0           | None         | No        | 0.01         | Param.         |
| Selenium (mg/L)   | YGWC-49  | 0.00899    | 0.006583   | 0.05       | No          | 13       | 0.007646  | 0.00198    | 7.692       | None         | x^2       | 0.01         | Param.         |
| Selenium (mg/L)   | PZ-37    | 0.3047     | 0.2211     | 0.05       | Yes         | 11       | 0.2629    | 0.0502     | 0           | None         | No        | 0.01         | Param.         |
| Selenium (mg/L)   | YGWC-36A | 0.002744   | 0.001829   | 0.05       | No          | 18       | 0.002433  | 0.0005931  | 33.33       | Kaplan-Meier | No        | 0.01         | Param.         |

# FIGURE A.

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



Constituent: Antimony Analysis Run 5/6/2021 8:33 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Sanitas<sup>114</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG

Hollow symbols indicate censored values.



Time Series

Constituent: Antimony Analysis Run 5/6/2021 8:33 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



Constituent: Antimony Analysis Run 5/6/2021 8:33 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Time Series



Constituent: Antimony Analysis Run 5/6/2021 8:33 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.





Constituent: Arsenic Analysis Run 5/6/2021 8:33 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG

Hollow symbols indicate censored values.



Constituent: Arsenic Analysis Run 5/6/2021 8:33 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



Constituent: Arsenic Analysis Run 5/6/2021 8:33 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Time Series



Constituent: Arsenic Analysis Run 5/6/2021 8:33 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values



Constituent: Barium Analysis Run 5/6/2021 8:33 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values

Hollow symbols indicate censored values.



Constituent: Barium Analysis Run 5/6/2021 8:33 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values





Constituent: Barium Analysis Run 5/6/2021 8:33 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6





Constituent: Barium Analysis Run 5/6/2021 8:33 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



Time Series

Constituent: Beryllium Analysis Run 5/6/2021 8:33 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG

Hollow symbols indicate censored values.



Constituent: Beryllium Analysis Run 5/6/2021 8:33 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



Constituent: Beryllium Analysis Run 5/6/2021 8:33 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6





Constituent: Beryllium Analysis Run 5/6/2021 8:33 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6


Time Series

Constituent: Boron Analysis Run 5/6/2021 8:33 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

30 YGWA-39 (bg) ٠ YGWA-40 (bg) 24 YGWA-4I (bg) YGWA-5D (bg) 18 V mg/L YGWC-23S V YGWC-38 12 YGWC-41 . ۸ YGWC-42 6 ..... 0 4 4/9/19 3/21/20 3/4/21 6/2/16 5/15/17 4/27/18

Time Series

Constituent: Boron Analysis Run 5/6/2021 8:33 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



Constituent: Boron Analysis Run 5/6/2021 8:33 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.





Constituent: Boron Analysis Run 5/6/2021 8:33 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Time Series 0.004 YAMW-1 ٠ YAMW-2 0.0032 YAMW-4 . YAMW-5 0.0024 YGWA-17S (bg) ٠ mg/L YGWA-18I (bg) YGWA-18S (bg) . 0.0016 YGWA-20S (bg) V YGWA-21I (bg) 0.0008 Ω 6/6/16 5/18/17 4/29/18 4/11/19 3/22/20 3/4/21

> Constituent: Cadmium Analysis Run 5/6/2021 8:33 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG

Hollow symbols indicate censored values.



Time Series

Constituent: Cadmium Analysis Run 5/6/2021 8:33 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



Constituent: Cadmium Analysis Run 5/6/2021 8:33 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Time Series



Constituent: Cadmium Analysis Run 5/6/2021 8:33 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG



Constituent: Calcium Analysis Run 5/6/2021 8:33 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



Time Series

Constituent: Calcium Analysis Run 5/6/2021 8:33 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



Constituent: Calcium Analysis Run 5/6/2021 8:33 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG

Time Series



Constituent: Calcium Analysis Run 5/6/2021 8:33 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: Chloride Analysis Run 5/6/2021 8:33 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6





Constituent: Chloride Analysis Run 5/6/2021 8:33 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG



Constituent: Chloride Analysis Run 5/6/2021 8:33 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG



Constituent: Chloride Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

#### Time Series



Constituent: Chromium Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Sanitas<sup>TM</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG

Hollow symbols indicate censored values.



Time Series

Constituent: Chromium Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



Constituent: Chromium Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Time Series



Constituent: Chromium Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Time Series

Constituent: Cobalt Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG

Hollow symbols indicate censored values.



Time Series

Constituent: Cobalt Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



Constituent: Cobalt Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Time Series



Constituent: Cobalt Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: Combined Radium 226 + 228 Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG



Constituent: Combined Radium 226 + 228 Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG



Constituent: Combined Radium 226 + 228 Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG



Constituent: Combined Radium 226 + 228 Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Time Series



Constituent: Fluoride Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG

Hollow symbols indicate censored values.



Constituent: Fluoride Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



Constituent: Fluoride Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Time Series



Constituent: Fluoride Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Time Series

Constituent: Lead Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG

Hollow symbols indicate censored values.



Time Series

Constituent: Lead Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



Constituent: Lead Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Time Series



Constituent: Lead Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: Lithium Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG

Hollow symbols indicate censored values.



Constituent: Lithium Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



Constituent: Lithium Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Time Series



Constituent: Lithium Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Time Series



Constituent: Mercury Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>114</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Hollow symbols indicate censored values.



Constituent: Mercury Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



Constituent: Mercury Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Time Series



Constituent: Mercury Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: Molybdenum Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Sanitas  $^{\rm W}$  v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG

Hollow symbols indicate censored values.



Time Series

Constituent: Molybdenum Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



Constituent: Molybdenum Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Time Series



Constituent: Molybdenum Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 S.U.



3/22/20

3/4/21

Constituent: pH Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

4/11/19

4/29/18

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG



Constituent: pH Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG

3

6/6/16

5/18/17



Constituent: pH Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG

S.U



Time Series



Constituent: pH Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Time Series

Constituent: Selenium Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG

Hollow symbols indicate censored values.



Time Series

Constituent: Selenium Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



Constituent: Selenium Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Time Series



Constituent: Selenium Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Time Series



Constituent: Sulfate Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG

Hollow symbols indicate censored values.



Constituent: Sulfate Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values



Constituent: Sulfate Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG



Constituent: Sulfate Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Time Series

e censored values.



Constituent: Thallium Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>114</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Hollow symbols indicate censored values.



Time Series

Constituent: Thallium Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



Constituent: Thallium Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Time Series



Constituent: Thallium Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG



Constituent: Total Dissolved Solids Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Time Series



Constituent: Total Dissolved Solids Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



Constituent: Total Dissolved Solids Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG



Constituent: Total Dissolved Solids Analysis Run 5/6/2021 8:34 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Constituent: Antimony (mg/L) Analysis Run 5/6/2021 8:36 PM

|           | V/A B 40 4/ 4 | XAN04/ 0   |             |             | VOMA 170 (h -) |               |               |               |               |
|-----------|---------------|------------|-------------|-------------|----------------|---------------|---------------|---------------|---------------|
| 0/0/0010  | Y AIVIVV-I    | Y AIVIVV-2 | YAMW-4      | YAMW-5      | YGWA-17S (bg)  | YGWA-181 (bg) | YGWA-185 (bg) | YGWA-20S (bg) | YGWA-211 (bg) |
| 6/6/2016  |               |            |             |             | -0.002         | <0.003        | <0.003        | -0.002        | -0.002        |
| 0/7/2010  |               |            |             |             | < 0.003        | 0.0005 (1)    | -0.000        | <0.003        | <0.003        |
| 7/27/2016 |               |            |             |             | <0.003         | 0.0005 (J)    | <0.003        | <0.003        |               |
| //28/2016 |               |            |             |             |                |               |               |               | <0.003        |
| 9/16/2016 |               |            |             |             | <0.003         |               | <0.003        |               |               |
| 9/19/2016 |               |            |             |             |                | <0.003        |               | <0.003        | 0.001 (J)     |
| 11/2/2016 |               |            |             |             |                |               |               | <0.003        |               |
| 11/3/2016 |               |            |             |             | <0.003         | <0.003        | <0.003        |               | <0.003        |
| 1/11/2017 |               |            |             |             | <0.003         | <0.003        | <0.003        |               |               |
| 1/13/2017 |               |            |             |             |                |               |               | <0.003        | <0.003        |
| 3/1/2017  |               |            |             |             |                | <0.003        | <0.003        |               |               |
| 3/2/2017  |               |            |             |             | <0.003         |               |               |               |               |
| 3/6/2017  |               |            |             |             |                |               |               | <0.003        | 0.0005 (J)    |
| 4/26/2017 |               |            |             |             |                | <0.003        | <0.003        | <0.003        | <0.003        |
| 5/2/2017  |               |            |             |             | <0.003         |               |               |               |               |
| 6/28/2017 |               |            |             |             |                | <0.003        | <0.003        |               |               |
| 6/29/2017 |               |            |             |             | <0.003         |               |               | <0.003        | <0.003        |
| 3/28/2018 |               |            |             |             | <0.003         | <0.003        | <0.003        |               |               |
| 3/29/2018 |               |            |             |             |                |               |               | <0.003        | <0.003        |
| 3/5/2019  |               |            |             |             | <0.003         |               | <0.003        | <0.003        | 0.0011 (J)    |
| 3/6/2019  |               |            |             |             |                | <0.003        |               |               |               |
| 4/2/2019  |               |            |             |             | <0.003         |               |               |               | 0.0011 (J)    |
| 4/3/2019  |               |            |             |             |                | <0.003        | <0.003        | <0.003        |               |
| 9/24/2019 |               |            |             |             |                |               |               |               | 0.0035        |
| 9/25/2019 |               |            |             |             | <0.003         |               |               | <0.003        |               |
| 9/26/2019 | <0.003        |            |             |             |                | 0.00056 (J)   | <0.003        |               |               |
| 2/11/2020 |               |            |             |             | <0.003         | <0.003        | <0.003        |               |               |
| 2/12/2020 |               |            |             |             |                |               |               | <0.003        | 0.0015 (J)    |
| 3/24/2020 |               |            |             |             | <0.003         | <0.003        | <0.003        | <0.003        | 0.0017 (.1)   |
| 3/25/2020 | <0.003        |            |             |             | 0.000          | 0.000         | 0.000         | 0.000         | 0.0017 (0)    |
| 9/23/2020 | 0.000         | <0.003     | 0 00065 (1) |             | <0.003         | <0.003        | <0.003        |               |               |
| 9/24/2020 | <0.003        | -0.000     | 0.00000 (0) | 0.00033.(1) | -0.000         | -0.000        | -0.000        | <0.003        | 0.0047        |
| 2/9/2021  | 0.00037 ( 1)  | <0.003     | 0.0011(1)   | <0.003      |                | <0.003        | <0.003        | 0.00032 ( 1)  | 0.0013(1)     |
| 3/3/2021  | 0.025         | <0.003     | 0.00062 (1) | -0.000      | <0.003         | <0.003        | 0.0005 (1)    | <0.0002 (0)   | 0.0010 (0)    |
| 3/3/2021  | 0.020         | ~0.005     | 0.00002 (0) | <0.003      | ~0.000         | ~0.003        | 0.00007 (3)   | ~0.003        | 0.0014 ( 1)   |
| J14/2021  |               |            |             | ~0.003      |                |               |               |               | 0.0014 (J)    |

Constituent: Antimony (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YGWA-39 (bg) | YGWA-40 (bg) | YGWA-4I (bg) | YGWA-5D (bg) | YGWA-5I (bg) | YGWC-23S    | YGWC-38    | YGWC-41 | YGWC-42 |
|------------|--------------|--------------|--------------|--------------|--------------|-------------|------------|---------|---------|
| 6/2/2016   |              |              | <0.003       | <0.003       | <0.003       |             |            |         |         |
| 6/7/2016   |              |              |              |              |              | <0.003      |            |         |         |
| 7/26/2016  |              |              | 0.0003 (J)   | <0.003       | <0.003       |             |            |         |         |
| 7/28/2016  |              |              |              |              |              | <0.003      |            |         |         |
| 8/30/2016  |              |              |              |              |              |             |            |         | <0.003  |
| 9/14/2016  |              |              | <0.003       | <0.003       | <0.003       |             |            |         |         |
| 9/20/2016  |              |              |              |              |              | <0.003      |            |         |         |
| 11/2/2016  |              |              | <0.003       | <0.003       |              |             |            |         |         |
| 11/4/2016  |              |              |              |              | <0.003       |             |            |         |         |
| 11/8/2016  |              |              |              |              |              | <0.003      |            |         |         |
| 11/16/2016 |              |              |              |              |              |             |            |         | <0.003  |
| 1/12/2017  |              |              |              | <0.003       | <0.003       |             |            |         |         |
| 1/13/2017  |              |              | <0.003       |              |              |             |            |         |         |
| 1/16/2017  |              |              |              |              |              | <0.003      |            |         |         |
| 2/27/2017  |              |              |              |              |              |             |            |         | <0.003  |
| 3/6/2017   |              |              | <0.003       |              |              |             |            |         |         |
| 3/7/2017   |              |              |              | <0.003       | <0.003       |             |            |         |         |
| 3/9/2017   |              |              |              |              |              | <0.003      |            |         |         |
| 5/1/2017   |              |              | <0.003       | <0.003       |              |             |            |         |         |
| 5/2/2017   |              |              |              |              | <0.003       | <0.003      |            |         |         |
| 5/10/2017  |              |              |              |              |              |             |            |         | <0.003  |
| 6/27/2017  |              |              |              | <0.003       | <0.003       |             |            |         |         |
| 6/29/2017  |              |              | <0.003       |              |              |             |            |         |         |
| 7/10/2017  |              |              |              |              |              | <0.003      |            |         |         |
| 7/11/2017  |              |              |              |              |              |             |            |         | <0.003  |
| 10/11/2017 | 0.0006 (J)   |              |              |              |              |             |            |         |         |
| 10/12/2017 |              | <0.003       |              |              |              |             | <0.003     | <0.003  | <0.003  |
| 11/20/2017 | <0.003       | <0.003       |              |              |              |             | <0.003     |         |         |
| 11/21/2017 |              |              |              |              |              |             |            | <0.003  |         |
| 1/10/2018  |              | <0.003       |              |              |              |             |            |         |         |
| 1/11/2018  | <0.003       |              |              |              |              |             |            | <0.003  |         |
| 1/12/2018  |              |              |              |              |              |             | <0.003     |         |         |
| 2/19/2018  |              | <0.003       |              |              |              |             |            | <0.003  |         |
| 2/20/2018  | <0.003       |              |              |              |              |             | <0.003     |         |         |
| 3/29/2018  |              |              | <0.003       | <0.003       | <0.003       |             |            |         |         |
| 3/30/2018  |              |              |              |              |              | <0.003      |            |         |         |
| 4/3/2018   | <0.003       | <0.003       |              |              |              |             | <0.003     | <0.003  |         |
| 4/4/2018   |              |              |              |              |              |             |            |         | <0.003  |
| 6/27/2018  |              |              |              |              |              |             |            | <0.003  |         |
| 6/28/2018  | <0.003       | <0.003       |              |              |              |             | <0.003     |         |         |
| 8/7/2018   | <0.003       | <0.003       |              |              |              |             | 0.0015 (J) | <0.003  |         |
| 9/20/2018  |              |              |              |              |              |             |            |         | <0.003  |
| 9/24/2018  | <0.003       | <0.003       |              |              |              |             | <0.003     | <0.003  |         |
| 3/4/2019   |              |              | <0.003       | <0.003       | <0.003       |             |            |         |         |
| 3/6/2019   |              |              |              |              |              | <0.003      |            |         |         |
| 4/3/2019   |              |              | <0.003       | <0.003       | <0.003       |             |            |         |         |
| 4/4/2019   |              |              |              |              |              | <0.003      |            |         |         |
| 8/21/2019  | <0.003       | <0.003       |              |              |              |             |            |         |         |
| 8/22/2019  |              |              |              |              |              |             | <0.003     | <0.003  | <0.003  |
| 9/24/2019  |              |              |              | <0.003       | <0.003       |             |            |         |         |
| 9/25/2019  |              |              | <0.003       |              |              |             |            |         |         |
| 9/27/2019  |              |              |              |              |              | 0.00029 (J) |            |         |         |

Constituent: Antimony (mg/L) Analysis Run 5/6/2021 8:36 PM

|           | YGWA-39 (bg) | YGWA-40 (bg) | YGWA-4I (bg) | YGWA-5D (bg) | YGWA-5I (bg) | YGWC-23S    | YGWC-38     | YGWC-41    | YGWC-42     |
|-----------|--------------|--------------|--------------|--------------|--------------|-------------|-------------|------------|-------------|
| 2/12/2020 | <0.003       | <0.003       | <0.003       | <0.003       | <0.003       |             |             |            |             |
| 3/24/2020 |              | <0.003       |              | <0.003       | <0.003       |             |             |            |             |
| 3/25/2020 | 0.0014 (J)   |              | <0.003       |              |              |             | 0.00063 (J) | <0.003     | <0.003      |
| 3/26/2020 |              |              |              |              |              | <0.003      |             |            |             |
| 9/22/2020 |              |              | <0.003       | <0.003       | <0.003       |             |             |            |             |
| 9/24/2020 | <0.003       | <0.003       |              |              |              | 0.00085 (J) |             |            | <0.003      |
| 9/25/2020 |              |              |              |              |              |             | 0.00061 (J) | <0.003     |             |
| 2/8/2021  |              |              |              | <0.003       | <0.003       |             |             |            |             |
| 2/9/2021  |              |              | <0.003       |              |              | 0.00052 (J) | 0.00031 (J) |            |             |
| 2/10/2021 | <0.003       | <0.003       |              |              |              |             |             | 0.0014 (J) | 0.00053 (J) |
| 3/2/2021  |              |              |              | <0.003       | <0.003       |             |             |            |             |
| 3/3/2021  |              |              | <0.003       |              |              |             |             |            |             |
| 3/4/2021  | <0.003       | <0.003       |              |              |              | <0.003      | <0.003      | <0.003     | <0.003      |
|           |              |              |              |              |              |             |             |            |             |

Constituent: Antimony (mg/L) Analysis Run 5/6/2021 8:36 PM

|                      | YGWC-43 | YGWC-49    | YGWA-47 (bg) | GWA-2 (bg) | YGWA-14S (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-2I (bg) | YGWA-30I (bg) |
|----------------------|---------|------------|--------------|------------|---------------|--------------|--------------|--------------|---------------|
| 5/1/2007             |         |            |              | <0.003     |               |              |              |              |               |
| 9/11/2007            |         |            |              | <0.003     |               |              |              |              |               |
| 3/20/2008            |         |            |              | <0.003     |               |              |              |              |               |
| 8/27/2008            |         |            |              | <0.003     |               |              |              |              |               |
| 3/3/2009             |         |            |              | <0.003     |               |              |              |              |               |
| 11/18/2009           |         |            |              | <0.003     |               |              |              |              |               |
| 3/3/2010             |         |            |              | <0.003     |               |              |              |              |               |
| 9/8/2010             |         |            |              | <0.003     |               |              |              |              |               |
| 3/10/2011            |         |            |              | <0.003     |               |              |              |              |               |
| 9/8/2011             |         |            |              | <0.003     |               |              |              |              |               |
| 3/5/2012             |         |            |              | <0.003     |               |              |              |              |               |
| 9/10/2012            |         |            |              | <0.003     |               |              |              |              |               |
| 2/6/2013             |         |            |              | <0.003     |               |              |              |              |               |
| 8/12/2013            |         |            |              | <0.003     |               |              |              |              |               |
| 2/5/2014             |         |            |              | <0.003     |               |              |              |              |               |
| 2/5/2014             |         |            |              | <0.003     |               |              |              |              |               |
| 8/5/2014<br>2/4/2015 |         |            |              | <0.003     |               |              |              |              |               |
| 2/4/2015             |         |            |              | <0.003     |               |              |              |              |               |
| 8/3/2015             |         |            |              | <0.003     |               |              |              |              |               |
| 2/16/2016            |         |            |              | <0.003     |               |              |              |              |               |
| 6/1/2016             |         |            |              |            |               | <0.003       | <0.003       |              |               |
| 6/2/2016             |         |            |              |            | <0.003        |              |              |              | <0.003        |
| 7/25/2016            |         |            |              |            |               |              | <0.003       |              | <0.003        |
| 7/26/2016            |         |            |              |            | 0.0005 (J)    | 0.001 (J)    |              |              |               |
| 8/30/2016            |         |            | 0.0028 (J)   |            |               |              |              |              |               |
| 8/31/2016            | <0.003  |            |              | <0.003     |               |              |              |              |               |
| 9/1/2016             |         | <0.003     |              |            |               |              |              |              |               |
| 9/13/2016            |         |            |              |            |               | 0.001 (J)    | <0.003       |              |               |
| 9/14/2016            |         |            |              |            |               |              |              | <0.003       |               |
| 9/15/2016            |         |            |              |            | <0.003        |              |              |              |               |
| 9/19/2016            |         |            |              |            |               |              |              |              | <0.003        |
| 11/1/2016            |         |            |              |            |               | 0.0015 (J)   |              |              | <0.003        |
| 11/2/2016            |         |            |              |            | <0.003        |              |              |              |               |
| 11/4/2016            |         |            |              |            |               |              | <0.003       | <0.003       |               |
| 11/14/2016           |         |            | <0.003       |            |               |              |              |              |               |
| 11/15/2016           |         | <0.003     |              |            |               |              |              |              |               |
| 11/16/2016           | <0.003  |            |              |            |               |              |              |              |               |
| 11/28/2016           |         |            |              | 0.0014 (J) |               |              |              |              |               |
| 12/15/2016           |         |            |              |            |               |              |              | 0.0012 (J)   |               |
| 1/10/2017            |         |            |              |            | <0.003        |              |              |              |               |
| 1/11/2017            |         |            |              |            |               | <0.003       |              |              |               |
| 1/16/2017            |         |            |              |            |               |              | <0.003       | <0.003       | <0.003        |
| 2/21/2017            |         |            |              |            |               |              |              |              | <0.003        |
| 2/22/2017            |         |            |              | <0.003     |               |              |              |              |               |
| 2/24/2017            | <0.003  |            | <0.003       |            |               |              |              |              |               |
| 2/27/2017            | -0.000  | 0.0011 (1) | -0.000       |            |               |              |              |              |               |
| 3/2/2017             |         | 0.0011(0)  |              |            |               | 0.0004 (1)   | <0.003       |              |               |
| 3/2/2017             |         |            |              |            |               | 0.0004 (0)   | -0.000       | <0.003       |               |
| 3/8/2017             |         |            |              |            | <0.003        |              |              | -0.005       |               |
| J/0/2017             |         |            |              |            | ~0.003        |              |              |              | <0.003        |
| 4/20/2017            |         |            |              |            | ~0.003        | 0.0004 (1)   | 0.0017 (1)   |              | <u>~0.005</u> |
| 4/2//2017            |         |            |              |            |               | 0.0004 (J)   | 0.0017 (J)   | 0.0015 (1)   |               |
| 4/28/2017            |         |            | 0.0004 (1)   | -0.000     |               |              |              | 0.0015 (J)   |               |
| 5/8/2017             |         |            | 0.0004 (J)   | <0.003     |               |              |              |              |               |

#### Constituent: Antimony (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YGWC-43     | YGWC-49     | YGWA-47 (bg) | GWA-2 (bg)  | YGWA-14S (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-2I (bg) | YGWA-30I (bg) |
|------------|-------------|-------------|--------------|-------------|---------------|--------------|--------------|--------------|---------------|
| 5/9/2017   |             | <0.003      |              |             |               |              |              |              |               |
| 5/10/2017  | <0.003      |             |              |             |               |              |              |              |               |
| 5/26/2017  |             |             |              |             |               |              |              | 0.0005 (J)   |               |
| 6/27/2017  |             |             |              |             |               | <0.003       | <0.003       |              |               |
| 6/28/2017  |             |             |              |             |               |              |              | <0.003       |               |
| 6/30/2017  |             |             |              |             | <0.003        |              |              |              | <0.003        |
| 7/11/2017  | <0.003      |             | 0.0006 (J)   |             |               |              |              |              |               |
| 7/13/2017  |             | <0.003      |              |             |               |              |              |              |               |
| 7/17/2017  |             |             |              | <0.003      |               |              |              |              |               |
| 10/10/2017 |             |             | <0.003       |             |               |              |              |              |               |
| 10/11/2017 |             | <0.003      |              |             |               |              |              |              |               |
| 10/12/2017 | <0.003      |             |              |             |               |              |              |              |               |
| 10/16/2017 |             |             |              | <0.003      |               |              |              |              |               |
| 2/19/2018  |             |             |              | <0.003      |               |              |              |              |               |
| 3/27/2018  |             |             |              |             | < 0.003       |              | < 0.003      |              | < 0.003       |
| 3/28/2018  |             |             |              |             |               |              |              | <0.003       |               |
| 3/29/2018  |             |             |              |             |               | <0.003       |              | 0.000        |               |
| 4/2/2018   |             |             | <0.003       |             |               | 0.000        |              |              |               |
| 4/4/2018   | <0.003      | <0.003      | -0.000       |             |               |              |              |              |               |
| 8/6/2018   | -0.003      | -0.005      |              | <0.003      |               |              |              |              |               |
| 0/10/2018  |             |             | <0.003       | -0.000      |               |              |              |              |               |
| 9/19/2018  | ~0.002      | <0.002      | ~0.005       |             |               |              |              |              |               |
| 9/20/2018  | <0.003      | <0.003      |              | <0.002      |               |              |              |              |               |
| 2/25/2019  |             |             |              | <0.003      | -0.002        |              |              |              | <0.002        |
| 2/20/2019  |             |             |              |             | <0.003        | -0.000       | -0.000       | -0.000       | <0.003        |
| 2/2//2019  |             |             |              |             |               | <0.003       | <0.003       | <0.003       |               |
| 6/12/2019  |             |             |              | <0.003      |               |              |              |              |               |
| 8/19/2019  |             |             |              | <0.003      |               |              |              |              |               |
| 8/20/2019  |             |             | <0.003       |             |               |              |              |              |               |
| 8/21/2019  | <0.003      |             |              |             |               |              |              |              |               |
| 9/26/2019  |             | <0.003      |              |             |               |              |              |              |               |
| 10/8/2019  |             |             |              | <0.003      |               |              |              |              |               |
| 2/10/2020  |             |             |              |             |               | 0.00088 (J)  | <0.003       |              |               |
| 2/11/2020  |             |             |              |             |               |              |              | 0.00036 (J)  |               |
| 2/12/2020  |             |             |              |             | <0.003        |              |              |              | <0.003        |
| 3/17/2020  |             |             |              | <0.003      |               |              |              |              |               |
| 3/18/2020  |             |             |              |             | <0.003        |              | 0.0004 (J)   |              |               |
| 3/19/2020  |             |             |              |             |               | <0.003       |              | 0.0003 (J)   | <0.003        |
| 3/25/2020  | 0.00031 (J) | 0.00053 (J) |              |             |               |              |              |              |               |
| 8/26/2020  |             |             |              | 0.00042 (J) |               |              |              |              |               |
| 8/27/2020  |             |             | 0.00048 (J)  |             |               |              |              |              |               |
| 9/22/2020  |             |             | <0.003       | 0.00044 (J) |               |              |              |              |               |
| 9/23/2020  |             |             |              |             |               | <0.003       | <0.003       | <0.003       |               |
| 9/24/2020  |             | <0.003      |              |             |               |              |              |              | <0.003        |
| 9/25/2020  | <0.003      |             |              |             | <0.003        |              |              |              |               |
| 2/9/2021   | <0.003      | <0.003      |              |             |               |              |              |              |               |
| 2/10/2021  |             |             |              |             | <0.003        |              |              | 0.0013 (J)   |               |
| 2/11/2021  |             |             |              |             |               |              |              |              | <0.003        |
| 2/12/2021  |             |             |              |             |               | <0.003       | <0.003       |              |               |
| 3/1/2021   |             |             | 0.00048 (J)  |             |               |              |              |              | <0.003        |
| 3/2/2021   |             |             |              | <0.003      | <0.003        |              |              |              |               |
| 3/3/2021   |             |             |              |             |               | <0.003       | <0.003       | <0.003       |               |
| 3/4/2021   | < 0.003     | < 0.003     |              |             |               |              |              |              |               |

Constituent: Antimony (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YGWA-3D (bg) | YGWA-3I (bg) | PZ-35  | PZ-37      | YGWC-24SA  | YGWC-36A   |
|------------|--------------|--------------|--------|------------|------------|------------|
| 6/1/2016   |              | <0.003       |        |            |            |            |
| 6/2/2016   | <0.003       |              |        |            |            |            |
| 6/8/2016   |              |              |        |            | <0.003     |            |
| 7/25/2016  |              | <0.003       |        |            |            |            |
| 7/26/2016  | 0.002 (J)    |              |        |            |            |            |
| 8/1/2016   |              |              |        |            | <0.003     |            |
| 9/2/2016   |              |              |        |            |            | <0.003     |
| 9/14/2016  |              | <0.003       |        |            |            |            |
| 9/15/2016  | 0.0027 (J)   |              |        |            |            |            |
| 9/20/2016  |              |              |        |            | 0.0009 (J) |            |
| 11/1/2016  | <0.003       | <0.003       |        |            |            |            |
| 11/8/2016  |              |              |        |            | <0.003     |            |
| 11/14/2016 |              |              |        |            |            | 0.0014 (J) |
| 1/11/2017  | <0.003       | <0.003       |        |            |            |            |
| 1/17/2017  |              |              |        |            | <0.003     |            |
| 2/28/2017  |              |              |        |            |            | 0.0004 (J) |
| 3/1/2017   |              | <0.003       |        |            |            |            |
| 3/2/2017   | 0.0008 (J)   |              |        |            |            |            |
| 3/8/2017   |              |              |        |            | <0.003     |            |
| 4/26/2017  | <0.003       | <0.003       |        |            |            |            |
| 5/2/2017   |              |              |        |            | <0.003     |            |
| 5/9/2017   |              |              |        |            |            | <0.003     |
| 6/28/2017  | <0.003       | <0.003       |        |            |            |            |
| 7/7/2017   |              |              |        |            | <0.003     |            |
| 7/13/2017  |              |              |        |            |            | <0.003     |
| 9/22/2017  |              |              |        |            |            | <0.003     |
| 9/29/2017  |              |              |        |            |            | <0.003     |
| 10/6/2017  |              |              |        |            |            | <0.003     |
| 10/12/2017 |              |              |        | <0.003     |            |            |
| 11/21/2017 |              |              |        | <0.003     |            |            |
| 1/11/2018  |              |              |        | <0.003     |            |            |
| 2/20/2018  |              |              |        | <0.003     |            |            |
| 3/28/2018  | <0.003       | <0.003       |        |            |            |            |
| 3/30/2018  |              |              |        |            | <0.003     | <0.003     |
| 4/3/2018   |              |              |        | <0.003     |            |            |
| 6/29/2018  |              |              |        | <0.003     |            |            |
| 8/6/2018   |              |              |        | <0.003     |            |            |
| 9/24/2018  |              |              |        | <0.003     |            |            |
| 2/27/2019  | <0.003       | <0.003       |        |            |            |            |
| 3/5/2019   |              |              |        |            | <0.003     |            |
| 3/6/2019   |              |              |        |            |            | 0.0011 (J) |
| 4/4/2019   |              |              |        |            | <0.003     | 0.0041     |
| 9/26/2019  |              |              | <0.003 |            | <0.003     | 0.0065     |
| 2/11/2020  |              | <0.003       |        |            |            |            |
| 2/12/2020  | <0.003       |              |        |            |            |            |
| 3/19/2020  | 0.00064 (J)  | <0.003       |        |            |            |            |
| 3/25/2020  |              |              | <0.003 |            |            | 0.0011 (J) |
| 3/26/2020  |              |              |        |            | <0.003     |            |
| 9/23/2020  | <0.003       | <0.003       |        |            | <0.003     |            |
| 9/24/2020  |              |              | <0.003 |            |            |            |
| 9/25/2020  |              |              |        | 0.0014 (J) |            |            |
| 10/7/2020  |              |              |        |            |            | <0.003     |
|            |              |              |        |            |            |            |

#### Constituent: Antimony (mg/L) Analysis Run 5/6/2021 8:36 PM

|           | YGWA-3D (bg) | YGWA-3I (bg) | PZ-35       | PZ-37       | YGWC-24SA | YGWC-36A   |
|-----------|--------------|--------------|-------------|-------------|-----------|------------|
| 2/9/2021  |              |              |             | 0.00035 (J) | <0.003    |            |
| 2/10/2021 | <0.003       | <0.003       | <0.003      |             |           | 0.028      |
| 3/3/2021  | <0.003       | <0.003       |             |             | <0.003    |            |
| 3/4/2021  |              |              | 0.00039 (J) | <0.003      |           | 0.0015 (J) |

Constituent: Arsenic (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YAMW-1 | YAMW-2 | YAMW-4      | YAMW-5      | YGWA-17S (bg) | YGWA-18I (bg) | YGWA-18S (bg) | YGWA-20S (bg)  | YGWA-21I (bg) |
|------------|--------|--------|-------------|-------------|---------------|---------------|---------------|----------------|---------------|
| 6/6/2016   |        |        |             |             |               | <0.005        | <0.005        |                |               |
| 6/7/2016   |        |        |             |             | <0.005        |               |               | <0.005         | <0.005        |
| 7/27/2016  |        |        |             |             | <0.005        | <0.005        | <0.005        | <0.005         |               |
| 7/28/2016  |        |        |             |             |               |               |               |                | <0.005        |
| 9/16/2016  |        |        |             |             | <0.005        |               | <0.005        |                |               |
| 9/19/2016  |        |        |             |             |               | <0.005        |               | <0.005         | <0.005        |
| 11/2/2016  |        |        |             |             |               |               |               | <0.005         |               |
| 11/3/2016  |        |        |             |             | <0.005        | <0.005        | <0.005        |                | <0.005        |
| 1/11/2017  |        |        |             |             | <0.005        | <0.005        | <0.005        |                |               |
| 1/13/2017  |        |        |             |             |               |               |               | <0.005         | <0.005        |
| 3/1/2017   |        |        |             |             |               | <0.005        | <0.005        |                |               |
| 3/2/2017   |        |        |             |             | <0.005        |               |               |                |               |
| 3/6/2017   |        |        |             |             |               |               |               | <0.005         | 0.0017 (J)    |
| 4/26/2017  |        |        |             |             |               | <0.005        | <0.005        | <0.005         | <0.005        |
| 5/2/2017   |        |        |             |             | <0.005        |               |               |                |               |
| 6/28/2017  |        |        |             |             |               | <0.005        | <0.005        |                |               |
| 6/29/2017  |        |        |             |             | <0.005        |               |               | <0.005         | <0.005        |
| 3/28/2018  |        |        |             |             | <0.005        | <0.005        | 0.00061 (J)   |                |               |
| 3/29/2018  |        |        |             |             |               |               |               | <0.005         | 0.0015 (J)    |
| 6/5/2018   |        |        |             |             |               |               |               |                | 0.0013 (J)    |
| 6/6/2018   |        |        |             |             |               |               |               | <0.005         |               |
| 6/7/2018   |        |        |             |             |               | 0.00066 (J)   |               |                |               |
| 6/11/2018  |        |        |             |             | <0.005        |               | <0.005        |                |               |
| 9/25/2018  |        |        |             |             | <0.005        | <0.005        | <0.005        | <0.005         | 0.0022 (J)    |
| 10/16/2018 | <0.005 |        |             |             |               |               |               |                |               |
| 3/5/2019   |        |        |             |             | <0.005        |               | <0.005        | <0.005         | 0.0013 (J)    |
| 3/6/2019   |        |        |             |             |               | <0.005        |               |                |               |
| 4/2/2019   |        |        |             |             | <0.005        |               |               |                | 0.00096 (J)   |
| 4/3/2019   |        |        |             |             |               | <0.005        | <0.005        | <0.005         |               |
| 9/24/2019  |        |        |             |             |               |               |               |                | 0.0026 (J)    |
| 9/25/2019  |        |        |             |             | <0.005        |               |               | <0.005         | 0.0020(0)     |
| 9/26/2019  | <0.005 |        |             |             |               | <0.005        | <0.005        |                |               |
| 2/11/2020  | 0.000  |        |             |             | 0 0022 (.1)   | 0 0014 (.1)   | 0.0026 (.1)   |                |               |
| 2/12/2020  |        |        |             |             | 0.0022 (0)    | 0.0011(0)     | 0.0020(0)     | <0.005         | 0.0025 (J)    |
| 3/24/2020  |        |        |             |             | <0.005        | <0.005        | <0.005        | <0.005         | 0.0013(J)     |
| 3/25/2020  | <0.005 |        |             |             | 0.000         | 0.000         | 0.000         | 0.000          | 1.0010(0)     |
| 9/23/2020  | 0.000  | <0.005 | <0.005      |             | <0.005        | <0.005        | <0.005        |                |               |
| 9/24/2020  | <0.005 | -0.000 | -0.000      | 0.0015 (.1) | -0.000        | -0.000        | -0.000        | <0.005         | 0.0014 (1)    |
| 2/9/2021   | <0.005 | <0.005 | 0.001 (1)   | 0.00095 (1) |               | <0.005        | <0.005        | <0.005         | 0.001 (1)     |
| 3/3/2021   | <0.005 | <0.000 |             | 0.00000 (0) | <0.005        | <0.000        | <0.005        | <0.005         | 0.001 (0)     |
| 3/4/2021   | ~0.000 | ~0.000 | 0.00079 (3) | <0.005      | ~0.000        | NUUUU         | ~0.000        | <b>∼0.00</b> 0 | 0 00078 ( 1)  |
| 3/4/2UZ I  |        |        |             | ~0.005      |               |               |               |                | 0.00078 (J)   |

Constituent: Arsenic (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YGWA-39 (ba)     | YGWA-40 (ba)    | YGWA-4I (ba) | YGWA-5D (ba) | YGWA-5I (ba) | YGWC-23S  | YGWC-38      | YGWC-41      | YGWC-42     |
|------------|------------------|-----------------|--------------|--------------|--------------|-----------|--------------|--------------|-------------|
| 6/2/2016   | : diff ( 66 (5g) | 1 GTM 1 10 (5g) | <0.005       | 0.00071 (J)  | <0.005       | 10110 200 | 14110 00     |              |             |
| 6/7/2016   |                  |                 | 0.000        | 0.00071(0)   | 0.000        | <0.005    |              |              |             |
| 7/26/2016  |                  |                 | <0.005       | 0.001 (.1)   | <0.005       |           |              |              |             |
| 7/28/2016  |                  |                 |              |              |              | <0.005    |              |              |             |
| 8/30/2016  |                  |                 |              |              |              | 0.000     |              |              | 0 0023 (.1) |
| 9/14/2016  |                  |                 | <0.005       | <0.005       | <0.005       |           |              |              | 0.0020(0)   |
| 9/20/2016  |                  |                 | 0.000        | 0.000        | 0.000        | <0.005    |              |              |             |
| 11/2/2016  |                  |                 | <0.005       | <0.005       |              | 0.000     |              |              |             |
| 11/4/2016  |                  |                 | -0.000       | -0.000       | <0.005       |           |              |              |             |
| 11/8/2016  |                  |                 |              |              | -0.000       | <0.005    |              |              |             |
| 11/16/2016 |                  |                 |              |              |              | 0.000     |              |              | 0.0017 (.1) |
| 1/12/2017  |                  |                 |              | <0.005       | <0.005       |           |              |              | 0.0017 (3)  |
| 1/13/2017  |                  |                 | <0.005       | -0.000       | -0.000       |           |              |              |             |
| 1/16/2017  |                  |                 | -0.000       |              |              | <0.005    |              |              |             |
| 2/27/2017  |                  |                 |              |              |              | <0.005    |              |              | 0.002 (1)   |
| 3/6/2017   |                  |                 | <0.005       |              |              |           |              |              | 0.002 (3)   |
| 3/7/2017   |                  |                 | ~0.005       | 0.0012(1)    | <0.005       |           |              |              |             |
| 3/9/2017   |                  |                 |              | 0.0012 (3)   | <0.005       | <0.005    |              |              |             |
| 5/9/2017   |                  |                 | <0.00F       | <0.00F       |              | <0.005    |              |              |             |
| 5/1/2017   |                  |                 | <0.005       | <0.005       | <0.005       | <0.005    |              |              |             |
| 5/2/2017   |                  |                 |              |              | <0.005       | <0.005    |              |              | 0.0022 ( 1) |
| 5/10/2017  |                  |                 |              | 0.0010 ( 1)  | <0.00F       |           |              |              | 0.0022 (J)  |
| 6/27/2017  |                  |                 | -0.005       | 0.0019(3)    | <0.005       |           |              |              |             |
| 6/29/2017  |                  |                 | <0.005       |              |              | <0.00F    |              |              |             |
| 7/10/2017  |                  |                 |              |              |              | <0.005    |              |              | 0.000 (1)   |
| //11/2017  | 0.0000 ( 1)      |                 |              |              |              |           |              |              | 0.003 (J)   |
| 10/11/2017 | 0.0009 (J)       | -0.005          |              |              |              |           | 0.0000 (1)   | 0.0011 (1)   | 0.0001 ( 1) |
| 10/12/2017 | -0.005           | <0.005          |              |              |              |           | 0.0023 (J)   | 0.0011 (J)   | 0.0031 (J)  |
| 11/20/2017 | <0.005           | <0.005          |              |              |              |           | 0.0008 (J)   | -0.005       |             |
| 11/21/2017 |                  | 0.005           |              |              |              |           |              | <0.005       |             |
| 1/10/2018  | -0.005           | <0.005          |              |              |              |           |              | -0.005       |             |
| 1/11/2018  | <0.005           |                 |              |              |              |           | 0.001 (1)    | <0.005       |             |
| 1/12/2018  |                  | -0.005          |              |              |              |           | 0.001 (J)    | -0.005       |             |
| 2/19/2018  | -0.005           | <0.005          |              |              |              |           | 0.00000 ( 1) | <0.005       |             |
| 2/20/2018  | <0.005           |                 | <0.00F       | 0.0006 ( 1)  | <0.00F       |           | 0.00096 (J)  |              |             |
| 3/29/2018  |                  |                 | <0.005       | 0.0006 (3)   | <0.005       | <0.00F    |              |              |             |
| 3/30/2018  | -0.005           | -0.005          |              |              |              | <0.005    | 0.0015 (1)   | 0.00070 ( 1) |             |
| 4/3/2018   | <0.005           | <0.005          |              |              |              |           | 0.0015 (J)   | 0.00072 (J)  | 0.0022 ( 1) |
| 4/4/2018   |                  |                 |              | 0.0012 (1)   |              |           |              |              | 0.0023 (J)  |
| 6/0/2018   |                  |                 | 0.00050 ( 1) | 0.0013 (3)   | <0.00F       |           |              |              |             |
| 6/7/2018   |                  |                 | 0.00059 (J)  |              | <0.005       | 10.005    |              |              |             |
| 6/12/2018  |                  |                 |              |              |              | <0.005    |              | 0.00062 ( 1) |             |
| 6/27/2018  | -0.005           | -0.005          |              |              |              |           | 0.0017 (1)   | 0.00062 (J)  |             |
| 6/28/2018  | <0.005           | <0.005          |              |              |              |           | 0.0017 (J)   | 0.005        |             |
| 8/7/2018   | <0.005           | <0.005          |              |              |              |           | 0.00072 (J)  | <0.005       | 0.0018 / 1  |
| 9/20/2018  | -0.005           | -0.005          |              |              |              |           | 0.0017 (1)   | 0.001 (1)    | 0.0018 (J)  |
| 9/24/2018  | <0.005           | <0.005          | -0.005       | 0.0014 (1)   | -0.005       |           | 0.0017 (J)   | 0.001 (J)    |             |
| 9/26/2018  |                  |                 | <0.005       | 0.0014 (J)   | <0.005       | 0.005     |              |              |             |
| 9/2//2018  |                  |                 | 0.005        | 0.005        | 0.005        | <0.005    |              |              |             |
| 3/4/2019   |                  |                 | <0.005       | <0.005       | <0.005       |           |              |              |             |
| 3/6/2019   |                  |                 |              |              |              | <0.005    |              |              |             |
| 4/3/2019   |                  |                 | <0.005       | <0.005       | <0.005       |           |              |              |             |
| 4/4/2019   |                  |                 |              |              |              | <0.005    |              |              |             |

#### Constituent: Arsenic (mg/L) Analysis Run 5/6/2021 8:36 PM

|           | YGWA-39 (bg) | YGWA-40 (bg) | YGWA-4I (bg) | YGWA-5D (bg) | YGWA-5I (bg) | YGWC-23S   | YGWC-38     | YGWC-41     | YGWC-42     |
|-----------|--------------|--------------|--------------|--------------|--------------|------------|-------------|-------------|-------------|
| 8/21/2019 | 0.00058 (J)  | <0.005       |              |              |              |            |             |             |             |
| 8/22/2019 |              |              |              |              |              |            | 0.00055 (J) | 0.00036 (J) | 0.00089 (J) |
| 9/24/2019 |              |              |              | 0.00043 (J)  | <0.005       |            |             |             |             |
| 9/25/2019 |              |              | <0.005       |              |              |            |             |             |             |
| 9/27/2019 |              |              |              |              |              | <0.005     |             |             |             |
| 10/9/2019 | 0.00063 (J)  | <0.005       |              |              |              |            | 0.00057 (J) | 0.00052 (J) | 0.00078 (J) |
| 2/12/2020 | 0.00058 (J)  | 0.0034 (J)   | <0.005       | 0.0046 (J)   | 0.002 (J)    |            |             |             |             |
| 3/24/2020 |              | <0.005       |              | 0.00065 (J)  | <0.005       |            |             |             |             |
| 3/25/2020 | 0.0012 (J)   |              | <0.005       |              |              |            | 0.00068 (J) | 0.001 (J)   | 0.0013 (J)  |
| 3/26/2020 |              |              |              |              |              | 0.0012 (J) |             |             |             |
| 9/22/2020 |              |              | <0.005       | 0.001 (J)    | <0.005       |            |             |             |             |
| 9/24/2020 | <0.005       | <0.005       |              |              |              | <0.005     |             |             | <0.005      |
| 9/25/2020 |              |              |              |              |              |            | <0.005      | <0.005      |             |
| 2/8/2021  |              |              |              | <0.005       | <0.005       |            |             |             |             |
| 2/9/2021  |              |              | <0.005       |              |              | <0.005     | 0.00098 (J) |             |             |
| 2/10/2021 | <0.005       | <0.005       |              |              |              |            |             | <0.005      | 0.0016 (J)  |
| 3/2/2021  |              |              |              | <0.005       | <0.005       |            |             |             |             |
| 3/3/2021  |              |              | <0.005       |              |              |            |             |             |             |
| 3/4/2021  | <0.005       | <0.005       |              |              |              | <0.005     | <0.005      | <0.005      | <0.005      |
|           |              |              |              |              |              |            |             |             |             |

Constituent: Arsenic (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YGWC-43 | YGWC-49 | YGWA-47 (bg) | GWA-2 (bg) | YGWA-14S (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-2I (bg) | YGWA-30I (bg) |
|------------|---------|---------|--------------|------------|---------------|--------------|--------------|--------------|---------------|
| 5/1/2007   |         |         |              | <0.005     |               |              |              |              |               |
| 9/11/2007  |         |         |              | <0.005     |               |              |              |              |               |
| 3/20/2008  |         |         |              | <0.005     |               |              |              |              |               |
| 8/27/2008  |         |         |              | <0.005     |               |              |              |              |               |
| 3/3/2009   |         |         |              | <0.005     |               |              |              |              |               |
| 11/18/2009 |         |         |              | <0.005     |               |              |              |              |               |
| 3/3/2010   |         |         |              | <0.005     |               |              |              |              |               |
| 9/8/2010   |         |         |              | <0.005     |               |              |              |              |               |
| 3/10/2011  |         |         |              | <0.005     |               |              |              |              |               |
| 9/8/2011   |         |         |              | <0.005     |               |              |              |              |               |
| 3/5/2012   |         |         |              | <0.005     |               |              |              |              |               |
| 9/10/2012  |         |         |              | <0.005     |               |              |              |              |               |
| 2/6/2013   |         |         |              | <0.005     |               |              |              |              |               |
| 8/12/2013  |         |         |              | <0.005     |               |              |              |              |               |
| 2/5/2014   |         |         |              | <0.005     |               |              |              |              |               |
| 8/5/2014   |         |         |              | <0.005     |               |              |              |              |               |
| 2/4/2015   |         |         |              | <0.005     |               |              |              |              |               |
| 2/4/2015   |         |         |              | <0.005     |               |              |              |              |               |
| 8/3/2015   |         |         |              | <0.005     |               |              |              |              |               |
| 2/16/2016  |         |         |              | <0.005     |               | 0.0001       | -0.005       |              |               |
| 6/1/2016   |         |         |              |            | -0.005        | 0.0021       | <0.005       |              | 10.005        |
| 6/2/2016   |         |         |              |            | <0.005        |              |              |              | <0.005        |
| //25/2016  |         |         |              |            |               |              | <0.005       |              | <0.005        |
| 7/26/2016  |         |         |              |            | <0.005        | 0.0016 (J)   |              |              |               |
| 8/30/2016  |         |         | <0.005       |            |               |              |              |              |               |
| 8/31/2016  | <0.005  |         |              | <0.005     |               |              |              |              |               |
| 9/1/2016   |         | <0.005  |              |            |               |              |              |              |               |
| 9/13/2016  |         |         |              |            |               | <0.005       | <0.005       |              |               |
| 9/14/2016  |         |         |              |            |               |              |              | <0.005       |               |
| 9/15/2016  |         |         |              |            | <0.005        |              |              |              |               |
| 9/19/2016  |         |         |              |            |               |              |              |              | <0.005        |
| 11/1/2016  |         |         |              |            |               | <0.005       |              |              | <0.005        |
| 11/2/2016  |         |         |              |            | <0.005        |              |              |              |               |
| 11/4/2016  |         |         |              |            |               |              | <0.005       | 0.0017 (J)   |               |
| 11/14/2016 |         |         | <0.005       |            |               |              |              |              |               |
| 11/15/2016 |         | <0.005  |              |            |               |              |              |              |               |
| 11/16/2016 | <0.005  |         |              |            |               |              |              |              |               |
| 11/28/2016 |         |         |              | <0.005     |               |              |              |              |               |
| 12/15/2016 |         |         |              |            |               |              |              | 0.0023 (J)   |               |
| 1/10/2017  |         |         |              |            | <0.005        |              |              |              |               |
| 1/11/2017  |         |         |              |            |               | 0.0017 (J)   |              |              |               |
| 1/16/2017  |         |         |              |            |               |              | <0.005       | 0.0018 (J)   | <0.005        |
| 2/21/2017  |         |         |              |            |               |              |              |              | <0.005        |
| 2/22/2017  |         |         |              | <0.005     |               |              |              |              |               |
| 2/24/2017  | <0.005  |         | <0.005       |            |               |              |              |              |               |
| 2/27/2017  |         | <0.005  |              |            |               |              |              |              |               |
| 3/2/2017   |         |         |              |            |               | 0.0014 (J)   | <0.005       |              |               |
| 3/3/2017   |         |         |              |            |               |              |              | 0.0016 (J)   |               |
| 3/8/2017   |         |         |              |            | <0.005        |              |              |              |               |
| 4/26/2017  |         |         |              |            | <0.005        |              |              |              | <0.005        |
| 4/27/2017  |         |         |              |            |               | 0.0018 (J)   | <0.005       |              |               |
| 4/28/2017  |         |         |              |            |               | . ,          |              | 0.002 (J)    |               |
| 5/8/2017   |         |         | <0.005       | <0.005     |               |              |              | 1-7          |               |
|            |         |         |              |            |               |              |              |              |               |

|            | YGWC-43      | YGWC-49     | YGWA-47 (bg) | GWA-2 (bg)  | YGWA-14S (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-2I (bg) | YGWA-30I (bg) |
|------------|--------------|-------------|--------------|-------------|---------------|--------------|--------------|--------------|---------------|
| 5/9/2017   |              | <0.005      |              |             |               |              |              |              |               |
| 5/10/2017  | <0.005       |             |              |             |               |              |              |              |               |
| 5/26/2017  |              |             |              |             |               |              |              | 0.0005 (J)   |               |
| 6/27/2017  |              |             |              |             |               | 0.0018 (J)   | <0.005       |              |               |
| 6/28/2017  |              |             |              |             |               |              |              | 0.0016 (J)   |               |
| 6/30/2017  |              |             |              |             | <0.005        |              |              |              | <0.005        |
| 7/11/2017  | <0.005       |             | <0.005       |             |               |              |              |              |               |
| 7/13/2017  |              | <0.005      |              |             |               |              |              |              |               |
| 7/17/2017  |              |             |              | <0.005      |               |              |              |              |               |
| 10/10/2017 |              |             | 0.0007 (J)   |             |               |              |              |              |               |
| 10/11/2017 |              | 0.0006 (J)  |              |             |               |              |              |              |               |
| 10/12/2017 | <0.005       |             |              |             |               |              |              |              |               |
| 10/16/2017 |              |             |              | <0.005      |               |              |              |              |               |
| 2/19/2018  |              |             |              | <0.005      |               |              |              |              |               |
| 3/27/2018  |              |             |              |             | <0.005        |              | <0.005       |              | <0.005        |
| 3/28/2018  |              |             |              |             |               |              |              | 0.0013 (J)   |               |
| 3/29/2018  |              |             |              |             |               | 0.0017 (J)   |              |              |               |
| 4/2/2018   |              |             | <0.005       |             |               |              |              |              |               |
| 4/4/2018   | <0.005       | <0.005      |              |             |               |              |              |              |               |
| 6/5/2018   |              |             |              |             |               | 0.0013 (J)   |              |              |               |
| 6/6/2018   |              |             |              |             |               | 0.0010(0)    | <0.005       |              |               |
| 6/7/2018   |              |             |              |             |               |              | -0.000       | 0 00082 ( 1) |               |
| 6/8/2018   |              |             |              |             | <0.005        |              |              | 0.00002 (3)  |               |
| 6/11/2018  |              |             |              |             | ~0.005        |              |              |              | <0.005        |
| 9/6/2019   |              |             |              | <0.005      |               |              |              |              | ~0.005        |
| 8/0/2018   |              |             | 0.00070 (1)  | <0.005      |               |              |              |              |               |
| 9/19/2018  | 0.00000 ( 1) | 0.001 (1)   | 0.00072 (J)  |             |               |              |              |              |               |
| 9/20/2018  | 0.00099 (J)  | 0.001 (J)   |              |             |               |              |              |              |               |
| 10/1/2018  |              |             |              |             | <0.005        | 0.0016 (J)   | <0.005       | 0.0011 (J)   |               |
| 10/2/2018  |              |             |              |             |               |              |              |              | <0.005        |
| 2/25/2019  |              |             |              | <0.005      |               |              |              |              |               |
| 2/26/2019  |              |             |              |             | <0.005        |              |              |              | <0.005        |
| 2/27/2019  |              |             |              |             |               | 0.0015 (J)   | <0.005       | 0.001 (J)    |               |
| 3/28/2019  |              |             |              |             |               | 0.00072 (J)  | <0.005       |              |               |
| 3/29/2019  |              |             |              |             | <0.005        |              |              | 0.00063 (J)  |               |
| 4/1/2019   |              |             |              |             |               |              |              |              | <0.005        |
| 6/12/2019  |              |             |              | 0.00038 (J) |               |              |              |              |               |
| 8/19/2019  |              |             |              | 0.00095 (J) |               |              |              |              |               |
| 8/20/2019  |              |             | <0.005       |             |               |              |              |              |               |
| 8/21/2019  | <0.005       |             |              |             |               |              |              |              |               |
| 9/24/2019  |              |             |              |             |               | 0.0014 (J)   | <0.005       | <0.005       |               |
| 9/25/2019  |              |             |              |             | <0.005        |              |              |              | <0.005        |
| 9/26/2019  |              | <0.005      |              |             |               |              |              |              |               |
| 10/8/2019  |              |             | <0.005       | <0.005      |               |              |              |              |               |
| 10/9/2019  | 0.00051 (J)  |             |              |             |               |              |              |              |               |
| 2/10/2020  |              |             |              |             |               | 0.0026 (J)   | 0.0005 (J)   |              |               |
| 2/11/2020  |              |             |              |             |               |              |              | 0.0044 (J)   |               |
| 2/12/2020  |              |             |              |             | <0.005        |              |              |              | 0.0032 (J)    |
| 3/17/2020  |              |             | <0.005       | <0.005      |               |              |              |              |               |
| 3/18/2020  |              |             |              |             | <0.005        |              | <0.005       |              |               |
| 3/19/2020  |              |             |              |             |               | 0.00095 (J)  |              | 0.00066 (J)  | <0.005        |
| 3/25/2020  | 0.0007 (J)   | 0.00086 (J) |              |             |               |              |              |              |               |
| 8/26/2020  | . ,          | . ,         |              | <0.005      |               |              |              |              |               |

| 8/27/2020 | YGWC-43 | YGWC-49 | YGWA-47 (bg)<br><0.005 | GWA-2 (bg) | YGWA-14S (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-2I (bg) | YGWA-30I (bg) |
|-----------|---------|---------|------------------------|------------|---------------|--------------|--------------|--------------|---------------|
| 9/22/2020 |         |         | <0.005                 | <0.005     |               |              |              |              |               |
| 9/23/2020 |         |         |                        |            |               | 0.0011 (J)   | <0.005       | 0.001 (J)    |               |
| 9/24/2020 |         | <0.005  |                        |            |               |              |              |              | <0.005        |
| 9/25/2020 | <0.005  |         |                        |            | <0.005        |              |              |              |               |
| 2/9/2021  | <0.005  | <0.005  |                        |            |               |              |              |              |               |
| 2/10/2021 |         |         |                        |            | <0.005        |              |              | <0.005       |               |
| 2/11/2021 |         |         |                        |            |               |              |              |              | <0.005        |
| 2/12/2021 |         |         |                        |            |               | <0.005       | <0.005       |              |               |
| 3/1/2021  |         |         | <0.005                 |            |               |              |              |              | <0.005        |
| 3/2/2021  |         |         |                        | <0.005     | <0.005        |              |              |              |               |
| 3/3/2021  |         |         |                        |            |               | <0.005       | <0.005       | 0.00098 (J)  |               |
| 3/4/2021  | <0.005  | <0.005  |                        |            |               |              |              |              |               |

#### Constituent: Arsenic (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YGWA-3D (bg) | YGWA-3I (bg) | PZ-35        | PZ-37       | YGWC-24SA | YGWC-36A     |
|------------|--------------|--------------|--------------|-------------|-----------|--------------|
| 6/1/2016   |              | <0.005       |              |             |           |              |
| 6/2/2016   | <0.005       |              |              |             |           |              |
| 6/8/2016   |              |              |              |             | <0.005    |              |
| 7/25/2016  |              | <0.005       |              |             |           |              |
| 7/26/2016  | <0.005       |              |              |             |           |              |
| 8/1/2016   |              |              |              |             | <0.005    |              |
| 9/2/2016   |              |              |              |             |           | <0.005       |
| 9/14/2016  |              | <0.005       |              |             |           |              |
| 9/15/2016  | <0.005       |              |              |             |           |              |
| 9/20/2016  |              |              |              |             | <0.005    |              |
| 11/1/2016  | <0.005       | <0.005       |              |             |           |              |
| 11/8/2016  |              |              |              |             | <0.005    |              |
| 11/14/2016 |              |              |              |             |           | <0.005       |
| 1/11/2017  | <0.005       | <0.005       |              |             |           |              |
| 1/17/2017  |              |              |              |             | <0.005    |              |
| 2/28/2017  |              |              |              |             |           | 0.0006 (J)   |
| 3/1/2017   |              | 0.0004 (J)   |              |             |           |              |
| 3/2/2017   | <0.005       |              |              |             |           |              |
| 3/8/2017   |              |              |              |             | <0.005    |              |
| 4/26/2017  | <0.005       | <0.005       |              |             |           |              |
| 5/2/2017   |              |              |              |             | <0.005    |              |
| 5/9/2017   |              |              |              |             |           | 0.0006 (J)   |
| 6/28/2017  | 0.0007 (J)   | 0.0011 (J)   |              |             |           |              |
| 7/7/2017   |              |              |              |             | <0.005    |              |
| 7/13/2017  |              |              |              |             |           | <0.005       |
| 9/22/2017  |              |              |              |             |           | <0.005       |
| 9/29/2017  |              |              |              |             |           | <0.005       |
| 10/6/2017  |              |              |              |             |           | <0.005       |
| 10/12/2017 |              |              |              | 0.0014 (J)  |           |              |
| 11/21/2017 |              |              |              | 0.0008 (J)  |           |              |
| 1/11/2018  |              |              |              | 0.0006 (J)  |           |              |
| 2/20/2018  |              |              |              | <0.005      |           |              |
| 3/28/2018  | <0.005       | <0.005       |              | 0.000       |           |              |
| 3/30/2018  | -0.000       | -0.000       |              |             | <0.005    | <0.005       |
| 4/3/2018   |              |              |              | 0.0012(1)   | <0.003    | ~0.003       |
| 6/7/2018   | <0.005       |              |              | 0.0012 (0)  |           |              |
| 6/9/2019   | <0.003       | <0.005       |              |             |           |              |
| 6/12/2019  |              | <0.005       |              |             | <0.005    |              |
| 6/12/2018  |              |              |              |             | <0.005    | 0.00066 ( )) |
| 6/13/2018  |              |              |              | 0.0011 (1)  |           | 0.00066 (3)  |
| 6/29/2018  |              |              |              | 0.0011 (J)  |           |              |
| 8/6/2018   |              |              |              | <0.005      |           |              |
| 9/24/2018  |              |              |              | 0.00094 (J) | 0.005     | 0.005        |
| 9/26/2018  |              |              |              |             | <0.005    | <0.005       |
| 10/1/2018  | <0.005       | <0.005       | 0.00000 ( )) |             |           |              |
| 10/16/2018 | 0.005        | .0.005       | 0.0006A (1)  |             |           |              |
| 2/2//2019  | <0.005       | <0.005       |              |             |           |              |
| 3/5/2019   |              |              |              |             | <0.005    |              |
| 3/6/2019   |              |              |              |             |           | <0.005       |
| 4/1/2019   | <0.005       | <0.005       |              |             |           |              |
| 4/4/2019   |              |              |              |             | <0.005    | <0.005       |
| 9/25/2019  | <0.005       | <0.005       |              |             |           |              |
| 9/26/2019  |              |              | <0.005       |             | <0.005    | <0.005       |

|           | YGWA-3D (ba) | YGWA-3I (ba) | PZ-35       | PZ-37      | YGWC-24SA  | YGWC-36A    |
|-----------|--------------|--------------|-------------|------------|------------|-------------|
| 2/11/2020 |              | 0.0041 (J)   |             |            |            |             |
| 2/12/2020 | 0.0038 (J)   |              |             |            |            |             |
| 3/19/2020 | <0.005       | <0.005       |             |            |            |             |
| 3/25/2020 |              |              | <0.005      |            |            | <0.005      |
| 3/26/2020 |              |              |             |            | 0.0015 (J) |             |
| 9/23/2020 | <0.005       | <0.005       |             |            | <0.005     |             |
| 9/24/2020 |              |              | <0.005      |            |            |             |
| 9/25/2020 |              |              |             | <0.005     |            |             |
| 10/7/2020 |              |              |             |            |            | <0.005      |
| 2/9/2021  |              |              |             | 0.0015 (J) | <0.005     |             |
| 2/10/2021 | 0.00094 (J)  | 0.00078 (J)  | 0.00096 (J) |            |            | 0.00088 (J) |
| 3/3/2021  | <0.005       | <0.005       |             |            | <0.005     |             |
| 3/4/2021  |              |              | <0.005      | <0.005     |            | <0.005      |

Constituent: Barium (mg/L) Analysis Run 5/6/2021 8:36 PM

| 6/6/2016   | YAMW-1 | YAMW-2     | YAMW-4     | YAMW-5 | YGWA-17S (bg) | YGWA-18I (bg)<br>0.028 | YGWA-18S (bg)<br>0.019 | YGWA-20S (bg) | YGWA-21I (bg) |
|------------|--------|------------|------------|--------|---------------|------------------------|------------------------|---------------|---------------|
| 6/7/2016   |        |            |            |        | 0.012         |                        |                        | 0.014         | 0.0058        |
| 7/27/2016  |        |            |            |        | 0.0126        | 0.0294                 | 0.0167                 | 0.0141        |               |
| 7/28/2016  |        |            |            |        |               |                        |                        |               | 0.0068 (J)    |
| 9/16/2016  |        |            |            |        | 0.0127        |                        | 0.0168                 |               |               |
| 9/19/2016  |        |            |            |        |               | 0.0247                 |                        | 0.0155        | 0.0071 (J)    |
| 11/2/2016  |        |            |            |        |               |                        |                        | 0.0157        |               |
| 11/3/2016  |        |            |            |        | 0.0128        | 0.0248                 | 0.0159                 |               | 0.0092 (J)    |
| 1/11/2017  |        |            |            |        | 0.0142        | 0.0266                 | 0.0162                 |               |               |
| 1/13/2017  |        |            |            |        |               |                        |                        | 0.0158        | 0.0105        |
| 3/1/2017   |        |            |            |        |               | 0.0275                 | 0.0195                 |               |               |
| 3/2/2017   |        |            |            |        | 0.0155        |                        |                        |               |               |
| 3/6/2017   |        |            |            |        |               |                        |                        | 0.0163        | 0.0105        |
| 4/26/2017  |        |            |            |        |               | 0.024                  | 0.0182                 | 0.0177        | 0.011         |
| 5/2/2017   |        |            |            |        | 0.0138        |                        |                        |               |               |
| 6/28/2017  |        |            |            |        |               | 0.0237                 | 0.018                  |               |               |
| 6/29/2017  |        |            |            |        | 0.0128        |                        |                        | 0.017         | 0.0109        |
| 3/28/2018  |        |            |            |        | 0.014         | 0.024                  | 0.021                  |               |               |
| 3/29/2018  |        |            |            |        |               |                        |                        | 0.014         | <0.01         |
| 6/5/2018   |        |            |            |        |               |                        |                        |               | 0.011         |
| 6/6/2018   |        |            |            |        |               |                        |                        | 0.015         |               |
| 6/7/2018   |        |            |            |        |               | 0.023                  |                        |               |               |
| 6/11/2018  |        |            |            |        | 0.013         |                        | 0.019                  |               |               |
| 9/25/2018  |        |            |            |        | 0.014         | 0.023                  | 0.019                  | 0.015         | 0.011         |
| 10/16/2018 | 0.048  |            |            |        |               |                        |                        |               |               |
| 3/5/2019   |        |            |            |        | 0.015         |                        | 0.02                   | 0.016         | 0.011         |
| 3/6/2019   |        |            |            |        |               | 0.024                  |                        |               |               |
| 4/2/2019   |        |            |            |        | 0.016         |                        |                        |               | 0.011         |
| 4/3/2019   |        |            |            |        |               | 0.025                  | 0.017                  | 0.018         |               |
| 9/24/2019  |        |            |            |        |               |                        |                        |               | 0.011         |
| 9/25/2019  |        |            |            |        | 0.015         |                        |                        | 0.014         |               |
| 9/26/2019  | 0.047  |            |            |        |               | 0.021                  | 0.017                  |               |               |
| 2/11/2020  |        |            |            |        | 0.015         | 0.022                  | 0.019                  |               |               |
| 2/12/2020  |        |            |            |        |               |                        |                        | 0.014         | 0.011         |
| 3/24/2020  |        |            |            |        | 0.015         | 0.021                  | 0.017                  | 0.015         | 0.011         |
| 3/25/2020  | 0.04   |            |            |        |               |                        |                        |               |               |
| 9/23/2020  |        | 0.0092 (J) | 0.0063 (J) |        | 0.015         | 0.021                  | 0.016                  |               |               |
| 9/24/2020  | 0.028  |            |            | 0.057  |               |                        |                        | 0.015         | 0.01          |
| 2/9/2021   | 0.039  | 0.0085 (J) | 0.02       | 0.042  |               | 0.023                  | 0.017                  | 0.015         | 0.011         |
| 3/3/2021   | 0.035  | 0.0082     | 0.021      |        | 0.017         | 0.023                  | 0.017                  | 0.015         |               |
| 3/4/2021   |        |            |            | 0.039  |               |                        |                        |               | 0.011         |

Constituent: Barium (mg/L) Analysis Run 5/6/2021 8:36 PM

| 67/2016     0.014M-0.020     0.014M-0.020     0.014M-0.020     0.014C-23     0.014C-23     0.014C-23     0.014C-23     0.014C-23     0.045       67/2016     0.015     0.015     0.015     0.045     0.045       7/26/2016     0.0158     0.017     0.045     0.051     0.045       8/30/2016     0.0181     0.0181     0.0511     0.0455       9/14/2016     0.0143     0.0051/0     0.0181     0.0455       11/2/2016     0.0143     0.0091/0     0.0561     0.0455       11/2/2016     0.0148     0.0091/0     0.0561     0.0561       11/2/2017     0.0146     0.0165     0.0561     0.0561       11/16/2017     0.0146     0.0166     0.0573       11/16/2017     0.0146     0.009 //0     0.0528     0.0573       11/2/2017     0.0141     0.0202     0.0427     0.0517       11/2/2017     0.0149     0.0202     0.0427     0.0517       11/2/2017     0.0154     0.0140     0.0204     0.0204     0.0341       11/12/2017     0.0154     0.0154     0.0451     0.0451     1 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.222010     0.013     0.004     0.019       7/2562016     0.0158     0.0179       7/2562016     0.0143     0.0079       8302016     0.0143     0.0085 (J)     0.0181       9/14/2016     0.0143     0.0091 (J)     0.0561       11/22016     0.0148     0.0091 (J)     0.0561       11/22016     0.0148     0.0091 (J)     0.0541       11/22017     0.0165     0.0541       11/22017     0.0089 (J)     0.0199     0.0541       11/12017     0.0146     0.0091 (J)     0.0528       11/12017     0.0140     0.0093 (J)     0.0528       2/27/2017     0.0149     0.0093 (J)     0.0459       3/92017     0.0149     0.0093 (J)     0.0429       3/92017     0.0149     0.0093 (J)     0.0429       5/12017     0.0149     0.0093 (J)     0.0427       5/12017     0.0154     0.0154     0.0517       6/222017     0.0154     0.0395     0.0451       7/112017     0.0251     0.0429     0.0429       11/120217     0.0024 (J)     0.0395     0.0451                               |
| 7/28/2016     0.0158     0.01     0.073       7/28/2016     0.0131     0.051       8/30/2016     0.013     0.051       9/14/2016     0.0143     0.009 (J)     0.051       9/20/2016     0.0148     0.0091 (J)     0.051       11/12/2016     0.0148     0.0091 (J)     0.051       11/12/2016     0.0148     0.0091 (J)     0.054       11/16/2016     0.0146     0.0199     0.054       11/16/2017     0.0146     0.0091 (J)     0.0528       11/16/2017     0.0146     0.0092 (J)     0.0528       2/27/2017     0.0141     0.0091 (J)     0.0196       3/2017     0.0014     0.0092 (J)     0.0469       3/2017     0.0014     0.0022 (D)     0.0427       3/2017     0.0014     0.0022 (D)     0.0427       5/102017     0.0014     0.0141     0.011       5/102017     0.0014     0.0141     0.011       5/102017     0.0014     0.0141     0.011       5/102017     0.0014     0.0141     0.011       5/102017     0.0014     0.0395                                          |
| 1/28/2016     0.01/3     0.01     0.01/3       9/28/2016     0.0143     0.0085 (.))     0.0181     0.0051       9/202016     0.0143     0.0091 (.))     0.0161     0.0161       11/202016     0.0148     0.0091 (.))     0.0165     0.0541       11/202016     0.0148     0.0091 (.))     0.0185     0.0541       11/202016     0.0146     0.0541     0.0541       11/202017     0.0146     0.0528     0.0573       11/202017     0.0141     0.0528     0.0573       3/202017     0.0141     0.0149     0.0573       3/202017     0.0141     0.0202     0.0427       5/102017     0.0154     0.0154     0.0517       5/102017     0.0154     0.0154     0.0517       5/102017     0.0154     0.0202     0.0427       5/102017     0.0154     0.0351     0.0517       5/102017     0.0154     0.0355     0.0451       5/102017     0.0154     0.0355     0.0451       10/1120217     0.0305 (.))     0.0395     0.0451       10/1120217     0.0301()                                 |
| 1/12/2016     0.0143     0.0085 (J)     0.0181     0.0455       97/4/2016     0.0143     0.0085 (J)     0.0181     1       11/2/2016     0.0148     0.0091 (J)     1     1       11/2/2016     0.0148     0.0091 (J)     1     1       11/2/2016     0.0148     0.0091 (J)     0.054     0.0541       11/16/2016     0.0046     0.054     0.0541     0.0541       11/12/2017     0.0046     0.0528     0.0573       2/2/2/2017     0.0144     0.009 (J)     0.0196     0.0573       3/0/2017     0.0141     0.009 (J)     0.0196     0.0573       3/0/2017     0.0149     0.0083 (J)     0.0469     0.0469       5/1/2017     0.0149     0.0083 (J)     0.0141     0.0517       5/1/2017     0.0149     0.0083 (J)     0.0141     0.0517       5/1/2017     0.0154     0.0225     0.0469     0.0151       5/1/2017     0.00154     0.0395     0.0395     0.0451       5/1/2017     0.0052     0.0395     0.0451     0.0451       5/1/2017     0.00524     0.                        |
| BASACH     0.0051     0.0053       9/4/2016     0.0143     0.005(1)     0.0151       11/2016     0.0148     0.0091(1)     0.0165       11/4/2016     0.0146     0.0165     0.0541       11/1/2017     0.0089(1)     0.0199     0.0528       1/1/2017     0.0166     0.0528     0.0573       1/1/2017     0.0146     0.0099(1)     0.0528       2/27/2017     0.0146     0.0528     0.0573       3/6/2017     0.0149     0.009 (1)     0.0528     0.0573       3/6/2017     0.0149     0.009 (1)     0.0196     1       3/7/2017     0.0149     0.0083 (1)     0.0220     0.0427       5/1/2017     0.0149     0.0083 (1)     0.0220     0.0427       5/1/2017     0.0149     0.0083 (1)     0.021     0.0517       5/1/2017     0.0154     0.0074 (1)     0.0220     0.0427       5/1/2017     0.0154     0.0395     0.0451       6/29/2017     0.0292 (1)     0.0451     0.0451       1/1/2017     0.0292 (1)     0.0292 (1)     0.0451       1/1/2017                             |
| 9/20/2016     0.0143     0.0085 (J)     0.0561       9/20/2016     0.0148     0.0091 (J)     0.0561       11/4/2016     0.0148     0.0093 (J)     0.0541       11/8/2016     0.0089 (J)     0.0190     0.0541       11/1/2/2017     0.0089 (J)     0.0190     0.0541       11/1/2/2017     0.0146     0.0558     0.0573       11/1/2/2017     0.0146     0.05573     0.0573       2/2//2017     0.0141     0.0196     0.0573       3/6/2017     0.0141     0.0196     0.0573       3/2/2017     0.0141     0.0196     0.0573       3/2/2017     0.0149     0.0020     0.0469       5/1/2017     0.0154     0.0202     0.0427       5/1/2017     0.0154     0.0202     0.0427       5/1/2017     0.0154     0.0395     0.0517       6/2/2017     0.0154     0.0345     0.0451       7/10/2017     0.0154     0.0345     0.0451       7/11/2017     0.0328     0.034     0.0340       10/11/2017     0.0324     0.021     0.0255                                                      |
| 31/2016     0.0148     0.0091 (J)       11/2016     0.0148     0.0091 (J)       11/8/2016     0.0165     0.054       11/16/2017     0.0089 (J)     0.0199       11/3/2017     0.0146     0.0528       11/16/2017     0.0146     0.0528       2/2/2017     0.0141     0.0573       3/9/2017     0.0141     0.0573       3/9/2017     0.0141     0.0528       3/9/2017     0.0141     0.0573       3/9/2017     0.0141     0.0523       5/1/2017     0.0149     0.0083 (J)       5/1/2017     0.0149     0.0083 (J)       5/1/2017     0.0149     0.0022     0.0469       5/1/2017     0.0154     0.0074 (J)     0.0184       6/29/2017     0.0154     0.0395     0.0517       5/1/2017     0.0154     0.0395     0.0451       6/29/2017     0.0154     0.0395     0.0451       7/10/2017     0.0328     0.0324     0.0429       11/12/2017     0.0381 (J)     0.0571     0.0255                                                                                                      |
| 11/42016     0.0148     0.0091 (J)       11/42016     0.0165       11/16/2017     0.0089 (J)     0.0199       1/1/22017     0.0146     0.0528       1/1/22017     0.0146     0.0528       1/1/22017     0.0146     0.0573       1/1/22017     0.0141     0.0573       3/6/2017     0.0149     0.0196       3/9/2017     0.0149     0.0196       5/1/2017     0.0149     0.0093 (J)       5/1/2017     0.0149     0.0022     0.0427       5/1/2017     0.0149     0.0022     0.0427       5/1/2017     0.0149     0.0024     0.0427       5/1/2017     0.0149     0.0141     0.0573       5/1/2017     0.0149     0.0022     0.0427       5/1/2017     0.0154     0.027     0.0517       6/29/2017     0.0154     0.0395     0.0451       7/102017     0.0154     0.0451     0.0451       1/1/2017     0.0092 (J)     0.0284     0.0269     0.0394       1/1/2017     0.0081 (J)     0.027     0.0255     0.0255                                                                     |
| 11/4/2016     0.0165       11/4/2016     0.054       11/1/2017     0.0089 (J)     0.0199       1/1/2017     0.0146     0.0528       2/27/2017     0.0141     0.0573       3/6/2017     0.0149     0.0196       3/9/2017     0.0141     0.0469       3/9/2017     0.0149     0.0083 (J)       5/1/2017     0.0149     0.0083 (J)       5/1/2017     0.0149     0.0083 (J)       5/1/2017     0.0149     0.0083 (J)       5/1/2017     0.0149     0.0022     0.0427       5/1/2017     0.0154     UNER     UNER       5/1/2017     0.0154     UNER     UNER       6/29/2017     0.0154     UNER     UNER       7/1/2017     0.0154     UNER     UNER       7/1/2017     0.0092 (J)     UNER     UNER       10/11/2017     0.0092 (J)     UNER     UNER       11/20/2017     0.0081 (J)     0.0571                                                                                                                                                                                     |
| 11/16/2016     0.054       11/16/2016     0.0089 (J)     0.0199       1/13/2017     0.0146     0.5528       2/27/2017     0.0141     0.0573       3/6/2017     0.0141     0.0199       3/6/2017     0.0141     0.0573       3/6/2017     0.0141     0.0469       3/9/2017     0.0149     0.0196       3/9/2017     0.0149     0.0083 (J)       5/1/2017     0.0149     0.0083 (J)       5/1/2017     0.0149     0.0020     0.0469       5/1/2017     0.0154     0.0517       6/27/2017     0.0154     0.0395     0.0517       6/29/2017     0.0154     0.0395     0.0451       11/1/12017     0.0092 (J)     0.0154     0.0395       7/1/12017     0.0092 (J)     0.0451     0.0451       10/12017     0.0092 (J)     0.0511     0.0425                                                                                                                                                                                                                                             |
| 11/16/2016     0.0089 (J)     0.0199     0.0141       11/16/2017     0.0146     0.0528     0.0573       2/27/2017     0.0141     0.0573     0.0573       3/6/2017     0.0141     0.0196     0.0573       3/9/2017     0.0149     0.0196     0.0146       3/9/2017     0.0149     0.0196     0.0146       5/1/2017     0.0149     0.0196     0.0146       5/1/2017     0.0149     0.0202     0.0427       5/1/2017     0.0149     0.0020     0.0427       5/1/2017     0.0074 (J)     0.0184     0.0517       6/27/2017     0.0154     0.0395     0.0451       7/1/1/2017     0.0092 (J)     0.0395     0.0429       10/1/2017     0.0081 (J)     0.0511     0.0255                                                                                                                                                                                                                                                                                                                  |
| 1/12/2017     0.0039 (.)     0.0199       1/13/2017     0.0146     0.0528       2/27/2017     0.0141     0.0573       3/6/2017     0.0141     0.0469       3/9/2017     0.0149     0.0196       5/1/2017     0.0149     0.0083 (.)       5/1/2017     0.0149     0.0083 (.)       5/1/2017     0.0149     0.0083 (.)       5/1/2017     0.0149     0.0083 (.)       5/1/2017     0.0149     0.0083 (.)       5/1/2017     0.0149     0.0074 (.)     0.0427       5/1/2017     0.0154      0.0395       6/29/2017     0.0154      0.0395       7/11/2017     0.0022 (.)     0.0269     0.0394     0.0429       10/11/2017     0.0381 (.)     0.0671     0.0255                                                                                                                                                                                                                                                                                                                       |
| 1/13/2017     0.0146       1/16/2017     0.0528       2/27/2017     0.0141       3/6/2017     0.0141       3/7/2017     0.009 (J)     0.0196       3/9/2017     0.009 (J)     0.0196       3/9/2017     0.0149     0.0083 (J)       5/1/2017     0.0149     0.0020       5/1/2017     0.00149     0.0020       5/1/2017     0.00149     0.0020       5/1/2017     0.00149     0.0020       6/27/2017     0.0074 (J)     0.0184       6/29/2017     0.0154     0.0395       7/11/2017     0.0328     0.0451       10/11/2017     0.0328     0.0324     0.0394       11/20/2017     0.0081 (J)     0.0671     0.0255                                                                                                                                                                                                                                                                                                                                                                  |
| 1/16/2017     0.0528       2/27/2017     0.0141       3/7/2017     0.009 (J)     0.0196       3/9/2017     0.009 (J)     0.0196       5/1/2017     0.0149     0.0202     0.0427       5/1/2017     0.0149     0.0202     0.0427       5/1/2017     0.0074 (J)     0.0184     0.0517       6/29/2017     0.0154     0.0395     0.0451       7/10/2017     0.0328     0.0427     0.0451       10/11/2017     0.0328     0.0202     0.0427       11/20/2017     0.0328     0.0269     0.0394     0.0429                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2/27/2017     0.0573       3/6/2017     0.0141       3/7/2017     0.009 (J)     0.0196       3/9/2017     0.0149     0.0083 (J)       5/1/2017     0.0149     0.0083 (J)       5/2/2017     0.0149     0.00202     0.0427       5/1/2017     0.0074 (J)     0.0184       6/29/2017     0.0154     0.0395       7/11/2017     0.0092 (J)     0.0395       10/11/2017     0.0328     0.0269     0.0394       11/20/2017     0.0328     0.0255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3/6/2017     0.0141       3/7/2017     0.009 (J)     0.0196       3/9/2017     0.0149     0.0083 (J)       5/1/2017     0.0149     0.0022     0.0427       5/1/2017     0.0196     0.0517       5/1/2017     0.0074 (J)     0.0184     0.0517       6/29/2017     0.0154     0.0395     0.0451       7/10/2017     0.0092 (J)     0.0328     0.0429       10/11/2017     0.0092 (J)     0.0154     0.0395       11/20/2017     0.0328     0.0429     0.0429       11/20/2017     0.0081 (J)     0.0671     0.0255                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 37/2017     0.009 (J)     0.0196       3/9/2017     0.0149     0.0083 (J)       5/1/2017     0.0149     0.0022     0.0427       5/1/2017     0.0074 (J)     0.0184     0.0517       6/27/2017     0.0154     0.0074 (J)     0.0184       7/10/2017     0.0154     0.0395     0.0451       10/11/2017     0.0092 (J)     0.0328     0.0429       10/12/2017     0.0328     0.0671     0.0269     0.0394       11/20/2017     0.0081 (J)     0.0671     0.0255     0.0255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3/9/2017     0.0149     0.0083 (J)       5/1/2017     0.0149     0.0022     0.0427       5/1/2017     0.0202     0.0427     0.0517       6/29/2017     0.0074 (J)     0.0184     0.0517       6/29/2017     0.0154     0.0395                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5/1/2017     0.0149     0.0083 (J)       5/2/2017     0.0202     0.0427       5/10/2017     0.0074 (J)     0.0184       6/29/2017     0.0154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5/2/2017     0.0202     0.0427       5/10/2017     0.0517       6/2/2017     0.0074 (J)     0.0184       6/29/2017     0.0154       7/10/2017     0.0154       7/11/2017     0.0092 (J)       10/11/2017     0.0328       10/12/2017     0.0381 (J)       0.0081 (J)     0.0671                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5/10/2017     0.0517       6/27/2017     0.0154       6/29/2017     0.0154       7/10/2017     0.0154       7/11/2017     0.0092 (J)       10/11/2017     0.0328       10/12/2017     0.0381 (J)       0.0081 (J)     0.0671                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 6/27/2017     0.074 (J)     0.0184       6/29/2017     0.0154     0.0395       7/10/2017     0.0092 (J)     0.0451       10/11/2017     0.0328     0.0269     0.0394     0.0429       11/20/2017     0.0081 (J)     0.0671     0.0255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6/29/2017     0.0154       7/10/2017     0.0395       7/11/2017     0.0092 (J)       10/12/2017     0.0328       11/20/2017     0.0381 (J)       0.0671     0.0255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7/10/2017   0.0395     7/11/2017   0.0092 (J)     10/11/2017   0.0092 (J)     10/12/2017   0.031 (J)     11/20/2017   0.0081 (J)     0.0671   0.0255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7/11/2017   0.0092 (J)     10/11/2017   0.0328     10/12/2017   0.0381 (J)     0.0671   0.0255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 10/11/2017     0.0092 (J)       10/12/2017     0.0328       11/20/2017     0.0081 (J)       0.0671     0.0255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 10/12/2017   0.0328   0.0269   0.0394   0.0429     11/20/2017   0.0081 (J)   0.0671   0.0255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 11/20/2017 0.0081 (J) 0.0671 0.0255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 11/21/2017 0.032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1/10/2018 0.0656                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1/11/2018 0.0077 (J) 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1/12/2018 0.0236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2/19/2018 0.0598 0.0308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2/20/2018 <0.01 0.0255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3/29/2018 0.014 <0.01 0.021                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3/30/2018 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4/3/2018 <0.01 0.045 0.023 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4/4/2018 0.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6/6/2018 0.008 (J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6/7/2018 0.014 0.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6/12/2018 0.024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6/27/2018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6/28/2018 0.0078 / I) 0.047                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| o///2016 0.0076 (J) 0.046 0.027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 9/24/2018 0.0071 (J) 0.042 0.0075 (I) 0.010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 9/26/2018 0.02 0.0075 (J) 0.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 9/2//2018 0.022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3/4/2019 0.016 0.00// (J) 0.019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3/6/2019 0 010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4/3/2019 0.017 0.0087 (J) 0.023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

|           | YGWA-39 (bg) | YGWA-40 (bg) | YGWA-4I (bg) | YGWA-5D (bg) | YGWA-5I (bg) | YGWC-23S | YGWC-38 | YGWC-41 | YGWC-42 |
|-----------|--------------|--------------|--------------|--------------|--------------|----------|---------|---------|---------|
| 8/21/2019 | 0.015        | 0.035        |              |              |              |          |         |         |         |
| 8/22/2019 |              |              |              |              |              |          | 0.019   | 0.021   | 0.031   |
| 9/24/2019 |              |              |              | 0.0075 (J)   | 0.019        |          |         |         |         |
| 9/25/2019 |              |              | 0.015        |              |              |          |         |         |         |
| 9/27/2019 |              |              |              |              |              | 0.018    |         |         |         |
| 10/9/2019 | 0.013        | 0.036        |              |              |              |          | 0.019   | 0.021   | 0.027   |
| 2/12/2020 | 0.011        | 0.035        | 0.012        | 0.0079 (J)   | 0.021        |          |         |         |         |
| 3/24/2020 |              | 0.033        |              | 0.0076 (J)   | 0.021        |          |         |         |         |
| 3/25/2020 | 0.014        |              | 0.016        |              |              |          | 0.018   | 0.021   | 0.03    |
| 3/26/2020 |              |              |              |              |              | 0.027    |         |         |         |
| 9/22/2020 |              |              | 0.013        | 0.0076 (J)   | 0.019        |          |         |         |         |
| 9/24/2020 | 0.016        | 0.028        |              |              |              | 0.035    |         |         | 0.026   |
| 9/25/2020 |              |              |              |              |              |          | 0.015   | 0.016   |         |
| 2/8/2021  |              |              |              | 0.0079 (J)   | 0.02         |          |         |         |         |
| 2/9/2021  |              |              | 0.013        |              |              | 0.042    | 0.016   |         |         |
| 2/10/2021 | 0.027        | 0.032        |              |              |              |          |         | 0.017   | 0.031   |
| 3/2/2021  |              |              |              | 0.014        | 0.019        |          |         |         |         |
| 3/3/2021  |              |              | 0.014        |              |              |          |         |         |         |
| 3/4/2021  | 0.028        | 0.032        |              |              |              | 0.043    | 0.016   | 0.017   | 0.03    |
|           |              |              |              |              |              |          |         |         |         |

Constituent: Barium (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YGWC-43    | YGWC-49 | YGWA-47 (bg) | GWA-2 (bg) | YGWA-14S (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-2I (bg) | YGWA-30I (bg) |
|------------|------------|---------|--------------|------------|---------------|--------------|--------------|--------------|---------------|
| 5/1/2007   |            |         |              | 0.032      |               |              |              |              |               |
| 9/11/2007  |            |         |              | 0.017      |               |              |              |              |               |
| 3/20/2008  |            |         |              | 0.025      |               |              |              |              |               |
| 8/27/2008  |            |         |              | 0.041      |               |              |              |              |               |
| 3/3/2009   |            |         |              | 0.053      |               |              |              |              |               |
| 11/18/2009 |            |         |              | 0.05       |               |              |              |              |               |
| 3/3/2010   |            |         |              | 0.061      |               |              |              |              |               |
| 9/8/2010   |            |         |              | 0.071      |               |              |              |              |               |
| 3/10/2011  |            |         |              | 0.057      |               |              |              |              |               |
| 9/8/2011   |            |         |              | 0.057      |               |              |              |              |               |
| 3/5/2012   |            |         |              | 0.061      |               |              |              |              |               |
| 9/10/2012  |            |         |              | 0.055      |               |              |              |              |               |
| 2/6/2013   |            |         |              | 0.061      |               |              |              |              |               |
| 8/12/2013  |            |         |              | 0.055      |               |              |              |              |               |
| 2/5/2014   |            |         |              | 0.063      |               |              |              |              |               |
| 8/5/2014   |            |         |              | 0.038      |               |              |              |              |               |
| 2/4/2015   |            |         |              | 0.030      |               |              |              |              |               |
| 2/4/2015   |            |         |              | 0.039      |               |              |              |              |               |
| 8/3/2015   |            |         |              | 0.031      |               |              |              |              |               |
| 2/16/2016  |            |         |              | 0.045      |               | 0.000        | 0.010        |              |               |
| 6/1/2016   |            |         |              |            |               | 0.008        | 0.012        |              |               |
| 6/2/2016   |            |         |              |            | 0.0081        |              |              |              | 0.0064        |
| 7/25/2016  |            |         |              |            |               |              | 0.0091 (J)   |              | 0.0071 (J)    |
| 7/26/2016  |            |         |              |            | 0.0082 (J)    | 0.006 (J)    |              |              |               |
| 8/30/2016  |            |         | 0.0413       |            |               |              |              |              |               |
| 8/31/2016  | 0.0065 (J) |         |              | 0.0542     |               |              |              |              |               |
| 9/1/2016   |            | 0.077   |              |            |               |              |              |              |               |
| 9/13/2016  |            |         |              |            |               | 0.0084 (J)   | 0.008 (J)    |              |               |
| 9/14/2016  |            |         |              |            |               |              |              | 0.0037 (J)   |               |
| 9/15/2016  |            |         |              |            | 0.0087 (J)    |              |              |              |               |
| 9/19/2016  |            |         |              |            |               |              |              |              | 0.0069 (J)    |
| 11/1/2016  |            |         |              |            |               | 0.0062 (J)   |              |              | 0.007 (J)     |
| 11/2/2016  |            |         |              |            | 0.0082 (J)    |              |              |              |               |
| 11/4/2016  |            |         |              |            |               |              | 0.0067 (J)   | 0.0059 (J)   |               |
| 11/14/2016 |            |         | 0.0383       |            |               |              |              |              |               |
| 11/15/2016 |            | 0.0772  |              |            |               |              |              |              |               |
| 11/16/2016 | 0.0092 (J) |         |              |            |               |              |              |              |               |
| 11/28/2016 |            |         |              | 0.0529     |               |              |              |              |               |
| 12/15/2016 |            |         |              |            |               |              |              | 0.0056 (J)   |               |
| 1/10/2017  |            |         |              |            | 0.0086 (J)    |              |              |              |               |
| 1/11/2017  |            |         |              |            |               | 0.0069 (J)   |              |              |               |
| 1/16/2017  |            |         |              |            |               |              | 0.0096 (J)   | 0.0049 (J)   | 0.0071 (J)    |
| 2/21/2017  |            |         |              |            |               |              |              |              | 0.0077 (J)    |
| 2/22/2017  |            |         |              | 0.0607     |               |              |              |              |               |
| 2/24/2017  | 0 0144     |         | 0.0351       | 0.0007     |               |              |              |              |               |
| 2/27/2017  | 0.0111     | 0 0888  | 0.0001       |            |               |              |              |              |               |
| 3/2/2017   |            | 0.0000  |              |            |               | 0.0071 ( I)  | 0.0112       |              |               |
| 3/2/2017   |            |         |              |            |               | 0.0071 (3)   | 0.0112       | 0.0046 ( 1)  |               |
| 3/3/2017   |            |         |              |            | 0.0088 ( !)   |              |              | 0.0040 (0)   |               |
| 3/0/2017   |            |         |              |            | 0.0085 (J)    |              |              |              | 0.0074 ( 1)   |
| 4/20/2017  |            |         |              |            | 0.0003 (J)    | 0.0064 (1)   | 0.0106       |              | 0.0074 (J)    |
| 4/2//2017  |            |         |              |            |               | 0.0064 (J)   | 0.0100       | 0.0000 (1)   |               |
| 4/28/2017  |            |         | 0.0051       | 0.005      |               |              |              | 0.0038 (1)   |               |
| 5/8/2017   |            |         | 0.0251       | 0.065      |               |              |              |              |               |
|                      | YGWC-43 | YGWC-49 | YGWA-47 (ba) | GWA-2 (ba)  | YGWA-14S (ba) | YGWA-1D (ba)   | YGWA-11 (ba) | YGWA-21 (ba) | YGWA-301 (ba) |
|----------------------|---------|---------|--------------|-------------|---------------|----------------|--------------|--------------|---------------|
| 5/9/2017             |         | 0.0792  | (3g)         | G11112 (5g) | 10111110(09)  | 1 GITT 12 (5g) | 1017711(59)  | 1011/121(09) | · (           |
| 5/10/2017            | 0 0173  | 0.0702  |              |             |               |                |              |              |               |
| 5/26/2017            | 0.0170  |         |              |             |               |                |              | 0 0034 (J)   |               |
| 6/27/2017            |         |         |              |             |               | 0.0054 (1)     | 0 0092 (1)   | 0.0004 (0)   |               |
| 6/28/2017            |         |         |              |             |               | 0.0004 (0)     | 0.0002 (0)   | 0.003(1)     |               |
| 6/30/2017            |         |         |              |             | 0.0081 (J)    |                |              | 0.000 (0)    | 0.0076 (.1)   |
| 7/11/2017            | 0.0183  |         | 0 0233       |             | 0.0001 (0)    |                |              |              | 0.0070(0)     |
| 7/13/2017            | 0.0105  | 0.0839  | 0.0200       |             |               |                |              |              |               |
| 7/13/2017            |         | 0.0000  |              | 0.06        |               |                |              |              |               |
| 10/10/2017           |         |         | 0.0207       | 0.00        |               |                |              |              |               |
| 10/11/2017           |         | 0.078   | 0.0207       |             |               |                |              |              |               |
| 10/12/2017           | 0.0205  | 0.070   |              |             |               |                |              |              |               |
| 10/16/2017           | 0.0203  |         |              | 0.0542      |               |                |              |              |               |
| 2/10/2018            |         |         |              | 0.0533      |               |                |              |              |               |
| 2/13/2018            |         |         |              | 0.0355      | -0.01         |                | -0.01        |              | -0.01         |
| 3/27/2018            |         |         |              |             | -0.01         |                | -0.01        | -0.01        | -0.01         |
| 3/20/2018            |         |         |              |             |               | <0.01          |              | <0.01        |               |
| 4/2/2018             |         |         | 0.022        |             |               | <0.01          |              |              |               |
| 4/2/2018             | 0.024   | 0.074   | 0.022        |             |               |                |              |              |               |
| 4/4/2018<br>6/5/2018 | 0.024   | 0.074   |              |             |               | 0.0069.(1)     |              |              |               |
| 6/6/2018             |         |         |              |             |               | 0.0003 (3)     | 0.0082 (1)   |              |               |
| 6/7/2018             |         |         |              |             |               |                | 0.0002 (3)   | 0.0037(1)    |               |
| 6/8/2018             |         |         |              |             | 0.007.(1)     |                |              | 0.0037 (3)   |               |
| 6/11/2018            |         |         |              |             | 0.007 (3)     |                |              |              | 0.007 (1)     |
| 8/6/2018             |         |         |              | 0.044       |               |                |              |              | 0.007 (0)     |
| 9/19/2018            |         |         | 0.023        | 0.044       |               |                |              |              |               |
| 9/20/2018            | 0.035   | 0.074   | 0.025        |             |               |                |              |              |               |
| 10/1/2018            | 0.000   | 0.074   |              |             | 0.007 (1)     | 0.0062 (1)     | 0.0084 (1)   | 0.0038 (1)   |               |
| 10/2/2018            |         |         |              |             | 0.007 (0)     | 0.0002 (0)     | 0.0004 (0)   | 0.0000 (0)   | 0 0069 ( 1)   |
| 2/25/2019            |         |         |              | 0.045       |               |                |              |              | 0.0000 (0)    |
| 2/26/2019            |         |         |              | 0.010       | 0.0067 (J)    |                |              |              | 0.007 (J)     |
| 2/27/2019            |         |         |              |             | 0.0007 (0)    | 0 0074 (.1)    | 0.008 (J)    | 0.0035 (J)   | 0.007 (0)     |
| 3/28/2019            |         |         |              |             |               | 0.0082 (J)     | 0.0082 (J)   | 0.0000 (0)   |               |
| 3/29/2019            |         |         |              |             | 0.0066 (.1)   | 0.0002 (0)     | 0.0002 (0)   | 0.0039 (.1)  |               |
| 4/1/2019             |         |         |              |             | 0.0000 (0)    |                |              | 0.0000 (0)   | 0.0072 (J)    |
| 6/12/2019            |         |         |              | 0.063       |               |                |              |              |               |
| 8/19/2019            |         |         |              | 0.065       |               |                |              |              |               |
| 8/20/2019            |         |         | 0.024        | 0.000       |               |                |              |              |               |
| 8/21/2019            | 0.03    |         |              |             |               |                |              |              |               |
| 9/24/2019            |         |         |              |             |               | 0.0072 (J)     | 0.0086 (J)   | 0.0038 (J)   |               |
| 9/25/2019            |         |         |              |             | 0.0071 (J)    | (1)            |              |              | 0.0066 (J)    |
| 9/26/2019            |         | 0.065   |              |             |               |                |              |              | ( )           |
| 10/8/2019            |         |         | 0.025        | 0.058       |               |                |              |              |               |
| 10/9/2019            | 0.04    |         |              |             |               |                |              |              |               |
| 2/10/2020            |         |         |              |             |               | 0.0066 (J)     | 0.0091 (J)   |              |               |
| 2/11/2020            |         |         |              |             |               |                |              | 0.0036 (J)   |               |
| 2/12/2020            |         |         |              |             | 0.007 (J)     |                |              |              | 0.0073 (J)    |
| 3/17/2020            |         |         | 0.035        | 0.047       | . /           |                |              |              |               |
| 3/18/2020            |         |         |              |             | 0.0076 (J)    |                | 0.0084 (J)   |              |               |
| 3/19/2020            |         |         |              |             | . ,           | 0.0076 (J)     | • •          | 0.0036 (J)   | 0.0074 (J)    |
| 3/25/2020            | 0.033   | 0.071   |              |             |               |                |              |              |               |
| 8/26/2020            |         |         |              | 0.044       |               |                |              |              |               |

| 0/07/0000 | YGWC-43 | YGWC-49 | YGWA-47 (bg) | GWA-2 (bg) | YGWA-14S (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-2I (bg) | YGWA-30I (bg) |
|-----------|---------|---------|--------------|------------|---------------|--------------|--------------|--------------|---------------|
| 8/2//2020 |         |         | 0.027        |            |               |              |              |              |               |
| 9/22/2020 |         |         | 0.026        | 0.045      |               |              |              |              |               |
| 9/23/2020 |         |         |              |            |               | 0.0068 (J)   | 0.0079 (J)   | 0.0039 (J)   |               |
| 9/24/2020 |         | 0.066   |              |            |               |              |              |              | 0.0062 (J)    |
| 9/25/2020 | 0.046   |         |              |            | 0.0073 (J)    |              |              |              |               |
| 2/9/2021  | 0.041   | 0.071   |              |            |               |              |              |              |               |
| 2/10/2021 |         |         |              |            | 0.0078 (J)    |              |              | 0.0032 (J)   |               |
| 2/11/2021 |         |         |              |            |               |              |              |              | 0.0077 (J)    |
| 2/12/2021 |         |         |              |            |               | 0.0057 (J)   | 0.009 (J)    |              |               |
| 3/1/2021  |         |         | 0.029        |            |               |              |              |              | 0.007         |
| 3/2/2021  |         |         |              | 0.039      | 0.0076        |              |              |              |               |
| 3/3/2021  |         |         |              |            |               | 0.0068       | 0.0094       | 0.0041 (J)   |               |
| 3/4/2021  | 0.039   | 0.069   |              |            |               |              |              |              |               |

Constituent: Barium (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YGWA-3D (bg) | YGWA-3I (bg) | PZ-35 | PZ-37  | YGWC-24SA | YGWC-36A |
|------------|--------------|--------------|-------|--------|-----------|----------|
| 6/1/2016   |              | 0.0038       |       |        |           |          |
| 6/2/2016   | 0.01         |              |       |        |           |          |
| 6/8/2016   |              |              |       |        | 0.02      |          |
| 7/25/2016  |              | 0.0031 (J)   |       |        |           |          |
| 7/26/2016  | 0.0088 (J)   |              |       |        |           |          |
| 8/1/2016   |              |              |       |        | 0.02      |          |
| 9/2/2016   |              |              |       |        |           | 0.0409   |
| 9/14/2016  |              | 0.0027 (J)   |       |        |           |          |
| 9/15/2016  | 0.009 (J)    |              |       |        |           |          |
| 9/20/2016  |              |              |       |        | 0.0203    |          |
| 11/1/2016  | 0.0079 (J)   | 0.0027 (J)   |       |        |           |          |
| 11/8/2016  |              |              |       |        | 0.0191    |          |
| 11/14/2016 |              |              |       |        |           | 0.0182   |
| 1/11/2017  | 0.0075 (J)   | 0.0036 (J)   |       |        |           |          |
| 1/17/2017  |              |              |       |        | 0.0192    |          |
| 2/28/2017  |              |              |       |        |           | 0.023    |
| 3/1/2017   |              | 0.0036 (J)   |       |        |           |          |
| 3/2/2017   | 0.009 (J)    |              |       |        |           |          |
| 3/8/2017   |              |              |       |        | 0.0189    |          |
| 4/26/2017  | 0.0078 (J)   | 0.0038 (J)   |       |        |           |          |
| 5/2/2017   |              |              |       |        | 0.019     |          |
| 5/9/2017   |              |              |       |        |           | 0.0349   |
| 6/28/2017  | 0 0071 (.1)  | 0 004 (.1)   |       |        |           |          |
| 7/7/2017   | 0.0071(0)    | 0.001(0)     |       |        | 0.019     |          |
| 7/13/2017  |              |              |       |        | 0.010     | 0.0484   |
| 9/22/2017  |              |              |       |        |           | 0.0491   |
| 9/29/2017  |              |              |       |        |           | 0.0452   |
| 10/6/2017  |              |              |       |        |           |          |
| 10/12/2017 |              |              |       | 0.064  |           | 0.0500   |
| 11/21/2017 |              |              |       | 0.004  |           |          |
| 1//21/2017 |              |              |       | 0.0579 |           |          |
| 1/11/2018  |              |              |       | 0.0549 |           |          |
| 2/20/2018  | -0.01        | 10.01        |       | 0.0593 |           |          |
| 3/28/2018  | <0.01        | <0.01        |       |        |           | 0.040    |
| 3/30/2018  |              |              |       | 0.054  | 0.02      | 0.043    |
| 4/3/2018   |              |              |       | 0.051  |           |          |
| 6/7/2018   | 0.0068 (J)   |              |       |        |           |          |
| 6/8/2018   |              | 0.0034 (J)   |       |        |           |          |
| 6/12/2018  |              |              |       |        | 0.018     |          |
| 6/13/2018  |              |              |       |        |           | 0.046    |
| 6/29/2018  |              |              |       | 0.054  |           |          |
| 8/6/2018   |              |              |       | 0.048  |           |          |
| 9/24/2018  |              |              |       | 0.047  |           |          |
| 9/26/2018  |              |              |       |        | 0.019     | 0.048    |
| 10/1/2018  | 0.0065 (J)   | 0.0034 (J)   |       |        |           |          |
| 10/16/2018 |              |              | 0.063 |        |           |          |
| 2/27/2019  | 0.0059 (J)   | 0.0034 (J)   |       |        |           |          |
| 3/5/2019   |              |              |       |        | 0.019     |          |
| 3/6/2019   |              |              |       |        |           | 0.041    |
| 4/1/2019   | 0.0064 (J)   | 0.003 (J)    |       |        |           |          |
| 4/4/2019   |              |              |       |        | 0.02      | 0.042    |
| 9/25/2019  | 0.0059 (J)   | 0.005 (J)    |       |        |           |          |
| 9/26/2019  |              |              | 0.039 |        | 0.017     | 0.025    |
|            |              |              |       |        |           |          |

Constituent: Barium (mg/L) Analysis Run 5/6/2021 8:36 PM

|           | YGWA-3D (bg) | YGWA-3I (bg) | PZ-35 | PZ-37 | YGWC-24SA | YGWC-36A |
|-----------|--------------|--------------|-------|-------|-----------|----------|
| 2/11/2020 |              | 0.0031 (J)   |       |       |           |          |
| 2/12/2020 | 0.0062 (J)   |              |       |       |           |          |
| 3/19/2020 | 0.0072 (J)   | 0.0029 (J)   |       |       |           |          |
| 3/25/2020 |              |              | 0.039 |       |           | 0.025    |
| 3/26/2020 |              |              |       |       | 0.019     |          |
| 9/23/2020 | 0.0051 (J)   | 0.0039 (J)   |       |       | 0.026     |          |
| 9/24/2020 |              |              | 0.034 |       |           |          |
| 9/25/2020 |              |              |       | 0.034 |           |          |
| 10/7/2020 |              |              |       |       |           | 0.04     |
| 2/9/2021  |              |              |       | 0.036 | 0.031     |          |
| 2/10/2021 | 0.0059 (J)   | 0.0029 (J)   | 0.032 |       |           | 0.035    |
| 3/3/2021  | 0.0064       | 0.0031 (J)   |       |       | 0.025     |          |
| 3/4/2021  |              |              | 0.033 | 0.036 |           | 0.028    |

Constituent: Beryllium (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YAMW-1      | YAMW-2       | YAMW-4  | YAMW-5       | YGWA-17S (bg) | YGWA-18I (bg) | YGWA-18S (bg) | YGWA-20S (bg) | YGWA-21I (bg) |
|------------|-------------|--------------|---------|--------------|---------------|---------------|---------------|---------------|---------------|
| 6/6/2016   |             |              |         |              |               | <0.0005       | <0.0005       |               |               |
| 6/7/2016   |             |              |         |              | <0.0005       |               |               | <0.0005       | <0.0005       |
| 7/27/2016  |             |              |         |              | <0.0005       | <0.0005       | <0.0005       | <0.0005       |               |
| 7/28/2016  |             |              |         |              |               |               |               |               | <0.0005       |
| 9/16/2016  |             |              |         |              | <0.0005       |               | <0.0005       |               |               |
| 9/19/2016  |             |              |         |              |               | <0.0005       |               | <0.0005       | <0.0005       |
| 11/2/2016  |             |              |         |              |               |               |               | <0.0005       |               |
| 11/3/2016  |             |              |         |              | <0.0005       | <0.0005       | <0.0005       |               | <0.0005       |
| 1/11/2017  |             |              |         |              | <0.0005       | <0.0005       | <0.0005       |               |               |
| 1/13/2017  |             |              |         |              |               |               |               | <0.0005       | <0.0005       |
| 3/1/2017   |             |              |         |              |               | <0.0005       | <0.0005       |               |               |
| 3/2/2017   |             |              |         |              | 8E-05 (J)     |               |               |               |               |
| 3/6/2017   |             |              |         |              |               |               |               | <0.0005       | <0.0005       |
| 4/26/2017  |             |              |         |              |               | <0.0005       | <0.0005       | <0.0005       | <0.0005       |
| 5/2/2017   |             |              |         |              | <0.0005       |               |               |               |               |
| 6/28/2017  |             |              |         |              |               | <0.0005       | <0.0005       |               |               |
| 6/29/2017  |             |              |         |              | <0.0005       |               |               | <0.0005       | <0.0005       |
| 3/28/2018  |             |              |         |              | <0.0005       | <0.0005       | <0.0005       |               |               |
| 3/29/2018  |             |              |         |              |               |               |               | <0.0005       | <0.0005       |
| 6/5/2018   |             |              |         |              |               |               |               |               | <0.0005       |
| 6/6/2018   |             |              |         |              |               |               |               | 8E-05 (J)     |               |
| 6/7/2018   |             |              |         |              |               | <0.0005       |               |               |               |
| 6/11/2018  |             |              |         |              | 9E-05 (J)     |               | 5.7E-05 (J)   |               |               |
| 9/25/2018  |             |              |         |              | 8.9E-05 (J)   | <0.0005       | 8.2E-05 (J)   | 6.1E-05 (J)   | <0.0005       |
| 10/16/2018 | <0.0005     |              |         |              |               |               |               |               |               |
| 3/5/2019   |             |              |         |              | 9.1E-05 (J)   |               | 7.9E-05 (J)   | 0.00011 (J)   | <0.0005       |
| 3/6/2019   |             |              |         |              |               | <0.0005       |               |               |               |
| 4/2/2019   |             |              |         |              | 9E-05 (J)     |               |               |               | <0.0005       |
| 4/3/2019   |             |              |         |              |               | <0.0005       | 7.5E-05 (J)   | 6.4E-05 (J)   |               |
| 9/24/2019  |             |              |         |              |               |               |               |               | <0.0005       |
| 9/25/2019  |             |              |         |              | 8.1E-05 (J)   |               |               | <0.0005       |               |
| 9/26/2019  | <0.0005     |              |         |              |               | <0.0005       | 8.4E-05 (J)   |               |               |
| 1/15/2020  |             |              |         | 0.00017 (J)  |               |               |               |               |               |
| 2/11/2020  |             |              |         |              | 7 8E-05 (J)   | <0.0005       | 7 6E-05 (J)   |               |               |
| 2/12/2020  |             |              |         |              |               |               |               | 7.8E-05 (J)   | <0.0005       |
| 3/24/2020  |             |              |         |              | 8E-05 (J)     | <0.0005       | 8 9E-05 (J)   | 7.6E-05 (J)   | <0.0005       |
| 3/25/2020  | 0.00037(1)  |              |         |              | 02 00 (0)     | 0.0000        | 0.02 00 (0)   | 7.02 00 (0)   | 0.0000        |
| 9/23/2020  | 0.00007 (0) | <0.0005      | <0.0005 |              | 8 1E-05 (J)   | <0.0005       | 8 8E-05 (J)   |               |               |
| 9/24/2020  | 5 8E-05 (J) | 0.0000       | 0.0000  | 8 6E-05 (J)  |               | 0.0000        |               | 8 3E-05 (J)   | <0.0005       |
| 2/9/2021   | <0.0005     | 5 1E-05 ( I) | <0.0005 |              |               | <0.0005       | 9 8E-05 ( I)  | 6 8E-05 (J)   | <0.0005       |
| 2/3/2021   | <0.0003     | <0.0005      | <0.0005 | 0.00013 (3)  |               | <0.0005       |               | 6 8E 05 (J)   | -0.0003       |
| 3/3/2021   | ~0.0003     | ~0.0003      | ~0.0005 | 0.00012 ( 1) | 9.9⊑-00 (J)   | ~0.0005       | 0.00011 (J)   | 0.0E-00 (J)   | <0.0005       |
| J/4/2U2 I  |             |              |         | 0.00013 (J)  |               |               |               |               | ~0.0005       |

Constituent: Beryllium (mg/L) Analysis Run 5/6/2021 8:36 PM

| 6/2/2016   | YGWA-39 (bg) | YGWA-40 (bg) | YGWA-4I (bg) | YGWA-5D (bg) | YGWA-5I (bg) | YGWC-23S     | YGWC-38 | YGWC-41 | YGWC-42    |
|------------|--------------|--------------|--------------|--------------|--------------|--------------|---------|---------|------------|
| 6/2/2016   |              |              | <0.0005      | <0.0005      | <0.0005      | <0.000F      |         |         |            |
| 7/2010     |              |              | <0.000F      | <0.000F      | <0.000F      | <0.0005      |         |         |            |
| 7/20/2010  |              |              | <0.0005      | <0.0005      | <0.0005      | -0.0005      |         |         |            |
| 7/28/2016  |              |              |              |              |              | <0.0005      |         |         | 05.05 (1)  |
| 8/30/2016  |              |              | 0.0005       | .0.0005      |              |              |         |         | 9E-05 (J)  |
| 9/14/2016  |              |              | <0.0005      | <0.0005      | <0.0005      |              |         |         |            |
| 9/20/2016  |              |              |              |              |              | 0.0001 (J)   |         |         |            |
| 11/2/2016  |              |              | <0.0005      | <0.0005      |              |              |         |         |            |
| 11/4/2016  |              |              |              |              | <0.0005      |              |         |         |            |
| 11/8/2016  |              |              |              |              |              | <0.0005      |         |         |            |
| 11/16/2016 |              |              |              |              |              |              |         |         | <0.0005    |
| 1/12/2017  |              |              |              | <0.0005      | <0.0005      |              |         |         |            |
| 1/13/2017  |              |              | <0.0005      |              |              |              |         |         |            |
| 1/16/2017  |              |              |              |              |              | 0.0001 (J)   |         |         |            |
| 2/27/2017  |              |              |              |              |              |              |         |         | <0.0005    |
| 3/6/2017   |              |              | <0.0005      |              |              |              |         |         |            |
| 3/7/2017   |              |              |              | <0.0005      | <0.0005      |              |         |         |            |
| 3/9/2017   |              |              |              |              |              | 0.0001 (J)   |         |         |            |
| 5/1/2017   |              |              | <0.0005      | <0.0005      |              |              |         |         |            |
| 5/2/2017   |              |              |              |              | <0.0005      | 9E-05 (J)    |         |         |            |
| 5/10/2017  |              |              |              |              |              |              |         |         | 9E-05 (J)  |
| 6/27/2017  |              |              |              | <0.0005      | <0.0005      |              |         |         |            |
| 6/29/2017  |              |              | <0.0005      |              |              |              |         |         |            |
| 7/10/2017  |              |              |              |              |              | <0.0005      |         |         |            |
| 7/11/2017  |              |              |              |              |              |              |         |         | 0.0001 (J) |
| 10/11/2017 | <0.0005      |              |              |              |              |              |         |         |            |
| 10/12/2017 |              | 0.0002 (J)   |              |              |              |              | 0.0057  | 0.0036  | <0.0005    |
| 11/20/2017 | <0.0005      | 0.0003 (J)   |              |              |              |              | 0.0053  |         |            |
| 11/21/2017 |              |              |              |              |              |              |         | 0.0036  |            |
| 1/10/2018  |              | 0.0003 (J)   |              |              |              |              |         |         |            |
| 1/11/2018  | <0.0005      |              |              |              |              |              |         | 0.0037  |            |
| 1/12/2018  |              |              |              |              |              |              | 0.0053  |         |            |
| 2/19/2018  |              | <0.0005      |              |              |              |              |         | 0.0039  |            |
| 2/20/2018  | <0.0005      |              |              |              |              |              | 0.0053  |         |            |
| 3/29/2018  |              |              | <0.0005      | <0.0005      | <0.0005      |              |         |         |            |
| 3/30/2018  |              |              |              |              |              | <0.0005      |         |         |            |
| 4/3/2018   | <0.0005      | <0.0005      |              |              |              |              | 0.0056  | 0.0037  |            |
| 4/4/2018   |              |              |              |              |              |              |         |         | <0.0005    |
| 6/6/2018   |              |              |              | <0.0005      |              |              |         |         |            |
| 6/7/2018   |              |              | <0.0005      |              | <0.0005      |              |         |         |            |
| 6/12/2018  |              |              |              |              |              | 8.1E-05 (J)  |         |         |            |
| 6/27/2018  |              |              |              |              |              |              |         | 0.0038  |            |
| 6/28/2018  | <0.0005      | 0.00029 (J)  |              |              |              |              | 0.0059  |         |            |
| 8/7/2018   | <0.0005      | 0.00024 (J)  |              |              |              |              | 0.0058  | 0.0037  |            |
| 9/20/2018  |              |              |              |              |              |              |         |         | <0.0005    |
| 9/24/2018  | <0.0005      | 0.00019 (J)  |              |              |              |              | 0.0051  | 0.0032  |            |
| 9/26/2018  |              |              | <0.0005      | <0.0005      | <0.0005      |              |         |         |            |
| 9/27/2018  |              |              | 0.0000       | 0.0000       | 0.0000       | 9E-05 (J)    |         |         |            |
| 3/4/2019   |              |              | <0.0005      | <0.0005      | <0.0005      | 32 00 (0)    |         |         |            |
| 3/6/2019   |              |              | -0.0000      | -0.0000      | -0.0000      | 6 6E-05 ( I) |         |         |            |
| 4/3/2010   |              |              | <0.0005      | <0.0005      | <0.0005      | 0.02-00 (0)  |         |         |            |
| 1/1/2010   |              |              | -0.0000      | -0.0000      | -0.0000      | 7 25-05 (1)  |         |         |            |
| 41412013   |              |              |              |              |              | 7.∠∟-00 (J)  |         |         |            |

#### Constituent: Beryllium (mg/L) Analysis Run 5/6/2021 8:36 PM

|           | YGWA-39 (bg) | YGWA-40 (bg) | YGWA-4I (bg) | YGWA-5D (bg) | YGWA-5I (bg) | YGWC-23S    | YGWC-38    | YGWC-41    | YGWC-42     |
|-----------|--------------|--------------|--------------|--------------|--------------|-------------|------------|------------|-------------|
| 8/21/2019 | <0.0005      | 0.0002 (J)   |              |              |              |             |            |            |             |
| 8/22/2019 |              |              |              |              |              |             | 0.0049     | 0.0026 (J) | <0.0005     |
| 9/24/2019 |              |              |              | <0.0005      | <0.0005      |             |            |            |             |
| 9/25/2019 |              |              | <0.0005      |              |              |             |            |            |             |
| 9/27/2019 |              |              |              |              |              | 7.7E-05 (J) |            |            |             |
| 10/9/2019 | <0.0005      | 0.0002 (J)   |              |              |              |             | 0.0046     | 0.0026 (J) | <0.0005     |
| 2/12/2020 | <0.0005      | 0.00018 (J)  | <0.0005      | <0.0005      | <0.0005      |             |            |            |             |
| 3/24/2020 |              | 0.00022 (J)  |              | <0.0005      | <0.0005      |             |            |            |             |
| 3/25/2020 | <0.0005      |              | <0.0005      |              |              |             | 0.0038     | 0.0026 (J) | <0.0005     |
| 3/26/2020 |              |              |              |              |              | 9E-05 (J)   |            |            |             |
| 9/22/2020 |              |              | <0.0005      | <0.0005      | <0.0005      |             |            |            |             |
| 9/24/2020 | <0.0005      | 0.0002 (J)   |              |              |              | 0.00015 (J) |            |            | 6.7E-05 (J) |
| 9/25/2020 |              |              |              |              |              |             | 0.0033     | 0.002 (J)  |             |
| 2/8/2021  |              |              |              | <0.0005      | <0.0005      |             |            |            |             |
| 2/9/2021  |              |              | <0.0005      |              |              | 0.00015 (J) | 0.0029 (J) |            |             |
| 2/10/2021 | 5.1E-05 (J)  | 0.00021 (J)  |              |              |              |             |            | 0.0015 (J) | 5.7E-05 (J) |
| 3/2/2021  |              |              |              | <0.0005      | <0.0005      |             |            |            |             |
| 3/3/2021  |              |              | <0.0005      |              |              |             |            |            |             |
| 3/4/2021  | <0.0005      | 0.00021 (J)  |              |              |              | 0.00013 (J) | 0.0029     | 0.0015     | <0.0005     |
|           |              |              |              |              |              |             |            |            |             |

Constituent: Beryllium (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YGWC-43 | YGWC-49    | YGWA-47 (bg) | GWA-2 (bg) | YGWA-14S (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-2I (bg) | YGWA-30I (bg) |
|------------|---------|------------|--------------|------------|---------------|--------------|--------------|--------------|---------------|
| 5/1/2007   |         |            |              | <0.0005    |               |              |              |              |               |
| 9/11/2007  |         |            |              | <0.0005    |               |              |              |              |               |
| 3/20/2008  |         |            |              | <0.0005    |               |              |              |              |               |
| 8/27/2008  |         |            |              | <0.0005    |               |              |              |              |               |
| 3/3/2009   |         |            |              | <0.0005    |               |              |              |              |               |
| 11/18/2009 |         |            |              | <0.0005    |               |              |              |              |               |
| 3/3/2010   |         |            |              | <0.0005    |               |              |              |              |               |
| 9/8/2010   |         |            |              | <0.0005    |               |              |              |              |               |
| 3/10/2011  |         |            |              | <0.0005    |               |              |              |              |               |
| 9/8/2011   |         |            |              | <0.0005    |               |              |              |              |               |
| 3/5/2012   |         |            |              | <0.0005    |               |              |              |              |               |
| 9/10/2012  |         |            |              | <0.0005    |               |              |              |              |               |
| 2/6/2013   |         |            |              | <0.0005    |               |              |              |              |               |
| 8/12/2013  |         |            |              | <0.0005    |               |              |              |              |               |
| 2/5/2014   |         |            |              | <0.0005    |               |              |              |              |               |
| 8/5/2014   |         |            |              | <0.0005    |               |              |              |              |               |
| 2/4/2015   |         |            |              | <0.0005    |               |              |              |              |               |
| 2/4/2015   |         |            |              | <0.0005    |               |              |              |              |               |
| 8/3/2015   |         |            |              | <0.0005    |               |              |              |              |               |
| 2/16/2016  |         |            |              | <0.0005    |               | -0.0005      | -0.0005      |              |               |
| 6/1/2016   |         |            |              |            | 0.0005        | <0.0005      | <0.0005      |              |               |
| 6/2/2016   |         |            |              |            | <0.0005       |              |              |              | <0.0005       |
| //25/2016  |         |            |              |            |               |              | <0.0005      |              | <0.0005       |
| 7/26/2016  |         |            |              |            | 0.0002 (J)    | <0.0005      |              |              |               |
| 8/30/2016  |         |            | <0.0005      |            |               |              |              |              |               |
| 8/31/2016  | <0.0005 |            |              | <0.0005    |               |              |              |              |               |
| 9/1/2016   |         | 0.0001 (J) |              |            |               |              |              |              |               |
| 9/13/2016  |         |            |              |            |               | <0.0005      | <0.0005      |              |               |
| 9/14/2016  |         |            |              |            |               |              |              | <0.0005      |               |
| 9/15/2016  |         |            |              |            | 0.0002 (J)    |              |              |              |               |
| 9/19/2016  |         |            |              |            |               |              |              |              | <0.0005       |
| 11/1/2016  |         |            |              |            |               | <0.0005      |              |              | <0.0005       |
| 11/2/2016  |         |            |              |            | 0.0002 (J)    |              |              |              |               |
| 11/4/2016  |         |            |              |            |               |              | <0.0005      | <0.0005      |               |
| 11/14/2016 |         |            | <0.0005      |            |               |              |              |              |               |
| 11/15/2016 |         | 0.0001 (J) |              |            |               |              |              |              |               |
| 11/16/2016 | <0.0005 |            |              |            |               |              |              |              |               |
| 11/28/2016 |         |            |              | <0.0005    |               |              |              |              |               |
| 12/15/2016 |         |            |              |            |               |              |              | <0.0005      |               |
| 1/10/2017  |         |            |              |            | 0.0002 (J)    |              |              |              |               |
| 1/11/2017  |         |            |              |            |               | <0.0005      |              |              |               |
| 1/16/2017  |         |            |              |            |               |              | <0.0005      | <0.0005      | <0.0005       |
| 2/21/2017  |         |            |              |            |               |              |              |              | <0.0005       |
| 2/22/2017  |         |            |              | <0.0005    |               |              |              |              |               |
| 2/24/2017  | <0.0005 |            | <0.0005      |            |               |              |              |              |               |
| 2/27/2017  |         | 0.0001 (J) |              |            |               |              |              |              |               |
| 3/2/2017   |         |            |              |            |               | <0.0005      | <0.0005      |              |               |
| 3/3/2017   |         |            |              |            |               |              |              | <0.0005      |               |
| 3/8/2017   |         |            |              |            | 0.0002 (J)    |              |              |              |               |
| 4/26/2017  |         |            |              |            | 0.0002 (J)    |              |              |              | <0.0005       |
| 4/27/2017  |         |            |              |            |               | <0.0005      | <0.0005      |              |               |
| 4/28/2017  |         |            |              |            |               |              |              | <0.0005      |               |
| 5/8/2017   |         |            | 7E-05 (J)    | <0.0005    |               |              |              |              |               |
|            |         |            |              |            |               |              |              |              |               |

#### Constituent: Beryllium (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | XGWC 43     | XGWC 49     | XGW(A 47 (ba) | GW(A 2 (bg) | VGW(A 148 (ba) |              |              |              |               |
|------------|-------------|-------------|---------------|-------------|----------------|--------------|--------------|--------------|---------------|
| 5/0/2017   | 1600-45     | 0.0001 (1)  | 1GWA-47 (bg)  | GWA-2 (bg)  | 1 GWA-143 (bg) | IGWA-ID (bg) | TGWA-TI (bg) | 1GWA-21 (bg) | TGWA-SUI (bg) |
| 5/9/2017   | <0.0005     | 0.0001 (3)  |               |             |                |              |              |              |               |
| 5/26/2017  | <0.0003     |             |               |             |                |              |              | <0.0005      |               |
| 5/20/2017  |             |             |               |             |                | <0.000E      | <0.000E      | <0.0003      |               |
| 6/27/2017  |             |             |               |             |                | <0.0005      | <0.0005      | <0.000F      |               |
| 6/28/2017  |             |             |               |             | 0.0002 ( 1)    |              |              | <0.0005      | <0.000F       |
| 0/30/2017  | -0.0005     |             | -0.0005       |             | 0.0002 (J)     |              |              |              | <0.0005       |
| 7/11/2017  | <0.0005     | 0.0001 (1)  | <0.0005       |             |                |              |              |              |               |
| 7/13/2017  |             | 0.0001 (J)  |               | 0.0005      |                |              |              |              |               |
| //1//2017  |             |             |               | <0.0005     |                |              |              |              |               |
| 10/10/2017 |             | 0.0001 (1)  | <0.0005       |             |                |              |              |              |               |
| 10/11/2017 |             | 0.0001 (J)  |               |             |                |              |              |              |               |
| 10/12/2017 | 0.0001 (J)  |             |               | 0.0005      |                |              |              |              |               |
| 10/16/2017 |             |             |               | <0.0005     |                |              |              |              |               |
| 2/19/2018  |             |             |               | <0.0005     |                |              |              |              |               |
| 3/27/2018  |             |             |               |             | <0.0005        |              | <0.0005      |              | <0.0005       |
| 3/28/2018  |             |             |               |             |                | .0.0005      |              | <0.0005      |               |
| 3/29/2018  |             |             |               |             |                | <0.0005      |              |              |               |
| 4/2/2018   |             |             | <0.0005       |             |                |              |              |              |               |
| 4/4/2018   | <0.0005     | <0.0005     |               |             |                |              |              |              |               |
| 8/6/2018   |             |             |               | <0.0005     |                |              |              |              |               |
| 9/19/2018  |             |             | 5.7E-05 (J)   |             |                |              |              |              |               |
| 9/20/2018  | 0.00029 (J) | 0.00011 (J) |               |             |                |              |              |              |               |
| 2/25/2019  |             |             |               | <0.0005     |                |              |              |              |               |
| 2/26/2019  |             |             |               |             | 0.00016 (J)    |              |              |              | 7.2E-05 (J)   |
| 2/27/2019  |             |             |               |             |                | <0.0005      | <0.0005      | <0.0005      |               |
| 3/28/2019  |             |             |               |             |                | <0.0005      | <0.0005      |              |               |
| 3/29/2019  |             |             |               |             | 0.00017(J)     |              |              | <0.0005      |               |
| 4/1/2019   |             |             |               |             |                |              |              |              | <0.0005       |
| 6/12/2019  |             |             |               | <0.0005     |                |              |              |              |               |
| 8/19/2019  |             |             |               | <0.0005     |                |              |              |              |               |
| 8/20/2019  | ( N         |             | <0.0005       |             |                |              |              |              |               |
| 8/21/2019  | 0.0003 (J)  |             |               |             |                |              |              |              |               |
| 9/24/2019  |             |             |               |             |                | <0.0005      | <0.0005      | <0.0005      |               |
| 9/25/2019  |             |             |               |             | 0.00018 (J)    |              |              |              | <0.0005       |
| 9/26/2019  |             | 0.00013 (J) |               |             |                |              |              |              |               |
| 10/8/2019  |             |             |               | <0.0005     |                |              |              |              |               |
| 10/9/2019  | 0.00034 (J) |             |               |             |                | .0.0005      |              |              |               |
| 2/10/2020  |             |             |               |             |                | <0.0005      | <0.0005      | 0.0005       |               |
| 2/11/2020  |             |             |               |             | 0.00010 ( ))   |              |              | <0.0005      |               |
| 2/12/2020  |             |             |               |             | 0.00019 (J)    |              |              |              | <0.0005       |
| 3/1//2020  |             |             |               | <0.0005     | 0.00001 ( ))   |              | 0.0005       |              |               |
| 3/18/2020  |             |             |               |             | 0.00021 (J)    |              | <0.0005      |              |               |
| 3/19/2020  |             |             |               |             |                | <0.0005      |              | <0.0005      | <0.0005       |
| 3/25/2020  | 0.00034 (J) | 0.00013 (J) |               |             |                |              |              |              |               |
| 8/26/2020  |             |             | /             | <0.0005     |                |              |              |              |               |
| 8/27/2020  |             |             | 4.7E-05 (J)   |             |                |              |              |              |               |
| 9/22/2020  |             |             | <0.0005       | <0.0005     |                |              |              |              |               |
| 9/23/2020  |             | 0.000101    |               |             |                | <0.0005      | <0.0005      | <0.0005      |               |
| 9/24/2020  |             | 0.00013 (J) |               |             |                |              |              |              | <0.0005       |
| 9/25/2020  | 0.00054 (J) | 0.000101    |               |             | 0.00018 (J)    |              |              |              |               |
| 2/9/2021   | 0.00053 (J) | 0.00013 (J) |               |             | 0.00046.(**    |              |              | 0.0005       |               |
| 2/10/2021  |             |             |               |             | 0.00019 (J)    |              |              | <0.0005      |               |

|           | YGWC-43 | YGWC-49    | YGWA-47 (bg) | GWA-2 (bg) | YGWA-14S (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-2I (bg) | YGWA-30I (bg) |
|-----------|---------|------------|--------------|------------|---------------|--------------|--------------|--------------|---------------|
| 2/11/2021 |         |            |              |            |               |              |              |              | 4.7E-05 (J)   |
| 2/12/2021 |         |            |              |            |               | <0.0005      | <0.0005      |              |               |
| 3/1/2021  |         |            | 5.5E-05 (J)  |            |               |              |              |              | <0.0005       |
| 3/2/2021  |         |            |              | <0.0005    | 0.00018 (J)   |              |              |              |               |
| 3/3/2021  |         |            |              |            |               | <0.0005      | <0.0005      | <0.0005      |               |
| 3/4/2021  | 0.00056 | 0.0001 (J) |              |            |               |              |              |              |               |

Constituent: Beryllium (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YGWA-3D (bg) | YGWA-3I (bg) | PZ-35       | PZ-37       | YGWC-24SA   | YGWC-36A    |
|------------|--------------|--------------|-------------|-------------|-------------|-------------|
| 6/1/2016   |              | <0.0005      |             |             |             |             |
| 6/2/2016   | <0.0005      |              |             |             |             |             |
| 6/8/2016   |              |              |             |             | <0.0005     |             |
| 7/25/2016  |              | <0.0005      |             |             |             |             |
| 7/26/2016  | <0.0005      |              |             |             |             |             |
| 8/1/2016   |              |              |             |             | 0.0001 (J)  |             |
| 9/2/2016   |              |              |             |             |             | 0.0003 (J)  |
| 9/14/2016  |              | <0.0005      |             |             |             |             |
| 9/15/2016  | <0.0005      |              |             |             |             |             |
| 9/20/2016  |              |              |             |             | 0.0001 (J)  |             |
| 11/1/2016  | <0.0005      | <0.0005      |             |             |             |             |
| 11/8/2016  |              |              |             |             | <0.0005     |             |
| 11/14/2016 |              |              |             |             |             | 9E-05 (J)   |
| 1/11/2017  | <0.0005      | <0.0005      |             |             |             |             |
| 1/17/2017  |              |              |             |             | 0.0001 (J)  |             |
| 2/28/2017  |              |              |             |             |             | 0.0001 (J)  |
| 3/1/2017   |              | <0.0005      |             |             |             |             |
| 3/2/2017   | <0.0005      |              |             |             |             |             |
| 3/8/2017   |              |              |             |             | 0.0001 (J)  |             |
| 4/26/2017  | <0.0005      | <0.0005      |             |             |             |             |
| 5/2/2017   |              |              |             |             | 0.0001 (J)  |             |
| 5/9/2017   |              |              |             |             |             | 0.0002 (J)  |
| 6/28/2017  | <0.0005      | <0.0005      |             |             |             |             |
| 7/7/2017   |              |              |             |             | 0.0001 (J)  |             |
| 7/13/2017  |              |              |             |             |             | 0.0003 (J)  |
| 9/22/2017  |              |              |             |             |             | 0.0003 (J)  |
| 9/29/2017  |              |              |             |             |             | 0.0003 (J)  |
| 10/6/2017  |              |              |             |             |             | 0.0003 (J)  |
| 10/12/2017 |              |              |             | 0.0004 (J)  |             |             |
| 11/21/2017 |              |              |             | 0.0004 (J)  |             |             |
| 1/11/2018  |              |              |             | 0.0003 (J)  |             |             |
| 2/20/2018  |              |              |             | <0.0005     |             |             |
| 3/28/2018  | <0.0005      | <0.0005      |             |             |             |             |
| 3/30/2018  |              |              |             |             | <0.0005     | <0.0005     |
| 4/3/2018   |              |              |             | <0.0005     |             |             |
| 6/12/2018  |              |              |             |             | 0.00012 (J) |             |
| 6/13/2018  |              |              |             |             |             | 0.00035 (J) |
| 6/29/2018  |              |              |             | 0.00033 (J) |             |             |
| 8/6/2018   |              |              |             | 0.0002 (J)  |             |             |
| 8/30/2018  |              |              | 0.00052 (J) |             |             |             |
| 9/24/2018  |              |              |             | 0.00029 (J) |             |             |
| 9/26/2018  |              |              |             |             | 0.00014 (J) | 0.00032 (J) |
| 10/16/2018 |              |              | 0.00036 (J) |             |             |             |
| 2/27/2019  | <0.0005      | <0.0005      |             |             |             |             |
| 3/5/2019   |              |              |             |             | 0.00016 (J) |             |
| 3/6/2019   |              |              |             |             |             | 0.00029 (J) |
| 4/1/2019   | <0.0005      | <0.0005      |             |             |             |             |
| 4/4/2019   |              |              |             |             | 0.00015 (J) | 0.00033 (J) |
| 9/25/2019  | <0.0005      | <0.0005      |             |             |             |             |
| 9/26/2019  |              |              | <0.0005     |             | 0.00014 (J) | 0.00029 (J) |
| 2/11/2020  |              | <0.0005      |             |             |             |             |
| 2/12/2020  | <0.0005      |              |             |             |             |             |

Constituent: Beryllium (mg/L) Analysis Run 5/6/2021 8:36 PM

|           | YGWA-3D (bg) | YGWA-3I (bg) | PZ-35       | PZ-37       | YGWC-24SA   | YGWC-36A    |
|-----------|--------------|--------------|-------------|-------------|-------------|-------------|
| 3/19/2020 | <0.0005      | <0.0005      |             |             |             |             |
| 3/25/2020 |              |              | <0.0005     |             |             | 0.00022 (J) |
| 3/26/2020 |              |              |             |             | 0.00016 (J) |             |
| 9/23/2020 | <0.0005      | 5.9E-05 (J)  |             |             | 6.1E-05 (J) |             |
| 9/24/2020 |              |              | 0.00033 (J) |             |             |             |
| 9/25/2020 |              |              |             | 0.00031 (J) |             |             |
| 10/7/2020 |              |              |             |             |             | 0.00014 (J) |
| 2/9/2021  |              |              |             | 0.00029 (J) | 0.00013 (J) |             |
| 2/10/2021 | <0.0005      | <0.0005      | 0.00025 (J) |             |             | 9.9E-05 (J) |
| 3/3/2021  | <0.0005      | <0.0005      |             |             | 9.9E-05 (J) |             |
| 3/4/2021  |              |              | 0.00025 (J) | 0.00017 (J) |             | 0.00016 (J) |
|           |              |              |             |             |             |             |

Constituent: Boron (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YAMW-1     | YAMW-2     | YAMW-4 | YAMW-5 | YGWA-17S (bg) | YGWA-18I (bg) | YGWA-18S (bg) | YGWA-20S (bg) | YGWA-21I (bg) |
|------------|------------|------------|--------|--------|---------------|---------------|---------------|---------------|---------------|
| 6/6/2016   |            |            |        |        |               | <0.04         | <0.04         |               |               |
| 6/7/2016   |            |            |        |        | <0.04         |               |               | <0.04         | <0.04         |
| 7/27/2016  |            |            |        |        | 0.008 (J)     | <0.04         | 0.0059 (J)    | <0.04         |               |
| 7/28/2016  |            |            |        |        |               |               |               |               | <0.04         |
| 9/16/2016  |            |            |        |        | 0.0086 (J)    |               | 0.0079 (J)    |               |               |
| 9/19/2016  |            |            |        |        |               | <0.04         |               | <0.04         | <0.04         |
| 11/2/2016  |            |            |        |        |               |               |               | <0.04         |               |
| 11/3/2016  |            |            |        |        | 0.0077 (J)    | <0.04         | 0.0082 (J)    |               | <0.04         |
| 1/11/2017  |            |            |        |        | 0.0092 (J)    | <0.04         | 0.0096 (J)    |               |               |
| 1/13/2017  |            |            |        |        |               |               |               | <0.04         | <0.04         |
| 3/1/2017   |            |            |        |        |               | <0.04         | <0.04         |               |               |
| 3/2/2017   |            |            |        |        | 0.0095 (J)    |               |               |               |               |
| 3/6/2017   |            |            |        |        |               |               |               | <0.04         | <0.04         |
| 4/26/2017  |            |            |        |        |               | <0.04         | 0.0091 (J)    | <0.04         | <0.04         |
| 5/2/2017   |            |            |        |        | <0.04         |               |               |               |               |
| 6/28/2017  |            |            |        |        |               | <0.04         | 0.0079 (J)    |               |               |
| 6/29/2017  |            |            |        |        | 0.0074 (J)    |               |               | <0.04         | <0.04         |
| 10/3/2017  |            |            |        |        |               |               |               |               | <0.04         |
| 10/4/2017  |            |            |        |        | 0.0077 (J)    |               | 0.009 (J)     | <0.04         |               |
| 10/5/2017  |            |            |        |        |               | <0.04         |               |               |               |
| 6/5/2018   |            |            |        |        |               |               |               |               | 0.0092 (J)    |
| 6/6/2018   |            |            |        |        |               |               |               | 0.0049 (J)    |               |
| 6/7/2018   |            |            |        |        |               | <0.04         |               |               |               |
| 6/11/2018  |            |            |        |        | 0.01 (J)      |               | 0.0093 (J)    |               |               |
| 9/25/2018  |            |            |        |        | 0.0096 (J)    | 0.0046 (J)    | 0.007 (J)     | <0.04         | 0.0054 (J)    |
| 10/16/2018 | 0.2        |            |        |        |               |               |               |               |               |
| 4/2/2019   |            |            |        |        | 0.0066 (J)    |               |               |               | 0.011 (J)     |
| 4/3/2019   |            |            |        |        |               | <0.04         | 0.0053 (J)    | <0.04         |               |
| 9/24/2019  |            |            |        |        |               |               |               |               | 0.018 (J)     |
| 9/25/2019  |            |            |        |        | 0.0081 (J)    |               |               | <0.04         |               |
| 9/26/2019  | 0.092      |            |        |        |               | 0.0062 (J)    | 0.0072 (J)    |               |               |
| 1/15/2020  |            | 0.031 (J)  |        | 8.7    |               |               |               |               |               |
| 1/16/2020  |            |            | 1.9    |        |               |               |               |               |               |
| 2/11/2020  |            |            |        | 78     |               |               |               |               |               |
| 3/24/2020  |            |            |        |        | 0.0092 (J)    | 0.0054 (J)    | 0.01 (J)      | <0.04         | 0.016 (J)     |
| 3/25/2020  | 0.018 (.1) |            |        |        |               |               |               |               |               |
| 9/23/2020  |            | 0.026 (.1) | 25     |        | 0 0066 (.1)   | 0 021 (.1)    | 0.006 (.1)    |               |               |
| 9/24/2020  | 0 076 (J)  | 0.020 (0)  | 2.0    | 87     | 0.0000 (0)    | 0.021(0)      | 0.000 (0)     | 0 0094 (.1)   | 0.013 (J)     |
| 3/3/2021   | 0.039(1)   | 0.032 (.1) | 0.81   |        | 0.01.(.1)     | <0.04         | 0 0094 (1)    | <0.04         |               |
| 3/4/2021   | 0.000 (0)  | 0.002 (0)  | 0.01   | 6.1    | 0.01 (0)      | -0.04         | 0.0004 (0)    | -0.04         | 0.0079 ( 1)   |
| 3/4/2UZ I  |            |            |        | 0.1    |               |               |               |               | 0.0019 (1)    |

Constituent: Boron (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YGWA-39 (bg) | YGWA-40 (bg) | YGWA-4I (bg) | YGWA-5D (bg) | YGWA-5I (bg) | YGWC-23S | YGWC-38 | YGWC-41 | YGWC-42 |
|------------|--------------|--------------|--------------|--------------|--------------|----------|---------|---------|---------|
| 6/2/2016   |              |              | <0.04        | <0.04        | <0.04        |          |         |         |         |
| 6/7/2016   |              |              |              |              |              | 0.99     |         |         |         |
| 7/26/2016  |              |              | 0.0047 (J)   | 0.0052 (J)   | <0.04        |          |         |         |         |
| 7/28/2016  |              |              |              |              |              | 1.09     |         |         |         |
| 8/30/2016  |              |              |              |              |              |          |         |         | 24.7    |
| 9/14/2016  |              |              | <0.04        | 0.0071 (J)   | 0.01 (J)     |          |         |         |         |
| 9/20/2016  |              |              |              |              |              | 1.35     |         |         |         |
| 11/2/2016  |              |              | <0.04        | <0.04        |              |          |         |         |         |
| 11/4/2016  |              |              |              |              | <0.04        |          |         |         |         |
| 11/8/2016  |              |              |              |              |              | 1.5      |         |         |         |
| 11/16/2016 |              |              |              |              |              |          |         |         | 16.4    |
| 1/12/2017  |              |              |              | 0.0076 (J)   | <0.04        |          |         |         |         |
| 1/13/2017  |              |              | <0.04        |              |              |          |         |         |         |
| 1/16/2017  |              |              |              |              |              | 1.67     |         |         |         |
| 2/27/2017  |              |              |              |              |              |          |         |         | 17.9    |
| 3/6/2017   |              |              | <0.04        |              |              |          |         |         |         |
| 3/7/2017   |              |              |              | 0.0089 (J)   | <0.04        |          |         |         |         |
| 3/9/2017   |              |              |              |              |              | 1.44     |         |         |         |
| 5/1/2017   |              |              | <0.04        | 0.0061 (J)   |              |          |         |         |         |
| 5/2/2017   |              |              |              |              | <0.04        | 1.2      |         |         |         |
| 5/10/2017  |              |              |              |              |              |          |         |         | 20.4    |
| 6/27/2017  |              |              |              | 0.0079 (J)   | <0.04        |          |         |         |         |
| 6/29/2017  |              |              | <0.04        |              |              |          |         |         |         |
| 7/10/2017  |              |              |              |              |              | 1.12     |         |         |         |
| 7/11/2017  |              |              |              |              |              |          |         |         | 25.2    |
| 10/3/2017  |              |              |              | 0.0094 (J)   | <0.04        |          |         |         |         |
| 10/5/2017  |              |              | <0.04        |              |              |          |         |         |         |
| 10/11/2017 | 0.0135 (J)   |              |              |              |              | 1.09     |         |         |         |
| 10/12/2017 |              | 0.0401       |              |              |              |          | 19.3    | 12      | 20      |
| 11/20/2017 | 0.0251 (J)   | 0.156        |              |              |              |          | 21.8    |         |         |
| 11/21/2017 |              |              |              |              |              |          |         | 12.1    |         |
| 1/10/2018  |              | 0.15         |              |              |              |          |         |         |         |
| 1/11/2018  | 0.0255 (J)   |              |              |              |              |          |         | 12.8    |         |
| 1/12/2018  |              |              |              |              |              |          | 18.7    |         |         |
| 2/19/2018  |              | 0.146        |              |              |              |          |         | 15.2    |         |
| 2/20/2018  | <0.04        |              |              |              |              |          | 18.6    |         |         |
| 4/3/2018   | 0.033 (J)    | 0.12         |              |              |              |          | 20.9    | 14.5    |         |
| 4/4/2018   |              |              |              |              |              |          |         |         | 22.7    |
| 6/6/2018   |              |              |              | 0.0098 (J)   |              |          |         |         |         |
| 6/7/2018   |              |              | 0.0045 (J)   |              | <0.04        |          |         |         |         |
| 6/12/2018  |              |              |              |              |              | 0.9      |         |         |         |
| 6/27/2018  |              |              |              |              |              |          |         | 14.1    |         |
| 6/28/2018  | 0.053        | 0.16         |              |              |              |          | 22.7    |         |         |
| 8/7/2018   | 0.024 (J)    | 0.12         |              |              |              |          | 19.1    | 11.9    |         |
| 9/20/2018  |              |              |              |              |              |          |         |         | 20.3    |
| 9/24/2018  | 0.028 (J)    | 0.099        |              |              |              |          | 18.4    | 12.2    |         |
| 9/26/2018  |              |              | 0.005 (J)    | 0.01 (J)     | 0.0057 (J)   |          |         |         |         |
| 9/27/2018  |              |              | ·            |              |              | 0.71     |         |         |         |
| 3/26/2019  |              | 0.096        |              |              |              |          |         |         |         |
| 3/27/2019  | 0.017 (J)    |              |              |              |              |          | 16.7    |         | 20.3    |
| 3/28/2019  |              |              |              |              |              |          |         | 7.1     |         |
| 4/3/2019   |              |              | 0.0055 (J)   | 0.0076 (J)   | 0.0044 (J)   |          |         |         |         |
|            |              |              |              |              |              |          |         |         |         |

Constituent: Boron (mg/L) Analysis Run 5/6/2021 8:36 PM

|           | YGWA-39 (bg) | YGWA-40 (bg) | YGWA-4I (bg) | YGWA-5D (bg) | YGWA-5I (bg) | YGWC-23S | YGWC-38 | YGWC-41 | YGWC-42 |
|-----------|--------------|--------------|--------------|--------------|--------------|----------|---------|---------|---------|
| 4/4/2019  |              |              |              |              |              | 0.6      |         |         |         |
| 9/24/2019 |              |              |              | 0.01 (J)     | 0.0049 (J)   |          |         |         |         |
| 9/25/2019 |              |              | <0.04        |              |              |          |         |         |         |
| 9/27/2019 |              |              |              |              |              | 0.58     |         |         |         |
| 10/9/2019 | 0.017 (J)    | 0.079        |              |              |              |          | 13.5    | 8.6     | 16.6    |
| 3/24/2020 |              | 0.088 (J)    |              | 0.011 (J)    | 0.0068 (J)   |          |         |         |         |
| 3/25/2020 | 0.043 (J)    |              | 0.011 (J)    |              |              |          | 9.3     | 7.9     | 15.5    |
| 3/26/2020 |              |              |              |              |              | 0.94     |         |         |         |
| 9/22/2020 |              |              | <0.04        | 0.0079 (J)   | 0.0053 (J)   |          |         |         |         |
| 9/24/2020 | 0.037 (J)    | 0.087 (J)    |              |              |              | 1.1      |         |         | 15.2    |
| 9/25/2020 |              |              |              |              |              |          | 8       | 6       |         |
| 3/2/2021  |              |              |              | 0.0068 (J)   | 0.011 (J)    |          |         |         |         |
| 3/3/2021  |              |              | 0.0056 (J)   |              |              |          |         |         |         |
| 3/4/2021  | 0.033 (J)    | 0.078        |              |              |              | 1.2      | 6.4     | 4       | 14.8    |

Constituent: Boron (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YGWC-43 | YGWC-49     | YGWA-47 (bg) | GWA-2 (bg)  | YGWA-14S (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-2I (bg)  | YGWA-30I (bg) |
|------------|---------|-------------|--------------|-------------|---------------|--------------|--------------|---------------|---------------|
| 6/1/2016   |         |             |              |             |               | <0.04        | <0.04        |               |               |
| 6/2/2016   |         |             |              |             | <0.04         |              |              |               | <0.04         |
| 7/25/2016  |         |             |              |             |               |              | <0.04        |               | <0.04         |
| 7/26/2016  |         |             |              |             | 0.0177 (J)    | 0.0055 (J)   |              |               |               |
| 8/30/2016  |         |             | 0.0166 (J)   |             |               |              |              |               |               |
| 8/31/2016  | 0.169   |             |              | 0.0315 (J)  |               |              |              |               |               |
| 9/1/2016   |         | 0.0113 (J)  |              |             |               |              |              |               |               |
| 9/13/2016  |         |             |              |             |               | <0.04        | <0.04        |               |               |
| 9/14/2016  |         |             |              |             |               |              |              | <0.04         |               |
| 9/15/2016  |         |             |              |             | 0.0214 (J)    |              |              |               |               |
| 9/19/2016  |         |             |              |             |               |              |              |               | <0.04         |
| 11/1/2016  |         |             |              |             |               | 0.0086 (.1)  |              |               | <0.04         |
| 11/2/2016  |         |             |              |             | <0.04         | 0.0000 (0)   |              |               | 0.01          |
| 11/4/2016  |         |             |              |             | 0.01          |              | <0.04        | <0.04         |               |
| 11/14/2016 |         |             | 0.0166 ( 1)  |             |               |              | -0.0-1       | -0.0-1        |               |
| 11/15/2016 |         | 0.0074 (1)  | 0.0100 (3)   |             |               |              |              |               |               |
| 11/15/2016 | 0.406   | 0.0074 (J)  |              |             |               |              |              |               |               |
| 11/10/2010 | 0.406   |             |              | 0.0005 ( 1) |               |              |              |               |               |
| 11/28/2016 |         |             |              | 0.0095 (J)  |               |              |              |               |               |
| 12/15/2016 |         |             |              |             |               |              |              | 0.0107 (J)    |               |
| 1/10/2017  |         |             |              |             | 0.0198 (J)    |              |              |               |               |
| 1/11/2017  |         |             |              |             |               | 0.0074 (J)   |              |               |               |
| 1/16/2017  |         |             |              |             |               |              | <0.04        | <0.04         | <0.04         |
| 2/21/2017  |         |             |              |             |               |              |              |               | <0.04         |
| 2/22/2017  |         |             |              | <0.04       |               |              |              |               |               |
| 2/24/2017  | 0.725   |             | 0.0145 (J)   |             |               |              |              |               |               |
| 2/27/2017  |         | <0.04       |              |             |               |              |              |               |               |
| 3/2/2017   |         |             |              |             |               | 0.008 (J)    | <0.04        |               |               |
| 3/3/2017   |         |             |              |             |               |              |              | <0.04         |               |
| 3/8/2017   |         |             |              |             | 0.0189 (J)    |              |              |               |               |
| 4/26/2017  |         |             |              |             | 0.0161 (J)    |              |              |               | <0.04         |
| 4/27/2017  |         |             |              |             |               | 0.0066 (J)   | <0.04        |               |               |
| 4/28/2017  |         |             |              |             |               |              |              | <0.04         |               |
| 5/8/2017   |         |             | 0.0141 (J)   | 0.0084 (J)  |               |              |              |               |               |
| 5/9/2017   |         | <0.04       |              |             |               |              |              |               |               |
| 5/10/2017  | 0.955   |             |              |             |               |              |              |               |               |
| 5/26/2017  |         |             |              |             |               |              |              | <0.04         |               |
| 6/27/2017  |         |             |              |             |               | 0 0087 (.1)  | 0.006 (.1)   |               |               |
| 6/28/2017  |         |             |              |             |               | 0.0007 (0)   | 0.000 (0)    | <0.04         |               |
| 6/30/2017  |         |             |              |             | 0.0173 ( I)   |              |              | 0.01          | <0.04         |
| 7/11/2017  | 0.994   |             | 0.0131 ( 1)  |             | 0.0170 (0)    |              |              |               | -0.04         |
| 7/11/2017  | 0.334   | 0.0003 ( 1) | 0.0131 (3)   |             |               |              |              |               |               |
| 7/13/2017  |         | 0.0093 (J)  |              | 0.0002 ( 1) |               |              |              |               |               |
| 10/2/2017  |         |             |              | 0.0092 (J)  |               | 0.0070 (1)   | 0.0071 (1)   | -0.04         |               |
| 10/3/2017  |         |             |              |             |               | 0.007∠ (J)   | 0.0071 (J)   | <b>~</b> 0.04 | -0.04         |
| 10/4/2017  |         |             |              |             | 0.0170 ( ))   |              |              |               | <0.04         |
| 10/5/2017  |         |             | 0.0464.05    |             | 0.0173 (J)    |              |              |               |               |
| 10/10/2017 |         |             | 0.0124 (J)   |             |               |              |              |               |               |
| 10/11/2017 |         | <0.04       |              |             |               |              |              |               |               |
| 10/12/2017 | 1.15    |             |              |             |               |              |              |               |               |
| 10/16/2017 |         |             |              | <0.04       |               |              |              |               |               |
| 2/19/2018  |         |             |              | <0.04       |               |              |              |               |               |
| 4/2/2018   |         |             | 0.013 (J)    |             |               |              |              |               |               |
| 4/4/2018   | 1.2     | 0.0041 (J)  |              |             |               |              |              |               |               |
|            |         |             |              |             |               |              |              |               |               |

#### Constituent: Boron (mg/L) Analysis Run 5/6/2021 8:36 PM

|           | YGWC-43 | YGWC-49    | YGWA-47 (bg) | GWA-2 (bg) | YGWA-14S (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-2I (bg) | YGWA-30I (bg) |
|-----------|---------|------------|--------------|------------|---------------|--------------|--------------|--------------|---------------|
| 6/5/2018  |         |            |              |            |               | 0.0052 (J)   |              |              |               |
| 6/6/2018  |         |            |              |            |               |              | <0.04        |              |               |
| 6/7/2018  |         |            |              |            |               |              |              | <0.04        |               |
| 6/8/2018  |         |            |              |            | 0.013 (J)     |              |              |              |               |
| 6/11/2018 |         |            |              |            |               |              |              |              | 0.014 (J)     |
| 8/6/2018  |         |            |              | <0.04      |               |              |              |              |               |
| 9/19/2018 |         |            | 0.012 (J)    |            |               |              |              |              |               |
| 9/20/2018 | 2.1     | 0.0042 (J) |              |            |               |              |              |              |               |
| 10/1/2018 |         |            |              |            | 0.015 (J)     | 0.021 (J)    | 0.0049 (J)   | <0.04        |               |
| 10/2/2018 |         |            |              |            |               |              |              |              | <0.04         |
| 2/25/2019 |         |            |              | <0.04      |               |              |              |              |               |
| 3/27/2019 |         |            | 0.013 (J)    |            |               |              |              |              |               |
| 3/28/2019 | 1.8     | <0.04      |              |            |               | 0.005 (J)    | <0.04        |              |               |
| 3/29/2019 |         |            |              |            | 0.014 (J)     |              |              | 0.0065 (J)   |               |
| 4/1/2019  |         |            |              |            |               |              |              |              | <0.04         |
| 6/12/2019 |         |            |              | <0.04      |               |              |              |              |               |
| 9/24/2019 |         |            |              |            |               | 0.0064 (J)   | 0.0055 (J)   | 0.0076 (J)   |               |
| 9/25/2019 |         |            |              |            | 0.018 (J)     |              |              |              | <0.04         |
| 9/26/2019 |         | <0.04      |              |            |               |              |              |              |               |
| 10/8/2019 |         |            | 0.012 (J)    | <0.04      |               |              |              |              |               |
| 10/9/2019 | 2.7     |            |              |            |               |              |              |              |               |
| 3/17/2020 |         |            | 0.023 (J)    | 0.0051 (J) |               |              |              |              |               |
| 3/18/2020 |         |            |              |            | 0.02 (J)      |              | 0.0087 (J)   |              |               |
| 3/19/2020 |         |            |              |            |               | 0.0085 (J)   |              | 0.0073 (J)   | 0.0052 (J)    |
| 3/25/2020 | 2.4     | 0.012 (J)  |              |            |               |              |              |              |               |
| 9/22/2020 |         |            | 0.0076 (J)   | 0.0079 (J) |               |              |              |              |               |
| 9/23/2020 |         |            |              |            |               | <0.04        | <0.04        | <0.04        |               |
| 9/24/2020 |         | 0.062 (J)  |              |            |               |              |              |              | 0.0075 (J)    |
| 9/25/2020 | 3.9     |            |              |            | 0.02 (J)      |              |              |              |               |
| 3/1/2021  |         |            | 0.013 (J)    |            |               |              |              |              | <0.04         |
| 3/2/2021  |         |            | . ,          | <0.04      | 0.017 (J)     |              |              |              |               |
| 3/3/2021  |         |            |              |            |               | <0.04        | <0.04        | <0.04        |               |
| 3/4/2021  | 3.6     | <0.04      |              |            |               |              |              |              |               |

#### Constituent: Boron (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YGWA-3D (bg) | YGWA-3I (bg) | PZ-35     | PZ-37 | YGWC-24SA   | YGWC-36A |
|------------|--------------|--------------|-----------|-------|-------------|----------|
| 6/1/2016   |              | <0.04        |           |       |             |          |
| 6/2/2016   | <0.04        |              |           |       |             |          |
| 6/8/2016   |              |              |           |       | <0.04       |          |
| 7/25/2016  |              | <0.04        |           |       |             |          |
| 7/26/2016  | 0.0097 (J)   |              |           |       |             |          |
| 8/1/2016   |              |              |           |       | <0.04       |          |
| 9/2/2016   |              |              |           |       |             | 0.133    |
| 9/14/2016  |              | <0.04        |           |       |             |          |
| 9/15/2016  | 0.0102 (J)   |              |           |       |             |          |
| 9/20/2016  |              |              |           |       | <0.04       |          |
| 11/1/2016  | <0.04        | <0.04        |           |       |             |          |
| 11/8/2016  |              |              |           |       | <0.04       |          |
| 11/14/2016 |              |              |           |       |             | 0.287    |
| 1/11/2017  | <0.04        | <0.04        |           |       |             |          |
| 1/17/2017  |              |              |           |       | <0.04       |          |
| 2/28/2017  |              |              |           |       |             | 0.215    |
| 3/1/2017   |              | <0.04        |           |       |             |          |
| 3/2/2017   | 0.0084 (J)   |              |           |       |             |          |
| 3/8/2017   |              |              |           |       | <0.04       |          |
| 4/26/2017  | <0.04        | <0.04        |           |       |             |          |
| 5/2/2017   |              |              |           |       | 0.0099 (J)  |          |
| 5/9/2017   |              |              |           |       |             | 0.233    |
| 6/28/2017  | <0.04        | <0.04        |           |       |             |          |
| 7/7/2017   |              |              |           |       | 0.0076 (J)  |          |
| 7/13/2017  |              |              |           |       |             | 0.262    |
| 9/22/2017  |              |              |           |       |             | 0.238    |
| 9/29/2017  |              |              |           |       |             | 0.235    |
| 10/4/2017  | <0.04        | <0.04        |           |       |             |          |
| 10/5/2017  |              |              |           |       | <0.04       |          |
| 10/6/2017  |              |              |           |       |             | 0.256    |
| 10/11/2017 |              |              |           |       |             | 0.245    |
| 10/12/2017 |              |              |           | 15.4  |             |          |
| 11/21/2017 |              |              |           | 17.2  |             |          |
| 1/11/2018  |              |              |           | 15.8  |             |          |
| 2/20/2018  |              |              |           | 19.5  |             |          |
| 4/3/2018   |              |              |           | 17.5  |             |          |
| 6/7/2018   | 0.004 (J)    |              |           |       |             |          |
| 6/8/2018   |              | <0.04        |           |       |             |          |
| 6/12/2018  |              |              |           |       | 0.018 (J)   |          |
| 6/13/2018  |              |              |           |       |             | 0.25     |
| 6/29/2018  |              |              |           | 20.6  |             |          |
| 8/6/2018   |              |              |           | 15.9  |             |          |
| 8/30/2018  |              |              | 0.04      |       |             |          |
| 9/24/2018  |              |              |           | 16.5  |             |          |
| 9/26/2018  |              |              |           |       | 0.0055 (J)  | 0.24     |
| 10/1/2018  | <0.04        | <0.04        |           |       |             |          |
| 10/16/2018 |              |              | 0.031 (J) |       |             |          |
| 4/1/2019   | <0.04        | <0.04        |           |       |             |          |
| 4/4/2019   | 0.0054 ( "   |              |           |       | <0.04       | U.22     |
| 9/25/2019  | 0.0054 (J)   | <0.04        | -0.04     |       | 0.0000 ( )) | 0.10     |
| 9/26/2019  | 0.0072 ( !)  | 0.0052 ( !)  | <0.04     |       | 0.0068 (J)  | U. 13    |
| 3/19/2020  | 0.0073 (J)   | 0.0053 (J)   |           |       |             |          |

Constituent: Boron (mg/L) Analysis Run 5/6/2021 8:36 PM

|           | YGWA-3D (bg) | YGWA-3I (bg) | PZ-35     | PZ-37 | YGWC-24SA | YGWC-36A   |
|-----------|--------------|--------------|-----------|-------|-----------|------------|
| 3/25/2020 |              |              | 0.071 (J) |       |           | 0.11       |
| 3/26/2020 |              |              |           |       | 0.033 (J) |            |
| 9/23/2020 | 0.012 (J)    | 0.0073 (J)   |           |       | <0.04     |            |
| 9/24/2020 |              |              | 0.017 (J) |       |           |            |
| 9/25/2020 |              |              |           | 14.1  |           |            |
| 10/7/2020 |              |              |           |       |           | 0.018 (J)  |
| 3/3/2021  | <0.04        | <0.04        |           |       | <0.04     |            |
| 3/4/2021  |              |              | 0.012 (J) | 12.4  |           | 0.0088 (J) |
|           |              |              |           |       |           |            |

Constituent: Cadmium (mg/L) Analysis Run 5/6/2021 8:36 PM

|                        | YAMW-1       | YAMW-2  | YAMW-4  | YAMW-5       | YGWA-17S (bg) | YGWA-18I (bg) | YGWA-18S (bg) | YGWA-20S (bg) | YGWA-21I (bg) |
|------------------------|--------------|---------|---------|--------------|---------------|---------------|---------------|---------------|---------------|
| 6/6/2016               |              |         |         |              |               | <0.0005       | <0.0005       |               |               |
| 6/7/2016               |              |         |         |              | <0.0005       |               |               | <0.0005       | <0.0005       |
| 7/27/2016              |              |         |         |              | <0.0005       | <0.0005       | <0.0005       | <0.0005       |               |
| 7/28/2016              |              |         |         |              |               |               |               |               | <0.0005       |
| 9/16/2016              |              |         |         |              | <0.0005       |               | <0.0005       |               |               |
| 9/19/2016              |              |         |         |              |               | <0.0005       |               | <0.0005       | <0.0005       |
| 11/2/2016              |              |         |         |              |               |               |               | <0.0005       |               |
| 11/3/2016              |              |         |         |              | <0.0005       | <0.0005       | <0.0005       |               | <0.0005       |
| 1/11/2017              |              |         |         |              | 0.0001 (J)    | <0.0005       | 0.0001 (J)    |               |               |
| 1/13/2017              |              |         |         |              |               |               |               | <0.0005       | <0.0005       |
| 3/1/2017               |              |         |         |              |               | <0.0005       | <0.0005       |               |               |
| 3/2/2017               |              |         |         |              | <0.0005       |               |               |               |               |
| 3/6/2017               |              |         |         |              |               |               |               | <0.0005       | <0.0005       |
| 4/26/2017              |              |         |         |              |               | <0.0005       | <0.0005       | <0.0005       | <0.0005       |
| 5/2/2017               |              |         |         |              | <0.0005       |               |               |               |               |
| 6/28/2017              |              |         |         |              |               | <0.0005       | <0.0005       |               |               |
| 6/29/2017              |              |         |         |              | <0.0005       |               |               | <0.0005       | <0.0005       |
| 3/28/2018              |              |         |         |              | <0.0005       | <0.0005       | <0.0005       |               |               |
| 3/29/2018              |              |         |         |              |               |               |               | <0.0005       | <0.0005       |
| 6/5/2018               |              |         |         |              |               |               |               |               | <0.0005       |
| 6/6/2018               |              |         |         |              |               |               |               | <0.0005       |               |
| 6/7/2018               |              |         |         |              |               | <0.0005       |               |               |               |
| 6/11/2018              |              |         |         |              | <0.0005       |               | <0.0005       |               |               |
| 9/25/2018              |              |         |         |              | <0.0005       | <0.0005       | <0.0005       | <0.0005       | 9.6E-05 (J)   |
| 10/16/2018             | 0.00014 (J)  |         |         |              |               |               |               |               |               |
| 3/5/2019               |              |         |         |              | <0.0005       |               | <0.0005       | <0.0005       | <0.0005       |
| 3/6/2019               |              |         |         |              |               | <0.0005       |               |               |               |
| 4/2/2019               |              |         |         |              | <0.0005       |               |               |               | <0.0005       |
| 4/3/2019               |              |         |         |              | 0.0000        | <0.0005       | <0.0005       | <0.0005       | 0.0000        |
| 9/24/2019              |              |         |         |              |               | 0.0000        | 0.0000        | 0.0000        | <0.0005       |
| 9/25/2019              |              |         |         |              | <0.0005       |               |               | <0.0005       | 0.0000        |
| 9/26/2019              | <0.0005      |         |         |              | 0.0000        | <0.0005       | <0.0005       | 0.0000        |               |
| 2/11/2020              | -0.0000      |         |         |              | <0.0005       | <0.0005       | <0.0005       |               |               |
| 2/12/2020              |              |         |         |              | -0.0000       | -0.0000       | -0.0000       | <0.0005       |               |
| 3/24/2020              |              |         |         |              | <0.0005       | <0.0005       | <0.0005       | <0.0005       | <0.0005       |
| 3/25/2020              | <0.0005      |         |         |              | -0.0000       | -0.0000       | -0.0000       | -0.0000       | -0.0000       |
| 0/23/2020              | -0.0000      | <0.0005 | <0.0005 |              | <0.0005       | <0.0005       | <0.0005       |               |               |
| 512312020<br>Q124/2020 | 0.00017 ( 1) | ~0.0000 | ~0.0005 | 0.00018 ( 1) | ~0.0005       | ~0.0005       | ~0.0005       | <0.0005       | <0.000E       |
| 3/24/2020              | 0.00017 (3)  | <0.000E | <0.000E | 0.00016 (J)  |               | <0.000E       | <0.0005       | <0.0005       | ~0.0003       |
| 2/3/2021               | 0.000 IS (J) | <0.0005 | <0.0005 | 0.00025 (J)  | <0.000F       | <0.0005       | <0.0005       | <0.0005       | 0.00041 (J)   |
| 3/3/2021               | <0.0005      | <0.0005 | <0.0005 | 0.00010 ( )) | <0.0005       | <0.0005       | <0.0005       | <0.0005       | -0.0005       |
| 3/4/2021               |              |         |         | 0.00018 (J)  |               |               |               |               | <0.0005       |

Constituent: Cadmium (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YGWA-39 (bg) | YGWA-40 (bg) | YGWA-4I (bg) | YGWA-5D (bg) | YGWA-5I (bg) | YGWC-23S  | YGWC-38 | YGWC-41     | YGWC-42    |
|------------|--------------|--------------|--------------|--------------|--------------|-----------|---------|-------------|------------|
| 6/2/2016   |              |              | <0.0005      | <0.0005      | <0.0005      |           |         |             |            |
| 6/7/2016   |              |              |              |              |              | <0.0005   |         |             |            |
| 7/26/2016  |              |              | <0.0005      | <0.0005      | <0.0005      |           |         |             |            |
| 7/28/2016  |              |              |              |              |              | <0.0005   |         |             |            |
| 8/30/2016  |              |              |              |              |              |           |         |             | <0.0005    |
| 9/14/2016  |              |              | <0.0005      | <0.0005      | <0.0005      |           |         |             |            |
| 9/20/2016  |              |              |              |              |              | <0.0005   |         |             |            |
| 11/2/2016  |              |              | <0.0005      | <0.0005      |              |           |         |             |            |
| 11/4/2016  |              |              |              |              | <0.0005      |           |         |             |            |
| 11/8/2016  |              |              |              |              |              | 7E-05 (J) |         |             |            |
| 11/16/2016 |              |              |              |              |              |           |         |             | <0.0005    |
| 1/12/2017  |              |              |              | <0.0005      | 9E-05 (J)    |           |         |             |            |
| 1/13/2017  |              |              | <0.0005      | 0.0000       | 02 00 (0)    |           |         |             |            |
| 1/16/2017  |              |              | -0.0000      |              |              | <0.0005   |         |             |            |
| 2/27/2017  |              |              |              |              |              | 40.0000   |         |             | <0.0005    |
| 2/2//2017  |              |              | <0.000F      |              |              |           |         |             | <0.0003    |
| 3/0/2017   |              |              | <0.0005      | <0.000F      | <0.000F      |           |         |             |            |
| 3/7/2017   |              |              |              | <0.0005      | <0.0005      | 0.0005    |         |             |            |
| 3/9/2017   |              |              |              |              |              | <0.0005   |         |             |            |
| 5/1/2017   |              |              | <0.0005      | <0.0005      |              |           |         |             |            |
| 5/2/2017   |              |              |              |              | <0.0005      | <0.0005   |         |             |            |
| 5/10/2017  |              |              |              |              |              |           |         |             | 0.0002 (J) |
| 6/27/2017  |              |              |              | <0.0005      | <0.0005      |           |         |             |            |
| 6/29/2017  |              |              | <0.0005      |              |              |           |         |             |            |
| 7/10/2017  |              |              |              |              |              | <0.0005   |         |             |            |
| 7/11/2017  |              |              |              |              |              |           |         |             | 0.0005 (J) |
| 10/11/2017 | <0.0005      |              |              |              |              |           |         |             |            |
| 10/12/2017 |              | <0.0005      |              |              |              |           | 0.003   | 0.0002 (J)  | 0.0006 (J) |
| 11/20/2017 | <0.0005      | <0.0005      |              |              |              |           | 0.0027  |             |            |
| 11/21/2017 |              |              |              |              |              |           |         | 0.0003 (J)  |            |
| 1/10/2018  |              | <0.0005      |              |              |              |           |         |             |            |
| 1/11/2018  | <0.0005      |              |              |              |              |           |         | 0.0002 (J)  |            |
| 1/12/2018  |              |              |              |              |              |           | 0.0029  | (,)         |            |
| 2/19/2018  |              | <0.0005      |              |              |              |           | 0.0020  | <0.0005     |            |
| 2/20/2018  | <0.0005      | -0.0000      |              |              |              |           | 0.0029  | 40.0000     |            |
| 3/20/2018  | <0.0003      |              | <0.0005      | <0.0005      | <0.0005      |           | 0.0029  |             |            |
| 3/29/2018  |              |              | <0.0005      | <0.0005      | <0.0005      | <0.000F   |         |             |            |
| 3/30/2018  | -0.0005      | -0.0005      |              |              |              | <0.0005   | 0.0007  | -0.0005     |            |
| 4/3/2018   | <0.0005      | <0.0005      |              |              |              |           | 0.0027  | <0.0005     | 0.0005     |
| 4/4/2018   |              |              |              |              |              |           |         |             | <0.0005    |
| 6/6/2018   |              |              |              | <0.0005      |              |           |         |             |            |
| 6/7/2018   |              |              | <0.0005      |              | <0.0005      |           |         |             |            |
| 6/12/2018  |              |              |              |              |              | <0.0005   |         |             |            |
| 6/27/2018  |              |              |              |              |              |           |         | 0.00025 (J) |            |
| 6/28/2018  | <0.0005      | <0.0005      |              |              |              |           | 0.0029  |             |            |
| 8/7/2018   | <0.0005      | <0.0005      |              |              |              |           | 0.0027  | 0.00024 (J) |            |
| 9/20/2018  |              |              |              |              |              |           |         |             | 0.0002 (J) |
| 9/24/2018  | <0.0005      | <0.0005      |              |              |              |           | 0.0027  | 0.00021 (J) |            |
| 9/26/2018  |              |              | <0.0005      | <0.0005      | <0.0005      |           |         |             |            |
| 9/27/2018  |              |              |              |              |              | <0.0005   |         |             |            |
| 3/4/2019   |              |              | <0.0005      | <0.0005      | <0.0005      |           |         |             |            |
| 3/6/2019   |              |              |              |              |              | <0.0005   |         |             |            |
| 4/3/2019   |              |              | <0.0005      | <0.0005      | <0.0005      |           |         |             |            |
| 4/4/2019   |              |              |              |              |              | <0.0005   |         |             |            |
|            |              |              |              |              |              | 0.0000    |         |             |            |

Constituent: Cadmium (mg/L) Analysis Run 5/6/2021 8:36 PM

|           | YGWA-39 (bg) | YGWA-40 (bg) | YGWA-4I (bg) | YGWA-5D (bg) | YGWA-5I (bg) | YGWC-23S | YGWC-38    | YGWC-41     | YGWC-42     |
|-----------|--------------|--------------|--------------|--------------|--------------|----------|------------|-------------|-------------|
| 8/21/2019 | <0.0005      | <0.0005      |              |              |              |          |            |             |             |
| 8/22/2019 |              |              |              |              |              |          | 0.0023 (J) | 0.00015 (J) | 0.00017 (J) |
| 9/24/2019 |              |              |              | <0.0005      | <0.0005      |          |            |             |             |
| 9/25/2019 |              |              | <0.0005      |              |              |          |            |             |             |
| 9/27/2019 |              |              |              |              |              | <0.0005  |            |             |             |
| 10/9/2019 | <0.0005      | <0.0005      |              |              |              |          | 0.0021 (J) | 0.00017 (J) | 0.00025 (J) |
| 2/12/2020 | <0.0005      | <0.0005      | <0.0005      | <0.0005      | <0.0005      |          |            |             |             |
| 3/24/2020 |              | <0.0005      |              | <0.0005      | <0.0005      |          |            |             |             |
| 3/25/2020 | <0.0005      |              | <0.0005      |              |              |          | 0.0018 (J) | 0.00018 (J) | 0.00021 (J) |
| 3/26/2020 |              |              |              |              |              | <0.0005  |            |             |             |
| 9/22/2020 |              |              | <0.0005      | <0.0005      | <0.0005      |          |            |             |             |
| 9/24/2020 | <0.0005      | <0.0005      |              |              |              | <0.0005  |            |             | 0.00014 (J) |
| 9/25/2020 |              |              |              |              |              |          | 0.0015 (J) | 0.00014 (J) |             |
| 2/8/2021  |              |              |              | <0.0005      | <0.0005      |          |            |             |             |
| 2/9/2021  |              |              | <0.0005      |              |              | <0.0005  | 0.0014 (J) |             |             |
| 2/10/2021 | 0.00019 (J)  | <0.0005      |              |              |              |          |            | <0.0005     | <0.0005     |
| 3/2/2021  |              |              |              | <0.0005      | <0.0005      |          |            |             |             |
| 3/3/2021  |              |              | <0.0005      |              |              |          |            |             |             |
| 3/4/2021  | 0.0003 (J)   | <0.0005      |              |              |              | <0.0005  | 0.0013     | <0.0005     | <0.0005     |
|           |              |              |              |              |              |          |            |             |             |

Constituent: Cadmium (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YGWC-43 | YGWC-49   | YGWA-47 (bg) | GWA-2 (bg) | YGWA-14S (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-2I (bg) | YGWA-30I (bg) |
|------------|---------|-----------|--------------|------------|---------------|--------------|--------------|--------------|---------------|
| 5/1/2007   |         |           |              | <0.0005    |               |              |              |              |               |
| 9/11/2007  |         |           |              | <0.0005    |               |              |              |              |               |
| 3/20/2008  |         |           |              | <0.0005    |               |              |              |              |               |
| 8/27/2008  |         |           |              | <0.0005    |               |              |              |              |               |
| 3/3/2009   |         |           |              | <0.0005    |               |              |              |              |               |
| 11/18/2009 |         |           |              | <0.0005    |               |              |              |              |               |
| 3/3/2010   |         |           |              | <0.0005    |               |              |              |              |               |
| 9/8/2010   |         |           |              | <0.0005    |               |              |              |              |               |
| 3/10/2011  |         |           |              | <0.0005    |               |              |              |              |               |
| 9/8/2011   |         |           |              | <0.0005    |               |              |              |              |               |
| 3/5/2012   |         |           |              | <0.0005    |               |              |              |              |               |
| 9/10/2012  |         |           |              | <0.0005    |               |              |              |              |               |
| 2/6/2013   |         |           |              | <0.0005    |               |              |              |              |               |
| 8/12/2013  |         |           |              | <0.0005    |               |              |              |              |               |
| 2/5/2014   |         |           |              | <0.0005    |               |              |              |              |               |
| 8/5/2014   |         |           |              | <0.0005    |               |              |              |              |               |
| 2/4/2015   |         |           |              | <0.0005    |               |              |              |              |               |
| 8/3/2015   |         |           |              | <0.0005    |               |              |              |              |               |
| 2/16/2016  |         |           |              | <0.0005    |               |              |              |              |               |
| 6/1/2016   |         |           |              |            |               | <0.0005      | <0.0005      |              |               |
| 6/2/2016   |         |           |              |            | <0.0005       |              |              |              | <0.0005       |
| 7/25/2016  |         |           |              |            |               |              | <0 0005      |              | <0.0005       |
| 7/26/2016  |         |           |              |            | <0.0005       | <0.0005      | 0.0000       |              | 0.0000        |
| 8/30/2016  |         |           | 0.0001 (J)   |            | -0.0000       | -0.0000      |              |              |               |
| 8/31/2016  | <0.0005 |           | 0.0001 (0)   | <0.0005    |               |              |              |              |               |
| 0/1/2016   | <0.0005 | <0.000E   |              | <0.0005    |               |              |              |              |               |
| 9/1/2010   |         | <0.0005   |              |            |               | <0.000E      | <0.000E      |              |               |
| 9/13/2016  |         |           |              |            |               | <0.0005      | <0.0005      | -0.0005      |               |
| 9/14/2016  |         |           |              |            |               |              |              | <0.0005      |               |
| 9/15/2016  |         |           |              |            | <0.0005       |              |              |              |               |
| 9/19/2016  |         |           |              |            |               |              |              |              | <0.0005       |
| 11/1/2016  |         |           |              |            |               | <0.0005      |              |              | <0.0005       |
| 11/2/2016  |         |           |              |            | <0.0005       |              |              |              |               |
| 11/4/2016  |         |           |              |            |               |              | <0.0005      | <0.0005      |               |
| 11/14/2016 |         |           | 0.0001 (J)   |            |               |              |              |              |               |
| 11/15/2016 |         | <0.0005   |              |            |               |              |              |              |               |
| 11/16/2016 | <0.0005 |           |              |            |               |              |              |              |               |
| 11/28/2016 |         |           |              | <0.0005    |               |              |              |              |               |
| 12/15/2016 |         |           |              |            |               |              |              | <0.0005      |               |
| 1/10/2017  |         |           |              |            | <0.0005       |              |              |              |               |
| 1/11/2017  |         |           |              |            |               | 0.0002 (J)   |              |              |               |
| 1/16/2017  |         |           |              |            |               |              | <0.0005      | <0.0005      | <0.0005       |
| 2/21/2017  |         |           |              |            |               |              |              |              | <0.0005       |
| 2/22/2017  |         |           |              | <0.0005    |               |              |              |              |               |
| 2/24/2017  | <0.0005 |           | 9E-05 (J)    |            |               |              |              |              |               |
| 2/27/2017  |         | 7E-05 (J) |              |            |               |              |              |              |               |
| 3/2/2017   |         |           |              |            |               | <0.0005      | <0.0005      |              |               |
| 3/3/2017   |         |           |              |            |               |              |              | <0.0005      |               |
| 3/8/2017   |         |           |              |            | 7E-05 (J)     |              |              |              |               |
| 4/26/2017  |         |           |              |            | <0.0005       |              |              |              | <0.0005       |
| 4/27/2017  |         |           |              |            |               | <0.0005      | <0.0005      |              |               |
| 4/28/2017  |         |           |              |            |               |              |              | <0.0005      |               |
| 5/8/2017   |         |           | 0.0001 (J)   | <0.0005    |               |              |              |              |               |
|            |         |           | . ,          |            |               |              |              |              |               |

#### Constituent: Cadmium (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YGWC-43 | YGWC-49 | YGWA-47 (bg) | GWA-2 (bg) | YGWA-14S (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-2I (bg) | YGWA-30I (bg) |
|------------|---------|---------|--------------|------------|---------------|--------------|--------------|--------------|---------------|
| 5/9/2017   |         | <0.0005 |              |            |               |              |              |              |               |
| 5/10/2017  | <0.0005 |         |              |            |               |              |              |              |               |
| 5/26/2017  |         |         |              |            |               |              |              | <0.0005      |               |
| 6/27/2017  |         |         |              |            |               | <0.0005      | <0.0005      |              |               |
| 6/28/2017  |         |         |              |            |               |              |              | <0.0005      |               |
| 6/30/2017  |         |         |              |            | <0.0005       |              |              |              | <0.0005       |
| 7/11/2017  | <0.0005 |         | <0.0005      |            |               |              |              |              |               |
| 7/13/2017  |         | <0.0005 |              |            |               |              |              |              |               |
| 7/17/2017  |         |         |              | <0.0005    |               |              |              |              |               |
| 10/10/2017 |         |         | <0.0005      |            |               |              |              |              |               |
| 10/11/2017 |         | <0.0005 |              |            |               |              |              |              |               |
| 10/12/2017 | <0.0005 |         |              |            |               |              |              |              |               |
| 10/16/2017 |         |         |              | <0.0005    |               |              |              |              |               |
| 2/19/2018  |         |         |              | <0.0005    |               |              |              |              |               |
| 3/27/2018  |         |         |              |            | <0.0005       |              | <0.0005      |              | <0.0005       |
| 3/28/2018  |         |         |              |            |               |              |              | <0.0005      |               |
| 3/29/2018  |         |         |              |            |               | <0.0005      |              |              |               |
| 4/2/2018   |         |         | <0.0005      |            |               |              |              |              |               |
| 4/4/2018   | <0.0005 | <0.0005 | 0.0000       |            |               |              |              |              |               |
| 8/6/2018   | -0.0003 | -0.0003 |              | <0.0005    |               |              |              |              |               |
| 9/19/2018  |         |         | <0.0005      | -0.0000    |               |              |              |              |               |
| 9/19/2018  | <0.000E | <0.000E | <0.0005      |            |               |              |              |              |               |
| 9/20/2018  | <0.0005 | <0.0005 |              | <0.000F    |               |              |              |              |               |
| 2/25/2019  |         |         |              | <0.0005    | <0.000F       |              |              |              | <0.000E       |
| 2/20/2019  |         |         |              |            | <0.0005       | 10,0005      | -0.0005      | -0.0005      | <0.0005       |
| 2/27/2019  |         |         |              |            |               | <0.0005      | <0.0005      | <0.0005      |               |
| 3/28/2019  |         |         |              |            |               | <0.0005      | <0.0005      |              |               |
| 3/29/2019  |         |         |              |            | <0.0005       |              |              | <0.0005      |               |
| 4/1/2019   |         |         |              |            |               |              |              |              | <0.0005       |
| 6/12/2019  |         |         |              | <0.0005    |               |              |              |              |               |
| 8/19/2019  |         |         |              | <0.0005    |               |              |              |              |               |
| 8/20/2019  |         |         | <0.0005      |            |               |              |              |              |               |
| 8/21/2019  | <0.0005 |         |              |            |               |              |              |              |               |
| 9/24/2019  |         |         |              |            |               | <0.0005      | <0.0005      | <0.0005      |               |
| 9/25/2019  |         |         |              |            | <0.0005       |              |              |              | <0.0005       |
| 9/26/2019  |         | <0.0005 |              |            |               |              |              |              |               |
| 10/8/2019  |         |         | <0.0005      | <0.0005    |               |              |              |              |               |
| 10/9/2019  | <0.0005 |         |              |            |               |              |              |              |               |
| 2/10/2020  |         |         |              |            |               | <0.0005      | <0.0005      |              |               |
| 2/11/2020  |         |         |              |            |               |              |              | <0.0005      |               |
| 2/12/2020  |         |         |              |            | <0.0005       |              |              |              | <0.0005       |
| 3/17/2020  |         |         | <0.0005      | <0.0005    |               |              |              |              |               |
| 3/18/2020  |         |         |              |            | <0.0005       |              | <0.0005      |              |               |
| 3/19/2020  |         |         |              |            |               | <0.0005      |              | <0.0005      | <0.0005       |
| 3/25/2020  | <0.0005 | <0.0005 |              |            |               |              |              |              |               |
| 8/26/2020  |         |         |              | <0.0005    |               |              |              |              |               |
| 8/27/2020  |         |         | <0.0005      |            |               |              |              |              |               |
| 9/22/2020  |         |         |              | <0.0005    |               |              |              |              |               |
| 9/23/2020  |         |         |              |            |               | <0.0005      | <0.0005      | <0.0005      |               |
| 9/24/2020  |         | <0.0005 |              |            |               |              |              |              | <0.0005       |
| 9/25/2020  | <0.0005 |         |              |            | <0.0005       |              |              |              |               |
| 2/9/2021   | <0.0005 | <0.0005 |              |            |               |              |              |              |               |
| 2/10/2021  |         |         |              |            | <0.0005       |              |              | <0.0005      |               |
|            |         |         |              |            |               |              |              |              |               |

|           | YGWC-43 | YGWC-49 | YGWA-47 (bg) | GWA-2 (bg) | YGWA-14S (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-2I (bg) | YGWA-30I (bg) |
|-----------|---------|---------|--------------|------------|---------------|--------------|--------------|--------------|---------------|
| 2/11/2021 |         |         |              |            |               |              |              |              | <0.0005       |
| 2/12/2021 |         |         |              |            |               | <0.0005      | <0.0005      |              |               |
| 3/1/2021  |         |         |              |            |               |              |              |              | <0.0005       |
| 3/2/2021  |         |         |              | <0.0005    | <0.0005       |              |              |              |               |
| 3/3/2021  |         |         |              |            |               | <0.0005      | <0.0005      | <0.0005      |               |
| 3/4/2021  | <0.0005 | <0.0005 |              |            |               |              |              |              |               |

Constituent: Cadmium (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YGWA-3D (bg) | YGWA-3I (bg) | PZ-35   | PZ-37       | YGWC-24SA | YGWC-36A    |
|------------|--------------|--------------|---------|-------------|-----------|-------------|
| 6/1/2016   |              | <0.0005      |         |             |           |             |
| 6/2/2016   | <0.0005      |              |         |             |           |             |
| 6/8/2016   |              |              |         |             | <0.0005   |             |
| 7/25/2016  |              | <0.0005      |         |             |           |             |
| 7/26/2016  | <0.0005      |              |         |             |           |             |
| 8/1/2016   |              |              |         |             | <0.0005   |             |
| 9/2/2016   |              |              |         |             |           | <0.0005     |
| 9/14/2016  |              | <0.0005      |         |             |           |             |
| 9/15/2016  | <0.0005      |              |         |             |           |             |
| 9/20/2016  |              |              |         |             | <0.0005   |             |
| 11/1/2016  | <0.0005      | <0.0005      |         |             |           |             |
| 11/8/2016  |              |              |         |             | <0.0005   |             |
| 11/14/2016 |              |              |         |             |           | 9E-05 (J)   |
| 1/11/2017  | 0.0001 (J)   | 8E-05 (J)    |         |             |           |             |
| 1/17/2017  |              |              |         |             | <0.0005   |             |
| 2/28/2017  |              |              |         |             |           | 0.0001 (J)  |
| 3/1/2017   |              | <0.0005      |         |             |           |             |
| 3/2/2017   | <0.0005      |              |         |             |           |             |
| 3/8/2017   |              |              |         |             | <0.0005   |             |
| 4/26/2017  | <0.0005      | <0.0005      |         |             |           |             |
| 5/2/2017   |              |              |         |             | <0.0005   |             |
| 5/9/2017   |              |              |         |             |           | 0.0002 (J)  |
| 6/28/2017  | <0.0005      | <0.0005      |         |             |           |             |
| 7/7/2017   |              |              |         |             | <0.0005   |             |
| 7/13/2017  |              |              |         |             |           | 0.0002 (J)  |
| 9/22/2017  |              |              |         |             |           | 0.0002 (J)  |
| 9/29/2017  |              |              |         |             |           | 0.0002 (J)  |
| 10/6/2017  |              |              |         |             |           | 0.0002 (J)  |
| 10/12/2017 |              |              |         | 0.0002 (J)  |           |             |
| 11/21/2017 |              |              |         | 0.0002 (J)  |           |             |
| 1/11/2018  |              |              |         | 0.0004 (J)  |           |             |
| 2/20/2018  |              |              |         | <0.0005     |           |             |
| 3/28/2018  | <0.0005      | <0.0005      |         |             |           |             |
| 3/30/2018  |              |              |         |             | <0.0005   | <0.0005     |
| 4/3/2018   |              |              |         | <0.0005     |           |             |
| 6/12/2018  |              |              |         |             | <0.0005   |             |
| 6/13/2018  |              |              |         |             |           | 0.00019 (J) |
| 6/29/2018  |              |              |         | 0.00099 (J) |           |             |
| 8/6/2018   |              |              |         | 0.00063 (J) |           |             |
| 9/24/2018  |              |              |         | 0.00069 (J) |           |             |
| 9/26/2018  |              |              |         |             | <0.0005   | 0.00018 (J) |
| 10/16/2018 |              |              | <0.0005 |             |           |             |
| 2/27/2019  | <0.0005      | <0.0005      |         |             |           |             |
| 3/5/2019   |              |              |         |             | <0.0005   |             |
| 3/6/2019   |              |              |         |             |           | 0.00015 (J) |
| 4/1/2019   | <0.0005      | <0.0005      |         |             |           |             |
| 4/4/2019   |              |              |         |             | <0.0005   | 0.00019 (J) |
| 9/25/2019  | <0.0005      | <0.0005      |         |             |           |             |
| 9/26/2019  |              |              | <0.0005 |             | <0.0005   | 0.00017 (J) |
| 2/11/2020  |              | <0.0005      |         |             |           |             |
| 2/12/2020  | <0.0005      |              |         |             |           |             |
| 3/19/2020  | <0.0005      | <0.0005      |         |             |           |             |

Constituent: Cadmium (mg/L) Analysis Run 5/6/2021 8:36 PM

| 3/25/2020 | YGWA-3D (bg) | YGWA-3I (bg) | PZ-35<br>0.00016 (J) | PZ-37       | YGWC-24SA | YGWC-36A<br>0.00019 (J) |
|-----------|--------------|--------------|----------------------|-------------|-----------|-------------------------|
| 3/26/2020 |              |              |                      |             | <0.0005   |                         |
| 9/23/2020 | <0.0005      | <0.0005      |                      |             | <0.0005   |                         |
| 9/24/2020 |              |              | <0.0005              |             |           |                         |
| 9/25/2020 |              |              |                      | 0.00039 (J) |           |                         |
| 10/7/2020 |              |              |                      |             |           | 0.00012 (J)             |
| 2/9/2021  |              |              |                      | 0.00042 (J) | <0.0005   |                         |
| 2/10/2021 | <0.0005      | <0.0005      | <0.0005              |             |           | <0.0005                 |
| 3/3/2021  | <0.0005      | <0.0005      |                      |             | <0.0005   |                         |
| 3/4/2021  |              |              | <0.0005              | 0.00028 (J) |           | <0.0005                 |
|           |              |              |                      |             |           |                         |

Constituent: Calcium (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YAMW-1   | YAMW-2 | YAMW-4 | YAMW-5 | YGWA-17S (bg) | YGWA-18I (bg) | YGWA-18S (bg) | YGWA-20S (bg) | YGWA-21I (bg) |
|------------|----------|--------|--------|--------|---------------|---------------|---------------|---------------|---------------|
| 6/6/2016   |          |        |        |        |               | 6.2           | 1.4           |               |               |
| 6/7/2016   |          |        |        |        | 2.2           |               |               | 2.3           | 3.7           |
| 7/27/2016  |          |        |        |        | 2             | 4.73          | 1.19          | 2.08          |               |
| 7/28/2016  |          |        |        |        |               |               |               |               | 3.15          |
| 9/16/2016  |          |        |        |        | 1.97          |               | 1.5           |               |               |
| 9/19/2016  |          |        |        |        |               | 4.76          |               | 1.97          | 3.17          |
| 11/2/2016  |          |        |        |        |               |               |               | 2.13          |               |
| 11/3/2016  |          |        |        |        | 1.99          | 5.25          | 1.31          |               | 3.4           |
| 1/11/2017  |          |        |        |        | 2.28          | 4.74          | 1.25          |               |               |
| 1/13/2017  |          |        |        |        |               |               |               | 2.45          | 4.98          |
| 3/1/2017   |          |        |        |        |               | 5.37          | 1.26          |               |               |
| 3/2/2017   |          |        |        |        | 2.15          |               |               |               |               |
| 3/6/2017   |          |        |        |        |               |               |               | 2.48          | 6.28          |
| 4/26/2017  |          |        |        |        |               | 4.28          | 1.05          | 2.3           | 6.65          |
| 5/2/2017   |          |        |        |        | 1.95          |               |               |               |               |
| 6/28/2017  |          |        |        |        |               | 4.95          | 1.06          |               |               |
| 6/29/2017  |          |        |        |        | 2.02          |               |               | 2.54          | 6.04          |
| 10/3/2017  |          |        |        |        |               |               |               |               | 8.28          |
| 10/4/2017  |          |        |        |        | 2.03          |               | 1.1           | 2.25          |               |
| 10/5/2017  |          |        |        |        |               | 5.28          |               |               |               |
| 6/5/2018   |          |        |        |        |               |               |               |               | 9.1           |
| 6/6/2018   |          |        |        |        |               |               |               | 2.3           |               |
| 6/7/2018   |          |        |        |        |               | 4.8           |               |               |               |
| 6/11/2018  |          |        |        |        | 2.1           |               | 1.4           |               |               |
| 9/25/2018  |          |        |        |        | 2.1           | 4.6           | 1             | 2.3           | 10.4 (J)      |
| 10/16/2018 | 14.5 (J) |        |        |        |               |               |               |               |               |
| 4/2/2019   |          |        |        |        | 2.5           |               |               |               | 8.8           |
| 4/3/2019   |          |        |        |        |               | 5.3           | 1.2           | 2.9           |               |
| 9/24/2019  |          |        |        |        |               |               |               |               | 7.7           |
| 9/25/2019  |          |        |        |        | 2.6           |               |               | 2.4           |               |
| 9/26/2019  | 9.3      |        |        |        |               | 4.9           | 1.1           |               |               |
| 3/24/2020  |          |        |        |        | 2.7           | 5.3           | 1             | 2.6           | 6             |
| 3/25/2020  | 4.5      |        |        |        |               |               |               |               |               |
| 9/23/2020  |          | 1.7    | 10.5   |        | 2.6           | 5.2           | 0.91 (J)      |               |               |
| 9/24/2020  | 4.8      |        |        | 61.3   |               |               |               | 2.6           | 7.8           |
| 3/3/2021   | 6.9      | 1.5    | 20.6   |        | 2.5           | 5.2           | 0.96 (J)      | 2.4           |               |
| 3/4/2021   |          |        |        | 53.8   |               |               |               |               | 8.7           |

Constituent: Calcium (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YGWA-39 (bg) | YGWA-40 (bg) | YGWA-4I (bg) | YGWA-5D (bg) | YGWA-5I (bg) | YGWC-23S | YGWC-38 | YGWC-41 | YGWC-42 |
|------------|--------------|--------------|--------------|--------------|--------------|----------|---------|---------|---------|
| 6/2/2016   |              |              | 8.8          | 33           | 2.4          |          |         |         |         |
| 6/7/2016   |              |              |              |              |              | 9.6      |         |         |         |
| 7/26/2016  |              |              | 7.69         | 32.3         | 2.12         |          |         |         |         |
| 7/28/2016  |              |              |              |              |              | 7.87     |         |         |         |
| 8/30/2016  |              |              |              |              |              |          |         |         | 133     |
| 9/14/2016  |              |              | 8.49         | 31           | 2.18         |          |         |         |         |
| 9/20/2016  |              |              |              |              |              | 9.28     |         |         |         |
| 11/2/2016  |              |              | 7.83         | 30.9         |              |          |         |         |         |
| 11/4/2016  |              |              |              |              | 2.17 (J)     |          |         |         |         |
| 11/8/2016  |              |              |              |              |              | 8.6      |         |         |         |
| 11/16/2016 |              |              |              |              |              |          |         |         | 125     |
| 1/12/2017  |              |              |              | 35.7         | 2.37         |          |         |         |         |
| 1/13/2017  |              |              | 8.08         |              |              |          |         |         |         |
| 1/16/2017  |              |              |              |              |              | 8.85     |         |         |         |
| 2/27/2017  |              |              |              |              |              |          |         |         | 139     |
| 3/6/2017   |              |              | 8.64         |              |              |          |         |         |         |
| 3/7/2017   |              |              |              | 32.7         | 2.34         |          |         |         |         |
| 3/9/2017   |              |              |              |              |              | 8.4      |         |         |         |
| 5/1/2017   |              |              | 13.4         | 37           |              |          |         |         |         |
| 5/2/2017   |              |              |              |              | 2.17         | 12.9     |         |         |         |
| 5/10/2017  |              |              |              |              |              |          |         |         | 130     |
| 6/27/2017  |              |              |              | 36.5         | 2.13         |          |         |         |         |
| 6/29/2017  |              |              | 8.81         |              |              |          |         |         |         |
| 7/10/2017  |              |              |              |              |              | 8.09     |         |         |         |
| 7/11/2017  |              |              |              |              |              |          |         |         | 172     |
| 10/3/2017  |              |              |              | 30.9         | 2.15         |          |         |         |         |
| 10/5/2017  |              |              | 9.29         |              |              |          |         |         |         |
| 10/11/2017 | 2.74         |              |              |              |              | 6.36     |         |         |         |
| 10/12/2017 |              | 2.9          |              |              |              |          | 190     | 44.5    | 144     |
| 11/20/2017 | 1.81         | 10.4         |              |              |              |          | 184     |         |         |
| 11/21/2017 |              |              |              |              |              |          |         | 44.4    |         |
| 1/10/2018  |              | 10.2         |              |              |              |          |         |         |         |
| 1/11/2018  | 1.54         |              |              |              |              |          |         | 43.9    |         |
| 1/12/2018  |              |              |              |              |              |          | 178     |         |         |
| 2/19/2018  |              | <25          |              |              |              |          |         | 45.3    |         |
| 2/20/2018  | 1.71         |              |              |              |              |          | 184     |         |         |
| 4/3/2018   | 1.4          | 6.3          |              |              |              |          | 174     | 42.7    |         |
| 4/4/2018   |              |              |              |              |              |          |         |         | 137     |
| 6/6/2018   |              |              |              | 26.2         |              |          |         |         |         |
| 6/7/2018   |              |              | 8.2          |              | 2.3          |          |         |         |         |
| 6/12/2018  |              |              |              |              |              | 4.7      |         |         |         |
| 6/27/2018  |              |              |              |              |              |          |         | 42.2    |         |
| 6/28/2018  | 1.4          | 6.7          |              |              |              |          | 190     |         |         |
| 8/7/2018   | 1.2          | 6.3          |              |              |              |          | 176     | 40.7    |         |
| 9/20/2018  |              |              |              |              |              |          |         |         | 108     |
| 9/24/2018  | 1.1          | 5.7          |              |              |              |          | 172     | 38.5    |         |
| 9/26/2018  |              |              | 9.5 (J)      | 25.8         | 2.3          |          |         |         |         |
| 9/27/2018  |              |              |              |              |              | 4.1      |         |         |         |
| 3/26/2019  |              | 5.6          |              |              |              |          |         |         |         |
| 3/27/2019  | 1.5          |              |              |              |              |          | 155     |         | 109     |
| 3/28/2019  |              |              |              |              |              |          |         | 26      |         |
| 4/3/2019   |              |              | 8.4          | 24.7 (J)     | 2.8          |          |         |         |         |
|            |              |              |              |              |              |          |         |         |         |

Constituent: Calcium (mg/L) Analysis Run 5/6/2021 8:36 PM

|           | YGWA-39 (bg) | YGWA-40 (bg) | YGWA-4I (bg) | YGWA-5D (bg) | YGWA-5I (bg) | YGWC-23S | YGWC-38 | YGWC-41 | YGWC-42 |
|-----------|--------------|--------------|--------------|--------------|--------------|----------|---------|---------|---------|
| 4/4/2019  |              |              |              |              |              | 3.7      |         |         |         |
| 9/24/2019 |              |              |              | 25.8         | 2.5          |          |         |         |         |
| 9/25/2019 |              |              | 9.5          |              |              |          |         |         |         |
| 9/27/2019 |              |              |              |              |              | 3.7      |         |         |         |
| 10/9/2019 | 2.4          | 4.9          |              |              |              |          | 133     | 27.6    | 92      |
| 3/24/2020 |              | 4.8          |              | 26.1         | 2.5          |          |         |         |         |
| 3/25/2020 | 2.7          |              | 10.5         |              |              |          | 124     | 29.6    | 107     |
| 3/26/2020 |              |              |              |              |              | 5.6      |         |         |         |
| 9/22/2020 |              |              | 9.6          | 27.2         | 2.6          |          |         |         |         |
| 9/24/2020 | 3.7          | 4.4          |              |              |              | 7.9      |         |         | 84.3    |
| 9/25/2020 |              |              |              |              |              |          | 93.7    | 20.5    |         |
| 3/2/2021  |              |              |              | 1.6          | 2.6          |          |         |         |         |
| 3/3/2021  |              |              | 7.7          |              |              |          |         |         |         |
| 3/4/2021  | 8.2          | 4.6          |              |              |              | 10.2     | 87      | 16.4    | 90.7    |
|           |              |              |              |              |              |          |         |         |         |

Constituent: Calcium (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YGWC-43 | YGWC-49 | YGWA-47 (bg) | GWA-2 (bg) | YGWA-14S (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-2I (bg) | YGWA-30I (bg) |
|------------|---------|---------|--------------|------------|---------------|--------------|--------------|--------------|---------------|
| 6/1/2016   |         |         |              |            |               | 12           | 2.5          |              |               |
| 6/2/2016   |         |         |              |            | 1.3           |              |              |              | 1.3           |
| 7/25/2016  |         |         |              |            |               |              | 2.16         |              | 1.17          |
| 7/26/2016  |         |         |              |            | 1.24          | 11           |              |              |               |
| 8/30/2016  |         |         | 20.9         |            |               |              |              |              |               |
| 8/31/2016  | 3.4     |         |              | 9.31       |               |              |              |              |               |
| 9/1/2016   |         | 13.9    |              |            |               |              |              |              |               |
| 9/13/2016  |         |         |              |            |               | 11.8         | 2.21         |              |               |
| 9/14/2016  |         |         |              |            |               |              |              | 23.5         |               |
| 9/15/2016  |         |         |              |            | 1.17          |              |              |              |               |
| 9/19/2016  |         |         |              |            |               |              |              |              | 1.05          |
| 11/1/2016  |         |         |              |            |               | 11           |              |              | 1.14          |
| 11/2/2016  |         |         |              |            | 1.23          |              |              |              |               |
| 11/4/2016  |         |         |              |            |               |              | 2.67         | 23.7         |               |
| 11/14/2016 |         |         | 18.6         |            |               |              |              |              |               |
| 11/15/2016 |         | 13.5    |              |            |               |              |              |              |               |
| 11/16/2016 | 3.79    |         |              |            |               |              |              |              |               |
| 11/28/2016 |         |         |              | 9.47 (B)   |               |              |              |              |               |
| 12/15/2016 |         |         |              | (_)        |               |              |              | 23.1         |               |
| 1/10/2017  |         |         |              |            | 1 24          |              |              | 20.1         |               |
| 1/11/2017  |         |         |              |            |               | 11.2         |              |              |               |
| 1/16/2017  |         |         |              |            |               | 11.2         | 2.45         | 23.3         | 1 23          |
| 2/21/2017  |         |         |              |            |               |              | 2.45         | 20.0         | 1.25          |
| 2/21/2017  |         |         |              | 10.4       |               |              |              |              | 1.25          |
| 2/22/2017  | 6.40    |         | 16.1         | 10.4       |               |              |              |              |               |
| 2/24/2017  | 0.42    | 10 5    | 10.1         |            |               |              |              |              |               |
| 2/2//2017  |         | 12.5    |              |            |               |              | 0.57         |              |               |
| 3/2/2017   |         |         |              |            |               | 11           | 2.57         | 05.4         |               |
| 3/3/2017   |         |         |              |            |               |              |              | 25.1         |               |
| 3/8/2017   |         |         |              |            | 1.21          |              |              |              |               |
| 4/26/2017  |         |         |              |            | 1.14          |              |              |              | 1.03          |
| 4/2//2017  |         |         |              |            |               | 11.1         | 2.38         |              |               |
| 4/28/2017  |         |         |              |            |               |              |              | 30.7         |               |
| 5/8/2017   |         |         | 14.6         | 14.2       |               |              |              |              |               |
| 5/9/2017   |         | 14.4    |              |            |               |              |              |              |               |
| 5/10/2017  | 7.9     |         |              |            |               |              |              |              |               |
| 5/26/2017  |         |         |              |            |               |              |              | 26.2         |               |
| 6/27/2017  |         |         |              |            |               | 13.8         | 2.36         |              |               |
| 6/28/2017  |         |         |              |            |               |              |              | 26.1         |               |
| 6/30/2017  |         |         |              |            | 1.24          |              |              |              | 1.13          |
| 7/11/2017  | 6.71    |         | 14.3         |            |               |              |              |              |               |
| 7/13/2017  |         | 14.1    |              |            |               |              |              |              |               |
| 7/17/2017  |         |         |              | 14.1       |               |              |              |              |               |
| 10/3/2017  |         |         |              |            |               | 14           | 2.21         | 26.7         |               |
| 10/4/2017  |         |         |              |            |               |              |              |              | 1.09          |
| 10/5/2017  |         |         |              |            | 1.11          |              |              |              |               |
| 10/10/2017 |         |         | 12.1         |            |               |              |              |              |               |
| 10/11/2017 |         | 12.4    |              |            |               |              |              |              |               |
| 10/12/2017 | 7.05    |         |              |            |               |              |              |              |               |
| 10/16/2017 |         |         |              | 13.6       |               |              |              |              |               |
| 2/19/2018  |         |         |              | <25        |               |              |              |              |               |
| 4/2/2018   |         |         | <25          |            |               |              |              |              |               |
| 4/4/2018   | 8.6     | <25     |              |            |               |              |              |              |               |

Constituent: Calcium (mg/L) Analysis Run 5/6/2021 8:36 PM

|           | YGWC-43  | YGWC-49  | YGWA-47 (bg) | GWA-2 (bg) | YGWA-14S (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-2I (bg) | YGWA-30I (bg) |
|-----------|----------|----------|--------------|------------|---------------|--------------|--------------|--------------|---------------|
| 6/5/2018  |          |          |              |            |               | 15.2 (J)     |              |              |               |
| 6/6/2018  |          |          |              |            |               |              | 2.3          |              |               |
| 6/7/2018  |          |          |              |            |               |              |              | 25           |               |
| 6/8/2018  |          |          |              |            | 1.1           |              |              |              |               |
| 6/11/2018 |          |          |              |            |               |              |              |              | 1.1           |
| 8/6/2018  |          |          |              | 11.4 (J)   |               |              |              |              |               |
| 9/19/2018 |          |          | 11.1 (J)     |            |               |              |              |              |               |
| 9/20/2018 | 15.9 (J) | 12 (J)   |              |            |               |              |              |              |               |
| 10/1/2018 |          |          |              |            | 0.99          | 15.1         | 1.8          | 25           |               |
| 10/2/2018 |          |          |              |            |               |              |              |              | 1.1           |
| 2/25/2019 |          |          |              | 12.7 (J)   |               |              |              |              |               |
| 3/27/2019 |          |          | 10.8 (J)     |            |               |              |              |              |               |
| 3/28/2019 | 8.9      | 11.3 (J) |              |            |               | 13.3 (J)     | 2.2          |              |               |
| 3/29/2019 |          |          |              |            | 1.1           |              |              | 23.5 (J)     |               |
| 4/1/2019  |          |          |              |            |               |              |              |              | 1.3           |
| 6/12/2019 |          |          |              | 18.9       |               |              |              |              |               |
| 9/24/2019 |          |          |              |            |               | 15.8         | 2.3          | 26.4         |               |
| 9/25/2019 |          |          |              |            | 1.1           |              |              |              | 1.1           |
| 9/26/2019 |          | 12.1     |              |            |               |              |              |              |               |
| 10/8/2019 |          |          | 9.7          | 28.3       |               |              |              |              |               |
| 10/9/2019 | 18.2     |          |              |            |               |              |              |              |               |
| 3/17/2020 |          |          | 14.8         | 24.3       |               |              |              |              |               |
| 3/18/2020 |          |          |              |            | 1.1           |              | 2.1          |              |               |
| 3/19/2020 |          |          |              |            |               | 15           |              | 27.4         | 1.2           |
| 3/25/2020 | 12.1     | 13.2     |              |            |               |              |              |              |               |
| 9/22/2020 |          |          | 10.1         | 31         |               |              |              |              |               |
| 9/23/2020 |          |          |              |            |               | 14.1         | 1.8          | 26.3         |               |
| 9/24/2020 |          | 12       |              |            |               |              |              |              | 1.1           |
| 9/25/2020 | 19.8     |          |              |            | 1.3           |              |              |              |               |
| 3/1/2021  |          |          | 10.3         |            |               |              |              |              | 1.2           |
| 3/2/2021  |          |          |              | 34.2       | 1.2           |              |              |              |               |
| 3/3/2021  |          |          |              |            |               | 14.1         | 1.8          | 25.6         |               |
| 3/4/2021  | 32.2     | 13       |              |            |               |              |              |              |               |

Constituent: Calcium (mg/L) Analysis Run 5/6/2021 8:36 PM

|            |              |              | D7 25 | D7 27 | VCIMC 248A | VCIMC 224 |
|------------|--------------|--------------|-------|-------|------------|-----------|
| 6/1/2016   | rGWA-3D (bg) | rGWA-3I (bg) | PZ-35 | PZ-37 | IGWC-245A  | TGWC-30A  |
| 6/2/2016   | 28           | 21           |       |       |            |           |
| 6/8/2016   | 20           |              |       |       | 1 9        |           |
| 7/25/2016  |              | 20.3         |       |       | 1.5        |           |
| 7/26/2016  | 24.5         | 20.0         |       |       |            |           |
| 8/1/2016   | 24.0         |              |       |       | 1.83       |           |
| 9/2/2016   |              |              |       |       |            | 11.2      |
| 9/14/2016  |              | 19.7         |       |       |            |           |
| 9/15/2016  | 27           |              |       |       |            |           |
| 9/20/2016  |              |              |       |       | 1.78       |           |
| 11/1/2016  | 25.6         | 18.4         |       |       |            |           |
| 11/8/2016  |              |              |       |       | 1.77       |           |
| 11/14/2016 |              |              |       |       |            | 7.79      |
| 1/11/2017  | 27.5         | 20.3         |       |       |            |           |
| 1/17/2017  |              |              |       |       | 1.7        |           |
| 2/28/2017  |              |              |       |       |            | 8.37      |
| 3/1/2017   |              | 18.6         |       |       |            |           |
| 3/2/2017   | 27.5         |              |       |       |            |           |
| 3/8/2017   |              |              |       |       | 1.77       |           |
| 4/26/2017  | 30.4         | 25.6         |       |       |            |           |
| 5/2/2017   |              |              |       |       | 1.57       |           |
| 5/9/2017   |              |              |       |       |            | 13.9      |
| 6/28/2017  | 29.8         | 23.9         |       |       |            |           |
| 7/7/2017   |              |              |       |       | 1.8        |           |
| 7/13/2017  |              |              |       |       |            | 16.6      |
| 9/22/2017  |              |              |       |       |            | 18.4      |
| 9/29/2017  |              |              |       |       |            | 16.1      |
| 10/4/2017  | 29.7         | 22.1         |       |       |            |           |
| 10/5/2017  |              |              |       |       | 1.7        |           |
| 10/6/2017  |              |              |       |       |            | 16.6      |
| 10/11/2017 |              |              |       |       |            | 18.1      |
| 10/12/2017 |              |              |       | 122   |            |           |
| 11/21/2017 |              |              |       | 118   |            |           |
| 1/11/2018  |              |              |       | 119   |            |           |
| 2/20/2018  |              |              |       | 124   |            |           |
| 4/3/2018   |              |              |       | 114   |            |           |
| 6/7/2018   | 29.1         |              |       |       |            |           |
| 6/8/2018   |              | 21.9 (J)     |       |       |            |           |
| 6/12/2018  |              |              |       |       | 1.8        |           |
| 6/13/2018  |              |              |       |       |            | 18.7 (J)  |
| 6/29/2018  |              |              |       | 129   |            |           |
| 8/6/2018   |              |              |       | 114   |            |           |
| 9/24/2018  |              |              |       | 115   |            |           |
| 9/26/2018  |              |              |       |       | 1.7        | 19.8 (J)  |
| 10/1/2018  | 26.9         | 19.7         |       |       |            |           |
| 10/16/2018 |              |              | 6.5   |       |            |           |
| 4/1/2019   | 30.1         | 20.4 (J)     |       |       |            |           |
| 4/4/2019   |              |              |       |       | 1.9        | 16.9 (J)  |
| 9/25/2019  | 29.5         | 22.4         |       |       |            |           |
| 9/26/2019  |              |              | 4.7   |       | 1.7        | 11.7      |
| 3/19/2020  | 31.5         | 21.9         | 7.0   |       |            |           |
| 3/25/2020  |              |              | 7.9   |       |            | 10.6      |

Constituent: Calcium (mg/L) Analysis Run 5/6/2021 8:36 PM

|           | YGWA-3D (bg) | YGWA-3I (bg) | PZ-35 | PZ-37 | YGWC-24SA | YGWC-36A |
|-----------|--------------|--------------|-------|-------|-----------|----------|
| 3/26/2020 |              |              |       |       | 1.7       |          |
| 9/23/2020 | 28.6         | 23.6         |       |       | 2.4       |          |
| 9/24/2020 |              |              | 3.6   |       |           |          |
| 9/25/2020 |              |              |       | 108   |           |          |
| 10/7/2020 |              |              |       |       |           | 9.9      |
| 3/3/2021  | 29.8         | 20.6         |       |       | 2.4       |          |
| 3/4/2021  |              |              | 4.4   | 118   |           | 5.6      |
|           |              |              |       |       |           |          |

Constituent: Chloride (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YAMW-1 | YAMW-2 | YAMW-4 | YAMW-5 | YGWA-17S (bg) | YGWA-18I (bg) | YGWA-18S (bg) | YGWA-20S (bg) | YGWA-21I (bg) |
|------------|--------|--------|--------|--------|---------------|---------------|---------------|---------------|---------------|
| 6/6/2016   |        |        |        |        |               | 6.8           | 6.4           |               |               |
| 6/7/2016   |        |        |        |        | 4.5           |               |               | 1.9           | 2.8           |
| 7/27/2016  |        |        |        |        | 4.5           | 6.7           | 6.2           | 1.9           |               |
| 7/28/2016  |        |        |        |        |               |               |               |               | 2.6           |
| 9/16/2016  |        |        |        |        | 4.5           |               | 6.1           |               |               |
| 9/19/2016  |        |        |        |        |               | 7             |               | 1.9           | 2.4           |
| 11/2/2016  |        |        |        |        |               |               |               | 2.6           |               |
| 11/3/2016  |        |        |        |        | 5.4           | 7.5           | 7.4           |               | 2.9           |
| 1/11/2017  |        |        |        |        | 4.7           | 6.5           | 6.1           |               |               |
| 1/13/2017  |        |        |        |        |               |               |               | 2.3           | 2.5           |
| 3/1/2017   |        |        |        |        |               | 6.9           | 6             |               |               |
| 3/2/2017   |        |        |        |        | 4.8           |               |               |               |               |
| 3/6/2017   |        |        |        |        |               |               |               | 1.9           | 2.1           |
| 4/26/2017  |        |        |        |        |               | 7             | 6.5           | 2             | 2.1           |
| 5/2/2017   |        |        |        |        | 4.6           |               |               |               |               |
| 6/28/2017  |        |        |        |        |               | 7             | 6.4           |               |               |
| 6/29/2017  |        |        |        |        | 4.5           |               |               | 2.6           | 2.8           |
| 10/3/2017  |        |        |        |        |               |               |               |               | 2.2           |
| 10/4/2017  |        |        |        |        | 4.7           |               | 6.8           | 2.6           |               |
| 10/5/2017  |        |        |        |        |               | 7             |               |               |               |
| 6/5/2018   |        |        |        |        |               |               |               |               | 1.7           |
| 6/6/2018   |        |        |        |        |               |               |               | 2.7           |               |
| 6/7/2018   |        |        |        |        |               | 6.8           |               |               |               |
| 6/11/2018  |        |        |        |        | 4.9           |               | 6.8           |               |               |
| 9/25/2018  |        |        |        |        | 5.6           | 7.9           | 7.8           | 3.6           | 2.2           |
| 10/16/2018 | 12.1   |        |        |        |               |               |               |               |               |
| 4/2/2019   |        |        |        |        | 4.8           |               |               |               | 2.5           |
| 4/3/2019   |        |        |        |        |               | 6.9           | 6.3           | 3.1           |               |
| 9/24/2019  |        |        |        |        |               |               |               |               | 3.1           |
| 9/25/2019  |        |        |        |        | 5.7           |               |               | 2.8           |               |
| 9/26/2019  | 6.4    |        |        |        |               | 7             | 7.1           |               |               |
| 3/24/2020  |        |        |        |        | 5             | 7             | 6.8           | 2.7           | 2.8           |
| 3/25/2020  | 7.7    |        |        |        |               |               |               |               |               |
| 9/23/2020  |        | 2.7    | 1.8    |        | 6.6           | 7.2           | 7.2           |               |               |
| 9/24/2020  | 6.6    |        |        | 3.7    |               |               |               | 2.7           | 2             |
| 3/3/2021   | 6.1    | 2.5    | 22.9   |        | 7.1           | 7             | 7.2           | 2.7           |               |
| 3/4/2021   |        |        |        | 3.7    |               |               |               |               | 1.8           |

Constituent: Chloride (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YGWA-39 (bg) | YGWA-40 (bg) | YGWA-4I (bg) | YGWA-5D (bg) | YGWA-5I (bg) | YGWC-23S | YGWC-38 | YGWC-41 | YGWC-42 |
|------------|--------------|--------------|--------------|--------------|--------------|----------|---------|---------|---------|
| 6/2/2016   |              |              | 3.7          | 7.2          | 4.3          |          |         |         |         |
| 6/7/2016   |              |              |              |              |              | 2.9      |         |         |         |
| 7/26/2016  |              |              | 3.6          | 6.6          | 4.4          |          |         |         |         |
| 7/28/2016  |              |              |              |              |              | 3.5      |         |         |         |
| 8/30/2016  |              |              |              |              |              |          |         |         | 4.4     |
| 9/14/2016  |              |              | 3.4          | 6.6          | 3.8          |          |         |         |         |
| 9/20/2016  |              |              |              |              |              | 2.4      |         |         |         |
| 11/2/2016  |              |              | 4.5          | 7.6          |              |          |         |         |         |
| 11/4/2016  |              |              |              |              | 4.8          |          |         |         |         |
| 11/8/2016  |              |              |              |              |              | 2.8      |         |         |         |
| 11/16/2016 |              |              |              |              |              |          |         |         | 4.7     |
| 1/12/2017  |              |              |              | 6.8          | 3.8          |          |         |         |         |
| 1/13/2017  |              |              | 4.2          |              |              |          |         |         |         |
| 1/16/2017  |              |              |              |              |              | 1.8      |         |         |         |
| 2/27/2017  |              |              |              |              |              |          |         |         | 4.7     |
| 3/6/2017   |              |              | 3.6          |              |              |          |         |         |         |
| 3/7/2017   |              |              | 0.0          | 6.8          | 4.5          |          |         |         |         |
| 3/9/2017   |              |              |              | 0.0          |              | 17       |         |         |         |
| 5/1/2017   |              |              | 13           | 72           |              |          |         |         |         |
| 5/2/2017   |              |              | 4.5          | 1.2          | 4.6          | 1.8      |         |         |         |
| 5/10/2017  |              |              |              |              | 4.0          | 1.0      |         |         | 11      |
| 6/27/2017  |              |              |              | 7            | 13           |          |         |         | 4.4     |
| 6/20/2017  |              |              | 4.2          | 7            | 4.5          |          |         |         |         |
| 7/10/2017  |              |              | 4.2          |              |              | 1.0      |         |         |         |
| 7/10/2017  |              |              |              |              |              | 1.9      |         |         | 47      |
| 10/2/2017  |              |              |              | 0.5          | 4.0          |          |         |         | 4.7     |
| 10/3/2017  |              |              | 47           | 0.5          | 4.2          |          |         |         |         |
| 10/5/2017  | 2.4          |              | 4.7          |              |              | 0.4      |         |         |         |
| 10/11/2017 | 2.4          |              |              |              |              | 2.4      |         |         | 10      |
| 10/12/2017 |              | 3.8          |              |              |              |          | 6       | 3.1     | 4.3     |
| 11/20/2017 | 1.8          | 4.4          |              |              |              |          | 6.9     | 10      |         |
| 11/21/2017 |              |              |              |              |              |          |         | 4.2     |         |
| 1/10/2018  |              | 4.6          |              |              |              |          |         |         |         |
| 1/11/2018  | 1.6          |              |              |              |              |          |         | 3.8     |         |
| 1/12/2018  |              |              |              |              |              |          | 6.6     |         |         |
| 2/19/2018  |              | 4.6          |              |              |              |          |         | 3.5     |         |
| 2/20/2018  | 2            |              |              |              |              |          | 6.2     |         |         |
| 4/3/2018   | 3.3          | 5.9          |              |              |              |          | 6.9     | 4.4     |         |
| 4/4/2018   |              |              |              |              |              |          |         |         | 3.7     |
| 6/6/2018   |              |              |              | 4.7          |              |          |         |         |         |
| 6/7/2018   |              |              | 4.4          |              | 4.5          |          |         |         |         |
| 6/12/2018  |              |              |              |              |              | 1.8      |         |         |         |
| 6/27/2018  |              |              |              |              |              |          |         | 3.6     |         |
| 6/28/2018  | 2.1          | 5            |              |              |              |          | 6.4     |         |         |
| 8/7/2018   | 1.2          | 4.3          |              |              |              |          | 5.5     | 3.3     |         |
| 9/20/2018  |              |              |              |              |              |          |         |         | 3.8     |
| 9/24/2018  | 1.3          | 4.9          |              |              |              |          | 5.9     | 3.3     |         |
| 9/26/2018  |              |              | 4.8          | 4.8          | 5.1          |          |         |         |         |
| 9/27/2018  |              |              |              |              |              | 2        |         |         |         |
| 3/26/2019  |              | 4.4          |              |              |              |          |         |         |         |
| 3/27/2019  | 1.4          |              |              |              |              |          | 6.2     |         | 3.9     |
| 3/28/2019  |              |              |              |              |              |          |         | 3.2     |         |
| 4/3/2019   |              |              | 4.3          | 4            | 4.2          |          |         |         |         |
Constituent: Chloride (mg/L) Analysis Run 5/6/2021 8:36 PM

|           | YGWA-39 (bg) | YGWA-40 (bg) | YGWA-4I (bg) | YGWA-5D (bg) | YGWA-5I (bg) | YGWC-23S | YGWC-38 | YGWC-41 | YGWC-42 |
|-----------|--------------|--------------|--------------|--------------|--------------|----------|---------|---------|---------|
| 4/4/2019  |              |              |              |              |              | 1.7      |         |         |         |
| 9/24/2019 |              |              |              | 3.7          | 4.5          |          |         |         |         |
| 9/25/2019 |              |              | 4.5          |              |              |          |         |         |         |
| 9/27/2019 |              |              |              |              |              | 1.7      |         |         |         |
| 10/9/2019 | 2.1          | 5.1          |              |              |              |          | 5       | 3.3     | 4.1     |
| 3/24/2020 |              | 4.7          |              | 3.5          | 4.3          |          |         |         |         |
| 3/25/2020 | 1.9          |              | 3.9          |              |              |          | 4       | 2.7     | 3.2     |
| 3/26/2020 |              |              |              |              |              | 1.6      |         |         |         |
| 9/22/2020 |              |              | 4.5          | 3.6          | 4.2          |          |         |         |         |
| 9/24/2020 | 2.7          | 5            |              |              |              | 2        |         |         | 3.3     |
| 9/25/2020 |              |              |              |              |              |          | 4       | 3       |         |
| 3/2/2021  |              |              |              | 3.2          | 4.3          |          |         |         |         |
| 3/3/2021  |              |              | 4.1          |              |              |          |         |         |         |
| 3/4/2021  | 4.9          | 4.9          |              |              |              | 1.8      | 3.9     | 3.4     | 2.7     |
|           |              |              |              |              |              |          |         |         |         |

Constituent: Chloride (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YGWC-43 | YGWC-49 | YGWA-47 (bg) | GWA-2 (bg) | YGWA-14S (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-2I (bg) | YGWA-30I (bg) |
|------------|---------|---------|--------------|------------|---------------|--------------|--------------|--------------|---------------|
| 6/1/2016   |         |         |              |            |               | 1.3          | 1.6          |              |               |
| 6/2/2016   |         |         |              |            | 4.1           |              |              |              | 1.9           |
| 7/25/2016  |         |         |              |            |               |              | 1.4          |              | 1.7           |
| 7/26/2016  |         |         |              |            | 4             | 1.2          |              |              |               |
| 8/30/2016  |         |         | 5.2          |            |               |              |              |              |               |
| 8/31/2016  | 1.5     |         |              | 4          |               |              |              |              |               |
| 9/1/2016   |         | 5.3     |              |            |               |              |              |              |               |
| 9/13/2016  |         |         |              |            |               | 11           | 13           |              |               |
| 9/14/2016  |         |         |              |            |               |              |              | 11           |               |
| 9/15/2016  |         |         |              |            | 12            |              |              |              |               |
| 9/19/2016  |         |         |              |            | 7.2           |              |              |              | 16            |
| 11/1/2016  |         |         |              |            |               | 1.2          |              |              | 1.0           |
| 11/2/2016  |         |         |              |            | 4.0           | 1.5          |              |              | 1.0           |
| 11/2/2016  |         |         |              |            | 4.9           |              | 1.0          |              |               |
| 11/4/2016  |         |         |              |            |               |              | 1.0          | 1.4          |               |
| 11/14/2016 |         |         | 6.4          |            |               |              |              |              |               |
| 11/15/2016 |         | 5.8     |              |            |               |              |              |              |               |
| 11/16/2016 | 1.7     |         |              |            |               |              |              |              |               |
| 11/28/2016 |         |         |              | 4.2        |               |              |              |              |               |
| 12/15/2016 |         |         |              |            |               |              |              | 2.9          |               |
| 1/10/2017  |         |         |              |            | 4.1           |              |              |              |               |
| 1/11/2017  |         |         |              |            |               | 1.1          |              |              |               |
| 1/16/2017  |         |         |              |            |               |              | 1.4          | 0.98         | 1.7           |
| 2/21/2017  |         |         |              |            |               |              |              |              | 1.7           |
| 2/22/2017  |         |         |              | 3.7        |               |              |              |              |               |
| 2/24/2017  | 1.5     |         | 5.5          |            |               |              |              |              |               |
| 2/27/2017  |         | 4.6     |              |            |               |              |              |              |               |
| 3/2/2017   |         |         |              |            |               | 1            | 1.3          |              |               |
| 3/3/2017   |         |         |              |            |               |              |              | 1.1          |               |
| 3/8/2017   |         |         |              |            | 4.2           |              |              |              |               |
| 4/26/2017  |         |         |              |            | 4.1           |              |              |              | 1.7           |
| 4/27/2017  |         |         |              |            |               | 1            | 1.3          |              |               |
| 4/28/2017  |         |         |              |            |               |              |              | 0.91         |               |
| 5/8/2017   |         |         | 5.8          | 42         |               |              |              |              |               |
| 5/9/2017   |         | 53      |              |            |               |              |              |              |               |
| 5/10/2017  | 12      | 0.0     |              |            |               |              |              |              |               |
| 5/26/2017  | 1.2     |         |              |            |               |              |              | 0.93         |               |
| 6/27/2017  |         |         |              |            |               | 1 1          | 14           | 0.00         |               |
| 6/28/2017  |         |         |              |            |               | 1.1          | 1.4          | 1            |               |
| 0/28/2017  |         |         |              |            | 2.7           |              |              | 1            | 1.0           |
| 0/30/2017  | 1 5     |         | F 9          |            | 3.7           |              |              |              | 1.0           |
| 7/11/2017  | 1.5     | 4.7     | ə.ŏ          |            |               |              |              |              |               |
| 7/13/2017  |         | 4./     |              |            |               |              |              |              |               |
| //1//2017  |         |         |              | 3.8        |               |              |              |              |               |
| 10/3/2017  |         |         |              |            |               | 1.1          | 1.7          | 1.2          |               |
| 10/4/2017  |         |         |              |            |               |              |              |              | 1.8           |
| 10/5/2017  |         |         |              |            | 3.8           |              |              |              |               |
| 10/10/2017 |         |         | 5.9          |            |               |              |              |              |               |
| 10/11/2017 |         | 5.8     |              |            |               |              |              |              |               |
| 10/12/2017 | 1.6     |         |              |            |               |              |              |              |               |
| 10/16/2017 |         |         |              | 4.2        |               |              |              |              |               |
| 2/19/2018  |         |         |              | 4.3        |               |              |              |              |               |
| 4/2/2018   |         |         | 4.8          |            |               |              |              |              |               |
| 4/4/2018   | 1.8     | 4.3     |              |            |               |              |              |              |               |

| 65/20191.164/201914164/20183.4164/20183.8264/20183.81.161/202084.81.161/202084.81.110/202084.81.110/202084.31.110/202084.31.110/202084.31.110/202084.31.110/202084.31.110/202084.31.110/202084.31.110/202084.31.110/202084.41.120/2020951.110/2020951.110/2020951.110/2020951.110/2020951.110/202094.45210/2020951.110/2020951.110/2020951.110/2020951.110/202096.11.110/2020951.110/202091.11.310/202091.11.310/202091.11.310/202091.11.310/202091.11.310/202091.11.310/202091.11.310/202091.11.310/202091.11.310/202091.11.310/202091.11.310/202091.11.310/202091.1 <th></th> <th>YGWC-43</th> <th>YGWC-49</th> <th>YGWA-47 (bg)</th> <th>GWA-2 (bg)</th> <th>YGWA-14S (bg)</th> <th>YGWA-1D (bg)</th> <th>YGWA-1I (bg)</th> <th>YGWA-2I (bg)</th> <th>YGWA-30I (bg)</th>                                                                                                                                                                                                                                                                                                                                                                        |           | YGWC-43 | YGWC-49 | YGWA-47 (bg) | GWA-2 (bg) | YGWA-14S (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-2I (bg) | YGWA-30I (bg) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|---------|--------------|------------|---------------|--------------|--------------|--------------|---------------|
| 66/20181.467/20183.4167/20183.4261/12/013.8291/20184.81.110/12/20184.81.110/202084.81.122/202094.81.122/202094.81.122/202094.81.122/202094.81.122/202094.11.122/202094.11.122/202094.11.122/202094.11.122/202094.11.121/202094.11.121/202094.11.121/202094.11.121/202094.11.121/2020951.121/202094.45.121/202094.45.121/2020951.121/202094.45.121/202094.45.221/202094.45.221/202095.11.121/202094.14.221/202094.11.121/202095.21.121/202095.21.121/202094.25.221/202095.35.121/202095.35.121/202095.35.121/202095.35.121/202095.35.121/202095.35.121/202095.35.121/202095.35.121/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6/5/2018  |         |         |              |            |               | 1.1          |              |              |               |
| 67/20183.43.43.468/20183.83.84.45.891/920201.94.84.84.410//22034.83.81.11.410//22034.84.44.45.4225/20194.34.31.41.6225/20194.34.44.45.4225/20194.34.44.71.2225/201954.71.11.2225/20196.34.46.45.4225/201974.37.41.6225/201974.37.41.6225/201977.47.41.6225/201977.47.41.6225/201977.47.41.6225/201977.47.47.4225/201977.47.47.4225/201977.47.47.4225/201977.47.47.4225/201977.47.47.4225/201977.47.47.4225/20197.47.47.47.4225/20197.47.47.47.4225/20197.47.47.47.4225/20197.47.47.47.4225/20197.47.47.47.4225/20197.47.47.47.4225/20197.47.47.47.4 <tr< td=""><td>6/6/2018</td><td></td><td></td><td></td><td></td><td></td><td></td><td>1.4</td><td></td><td></td></tr<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6/6/2018  |         |         |              |            |               |              | 1.4          |              |               |
| 3491920182919201839192018391920184920201811192020181110/220181110/220181112/220191111111122/201911111111111111111111111111111111111111111111111 <td>6/7/2018</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6/7/2018  |         |         |              |            |               |              |              | 1            |               |
| 61120183.899192018449202018194.89202018194.89202018194.892220204.31.192220204.31.192220204.31.292220204.41.19222020184.49222020184.4922202051.1922202051.1922202051.1922202051.1922202051.1922202051.1922202051.192220204.11.1922202051.1922202051.192220201.11.192220201.11.192220201.11.192220201.11.192220201.11.192220201.11.192220201.11.192220201.11.192220201.11.192220201.11.192220201.11.292220201.11.292220201.11.292220201.11.292220201.11.292220201.11.292220201.11.292220201.11.292220201.11.292220201.11.292220201.11.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6/8/2018  |         |         |              |            | 3.4           |              |              |              |               |
| 389/19/201849/19/2018194.810/1/20183.81.11.410/20183.81.11.410/20184.31.11.42/27/0194.31.41.53/28/20194.31.41.53/28/20191.84.41.411/20194.71.111/20194.71.19/24/201954.79/24/201954.89/24/201951.19/24/201951.19/24/201951.19/24/20194.45.19/24/20194.45.19/24/20194.45.19/24/20194.15.19/24/20194.14.89/24/20194.15.29/24/20194.15.29/24/20194.15.29/24/20194.15.29/24/20195.29/24/20195.29/24/20194.39/24/20195.29/24/20195.39/22/20206.69/22/20205.39/22/20205.39/22/20205.39/22/20205.39/22/20205.39/22/20205.39/22/20205.39/22/20205.49/22/20205.49/22/20205.49/22/20205.49/22/20205.49/22/20205.4 <t< td=""><td>6/11/2018</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                        | 6/11/2018 |         |         |              |            |               |              |              |              | 2             |
| 9192011,949202031,94,81,11,41,110/20184,11,11,81,21,82520194,31,41,51,21,22520201,84,41,41,51,22520201,84,41,41,21,22520201,84,41,41,30,95()2520201,84,41,11,30,95()25202051,11,30,95()925201951,11,41,4925202051,11,41,492520204,14,81,11,492520201,84,11,11,492520201,84,11,11,492520201,84,11,11,492520201,84,11,11,492520201,84,11,11,492520201,84,11,11,492520201,84,11,11,21,692520201,84,11,11,21,592520202,35,35,35,35,3925202155,35,35,35,3925202155,35,35,35,3925202155,35,35,35,3925202155,45,35,35,3925202155,45,45,49252                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8/6/2018  |         |         |              | 3.8        |               |              |              |              |               |
| 92020181.94.8101/2018II1.41.1102/2018IIII2252019IIII3272019IIII322019IIIII322019IIIII322019IIIII322019IIIII9242019IIIII9242019IIIII9242019IIIII9242019IIIII9242019IIIII9242019IIIIII9242019IIIIII9242019IIIIII9242019IIIIII925020IIIIII917020IIIIII917020IIIIII922020IIIIII922020IIIIII922020IIIIII922020IIIIII922020IIIIII922020II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9/19/2018 |         |         | 4            |            |               |              |              |              |               |
| 10//2018       3.8       1.1       1.4       1.1         10/2018       3.8       1.0       1.4       1.4         2/25/019       4.3       1.4       1.5       1.4         3/28/019       1.8       4.4       1.4       1.5       1.7         3/29/019       1.8       4.4       1.4       1.5       1.7         3/29/019       1.8       4.4       1.4       1.5       1.7         9/29/019       1.8       4.4       1.4       1.5       1.7         9/24/019       1.8       4.4       1.4       1.5       1.6         9/24/019       5       1.1       1.3       0.95(.0)       1.6         9/24/019       5       1.1       1.3       0.95(.0)       1.6         9/24/019       5       1.1       1.3       0.95(.0)       1.6         9/24/019       5       1.1       1.3       0.95(.0)       1.6         9/24/019       2.3       1.1       1.1       0.97(.0)       1.8         9/17/020       1.8       1.1       0.97(.0)       1.8       1.1         9/24/019       1.8       1.1       0.97(.0)       1.8       1.1     <                                                                                                             | 9/20/2018 | 1.9     | 4.8     |              |            |               |              |              |              |               |
| 10/2018       1.8         2252019       4.1         3272019       4.3         328/019       1.8         329/019       1.4         329/019       1.2         329/019       1.2         4/1/2019       1.2         4/1/2019       1.2         9/24/019       1.3         9/24/019       4.7         9/24/019       1.1         9/24/019       4.7         9/24/019       4.8         9/24/019       5         10/90/019       5         10/90/019       5         11/100       1.3         11/100       1.4         11/100       1.4         11/100       1.4         11/100       1.4         11/100       1.4         11/100       1.4         11/100       1.4         11/100       1.4         11/100       1.4         11/100       1.4         11/100       1.4         11/100       1.4         11/100       1.5         11/100       1.5         11/100       1.6         11/100                                                                                                                                                                                                                                                             | 10/1/2018 |         |         |              |            | 3.8           | 1.1          | 1.4          | 1.1          |               |
| 2252019       4.1         3127/2019       4.3         3128/2019       1.8       4.4         3129/2019       1.8         3129/2019       1.8         3129/2019       2.2         3129/2019       1.2         3129/2019       1.1         3129/2019       1.1         3129/2019       3.1         3129/2019       4.7         3129/2019       5         3129/2019       5         3129/2019       5         3129/2019       5         3139/2020       5         3111       1.3         3119/2020       5.1         3119/2020       1.4         3119/2020       1.8         3119/2020       1.8         3129/2020       1.8         3139/2020       1.8         3129/2020       1.8         3129/2020       1.8         3129/2020       3.6         329/2020       3.6         329/2020       3.6         329/2020       3.6         329/2020       3.6         329/2020       3.6         329/2020       3.6         329                                                                                                                                                                                                                             | 10/2/2018 |         |         |              |            |               |              |              |              | 1.8           |
| 32720194.3328/0191.84.41.41.5329/0191.21.21.741/20191.21.71.761/320191.41.11.30.95 (J)924/20191.11.30.95 (J)924/201951.11.30.95 (J)926/201951.11.30.95 (J)926/201951.11.30.95 (J)917/02064.45.11.11.3917/0201.45.11.11.4917/92021.45.21.10.97 (J)1.8917/92021.84.15.21.10.97 (J)1.8912/20201.84.15.21.10.97 (J)1.8912/20201.84.15.21.11.20.88 (J)912/20201.85.35.35.35.3912/20211.41.41.41.51.6912/20211.41.41.41.51.6912/20211.31.41.51.51.5912/20211.65.35.35.35.35.3912/20211.41.41.51.61.6912/20211.41.41.61.61.6912/20211.41.41.61.6912/20211.41.41.61.6912/20211.41.41.61.6912/20211.4 <td< td=""><td>2/25/2019</td><td></td><td></td><td></td><td>4.1</td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                               | 2/25/2019 |         |         |              | 4.1        |               |              |              |              |               |
| 3/28/2019       1.8       4.4       1.4       1.5         3/29/2019       2.2       1.2       1.7         6/12/2019       4.7       1.1       1.3       0.95 (J)         9/24/2019       4.7       1.1       1.3       0.95 (J)         9/25/2019       4.7       1.1       1.3       0.95 (J)         9/25/2019       5       1.1       1.3       0.95 (J)         10/8/2019       5       1.1       1.3       0.95 (J)         10/8/2019       5       1.1       1.3       0.95 (J)         10/8/2019       4.4       5.1       1.1       1.4       1.4         11/12/202       4.4       5.1       1.1       0.97 (J)       1.8         11/12/202       4.1       4.8       1.1       0.97 (J)       1.8         11/12/202       4.1       5.2       1.1       0.97 (J)       1.8         12/22/202       1.4       4.2       2.2       1.1       0.97 (J)       1.8         12/22/202       4.6       9.99 (J)       1.2       0.88 (J)       1.5         12/22/202       4.6       5.3       1.5       1.5       1.6         12/22/202       3.7                                                                                              | 3/27/2019 |         |         | 4.3          |            |               |              |              |              |               |
| 329/2019       4/2       12         4/1/2019       4.7       1.7         9/2/2019       1.1       1.3       0.95 (.)         9/2/2019       5       1.1       1.3       0.95 (.)         9/2/2019       5       1.1       1.3       0.95 (.)         10/8/2019       5       1.1       1.3       0.95 (.)         10/8/2019       5       1.4       1.6       1.6         9/2/2019       4.4       5.1       1.1       1.3       0.95 (.)         10/9/2019       2.3       4.1       4.8       1.1       0.97 (.)       1.8         3/1/2020       1.8       4.1       4.8       1.1       0.97 (.)       1.8         3/1/2020       1.8       4.1       4.8       1.1       0.97 (.)       1.8         3/1/2020       1.8       4.1       4.2       2       1.1       0.97 (.)       1.8         9/2/2020       1.8       4.1       5.3       1.5       1.5         9/2/2020       2.3       3.7       5.3       1.6       1.6         9/2/2021       3.7       3.7       1.6       1.6         9/2/2021       0.96 (.)       1.2                                                                                                                | 3/28/2019 | 1.8     | 4.4     |              |            |               | 1.4          | 1.5          |              |               |
| 4/1/2019       1.7         6/1/2019       1.7         9/2/2019       1.1       1.3       0.95 (J)         9/2/2019       5       1.6         9/2/2019       5       1.6         10/8/2019       64.4       5.1       1.6         10/9/2019       2.3       4.1       4.8       1.4         3/17/202       4.1       4.8       1.4       1.1         3/12/202       4.1       4.8       1.1       0.97 (J)       1.8         3/12/202       4.1       4.8       1.1       0.97 (J)       1.8         3/12/202       4.1       4.8       1.1       0.97 (J)       1.8         3/12/202       1.8       4.1       1.1       0.97 (J)       1.8         3/12/202       1.8       4.1       1.1       0.97 (J)       1.8         3/2/2020       1.8       4.1       1.1       0.97 (J)       1.8         9/2/2020       1.8       4.1       1.1       0.98 (J)       1.5         9/2/2020       2.3       5.3       1.5       1.6         3/2/2021       3.7       3.7       1.6       1.6         3/2/2021       3.7       3.7 </td <td>3/29/2019</td> <td></td> <td></td> <td></td> <td></td> <td>4.2</td> <td></td> <td></td> <td>1.2</td> <td></td> | 3/29/2019 |         |         |              |            | 4.2           |              |              | 1.2          |               |
| 6/12/2019       4.7         9/24/2019       1.1       1.3       0.95 ()         9/25/2019       5       1.6         9/26/2019       5       1.1       1.3       0.95 ()         10/8/2019       5       1.6       1.6         10/9/2019       2.3       1.4       1.1       1.4       1.1         3/19/2020       4.1       4.8       1.1       0.97 ()       1.8         3/19/2020       4.1       4.8       1.1       0.97 ()       1.8         3/19/2020       4.1       4.8       1.1       0.97 ()       1.8         3/19/2020       4.1       4.8       1.1       0.97 ()       1.8         3/19/2020       4.2       4.2       4.2       4.2       4.2       4.2       4.2       4.2       4.2       4.2       4.2       4.2       4.2       4.2       4.2       4.3       5.3       5.3       5.3       5.3       5.3       1.5       1.6         3/2/2021       3.7       5.3       5.3       1.6       1.6       1.6         3/2/2021       3.7       4.1       4.9       9.26 ()       1.6       1.6                                                                                                                                    | 4/1/2019  |         |         |              |            |               |              |              |              | 1.7           |
| 9/24/2019       1.1       1.3       0.95 (J)         9/25/2019       5       1.6         10/8/2019       5       1.1       1.3       0.95 (J)         10/8/2019       5       1.1       1.2       1.6         10/9/2019       2.3       1.1       1.4       1.1       1.1       1.1       1.1         3/17/2020       2.3       1.1       1.1       0.97 (J)       1.8         3/18/2020       4.1       4.8       1.1       0.97 (J)       1.8         3/19/2020       1.8       4.1       1.1       0.97 (J)       1.8         3/25/2020       1.8       4.1       1.1       0.99 (J)       1.2       0.88 (J)         9/23/2020       4.6       5.3       1.5       1.5         9/2/2020       3.7       5.3       1.6       1.6         9/2/2020       3.7       1.1       0.90 (J)       1.2       0.88 (J)         9/2/2020       3.7       5.3       1.6       1.6         9/2/2021       3.7       1.1       0.90 (J)       1.2       0.85 (L)                                                                                                                                                                                             | 6/12/2019 |         |         |              | 4.7        |               |              |              |              |               |
| 9/25/2019       5       1.6         9/26/2019       5       4.4       5.1         10/9/2019       2.3       5.2       1.4         3/17/2020       4.1       4.8       5.2         3/18/2020       1.1       0.97 (J)       1.8         3/25/2020       1.8       4.1       5.2       1.4         9/25/2020       1.8       4.1       5.2       1.4         9/25/2020       1.8       4.1       5.2       1.4         9/25/2020       1.8       4.1       5.2       1.4         9/25/2020       1.8       4.1       5.3       5.3         9/25/2020       2.3       3.7       5.3       1.6         9/25/2021       3.7       5.3       1.6         9/25/2021       4.1       4.9       1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9/24/2019 |         |         |              |            |               | 1.1          | 1.3          | 0.95 (J)     |               |
| 9/26/2019       5         10/8/2019       4.4       5.1         10/9/2019       2.3         3/17/2020       4.1       4.8         3/18/2020       5.2       1.4         3/19/2020       1.4         3/25/2020       1.8       4.1         9/22/2020       4.6       1.1       0.97 (J)       1.8         9/22/2020       4.6       1.1       0.99 (J)       1.2       0.88 (J)         9/22/2020       4.6       5.3       1.5       1.5         9/25/2020       2.3       5.3       1.6         3/1/2021       3.7       5.3       1.6         3/2/2021       1.1       1.2       0.86 (J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9/25/2019 |         |         |              |            | 4.8           |              |              |              | 1.6           |
| 108/2019       4.4       5.1         109/2019       2.3         3/17/2020       4.1       4.8         3/18/2020       5.2       1.4         3/19/2020       1.8       4.1         3/25/2020       1.8       4.1         9/22/2020       4.2       0.97 (J)       1.8         9/22/2020       4.2       0.99 (J)       1.2       0.88 (J)         9/24/2020       4.6       5.3       1.6         3/1/2021       3.7       5.3       1.6         3/2/2021       4.1       4.9       0.96 (J)       1.2       0.86 (J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9/26/2019 |         | 5       |              |            |               |              |              |              |               |
| 109/2019       2.3         3/17/2020       4.1       4.8         3/18/2020       5.2       1.4         3/19/2020       1.8       4.1         3/25/2020       1.8       4.1         9/22/2020       4.2       4.2         9/23/2020       4.6       5.3         9/24/2020       3.7       5.3         3/1/2021       3.7       1.6         3/2021       4.1       4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10/8/2019 |         |         | 4.4          | 5.1        |               |              |              |              |               |
| 3/17/2020       4.1       4.8         3/18/2020       5.2       1.4         3/19/2020       1.8       4.1         3/25/2020       1.8       4.1         9/22/2020       4.2       4.2         9/23/2020       6.99 (J)       1.2         9/24/2020       4.6       5.3         3/1/2021       3.7       5.3         3/1/2021       3.7       1.6         3/2/2021       4.1       4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/9/2019 | 2.3     |         |              |            |               |              |              |              |               |
| 3/18/2020       5.2       1.4         3/19/2020       1.8       4.1       1.1       0.97 (J)       1.8         9/22/2020       1.8       4.1       1.1       0.97 (J)       1.8         9/22/2020       4.2       4.2       9.99 (J)       1.2       0.88 (J)         9/23/2020       4.6       5.3       1.5       1.5         9/25/2020       2.3       5.3       1.6         3/1/2021       3.7       1.6       1.6         3/2/2021       4.1       4.9       4.9       0.96 (J)       1.2       0.86 (J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3/17/2020 |         |         | 4.1          | 4.8        |               |              |              |              |               |
| 3/19/2020       1.8       4.1       0.97 (J)       1.8         9/22/2020       1.8       4.2       4.2       4.2       4.2         9/23/2020       4.6       0.99 (J)       1.2       0.88 (J)         9/25/2020       2.3       5.3       1.5         3/1/2021       3.7       5.3       1.6         3/2/2021       4.1       4.9       4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3/18/2020 |         |         |              |            | 5.2           |              | 1.4          |              |               |
| 3/25/2020       1.8       4.1         9/22/2020       4.2       4.2         9/23/2020       0.99 (J)       1.2       0.88 (J)         9/24/2020       4.6       1.5         9/25/2020       2.3       5.3       1.6         3/1/2021       3.7       1.6         3/2/2021       4.1       4.9       0.96 (J)       1.2       0.86 (J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3/19/2020 |         |         |              |            |               | 1.1          |              | 0.97 (J)     | 1.8           |
| 9/22/2020     4.2     4.2       9/23/2020     0.99 (J)     1.2     0.88 (J)       9/24/2020     4.6     1.5       9/25/2020     2.3     5.3     1.6       3/1/2021     3.7     1.6       3/2/2021     4.1     4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3/25/2020 | 1.8     | 4.1     |              |            |               |              |              |              |               |
| 9/23/2020     0.99 (J)     1.2     0.88 (J)       9/24/2020     4.6     1.5       9/25/2020     2.3     5.3       3/1/2021     3.7     1.6       3/2/2021     4.1     4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9/22/2020 |         |         | 4.2          | 4.2        |               |              |              |              |               |
| 9/24/2020     4.6     1.5       9/25/2020     2.3     5.3       3/1/2021     3.7     1.6       3/2/2021     4.1     4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9/23/2020 |         |         |              |            |               | 0.99 (J)     | 1.2          | 0.88 (J)     |               |
| 9/25/2020     2.3     5.3       3/1/2021     3.7     1.6       3/2/2021     4.1     4.9       3/3/2021     0.96 (l)     1.2     0.86 (l)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9/24/2020 |         | 4.6     |              |            |               |              |              |              | 1.5           |
| 3/1/2021     3.7     1.6       3/2/2021     4.1     4.9       3/3/2021     0.96 (l)     1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9/25/2020 | 2.3     |         |              |            | 5.3           |              |              |              |               |
| 3/2/2021 4.1 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3/1/2021  |         |         | 3.7          |            |               |              |              |              | 1.6           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3/2/2021  |         |         |              | 4.1        | 4.9           |              |              |              |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3/3/2021  |         |         |              |            |               | 0.96 (J)     | 1.2          | 0.86 (J)     |               |
| 3/4/2021 2.1 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3/4/2021  | 2.1     | 4.1     |              |            |               | . /          |              | . ,          |               |

Constituent: Chloride (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YGWA-3D (bg) | YGWA-3I (bg) | PZ-35 | PZ-37 | YGWC-24SA | YGWC-36A |
|------------|--------------|--------------|-------|-------|-----------|----------|
| 6/1/2016   |              | 1.3          |       |       |           |          |
| 6/2/2016   | 1.4          |              |       |       |           |          |
| 6/8/2016   |              |              |       |       | 5.9       |          |
| 7/25/2016  |              | 1.3          |       |       |           |          |
| 7/26/2016  | 1.6          |              |       |       |           |          |
| 8/1/2016   |              |              |       |       | 5.3       |          |
| 9/2/2016   |              |              |       |       |           | 6.3      |
| 9/14/2016  |              | 1.3          |       |       |           |          |
| 9/15/2016  | 1.5          |              |       |       |           |          |
| 9/20/2016  |              |              |       |       | 5.5       |          |
| 11/1/2016  | 1.7          | 1.4          |       |       |           |          |
| 11/8/2016  |              |              |       |       | 6.4       |          |
| 11/14/2016 |              |              |       |       |           | 6.7      |
| 1/11/2017  | 1.2          | 1.1          |       |       |           |          |
| 1/17/2017  |              |              |       |       | 5.5       |          |
| 2/28/2017  |              |              |       |       |           | 5.4      |
| 3/1/2017   |              | 1.1          |       |       |           |          |
| 3/2/2017   | 1.2          |              |       |       |           |          |
| 3/8/2017   |              |              |       |       | 5.4       |          |
| 4/26/2017  | 1.2          | 1.1          |       |       |           |          |
| 5/2/2017   |              |              |       |       | 5.7       |          |
| 5/9/2017   |              |              |       |       |           | 5.7      |
| 6/28/2017  | 1.3          | 1.2          |       |       |           |          |
| 7/7/2017   |              |              |       |       | 5.7       |          |
| 7/13/2017  |              |              |       |       |           | 5.4      |
| 9/22/2017  |              |              |       |       |           | 6.9      |
| 9/29/2017  |              |              |       |       |           | 5.5      |
| 10/4/2017  | 1.5          | 1.2          |       |       |           |          |
| 10/5/2017  |              |              |       |       | 6         |          |
| 10/6/2017  |              |              |       |       |           | 5.5      |
| 10/11/2017 |              |              |       |       |           | 6.4      |
| 10/12/2017 |              |              |       | 5.4   |           |          |
| 11/21/2017 |              |              |       | 6.5   |           |          |
| 1/11/2018  |              |              |       | 5     |           |          |
| 2/20/2018  |              |              |       | 5.2   |           |          |
| 4/3/2018   |              |              |       | 4.8   |           |          |
| 6/7/2018   | 12           |              |       |       |           |          |
| 6/8/2018   |              | 12           |       |       |           |          |
| 6/12/2018  |              |              |       |       | 62        |          |
| 6/13/2018  |              |              |       |       | 0.2       | 5.6      |
| 6/29/2018  |              |              |       | 57    |           | 0.0      |
| 8/6/2018   |              |              |       | 1.8   |           |          |
| 0/0/2018   |              |              |       | 4.0   |           |          |
| 0/26/2018  |              |              |       | 4.5   | 6.0       | 6        |
| 9/20/2018  | 1 6          | 1.2          |       |       | 0.9       | 0        |
| 10/1/2018  | 1.5          | 1.2          | 9 E   |       |           |          |
| 10/10/2018 | 10           |              | 0.0   |       |           |          |
| 4/1/2019   | 1.2          | 1.1          |       |       | 5.0       | 54       |
| 4/4/2019   |              |              |       |       | 5.9       | 5.4      |
| 9/25/2019  | 1.1          | 1.1          | 7.5   |       | 0.5       | 74       |
| 9/26/2019  | 4.0          |              | 1.5   |       | 5.J       | 7.1      |
| 3/19/2020  | 1.2          | 1.1          |       |       |           |          |
| 3/25/2020  |              |              | 6.8   |       |           | b.3      |

Constituent: Chloride (mg/L) Analysis Run 5/6/2021 8:36 PM

|           | YGWA-3D (bg) | YGWA-3I (bg) | PZ-35 | PZ-37 | YGWC-24SA | YGWC-36A |
|-----------|--------------|--------------|-------|-------|-----------|----------|
| 3/26/2020 |              |              |       |       | 5.4       |          |
| 9/23/2020 | 1.1          | 1            |       |       | 9.3       |          |
| 9/24/2020 |              |              | 7.5   |       |           |          |
| 9/25/2020 |              |              |       | 4.3   |           |          |
| 10/7/2020 |              |              |       |       |           | 8.7      |
| 3/3/2021  | 1.1          | 0.99 (J)     |       |       | 8.6       |          |
| 3/4/2021  |              |              | 6.7   | 3.9   |           | 6.6      |
|           |              |              |       |       |           |          |

Constituent: Chromium (mg/L) Analysis Run 5/6/2021 8:36 PM

|           | YAMW-1      | YAMW-2      | YAMW-4      | YAMW-5 | YGWA-17S (bg) | YGWA-18I (bg) | YGWA-18S (bg) | YGWA-20S (bg) | YGWA-21I (bg) |
|-----------|-------------|-------------|-------------|--------|---------------|---------------|---------------|---------------|---------------|
| 6/6/2016  |             |             |             |        |               | 0.0012 (J)    | <0.005        |               |               |
| 6/7/2016  |             |             |             |        | <0.005        |               |               | <0.005        | <0.005        |
| 7/27/2016 |             |             |             |        | 0.0008 (J)    | 0.0007 (J)    | 0.0006 (J)    | 0.0005 (J)    |               |
| 7/28/2016 |             |             |             |        |               |               |               |               | <0.005        |
| 9/16/2016 |             |             |             |        | <0.005        |               | <0.005        |               |               |
| 9/19/2016 |             |             |             |        |               | <0.005        |               | <0.005        | <0.005        |
| 11/2/2016 |             |             |             |        |               |               |               | <0.005        |               |
| 11/3/2016 |             |             |             |        | <0.005        | <0.005        | <0.005        |               | <0.005        |
| 1/11/2017 |             |             |             |        | <0.005        | <0.005        | <0.005        |               |               |
| 1/13/2017 |             |             |             |        |               |               |               | <0.005        | <0.005        |
| 3/1/2017  |             |             |             |        |               | 0.0012 (J)    | <0.005        |               |               |
| 3/2/2017  |             |             |             |        | 0.001 (J)     |               |               |               |               |
| 3/6/2017  |             |             |             |        |               |               |               | <0.005        | <0.005        |
| 4/26/2017 |             |             |             |        |               | 0.0005 (J)    | 0.0003 (J)    | 0.0007 (J)    | <0.005        |
| 5/2/2017  |             |             |             |        | 0.0007 (J)    |               |               |               |               |
| 6/28/2017 |             |             |             |        |               | 0.0006 (J)    | <0.005        |               |               |
| 6/29/2017 |             |             |             |        | 0.0006 (J)    |               |               | 0.0005 (J)    | <0.005        |
| 3/28/2018 |             |             |             |        | <0.005        | <0.005        | <0.005        |               |               |
| 3/29/2018 |             |             |             |        |               |               |               | <0.005        | <0.005        |
| 3/5/2019  |             |             |             |        | <0.005        |               | <0.005        | <0.005        | <0.005        |
| 3/6/2019  |             |             |             |        |               | <0.005        |               |               |               |
| 2/11/2020 |             |             |             |        | 0.00087 (J)   | 0.001 (J)     | 0.00088 (J)   |               |               |
| 2/12/2020 |             |             |             |        |               |               |               | 0.00045 (J)   | <0.005        |
| 3/24/2020 |             |             |             |        | 0.00087 (J)   | 0.00095 (J)   | 0.0011 (J)    | 0.00077 (J)   | <0.005        |
| 3/25/2020 | 0.00058 (J) |             |             |        |               |               |               |               |               |
| 9/23/2020 |             | 0.00071 (J) | <0.005      |        | 0.00098 (J)   | 0.00092 (J)   | 0.0012 (J)    |               |               |
| 9/24/2020 | 0.00074 (J) |             |             | <0.005 |               |               |               | 0.00076 (J)   | <0.005        |
| 2/9/2021  | 0.001 (J)   | 0.0011 (J)  | 0.00057 (J) | <0.005 |               | 0.00083 (J)   | 0.0013 (J)    | 0.00056 (J)   | <0.005        |
| 3/3/2021  | 0.00076 (J) | 0.0012 (J)  | <0.005      |        | 0.00082 (J)   | 0.00087 (J)   | 0.001 (J)     | <0.005        |               |
| 3/4/2021  |             |             |             | <0.005 |               |               |               |               | <0.005        |

Constituent: Chromium (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YGW/A-39 (ba) | YGWA-40 (ba)  | YGWA-4L(ba)  |               | YGWA-5L(ba) | YGWC-23S    | YGWC-38      | YGWC-41     | YGWC-42     |
|------------|---------------|---------------|--------------|---------------|-------------|-------------|--------------|-------------|-------------|
| 6/2/2016   | TGWA-39 (bg)  | 1 GWA-40 (bg) | <0.005       | <0.005        | <0.005      | 1000-255    | 1000-38      | 1000-41     | 1600-42     |
| 6/7/2016   |               |               | -0.003       | -0.000        | -0.003      | <0.005      |              |             |             |
| 7/26/2016  |               |               | <0.005       | <0.005        | <0.005      | -0.000      |              |             |             |
| 7/28/2016  |               |               | 0.000        | 0.000         | 0.000       | 0 0008 (.1) |              |             |             |
| 8/30/2016  |               |               |              |               |             | 0.0000 (0)  |              |             | <0.005      |
| 9/14/2016  |               |               | <0.005       | <0.005        | <0.005      |             |              |             | -0.000      |
| 9/20/2016  |               |               | 0.000        | 0.000         | 0.000       | <0.005      |              |             |             |
| 11/2/2016  |               |               | <0.005       | <0.005        |             | 0.000       |              |             |             |
| 11/4/2016  |               |               | 0.000        | 0.000         | <0.005      |             |              |             |             |
| 11/8/2016  |               |               |              |               | -0.000      | <0.005      |              |             |             |
| 11/16/2016 |               |               |              |               |             | 0.000       |              |             | <0.005      |
| 1/12/2017  |               |               |              | <0.005        | <0.005      |             |              |             | -0.000      |
| 1/13/2017  |               |               | <0.005       | -0.000        | -0.000      |             |              |             |             |
| 1/16/2017  |               |               | 0.000        |               |             | <0.005      |              |             |             |
| 2/27/2017  |               |               |              |               |             | 0.000       |              |             | <0.005      |
| 3/6/2017   |               |               | <0.005       |               |             |             |              |             | 0.000       |
| 3/7/2017   |               |               | -0.000       | <0.005        | <0.005      |             |              |             |             |
| 3/9/2017   |               |               |              | 0.000         | 0.000       | <0.005      |              |             |             |
| 5/1/2017   |               |               | <0.005       | 0.0004 (J)    |             | -0.000      |              |             |             |
| 5/2/2017   |               |               | -0.003       | 0.0004 (3)    | <0.005      | 0.0007 (1)  |              |             |             |
| 5/10/2017  |               |               |              |               | -0.000      | 0.0007 (0)  |              |             | 0 0006 ( 1) |
| 6/27/2017  |               |               |              | <0.005        | <0.005      |             |              |             | 0.0000 (0)  |
| 6/29/2017  |               |               | <0.005       | -0.005        | -0.003      |             |              |             |             |
| 7/10/2017  |               |               | -0.003       |               |             | <0.005      |              |             |             |
| 7/11/2017  |               |               |              |               |             | \$0.000     |              |             | <0.005      |
| 10/11/2017 | <0.005        |               |              |               |             |             |              |             | -0.000      |
| 10/12/2017 | <0.005        | <0.005        |              |               |             |             | 0.0005 ( 1)  | <0.005      | <0.005      |
| 11/20/2017 | <0.005        | <0.005        |              |               |             |             | <0.005       | -0.000      | -0.000      |
| 11/21/2017 | <0.005        | <0.005        |              |               |             |             | ~0.005       | <0.005      |             |
| 1/10/2018  |               | <0.005        |              |               |             |             |              | <0.005      |             |
| 1/10/2018  | <0.005        | <0.005        |              |               |             |             |              | <0.005      |             |
| 1/12/2018  | <0.005        |               |              |               |             |             | <0.005       | <0.005      |             |
| 2/10/2018  |               | <0.005        |              |               |             |             | ~0.005       | <0.005      |             |
| 2/19/2018  | <0.005        | <0.005        |              |               |             |             | <0.00E       | <0.005      |             |
| 2/20/2018  | <0.005        |               | <0.005       | <0.005        | <0.005      |             | <0.005       |             |             |
| 3/20/2018  |               |               | ~0.005       | <0.005        | ~0.005      | <0.005      |              |             |             |
| 4/2/2018   | <0.005        | <0.005        |              |               |             | <0.005      | <0.00E       | <0.005      |             |
| 4/3/2018   | <0.005        | <0.005        |              |               |             |             | ~0.005       | <0.005      | <0.005      |
| 6/27/2018  |               |               |              |               |             |             |              | <0.005      | -0.000      |
| 6/28/2018  | <0.005        | <0.005        |              |               |             |             | <0.005       | -0.000      |             |
| 8/7/2018   | <0.005        | <0.005        |              |               |             |             | <0.005       | <0.005      |             |
| 0/20/2018  | ~0.005        | ~0.005        |              |               |             |             | <0.005       | ~0.005      | <0.005      |
| 9/20/2018  | <0.005        | <0.005        |              |               |             |             | <0.00E       | <0.00E      | <0.005      |
| 9/24/2010  | <0.005        | <0.005        | <0.00E       | <0.00E        | <0.00E      |             | <0.005       | <0.005      |             |
| 3/4/2019   |               |               | <0.005       | <0.005        | <0.005      | <0.005      |              |             |             |
| 8/21/2010  | <0.005        | 0.00052 (1)   |              |               |             | <0.005      |              |             |             |
| 8/21/2019  | <0.005        | 0.00055 (5)   |              |               |             |             | <0.00E       | <0.00E      | <0.00E      |
| 012212019  | <0.005        | 0.0012 ( 1)   |              |               |             |             | ~0.005       | <0.005      | ~0.003      |
| 10/9/2019  |               |               |              | <0.005        | 0.00042.(1) |             | <0.005       | <0.005      | 0.00043 (J) |
| 2/12/2020  | <0.005        | 0.00055 (J)   | C000         | ~0.005        | 0.00043 (J) |             |              |             |             |
| 3/25/2020  | <0.005        | 0.00033 (J)   | 0.00059 ( !) | <u>∼0.003</u> | 0.0014 (J)  |             | 0.00065 ( !) | 0.00030.(1) | 0.0013 ( !) |
| 312312020  | ~U.UU3        |               | (L) 86000.0  |               |             | 0.0010 ( 1) | 0.00000 (J)  | 0.00039 (J) | 0.0013 (J)  |
| 312012020  |               |               |              |               |             | 0.0019 (J)  |              |             |             |

Constituent: Chromium (mg/L) Analysis Run 5/6/2021 8:36 PM

| 9/22/2020 | YGWA-39 (bg) | YGWA-40 (bg) | YGWA-4I (bg)<br><0.005 | YGWA-5D (bg)<br>0.0011 (J) | YGWA-5I (bg)<br><0.005 | YGWC-23S    | YGWC-38 | YGWC-41 | YGWC-42 |
|-----------|--------------|--------------|------------------------|----------------------------|------------------------|-------------|---------|---------|---------|
| 9/24/2020 | <0.005       | <0.005       |                        |                            |                        | 0.0011 (J)  |         |         | <0.005  |
| 9/25/2020 |              |              |                        |                            |                        |             | <0.005  | <0.005  |         |
| 2/8/2021  |              |              |                        | <0.005                     | <0.005                 |             |         |         |         |
| 2/9/2021  |              |              | <0.005                 |                            |                        | 0.00086 (J) | <0.005  |         |         |
| 2/10/2021 | <0.005       | <0.005       |                        |                            |                        |             |         | <0.005  | <0.005  |
| 3/2/2021  |              |              |                        | <0.005                     | <0.005                 |             |         |         |         |
| 3/3/2021  |              |              | 0.0013 (J)             |                            |                        |             |         |         |         |
| 3/4/2021  | <0.005       | <0.005       |                        |                            |                        | 0.00078 (J) | <0.005  | <0.005  | <0.005  |
|           |              |              |                        |                            |                        |             |         |         |         |

Constituent: Chromium (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YGWC-43 | YGWC-49    | YGWA-47 (bg) | GWA-2 (bg) | YGWA-14S (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-2I (bg) | YGWA-30I (bg) |
|------------|---------|------------|--------------|------------|---------------|--------------|--------------|--------------|---------------|
| 5/1/2007   |         |            |              | 0.0029     |               |              |              |              |               |
| 9/11/2007  |         |            |              | 0.0084     |               |              |              |              |               |
| 3/20/2008  |         |            |              | 0.0027     |               |              |              |              |               |
| 8/27/2008  |         |            |              | 0.0026     |               |              |              |              |               |
| 3/3/2009   |         |            |              | 0.0022     |               |              |              |              |               |
| 11/18/2009 |         |            |              | 0.0036     |               |              |              |              |               |
| 3/3/2010   |         |            |              | <0.005     |               |              |              |              |               |
| 9/8/2010   |         |            |              | <0.005     |               |              |              |              |               |
| 3/10/2011  |         |            |              | <0.005     |               |              |              |              |               |
| 9/8/2011   |         |            |              | <0.000     |               |              |              |              |               |
| 3/5/2012   |         |            |              | <0.005     |               |              |              |              |               |
| 9/10/2012  |         |            |              | <0.005     |               |              |              |              |               |
| 2/6/2013   |         |            |              | <0.005     |               |              |              |              |               |
| 2/0/2013   |         |            |              | <0.005     |               |              |              |              |               |
| 8/12/2013  |         |            |              | <0.005     |               |              |              |              |               |
| 2/5/2014   |         |            |              | 0.0059     |               |              |              |              |               |
| 8/5/2014   |         |            |              | <0.005     |               |              |              |              |               |
| 2/4/2015   |         |            |              | <0.005     |               |              |              |              |               |
| 8/3/2015   |         |            |              | 0.0011 (J) |               |              |              |              |               |
| 2/16/2016  |         |            |              | <0.005     |               |              |              |              |               |
| 6/1/2016   |         |            |              |            |               | 0.0035       | <0.005       |              |               |
| 6/2/2016   |         |            |              |            | <0.005        |              |              |              | <0.005        |
| 7/25/2016  |         |            |              |            |               |              | <0.005       |              | <0.005        |
| 7/26/2016  |         |            |              |            | <0.005        | <0.005       |              |              |               |
| 8/30/2016  |         |            | <0.005       |            |               |              |              |              |               |
| 8/31/2016  | <0.005  |            |              | <0.005     |               |              |              |              |               |
| 9/1/2016   |         | 0.0013 (J) |              |            |               |              |              |              |               |
| 9/13/2016  |         |            |              |            |               | <0.005       | <0.005       |              |               |
| 9/14/2016  |         |            |              |            |               |              |              | <0.005       |               |
| 9/15/2016  |         |            |              |            | <0.005        |              |              |              |               |
| 9/19/2016  |         |            |              |            |               |              |              |              | <0.005        |
| 11/1/2016  |         |            |              |            |               | <0.005       |              |              | <0.005        |
| 11/2/2016  |         |            |              |            | <0.005        |              |              |              |               |
| 11/4/2016  |         |            |              |            |               |              | <0.005       | <0.005       |               |
| 11/14/2016 |         |            | 0.0093 (J)   |            |               |              |              |              |               |
| 11/15/2016 |         | 0.0014 (J) |              |            |               |              |              |              |               |
| 11/16/2016 | <0.005  |            |              |            |               |              |              |              |               |
| 11/28/2016 |         |            |              | <0.005     |               |              |              |              |               |
| 12/15/2016 |         |            |              | 0.000      |               |              |              | <0.005       |               |
| 1/10/2017  |         |            |              |            | <0.005        |              |              | 0.000        |               |
| 1/11/2017  |         |            |              |            | -0.000        | <0.005       |              |              |               |
| 1/16/2017  |         |            |              |            |               | -0.003       | <0.005       | <0.00E       | <0.00E        |
| 2/21/2017  |         |            |              |            |               |              | <0.005       | <0.005       | <0.005        |
| 2/21/2017  |         |            |              | <0.00F     |               |              |              |              | <0.005        |
| 2/22/2017  | 0.005   |            |              | <0.005     |               |              |              |              |               |
| 2/24/2017  | <0.005  |            | <0.005       |            |               |              |              |              |               |
| 2/2//201/  |         | 0.0016 (J) |              |            |               |              |              |              |               |
| 3/2/2017   |         |            |              |            |               | 0.0009 (J)   | 0.0004 (J)   |              |               |
| 3/3/2017   |         |            |              |            |               |              |              | 0.0005 (J)   |               |
| 3/8/2017   |         |            |              |            | <0.005        |              |              |              |               |
| 4/26/2017  |         |            |              |            | <0.005        |              |              |              | 0.0016 (J)    |
| 4/27/2017  |         |            |              |            |               | <0.005       | <0.005       |              |               |
| 4/28/2017  |         |            |              |            |               |              |              | 0.0004 (J)   |               |
| 5/8/2017   |         |            | <0.005       | <0.005     |               |              |              |              |               |

#### Constituent: Chromium (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YGWC-43     | YGWC-49     | YGWA-47 (bg) | GWA-2 (bg) | YGWA-14S (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-2I (bg) | YGWA-30I (bg) |
|------------|-------------|-------------|--------------|------------|---------------|--------------|--------------|--------------|---------------|
| 5/9/2017   |             | 0.0017 (J)  |              |            |               |              |              |              |               |
| 5/10/2017  | 0.0005 (J)  |             |              |            |               |              |              |              |               |
| 5/26/2017  |             |             |              |            |               |              |              | <0.005       |               |
| 6/27/2017  |             |             |              |            |               | <0.005       | <0.005       |              |               |
| 6/28/2017  |             |             |              |            |               |              |              | <0.005       |               |
| 6/30/2017  |             |             |              |            | <0.005        |              |              |              | <0.005        |
| 7/11/2017  | <0.005      |             | <0.005       |            |               |              |              |              |               |
| 7/13/2017  |             | 0.0019 (J)  |              |            |               |              |              |              |               |
| 7/17/2017  |             |             |              | <0.005     |               |              |              |              |               |
| 10/10/2017 |             |             | <0.005       |            |               |              |              |              |               |
| 10/11/2017 |             | 0.0014 (J)  |              |            |               |              |              |              |               |
| 10/12/2017 | <0.005      |             |              |            |               |              |              |              |               |
| 10/16/2017 |             |             |              | <0.005     |               |              |              |              |               |
| 2/19/2018  |             |             |              | <0.005     |               |              |              |              |               |
| 3/27/2018  |             |             |              |            | <0.005        |              | <0.005       |              | <0.005        |
| 3/28/2018  |             |             |              |            |               |              |              | <0.005       |               |
| 3/29/2018  |             |             |              |            |               | <0.005       |              |              |               |
| 4/2/2018   |             |             | <0.005       |            |               |              |              |              |               |
| 4/4/2018   | <0.005      | <0.005      |              |            |               |              |              |              |               |
| 8/6/2018   | 0.000       | 0.000       |              | <0.005     |               |              |              |              |               |
| 9/19/2018  |             |             | <0.005       | 0.000      |               |              |              |              |               |
| 9/20/2018  | <0.005      | 0.0017 ( 1) | -0.000       |            |               |              |              |              |               |
| 3/25/2010  | <0.005      | 0.0017 (3)  |              | <0.005     |               |              |              |              |               |
| 2/25/2019  |             |             |              | <0.005     | <0.005        |              |              |              | <0.005        |
| 2/20/2019  |             |             |              |            | <0.005        | <0.00F       | <0.00F       | <0.00F       | <0.005        |
| 2/27/2019  |             |             |              |            |               | <0.005       | <0.005       | <0.005       |               |
| 3/28/2019  |             |             |              |            | 0.005         | <0.005       | 0.0021 (J)   | 0.005        |               |
| 3/29/2019  |             |             |              |            | <0.005        |              |              | <0.005       |               |
| 4/1/2019   |             |             |              |            |               |              |              |              | <0.005        |
| 6/12/2019  |             |             |              | <0.005     |               |              |              |              |               |
| 8/19/2019  |             |             |              | <0.005     |               |              |              |              |               |
| 8/20/2019  |             |             | <0.005       |            |               |              |              |              |               |
| 8/21/2019  | 0.00062 (J) |             |              |            |               |              |              |              |               |
| 9/24/2019  |             |             |              |            |               | 0.00072 (J)  | 0.0028 (J)   | <0.005       |               |
| 9/25/2019  |             |             |              |            | <0.005        |              |              |              | <0.005        |
| 10/8/2019  |             |             |              | <0.005     |               |              |              |              |               |
| 10/9/2019  | 0.00074 (J) |             |              |            |               |              |              |              |               |
| 2/10/2020  |             |             |              |            |               | 0.00042 (J)  | <0.005       |              |               |
| 2/11/2020  |             |             |              |            |               |              |              | <0.005       |               |
| 2/12/2020  |             |             |              |            | <0.005        |              |              |              | <0.005        |
| 3/17/2020  |             |             |              | <0.005     |               |              |              |              |               |
| 3/18/2020  |             |             |              |            | <0.005        |              | 0.00044 (J)  |              |               |
| 3/19/2020  |             |             |              |            |               | 0.00084 (J)  |              | 0.00048 (J)  | <0.005        |
| 3/25/2020  | <0.005      | 0.0019 (J)  |              |            |               |              |              |              |               |
| 8/26/2020  |             |             |              | <0.005     |               |              |              |              |               |
| 8/27/2020  |             |             | <0.005       |            |               |              |              |              |               |
| 9/22/2020  |             |             | <0.005       | <0.005     |               |              |              |              |               |
| 9/23/2020  |             |             |              |            |               | 0.00062 (J)  | 0.00058 (J)  | <0.005       |               |
| 9/24/2020  |             | 0.0019 (J)  |              |            |               |              |              |              | <0.005        |
| 9/25/2020  | 0.00071 (J) |             |              |            | <0.005        |              |              |              |               |
| 2/9/2021   | <0.005      | 0.002 (J)   |              |            |               |              |              |              |               |
| 2/10/2021  |             |             |              |            | <0.005        |              |              | <0.005       |               |
| 2/11/2021  |             |             |              |            |               |              |              |              | <0.005        |
|            |             |             |              |            |               |              |              |              |               |

#### Constituent: Chromium (mg/L) Analysis Run 5/6/2021 8:36 PM

|           | YGWC-43 | YGWC-49    | YGWA-47 (bg) | GWA-2 (bg) | YGWA-14S (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-2I (bg) | YGWA-30I (bg) |
|-----------|---------|------------|--------------|------------|---------------|--------------|--------------|--------------|---------------|
| 2/12/2021 |         |            |              |            |               | <0.005       | <0.005       |              |               |
| 3/1/2021  |         |            | <0.005       |            |               |              |              |              | <0.005        |
| 3/2/2021  |         |            |              | <0.005     | <0.005        |              |              |              |               |
| 3/3/2021  |         |            |              |            |               | <0.005       | <0.005       | <0.005       |               |
| 3/4/2021  | <0.005  | 0.0017 (J) |              |            |               |              |              |              |               |

Constituent: Chromium (mg/L) Analysis Run 5/6/2021 8:36 PM

| 6/1/2016   | YGWA-3D (bg) | YGWA-3I (bg) | PZ-35       | PZ-37      | YGWC-24SA   | YGWC-36A    |
|------------|--------------|--------------|-------------|------------|-------------|-------------|
| 6/1/2016   | 0.0012 (1)   | -0.003       |             |            |             |             |
| 0/2/2010   | 0.0013 (J)   |              |             |            | -0.005      |             |
| 7/25/2016  |              | <0.005       |             |            | <0.005      |             |
| 7/25/2016  | <0.00F       | <0.005       |             |            |             |             |
| 7/20/2010  | <0.005       |              |             |            | <0.00E      |             |
| 8/1/2010   |              |              |             |            | <0.005      | <0.00E      |
| 9/2/2010   |              | <0.005       |             |            |             | ~0.003      |
| 9/14/2016  | <0.00F       | <0.005       |             |            |             |             |
| 9/13/2010  | <0.005       |              |             |            | <0.005      |             |
| 11/1/2016  | <0.005       | <0.005       |             |            | ~0.005      |             |
| 11/9/2016  | <0.005       | ~0.005       |             |            | <0.005      |             |
| 11/1/2016  |              |              |             |            | <0.005      | 0.0035      |
| 1/11/2017  | <0.005       | <0.005       |             |            |             | 0.0055      |
| 1/17/2017  | <0.005       | <0.005       |             |            | <0.00E      |             |
| 2/28/2017  |              |              |             |            | <0.005      | <0.00E      |
| 2/28/2017  |              | 0.0004 ( 1)  |             |            |             | ~0.005      |
| 3/1/2017   | 0.0006 ( 1)  | 0.0004 (3)   |             |            |             |             |
| 3/2/2017   | 0.0000 (3)   |              |             |            | <0.005      |             |
| 1/26/2017  | <0.005       | <0.005       |             |            | ~0.005      |             |
| 5/2/2017   | -0.005       | ~0.005       |             |            | 0.0011 ( 1) |             |
| 5/9/2017   |              |              |             |            | 0.0011(3)   | <0.005      |
| 6/28/2017  | <0.005       | <0.005       |             |            |             | -0.000      |
| 7/7/2017   | 0.000        | 0.000        |             |            | <0.005      |             |
| 7/13/2017  |              |              |             |            |             | <0.005      |
| 9/22/2017  |              |              |             |            |             | <0.005      |
| 9/29/2017  |              |              |             |            |             | <0.005      |
| 10/6/2017  |              |              |             |            |             | <0.005      |
| 10/12/2017 |              |              |             | 0.0019 (J) |             |             |
| 11/21/2017 |              |              |             | 0.0017 (J) |             |             |
| 1/11/2018  |              |              |             | 0.001 (J)  |             |             |
| 2/20/2018  |              |              |             | <0.005     |             |             |
| 3/28/2018  | <0.005       | <0.005       |             |            |             |             |
| 3/30/2018  |              |              |             |            | <0.005      | <0.005      |
| 4/3/2018   |              |              |             | <0.005     |             |             |
| 6/29/2018  |              |              |             | <0.005     |             |             |
| 8/6/2018   |              |              |             | <0.005     |             |             |
| 9/24/2018  |              |              |             | <0.005     |             |             |
| 2/27/2019  | <0.005       | <0.005       |             |            |             |             |
| 3/5/2019   |              |              |             |            | <0.005      |             |
| 3/6/2019   |              |              |             |            |             | <0.005      |
| 4/1/2019   | <0.005       | <0.005       |             |            |             |             |
| 9/25/2019  | 0.0014 (J)   | 0.0019 (J)   |             |            |             |             |
| 2/11/2020  |              | <0.005       |             |            |             |             |
| 2/12/2020  | <0.005       |              |             |            |             |             |
| 3/19/2020  | <0.005       | <0.005       |             |            |             |             |
| 3/25/2020  |              |              | 0.0012 (J)  |            |             | 0.00074 (J) |
| 3/26/2020  |              |              |             |            | 0.00094 (J) |             |
| 9/23/2020  | <0.005       | <0.005       |             |            | <0.005      |             |
| 9/24/2020  |              |              | 0.00061 (J) |            |             |             |
| 9/25/2020  |              |              |             | <0.005     |             |             |
| 10/7/2020  |              |              |             |            |             | 0.0013 (J)  |

#### Constituent: Chromium (mg/L) Analysis Run 5/6/2021 8:36 PM

|           | YGWA-3D (bg) | YGWA-3I (bg) | PZ-35      | PZ-37  | YGWC-24SA  | YGWC-36A    |
|-----------|--------------|--------------|------------|--------|------------|-------------|
| 2/9/2021  |              |              |            | <0.005 | 0.0011 (J) |             |
| 2/10/2021 | <0.005       | <0.005       | 0.0006 (J) |        |            | 0.00094 (J) |
| 3/3/2021  | <0.005       | <0.005       |            |        | <0.005     |             |
| 3/4/2021  |              |              | 0.0007 (J) | <0.005 |            | <0.005      |

Constituent: Cobalt (mg/L) Analysis Run 5/6/2021 8:36 PM

| 6/6/2016   | YAMW-1 | YAMW-2      | YAMW-4      | YAMW-5      | YGWA-17S (bg) | YGWA-18I (bg)<br><0.005 | YGWA-18S (bg)<br>0.00061 (J) | YGWA-20S (bg) | YGWA-21I (bg) |
|------------|--------|-------------|-------------|-------------|---------------|-------------------------|------------------------------|---------------|---------------|
| 6/7/2016   |        |             |             |             | <0.005        |                         |                              | <0.005        | 0.0056        |
| 7/27/2016  |        |             |             |             | <0.005        | <0.005                  | 0.0004 (J)                   | <0.005        |               |
| 7/28/2016  |        |             |             |             |               |                         |                              |               | 0.0032 (J)    |
| 9/16/2016  |        |             |             |             | <0.005        |                         | 0.0008 (J)                   |               |               |
| 9/19/2016  |        |             |             |             |               | <0.005                  |                              | <0.005        | 0.0047 (J)    |
| 11/2/2016  |        |             |             |             |               |                         |                              | <0.005        |               |
| 11/3/2016  |        |             |             |             | <0.005        | <0.005                  | <0.005                       |               | 0.013         |
| 1/11/2017  |        |             |             |             | <0.005        | <0.005                  | <0.005                       |               |               |
| 1/13/2017  |        |             |             |             |               |                         |                              | <0.005        | 0.011         |
| 3/1/2017   |        |             |             |             |               | <0.005                  | <0.005                       |               |               |
| 3/2/2017   |        |             |             |             | <0.005        |                         |                              |               |               |
| 3/6/2017   |        |             |             |             |               |                         |                              | <0.005        | 0.011         |
| 4/26/2017  |        |             |             |             |               | <0.005                  | <0.005                       | <0.005        | 0.009 (J)     |
| 5/2/2017   |        |             |             |             | <0.005        |                         |                              |               |               |
| 6/28/2017  |        |             |             |             |               | <0.005                  | <0.005                       |               |               |
| 6/29/2017  |        |             |             |             | <0.005        |                         |                              | <0.005        | 0.0093 (J)    |
| 3/28/2018  |        |             |             |             | <0.005        | <0.005                  | <0.005                       |               |               |
| 3/29/2018  |        |             |             |             |               |                         |                              | <0.005        | <0.005        |
| 6/5/2018   |        |             |             |             |               |                         |                              |               | 0.0041 (J)    |
| 6/6/2018   |        |             |             |             |               |                         |                              | <0.005        |               |
| 6/7/2018   |        |             |             |             |               | <0.005                  |                              |               |               |
| 6/11/2018  |        |             |             |             | <0.005        |                         | <0.005                       |               |               |
| 9/25/2018  |        |             |             |             | <0.005        | <0.005                  | <0.005                       | <0.005        | 0.0044 (J)    |
| 10/16/2018 | 0.032  |             |             |             |               |                         |                              |               |               |
| 3/5/2019   |        |             |             |             | <0.005        |                         | <0.005                       | <0.005        | 0.0039 (J)    |
| 3/6/2019   |        |             |             |             |               | <0.005                  |                              |               |               |
| 4/2/2019   |        |             |             |             | <0.005        |                         |                              |               | 0.0039 (J)    |
| 4/3/2019   |        |             |             |             |               | <0.005                  | <0.005                       | <0.005        |               |
| 9/24/2019  |        |             |             |             |               |                         |                              |               | 0.0032 (J)    |
| 9/25/2019  |        |             |             |             | <0.005        |                         |                              | <0.005        |               |
| 9/26/2019  | 0.015  |             |             |             |               | <0.005                  | <0.005                       |               |               |
| 1/3/2020   | <0.005 |             |             |             |               |                         |                              |               |               |
| 2/11/2020  |        |             |             |             | <0.005        | <0.005                  | <0.005                       |               |               |
| 2/12/2020  |        |             |             |             |               |                         |                              | <0.005        | 0.0081        |
| 3/24/2020  |        |             |             |             | <0.005        | <0.005                  | <0.005                       | <0.005        | 0.0061        |
| 3/25/2020  | <0.005 |             |             |             |               |                         |                              |               |               |
| 9/23/2020  |        | 0.0025 (J)  | 0.00052 (J) |             | <0.005        | <0.005                  | <0.005                       |               |               |
| 9/24/2020  | 0.01   |             |             | 0.00077 (J) |               |                         |                              | <0.005        | 0.0079        |
| 2/9/2021   | 0.03   | 0.001 (J)   | 0.00063 (J) | <0.005      |               | <0.005                  | <0.005                       | <0.005        | 0.009         |
| 3/3/2021   | 0.018  | 0.00082 (J) | 0.001 (J)   |             | <0.005        | <0.005                  | <0.005                       | <0.005        |               |
| 3/4/2021   |        |             |             | <0.005      |               |                         |                              |               | 0.0065        |

Constituent: Cobalt (mg/L) Analysis Run 5/6/2021 8:36 PM

| 6/2/2016   | YGWA-39 (bg) | YGWA-40 (bg) | YGWA-4I (bg) | YGWA-5D (bg)<br><0.005 | YGWA-5I (bg)<br><0.005 | YGWC-23S | YGWC-38 | YGWC-41     | YGWC-42             |
|------------|--------------|--------------|--------------|------------------------|------------------------|----------|---------|-------------|---------------------|
| 6/7/2016   |              |              | 0.00002 (0)  | 0.000                  | 0.000                  | <0.005   |         |             |                     |
| 7/26/2016  |              |              | 0.0012 (1)   | <0.00E                 | <0.005                 | -0.003   |         |             |                     |
| 7/20/2010  |              |              | 0.0012 (3)   | <0.005                 | <0.005                 | -0.005   |         |             |                     |
| //28/2016  |              |              |              |                        |                        | <0.005   |         |             |                     |
| 8/30/2016  |              |              |              |                        |                        |          |         |             | 0.0025 (J)          |
| 9/14/2016  |              |              | 0.0006 (J)   | <0.005                 | <0.005                 |          |         |             |                     |
| 9/20/2016  |              |              |              |                        |                        | <0.005   |         |             |                     |
| 11/2/2016  |              |              | <0.005       | <0.005                 |                        |          |         |             |                     |
| 11/4/2016  |              |              |              |                        | <0.005                 |          |         |             |                     |
| 11/8/2016  |              |              |              |                        |                        | <0.005   |         |             |                     |
| 11/16/2016 |              |              |              |                        |                        |          |         |             | 0.002 (J)           |
| 1/12/2017  |              |              |              | <0.005                 | <0.005                 |          |         |             |                     |
| 1/13/2017  |              |              | 0.0029 (J)   |                        |                        |          |         |             |                     |
| 1/16/2017  |              |              |              |                        |                        | <0.005   |         |             |                     |
| 2/27/2017  |              |              |              |                        |                        |          |         |             | 0.0021 (J)          |
| 3/6/2017   |              |              | 0.0006 (J)   |                        |                        |          |         |             |                     |
| 3/7/2017   |              |              |              | <0.005                 | <0.005                 |          |         |             |                     |
| 3/9/2017   |              |              |              |                        |                        | <0.005   |         |             |                     |
| 5/1/2017   |              |              | <0.005       | <0.005                 |                        |          |         |             |                     |
| 5/2/2017   |              |              | 0.000        | 0.000                  | <0.005                 | <0.005   |         |             |                     |
| 5/10/2017  |              |              |              |                        | -0.000                 | -0.000   |         |             | 0.0021 ( 1)         |
| 6/07/2017  |              |              |              | <0.00E                 | <0.005                 |          |         |             | 0.0021 (3)          |
| 0/27/2017  |              |              | 0.0005 (1)   | <0.005                 | <0.005                 |          |         |             |                     |
| 6/29/2017  |              |              | 0.0005 (J)   |                        |                        |          |         |             |                     |
| //10/2017  |              |              |              |                        |                        | <0.005   |         |             |                     |
| 7/11/2017  |              |              |              |                        |                        |          |         |             | 0.0014 (J)          |
| 10/11/2017 | <0.005       |              |              |                        |                        |          |         |             |                     |
| 10/12/2017 |              | <0.005       |              |                        |                        |          | <0.005  | 0.0011 (J)  | 0.0017 (J)          |
| 11/20/2017 | <0.005       | <0.005       |              |                        |                        |          | <0.005  |             |                     |
| 11/21/2017 |              |              |              |                        |                        |          |         | 0.0003 (J)  |                     |
| 1/10/2018  |              | <0.005       |              |                        |                        |          |         |             |                     |
| 1/11/2018  | <0.005       |              |              |                        |                        |          |         | 0.0003 (J)  |                     |
| 1/12/2018  |              |              |              |                        |                        |          | <0.005  |             |                     |
| 2/19/2018  |              | <0.005       |              |                        |                        |          |         | <0.005      |                     |
| 2/20/2018  | <0.005       |              |              |                        |                        |          | <0.005  |             |                     |
| 3/29/2018  |              |              | <0.005       | <0.005                 | <0.005                 |          |         |             |                     |
| 3/30/2018  |              |              |              |                        |                        | <0.005   |         |             |                     |
| 4/3/2018   | <0.005       | <0.005       |              |                        |                        |          | <0.005  | <0.005      |                     |
| 4/4/2018   |              |              |              |                        |                        |          |         |             | <0.005              |
| 6/6/2018   |              |              |              | <0.005                 |                        |          |         |             |                     |
| 6/7/2018   |              |              | 0 00058 (.1) |                        | <0.005                 |          |         |             |                     |
| 6/12/2018  |              |              | 0.00000 (0)  |                        | 0.000                  | <0.005   |         |             |                     |
| 6/27/2018  |              |              |              |                        |                        | -0.003   |         | 0.00069.(1) |                     |
| 6/28/2018  | <0.00F       | <0.00F       |              |                        |                        |          | <0.00E  | 0.00003 (3) |                     |
| 0/28/2018  | <0.005       | <0.005       |              |                        |                        |          | <0.005  | -0.005      |                     |
| 8/7/2018   | <0.005       | <0.005       |              |                        |                        |          | <0.005  | <0.005      | 6 6 6 6 <i>(</i> )) |
| 9/20/2018  |              |              |              |                        |                        |          |         |             | 0.003 (J)           |
| 9/24/2018  | <0.005       | <0.005       |              |                        |                        |          | <0.005  | <0.005      |                     |
| 9/26/2018  |              |              | <0.005       | <0.005                 | <0.005                 |          |         |             |                     |
| 9/27/2018  |              |              |              |                        |                        | <0.005   |         |             |                     |
| 3/4/2019   |              |              | <0.005       | <0.005                 | <0.005                 |          |         |             |                     |
| 3/6/2019   |              |              |              |                        |                        | <0.005   |         |             |                     |
| 4/3/2019   |              |              | 0.00083 (J)  | <0.005                 | <0.005                 |          |         |             |                     |
| 4/4/2019   |              |              |              |                        |                        | <0.005   |         |             |                     |
|            |              |              |              |                        |                        |          |         |             |                     |

#### Constituent: Cobalt (mg/L) Analysis Run 5/6/2021 8:36 PM

|           | YGWA-39 (bg) | YGWA-40 (bg) | YGWA-4I (bg) | YGWA-5D (bg) | YGWA-5I (bg) | YGWC-23S | YGWC-38 | YGWC-41 | YGWC-42    |
|-----------|--------------|--------------|--------------|--------------|--------------|----------|---------|---------|------------|
| 8/21/2019 | 0.00034 (J)  | <0.005       |              |              |              |          |         |         |            |
| 8/22/2019 |              |              |              |              |              |          | <0.005  | <0.005  | 0.0019 (J) |
| 9/24/2019 |              |              |              | <0.005       | <0.005       |          |         |         |            |
| 9/25/2019 |              |              | <0.005       |              |              |          |         |         |            |
| 9/27/2019 |              |              |              |              |              | <0.005   |         |         |            |
| 10/9/2019 | <0.005       | <0.005       |              |              |              |          | <0.005  | <0.005  | 0.0019 (J) |
| 2/12/2020 | 0.00034 (J)  | <0.005       | <0.005       | 0.00037 (J)  | <0.005       |          |         |         |            |
| 3/24/2020 |              | <0.005       |              | 0.00035 (J)  | <0.005       |          |         |         |            |
| 3/25/2020 | 0.00034 (J)  |              | 0.00056 (J)  |              |              |          | <0.005  | <0.005  | 0.0018 (J) |
| 3/26/2020 |              |              |              |              |              | <0.005   |         |         |            |
| 9/22/2020 |              |              | <0.005       | <0.005       | <0.005       |          |         |         |            |
| 9/24/2020 | 0.00053 (J)  | <0.005       |              |              |              | <0.005   |         |         | 0.0017 (J) |
| 9/25/2020 |              |              |              |              |              |          | <0.005  | <0.005  |            |
| 2/8/2021  |              |              |              | <0.005       | <0.005       |          |         |         |            |
| 2/9/2021  |              |              | <0.005       |              |              | <0.005   | <0.005  |         |            |
| 2/10/2021 | 0.00098 (J)  | <0.005       |              |              |              |          |         | <0.005  | 0.0019 (J) |
| 3/2/2021  |              |              |              | <0.005       | <0.005       |          |         |         |            |
| 3/3/2021  |              |              | <0.005       |              |              |          |         |         |            |
| 3/4/2021  | 0.00071 (J)  | <0.005       |              |              |              | <0.005   | <0.005  | <0.005  | 0.0018 (J) |

Constituent: Cobalt (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YGWC-43 | YGWC-49    | YGWA-47 (bg) | GWA-2 (bg)  | YGWA-14S (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-2I (bg) | YGWA-30I (bg) |
|------------|---------|------------|--------------|-------------|---------------|--------------|--------------|--------------|---------------|
| 5/1/2007   |         |            |              | 0.0067      |               |              |              |              |               |
| 9/11/2007  |         |            |              | <0.005      |               |              |              |              |               |
| 3/20/2008  |         |            |              | <0.005      |               |              |              |              |               |
| 8/27/2008  |         |            |              | <0.005      |               |              |              |              |               |
| 3/3/2009   |         |            |              | <0.005      |               |              |              |              |               |
| 11/18/2009 |         |            |              | <0.005      |               |              |              |              |               |
| 3/3/2010   |         |            |              | 0.0027      |               |              |              |              |               |
| 9/8/2010   |         |            |              | 0.007       |               |              |              |              |               |
| 3/10/2011  |         |            |              | <0.005      |               |              |              |              |               |
| 9/8/2011   |         |            |              | <0.005      |               |              |              |              |               |
| 3/5/2012   |         |            |              | 0.0032      |               |              |              |              |               |
| 9/10/2012  |         |            |              | <0.005      |               |              |              |              |               |
| 2/6/2013   |         |            |              | <0.005      |               |              |              |              |               |
| 8/12/2013  |         |            |              | 0.0045      |               |              |              |              |               |
| 2/5/2014   |         |            |              | <0.005      |               |              |              |              |               |
| 8/5/2014   |         |            |              | 0.0027      |               |              |              |              |               |
| 2/4/2015   |         |            |              | 0.0016      |               |              |              |              |               |
| 8/3/2015   |         |            |              | 0.002       |               |              |              |              |               |
| 2/16/2016  |         |            |              | 0.0027      |               |              |              |              |               |
| 6/1/2016   |         |            |              | 0.0027      |               | <0.005       | 0 00082 (J)  |              |               |
| 6/2/2016   |         |            |              |             | <0.005        | -0.000       | 0.00002 (0)  |              | 0.035         |
| 7/25/2016  |         |            |              |             | 40.000        |              | 0.0008 ( 1)  |              | 0.0312        |
| 7/26/2016  |         |            |              |             | <0.005        | <0.005       | 0.0000 (3)   |              | 0.0312        |
| 8/30/2016  |         |            | 0.0073 ( 1)  |             | <0.005        | <0.005       |              |              |               |
| 8/30/2016  | <0.005  |            | 0.0073 (3)   | 0.0052 ( 1) |               |              |              |              |               |
| 8/31/2010  | <0.005  | <0.005     |              | 0.0055 (5)  |               |              |              |              |               |
| 9/1/2016   |         | <0.005     |              |             |               | <0.00F       | 0.0000 ( 1)  |              |               |
| 9/13/2016  |         |            |              |             |               | <0.005       | 0.0009 (J)   | <0.00F       |               |
| 9/14/2016  |         |            |              |             | -0.005        |              |              | <0.005       |               |
| 9/15/2016  |         |            |              |             | <0.005        |              |              |              | 0.0075        |
| 9/19/2016  |         |            |              |             |               | -0.005       |              |              | 0.0275        |
| 11/1/2016  |         |            |              |             | -0.005        | <0.005       |              |              | 0.0255        |
| 11/2/2016  |         |            |              |             | <0.005        |              | 0.0005 (1)   |              |               |
| 11/4/2016  |         |            | 0.0115       |             |               |              | 0.0025 (J)   | <0.005       |               |
| 11/14/2016 |         | 0.0000 (1) | 0.0115       |             |               |              |              |              |               |
| 11/15/2016 | 0.005   | 0.0006 (J) |              |             |               |              |              |              |               |
| 11/16/2016 | <0.005  |            |              | <b></b>     |               |              |              |              |               |
| 11/28/2016 |         |            |              | 0.0036 (J)  |               |              |              |              |               |
| 12/15/2016 |         |            |              |             |               |              |              | <0.005       |               |
| 1/10/2017  |         |            |              |             | <0.005        |              |              |              |               |
| 1/11/2017  |         |            |              |             |               | <0.005       |              |              |               |
| 1/16/2017  |         |            |              |             |               |              | 0.0027 (J)   | <0.005       | 0.0245        |
| 2/21/2017  |         |            |              |             |               |              |              |              | 0.0272        |
| 2/22/2017  |         |            |              | 0.0049 (J)  |               |              |              |              |               |
| 2/24/2017  | <0.005  |            | 0.0106       |             |               |              |              |              |               |
| 2/27/2017  |         | 0.0008 (J) |              |             |               |              |              |              |               |
| 3/2/2017   |         |            |              |             |               | <0.005       | 0.0022 (J)   |              |               |
| 3/3/2017   |         |            |              |             |               |              |              | <0.005       |               |
| 3/8/2017   |         |            |              |             | <0.005        |              |              |              |               |
| 4/26/2017  |         |            |              |             | <0.005        |              |              |              | 0.0244        |
| 4/27/2017  |         |            |              |             |               | <0.005       | 0.0018 (J)   |              |               |
| 4/28/2017  |         |            |              |             |               |              |              | <0.005       |               |
| 5/8/2017   |         |            | 0.0099 (J)   | 0.0059 (J)  |               |              |              |              |               |

|                 | YGWC-43     | YGWC-49    | YGWA-47 (ba)  | GW/A-2 (bg) | YGWA-14S (bg)  | YGWA-1D (ba) | YGWA-11 (ba) | YGWA-2L(ba)   | YGWA-30L(bg)  |
|-----------------|-------------|------------|---------------|-------------|----------------|--------------|--------------|---------------|---------------|
| 5/9/2017        | 1010-45     | <0.005     | 1 GWA-47 (bg) | GWA-2 (bg)  | 1 GWA-140 (bg) | TGWATE (bg)  | rawk-n (bg)  | 1 GWA-21 (bg) | TGWA-SUI (bg) |
| 5/10/2017       | <0.005      | -0.003     |               |             |                |              |              |               |               |
| 5/26/2017       | -0.000      |            |               |             |                |              |              | <0.005        |               |
| 6/27/2017       |             |            |               |             |                | <0.005       | 0.0023(1)    | 40.000        |               |
| 6/28/2017       |             |            |               |             |                | -0.000       | 0.0023 (3)   | <0.005        |               |
| 6/30/2017       |             |            |               |             | <0.005         |              |              | <0.005        | 0 0233        |
| 3/30/2017       | <0.00F      |            | 0.0006 ( 1)   |             | <0.005         |              |              |               | 0.0233        |
| 7/11/2017       | <0.005      | 0.0005 (1) | 0.0096 (J)    |             |                |              |              |               |               |
| 7/13/2017       |             | 0.0005 (J) |               | 0.0040 (1)  |                |              |              |               |               |
| //1//201/       |             |            |               | 0.0046 (J)  |                |              |              |               |               |
| 10/10/2017      |             |            | 0.0036 (J)    |             |                |              |              |               |               |
| 10/11/2017      |             | 0.0006 (J) |               |             |                |              |              |               |               |
| 10/12/2017      | 0.0006 (J)  |            |               |             |                |              |              |               |               |
| 10/16/2017      |             |            |               | 0.0034 (J)  |                |              |              |               |               |
| 2/19/2018       |             |            |               | <0.005      |                |              |              |               |               |
| 3/27/2018       |             |            |               |             | <0.005         |              | <0.005       |               | 0.023         |
| 3/28/2018       |             |            |               |             |                |              |              | <0.005        |               |
| 3/29/2018       |             |            |               |             |                | <0.005       |              |               |               |
| 4/2/2018        |             |            | <0.005        |             |                |              |              |               |               |
| 4/4/2018        | <0.005      | <0.005     |               |             |                |              |              |               |               |
| 6/5/2018        |             |            |               |             |                | <0.005       |              |               |               |
| 6/6/2018        |             |            |               |             |                |              | <0.005       |               |               |
| 6/7/2018        |             |            |               |             |                |              |              | <0.005        |               |
| 6/8/2018        |             |            |               |             | <0.005         |              |              |               |               |
| 6/11/2018       |             |            |               |             |                |              |              |               | 0.023         |
| 8/6/2018        |             |            |               | 0.003 (J)   |                |              |              |               |               |
| 9/19/2018       |             |            | 0.0036 (J)    |             |                |              |              |               |               |
| 9/20/2018       | 0.0034 (J)  | <0.005     |               |             |                |              |              |               |               |
| 10/1/2018       |             |            |               |             | <0.005         | <0.005       | 0.00059 (J)  | <0.005        |               |
| 10/2/2018       |             |            |               |             |                |              |              |               | 0.022         |
| 2/25/2019       |             |            |               | 0.001 (J)   |                |              |              |               |               |
| 2/26/2019       |             |            |               |             | <0.005         |              |              |               | 0.021         |
| 2/27/2019       |             |            |               |             |                | <0.005       | 0.00064 (J)  | <0.005        |               |
| 3/28/2019       |             |            |               |             |                | <0.005       | 0.00091 (J)  |               |               |
| 3/29/2019       |             |            |               |             | <0.005         |              |              | <0.005        |               |
| 4/1/2019        |             |            |               |             |                |              |              |               | 0.022         |
| 6/12/2019       |             |            |               | 0.003 (J)   |                |              |              |               |               |
| 8/19/2019       |             |            |               | 0.0035 (J)  |                |              |              |               |               |
| 8/20/2019       |             |            | 0.00092 (J)   |             |                |              |              |               |               |
| 8/21/2019       | 0.0026 (J)  |            |               |             |                |              |              |               |               |
| 9/24/2019       |             |            |               |             |                | <0.005       | 0.0013 (J)   | <0.005        |               |
| 9/25/2019       |             |            |               |             | <0.005         |              |              |               | 0.016         |
| 9/26/2019       |             | <0.005     |               |             |                |              |              |               |               |
| 10/8/2019       |             |            | 0.0014 (J)    | 0.0039 (J)  |                |              |              |               |               |
| 10/9/2019       | 0.0023 (J)  |            |               |             |                |              |              |               |               |
| 2/10/2020       |             |            |               |             |                | <0.005       | 0.0016 (J)   |               |               |
| 2/11/2020       |             |            |               |             |                |              | x-7          | <0.005        |               |
| 2/12/2020       |             |            |               |             | <0.005         |              |              |               | 0.014         |
| 3/17/2020       |             |            | 0.0017 (.1)   | 0.003 (J)   |                |              |              |               |               |
| 3/18/2020       |             |            | 5.0017 (0)    | 5.000 (0)   | <0.005         |              | 0.00087 (1)  |               |               |
| 3/19/2020       |             |            |               |             | 0.000          | <0.005       | 5.00007 (0)  | <0.005        | 0.014         |
| 3/25/2020       | 0.0016 ( 1) | <0.005     |               |             |                | .0.000       |              | 0.000         | 0.017         |
| 8/26/2020       | 0.0010(0)   | -0.000     |               | 0.2 (0)     |                |              |              |               |               |
| JI L UI L U L U |             |            |               | V \ V /     |                |              |              |               |               |

|           | YGWC-43    | YGWC-49 | YGWA-47 (bg) | GWA-2 (bg) | YGWA-14S (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-2I (bg) | YGWA-30I (bg) |
|-----------|------------|---------|--------------|------------|---------------|--------------|--------------|--------------|---------------|
| 8/27/2020 |            |         | 0.0011 (J)   |            |               |              |              |              |               |
| 9/22/2020 |            |         | 0.00097 (J)  | 0.16 (O)   |               |              |              |              |               |
| 9/23/2020 |            |         |              |            |               | <0.005       | 0.0013 (J)   | <0.005       |               |
| 9/24/2020 |            | <0.005  |              |            |               |              |              |              | 0.0064        |
| 9/25/2020 | 0.0018 (J) |         |              |            | <0.005        |              |              |              |               |
| 2/9/2021  | 0.0017 (J) | <0.005  |              |            |               |              |              |              |               |
| 2/10/2021 |            |         |              |            | <0.005        |              |              | <0.005       |               |
| 2/11/2021 |            |         |              |            |               |              |              |              | 0.0078        |
| 2/12/2021 |            |         |              |            |               | 0.00086 (J)  | 0.0028 (J)   |              |               |
| 3/1/2021  |            |         | 0.001 (J)    |            |               |              |              |              | 0.0061        |
| 3/2/2021  |            |         |              | 0.21 (O)   | <0.005        |              |              |              |               |
| 3/3/2021  |            |         |              |            |               | <0.005       | 0.003 (J)    | <0.005       |               |
| 3/4/2021  | 0.0015 (J) | <0.005  |              |            |               |              |              |              |               |

Constituent: Cobalt (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YGWA-3D (bg) | YGWA-3I (bg) | PZ-35  | PZ-37      | YGWC-24SA | YGWC-36A     |
|------------|--------------|--------------|--------|------------|-----------|--------------|
| 6/1/2016   |              | <0.005       |        |            |           |              |
| 6/2/2016   | <0.005       |              |        |            |           |              |
| 6/8/2016   |              |              |        |            | <0.005    |              |
| 7/25/2016  |              | <0.005       |        |            |           |              |
| 7/26/2016  | <0.005       |              |        |            |           |              |
| 8/1/2016   |              |              |        |            | <0.005    |              |
| 9/2/2016   |              |              |        |            |           | 0.0006 (J)   |
| 9/14/2016  |              | <0.005       |        |            |           |              |
| 9/15/2016  | <0.005       |              |        |            |           |              |
| 9/20/2016  |              |              |        |            | <0.005    |              |
| 11/1/2016  | <0.005       | <0.005       |        |            |           |              |
| 11/8/2016  |              |              |        |            | <0.005    |              |
| 11/14/2016 |              |              |        |            |           | <0.005       |
| 1/11/2017  | <0.005       | <0.005       |        |            |           |              |
| 1/17/2017  |              |              |        |            | <0.005    |              |
| 2/28/2017  |              |              |        |            | 0.000     | <0.005       |
| 3/1/2017   |              | <0.005       |        |            |           | -0.000       |
| 3/1/2017   | <0.005       | -0.000       |        |            |           |              |
| 3/2/2017   | <0.003       |              |        |            | <0.005    |              |
| 3/8/2017   | <0.00E       | <0.005       |        |            | <0.005    |              |
| 4/20/2017  | <0.005       | <0.005       |        |            | -0.005    |              |
| 5/2/2017   |              |              |        |            | <0.005    | 10.005       |
| 5/9/2017   |              |              |        |            |           | <0.005       |
| 6/28/2017  | <0.005       | <0.005       |        |            |           |              |
| ////201/   |              |              |        |            | <0.005    |              |
| 7/13/2017  |              |              |        |            |           | <0.005       |
| 9/22/2017  |              |              |        |            |           | <0.005       |
| 9/29/2017  |              |              |        |            |           | <0.005       |
| 10/6/2017  |              |              |        |            |           | <0.005       |
| 10/12/2017 |              |              |        | 0.0078 (J) |           |              |
| 11/21/2017 |              |              |        | 0.0097 (J) |           |              |
| 1/11/2018  |              |              |        | 0.0131     |           |              |
| 2/20/2018  |              |              |        | 0.0162     |           |              |
| 3/28/2018  | <0.005       | <0.005       |        |            |           |              |
| 3/30/2018  |              |              |        |            | <0.005    | <0.005       |
| 4/3/2018   |              |              |        | 0.015      |           |              |
| 6/7/2018   | <0.005       |              |        |            |           |              |
| 6/8/2018   |              | <0.005       |        |            |           |              |
| 6/12/2018  |              |              |        |            | <0.005    |              |
| 6/13/2018  |              |              |        |            |           | <0.005       |
| 6/29/2018  |              |              |        | 0.013      |           |              |
| 8/6/2018   |              |              |        | 0.0053 (J) |           |              |
| 9/24/2018  |              |              |        | 0.0071 (J) |           |              |
| 9/26/2018  |              |              |        |            | <0.005    | <0.005       |
| 10/1/2018  | <0.005       | <0.005       |        |            |           |              |
| 10/16/2018 |              |              | <0.005 |            |           |              |
| 2/27/2019  | <0.005       | <0.005       |        |            |           |              |
| 3/5/2019   | -            | -            |        |            | <0.005    |              |
| 3/6/2019   |              |              |        |            |           | <0.005       |
| 4/1/2019   | <0.005       | <0.005       |        |            |           |              |
| 4/4/2019   | 5.000        | 5.000        |        |            | <0.005    | <0.005       |
| 9/25/2019  | <0.005       | <0.005       |        |            | 5.000     |              |
| 9/26/2019  | 5.000        | 5.000        | <0.005 |            | <0.005    | 0.00048 ( )) |
| 3.20/2010  |              |              | 3.000  |            | 5.000     |              |

Constituent: Cobalt (mg/L) Analysis Run 5/6/2021 8:36 PM

|           | YGWA-3D (bg) | YGWA-3I (bg) | PZ-35  | PZ-37      | YGWC-24SA | YGWC-36A    |
|-----------|--------------|--------------|--------|------------|-----------|-------------|
| 2/11/2020 |              | <0.005       |        |            |           |             |
| 2/12/2020 | <0.005       |              |        |            |           |             |
| 3/19/2020 | <0.005       | <0.005       |        |            |           |             |
| 3/25/2020 |              |              | 0.0059 |            |           | 0.00038 (J) |
| 3/26/2020 |              |              |        |            | <0.005    |             |
| 9/23/2020 | <0.005       | <0.005       |        |            | <0.005    |             |
| 9/24/2020 |              |              | <0.005 |            |           |             |
| 9/25/2020 |              |              |        | 0.0023 (J) |           |             |
| 10/7/2020 |              |              |        |            |           | 0.00086 (J) |
| 2/9/2021  |              |              |        | 0.0023 (J) | <0.005    |             |
| 2/10/2021 | <0.005       | <0.005       | <0.005 |            |           | 0.00038 (J) |
| 3/3/2021  | <0.005       | <0.005       |        |            | <0.005    |             |
| 3/4/2021  |              |              | <0.005 | 0.003 (J)  |           | <0.005      |

Constituent: Combined Radium 226 + 228 (pCi/L) Analysis Run 5/6/2021 8:36 PM

| 6/6/2016   | YAMW-1    | YAMW-2     | YAMW-4    | YAMW-5    | YGWA-17S (bg) | YGWA-18I (bg)<br>0.0804 (U) | YGWA-18S (bg)<br>0.301 (U) | YGWA-20S (bg) | YGWA-21I (bg) |
|------------|-----------|------------|-----------|-----------|---------------|-----------------------------|----------------------------|---------------|---------------|
| 6/7/2016   |           |            |           |           | 0.158 (U)     |                             |                            | 0.0191 (U)    | 0.347         |
| 7/27/2016  |           |            |           |           | 0.0354 (U)    | 0.206 (U)                   | 0.196 (U)                  | 0.541 (U)     |               |
| 7/28/2016  |           |            |           |           |               |                             |                            |               | 0.815 (U)     |
| 9/16/2016  |           |            |           |           | 1.04          |                             | 0.915 (U)                  |               |               |
| 9/19/2016  |           |            |           |           |               | 1.58                        |                            | 0.826 (U)     | 0.862 (U)     |
| 11/2/2016  |           |            |           |           |               |                             |                            | 0.791 (U)     |               |
| 11/3/2016  |           |            |           |           | 0.314 (U)     | 0.342 (U)                   | 0.928 (U)                  |               | 0.797 (U)     |
| 1/11/2017  |           |            |           |           | 0.34 (U)      | 0.365 (U)                   | 0.502 (U)                  |               |               |
| 1/13/2017  |           |            |           |           |               |                             |                            | 0.296 (U)     | 0.72 (U)      |
| 3/1/2017   |           |            |           |           |               | 0.395 (U)                   | 0.202 (U)                  |               |               |
| 3/2/2017   |           |            |           |           | 0.746 (U)     |                             |                            |               |               |
| 3/6/2017   |           |            |           |           |               |                             |                            | 0.518 (U)     | 0.518 (U)     |
| 4/26/2017  |           |            |           |           |               | 0.507 (U)                   | 0.264 (U)                  | 0.282 (U)     | 1.13 (U)      |
| 5/2/2017   |           |            |           |           | 0.111 (U)     |                             |                            |               |               |
| 6/28/2017  |           |            |           |           |               | 0.892                       | 0.636 (U)                  |               |               |
| 6/29/2017  |           |            |           |           | 0.576 (U)     |                             |                            | 1.12          | 0.841 (U)     |
| 3/28/2018  |           |            |           |           | 0.438 (U)     | 0.92 (U)                    | 0.56 (U)                   |               |               |
| 3/29/2018  |           |            |           |           |               |                             |                            | 1.73          | 1.91          |
| 6/5/2018   |           |            |           |           |               |                             |                            |               | 1.39          |
| 6/6/2018   |           |            |           |           |               |                             |                            | 0.694 (U)     |               |
| 6/7/2018   |           |            |           |           |               | 0.668 (U)                   |                            |               |               |
| 6/11/2018  |           |            |           |           | 0.901 (U)     |                             | 0.649 (U)                  |               |               |
| 9/25/2018  |           |            |           |           | 0.68 (U)      | 0.141 (U)                   | 0.574 (U)                  | 0.772 (U)     | 1.62          |
| 10/16/2018 | 0.384 (U) |            |           |           |               |                             |                            |               |               |
| 3/5/2019   |           |            |           |           | 0.272 (U)     |                             | 0.474 (U)                  | 0.84 (U)      | 0.985 (U)     |
| 3/6/2019   |           |            |           |           |               | 0.714 (U)                   |                            |               |               |
| 4/2/2019   |           |            |           |           | 0.847 (U)     |                             |                            |               | 1.42          |
| 4/3/2019   |           |            |           |           |               | 0.385 (U)                   | 0.429 (U)                  | 1.01          |               |
| 9/24/2019  |           |            |           |           |               |                             |                            |               | 1.35          |
| 9/25/2019  |           |            |           |           | 0.412 (U)     |                             |                            | 1.18 (U)      |               |
| 9/26/2019  |           |            |           |           |               | 0.386 (U)                   | 0.222 (U)                  |               |               |
| 2/11/2020  |           |            |           |           | 0.461 (U)     | 1.48                        | 0.597 (U)                  |               |               |
| 2/12/2020  |           |            |           |           |               |                             |                            | 1.11 (U)      | 1.61          |
| 3/24/2020  |           |            |           |           | 0.534 (U)     | 0.632 (U)                   | 0.262 (U)                  | 1.88          | 1.24 (U)      |
| 3/25/2020  | 0.525 (U) |            |           |           |               |                             |                            |               |               |
| 9/23/2020  |           | 0.0813 (U) | 1.2 (U)   |           | 0.466 (U)     | 0.887 (U)                   | 0.43 (U)                   |               |               |
| 9/24/2020  | 0.547 (U) |            |           | 0.668 (U) |               |                             |                            | 0.611 (U)     | 1.8           |
| 2/9/2021   | 0.866 (U) | 0.492 (U)  | 0.659 (U) | 1.07 (U)  | 0.529 (U)     | 0.314 (U)                   | 0.259 (U)                  | 0.284 (U)     | 1.24          |
| 3/3/2021   | 0.377 (U) | 0.563 (U)  | 1.07      |           | 0.59 (U)      | 0.565 (U)                   | 0.352 (U)                  | 0.133 (U)     | 1.2           |
| 3/4/2021   |           |            |           | 1.46      |               |                             |                            |               |               |

Constituent: Combined Radium 226 + 228 (pCi/L) Analysis Run 5/6/2021 8:36 PM

|            |               |               |            |      |            | VGWC 235   | VGWC 38    | YOWC 41    | XGWC 42 |
|------------|---------------|---------------|------------|------|------------|------------|------------|------------|---------|
| 6/2/2016   | 1 GWA-35 (bg) | 1 GWA-40 (bg) | 0 721      | 5 11 | 0.614      | 1000-200   | 1000-58    | 1000-41    | 1600-42 |
| 6/7/2016   |               |               | 0.721      | 5.11 | 0.014      | 0 303 (11) |            |            |         |
| 7/26/2016  |               |               | 1.26       | 6.02 | 1 47       | 0.505 (0)  |            |            |         |
| 7/20/2010  |               |               | 1.20       | 0.92 | 1.47       | 0.286 (11) |            |            |         |
| 7/28/2016  |               |               |            |      |            | 0.386 (0)  |            |            | 0.00    |
| 8/30/2016  |               |               | 0.001 (1)  | 0.00 | 1.07       |            |            |            | 2.99    |
| 9/14/2016  |               |               | 0.901 (U)  | 3.96 | 1.27       |            |            |            |         |
| 9/20/2016  |               |               |            |      |            | 1.47       |            |            |         |
| 11/2/2016  |               |               | 1.09 (U)   | 4.53 |            |            |            |            |         |
| 11/4/2016  |               |               |            |      | 0.434 (U)  |            |            |            |         |
| 11/8/2016  |               |               |            |      |            | 0.22 (U)   |            |            |         |
| 11/16/2016 |               |               |            |      |            |            |            |            | 4.01    |
| 1/12/2017  |               |               |            | 4.43 | 0.202 (U)  |            |            |            |         |
| 1/13/2017  |               |               | 1.19       |      |            |            |            |            |         |
| 1/16/2017  |               |               |            |      |            | 0.147 (U)  |            |            |         |
| 2/27/2017  |               |               |            |      |            |            |            |            | 2.5     |
| 3/6/2017   |               |               | 0.669 (U)  |      |            |            |            |            |         |
| 3/7/2017   |               |               |            | 4.8  | 0.0674 (U) |            |            |            |         |
| 3/9/2017   |               |               |            |      |            | 0.0892 (U) |            |            |         |
| 5/1/2017   |               |               | 0.803 (U)  | 4.16 |            |            |            |            |         |
| 5/2/2017   |               |               |            |      | 0.444 (U)  | 0.149 (U)  |            |            |         |
| 5/10/2017  |               |               |            |      |            |            |            |            | 2.55    |
| 6/27/2017  |               |               |            | 2.8  | 0.77 (U)   |            |            |            |         |
| 6/29/2017  |               |               | 1.35       |      |            |            |            |            |         |
| 7/10/2017  |               |               |            |      |            | 0.815 (U)  |            |            |         |
| 7/11/2017  |               |               |            |      |            |            |            |            | 3.94    |
| 10/11/2017 | 0.586 (U)     |               |            |      |            |            |            |            |         |
| 10/12/2017 |               | 1.49          |            |      |            |            | 1.24       | 0.641 (U)  | 3.57    |
| 11/20/2017 | 0.816 (U)     | 0.918 (U)     |            |      |            |            | 0.342 (U)  |            |         |
| 11/21/2017 |               |               |            |      |            |            |            | 2.01       |         |
| 1/10/2018  |               | 1.05          |            |      |            |            |            |            |         |
| 1/11/2018  | 0.841 (U)     |               |            |      |            |            |            | 0.919 (U)  |         |
| 1/12/2018  |               |               |            |      |            |            | 1.04       |            |         |
| 2/19/2018  |               | 2.05          |            |      |            |            |            | 1.82       |         |
| 2/20/2018  | 1 58          |               |            |      |            |            | 16(1)      |            |         |
| 3/29/2018  |               |               | 0 703 (U)  | 3 42 | 0.648 (U)  |            |            |            |         |
| 3/30/2018  |               |               | 0.700 (0)  | 0.12 | 0.010(0)   | 0.659 (11) |            |            |         |
| 4/3/2018   | 0 385 (11)    | 0.68 (11)     |            |      |            | 0.000 (0)  | 0 726 (11) | 0.911 (11) |         |
| 4/3/2018   | 0.000 (0)     | 0.00(0)       |            |      |            |            | 0.720(0)   | 0.511(0)   | 19      |
| 6/6/2018   |               |               |            | 3 00 |            |            |            |            | 1.5     |
| 6/7/2018   |               |               | 0 628 (11) | 5.55 | 0.745 (11) |            |            |            |         |
| 6/12/2018  |               |               | 0.028(0)   |      | 0.745 (0)  | 1.02 (1)   |            |            |         |
| 6/12/2018  |               |               |            |      |            | 1.03 (0)   |            | 0.400 (11) |         |
| 0/2//2018  | 0.000 (11)    | 1.00          |            |      |            |            | 1.00 (1))  | 0.429 (0)  |         |
| 6/28/2018  | 0.283 (U)     | 1.28          |            |      |            |            | 1.06 (U)   |            |         |
| 8/7/2018   | 0.332 (U)     | 1.16          |            |      |            |            | 1.21       | 0.579 (U)  |         |
| 9/20/2018  |               |               |            |      |            |            |            |            | 1.94    |
| 9/24/2018  | 0.767 (U)     | 0.965 (U)     |            |      |            |            | 1.52       | 1.39       |         |
| 9/26/2018  |               |               | 0.756 (U)  | 2.73 | 0.377 (U)  |            |            |            |         |
| 9/27/2018  |               |               |            |      |            | 1.06 (U)   |            |            |         |
| 3/4/2019   |               |               | 1.21 (U)   | 4.43 | 1 (U)      |            |            |            |         |
| 3/6/2019   |               |               |            |      |            | 0.736 (U)  |            |            |         |
| 4/3/2019   |               |               | 1.07 (U)   | 4.79 | 0.43 (U)   |            |            |            |         |
| 4/4/2019   |               |               |            |      |            | 0.474 (U)  |            |            |         |
|            |               |               |            |      |            |            |            |            |         |

Constituent: Combined Radium 226 + 228 (pCi/L) Analysis Run 5/6/2021 8:36 PM

|           | YGWA-39 (bg) | YGWA-40 (bg) | YGWA-4I (bg) | YGWA-5D (bg) | YGWA-5I (bg) | YGWC-23S  | YGWC-38   | YGWC-41   | YGWC-42   |
|-----------|--------------|--------------|--------------|--------------|--------------|-----------|-----------|-----------|-----------|
| 8/21/2019 | 1.01 (U)     | 1.24 (U)     |              |              |              |           |           |           |           |
| 8/22/2019 |              |              |              |              |              |           | 1.97      | 2.03      | 1.59      |
| 9/24/2019 |              |              |              | 4.06         | 0.699 (U)    |           |           |           |           |
| 9/25/2019 |              |              | 1.86         |              |              |           |           |           |           |
| 9/27/2019 |              |              |              |              |              | 0.684 (U) |           |           |           |
| 10/8/2019 | 1.02 (U)     | 0.866 (U)    |              |              |              |           | 0.751 (U) | 0.609 (U) | 0.995 (U) |
| 2/12/2020 | 0.45 (U)     | 1.83         | 1.25         | 4.02         | 0.913 (U)    |           |           |           |           |
| 3/24/2020 |              | 1.27 (U)     |              | 3.52         |              |           |           |           |           |
| 3/25/2020 | 0.377 (U)    |              | 0.766 (U)    |              |              |           | 0.321 (U) | 0.568 (U) | 1.17 (U)  |
| 3/26/2020 |              |              |              |              |              | 0.281 (U) |           |           |           |
| 9/22/2020 |              |              | 0.795 (U)    | 2.98         | 0.428 (U)    |           |           |           |           |
| 9/24/2020 | 0.568 (U)    | 0.634 (U)    |              |              |              | 0.788 (U) |           |           | 0.751 (U) |
| 9/25/2020 |              |              |              |              |              |           | 0.246 (U) | 0.769 (U) |           |
| 2/8/2021  |              |              |              | 2.89         | 0.613 (U)    |           |           |           |           |
| 2/9/2021  |              |              | 0.626 (U)    |              |              | 0.464 (U) | 0.626 (U) |           |           |
| 2/10/2021 | 0.518 (U)    | 0.783 (U)    |              |              |              |           |           | 0.548 (U) | 0.612 (U) |
| 3/2/2021  |              |              |              | 1.67         | 0.579 (U)    |           |           |           |           |
| 3/3/2021  |              |              | 1            |              | . ,          |           |           |           |           |
| 3/4/2021  | 0.636 (U)    | 0.818 (U)    |              |              |              | 0.771 (U) | 0.816 (U) | 1.23      | 1.02      |
|           | . /          | . /          |              |              |              | . /       | . /       |           |           |

Constituent: Combined Radium 226 + 228 (pCi/L) Analysis Run 5/6/2021 8:36 PM

|            | YGWC-43   | YGWC-49    | YGWA-47 (bg) | GWA-2 (bg) | YGWA-14S (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-2I (bg) | YGWA-30I (bg) |
|------------|-----------|------------|--------------|------------|---------------|--------------|--------------|--------------|---------------|
| 6/1/2016   |           |            |              |            |               | 0.321 (U)    | 0.42         |              |               |
| 6/2/2016   |           |            |              |            | 0.329 (U)     |              |              |              | 0.0652 (U)    |
| 7/25/2016  |           |            |              |            |               |              | 1.83         |              | 3.01          |
| 7/26/2016  |           |            |              |            | 1.51          | 0.707 (U)    |              |              |               |
| 8/30/2016  |           |            | 1.09         |            |               |              |              |              |               |
| 8/31/2016  | 0.926 (U) |            |              | 1.2        |               |              |              |              |               |
| 9/1/2016   |           | 1.2        |              |            |               |              |              |              |               |
| 9/13/2016  |           |            |              |            |               | 1.22         | 0.841        |              |               |
| 9/14/2016  |           |            |              |            |               |              |              | 0.98 (U)     |               |
| 9/15/2016  |           |            |              |            | 1.04 (U)      |              |              |              |               |
| 9/19/2016  |           |            |              |            |               |              |              |              | 0.871 (U)     |
| 11/1/2016  |           |            |              |            |               | 0.805 (U)    |              |              | 0.307 (U)     |
| 11/2/2016  |           |            |              |            | 0.496 (U)     |              |              |              |               |
| 11/4/2016  |           |            |              |            |               |              | 0.166 (U)    | 0.277 (U)    |               |
| 11/15/2016 |           | 0.645 (U)  |              |            |               |              |              |              |               |
| 11/16/2016 | 0.773 (U) |            |              |            |               |              |              |              |               |
| 11/28/2016 |           |            |              | 0.264 (U)  |               |              |              |              |               |
| 12/15/2016 |           |            | 1 (U)        |            |               |              |              | 0.071 (U)    |               |
| 1/10/2017  |           |            |              |            | 0.376 (U)     |              |              |              |               |
| 1/11/2017  |           |            |              |            |               | 0.705 (U)    |              |              |               |
| 1/16/2017  |           |            |              |            |               |              | 0            | 0.44 (U)     | 0.284 (U)     |
| 2/21/2017  |           |            |              |            |               |              |              |              | 0.503 (U)     |
| 2/22/2017  |           |            |              | 1.06 (U)   |               |              |              |              |               |
| 2/24/2017  | 0.661 (U) |            | 0.504 (U)    |            |               |              |              |              |               |
| 2/27/2017  |           | 0.244 (U)  |              |            |               |              |              |              |               |
| 3/2/2017   |           | ( )        |              |            |               | 0.251 (U)    | 0.504 (U)    |              |               |
| 3/3/2017   |           |            |              |            |               | (-)          |              | 0.448 (U)    |               |
| 3/8/2017   |           |            |              |            | 0.0745 (U)    |              |              |              |               |
| 4/26/2017  |           |            |              |            | 0.282 (U)     |              |              |              | 0.204 (U)     |
| 4/27/2017  |           |            |              |            | .,            | 1.08         | 0.593 (U)    |              |               |
| 4/28/2017  |           |            |              |            |               |              |              | 0.548 (U)    |               |
| 5/8/2017   |           |            | 0.455 (U)    | 0.187 (U)  |               |              |              |              |               |
| 5/9/2017   |           | 0.519 (U)  |              |            |               |              |              |              |               |
| 5/10/2017  | 1.27      | ( )        |              |            |               |              |              |              |               |
| 5/26/2017  |           |            |              |            |               |              |              | 0 (U)        |               |
| 6/27/2017  |           |            |              |            |               | 1.02 (U)     | 0.657 (U)    |              |               |
| 6/28/2017  |           |            |              |            |               |              |              | 0.608 (U)    |               |
| 6/30/2017  |           |            |              |            | 0.994         |              |              |              | 0.738 (U)     |
| 7/11/2017  | 1.02      |            | 0.471 (U)    |            |               |              |              |              |               |
| 7/13/2017  |           | 0.5 (U)    |              |            |               |              |              |              |               |
| 7/17/2017  |           |            |              | 1.42       |               |              |              |              |               |
| 10/10/2017 |           |            | 0.649 (U)    |            |               |              |              |              |               |
| 10/11/2017 |           | 1 41       |              |            |               |              |              |              |               |
| 10/12/2017 | 1.58      |            |              |            |               |              |              |              |               |
| 10/16/2017 |           |            |              | 1.17       |               |              |              |              |               |
| 2/19/2018  |           |            |              | 1.58 (D)   |               |              |              |              |               |
| 3/27/2018  |           |            |              |            | 0.189 (U)     |              | 0.39 (U)     |              | 0.31 (U)      |
| 3/28/2018  |           |            |              |            | 5             |              | 5.00 (0)     | 0.412 (11)   |               |
| 3/29/2018  |           |            |              |            |               | 0.503 (U)    |              | 5            |               |
| 4/2/2018   |           |            | 0.512(11)    |            |               | 2.000 (0)    |              |              |               |
| 4/4/2018   | 1 71      | 0 442 (11) | 5.612 (0)    |            |               |              |              |              |               |
| 6/5/2018   |           | 0          |              |            |               | 0.771 (U)    |              |              |               |
| 5.5.25.0   |           |            |              |            |               | (3)          |              |              |               |

#### Constituent: Combined Radium 226 + 228 (pCi/L) Analysis Run 5/6/2021 8:36 PM

| 6/6/2018  | YGWC-43 | YGWC-49    | YGWA-47 (bg) | GWA-2 (bg) | YGWA-14S (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-2I (bg) | YGWA-30I (bg) |
|-----------|---------|------------|--------------|------------|---------------|--------------|--------------|--------------|---------------|
| 6/0/2018  |         |            |              |            |               |              | 2.0          | 0.72 (11)    |               |
| 6/8/2018  |         |            |              |            | 0.018 (11)    |              |              | 0.73(0)      |               |
| 0/0/2018  |         |            |              |            | 0.218(0)      |              |              |              | 0.608 (11)    |
| 6/11/2018 |         |            |              | 0.100 (1)) |               |              |              |              | 0.608 (U)     |
| 8/6/2018  |         |            | 0.700 (1)    | 0.196 (U)  |               |              |              |              |               |
| 9/19/2018 |         |            | 0.789(0)     |            |               |              |              |              |               |
| 9/20/2018 | 2.8     | 1.14 (U)   |              |            |               |              |              |              |               |
| 10/1/2018 |         |            |              |            | 1.24          | 0.783 (U)    | 1.06 (U)     | 0.756 (U)    |               |
| 10/2/2018 |         |            |              |            |               |              |              |              | 0.97 (U)      |
| 2/26/2019 |         |            |              |            | 0.202 (U)     |              |              |              | 0.524 (U)     |
| 2/27/2019 |         |            |              |            |               | 1.21 (U)     | 0.637 (U)    | 0.635 (U)    |               |
| 3/28/2019 |         |            |              |            |               | 1.13 (U)     | 0.125 (U)    |              |               |
| 3/29/2019 |         |            |              |            | 0 (U)         |              |              | 0.224 (U)    |               |
| 4/1/2019  |         |            |              |            |               |              |              |              | 1.02 (U)      |
| 8/19/2019 |         |            |              | 1.39       |               |              |              |              |               |
| 8/20/2019 |         |            | 2.44         |            |               |              |              |              |               |
| 8/21/2019 | 3.16    |            |              |            |               |              |              |              |               |
| 9/24/2019 |         |            |              |            |               | 1.22 (U)     | 0.949 (U)    | 0.429 (U)    |               |
| 9/25/2019 |         |            |              |            | 0.707 (U)     |              |              |              | 1.02 (U)      |
| 9/26/2019 |         | 1.16 (U)   |              |            |               |              |              |              |               |
| 10/8/2019 | 3.65    |            | 1.72         | 1.32 (U)   |               |              |              |              |               |
| 2/10/2020 |         |            |              |            |               | 1.41         | 1.25 (U)     |              |               |
| 2/11/2020 |         |            |              |            |               |              |              | 0.817 (U)    |               |
| 2/12/2020 |         |            |              |            | 1.07 (U)      |              |              |              | 0.301 (U)     |
| 3/17/2020 |         |            | 1.22 (U)     | 1 (U)      |               |              |              |              |               |
| 3/18/2020 |         |            |              |            | 0.207 (U)     |              | 0.458 (U)    |              |               |
| 3/19/2020 |         |            |              |            |               | 1.1          |              | 0.715 (U)    | 1             |
| 3/25/2020 | 3.04    | 1.2 (U)    |              |            |               |              |              |              |               |
| 8/26/2020 |         |            |              | 1.75       |               |              |              |              |               |
| 8/27/2020 |         |            | 1.26 (U)     |            |               |              |              |              |               |
| 9/22/2020 |         |            | 1.06 (U)     | 0.688 (U)  |               |              |              |              |               |
| 9/23/2020 |         |            |              |            |               | 1.35 (U)     | 0.00884 (U)  | 0.565 (U)    |               |
| 9/24/2020 |         | 1.57 (U)   |              |            |               | ( )          |              |              | 0.684 (U)     |
| 9/25/2020 | 4.75    | - (-)      |              |            | 0.603 (U)     |              |              |              |               |
| 2/9/2021  | 6.38    | 0.137 (U)  |              |            |               |              |              |              |               |
| 2/10/2021 | 0.00    | 0.107 (0)  |              |            | 0 353 (11)    |              |              | 1.04 (11)    |               |
| 2/11/2021 |         |            |              |            | 5.000 (0)     |              |              |              | 0.678 (U)     |
| 2/12/2021 |         |            |              |            |               | 0.366 (U)    | 0 458 (U)    |              | 0.070 (0)     |
| 3/1/2021  |         |            | 12           |            |               | 5.000 (0)    | 3.400 (0)    |              | 0 / 12 (11)   |
| 3/2/2021  |         |            | 1.2          | 0.948 (11) | 0.71 (U)      |              |              |              | 0.712 (0)     |
| 3/2/2021  |         |            |              | 0.340 (0)  | 0.71(0)       | 0.402.(11)   | 0 105 (11)   | 0.450 (11)   |               |
| 3/3/2021  | 6.02    | 0 570 (11) |              |            |               | 0.492 (U)    | 0.105 (U)    | 0.459 (U)    |               |
| J/4/2021  | 0.02    | 0.579 (U)  |              |            |               |              |              |              |               |

Constituent: Combined Radium 226 + 228 (pCi/L) Analysis Run 5/6/2021 8:36 PM

|            | YGWA-3D (bg) | YGWA-3I (bg) | PZ-35     | PZ-37 | YGWC-24SA  | YGWC-36A   |
|------------|--------------|--------------|-----------|-------|------------|------------|
| 6/1/2016   |              | 0.896        |           |       |            |            |
| 6/2/2016   | 2.51         |              |           |       |            |            |
| 6/8/2016   |              |              |           |       | 1.06       |            |
| 7/25/2016  |              | 2.28         |           |       |            |            |
| 7/26/2016  | 3.82         |              |           |       |            |            |
| 8/1/2016   |              |              |           |       | 0.467 (U)  |            |
| 9/2/2016   |              |              |           |       |            | 0.873 (U)  |
| 9/14/2016  |              | 0.821 (U)    |           |       |            |            |
| 9/15/2016  | 4.24         |              |           |       |            |            |
| 9/20/2016  |              |              |           |       | 0.853 (U)  |            |
| 9/22/2016  |              |              |           |       |            | 0.667 (U)  |
| 9/29/2016  |              |              |           |       |            | 1.63       |
| 10/6/2016  |              |              |           |       |            | 0.641 (U)  |
| 11/1/2016  | 3.92         | 0.585 (U)    |           |       |            |            |
| 11/8/2016  |              |              |           |       | 0.433 (U)  |            |
| 11/14/2016 |              |              |           |       |            | 0.0451 (U) |
| 1/11/2017  | 2.52         | 1.22         |           |       |            |            |
| 1/17/2017  |              |              |           |       | 0.0759 (U) |            |
| 2/28/2017  |              |              |           |       |            | 1.34 (U)   |
| 3/1/2017   |              | 0.877 (U)    |           |       |            |            |
| 3/2/2017   | 3.13         |              |           |       |            |            |
| 3/8/2017   |              |              |           |       | 0.479 (U)  |            |
| 4/26/2017  | 2.35         | 0.672 (U)    |           |       |            |            |
| 5/2/2017   |              | (.)          |           |       | 0.506 (U)  |            |
| 5/9/2017   |              |              |           |       |            | 0.309 (11) |
| 6/28/2017  | 2.6          | 1.07(11)     |           |       |            | 0.000 (0)  |
| 7/7/2017   | 2.0          | 1.07 (0)     |           |       | 0 713 (11) |            |
| 7/13/2017  |              |              |           |       | 0.713(0)   | 0.618 (11) |
| 10/12/2017 |              |              |           | 1 02  |            | 0.010 (0)  |
| 10/12/2017 |              |              |           | 1.03  |            |            |
| 11/21/2017 |              |              |           | 1.33  |            |            |
| 1/11/2018  |              |              |           | 1.55  |            |            |
| 2/20/2018  | 0            | 0.05 (1)     |           | 2.75  |            |            |
| 3/28/2018  | 3            | 0.65 (U)     |           |       |            |            |
| 3/30/2018  |              |              |           |       | 0.409 (U)  | 0.721 (U)  |
| 4/3/2018   |              |              |           | 1.47  |            |            |
| 6/7/2018   | 2.79         |              |           |       |            |            |
| 6/8/2018   |              | 1.89         |           |       |            |            |
| 6/12/2018  |              |              |           |       | 0.728 (U)  |            |
| 6/13/2018  |              |              |           |       |            | 1.04 (U)   |
| 6/29/2018  |              |              |           | 1.69  |            |            |
| 8/6/2018   |              |              |           | 1.69  |            |            |
| 9/24/2018  |              |              |           | 2.26  |            |            |
| 9/26/2018  |              |              |           |       | 0.981      | 0.604 (U)  |
| 10/1/2018  | 3.14         | 1.58         |           |       |            |            |
| 10/16/2018 |              |              | 0.363 (U) |       |            |            |
| 2/27/2019  | 3.79         | 3.67         |           |       |            |            |
| 3/5/2019   |              |              |           |       | 0.837 (U)  |            |
| 3/6/2019   |              |              |           |       |            | 0.919 (U)  |
| 4/1/2019   | 4.33         | 2.28         |           |       |            |            |
| 4/4/2019   |              |              |           |       |            | 1.05 (U)   |
| 4/9/2019   |              |              |           |       | 0.502 (U)  |            |
| 9/25/2019  | 4.2          | 1.6          |           |       | -          |            |

Constituent: Combined Radium 226 + 228 (pCi/L) Analysis Run 5/6/2021 8:36 PM

|           | YGWA-3D (bg) | YGWA-3I (bg) | PZ-35     | PZ-37    | YGWC-24SA | YGWC-36A   |
|-----------|--------------|--------------|-----------|----------|-----------|------------|
| 9/26/2019 |              |              |           |          | 0.964 (U) | 0.979 (U)  |
| 2/11/2020 | 3.87         | 1.85         |           |          |           |            |
| 3/19/2020 | 3.96         | 2.2          |           |          |           |            |
| 3/25/2020 |              |              | 0.197 (U) |          |           | 1.22 (U)   |
| 3/26/2020 |              |              |           |          | 0.511 (U) |            |
| 9/23/2020 | 4.14         | 1.14 (U)     |           |          | 0.786 (U) |            |
| 9/24/2020 |              |              | 1.07 (U)  |          |           |            |
| 9/25/2020 |              |              |           | 1.68 (U) |           |            |
| 10/7/2020 |              |              |           |          |           | 1.58       |
| 2/9/2021  |              |              |           | 1.52     | 0.678 (U) |            |
| 2/10/2021 | 3.65         | 2.46         | 0.546 (U) |          |           | 0.466 (U)  |
| 3/3/2021  | 3.58         | 2.03         |           |          | 0.415 (U) |            |
| 3/4/2021  |              |              | 0.397 (U) | 1.49     |           | 0.0671 (U) |
|           |              |              |           |          |           |            |

Constituent: Fluoride (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YAMW-1 | YAMW-2 | YAMW-4 | YAMW-5 | YGWA-17S (bg) | YGWA-18I (bg) | YGWA-18S (bg) | YGWA-20S (bg) | YGWA-21I (bg) |
|------------|--------|--------|--------|--------|---------------|---------------|---------------|---------------|---------------|
| 6/6/2016   |        |        |        |        |               | <0.1          | <0.1          |               |               |
| 6/7/2016   |        |        |        |        | <0.1          |               |               | <0.1          | <0.1          |
| 7/27/2016  |        |        |        |        | <0.1          | <0.1          | <0.1          | <0.1          |               |
| 7/28/2016  |        |        |        |        |               |               |               |               | 0.02 (J)      |
| 9/16/2016  |        |        |        |        | <0.1          |               | <0.1          |               |               |
| 9/19/2016  |        |        |        |        |               | <0.1          |               | <0.1          | 0.02 (J)      |
| 11/2/2016  |        |        |        |        |               |               |               | <0.1          |               |
| 11/3/2016  |        |        |        |        | <0.1          | <0.1          | <0.1          |               | <0.1          |
| 1/11/2017  |        |        |        |        | <0.1          | <0.1          | <0.1          |               |               |
| 1/13/2017  |        |        |        |        |               |               |               | <0.1          | <0.1          |
| 3/1/2017   |        |        |        |        |               | <0.1          | <0.1          |               |               |
| 3/2/2017   |        |        |        |        | <0.1          |               |               |               |               |
| 3/6/2017   |        |        |        |        |               |               |               | <0.1          | <0.1          |
| 4/26/2017  |        |        |        |        |               | <0.1          | <0.1          | <0.1          | 0.04 (J)      |
| 5/2/2017   |        |        |        |        | <0.1          |               |               |               |               |
| 6/28/2017  |        |        |        |        |               | <0.1          | <0.1          |               |               |
| 6/29/2017  |        |        |        |        | <0.1          |               |               | <0.1          | <0.1          |
| 10/3/2017  |        |        |        |        |               |               |               |               | <0.1          |
| 10/4/2017  |        |        |        |        | <0.1          |               | <0.1          | <0.1          |               |
| 10/5/2017  |        |        |        |        |               | <0.1          |               |               |               |
| 3/28/2018  |        |        |        |        | <0.1          | <0.1          | <0.1          |               |               |
| 3/29/2018  |        |        |        |        |               |               |               | <0.1          | <0.1          |
| 6/5/2018   |        |        |        |        |               |               |               |               | 0.13 (J)      |
| 6/6/2018   |        |        |        |        |               |               |               | <0.1          |               |
| 6/7/2018   |        |        |        |        |               | <0.1          |               |               |               |
| 6/11/2018  |        |        |        |        | <0.1          |               | <0.1          |               |               |
| 9/25/2018  |        |        |        |        | <0.1          | <0.1          | <0.1          | <0.1          | 0 (J)         |
| 10/16/2018 | <0.1   |        |        |        |               |               |               |               | ( )           |
| 3/5/2019   |        |        |        |        | <0.1          |               | <0.1          | <0.1          | 0.32          |
| 3/6/2019   |        |        |        |        |               | <0.1          |               |               |               |
| 4/2/2019   |        |        |        |        | <0.1          |               |               |               | 0.12 (J)      |
| 4/3/2019   |        |        |        |        |               | <0.1          | <0.1          | <0.1          | - (-)         |
| 9/24/2019  |        |        |        |        |               |               |               |               | 0.15 (J)      |
| 9/25/2019  |        |        |        |        | <0.1          |               |               | <0.1          |               |
| 9/26/2019  | <0.1   |        |        |        |               | <0.1          | <0.1          |               |               |
| 2/11/2020  |        |        |        |        | <0.1          | <0.1          | <0.1          |               |               |
| 2/12/2020  |        |        |        |        |               |               |               | <0.1          | 0.1 (J)       |
| 3/24/2020  |        |        |        |        | <0.1          | <0.1          | <0.1          | <0.1          | 0.081 (J)     |
| 3/25/2020  | <0.1   |        |        |        |               |               |               |               |               |
| 9/23/2020  |        | <0.1   | <0.1   |        | <0.1          | <0.1          | <0.1          |               |               |
| 9/24/2020  | <0.1   | 0.1    | 5.1    | <0 1   | 0.1           | 0.1           | 0.1           | <0.1          | 0 079 (.1)    |
| 2/9/2021   | <0.1   | <0.1   | 0 14   | <0.1   |               | <0.1          | <0.1          | <0.1          | 0.092 (J)     |
| 3/3/2021   | <0.1   | <0.1   | 0.14   |        | <0.1          | <0.1          | <0.1          | <0.1          | 0.002 (0)     |
| 3/4/2021   | 0.1    | ·0.1   | 0.17   | <0.1   | ·0.1          | 0.1           | 0.1           | 0.1           | 0.091 (1)     |
|            |        |        |        |        |               |               |               |               | 0.001 (0)     |

Constituent: Fluoride (mg/L) Analysis Run 5/6/2021 8:36 PM

|            |              |              |              |              |              | 2014/0 000  |           | 200000   | NON10 10  |
|------------|--------------|--------------|--------------|--------------|--------------|-------------|-----------|----------|-----------|
|            | YGWA-39 (bg) | YGWA-40 (bg) | YGWA-4I (bg) | YGWA-5D (bg) | YGWA-5I (bg) | YGWC-23S    | YGWC-38   | YGWC-41  | YGWC-42   |
| 6/2/2016   |              |              | <0.1         | 0.11 (J)     | <0.1         |             |           |          |           |
| 6/7/2016   |              |              |              |              |              | <0.1        |           |          |           |
| 7/26/2016  |              |              | <0.1         | 0.05 (J)     | <0.1         |             |           |          |           |
| 7/28/2016  |              |              |              |              |              | 0.03 (J)    |           |          |           |
| 8/30/2016  |              |              |              |              |              |             |           |          | 0.02 (J)  |
| 9/14/2016  |              |              | <0.1         | 0.04 (J)     | <0.1         |             |           |          |           |
| 9/20/2016  |              |              |              |              |              | <0.1        |           |          |           |
| 11/2/2016  |              |              | <0.1         | <0.1         |              |             |           |          |           |
| 11/4/2016  |              |              |              |              | <0.1         |             |           |          |           |
| 11/8/2016  |              |              |              |              |              | <0.1        |           |          |           |
| 11/16/2016 |              |              |              |              |              |             |           |          | 0.07 (J)  |
| 1/12/2017  |              |              |              | 0.04 (J)     | <0.1         |             |           |          |           |
| 1/13/2017  |              |              | <0.1         |              |              |             |           |          |           |
| 1/16/2017  |              |              |              |              |              | <0.1        |           |          |           |
| 2/27/2017  |              |              |              |              |              |             |           |          | 0.06 (J)  |
| 3/6/2017   |              |              | <0.1         |              |              |             |           |          |           |
| 3/7/2017   |              |              |              | <0.1         | <0.1         |             |           |          |           |
| 3/9/2017   |              |              |              |              |              | <0.1        |           |          |           |
| 5/1/2017   |              |              | <0.1         | <0.1         |              |             |           |          |           |
| 5/2/2017   |              |              |              |              | <0.1         | <0.1        |           |          |           |
| 5/10/2017  |              |              |              |              |              |             |           |          | <0.1      |
| 6/27/2017  |              |              |              | <0.1         | <0.1         |             |           |          | 0.1       |
| 6/29/2017  |              |              | <0.1         | -0.1         | -0.1         |             |           |          |           |
| 7/10/2017  |              |              | <b>~0</b> .1 |              |              | <0.1        |           |          |           |
| 7/10/2017  |              |              |              |              |              | <b>40.1</b> |           |          | -0.1      |
| 10/2/2017  |              |              |              | -0.1         | -0.1         |             |           |          | SU.1      |
| 10/3/2017  |              |              | -0.1         | <0.1         | <0.1         |             |           |          |           |
| 10/5/2017  |              |              | <0.1         |              |              |             |           |          |           |
| 10/11/2017 | <0.1         |              |              |              |              | <0.1        |           |          | . <i></i> |
| 10/12/2017 |              | <0.1         |              |              |              |             | <0.1      | <0.1     | <0.1      |
| 11/20/2017 | <0.1         | <0.1         |              |              |              |             | 0.2 (J)   |          |           |
| 11/21/2017 |              |              |              |              |              |             |           | <0.1     |           |
| 1/10/2018  |              | <0.1         |              |              |              |             |           |          |           |
| 1/11/2018  | <0.1         |              |              |              |              |             |           | <0.1     |           |
| 1/12/2018  |              |              |              |              |              |             | 0.21 (J)  |          |           |
| 2/19/2018  |              | <0.1         |              |              |              |             |           | <0.1     |           |
| 2/20/2018  | 0.23         |              |              |              |              |             | <0.1      |          |           |
| 3/29/2018  |              |              | <0.1         | <0.1         | <0.1         |             |           |          |           |
| 3/30/2018  |              |              |              |              |              | <0.1        |           |          |           |
| 4/3/2018   | <0.1         | <0.1         |              |              |              |             | 0.41      | <0.1     |           |
| 4/4/2018   |              |              |              |              |              |             |           |          | <0.1      |
| 6/6/2018   |              |              |              | 0.15 (J)     |              |             |           |          |           |
| 6/7/2018   |              |              | <0.1         |              | <0.1         |             |           |          |           |
| 6/12/2018  |              |              |              |              |              | <0.1        |           |          |           |
| 6/27/2018  |              |              |              |              |              |             |           | <0.1     |           |
| 6/28/2018  | <0.1         | <0.1         |              |              |              |             | 0.43      |          |           |
| 8/7/2018   | 0.048 (J)    | <0.1         |              |              |              |             | <0.1      | 0.11 (J) |           |
| 9/20/2018  | -            |              |              |              |              |             |           |          | 0.041 (J) |
| 9/24/2018  | <0.1         | <0.1         |              |              |              |             | 0.034 (J) | <0.1     | .,        |
| 9/26/2018  |              |              | <0.1         | <0.1         | <0.1         |             | x-7       |          |           |
| 9/27/2018  |              |              |              |              |              | <0.1        |           |          |           |
| 3/4/2019   |              |              | <0.1         | 0.19 (J)     | <0.1         | -           |           |          |           |
| 3/6/2019   |              |              |              |              |              | <0.1        |           |          |           |
|            |              |              |              |              |              |             |           |          |           |

#### Constituent: Fluoride (mg/L) Analysis Run 5/6/2021 8:36 PM

|           | YGWA-39 (bg) | YGWA-40 (bg) | YGWA-4I (bg) | YGWA-5D (bg) | YGWA-5I (bg) | YGWC-23S  | YGWC-38  | YGWC-41 | YGWC-42 |
|-----------|--------------|--------------|--------------|--------------|--------------|-----------|----------|---------|---------|
| 3/26/2019 |              | <0.1         |              |              |              |           |          |         |         |
| 3/27/2019 | <0.1         |              |              |              |              |           | 0.24 (J) |         | <0.1    |
| 3/28/2019 |              |              |              |              |              |           |          | 0.1 (J) |         |
| 4/3/2019  |              |              | <0.1         | 0.047 (J)    | <0.1         |           |          |         |         |
| 4/4/2019  |              |              |              |              |              | 0.049 (J) |          |         |         |
| 8/21/2019 | <0.1         | <0.1         |              |              |              |           |          |         |         |
| 8/22/2019 |              |              |              |              |              |           | <0.1     | <0.1    | <0.1    |
| 9/24/2019 |              |              |              | 0.05 (J)     | <0.1         |           |          |         |         |
| 9/25/2019 |              |              | <0.1         |              |              |           |          |         |         |
| 9/27/2019 |              |              |              |              |              | 0.12 (J)  |          |         |         |
| 10/9/2019 | <0.1         | <0.1         |              |              |              |           | <0.1     | <0.1    | <0.1    |
| 2/12/2020 | <0.1         | <0.1         | <0.1         | <0.1         | <0.1         |           |          |         |         |
| 3/24/2020 |              | <0.1         |              | <0.1         | <0.1         |           |          |         |         |
| 3/25/2020 | <0.1         |              | <0.1         |              |              |           | <0.1     | <0.1    | <0.1    |
| 3/26/2020 |              |              |              |              |              | <0.1      |          |         |         |
| 9/22/2020 |              |              | <0.1         | 0.056 (J)    | <0.1         |           |          |         |         |
| 9/24/2020 | <0.1         | <0.1         |              |              |              | <0.1      |          |         | <0.1    |
| 9/25/2020 |              |              |              |              |              |           | <0.1     | <0.1    |         |
| 2/8/2021  |              |              |              | 0.055 (J)    | <0.1         |           |          |         |         |
| 2/9/2021  |              |              | <0.1         |              |              | <0.1      | <0.1     |         |         |
| 2/10/2021 | <0.1         | <0.1         |              |              |              |           |          | <0.1    | <0.1    |
| 3/2/2021  |              |              |              | <0.1         | <0.1         |           |          |         |         |
| 3/3/2021  |              |              | <0.1         |              |              |           |          |         |         |
| 3/4/2021  | <0.1         | <0.1         |              |              |              | <0.1      | <0.1     | <0.1    | <0.1    |

Constituent: Fluoride (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YGWC-43  | YGWC-49  | YGWA-47 (bg) | GWA-2 (bg) | YGWA-14S (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-2I (bg) | YGWA-30I (bg) |
|------------|----------|----------|--------------|------------|---------------|--------------|--------------|--------------|---------------|
| 6/1/2016   |          |          |              |            |               | 0.12 (J)     | <0.1         |              |               |
| 6/2/2016   |          |          |              |            | <0.1          |              |              |              | <0.1          |
| 7/25/2016  |          |          |              |            |               |              | 0.06 (J)     |              | 0.06 (J)      |
| 7/26/2016  |          |          |              |            | 0.02 (J)      | 0.08 (J)     |              |              |               |
| 8/30/2016  |          |          | 0.09 (J)     |            |               |              |              |              |               |
| 8/31/2016  | 0.12 (J) |          |              | 0.14 (J)   |               |              |              |              |               |
| 9/1/2016   |          | 0.09 (J) |              |            |               |              |              |              |               |
| 9/13/2016  |          |          |              |            |               | 0.11 (J)     | <0.1         |              |               |
| 9/14/2016  |          |          |              |            |               |              |              | 0.08 (J)     |               |
| 9/15/2016  |          |          |              |            | <0.1          |              |              |              |               |
| 9/19/2016  |          |          |              |            |               |              |              |              | <0.1          |
| 11/1/2016  |          |          |              |            |               | <0.1         |              |              | <0.1          |
| 11/2/2016  |          |          |              |            | <0.1          |              |              |              |               |
| 11/4/2016  |          |          |              |            |               |              | <0.1         | <0.1         |               |
| 11/14/2016 |          |          | 0.18 (J)     |            |               |              |              |              |               |
| 11/15/2016 |          | 0.16 (J) |              |            |               |              |              |              |               |
| 11/16/2016 | 0.2 (J)  |          |              |            |               |              |              |              |               |
| 11/28/2016 |          |          |              | 0.12 (J)   |               |              |              |              |               |
| 12/15/2016 |          |          |              |            |               |              |              | 0.06 (J)     |               |
| 1/10/2017  |          |          |              |            | <0.1          |              |              |              |               |
| 1/11/2017  |          |          |              |            |               | 0.05 (J)     |              |              |               |
| 1/16/2017  |          |          |              |            |               |              | <0.1         | 0.1 (J)      | <0.1          |
| 2/21/2017  |          |          |              |            |               |              |              |              | <0.1          |
| 2/22/2017  |          |          |              | 0.09 (J)   |               |              |              |              |               |
| 2/24/2017  | 0.21 (J) |          | 0.05 (J)     |            |               |              |              |              |               |
| 2/27/2017  | ( )      | 0.06 (J) |              |            |               |              |              |              |               |
| 3/2/2017   |          |          |              |            |               | <0.1         | <0.1         |              |               |
| 3/3/2017   |          |          |              |            |               |              |              | <0.1         |               |
| 3/8/2017   |          |          |              |            | <0.1          |              |              |              |               |
| 4/26/2017  |          |          |              |            | <0.1          |              |              |              | <0.1          |
| 4/27/2017  |          |          |              |            |               | 0.04 (J)     | 0.01 (J)     |              |               |
| 4/28/2017  |          |          |              |            |               |              |              | 0.06 (J)     |               |
| 5/8/2017   |          |          | 0.03 (J)     | 0.05 (J)   |               |              |              |              |               |
| 5/9/2017   |          | 0.05 (J) |              |            |               |              |              |              |               |
| 5/10/2017  | 0.04 (J) | 0.00 (0) |              |            |               |              |              |              |               |
| 5/26/2017  |          |          |              |            |               |              |              | 0.09 (J)     |               |
| 6/27/2017  |          |          |              |            |               | <0.1         | <0.1         |              |               |
| 6/28/2017  |          |          |              |            |               |              |              | 0.11 (J)     |               |
| 6/30/2017  |          |          |              |            | <0.1          |              |              |              | <0.1          |
| 7/11/2017  | 0.2 (J)  |          | 0.07 (J)     |            | -             |              |              |              |               |
| 7/13/2017  | 0.2 (0)  | <0 1     | 0.07 (0)     |            |               |              |              |              |               |
| 7/17/2017  |          | 0.1      |              | 0 14 (.1)  |               |              |              |              |               |
| 10/3/2017  |          |          |              | (-)        |               | <0.1         | <0.1         | <0.1         |               |
| 10/4/2017  |          |          |              |            |               |              | 0.1          |              | <0.1          |
| 10/5/2017  |          |          |              |            | <0 1          |              |              |              | -0.1          |
| 10/10/2017 |          |          | <0 1         |            | -0.1          |              |              |              |               |
| 10/11/2017 |          | 0 14 (1) | -0.1         |            |               |              |              |              |               |
| 10/12/2017 | 01(1)    | 0.14(0)  |              |            |               |              |              |              |               |
| 10/16/2017 | 0.1 (0)  |          |              | 0.12(1)    |               |              |              |              |               |
| 2/10/2019  |          |          |              | 0.17       |               |              |              |              |               |
| 3/27/2019  |          |          |              | 0.17       | <0.1          |              | <0.1         |              | <0.1          |
| 3/28/2019  |          |          |              |            | -U. I         |              | 1.01         | 0.31         | -0.1          |
| 512012010  |          |          |              |            |               |              |              | 0.01         |               |

|           | YGWC-43   | YGWC-49  | YGWA-47 (bg) | GWA-2 (bg) | YGWA-14S (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-2I (bg) | YGWA-30I (bg) |
|-----------|-----------|----------|--------------|------------|---------------|--------------|--------------|--------------|---------------|
| 3/29/2018 |           |          |              |            |               | <0.1         |              |              |               |
| 4/2/2018  |           |          | <0.1         |            |               |              |              |              |               |
| 4/4/2018  | <0.1      | <0.1     |              |            |               |              |              |              |               |
| 6/5/2018  |           |          |              |            |               | 0.055 (J)    |              |              |               |
| 6/6/2018  |           |          |              |            |               |              | <0.1         |              |               |
| 6/7/2018  |           |          |              |            |               |              |              | 0.11 (J)     |               |
| 6/8/2018  |           |          |              |            | <0.1          |              |              |              |               |
| 6/11/2018 |           |          |              |            |               |              |              |              | <0.1          |
| 8/6/2018  |           |          |              | 0.087 (J)  |               |              |              |              |               |
| 9/19/2018 |           |          | <0.1         |            |               |              |              |              |               |
| 9/20/2018 | <0.1      | <0.1     |              |            |               |              |              |              |               |
| 10/1/2018 |           |          |              |            | <0.1          | <0.1         | <0.1         | <0.1         |               |
| 10/2/2018 |           |          |              |            |               |              |              |              | <0.1          |
| 2/25/2019 |           |          |              | 0.14 (J)   |               |              |              |              |               |
| 2/26/2019 |           |          |              |            | <0.1          |              |              |              | <0.1          |
| 2/27/2019 |           |          |              |            |               | 0.052 (J)    | <0.1         | 0.12 (J)     |               |
| 3/27/2019 |           |          | 0.081 (J)    |            |               |              |              |              |               |
| 3/28/2019 | 0.078 (J) | <0.1     |              |            |               | 0.036 (J)    | <0.1         |              |               |
| 3/29/2019 |           |          |              |            | <0.1          |              |              | 0.13 (J)     |               |
| 4/1/2019  |           |          |              |            |               |              |              |              | <0.1          |
| 6/12/2019 |           |          |              | 0.12 (J)   |               |              |              |              |               |
| 8/19/2019 |           |          |              | <0.1       |               |              |              |              |               |
| 8/20/2019 |           |          | <0.1         |            |               |              |              |              |               |
| 8/21/2019 | 0.062 (J) |          |              |            |               |              |              |              |               |
| 9/24/2019 |           |          |              |            |               | 0.063 (J)    | <0.1         | 0.081 (J)    |               |
| 9/25/2019 |           |          |              |            | <0.1          |              |              |              | <0.1          |
| 9/26/2019 |           | 0.09 (J) |              |            |               |              |              |              |               |
| 10/8/2019 |           |          | 0.034 (J)    | 0.052 (J)  |               |              |              |              |               |
| 10/9/2019 | <0.1      |          |              |            |               |              |              |              |               |
| 2/10/2020 |           |          |              |            |               | 0.061 (J)    | <0.1         |              |               |
| 2/11/2020 |           |          |              |            |               |              |              | 0.075 (J)    |               |
| 2/12/2020 |           |          |              |            | <0.1          |              |              |              | <0.1          |
| 3/17/2020 |           |          | <0.1         | 0.053 (J)  |               |              |              |              |               |
| 3/18/2020 |           |          |              |            | <0.1          |              | <0.1         |              |               |
| 3/19/2020 |           |          |              |            |               | 0.064 (J)    |              | 0.093 (J)    | <0.1          |
| 3/25/2020 | 0.073 (J) | <0.1     |              |            |               |              |              |              |               |
| 8/26/2020 |           |          |              | 0.068 (J)  |               |              |              |              |               |
| 8/27/2020 |           |          | <0.1         |            |               |              |              |              |               |
| 9/22/2020 |           |          | <0.1         | 0.058 (J)  |               |              |              |              |               |
| 9/23/2020 |           |          |              |            |               | 0.058 (J)    | <0.1         | 0.08 (J)     |               |
| 9/24/2020 |           | <0.1     |              |            |               |              |              |              | <0.1          |
| 9/25/2020 | <0.1      |          |              |            | <0.1          |              |              |              |               |
| 2/9/2021  | 0.058 (J) | <0.1     |              |            |               |              |              |              |               |
| 2/10/2021 |           |          |              |            | <0.1          |              |              | 0.094 (J)    |               |
| 2/11/2021 |           |          |              |            |               |              |              |              | <0.1          |
| 2/12/2021 |           |          |              |            |               | 0.068 (J)    | <0.1         |              |               |
| 3/1/2021  |           |          | <0.1         |            |               |              |              |              | <0.1          |
| 3/2/2021  |           |          |              | 0.073 (J)  | <0.1          |              |              |              |               |
| 3/3/2021  |           |          |              |            |               | 0.078 (J)    | <0.1         | 0.085 (J)    |               |
| 3/4/2021  | 0.063 (J) | <0.1     |              |            |               |              |              |              |               |

Constituent: Fluoride (mg/L) Analysis Run 5/6/2021 8:36 PM

| C/1/2010   | YGWA-3D (bg) | YGWA-3I (bg) | PZ-35 | PZ-37     | YGWC-24SA | YGWC-36A     |
|------------|--------------|--------------|-------|-----------|-----------|--------------|
| 6/1/2016   |              | 0.15 (J)     |       |           |           |              |
| 6/2/2016   | 0.62         |              |       |           |           |              |
| 6/8/2016   |              |              |       |           | <0.1      |              |
| 7/25/2016  |              | 0.14 (J)     |       |           |           |              |
| 7/26/2016  | 0.49         |              |       |           |           |              |
| 8/1/2016   |              |              |       |           | <0.1      |              |
| 9/2/2016   |              |              |       |           |           | 0.05 (J)     |
| 9/14/2016  |              | 0.18 (J)     |       |           |           |              |
| 9/15/2016  | 0.54         |              |       |           |           |              |
| 9/20/2016  |              |              |       |           | <0.1      |              |
| 11/1/2016  | 0.68         | <0.1         |       |           |           |              |
| 11/8/2016  |              |              |       |           | <0.1      | 0.40 / 10    |
| 11/14/2016 |              |              |       |           |           | U.18 (J)     |
| 1/11/2017  | 0.49         | 0.09 (J)     |       |           |           |              |
| 1/1//2017  |              |              |       |           | <0.1      |              |
| 2/28/2017  |              |              |       |           |           | 0.09 (J)     |
| 3/1/2017   | 0.40         | <0.1         |       |           |           |              |
| 3/2/2017   | 0.48         |              |       |           |           |              |
| 3/8/2017   | 0.40         | 0.00 (1)     |       |           | <0.1      |              |
| 4/26/2017  | 0.48         | 0.08 (J)     |       |           |           |              |
| 5/2/2017   |              |              |       |           | <0.1      | 0.000 (1)    |
| 5/9/2017   | 0.47         | 0.40 (1)     |       |           |           | 0.009 (J)    |
| 6/28/2017  | 0.47         | 0.12 (J)     |       |           |           |              |
| 7/7/2017   |              |              |       |           | <0.1      | .0.4         |
| 7/13/2017  |              |              |       |           |           |              |
| 9/22/2017  |              |              |       |           |           | 0.09 (J)     |
| 9/29/2017  | -0.1         | -0.1         |       |           |           | <b>~</b> 0.1 |
| 10/4/2017  | -0.1         | -0.1         |       |           | <01       |              |
| 10/5/2017  |              |              |       |           | -0.1      | <0.1         |
| 10/11/2017 |              |              |       |           |           | <0.1         |
| 10/12/2017 |              |              |       | <0.1      |           |              |
| 11/21/2017 |              |              |       | 0.26 (.1) |           |              |
| 1/11/2018  |              |              |       | <0.1      |           |              |
| 2/20/2018  |              |              |       | 0.45      |           |              |
| 3/28/2018  | 0.56         | <0.1         |       |           |           |              |
| 3/30/2018  |              |              |       |           | <0.1      | <0.1         |
| 4/3/2018   |              |              |       | 0.31      |           |              |
| 6/7/2018   | 0.48         |              |       |           |           |              |
| 6/8/2018   |              | 0.2 (J)      |       |           |           |              |
| 6/12/2018  |              |              |       |           | <0.1      |              |
| 6/13/2018  |              |              |       |           |           | <0.1         |
| 6/29/2018  |              |              |       | <0.1      |           |              |
| 8/6/2018   |              |              |       | 0.23 (J)  |           |              |
| 9/24/2018  |              |              |       | <0.1      |           |              |
| 9/26/2018  |              |              |       |           | <0.1      | <0.1         |
| 10/1/2018  | 0.44         | <0.1         |       |           |           |              |
| 10/16/2018 |              |              | <0.1  |           |           |              |
| 2/27/2019  | 0.53         | 0.13 (J)     |       |           |           |              |
| 3/5/2019   |              |              |       |           | <0.1      |              |
| 3/6/2019   |              |              |       |           |           | <0.1         |
| 4/1/2019   | 0.45         | 0.1 (J)      |       |           |           |              |
|            |              |              |       |           |           |              |

Constituent: Fluoride (mg/L) Analysis Run 5/6/2021 8:36 PM

|           | YGWA-3D (bg) | YGWA-3I (bg) | PZ-35 | PZ-37 | YGWC-24SA | YGWC-36A  |
|-----------|--------------|--------------|-------|-------|-----------|-----------|
| 4/4/2019  |              |              |       |       | 0.033 (J) | 0.043 (J) |
| 9/25/2019 | 0.46         | 0.1 (J)      |       |       |           |           |
| 9/26/2019 |              |              | <0.1  |       | 0.098 (J) | 0.094 (J) |
| 2/11/2020 |              | 0.094 (J)    |       |       |           |           |
| 2/12/2020 | 0.4          |              |       |       |           |           |
| 3/19/2020 | 0.51         | 0.11 (J)     |       |       |           |           |
| 3/25/2020 |              |              | <0.1  |       |           | <0.1      |
| 3/26/2020 |              |              |       |       | <0.1      |           |
| 9/23/2020 | 0.47         | 0.098 (J)    |       |       | <0.1      |           |
| 9/24/2020 |              |              | <0.1  |       |           |           |
| 9/25/2020 |              |              |       | <0.1  |           |           |
| 10/7/2020 |              |              |       |       |           | <0.1      |
| 2/9/2021  |              |              |       | <0.1  | <0.1      |           |
| 2/10/2021 | 0.43         | <0.1         | <0.1  |       |           | <0.1      |
| 3/3/2021  | 0.44         | 0.1          |       |       | <0.1      |           |
| 3/4/2021  |              |              | <0.1  | <0.1  |           | <0.1      |
|           |              |              |       |       |           |           |

Constituent: Lead (mg/L) Analysis Run 5/6/2021 8:36 PM

|           | YAMW-1      | YAMW-2      | YAMW-4      | YAMW-5      | YGWA-17S (bg) | YGWA-18I (bg) | YGWA-18S (bg) | YGWA-20S (bg) | YGWA-21I (bg) |
|-----------|-------------|-------------|-------------|-------------|---------------|---------------|---------------|---------------|---------------|
| 6/6/2016  |             |             |             |             |               | <0.001        | <0.001        |               |               |
| 6/7/2016  |             |             |             |             | <0.001        |               |               | <0.001        | <0.001        |
| 7/27/2016 |             |             |             |             | <0.001        | <0.001        | <0.001        | <0.001        |               |
| 7/28/2016 |             |             |             |             |               |               |               |               | <0.001        |
| 9/16/2016 |             |             |             |             | <0.001        |               | <0.001        |               |               |
| 9/19/2016 |             |             |             |             |               | <0.001        |               | <0.001        | <0.001        |
| 11/2/2016 |             |             |             |             |               |               |               | 0.0013 (J)    |               |
| 11/3/2016 |             |             |             |             | <0.001        | <0.001        | <0.001        |               | <0.001        |
| 1/11/2017 |             |             |             |             | <0.001        | <0.001        | <0.001        |               |               |
| 1/13/2017 |             |             |             |             |               |               |               | <0.001        | <0.001        |
| 3/1/2017  |             |             |             |             |               | <0.001        | <0.001        |               |               |
| 3/2/2017  |             |             |             |             | 8E-05 (J)     |               |               |               |               |
| 3/6/2017  |             |             |             |             |               |               |               | <0.001        | <0.001        |
| 4/26/2017 |             |             |             |             |               | <0.001        | <0.001        | <0.001        | <0.001        |
| 5/2/2017  |             |             |             |             | <0.001        |               |               |               |               |
| 6/28/2017 |             |             |             |             |               | <0.001        | 0.0001 (J)    |               |               |
| 6/29/2017 |             |             |             |             | 8E-05 (J)     |               |               | <0.001        | <0.001        |
| 3/28/2018 |             |             |             |             | <0.001        | <0.001        | <0.001        |               |               |
| 3/29/2018 |             |             |             |             |               |               |               | <0.001        | <0.001        |
| 3/5/2019  |             |             |             |             | <0.001        |               | <0.001        | <0.001        | <0.001        |
| 3/6/2019  |             |             |             |             |               | <0.001        |               |               |               |
| 4/2/2019  |             |             |             |             | <0.001        |               |               |               | <0.001        |
| 4/3/2019  |             |             |             |             |               | <0.001        | <0.001        | <0.001        |               |
| 9/24/2019 |             |             |             |             |               |               |               |               | <0.001        |
| 9/25/2019 |             |             |             |             | <0.001        |               |               | <0.001        |               |
| 9/26/2019 | <0.001      |             |             |             |               | <0.001        | <0.001        |               |               |
| 2/11/2020 |             |             |             |             | <0.001        | <0.001        | <0.001        |               |               |
| 2/12/2020 |             |             |             |             |               |               |               | <0.001        | <0.001        |
| 3/24/2020 |             |             |             |             | 6.4E-05 (J)   | 7.1E-05 (J)   | 5.4E-05 (J)   | 0.00011 (J)   | <0.001        |
| 3/25/2020 | <0.001      |             |             |             |               |               |               |               |               |
| 9/23/2020 |             | <0.001      | 0.00028 (J) |             | 4.1E-05 (J)   | 6E-05 (J)     | 9.7E-05 (J)   |               |               |
| 9/24/2020 | <0.001      |             |             | 0.00011 (J) |               |               |               | 9.2E-05 (J)   | 4.6E-05 (J)   |
| 2/9/2021  | 0.00019 (J) | 0.00011 (J) | 0.00054 (J) | 7.3E-05 (J) |               | 5E-05 (J)     | 9.4E-05 (J)   | 6.3E-05 (J)   | <0.001        |
| 3/3/2021  | <0.001      | 8E-05 (J)   | 9.6E-05 (J) |             | <0.001        | <0.001        | 7.6E-05 (J)   | 4.5E-05 (J)   |               |
| 3/4/2021  |             |             |             | 4.1E-05 (J) |               |               |               |               | <0.001        |
Constituent: Lead (mg/L) Analysis Run 5/6/2021 8:36 PM

|                       | VC/M(A 20 (ba) | VC)M(A 40 (ba)      |                |                |               | XCWC 225      | VCIMC 28    | YOWC 41      | YOWC 12        |
|-----------------------|----------------|---------------------|----------------|----------------|---------------|---------------|-------------|--------------|----------------|
| 6/2/2016              | rGWA-39 (bg)   | YGWA-40 (bg)        | rGWA-41 (bg)   | FGVVA-5D (bg)  | rGVVA-51 (bg) | rGWC-235      | 1900-38     | rGvvC-41     | rGWC-42        |
| 6/2/2016              |                |                     | <0.001         | <0.001         | <0.001        | 0.00044 (1)   |             |              |                |
| 7/26/2016             |                |                     | <0.001         | <0.001         | <0.001        | 0.00044 (3)   |             |              |                |
| 7/28/2016             |                |                     | \$0.001        | -0.001         | \$0.001       | <0.001        |             |              |                |
| 8/30/2016             |                |                     |                |                |               | -0.001        |             |              | <0.001         |
| 9/14/2016             |                |                     | <0.001         | <0.001         | <0.001        |               |             |              | <b>40.00</b> T |
| 9/20/2016             |                |                     | -0.001         | -0.001         | -0.001        | <0.001        |             |              |                |
| 11/2/2016             |                |                     | <0.001         | <0.001         |               | -0.001        |             |              |                |
| 11/2/2016             |                |                     | \$0.001        | -0.001         | <0.001        |               |             |              |                |
| 11/8/2016             |                |                     |                |                | \$0.001       | <0.001        |             |              |                |
| 11/16/2016            |                |                     |                |                |               | -0.001        |             |              | 0 0002 (.1)    |
| 1/12/2017             |                |                     |                | <0.001         | <0.001        |               |             |              | 0.0002 (0)     |
| 1/13/2017             |                |                     | <0.001         | -0.001         | \$0.001       |               |             |              |                |
| 1/16/2017             |                |                     | -0.001         |                |               | <0.001        |             |              |                |
| 2/27/2017             |                |                     |                |                |               | \$0.001       |             |              | <0.001         |
| 3/6/2017              |                |                     | <0.001         |                |               |               |             |              | <b>40.00</b> T |
| 3/7/2017              |                |                     | \$0.001        | 0.0001 (J)     | 7E-05 (J)     |               |             |              |                |
| 3/9/2017              |                |                     |                | 0.0001 (3)     | 72-00 (0)     | <0.001        |             |              |                |
| 5/3/2017              |                |                     | <0.001         | <0.001         |               | <0.001        |             |              |                |
| 5/2/2017              |                |                     | -0.001         | -0.001         | <0.001        | <0.001        |             |              |                |
| 5/10/2017             |                |                     |                |                | \$0.001       | \$0.001       |             |              | 9E-05 ( I)     |
| 6/27/2017             |                |                     |                | <0.001         | <0.001        |               |             |              | 9E-03 (3)      |
| 6/20/2017             |                |                     | <0.001         | -0.001         | <0.001        |               |             |              |                |
| 7/10/2017             |                |                     | -0.001         |                |               | <0.001        |             |              |                |
| 7/11/2017             |                |                     |                |                |               | \$0.001       |             |              | <0.001         |
| 10/11/2017            | 0.0001 ( 1)    |                     |                |                |               |               |             |              | <b>~0.001</b>  |
| 10/12/2017            | 0.0001 (3)     |                     |                |                |               |               | 0.0001 ( 1) | <0.001       | <0.001         |
| 11/20/2017            | <0.001         | 9E-03 (3)<br><0.001 |                |                |               |               | 0.0001 (J)  | -0.001       | <b>~0.001</b>  |
| 11/20/2017            | <0.001         | <0.001              |                |                |               |               | 0.0001 (3)  | <0.001       |                |
| 1/10/2019             |                | <0.001              |                |                |               |               |             | <0.001       |                |
| 1/11/2018             | 0.0002 ( 1)    | <0.001              |                |                |               |               |             | 75.05(1)     |                |
| 1/12/2018             | 0.0002 (3)     |                     |                |                |               |               | 0.0001 (1)  | 72-05 (3)    |                |
| 1/12/2018             |                | <0.001              |                |                |               |               | 0.0001 (J)  | -0.001       |                |
| 2/19/2018             | <0.001         | <0.001              |                |                |               |               | -0.001      | <0.001       |                |
| 2/20/2018             | <0.001         |                     | <0.001         | <0.001         | <0.001        |               | <0.001      |              |                |
| 3/29/2018             |                |                     | <0.001         | <0.001         | <0.001        | -0.001        |             |              |                |
| 3/30/2018             | <0.001         | <0.001              |                |                |               | <0.001        | -0.001      | -0.001       |                |
| 4/3/2018              | <0.001         | <0.001              |                |                |               |               | <0.001      | <0.001       | <0.001         |
| 6/27/2018             |                |                     |                |                |               |               |             | 0.0011 ( 1)  | <b>~0.001</b>  |
| 6/29/2019             | ~0.001         | <0.001              |                |                |               |               | ~0.001      | 0.0011(3)    |                |
| 0/20/2010             | <0.001         | <0.001              |                |                |               |               | <0.001      | -0.001       |                |
| 0/7/2018              | <0.001         | <0.001              |                |                |               |               | <0.001      | <0.001       | <0.001         |
| 9/20/2018             | ~0.001         | <0.001              |                |                |               |               | ~0.001      | <0.001       | <b>~0.001</b>  |
| 9/24/2010             | <0.001         | <0.001              | -0.001         | ~0.001         | <0.001        |               | <0.001      | <0.001       |                |
| 3/4/2019              |                |                     | <0.001         | <0.001         | <0.001        | <0.001        |             |              |                |
| 4/3/2019              |                |                     | <0.001         | <0.001         | <0.001        | <0.001        |             |              |                |
| 4/3/2019              |                |                     | ~0.00T         | ~0.00T         | NU.001        | <0.001        |             |              |                |
| 4/4/2019<br>8/21/2010 | <0.001         | <0.001              |                |                |               | <b>~0.001</b> |             |              |                |
| 8/22/2010             | <u>~0.001</u>  | ~U.UUT              |                |                |               |               | <0.001      | 6 7E 05 ( I) | <0.001         |
| 012212019             |                |                     |                | <0.001         |               |               | ~U.UU I     | 0.7⊑-03 (J)  | <u>∼0.001</u>  |
| 912412019             |                |                     | <0.001         | <b>~</b> 0.001 | ∃E-03 (J)     |               |             |              |                |
| 912012019             |                |                     | <b>≺</b> 0.001 |                |               | 0.00012 ( !)  |             |              |                |
| 9/2//2019             |                |                     |                |                |               | 0.00013 (J)   |             |              |                |

| - |           |              |              |              |              |              |             |         |             |             |
|---|-----------|--------------|--------------|--------------|--------------|--------------|-------------|---------|-------------|-------------|
|   |           | YGWA-39 (bg) | YGWA-40 (bg) | YGWA-4I (bg) | YGWA-5D (bg) | YGWA-5I (bg) | YGWC-23S    | YGWC-38 | YGWC-41     | YGWC-42     |
|   | 10/9/2019 | <0.001       | <0.001       |              |              |              |             | <0.001  | 0.00012 (J) | <0.001      |
|   | 2/12/2020 | <0.001       | <0.001       | <0.001       | <0.001       | <0.001       |             |         |             |             |
|   | 3/24/2020 |              | <0.001       |              | 5.4E-05 (J)  | 6.8E-05 (J)  |             |         |             |             |
|   | 3/25/2020 | 5.1E-05 (J)  |              | <0.001       |              |              |             | <0.001  | <0.001      | 4.7E-05 (J) |
|   | 3/26/2020 |              |              |              |              |              | <0.001      |         |             |             |
|   | 9/22/2020 |              |              | <0.001       | 4.5E-05 (J)  | 4.2E-05 (J)  |             |         |             |             |
|   | 9/24/2020 | <0.001       | 3.8E-05 (J)  |              |              |              | 4.6E-05 (J) |         |             | <0.001      |
|   | 9/25/2020 |              |              |              |              |              |             | <0.001  | <0.001      |             |
|   | 2/8/2021  |              |              |              | 0.00013 (J)  | 3.7E-05 (J)  |             |         |             |             |
|   | 2/9/2021  |              |              | <0.001       |              |              | <0.001      | <0.001  |             |             |
|   | 2/10/2021 | <0.001       | <0.001       |              |              |              |             |         | 0.0002 (J)  | 5.4E-05 (J) |
|   | 3/2/2021  |              |              |              | 5.1E-05 (J)  | 9.2E-05 (J)  |             |         |             |             |
|   | 3/3/2021  |              |              | <0.001       |              |              |             |         |             |             |
|   | 3/4/2021  | <0.001       | <0.001       |              |              |              | 0.00021 (J) | <0.001  | <0.001      | <0.001      |
|   |           |              |              |              |              |              |             |         |             |             |

Constituent: Lead (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YGWC-43 | YGWC-49 | YGWA-47 (bg) | GWA-2 (bg) | YGWA-14S (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-2I (bg)   | YGWA-30I (bg) |
|------------|---------|---------|--------------|------------|---------------|--------------|--------------|----------------|---------------|
| 5/1/2007   |         |         |              | <0.001     |               |              |              |                |               |
| 9/11/2007  |         |         |              | <0.001     |               |              |              |                |               |
| 3/20/2008  |         |         |              | <0.001     |               |              |              |                |               |
| 8/27/2008  |         |         |              | <0.001     |               |              |              |                |               |
| 3/3/2009   |         |         |              | <0.001     |               |              |              |                |               |
| 11/18/2009 |         |         |              | <0.001     |               |              |              |                |               |
| 3/3/2010   |         |         |              | <0.001     |               |              |              |                |               |
| 9/8/2010   |         |         |              | <0.001     |               |              |              |                |               |
| 3/10/2011  |         |         |              | < 0.001    |               |              |              |                |               |
| 9/8/2011   |         |         |              | <0.001     |               |              |              |                |               |
| 3/5/2012   |         |         |              | <0.001     |               |              |              |                |               |
| 9/10/2012  |         |         |              | <0.001     |               |              |              |                |               |
| 2/6/2013   |         |         |              | <0.001     |               |              |              |                |               |
| 8/12/2013  |         |         |              | <0.001     |               |              |              |                |               |
| 2/5/2014   |         |         |              | <0.001     |               |              |              |                |               |
| 2/5/2014   |         |         |              | <0.001     |               |              |              |                |               |
| 3/3/2014   |         |         |              | <0.001     |               |              |              |                |               |
| 2/4/2015   |         |         |              | <0.001     |               |              |              |                |               |
| 8/3/2015   |         |         |              | <0.001     |               |              |              |                |               |
| 2/16/2016  |         |         |              | <0.001     |               | 0.00050 (1)  |              |                |               |
| 6/1/2016   |         |         |              |            |               | 0.00056 (J)  | <0.001       |                |               |
| 6/2/2016   |         |         |              |            | <0.001        |              |              |                | <0.001        |
| 7/25/2016  |         |         |              |            |               |              | <0.001       |                | <0.001        |
| 7/26/2016  |         |         |              |            | <0.001        | <0.001       |              |                |               |
| 8/30/2016  |         |         | <0.001       |            |               |              |              |                |               |
| 8/31/2016  | <0.001  |         |              | <0.001     |               |              |              |                |               |
| 9/1/2016   |         | <0.001  |              |            |               |              |              |                |               |
| 9/13/2016  |         |         |              |            |               | 0.0001 (J)   | <0.001       |                |               |
| 9/14/2016  |         |         |              |            |               |              |              | <0.001         |               |
| 9/15/2016  |         |         |              |            | <0.001        |              |              |                |               |
| 9/19/2016  |         |         |              |            |               |              |              |                | <0.001        |
| 11/1/2016  |         |         |              |            |               | <0.001       |              |                | <0.001        |
| 11/2/2016  |         |         |              |            | <0.001        |              |              |                |               |
| 11/4/2016  |         |         |              |            |               |              | <0.001       | <0.001         |               |
| 11/14/2016 |         |         | <0.001       |            |               |              |              |                |               |
| 11/15/2016 |         | <0.001  |              |            |               |              |              |                |               |
| 11/16/2016 | <0.001  |         |              |            |               |              |              |                |               |
| 11/28/2016 |         |         |              | <0.001     |               |              |              |                |               |
| 12/15/2016 |         |         |              |            |               |              |              | <0.001         |               |
| 1/10/2017  |         |         |              |            | <0.001        |              |              |                |               |
| 1/11/2017  |         |         |              |            |               | <0.001       |              |                |               |
| 1/16/2017  |         |         |              |            |               |              | <0.001       | <0.001         | <0.001        |
| 2/21/2017  |         |         |              |            |               |              |              |                | <0.001        |
| 2/22/2017  |         |         |              | <0.001     |               |              |              |                |               |
| 2/24/2017  | <0.001  |         | <0.001       |            |               |              |              |                |               |
| 2/27/2017  |         | <0.001  |              |            |               |              |              |                |               |
| 3/2/2017   |         |         |              |            |               | 0 0001 (J)   | <0.001       |                |               |
| 3/3/2017   |         |         |              |            |               | 0.0001 (0)   | 0.001        | <0.001         |               |
| 3/8/2017   |         |         |              |            | 0.0001 ( 1)   |              |              | 0.001          |               |
| 4/26/2017  |         |         |              |            | <0.001        |              |              |                | <0.001        |
| 4/27/2017  |         |         |              |            | -0.001        | <0.001       | <0.001       |                | -0.001        |
| 4/28/2017  |         |         |              |            |               | NU.UU I      | NU.UU I      | <0.001         |               |
| 4/20/2017  |         |         | <0.001       | ~0.001     |               |              |              | <b>\U.UU</b> I |               |
| 5/8/2017   |         |         | <0.001       | <0.001     |               |              |              |                |               |

|            | YGWC-43     | YGWC-49     | YGWA-47 (bg) | GWA-2 (bg)  | YGWA-14S (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-2I (bg) | YGWA-30I (bg) |
|------------|-------------|-------------|--------------|-------------|---------------|--------------|--------------|--------------|---------------|
| 5/9/2017   |             | <0.001      |              |             |               |              |              |              |               |
| 5/10/2017  | 8E-05 (J)   |             |              |             |               |              |              |              |               |
| 5/26/2017  |             |             |              |             |               |              |              | <0.001       |               |
| 6/27/2017  |             |             |              |             |               | <0.001       | <0.001       |              |               |
| 6/28/2017  |             |             |              |             |               |              |              | <0.001       |               |
| 6/30/2017  |             |             |              |             | <0.001        |              |              |              | <0.001        |
| 7/11/2017  | <0.001      |             | <0.001       |             |               |              |              |              |               |
| 7/13/2017  |             | <0.001      |              |             |               |              |              |              |               |
| 7/17/2017  |             |             |              | <0.001      |               |              |              |              |               |
| 10/10/2017 |             |             | <0.001       |             |               |              |              |              |               |
| 10/11/2017 |             | <0.001      |              |             |               |              |              |              |               |
| 10/12/2017 | <0.001      |             |              |             |               |              |              |              |               |
| 10/16/2017 |             |             |              | <0.001      |               |              |              |              |               |
| 2/19/2018  |             |             |              | <0.001      |               |              |              |              |               |
| 3/27/2018  |             |             |              |             | <0.001        |              | <0.001       |              | <0.001        |
| 3/28/2018  |             |             |              |             |               |              |              | <0.001       |               |
| 3/29/2018  |             |             |              |             |               | <0.001       |              |              |               |
| 4/2/2018   |             |             | <0.001       |             |               |              |              |              |               |
| 4/4/2018   | <0.001      | <0.001      |              |             |               |              |              |              |               |
| 8/6/2018   |             |             |              | <0.001      |               |              |              |              |               |
| 9/19/2018  |             |             | <0.001       |             |               |              |              |              |               |
| 9/20/2018  | <0.001      | <0.001      |              |             |               |              |              |              |               |
| 2/25/2019  |             |             |              | <0.001      |               |              |              |              |               |
| 2/26/2019  |             |             |              |             | <0.001        |              |              |              | <0.001        |
| 2/27/2019  |             |             |              |             |               | <0.001       | <0.001       | <0.001       |               |
| 6/12/2019  |             |             |              | <0.001      |               |              |              |              |               |
| 8/19/2019  |             |             |              | <0.001      |               |              |              |              |               |
| 8/20/2019  |             |             | <0.001       |             |               |              |              |              |               |
| 8/21/2019  | <0.001      |             |              |             |               |              |              |              |               |
| 9/26/2019  |             | <0.001      |              |             |               |              |              |              |               |
| 10/8/2019  |             |             |              | <0.001      |               |              |              |              |               |
| 10/9/2019  | <0.001      |             |              |             |               |              |              |              |               |
| 2/10/2020  |             |             |              |             |               | 4.9E-05 (J)  | <0.001       |              |               |
| 2/11/2020  |             |             |              |             |               |              |              | <0.001       |               |
| 2/12/2020  |             |             |              |             | <0.001        |              |              |              | <0.001        |
| 3/17/2020  |             |             |              | <0.001      |               |              |              |              |               |
| 3/18/2020  |             |             |              |             | <0.001        |              | <0.001       |              |               |
| 3/19/2020  |             |             |              |             |               | 0.00012 (J)  | 0.001        | <0.001       | <0.001        |
| 3/25/2020  | 7.5E-05 (J) | 5 9E-05 (J) |              |             |               |              |              |              |               |
| 8/26/2020  |             |             |              | <0.001      |               |              |              |              |               |
| 8/27/2020  |             |             | <0.001       | 0.001       |               |              |              |              |               |
| 9/22/2020  |             |             | <0.001       | 0 0001 (.1) |               |              |              |              |               |
| 9/23/2020  |             |             | 0.001        | 0.0001(0)   |               | <0.001       | 0 00021 (.1) | 0.0011 (J)   |               |
| 9/24/2020  |             | <0.001      |              |             |               |              | 0.00021(0)   | 0.0011(0)    | <0.001        |
| 9/25/2020  | <0.001      | -0.001      |              |             | <0.001        |              |              |              | -0.001        |
| 2/9/2021   | <0.001      | <0.001      |              |             | 0.001         |              |              |              |               |
| 2/10/2021  | 0.001       | 0.001       |              |             | 4 8E-05 (J)   |              |              | 0.00015 (J)  |               |
| 2/11/2021  |             |             |              |             | 4.02 00 (0)   |              |              | 0.00010(0)   | 4 6E-05 (J)   |
| 2/12/2021  |             |             |              |             |               | 4.4E-05 (J)  | 0.00038 (.1) |              |               |
| 3/1/2021   |             |             | <0.001       |             |               |              | 5.00000 (0)  |              | <0.001        |
| 3/2/2021   |             |             | 0.001        | <0.001      | <0.001        |              |              |              |               |
| 3/3/2021   |             |             |              | 0.001       | -0.001        | 5.6E-05 (J)  | <0.001       | <0.001       |               |
|            |             |             |              |             |               | 2.02 00 (0)  | 0.001        | 0.001        |               |

Constituent: Lead (mg/L) Analysis Run 5/6/2021 8:36 PM

|          | YGWC-43 | YGWC-49 | YGWA-47 (bg) | GWA-2 (bg) | YGWA-14S (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-2I (bg) | YGWA-30I (bg) |
|----------|---------|---------|--------------|------------|---------------|--------------|--------------|--------------|---------------|
| 3/4/2021 | <0.001  | <0.001  |              |            |               |              |              |              |               |

#### Constituent: Lead (mg/L) Analysis Run 5/6/2021 8:36 PM

| 0/1/0010               | YGWA-3D (bg) | YGWA-3I (bg) | PZ-35  | PZ-37        | YGWC-24SA             | YGWC-36A    |
|------------------------|--------------|--------------|--------|--------------|-----------------------|-------------|
| 6/1/2016               | 0.00050 ( )) | <0.001       |        |              |                       |             |
| 6/2/2016               | 0.00056 (J)  |              |        |              | .0.001                |             |
| 6/8/2016               |              |              |        |              | <0.001                |             |
| 7/25/2016              | 0.0001 (1)   | <0.001       |        |              |                       |             |
| 7/26/2016              | 0.0001 (J)   |              |        |              | -0.001                |             |
| 8/1/2016               |              |              |        |              | <0.001                | 0.0017 (1)  |
| 9/2/2010               |              | <0.001       |        |              |                       | 0.0017 (3)  |
| 9/14/2016              | 0.0002 ( 1)  | <0.001       |        |              |                       |             |
| 9/20/2016              | 0.0002 (3)   |              |        |              | <0.001                |             |
| 11/1/2016              | <0.001       | <0.001       |        |              | -0.001                |             |
| 11/8/2016              | -0.001       | -0.001       |        |              | <0.001                |             |
| 11/14/2016             |              |              |        |              | -0.001                | 0.0002 (J)  |
| 1/11/2017              | <0.001       | <0.001       |        |              |                       |             |
| 1/17/2017              |              |              |        |              | <0.001                |             |
| 2/28/2017              |              |              |        |              |                       | 0.0003 (J)  |
| 3/1/2017               |              | <0.001       |        |              |                       |             |
| 3/2/2017               | 0.0002 (J)   |              |        |              |                       |             |
| 3/8/2017               |              |              |        |              | <0.001                |             |
| 4/26/2017              | <0.001       | <0.001       |        |              |                       |             |
| 5/2/2017               |              |              |        |              | <0.001                |             |
| 5/9/2017               |              |              |        |              |                       | 0.0004 (J)  |
| 6/28/2017              | <0.001       | <0.001       |        |              |                       |             |
| 7/7/2017               |              |              |        |              | <0.001                |             |
| 7/13/2017              |              |              |        |              |                       | 0.0004 (J)  |
| 9/22/2017              |              |              |        |              |                       | 0.0003 (J)  |
| 9/29/2017              |              |              |        |              |                       | 0.0002 (J)  |
| 10/6/2017              |              |              |        |              |                       | 0.0002 (J)  |
| 10/12/2017             |              |              |        | 0.0002 (J)   |                       |             |
| 11/21/2017             |              |              |        | 0.0002 (J)   |                       |             |
| 1/11/2018              |              |              |        | 0.0001 (J)   |                       |             |
| 2/20/2018              |              |              |        | <0.001       |                       |             |
| 3/28/2018              | <0.001       | <0.001       |        |              |                       |             |
| 3/30/2018              |              |              |        |              | <0.001                | <0.001      |
| 4/3/2018               |              |              |        | <0.001       |                       |             |
| 6/29/2018              |              |              |        | <0.001       |                       |             |
| 8/6/2018               |              |              |        | <0.001       |                       |             |
| 9/24/2018              |              |              |        | <0.001       |                       |             |
| 2/27/2019              | <0.001       | <0.001       |        |              |                       |             |
| 3/5/2019               |              |              |        |              | <0.001                |             |
| 3/6/2019               |              |              |        |              |                       | <0.001      |
| 4/4/2019               |              |              |        |              | <0.001                | 0.00037 (J) |
| 9/26/2019              |              |              | <0.001 |              | <0.001                | 0.00023 (J) |
| 2/11/2020              | 0.001        | <0.001       |        |              |                       |             |
| 2/12/2020              | <0.001       |              |        |              |                       |             |
| 3/19/2020              | 0.00017 (J)  | <0.001       | -0.001 |              |                       | 0.0001 (1)  |
| 312312020              |              |              | <0.001 |              |                       | U.UUUT (J)  |
| 312012020<br>9/23/2020 | <0.001       | 0.00015 ( 1) |        |              | 5.3E-05 (J)<br><0.001 |             |
| 9/24/2020              | -0.001       | 0.00013 (0)  | <0.001 |              | -0.001                |             |
| 9/25/2020              |              |              | -0.001 | 8 5E-05 ( I) |                       |             |
| 10/7/2020              |              |              |        | 0.0L-00 (0)  |                       | 0 00077 (J) |
|                        |              |              |        |              |                       |             |

Constituent: Lead (mg/L) Analysis Run 5/6/2021 8:36 PM

|           | YGWA-3D (bg) | YGWA-3I (bg) | PZ-35       | PZ-37       | YGWC-24SA   | YGWC-36A    |
|-----------|--------------|--------------|-------------|-------------|-------------|-------------|
| 2/9/2021  |              |              |             | 8.8E-05 (J) | 0.00036 (J) |             |
| 2/10/2021 | <0.001       | <0.001       | 8.7E-05 (J) |             |             | 0.00051 (J) |
| 3/3/2021  | <0.001       | <0.001       |             |             | <0.001      |             |
| 3/4/2021  |              |              | 0.00015 (J) | <0.001      |             | 0.00025 (J) |

Constituent: Lithium (mg/L) Analysis Run 5/6/2021 8:36 PM

| 6/6/2016   | YAMW-1     | YAMW-2 | YAMW-4    | YAMW-5    | YGWA-17S (bg) | YGWA-18I (bg)<br>0.0088 | YGWA-18S (bg)<br>0.015 | YGWA-20S (bg) | YGWA-21I (bg) |
|------------|------------|--------|-----------|-----------|---------------|-------------------------|------------------------|---------------|---------------|
| 6/7/2016   |            |        |           |           | <0.03         |                         |                        | <0.03         | 0.0055        |
| 7/27/2016  |            |        |           |           | <0.03         | 0.0087 (J)              | 0.0049 (J)             | <0.03         |               |
| 7/28/2016  |            |        |           |           |               |                         |                        |               | 0.0045 (J)    |
| 9/16/2016  |            |        |           |           | <0.03         |                         | 0.0031 (J)             |               |               |
| 9/19/2016  |            |        |           |           |               | 0.0043 (J)              |                        | <0.03         | 0.0054 (J)    |
| 11/2/2016  |            |        |           |           |               |                         |                        | <0.03         |               |
| 11/3/2016  |            |        |           |           | <0.03         | <0.03                   | 0.0021 (J)             |               | <0.03         |
| 1/11/2017  |            |        |           |           | 0.0035 (J)    | 0.0052 (J)              | 0.0025 (J)             |               |               |
| 1/13/2017  |            |        |           |           |               |                         |                        | <0.03         | 0.0062 (J)    |
| 3/1/2017   |            |        |           |           |               | 0.0053 (J)              | 0.0029 (J)             |               |               |
| 3/2/2017   |            |        |           |           | <0.03         |                         |                        |               |               |
| 3/6/2017   |            |        |           |           |               |                         |                        | <0.03         | 0.0059 (J)    |
| 4/26/2017  |            |        |           |           |               | 0.0041 (J)              | 0.0019 (J)             | <0.03         | 0.0054 (J)    |
| 5/2/2017   |            |        |           |           | <0.03         |                         |                        |               |               |
| 6/28/2017  |            |        |           |           |               | 0.0039 (J)              | 0.0016 (J)             |               |               |
| 6/29/2017  |            |        |           |           | <0.03         |                         |                        | <0.03         | 0.0047 (J)    |
| 3/28/2018  |            |        |           |           | <0.03         | 0.0041 (J)              | 0.0024 (J)             |               |               |
| 3/29/2018  |            |        |           |           |               |                         |                        | <0.03         | 0.0062 (J)    |
| 6/5/2018   |            |        |           |           |               |                         |                        |               | 0.0061 (J)    |
| 6/6/2018   |            |        |           |           |               |                         |                        | <0.03         |               |
| 6/7/2018   |            |        |           |           |               | 0.0032 (J)              |                        |               |               |
| 6/11/2018  |            |        |           |           | <0.03         |                         | 0.0014 (J)             |               |               |
| 9/25/2018  |            |        |           |           | <0.03         | 0.0036 (J)              | 0.0016 (J)             | <0.03         | 0.0062 (J)    |
| 10/16/2018 | 0.0052 (J) |        |           |           |               |                         |                        |               |               |
| 3/5/2019   |            |        |           |           | <0.03         |                         | 0.0031 (J)             | <0.03         | 0.0053 (J)    |
| 3/6/2019   |            |        |           |           |               | 0.0033 (J)              |                        |               |               |
| 4/2/2019   |            |        |           |           | <0.03         |                         |                        |               | 0.0051 (J)    |
| 4/3/2019   |            |        |           |           |               | 0.0035 (J)              | 0.0028 (J)             | <0.03         |               |
| 9/24/2019  |            |        |           |           |               |                         |                        |               | 0.0068 (J)    |
| 9/25/2019  |            |        |           |           | <0.03         |                         |                        | <0.03         |               |
| 9/26/2019  | <0.03      |        |           |           |               | 0.0032 (J)              | 0.0029 (J)             |               |               |
| 2/11/2020  |            |        |           |           | <0.03         | 0.0033 (J)              | 0.005 (J)              |               |               |
| 2/12/2020  |            |        |           |           |               |                         |                        | <0.03         | 0.0065 (J)    |
| 3/24/2020  |            |        |           |           | 0.0034 (J)    | 0.0033 (J)              | 0.0035 (J)             | <0.03         | 0.0064 (J)    |
| 3/25/2020  | 0.0011 (J) |        |           |           |               |                         |                        |               |               |
| 9/23/2020  |            | <0.03  | 0.03 (J)  |           | <0.03         | 0.003 (J)               | 0.0022 (J)             |               |               |
| 9/24/2020  | 0.011 (J)  |        |           | 0.013 (J) |               |                         |                        | <0.03         | 0.0069 (J)    |
| 2/9/2021   | 0.021 (J)  | <0.03  | 0.018 (J) | 0.016 (J) |               | 0.0031 (J)              | 0.0019 (J)             | <0.03         | 0.006 (J)     |
| 3/3/2021   | 0.022 (J)  | <0.03  | 0.02 (J)  |           | <0.03         | 0.0034 (J)              | 0.0021 (J)             | <0.03         |               |
| 3/4/2021   |            |        |           | 0.016 (J) |               |                         |                        |               | 0.0062 (J)    |

Constituent: Lithium (mg/L) Analysis Run 5/6/2021 8:36 PM

| 6/2/2016   | YGWA-39 (bg) | YGWA-40 (bg) | YGWA-4I (bg)<br>0.013 | YGWA-5D (bg)<br>0.0049 (J) | YGWA-5I (bg)<br><0.03 | YGWC-23S    | YGWC-38    | YGWC-41    | YGWC-42     |
|------------|--------------|--------------|-----------------------|----------------------------|-----------------------|-------------|------------|------------|-------------|
| 6/7/2016   |              |              |                       |                            |                       | <0.03       |            |            |             |
| 7/26/2016  |              |              | 0.0123 (J)            | 0.0063 (J)                 | 0.0027 (J)            |             |            |            |             |
| 7/28/2016  |              |              |                       |                            |                       | 0 0019 (.1) |            |            |             |
| 8/30/2016  |              |              |                       |                            |                       |             |            |            | 0 0257 (.1) |
| 9/14/2016  |              |              | 0 0137 (.1)           | 0 0058 (.1)                | 0 0029 (.1)           |             |            |            | 0.0207 (0)  |
| 9/20/2016  |              |              | 0.0107 (0)            | 0.0000 (0)                 | 0.0020(0)             | 0.0021 (1)  |            |            |             |
| 11/2/2016  |              |              | 0.0136 ( 1)           | 0.0053 ( 1)                |                       | 0.0021(3)   |            |            |             |
| 11/2/2016  |              |              | 0.0130 (3)            | 0.0033 (3)                 | <0.02                 |             |            |            |             |
| 11/4/2016  |              |              |                       |                            | <0.03                 | 0.0024 (1)  |            |            |             |
| 11/16/2016 |              |              |                       |                            |                       | 0.0024 (3)  |            |            | 0.0221 ( 1) |
| 1/12/2017  |              |              |                       | 0.0054(1)                  | 0.0022 ( 1)           |             |            |            | 0.0221 (J)  |
| 1/12/2017  |              |              | 0.0121 (1)            | 0.0034 (3)                 | 0.0032 (3)            |             |            |            |             |
| 1/15/2017  |              |              | 0.0121 (3)            |                            |                       | 0.0000 (1)  |            |            |             |
| 1/16/2017  |              |              |                       |                            |                       | 0.0022 (J)  |            |            | 0.0000 ( 1) |
| 2/2//2017  |              |              | 0.0140 (1)            |                            |                       |             |            |            | 0.0208 (J)  |
| 3/6/2017   |              |              | 0.0143 (J)            | 0.0050 (1)                 | 0.0005 (1)            |             |            |            |             |
| 3/7/2017   |              |              |                       | 0.0056 (J)                 | 0.0035 (J)            | 0.0005 (1)  |            |            |             |
| 3/9/2017   |              |              | <b>.</b>              |                            |                       | 0.0025 (J)  |            |            |             |
| 5/1/2017   |              |              | 0.0132 (J)            | 0.0031 (J)                 |                       |             |            |            |             |
| 5/2/2017   |              |              |                       |                            | 0.0031 (J)            | 0.0019 (J)  |            |            |             |
| 5/10/2017  |              |              |                       |                            |                       |             |            |            | 0.0316 (J)  |
| 6/27/2017  |              |              |                       | 0.0018 (J)                 | 0.0029 (J)            |             |            |            |             |
| 6/29/2017  |              |              | 0.0145 (J)            |                            |                       |             |            |            |             |
| 7/10/2017  |              |              |                       |                            |                       | 0.0018 (J)  |            |            |             |
| 7/11/2017  |              |              |                       |                            |                       |             |            |            | 0.0281 (J)  |
| 10/11/2017 | 0.0018 (J)   |              |                       |                            |                       |             |            |            |             |
| 10/12/2017 |              | <0.03        |                       |                            |                       |             | 0.0095 (J) | 0.004 (J)  | 0.0331 (J)  |
| 11/20/2017 | 0.0018 (J)   | <0.03        |                       |                            |                       |             | 0.0083 (J) |            |             |
| 11/21/2017 |              |              |                       |                            |                       |             |            | 0.0043 (J) |             |
| 1/10/2018  |              | <0.03        |                       |                            |                       |             |            |            |             |
| 1/11/2018  | 0.0019 (J)   |              |                       |                            |                       |             |            | 0.0044 (J) |             |
| 1/12/2018  |              |              |                       |                            |                       |             | 0.0089 (J) |            |             |
| 2/19/2018  |              | <0.03        |                       |                            |                       |             |            | <0.03      |             |
| 2/20/2018  | <0.03        |              |                       |                            |                       |             | 0.0082 (J) |            |             |
| 3/29/2018  |              |              | 0.014 (J)             | 0.0058 (J)                 | 0.0034 (J)            |             |            |            |             |
| 3/30/2018  |              |              |                       |                            |                       | 0.0039 (J)  |            |            |             |
| 4/3/2018   | 0.0022 (J)   | <0.03        |                       |                            |                       |             | 0.0097 (J) | 0.0047 (J) |             |
| 4/4/2018   |              |              |                       |                            |                       |             |            |            | 0.037 (J)   |
| 6/6/2018   |              |              |                       | 0.0068 (J)                 |                       |             |            |            |             |
| 6/7/2018   |              |              | 0.013 (J)             |                            | 0.0032 (J)            |             |            |            |             |
| 6/12/2018  |              |              |                       |                            |                       | 0.0017 (J)  |            |            |             |
| 6/27/2018  |              |              |                       |                            |                       |             |            | 0.0042 (J) |             |
| 6/28/2018  | 0.0026 (J)   | <0.03        |                       |                            |                       |             | 0.0093 (J) |            |             |
| 8/7/2018   | 0.0024 (J)   | <0.03        |                       |                            |                       |             | 0.0092 (J) | 0.0038 (J) |             |
| 9/20/2018  |              |              |                       |                            |                       |             |            |            | 0.049 (J)   |
| 9/24/2018  | 0.0022 (J)   | <0.03        |                       |                            |                       |             | 0.0083 (J) | 0.0037 (J) |             |
| 9/26/2018  |              |              | 0.014 (J)             | 0.0065 (J)                 | 0.0032 (J)            |             |            |            |             |
| 9/27/2018  |              |              |                       |                            |                       | 0.0017 (J)  |            |            |             |
| 3/4/2019   |              |              | 0.015 (J)             | 0.0065 (J)                 | 0.0032 (J)            |             |            |            |             |
| 3/6/2019   |              |              |                       |                            |                       | 0.0025 (J)  |            |            |             |
| 4/3/2019   |              |              | 0.014 (J)             | 0.007 (J)                  | 0.0035 (J)            |             |            |            |             |
| 4/4/2019   |              |              | . /                   | . /                        |                       | 0.0018 (J)  |            |            |             |
|            |              |              |                       |                            |                       |             |            |            |             |

|           | YGWA-39 (bg) | YGWA-40 (bg) | YGWA-4I (bg) | YGWA-5D (bg) | YGWA-5I (bg) | YGWC-23S   | YGWC-38    | YGWC-41    | YGWC-42 |
|-----------|--------------|--------------|--------------|--------------|--------------|------------|------------|------------|---------|
| 8/21/2019 | 0.0035 (J)   | <0.03        |              |              |              |            |            |            |         |
| 8/22/2019 |              |              |              |              |              |            | 0.0082 (J) | 0.0035 (J) | 0.047   |
| 9/24/2019 |              |              |              | 0.0065 (J)   | 0.0031 (J)   |            |            |            |         |
| 9/25/2019 |              |              | 0.014 (J)    |              |              |            |            |            |         |
| 9/27/2019 |              |              |              |              |              | 0.0017 (J) |            |            |         |
| 10/9/2019 | 0.0036 (J)   | <0.03        |              |              |              |            | 0.0081 (J) | 0.0032 (J) | 0.037   |
| 2/12/2020 | 0.0041 (J)   | <0.03        | 0.011 (J)    | 0.0066 (J)   | 0.0032 (J)   |            |            |            |         |
| 3/24/2020 |              | <0.03        |              | 0.0064 (J)   | 0.0033 (J)   |            |            |            |         |
| 3/25/2020 | 0.0049 (J)   |              | 0.014 (J)    |              |              |            | 0.0081 (J) | 0.0029 (J) | 0.045   |
| 3/26/2020 |              |              |              |              |              | 0.0021 (J) |            |            |         |
| 9/22/2020 |              |              | 0.013 (J)    | 0.0066 (J)   | 0.0034 (J)   |            |            |            |         |
| 9/24/2020 | 0.0054 (J)   | <0.03        |              |              |              | 0.0035 (J) |            |            | 0.05    |
| 9/25/2020 |              |              |              |              |              |            | 0.0069 (J) | 0.0025 (J) |         |
| 2/8/2021  |              |              |              | 0.0063 (J)   | 0.0032 (J)   |            |            |            |         |
| 2/9/2021  |              |              | 0.011 (J)    |              |              | 0.0026 (J) | 0.0067 (J) |            |         |
| 2/10/2021 | 0.0071 (J)   | <0.03        |              |              |              |            |            | 0.0021 (J) | 0.058   |
| 3/2/2021  |              |              |              | 0.0018 (J)   | 0.0031 (J)   |            |            |            |         |
| 3/3/2021  |              |              | 0.012 (J)    |              |              |            |            |            |         |
| 3/4/2021  | 0.0084 (J)   | <0.03        |              |              |              | 0.0026 (J) | 0.0067 (J) | 0.0021 (J) | 0.059   |
|           |              |              |              |              |              |            |            |            |         |

Constituent: Lithium (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YGWC-43    | YGWC-49    | YGWA-47 (bg) | GWA-2 (bg) | YGWA-14S (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-2I (bg) | YGWA-30I (bg) |
|------------|------------|------------|--------------|------------|---------------|--------------|--------------|--------------|---------------|
| 6/1/2016   |            |            |              |            |               | 0.015        | <0.03        |              |               |
| 6/2/2016   |            |            |              |            | <0.03         |              |              |              | <0.03         |
| 7/25/2016  |            |            |              |            |               |              | 0.002 (J)    |              | <0.03         |
| 7/26/2016  |            |            |              |            | <0.03         | 0.0135 (J)   |              |              |               |
| 8/30/2016  |            |            | 0.0061 (J)   |            |               |              |              |              |               |
| 8/31/2016  | 0.006 (J)  |            |              | <0.03      |               |              |              |              |               |
| 9/1/2016   |            | 0.0034 (J) |              |            |               |              |              |              |               |
| 9/13/2016  |            |            |              |            |               | 0.0112 (J)   | <0.03        |              |               |
| 9/14/2016  |            |            |              |            |               |              |              | 0.004 (J)    |               |
| 9/15/2016  |            |            |              |            | <0.03         |              |              |              |               |
| 9/19/2016  |            |            |              |            |               |              |              |              | <0.03         |
| 11/1/2016  |            |            |              |            |               | 0.0163 (J)   |              |              | <0.03         |
| 11/2/2016  |            |            |              |            | <0.03         |              |              |              |               |
| 11/4/2016  |            |            |              |            |               |              | <0.03        | <0.03        |               |
| 11/14/2016 |            |            | 0.0064 (J)   |            |               |              |              |              |               |
| 11/15/2016 |            | 0.0044 (J) | (-)          |            |               |              |              |              |               |
| 11/16/2016 | 0.0095 (J) |            |              |            |               |              |              |              |               |
| 11/28/2016 |            |            |              | <0.03      |               |              |              |              |               |
| 12/15/2016 |            |            |              | -0.00      |               |              |              | 0.0026(1)    |               |
| 1/10/2017  |            |            |              |            | <0.03         |              |              | 0.0020(3)    |               |
| 1/11/2017  |            |            |              |            | -0.05         | 0.0166 ( 1)  |              |              |               |
| 1/16/2017  |            |            |              |            |               | 0.0100 (3)   | 0.0022 ( 1)  | 0.0022 ( 1)  | ~0.02         |
| 1/10/2017  |            |            |              |            |               |              | 0.0023 (J)   | 0.0023 (3)   | <0.03         |
| 2/21/2017  |            |            |              | -0.00      |               |              |              |              | <0.03         |
| 2/22/2017  | 0.0104 (1) |            | 0.0040 (1)   | <0.03      |               |              |              |              |               |
| 2/24/2017  | 0.0104 (J) | 0.0000 (1) | 0.0049 (J)   |            |               |              |              |              |               |
| 2/2//201/  |            | 0.0036 (J) |              |            |               | 0.0450 (1)   | 0.0005 (1)   |              |               |
| 3/2/2017   |            |            |              |            |               | 0.0159 (J)   | 0.0025 (J)   |              |               |
| 3/3/2017   |            |            |              |            |               |              |              | 0.0013 (J)   |               |
| 3/8/2017   |            |            |              |            | <0.03         |              |              |              |               |
| 4/26/2017  |            |            |              |            | <0.03         |              |              |              | <0.03         |
| 4/27/2017  |            |            |              |            |               | 0.0137 (J)   | 0.0027 (J)   |              |               |
| 4/28/2017  |            |            |              |            |               |              |              | 0.0031 (J)   |               |
| 5/8/2017   |            |            | 0.0053 (J)   | 0.0014 (J) |               |              |              |              |               |
| 5/9/2017   |            | 0.0038 (J) |              |            |               |              |              |              |               |
| 5/10/2017  | 0.0123 (J) |            |              |            |               |              |              |              |               |
| 5/26/2017  |            |            |              |            |               |              |              | 0.0038 (J)   |               |
| 6/27/2017  |            |            |              |            |               | 0.0094 (J)   | 0.0024 (J)   |              |               |
| 6/28/2017  |            |            |              |            |               |              |              | 0.0026 (J)   |               |
| 6/30/2017  |            |            |              |            | <0.03         |              |              |              | <0.03         |
| 7/11/2017  | 0.0131 (J) |            | 0.0051 (J)   |            |               |              |              |              |               |
| 7/13/2017  |            | 0.0036 (J) |              |            |               |              |              |              |               |
| 7/17/2017  |            |            |              | <0.03      |               |              |              |              |               |
| 10/10/2017 |            |            | 0.0043 (J)   |            |               |              |              |              |               |
| 10/11/2017 |            | 0.0036 (J) |              |            |               |              |              |              |               |
| 10/12/2017 | 0.013 (J)  |            |              |            |               |              |              |              |               |
| 10/16/2017 |            |            |              | 0.0016 (J) |               |              |              |              |               |
| 2/19/2018  |            |            |              | <0.03      |               |              |              |              |               |
| 3/27/2018  |            |            |              |            | <0.03         |              | 0.0023 (J)   |              | 0.0011 (J)    |
| 3/28/2018  |            |            |              |            |               |              |              | 0.0025 (J)   |               |
| 3/29/2018  |            |            |              |            |               | 0.0078 (J)   |              |              |               |
| 4/2/2018   |            |            | 0.0045 (J)   |            |               |              |              |              |               |
| 4/4/2018   | 0.016 (J)  | 0.0039 (J) |              |            |               |              |              |              |               |

#### Constituent: Lithium (mg/L) Analysis Run 5/6/2021 8:36 PM

|           | YGWC-43   | YGWC-49    | YGWA-47 (bg) | GWA-2 (bg) | YGWA-14S (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-2I (bg) | YGWA-30I (bg) |
|-----------|-----------|------------|--------------|------------|---------------|--------------|--------------|--------------|---------------|
| 6/5/2018  |           |            |              |            |               | 0.0079 (J)   |              |              |               |
| 6/6/2018  |           |            |              |            |               |              | 0.0024 (J)   |              |               |
| 6/7/2018  |           |            |              |            |               |              |              | 0.0017 (J)   |               |
| 6/8/2018  |           |            |              |            | <0.03         |              |              |              |               |
| 6/11/2018 |           |            |              |            |               |              |              |              | 0.0012 (J)    |
| 8/6/2018  |           |            |              | <0.03      |               |              |              |              |               |
| 9/19/2018 |           |            | 0.0043 (J)   |            |               |              |              |              |               |
| 9/20/2018 | 0.019 (J) | 0.0036 (J) |              |            |               |              |              |              |               |
| 10/1/2018 |           |            |              |            | <0.03         | 0.0053 (J)   | 0.0023 (J)   | <0.03        |               |
| 10/2/2018 |           |            |              |            |               |              |              |              | <0.03         |
| 2/26/2019 |           |            |              |            | <0.03         |              |              |              | 0.0011 (J)    |
| 2/27/2019 |           |            |              |            |               | 0.0093 (J)   | 0.0023 (J)   | 0.0011 (J)   |               |
| 3/28/2019 |           |            |              |            |               | 0.013 (J)    | 0.0022 (J)   |              |               |
| 3/29/2019 |           |            |              |            | <0.03         |              |              | 0.0016 (J)   |               |
| 4/1/2019  |           |            |              |            |               |              |              |              | 0.001 (J)     |
| 8/19/2019 |           |            |              | 0.0019 (J) |               |              |              |              |               |
| 8/20/2019 |           |            | 0.0036 (J)   |            |               |              |              |              |               |
| 8/21/2019 | 0.015 (J) |            |              |            |               |              |              |              |               |
| 9/24/2019 |           |            |              |            |               | 0.0046 (J)   | 0.0023 (J)   | 0.0011 (J)   |               |
| 9/25/2019 |           |            |              |            | <0.03         |              |              |              | 0.0011 (J)    |
| 9/26/2019 |           | 0.0036 (J) |              |            |               |              |              |              |               |
| 10/8/2019 |           |            | 0.0036 (J)   | 0.0015 (J) |               |              |              |              |               |
| 10/9/2019 | 0.018 (J) |            |              |            |               |              |              |              |               |
| 2/10/2020 |           |            |              |            |               | 0.011 (J)    | 0.0023 (J)   |              |               |
| 2/11/2020 |           |            |              |            |               |              |              | 0.0012 (J)   |               |
| 2/12/2020 |           |            |              |            | <0.03         |              |              |              | 0.0013 (J)    |
| 3/17/2020 |           |            | 0.0046 (J)   | 0.0017 (J) |               |              |              |              |               |
| 3/18/2020 |           |            |              |            | <0.03         |              | 0.0024 (J)   |              |               |
| 3/19/2020 |           |            |              |            |               | 0.013 (J)    |              | 0.0022 (J)   | 0.0012 (J)    |
| 3/25/2020 | 0.016 (J) | 0.0037 (J) |              |            |               |              |              |              |               |
| 8/26/2020 |           |            |              | 0.0032 (J) |               |              |              |              |               |
| 8/27/2020 |           |            | 0.0039 (J)   |            |               |              |              |              |               |
| 9/22/2020 |           |            | 0.0036 (J)   | 0.0029 (J) |               |              |              |              |               |
| 9/23/2020 |           |            |              |            |               | 0.014 (J)    | 0.0024 (J)   | 0.0016 (J)   |               |
| 9/24/2020 |           | 0.0037 (J) |              |            |               |              |              |              | 0.0011 (J)    |
| 9/25/2020 | 0.018 (J) |            |              |            | <0.03         |              |              |              |               |
| 2/9/2021  | 0.024 (J) | 0.0038 (J) |              |            |               |              |              |              |               |
| 2/10/2021 |           |            |              |            | <0.03         |              |              | 0.0039 (J)   |               |
| 2/11/2021 |           |            |              |            |               |              |              |              | 0.0012 (J)    |
| 2/12/2021 |           |            |              |            |               | 0.01 (J)     | 0.0025 (J)   |              |               |
| 3/1/2021  |           |            | 0.0037 (J)   |            |               |              |              |              | 0.0011 (J)    |
| 3/2/2021  |           |            |              | 0.0033 (J) | <0.03         |              |              |              |               |
| 3/3/2021  |           |            |              |            |               | 0.012 (J)    | 0.0025 (J)   | 0.0016 (J)   |               |
| 3/4/2021  | 0.025 (J) | 0.0035 (J) |              |            |               |              |              |              |               |

Constituent: Lithium (mg/L) Analysis Run 5/6/2021 8:36 PM

| <table-container>NumberNumberNumberNumberNumberNumberNumber2001IIIII2001IIIII2001IIIII2001IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</table-container>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |              |              |            |            |           |             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------|--------------|------------|------------|-----------|-------------|
| <form>indexindexindexaccordAccordAccordAccordaccordAccordAccordAccordaccordAccordAccordAccordaccordAccordAccordAccordaccordAccordAccordAccordaccordAccordAccordAccordaccordAccordAccordAccordaccordAccordAccordAccordaccordAccordAccordAccordaccordAccordAccordAccordaccordAccordAccordAccordaccordAccordAccordAccordaccordAccordAccordAccordaccordAccordAccordAccordaccordAccordAccordAccordaccordAccordAccordAccordaccordAccordAccordAccordaccordAccordAccordAccordaccordAccordAccordAccordaccordAccordAccordAccordaccordAccordAccordAccordaccordAccordAccordAccordaccordAccordAccordAccordaccordAccordAccordAccordaccordAccordAccordAccordaccordAccordAccordAccordaccordAccordAccordAccordaccordAccordAccordAccordaccordAccordAccordA</form>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | YGWA-3D (bg) | YGWA-3I (bg) | PZ-35      | PZ-37      | YGWC-24SA | YGWC-36A    |
| <form>dotationunit of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon</form>           | 6/1/2016   |              | 0.01         |            |            |           |             |
| <form>BacherUUUUSameVVVVSameVVVVSameVVVVSameVVVVSameVVVVSameVVVVSameVVVVSameVVVVSameVVVVSameVVVVSameVVVVSameVVVVSameVVVVSameVVVVSameVVVVSameVVVVSameVVVVSameVVVVSameVVVVSameVVVVSameVVVVSameVVVVSameVVVVSameVVVVSameVVVVSameVVVVSameVVVVSameVVVVSameVVVVSameVVVVSameVVVVSameVVV</form>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6/2/2016   | 0.018        |              |            |            |           |             |
| <form>NAME<br/>NAMENAME<br/>NAMENAME<br/>NAMENAME<br/>NAMENAME<br/>NAMENAME<br/>NAMENAME<br/>NAMENAME<br/>NAMENAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br/>NAME<br <="" td=""/><td>6/8/2016</td><td></td><td></td><td></td><td></td><td>&lt;0.03</td><td></td></form> | 6/8/2016   |              |              |            |            | <0.03     |             |
| <table-container>NameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNam</table-container>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7/25/2016  |              | 0.0132 (J)   |            |            |           |             |
| <table-container>inversioninversioninversioninversionStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusStatusS</table-container>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7/26/2016  | 0.0221 (J)   |              |            |            |           |             |
| <table-container>NameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameNameN</table-container>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8/1/2016   |              |              |            |            | <0.03     |             |
| <table-container>indexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexionindexio</table-container>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9/2/2016   |              |              |            |            |           | 0.0029 (J)  |
| <table-container>indexindexindexindex11020019(1)019(1)019(1)019(1)11020019(1)019(1)019(1)019(1)11020019(1)019(1)019(1)019(1)12020019(1)019(1)019(1)019(1)12020019(1)019(1)019(1)019(1)12020019(1)019(1)019(1)019(1)12020019(1)019(1)019(1)019(1)12020019(1)019(1)019(1)019(1)12020019(1)019(1)019(1)019(1)12020019(1)019(1)019(1)019(1)12020019(1)019(1)019(1)019(1)12020019(1)019(1)019(1)019(1)12020019(1)019(1)019(1)019(1)12020019(1)019(1)019(1)019(1)12020019(1)019(1)019(1)019(1)12020019(1)019(1)019(1)019(1)12020019(1)019(1)019(1)019(1)12020019(1)019(1)019(1)019(1)12020019(1)019(1)019(1)019(1)12020019(1)019(1)019(1)019(1)12020019(1)019(1)019(1)019(1)12020019(1)019(1)019(1)019(1)12020019(1)019(1)019(1)019(1)12020019(1)019(1)019(1)</table-container>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9/14/2016  |              | 0.012 (J)    |            |            |           |             |
| <form>NAMEUUUU11442UU0011443UU00011444UU00011447UU00011447UUU0011447UUU0011447UUU011447UUUU011447UUUU011447UUUUU11447UUUUU11447UUUUU11447UUUUU11447UUUUU11447UUUUU11447UUUUU11447UUUUU11447UUUUU11447UUUUU11447UUUUU11447UUUUU11447UUUUU11447UUUUU11447UUUUU11447UUUUU11447UUUUU11447UUUUU11447U&lt;</form>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9/15/2016  | 0.0197 (J)   |              |            |            |           |             |
| <table-container>1111011211342114121141211412114121141211412114121141211412114121141211412114121141211412114121141211412114121141211412114121141211412114121141211412114121141211412114121141211412114121141211412114121141211412114121141211412114121141211412114121141211412114121141211412114121141211412114121141211412114121141211412114121141211412114121141211412114121141211412114121141211412114121141211412114121141211412114121141211412114121141211412114121141211412114121141211412114121141211412114121141211412114121141211412114121141211412114121141211412114121141211412114121141211412114121141211412114121141211412114121141211412114121141211412114121141211412114121141211412114121141211412114121141211412114121141211412114121141211412114121141&lt;</table-container>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9/20/2016  |              |              |            |            | <0.03     |             |
| <form>11420001142000114200011420001142000114200011420001142000114200011420001142000114200011420001142000114200011420001142000114200011420001142000114200011420001142000114200011420001142000114200011420001142000114200011420001142000114200011420001142000114200011420001142000114200011420001142000114200011420000114200011420001142000114200001142000011420000114200001142000011420000114200001142000011420000114200001142000011420000114200001142000011420000114200001142000011420000114200001142000011420000114200001142000011420000114200001142000011420000114200001142000011420000114200001142000011420000114200001142000011420000114200001142000001142000011420000114200001142000011420000114200001142000011420000114200001142000011420000114200001142000011420000114200001142000011420000114200001142000011420000114200001142000011420000114200000114200001142000011420000</form>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11/1/2016  | 0.0194 (J)   | 0.0115 (J)   |            |            |           |             |
| <form>1112010UUUU1112017UUUU228017UUUU228017UUUU230108UUUU230217UUUU230217UUUU230218UUUU230217UUUU230218UUUU230217UUUU230218UUUU230219UUUU230219UUUU230219UUUU230219UUUU230219UUUU230219UUUU230219UUUU230219UUUU230219UUUU230219UUUU230219UUUU230219UUUU230219UUUU230219UUUU230219UUUU230219UUUU230219UUUU230219UUUU230219UUUU230219UUU<t< td=""><td>11/8/2016</td><td></td><td></td><td></td><td></td><td>&lt;0.03</td><td></td></t<></form>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11/8/2016  |              |              |            |            | <0.03     |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11/14/2016 |              |              |            |            |           | 0.0044 (J)  |
| Intractdoal222/2100.014 (J0.038 (J)322/2100.014 (J0.028 (J)322/2100.092 (J0.028 (J)42/201700.092 (J0.028 (J)32/201700.092 (J0.005 (J)62/201700.005 (J)0.005 (J)62/201700.005 (J)0.007 (J)71/20170.007 (J)71/20170.007 (J)71/20170.005 (J)71/20170.005 (J)71/20170.005 (J)71/20170.005 (J)71/20170.005 (J)71/20170.005 (J)71/20170.005 (J)71/20170.005 (J)71/20170.005 (J)71/20170.005 (J)71/20170.005 (J)71/20170.005 (J)71/20170.005 (J)71/20170.005 (J)71/20170.005 (J)71/20170.005 (J)71/20170.005 (J)71/20170.005 (J)71/20170.005 (J)71/20170.005 (J)71/20170.005 (J)71/20170.005 (J) <td>1/11/2017</td> <td>0.0177 (J)</td> <td>0.0085 (J)</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/11/2017  | 0.0177 (J)   | 0.0085 (J)   |            |            |           |             |
| <form>202070.083302070.084302070.084302070.084302070.092302070.092302070.092302070.092302070.092302070.092302070.095302070.095302070.095302070.095302070.095302070.095302070.095302070.095302070.095302070.095302070.095302070.095302070.095302070.095302070.095302070.095302080.095302080.095302090.095302090.095302090.095302090.095302090.095302090.095302090.095302090.095302090.095302090.095302090.095302090.095302090.095302090.095302090.095302090.095302090.095302090.095302090.095302090.095302090.095302090.095302090.095302090.095302090.095302090.095302090.095<t< td=""><td>1/17/2017</td><td>( )</td><td>( )</td><td></td><td></td><td>&lt;0.03</td><td></td></t<></form>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1/17/2017  | ( )          | ( )          |            |            | <0.03     |             |
| NameNameName3202170.1014 ()0.002 ()0.013 ()4260170.013 ()0.002 ()0.005 ()522170.013 ()0.002 ()0.005 ()522170.013 ()0.005 ()0.005 ()522170.013 ()0.005 ()0.005 ()522170.013 ()0.005 ()0.005 ()522170.013 ()0.005 ()0.005 ()522170.013 ()0.005 ()0.005 ()522170.014 ()0.005 ()0.005 ()522170.014 ()0.005 ()0.005 ()522170.014 ()0.005 ()0.005 ()522170.014 ()0.027 ()0.005 ()10/20170.013 ()0.027 ()0.005 ()10/20180.013 ()0.027 ()0.005 ()10/20180.013 ()0.027 ()0.005 ()10/20180.013 ()0.027 ()0.005 ()10/20180.027 ()0.027 ()0.005 ()10/20180.013 ()0.027 ()0.005 ()10/20180.027 ()0.037 ()0.005 ()10/20180.027 ()0.037 ()0.005 ()10/20180.013 ()0.005 ()0.005 ()10/20180.027 ()0.037 ()0.005 ()10/20180.013 ()0.005 ()0.005 ()10/20180.013 ()0.005 ()0.005 ()10/20180.014 ()0.005 ()0.005 ()10/20180.014 ()0.014 ()0.014 ()10/20180.014 () </td <td>2/28/2017</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.0038 (J)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2/28/2017  |              |              |            |            |           | 0.0038 (J)  |
| NoteNote380010082 (J3800170.082 (J)5020170.083 (J)5020170.083 (J)5020170.083 (J)5020170.085 (J)5020170.085 (J)7020170.085 (J)7020170.085 (J)7020170.083 (J)5020170.085 (J)5020170.085 (J)7020170.085 (J)5020170.085 (J)5020170.087 (J)5020170.087 (J)5020170.087 (J)5020170.087 (J)5020170.087 (J)5020170.087 (J)5020170.087 (J)5020170.087 (J)5020170.087 (J)5020180.081 (J)5020190.013 (J)5020190.013 (J)5020190.027 (J)5020190.027 (J)5020190.027 (J)5020190.013 (J)5020190.027 (J)5020190.027 (J)5020190.027 (J)5020190.027 (J)5020190.027 (J)5020190.027 (J)5020190.027 (J)5020190.027 (J)5020190.027 (J)5020190.027 (J)5020190.027 (J)5020190.027 (J)5020190.027 (J)5020190.027 (J)5020190.026 (J)5020190.026 (J)5020190.026 (J)5020190.026 (J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3/1/2017   |              | 0.0114 (J)   |            |            |           |             |
| 4282017U0.0052(J)520217U0.0057(J)520217U0.005(J)520217U0.005(J)772017U0.005(J)772017UU722017UU722017UU722017UU722017UU722017UU722017UU722017UU722017UU722017UU722017UU722017UU722017UU722017UU722017UU722018UU722019UU722019UU722019UU722019UU722019UU722019UU722019UU722019UU722019UU722019UU722019UU722019UU722019UU722019UU722019UU722019UU722019UU722019UU722019UU722019UU722019UU722019UU722019UU <td>3/2/2017</td> <td>0 0185 (.1)</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3/2/2017   | 0 0185 (.1)  |              |            |            |           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3/8/2017   |              |              |            |            | <0.03     |             |
| 322017 $ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4/26/2017  | 0 0183 (.1)  | 0 0092 (.1)  |            |            | -0.00     |             |
| JackerJacker56/2170.073 (r)0.085 (r)62/22070.073 (r)0.085 (r)71/20170.085 (r)0.007 (r)92/20170.010.007 (r)92/20170.010.005 (r)10/20170.0271 (r)0.0271 (r)11/12/0180.0271 (r)0.0271 (r)11/12/0180.01 (r)22/20180.0271 (r)0.0271 (r)11/12/0180.01 (r)0.0271 (r)22/20180.0271 (r)0.0271 (r)22/20180.0271 (r)0.0271 (r)22/20180.0271 (r)0.0271 (r)22/20180.0271 (r)0.0271 (r)22/20180.0271 (r)0.005 (r)22/20180.0271 (r)0.005 (r)22/20180.0271 (r)0.005 (r)22/20180.027 (r)0.027 (r)42/20180.02 (r)0.027 (r)62/20180.02 (r)0.005 (r)62/20180.02 (r)0.005 (r)62/20180.02 (r)0.005 (r)62/20180.02 (r)0.005 (r)62/20180.02 (r)0.005 (r)62/20180.02 (r)0.005 (r)62/20180.02 (r)0.005 (r)62/20180.02 (r)0.005 (r)62/20180.02 (r)0.005 (r)62/20180.02 (r)0.005 (r)62/20180.02 (r)0.005 (r)62/20180.02 (r)0.005 (r)62/20180.02 (r)0.005 (r)62/20180.02 (r)0.005 (r) <td< td=""><td>5/2/2017</td><td>0.0100(0)</td><td>0.0002 (0)</td><td></td><td></td><td>&lt;0.03</td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5/2/2017   | 0.0100(0)    | 0.0002 (0)   |            |            | <0.03     |             |
| 628017       0173(0)       0005()         7172017       -       -         7172017       -       -         7172017       -       -         922017       -       -         922017       -       -         922017       -       -         922017       -       -         922017       -       -         1012017       -       -         10122017       -       -         10122017       -       -         10122018       -       -         10122019       -       -         10122017       -       -         10122018       -       -         10122018       -       -         1022018       -       -         102019       -       -         102019       -       -         102010       -       -         102101       -       -         1022018       -       -         1022018       -       -         1022019       -       -         1022019       -       -         1022019       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5/9/2017   |              |              |            |            | -0.00     | 0 0057 (  ) |
| Jacade 1       Lord 0         7/2017       -         7/2017       -         9222017       -         9222017       -         9222017       -         922017       -         1012017       -         10122017       -         10122017       -         10122017       -         10122017       -         10122018       -         10122017       -         10122018       -         202018       -         202019       -         202010       -         202011       -         202012       -         202013       -         202014       -         202015       -         202016       -         202017       -         202018       -         202019       -         202010       -         202011       -         202012       -         202013       -         202014       -         202015       -         202016       -         202017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6/28/2017  | 0.0173 ( 1)  | 0.0085 (1)   |            |            |           | 0.0007 (0)  |
| 7.132017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7/2017     | 0.0175 (3)   | 0.0003 (3)   |            |            | <0.03     |             |
| JUSACI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7/12/2017  |              |              |            |            | <0.05     | 0.007 / 1)  |
| 3422017     U     0.006/0       10/2017     U     0.006/0       11/21/2017     0.0271/0/U     0.006/0       11/21/2017     0.0271/0/U     0.2071/0/U       2202018     U     0.0271/0/U       2202018     U     0.0271/0/U       2202018     U     0.0271/0/U       2202018     U     0.0271/0/U       2202018     U     0.03       43/2018     U     0.027/0/U       43/2018     U     0.027/0/U       43/2018     U     0.027/0/U       43/2018     U     0.027/0/U       43/2018     U     0.027/0/U       43/2018     U     0.027/0/U       43/2018     U     0.027/0/U       43/2018     U     0.027/0/U       61/2018     0.01/0/U     U       61/2018     U     0.027/0/U       61/2018     U     0.021/U       61/2018     U     0.021/U       61/2018     U     0.021/U       61/2018     U     0.032/U       61/2018     U     0.021/U       92/2018     U     0.011/U       92/2018     U     0.011/U       92/2018     U     0.021/U       92/2019     U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | //13/2017  |              |              |            |            |           | 0.007 (3)   |
| 3/28/2011       Unit (0006 (n)         10/22017       Unit (0006 (n)         11/21/2017       Unit (0007 (n))         11/21/2017       Unit (0007 (n))         11/21/2017       Unit (0007 (n))         11/21/2017       Unit (0007 (n))         11/21/2017       Unit (0007 (n))         11/21/2017       Unit (0007 (n))         11/21/2017       Unit (0007 (n))         11/21/2017       Unit (0007 (n))         11/21/2017       Unit (0007 (n))         11/21/2017       Unit (0007 (n))         11/21/2017       Unit (0007 (n))         11/21/2017       Unit (0007 (n))         11/21/2017       Unit (0007 (n))         11/21/2017       Unit (0007 (n))         11/21/2017       Unit (0007 (n))         11/21/2017       Unit (0007 (n))         11/21/2017       Unit (0007 (n))         11/21/2017       Unit (0007 (n))         11/21/2017       Unit (0007 (n))         11/21/2017       Unit (0007 (n))         11/21/2017       Unit (0007 (n))         11/21/2017       Unit (0007 (n))         11/21/2017       Unit (0007 (n))         11/21/2017       Unit (0007 (n))         11/21/2017       Unit (0007 (n)) <td>9/22/2017</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.0067 (3)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9/22/2017  |              |              |            |            |           | 0.0067 (3)  |
| 10/2207       0.271 (u)         11/12018       0.227 (u)         11/12018       0.227 (u)         2202018       0.03 (u)         2202018       0.03 (u)         23282018       0.03 (u)         302018       0.03 (u)         432018       0.02 (u)         432018       0.02 (u)         432018       0.02 (u)         67/2018       0.02 (u)         67/2018       0.02 (u)         67/2018       0.01 (u)         67/2018       0.02 (u)         67/2018       0.02 (u)         67/2018       0.02 (u)         67/2018       0.01 (u)         67/2018       0.02 (u)         67/2018       0.02 (u)         67/2018       0.01 (u)         67/2018       0.01 (u)         67/2018       0.01 (u)         67/2018       0.01 (u)         70/2018       0.01 (u)         70/2019       0.01 (u)         70/2019       0.01 (u)         70/2019       0.01 (u)         70/2019       0.01 (u)         70/2019       0.01 (u)         70/2019       0.01 (u)         70/2019       0.01 (u) </td <td>9/29/2017</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.0004 (J)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9/29/2017  |              |              |            |            |           | 0.0004 (J)  |
| 101/2017     002/1(i)       11/21/2017     002/1(i)       2202018     0.02/1(i)       2202018     0.03/0       3030201     0.01/0       3030201     0.02/1(i)       4/3/218     0.02/1(i)       4/3/218     0.02/1(i)       6/7/2018     0.02/1(i)       6/7/2018     0.02/1(i)       6/7/2018     0.02/1(i)       6/7/2018     0.02/1(i)       6/7/2018     0.02/1(i)       6/7/2018     0.01/1(i)       6/7/2018     0.01/2(i)       6/7/2018     0.01/1(i)       6/7/2018     0.01/1(i)       6/7/2018     0.02/1(i)       6/7/2018     0.01/1(i)       6/7/2018     0.01/1(i)       6/7/2018     0.01/1(i)       6/7/2018     0.01/1(i)       6/7/2018     0.01/1(i)       6/7/2018     0.01/1(i)       10/1/2018     0.01/1(i)       10/1/2018     0.01/1(i)       10/1/2018     0.01/1(i)       10/1/2018     0.01/1(i)       10/1/2018     0.01/1(i)       10/1/2018     0.01/1(i)       10/1/2018     0.01/1(i)       10/1/2018     0.01/1(i)       10/1/2018     0.01/1(i)       10/1/2018     0.01/1(i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10/6/2017  |              |              |            | 0.0074 (1) |           | 0.0065 (J)  |
| 11/21/2017     0.025 (J)       11/12018     0.0271 (J)       2202018     0.013 (J)       3/302018     0.013 (J)       3/302018     0.013 (J)       3/302018     0.02 (J)       3/302018     0.02 (J)       3/302018     0.02 (J)       6/72018     0.012 (J)       6/82018     0.012 (J)       6/82018     0.012 (J)       6/82018     0.012 (J)       6/82018     0.012 (J)       6/82018     0.011 (J)       9/242018     0.011 (J)       9/242018     0.011 (J)       9/242018     0.011 (J)       9/242018     0.011 (J)       9/242018     0.011 (J)       9/242018     0.011 (J)       9/242018     0.011 (J)       9/242018     0.011 (J)       9/242018     0.011 (J)       9/242018     0.011 (J)       9/242018     0.011 (J)       9/242018     0.011 (J)       9/242018     0.011 (J)       9/242018     0.011 (J)       9/242018     0.011 (J)       9/242018     0.011 (J)       9/242018     0.011 (J)       9/242018     0.011 (J)       9/242018     0.011 (J)       9/242018     0.011 (J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10/12/2017 |              |              |            | 0.0271 (J) |           |             |
| 111/2018     0.027 (J)       2202018        23282018     0.03 (J)       3302018        3302018        43/2018        63/2018        63/2018        61/2018        61/2018        61/2018        61/2018        61/2018        61/2018        61/2018        61/2018        61/2018        61/2018        61/2018        61/2018        61/2018        61/2018        61/2018        61/2018        61/2018        61/2018        61/2018        61/2018        61/2018        61/2018        61/2018        61/2018        61/2018        61/2018        61/2018        61/2019        61/2019        61/2019        61/2019        61/2019        61/2019 <td>11/21/2017</td> <td></td> <td></td> <td></td> <td>0.0255 (J)</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11/21/2017 |              |              |            | 0.0255 (J) |           |             |
| 220201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1/11/2018  |              |              |            | 0.0271 (J) |           |             |
| 3282018       0.02 (J)       0.013 (J)         332018       · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2/20/2018  |              |              |            | <0.03      |           |             |
| 330218 $0.027$ (J) $4'32018$ $0.027$ (J) $6'72018$ $0.02$ (J) $6'72018$ $0.12$ (J) $6'122018$ $0.12$ (J) $6'122018$ $0.12$ (J) $6'122018$ $0.12$ (J) $6'122018$ $0.12$ (J) $6'122018$ $0.012$ (J) $6'122018$ $0.012$ (J) $6'122018$ $0.012$ (J) $6'122018$ $0.012$ (J) $6'122018$ $0.011$ (J) $9'242018$ $0.011$ (J) $9'242018$ $0.011$ (J) $0.028$ (J) $0.0063$ (J) $10/162018$ $0.011$ (J) $0.21/10$ $0.011$ (J) $0.21/10$ $0.011$ (J) $0.021$ (J) $0.011$ (J) $0.021$ (J) $0.011$ (J) $0.021$ (J) $0.011$ (J) $0.021$ (J) $0.011$ (J) $0.021$ (J) $0.011$ (J) $0.021$ (J) $0.011$ (J) $0.021$ (J) $0.011$ (J) $0.021$ (J) $0.011$ (J) $0.021$ (J) $0.011$ (J) <td< td=""><td>3/28/2018</td><td>0.02 (J)</td><td>0.013 (J)</td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3/28/2018  | 0.02 (J)     | 0.013 (J)    |            |            |           |             |
| 43/2018     0.02/J       67/2018     0.02 J       68/2018     0.012 J       61/20208     0.012 J       61/302018     0.012 J       62/20218     0.02 J       62/20218     0.02 J       62/20218     0.02 J       62/20218     0.02 J       62/20218     0.011 J       92/20208     0.011 J       92/20209     0.011 J       92/20219     0.011 J       92/20219     0.011 J       92/20219     0.011 J       92/20219     0.021 J       92/20219     0.011 J       92/20219     0.021 J       92/20219     0.021 J       92/20219     0.021 J       92/20219     0.021 J       92/20219     0.021 J       92/20219     0.021 J       92/20219     0.021 J       92/20219     0.021 J       92/20219     0.021 J       92/20219     0.021 J       92/20219     0.021 J       92/20219     0.021 J       92/20219     0.021 J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3/30/2018  |              |              |            |            | <0.03     | 0.0061 (J)  |
| 67/2018       0.02 (J)         67/2018       0.012 (J)         61/12/2018       -         6/13/2018       -         6/20/2018       -         6/20/2018       -         6/20/2018       -         6/20/2018       -         6/20/2018       -         6/20/2018       -         6/20/2018       -         9/24/2018       -         9/24/2018       -         9/24/2018       -         9/24/2018       -         9/24/2018       -         9/24/2018       -         9/24/2018       -         9/24/2018       -         9/24/2018       -         9/24/2018       -         9/24/2018       -         9/24/2018       -         9/24/2018       -         9/24/2018       -         9/24/2018       -         9/24/2018       -         9/24/2018       -         9/24/2018       -         9/24/2018       -         9/24/2018       -         9/24/2018       -         9/24/2019       -      9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4/3/2018   |              |              |            | 0.027 (J)  |           |             |
| 64/2018       0.012 (J)         61/2018          61/3/2018          62/2018          62/2018          62/2018          62/2018          62/2018          62/2018          62/2018          62/2018          62/2018          62/2018          62/2018          62/2018          62/2018          62/2018          62/2018          62/2018          62/2018          6011          6011          62/2019          61/2019          61/2019          61/2019          61/2019          61/2019          61/2019          61/2019          61/2019          61/2019          61/2019          61/2019          61/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6/7/2018   | 0.02 (J)     |              |            |            |           |             |
| 6/12/2018       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6/8/2018   |              | 0.012 (J)    |            |            |           |             |
| 6/13/2018       -       0.032 (J)         6/2018       -       0.033 (J)         9/24/2018       -       0.028 (J)         9/24/2018       -       0.028 (J)         9/24/2018       -       -         9/24/2018       -       -         9/26/2018       -       -         9/26/2018       -       -         9/26/2018       0.011 (J)       -         10/16/2018       0.011 (J)       -         10/16/2018       0.014 (J)       -         9/27/2019       0.021 (J)       0.014 (J)         9/27/2019       0.013 (J)       -         9/2/2019       -       -         9/2/2019       0.013 (J)       -         9/2/2019       0.013 (J)       -         9/2/2019       0.013 (J)       -         9/2/2019       0.021 (J)       0.014 (J)         9/2/2019       0.014 (J)       -         9/2/2019       0.014 (J)       -         9/2/2019       0.014 (J)       -         9/2/2019       0.014 (J)       -         9/2/2019       0.014 (J)       -         9/2/2019       0.014 (J)       - <t< td=""><td>6/12/2018</td><td></td><td></td><td></td><td></td><td>&lt;0.03</td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6/12/2018  |              |              |            |            | <0.03     |             |
| 6/29/2018       0.032 (J)         8/6/2018       0.033 (J)         9/24/2018       0.028 (J)         9/26/2018       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6/13/2018  |              |              |            |            |           | 0.0065 (J)  |
| 8k6/2018       0.033 (J)         9/24/2018       0.021 (J)         9/26/2018       0.011 (J)         10/1/2018       0.021 (J)         10/1/2018       0.011 (J)         2/27/2019       0.021 (J)         10/1/2018       0.014 (J)         3/5/2019       0.014 (J)         3/5/2019       0.014 (J)         3/6/2019       0.013 (J)         4/1/2019       0.021 (J)         0.013 (J)       0.0057 (J)         4/1/2019       0.011 (J)         10/2/2019       0.011 (J)         10/2/2019       0.011 (J)         10/2/2019       0.011 (J)         10/2/2019       0.011 (J)         10/2/2019       0.011 (J)         10/2/2019       0.011 (J)         10/2/2019       0.011 (J)         10/2/2019       0.011 (J)         10/2/2019       0.011 (J)         10/2/2019       0.011 (J)         10/2/2019       0.011 (J)         10/2/2019       0.011 (J)         10/2/2019       0.011 (J)         10/2/2019       0.011 (J)         10/2/2019       0.011 (J)         10/2/2019       0.011 (J)         10/2/2019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6/29/2018  |              |              |            | 0.032 (J)  |           |             |
| 9/24/2018       0.028 (J)         9/26/2018          10/1/2018       0.011 (J)         10/1/2018       0.011 (J)         2/27/2019       0.021 (J)         0.014 (J)       0.014 (J)         3/5/2019       0.013 (J)         3/6/2019       -         4/1/2019       0.013 (J)         4/1/2019       0.013 (J)         4/1/2019       0.021 (J)         0.021 (J)       0.013 (J)         4/1/2019       0.021 (J)         0.021 (J)       0.013 (J)         4/1/2019       0.021 (J)         0.021 (J)       0.013 (J)         4/1/2019       0.021 (J)         0.021 (J)       0.01 (J)         9/25/2019       0.02 (J)         0.021 (J)       0.01 (J)         9/25/2019       0.02 (J)         0.021 (J)       0.01 (J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8/6/2018   |              |              |            | 0.033 (J)  |           |             |
| 9/26/2018       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9/24/2018  |              |              |            | 0.028 (J)  |           |             |
| 10/1/2018       0.011 (J)         10/1/2018       0.011 (J)         2/2/2019       0.021 (J)       0.014 (J)         3/5/2019       0.014 (J)         3/6/2019       -         3/6/2019       -         4/1/2019       0.021 (J)         0.013 (J)       -         4/1/2019       0.014 (J)         9/25/2019       0.01 (J)         9/25/2019       0.01 (J)         9/26/2019       -         9/26/2019       -         9/26/2019       -         9/26/2019       -         9/26/2019       -         9/26/2019       -         9/26/2019       -         9/26/2019       -         9/26/2019       -         9/26/2019       -         9/26/2019       -         9/26/2019       -         9/26/2019       -         9/26/2019       -         9/26/2019       -         9/26/2019       -         9/26/2019       -         9/26/2019       -         9/26/2019       -         9/26/2019       -         9/2010       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9/26/2018  |              |              |            |            | <0.03     | 0.0063 (J)  |
| 10/16/2018       0.0011 (J)         2/27/2019       0.021 (J)       0.014 (J)         3/5/2019        <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10/1/2018  | 0.02 (J)     | 0.011 (J)    |            |            |           |             |
| 2/27/2019       0.021 (J)       0.014 (J)         3/5/2019       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10/16/2018 |              |              | 0.0011 (J) |            |           |             |
| 3/5/2019     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2/27/2019  | 0.021 (J)    | 0.014 (J)    |            |            |           |             |
| 3/6/2019       0.021 (J)       0.013 (J)         4/1/2019       <0.03 (J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3/5/2019   |              |              |            |            | <0.03     |             |
| 4/1/2019     0.021 (J)     0.013 (J)       4/4/2019     <0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3/6/2019   |              |              |            |            |           | 0.0057 (J)  |
| 4/4/2019     <0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4/1/2019   | 0.021 (J)    | 0.013 (J)    |            |            |           |             |
| 9/25/2019 0.02 (J) 0.01 (J)<br>9/26/2019 <0.03 <0.03 0.0041 (J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4/4/2019   |              |              |            |            | <0.03     | 0.0058 (J)  |
| 9/26/2019 <0.03 <0.03 0.0041 (J)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9/25/2019  | 0.02 (J)     | 0.01 (J)     |            |            |           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9/26/2019  |              |              | <0.03      |            | <0.03     | 0.0041 (J)  |

Constituent: Lithium (mg/L) Analysis Run 5/6/2021 8:36 PM

|           | YGWA-3D (bg) | YGWA-3I (bg) | PZ-35      | PZ-37     | YGWC-24SA | YGWC-36A   |
|-----------|--------------|--------------|------------|-----------|-----------|------------|
| 2/11/2020 |              | 0.013 (J)    |            |           |           |            |
| 2/12/2020 | 0.019 (J)    |              |            |           |           |            |
| 3/19/2020 | 0.023 (J)    | 0.014 (J)    |            |           |           |            |
| 3/25/2020 |              |              | 0.011 (J)  |           |           | 0.0032 (J) |
| 3/26/2020 |              |              |            |           | <0.03     |            |
| 9/23/2020 | 0.023 (J)    | 0.013 (J)    |            |           | <0.03     |            |
| 9/24/2020 |              |              | 0.001 (J)  |           |           |            |
| 9/25/2020 |              |              |            | 0.028 (J) |           |            |
| 10/7/2020 |              |              |            |           |           | 0.0014 (J) |
| 2/9/2021  |              |              |            | 0.024 (J) | <0.03     |            |
| 2/10/2021 | 0.023 (J)    | 0.015 (J)    | 0.0012 (J) |           |           | 0.0011 (J) |
| 3/3/2021  | 0.024 (J)    | 0.017 (J)    |            |           | <0.03     |            |
| 3/4/2021  |              |              | 0.0015 (J) | 0.028 (J) |           | <0.03      |

Constituent: Mercury (mg/L) Analysis Run 5/6/2021 8:36 PM

|           | YAMW-1  | YAMW-2  | YAMW-4  | YAMW-5  | YGWA-17S (bg) | YGWA-18I (bg) | YGWA-18S (bg) | YGWA-20S (bg) | YGWA-21I (bg) |
|-----------|---------|---------|---------|---------|---------------|---------------|---------------|---------------|---------------|
| 6/6/2016  |         |         |         |         |               | <0.0002       | <0.0002       |               |               |
| 6/7/2016  |         |         |         |         | 9.5E-05 (J)   |               |               | 9.6E-05 (J)   | 9.6E-05 (J)   |
| 7/27/2016 |         |         |         |         | <0.0002       | <0.0002       | <0.0002       | <0.0002       |               |
| 7/28/2016 |         |         |         |         |               |               |               |               | <0.0002       |
| 9/16/2016 |         |         |         |         | <0.0002       |               | <0.0002       |               |               |
| 9/19/2016 |         |         |         |         |               | <0.0002       |               | <0.0002       | <0.0002       |
| 11/2/2016 |         |         |         |         |               |               |               | <0.0002       |               |
| 11/3/2016 |         |         |         |         | <0.0002       | <0.0002       | <0.0002       |               | <0.0002       |
| 1/11/2017 |         |         |         |         | <0.0002       | <0.0002       | <0.0002       |               |               |
| 1/13/2017 |         |         |         |         |               |               |               | <0.0002       | <0.0002       |
| 3/1/2017  |         |         |         |         |               | <0.0002       | <0.0002       |               |               |
| 3/2/2017  |         |         |         |         | <0.0002       |               |               |               |               |
| 3/6/2017  |         |         |         |         |               |               |               | <0.0002       | <0.0002       |
| 4/26/2017 |         |         |         |         |               | <0.0002       | <0.0002       | <0.0002       | <0.0002       |
| 5/2/2017  |         |         |         |         | <0.0002       |               |               |               |               |
| 6/28/2017 |         |         |         |         |               | <0.0002       | <0.0002       |               |               |
| 6/29/2017 |         |         |         |         | <0.0002       |               |               | <0.0002       | <0.0002       |
| 3/28/2018 |         |         |         |         | <0.0002       | <0.0002       | <0.0002       |               |               |
| 3/29/2018 |         |         |         |         |               |               |               | <0.0002       | <0.0002       |
| 9/25/2018 |         |         |         |         | <0.0002       | <0.0002       | <0.0002       | <0.0002       | <0.0002       |
| 3/5/2019  |         |         |         |         | <0.0002       |               | <0.0002       | <0.0002       | <0.0002       |
| 3/6/2019  |         |         |         |         |               | <0.0002       |               |               |               |
| 2/11/2020 |         |         |         |         | <0.0002       | <0.0002       | <0.0002       |               |               |
| 2/12/2020 |         |         |         |         |               |               |               | <0.0002       | <0.0002       |
| 9/23/2020 |         | <0.0002 | <0.0002 |         |               |               |               |               |               |
| 9/24/2020 | <0.0002 |         |         | <0.0002 |               |               |               |               |               |
| 2/9/2021  | <0.0002 | <0.0002 | <0.0002 | <0.0002 |               | <0.0002       | <0.0002       | <0.0002       | <0.0002       |
| 3/3/2021  | <0.0002 | <0.0002 | <0.0002 |         | <0.0002       | <0.0002       | <0.0002       | <0.0002       |               |
| 3/4/2021  |         |         |         | <0.0002 |               |               |               |               | <0.0002       |

Constituent: Mercury (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YGWA-39 (bg) | YGWA-40 (bg) | YGWA-4I (bg) | YGWA-5D (bg) | YGWA-5I (bg) | YGWC-23S    | YGWC-38     | YGWC-41   | YGWC-42     |
|------------|--------------|--------------|--------------|--------------|--------------|-------------|-------------|-----------|-------------|
| 6/2/2016   |              |              | <0.0002      | <0.0002      | <0.0002      |             |             |           |             |
| 6/7/2016   |              |              |              |              |              | 9.8E-05 (J) |             |           |             |
| 7/26/2016  |              |              | <0.0002      | <0.0002      | <0.0002      |             |             |           |             |
| 7/28/2016  |              |              |              |              |              | <0.0002     |             |           |             |
| 8/30/2016  |              |              |              |              |              |             |             |           | <0.0002     |
| 9/14/2016  |              |              | <0.0002      | <0.0002      | <0.0002      |             |             |           |             |
| 9/20/2016  |              |              |              |              |              | <0.0002     |             |           |             |
| 11/2/2016  |              |              | <0.0002      | <0.0002      |              |             |             |           |             |
| 11/4/2016  |              |              |              |              | <0.0002      |             |             |           |             |
| 11/8/2016  |              |              |              |              |              | <0.0002     |             |           |             |
| 11/16/2016 |              |              |              |              |              |             |             |           | <0.0002     |
| 1/12/2017  |              |              |              | <0.0002      | <0.0002      |             |             |           |             |
| 1/13/2017  |              |              | <0.0002      |              |              |             |             |           |             |
| 1/16/2017  |              |              |              |              |              | <0.0002     |             |           |             |
| 2/27/2017  |              |              |              |              |              |             |             |           | <0.0002     |
| 3/6/2017   |              |              | <0.0002      |              |              |             |             |           |             |
| 3/7/2017   |              |              |              | <0.0002      | <0.0002      |             |             |           |             |
| 3/9/2017   |              |              |              |              |              | <0.0002     |             |           |             |
| 5/1/2017   |              |              | <0.0002      | <0.0002      |              |             |             |           |             |
| 5/2/2017   |              |              |              |              | <0.0002      | <0.0002     |             |           |             |
| 5/10/2017  |              |              |              |              |              |             |             |           | <0.0002     |
| 6/27/2017  |              |              |              | <0.0002      | <0.0002      |             |             |           |             |
| 6/29/2017  |              |              | <0.0002      |              |              |             |             |           |             |
| 7/10/2017  |              |              |              |              |              | <0.0002     |             |           |             |
| 7/11/2017  |              |              |              |              |              |             |             |           | <0.0002     |
| 10/11/2017 | <0.0002      |              |              |              |              |             |             |           |             |
| 10/12/2017 |              | <0.0002      |              |              |              |             | <0.0002     | <0.0002   | <0.0002     |
| 11/20/2017 | 7E-05 (J)    | 8E-05 (J)    |              |              |              |             | 8E-05 (J)   |           |             |
| 11/21/2017 |              |              |              |              |              |             |             | 6E-05 (J) |             |
| 1/10/2018  |              | <0.0002      |              |              |              |             |             |           |             |
| 1/11/2018  | <0.0002      |              |              |              |              |             |             | <0.0002   |             |
| 1/12/2018  |              |              |              |              |              |             | <0.0002     |           |             |
| 2/19/2018  |              | <0.0002      |              |              |              |             |             | <0.0002   |             |
| 2/20/2018  | <0.0002      |              |              |              |              |             | <0.0002     |           |             |
| 3/29/2018  |              |              | <0.0002      | <0.0002      | <0.0002      |             |             |           |             |
| 3/30/2018  |              |              |              |              |              | <0.0002     |             |           |             |
| 4/3/2018   | <0.0002      | <0.0002      |              |              |              |             | <0.0002     | <0.0002   |             |
| 4/4/2018   |              |              |              |              |              |             |             |           | <0.0002     |
| 6/27/2018  |              |              |              |              |              |             |             | <0.0002   |             |
| 6/28/2018  | <0.0002      | 3.6E-05 (J)  |              |              |              |             | 3.7E-05 (J) |           |             |
| 8/7/2018   | <0.0002      | <0.0002      |              |              |              |             | <0.0002     | <0.0002   |             |
| 9/20/2018  |              |              |              |              |              |             |             |           | 4.8E-05 (J) |
| 9/24/2018  | <0.0002      | <0.0002      |              |              |              |             | <0.0002     | <0.0002   |             |
| 9/26/2018  |              |              | <0.0002      | <0.0002      | <0.0002      |             |             |           |             |
| 9/27/2018  |              |              |              |              |              | <0.0002     |             |           |             |
| 3/4/2019   |              |              | <0.0002      | <0.0002      | <0.0002      |             |             |           |             |
| 3/6/2019   |              |              |              |              |              | <0.0002     |             |           |             |
| 8/21/2019  | <0.0002      | <0.0002      |              |              |              |             |             |           |             |
| 8/22/2019  |              |              |              |              |              |             | <0.0002     | <0.0002   | <0.0002     |
| 2/12/2020  | <0.0002      | <0.0002      | <0.0002      | <0.0002      | <0.0002      |             |             |           |             |
| 2/8/2021   |              |              |              | <0.0002      | <0.0002      |             |             |           |             |
| 2/9/2021   |              |              | <0.0002      |              |              | 0.00015 (J) | <0.0002     |           |             |

Constituent: Mercury (mg/L) Analysis Run 5/6/2021 8:36 PM

|           | YGWA-39 (bg) | YGWA-40 (bg) | YGWA-4I (bg) | YGWA-5D (bg) | YGWA-5I (bg) | YGWC-23S | YGWC-38 | YGWC-41 | YGWC-42 |
|-----------|--------------|--------------|--------------|--------------|--------------|----------|---------|---------|---------|
| 2/10/2021 | <0.0002      | <0.0002      |              |              |              |          |         | <0.0002 | <0.0002 |
| 3/2/2021  |              |              |              | <0.0002      | <0.0002      |          |         |         |         |
| 3/3/2021  |              |              | <0.0002      |              |              |          |         |         |         |
| 3/4/2021  | <0.0002      | <0.0002      |              |              |              | <0.0002  | <0.0002 | <0.0002 | <0.0002 |

#### Constituent: Mercury (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YGWC-43 | YGWC-49 | YGWA-47 (bg) | GWA-2 (bg)   | YGWA-14S (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-2I (bg) | YGWA-30I (bg) |
|------------|---------|---------|--------------|--------------|---------------|--------------|--------------|--------------|---------------|
| 5/1/2007   |         |         |              | <0.0002      |               |              |              |              |               |
| 9/11/2007  |         |         |              | <0.0002      |               |              |              |              |               |
| 3/20/2008  |         |         |              | <0.0002      |               |              |              |              |               |
| 8/27/2008  |         |         |              | <0.0002      |               |              |              |              |               |
| 3/3/2009   |         |         |              | <0.0002      |               |              |              |              |               |
| 11/18/2009 |         |         |              | <0.0002      |               |              |              |              |               |
| 3/3/2010   |         |         |              | < 0.0002     |               |              |              |              |               |
| 9/8/2010   |         |         |              | <0.0002      |               |              |              |              |               |
| 3/10/2011  |         |         |              | <0.0002      |               |              |              |              |               |
| 9/8/2011   |         |         |              | <0.0002      |               |              |              |              |               |
| 3/5/2012   |         |         |              | <0.0002      |               |              |              |              |               |
| 9/10/2012  |         |         |              | <0.0002      |               |              |              |              |               |
| 2/6/2013   |         |         |              | <0.0002      |               |              |              |              |               |
| 2/0/2013   |         |         |              | <0.0002      |               |              |              |              |               |
| 8/12/2013  |         |         |              | <0.0002      |               |              |              |              |               |
| 2/5/2014   |         |         |              | <0.0002      |               |              |              |              |               |
| 8/5/2014   |         |         |              | <0.0002      |               |              |              |              |               |
| 2/4/2015   |         |         |              | <0.0002      |               |              |              |              |               |
| 8/3/2015   |         |         |              | <0.0002      |               |              |              |              |               |
| 2/16/2016  |         |         |              | 1.36E-05 (J) |               |              |              |              |               |
| 6/1/2016   |         |         |              |              |               | <0.0002      | <0.0002      |              |               |
| 6/2/2016   |         |         |              |              | <0.0002       |              |              |              | <0.0002       |
| 7/25/2016  |         |         |              |              |               |              | <0.0002      |              | <0.0002       |
| 7/26/2016  |         |         |              |              | <0.0002       | <0.0002      |              |              |               |
| 8/30/2016  |         |         | <0.0002      |              |               |              |              |              |               |
| 8/31/2016  | <0.0002 |         |              | <0.0002      |               |              |              |              |               |
| 9/1/2016   |         | <0.0002 |              |              |               |              |              |              |               |
| 9/13/2016  |         |         |              |              |               | <0.0002      | <0.0002      |              |               |
| 9/14/2016  |         |         |              |              |               |              |              | <0.0002      |               |
| 9/15/2016  |         |         |              |              | <0.0002       |              |              |              |               |
| 9/19/2016  |         |         |              |              |               |              |              |              | <0.0002       |
| 11/1/2016  |         |         |              |              |               | <0.0002      |              |              | <0.0002       |
| 11/2/2016  |         |         |              |              | <0.0002       |              |              |              |               |
| 11/4/2016  |         |         |              |              |               |              | <0.0002      | <0.0002      |               |
| 11/14/2016 |         |         | <0.0002      |              |               |              |              |              |               |
| 11/15/2016 |         | <0.0002 |              |              |               |              |              |              |               |
| 11/16/2016 | <0.0002 |         |              |              |               |              |              |              |               |
| 11/28/2016 |         |         |              | <0.0002      |               |              |              |              |               |
| 12/15/2016 |         |         |              |              |               |              |              | <0.0002      |               |
| 1/10/2017  |         |         |              |              | <0.0002       |              |              |              |               |
| 1/11/2017  |         |         |              |              |               | <0.0002      |              |              |               |
| 1/16/2017  |         |         |              |              |               |              | <0.0002      | <0.0002      | <0.0002       |
| 2/21/2017  |         |         |              |              |               |              |              |              | <0.0002       |
| 2/22/2017  |         |         |              | <0.0002      |               |              |              |              |               |
| 2/24/2017  | <0.0002 |         | <0.0002      |              |               |              |              |              |               |
| 2/27/2017  |         | <0.0002 |              |              |               |              |              |              |               |
| 3/2/2017   |         |         |              |              |               | <0.0002      | <0.0002      |              |               |
| 3/3/2017   |         |         |              |              |               |              |              | <0.0002      |               |
| 3/8/2017   |         |         |              |              | <0.0002       |              |              |              |               |
| 4/26/2017  |         |         |              |              | <0.0002       |              |              |              | <0.0002       |
| 4/27/2017  |         |         |              |              |               | <0.0002      | < 0.0002     |              |               |
| 4/28/2017  |         |         |              |              |               |              |              | <0.0002      |               |
| 5/8/2017   |         |         | <0.0002      | <0.0002      |               |              |              | 0.0002       |               |
| 51012011   |         |         | 0.0002       | 0.0002       |               |              |              |              |               |

|            | YGWC-43        | YGWC-49        | YGWA-47 (bg) | GWA-2 (bg)  | YGWA-14S (bg)   | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-2I (bg) | YGWA-30I (bg)  |
|------------|----------------|----------------|--------------|-------------|-----------------|--------------|--------------|--------------|----------------|
| 5/9/2017   |                | <0.0002        |              |             |                 |              |              |              |                |
| 5/10/2017  | <0.0002        |                |              |             |                 |              |              |              |                |
| 5/26/2017  |                |                |              |             |                 |              |              | <0.0002      |                |
| 6/27/2017  |                |                |              |             |                 | <0.0002      | <0.0002      |              |                |
| 6/28/2017  |                |                |              |             |                 | 0.0002       | 0.0002       | <0.0002      |                |
| 6/30/2017  |                |                |              |             | <0.0002         |              |              | -0.0002      | <0.0002        |
| 7/11/2017  | <0.0002        |                | <0.0002      |             | -0.0002         |              |              |              | -0.0002        |
| 7/13/2017  | <b>40.0002</b> | <0.0002        | <0.000Z      |             |                 |              |              |              |                |
| 7/13/2017  |                | <b>40.0002</b> |              | <0.0002     |                 |              |              |              |                |
| 10/10/2017 |                |                | <0.0002      | <0.0002     |                 |              |              |              |                |
| 10/11/2017 |                | <0.0002        | <0.000Z      |             |                 |              |              |              |                |
| 10/11/2017 | <0.0002        | <0.0002        |              |             |                 |              |              |              |                |
| 10/12/2017 | <0.0002        |                |              | -0.0000     |                 |              |              |              |                |
| 10/16/2017 |                |                |              | <0.0002     |                 |              |              |              |                |
| 2/19/2018  |                |                |              | <0.0002     |                 |              |              |              |                |
| 3/2//2018  |                |                |              |             | <0.0002         |              | <0.0002      |              | <0.0002        |
| 3/28/2018  |                |                |              |             |                 |              |              | <0.0002      |                |
| 3/29/2018  |                |                |              |             |                 | <0.0002      |              |              |                |
| 4/2/2018   |                |                | <0.0002      |             |                 |              |              |              |                |
| 4/4/2018   | <0.0002        | <0.0002        |              |             |                 |              |              |              |                |
| 8/6/2018   |                |                |              | <0.0002     |                 |              |              |              |                |
| 9/19/2018  |                |                | 5.3E-05 (J)  |             |                 |              |              |              |                |
| 9/20/2018  | 5.2E-05 (J)    | 6.1E-05 (J)    |              |             |                 |              |              |              |                |
| 2/25/2019  |                |                |              | 7.4E-05 (J) |                 |              |              |              |                |
| 2/26/2019  |                |                |              |             | 6.1E-05 (J)     |              |              |              | 6.8E-05 (J)    |
| 2/27/2019  |                |                |              |             |                 | 5.1E-05 (J)  | 5.4E-05 (J)  | <0.0002      |                |
| 3/28/2019  |                |                |              |             |                 | 4E-05 (J)    | <0.0002      |              |                |
| 3/29/2019  |                |                |              |             | <0.0002         |              |              | <0.0002      |                |
| 4/1/2019   |                |                |              |             |                 |              |              |              | 8.2E-05 (J)    |
| 6/12/2019  |                |                |              | <0.0002     |                 |              |              |              |                |
| 8/19/2019  |                |                |              | <0.0002     |                 |              |              |              |                |
| 8/20/2019  |                |                | <0.0002      |             |                 |              |              |              |                |
| 8/21/2019  | <0.0002        |                |              |             |                 |              |              |              |                |
| 9/24/2019  |                |                |              |             |                 | <0.0002      | <0.0002      | <0.0002      |                |
| 9/25/2019  |                |                |              |             | <0.0002         |              |              |              | <0.0002        |
| 10/8/2019  |                |                |              | <0.0002     |                 |              |              |              |                |
| 2/10/2020  |                |                |              |             |                 | <0.0002      | <0.0002      |              |                |
| 2/11/2020  |                |                |              |             |                 |              |              | <0.0002      |                |
| 2/12/2020  |                |                |              |             | <0.0002         |              |              |              | <0.0002        |
| 5/6/2020   |                |                |              | <0.0002     |                 |              |              |              |                |
| 8/26/2020  |                |                |              | <0.0002     |                 |              |              |              |                |
| 8/27/2020  |                |                | <0.0002      | 0.0002      |                 |              |              |              |                |
| 9/22/2020  |                |                | -0.0002      | <0.0002     |                 |              |              |              |                |
| 2/9/2021   | <0.0005        | 0.00014 (1)    |              | -0.0002     |                 |              |              |              |                |
| 2/10/2021  | ~0.000Z        | 5.000 14 (5)   |              |             | <0.0002         |              |              | <0.0003      |                |
| 2/10/2021  |                |                |              |             | <u>~0.000</u> ∠ |              |              | ~0.000Z      | <0.0002        |
| 2/11/2021  |                |                |              |             |                 | <0.0002      | <0.0002      |              | <b>~0.000∠</b> |
| 2/12/2021  |                |                |              | -0.0000     |                 | <0.0002      | <0.0002      |              |                |
| 3/2/2021   |                |                |              | <0.0002     |                 |              |              |              |                |
| 3/4/2021   | < 0.0002       | < 0.0002       |              |             |                 |              |              |              |                |

Constituent: Mercury (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YGWA-3D (bg) | YGWA-3I (bg) | PZ-35           | PZ-37           | YGWC-24SA | YGWC-36A |
|------------|--------------|--------------|-----------------|-----------------|-----------|----------|
| 6/1/2016   |              | <0.0002      |                 |                 |           |          |
| 6/2/2016   | <0.0002      |              |                 |                 |           |          |
| 6/8/2016   |              |              |                 |                 | <0.0002   |          |
| 7/25/2016  |              | <0.0002      |                 |                 |           |          |
| 7/26/2016  | <0.0002      |              |                 |                 |           |          |
| 8/1/2016   |              |              |                 |                 | <0.0002   |          |
| 9/2/2016   |              |              |                 |                 |           | <0.0002  |
| 9/14/2016  |              | <0.0002      |                 |                 |           |          |
| 9/15/2016  | <0.0002      |              |                 |                 |           |          |
| 9/20/2016  |              |              |                 |                 | <0.0002   |          |
| 11/1/2016  | <0.0002      | <0.0002      |                 |                 |           |          |
| 11/8/2016  |              |              |                 |                 | <0.0002   |          |
| 11/14/2016 |              |              |                 |                 |           | <0.0002  |
| 1/11/2017  | <0.0002      | <0.0002      |                 |                 |           |          |
| 1/17/2017  |              |              |                 |                 | <0.0002   |          |
| 2/28/2017  |              |              |                 |                 |           | <0.0002  |
| 3/1/2017   |              | <0.0002      |                 |                 |           |          |
| 3/2/2017   | <0.0002      |              |                 |                 |           |          |
| 3/8/2017   |              |              |                 |                 | <0.0002   |          |
| 4/26/2017  | <0.0002      | <0.0002      |                 |                 | 0.0002    |          |
| 5/2/2017   | 0.0002       | 0.0002       |                 |                 | <0.0002   |          |
| 5/2/2017   |              |              |                 |                 | -0.0002   | <0.0002  |
| 6/20/2017  | <0.0002      | <0.0002      |                 |                 |           | <0.000Z  |
| 0/20/2017  | <0.0002      | <0.0002      |                 |                 | <0.0002   |          |
| 7/7/2017   |              |              |                 |                 | <0.0002   | -0.0000  |
| //13/2017  |              |              |                 |                 |           | <0.0002  |
| 9/22/2017  |              |              |                 |                 |           | <0.0002  |
| 9/29/2017  |              |              |                 |                 |           | <0.0002  |
| 10/6/2017  |              |              |                 |                 |           | <0.0002  |
| 10/12/2017 |              |              |                 | <0.0002         |           |          |
| 11/21/2017 |              |              |                 | 6E-05 (J)       |           |          |
| 1/11/2018  |              |              |                 | <0.0002         |           |          |
| 2/20/2018  |              |              |                 | <0.0002         |           |          |
| 3/28/2018  | <0.0002      | <0.0002      |                 |                 |           |          |
| 3/30/2018  |              |              |                 |                 | <0.0002   | <0.0002  |
| 4/3/2018   |              |              |                 | <0.0002         |           |          |
| 6/29/2018  |              |              |                 | <0.0002         |           |          |
| 8/6/2018   |              |              |                 | <0.0002         |           |          |
| 9/24/2018  |              |              |                 | <0.0002         |           |          |
| 9/26/2018  |              |              |                 |                 | <0.0002   | <0.0002  |
| 2/27/2019  | 6.2E-05 (J)  | 6.1E-05 (J)  |                 |                 |           |          |
| 3/5/2019   |              |              |                 |                 | <0.0002   |          |
| 3/6/2019   |              |              |                 |                 |           | <0.0002  |
| 4/1/2019   | 9.6E-05 (J)  | 8.4E-05 (J)  |                 |                 |           |          |
| 9/25/2019  | <0.0002      | <0.0002      |                 |                 |           |          |
| 2/11/2020  |              | <0.0002      |                 |                 |           |          |
| 2/12/2020  | <0.0002      |              |                 |                 |           |          |
| 9/24/2020  |              |              | <0.0002         |                 |           |          |
| 9/25/2020  |              |              | 5.0002          | <0.0002         |           |          |
| 2/9/2021   |              |              |                 | <0.0002         | <0.0002   |          |
| 2/10/2021  | <0.0002      | <0.0002      | <0.0002         | 5.0002          | 5.0002    | <0.0002  |
| 2/3/2021   | ~0.000Z      | ~0.000Z      | ~U.UUUZ         |                 | <0.0002   | ~U.UUUZ  |
| 3/3/2021   |              |              | <0.0002         | <0.0002         | SU.UUU∠   | <0.0002  |
| 3/4/2UZ I  |              |              | <b>~</b> 0.000∠ | <b>~0.000</b> ∠ |           | NU.UUU2  |

Constituent: Molybdenum (mg/L) Analysis Run 5/6/2021 8:36 PM

|           | YAMW-1     | YAMW-2 | YAMW-4     | YAMW-5 | YGWA-17S (bg) | YGWA-18I (bg) | YGWA-18S (bg) | YGWA-20S (bg) | YGWA-21I (bg) |
|-----------|------------|--------|------------|--------|---------------|---------------|---------------|---------------|---------------|
| 6/6/2016  |            |        |            |        |               | <0.01         | <0.01         |               |               |
| 6/7/2016  |            |        |            |        | <0.01         |               |               | <0.01         | <0.01         |
| 7/27/2016 |            |        |            |        | <0.01         | <0.01         | <0.01         | <0.01         |               |
| 7/28/2016 |            |        |            |        |               |               |               |               | <0.01         |
| 9/16/2016 |            |        |            |        | <0.01         |               | <0.01         |               |               |
| 9/19/2016 |            |        |            |        |               | <0.01         |               | <0.01         | <0.01         |
| 11/2/2016 |            |        |            |        |               |               |               | <0.01         |               |
| 11/3/2016 |            |        |            |        | <0.01         | <0.01         | <0.01         |               | <0.01         |
| 1/11/2017 |            |        |            |        | <0.01         | <0.01         | <0.01         |               |               |
| 1/13/2017 |            |        |            |        |               |               |               | <0.01         | <0.01         |
| 3/1/2017  |            |        |            |        |               | <0.01         | <0.01         |               |               |
| 3/2/2017  |            |        |            |        | <0.01         |               |               |               |               |
| 3/6/2017  |            |        |            |        |               |               |               | <0.01         | 0.0007 (J)    |
| 4/26/2017 |            |        |            |        |               | <0.01         | <0.01         | <0.01         | 0.0008 (J)    |
| 5/2/2017  |            |        |            |        | <0.01         |               |               |               |               |
| 6/28/2017 |            |        |            |        |               | <0.01         | <0.01         |               |               |
| 6/29/2017 |            |        |            |        | <0.01         |               |               | <0.01         | <0.01         |
| 3/28/2018 |            |        |            |        | <0.01         | <0.01         | <0.01         |               |               |
| 3/29/2018 |            |        |            |        |               |               |               | <0.01         | <0.01         |
| 3/5/2019  |            |        |            |        | <0.01         |               | <0.01         | <0.01         | <0.01         |
| 3/6/2019  |            |        |            |        |               | <0.01         |               |               |               |
| 2/11/2020 |            |        |            |        | <0.01         | <0.01         | <0.01         |               |               |
| 2/12/2020 |            |        |            |        |               |               |               | <0.01         | <0.01         |
| 3/24/2020 |            |        |            |        | <0.01         | <0.01         | <0.01         | <0.01         | <0.01         |
| 3/25/2020 | <0.01      |        |            |        |               |               |               |               |               |
| 9/23/2020 |            | <0.01  | 0.0068 (J) |        | <0.01         | <0.01         | <0.01         |               |               |
| 9/24/2020 | 0.0022 (J) |        |            | <0.01  |               |               |               | <0.01         | <0.01         |
| 2/9/2021  | 0.0038 (J) | <0.01  | 0.0068 (J) | <0.01  |               | <0.01         | <0.01         | <0.01         | <0.01         |
| 3/3/2021  | 0.0037 (J) | <0.01  | 0.0049 (J) |        | <0.01         | <0.01         | <0.01         | <0.01         |               |
| 3/4/2021  |            |        |            | <0.01  |               |               |               |               | <0.01         |

Constituent: Molybdenum (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YGWA-39 (bg) | YGWA-40 (bg) | YGWA-4I (bg) | YGWA-5D (bg) | YGWA-5I (bg) | YGWC-23S | YGWC-38 | YGWC-41 | YGWC-42     |
|------------|--------------|--------------|--------------|--------------|--------------|----------|---------|---------|-------------|
| 6/2/2016   |              |              | <0.01        | 0.0035 (J)   | <0.01        |          |         |         |             |
| 6/7/2016   |              |              |              |              |              | <0.01    |         |         |             |
| 7/26/2016  |              |              | <0.01        | 0.0042 (J)   | <0.01        |          |         |         |             |
| 7/28/2016  |              |              |              |              |              | <0.01    |         |         |             |
| 8/30/2016  |              |              |              |              |              |          |         |         | 0.0019 (J)  |
| 9/14/2016  |              |              | <0.01        | 0.0041 (J)   | <0.01        |          |         |         |             |
| 9/20/2016  |              |              |              |              |              | <0.01    |         |         |             |
| 11/2/2016  |              |              | <0.01        | 0.0039 ( 1)  |              | -0.01    |         |         |             |
| 11/2/2010  |              |              | <0.01        | 0.0055 (5)   | -0.01        |          |         |         |             |
| 11/4/2016  |              |              |              |              | <0.01        |          |         |         |             |
| 11/8/2016  |              |              |              |              |              | <0.01    |         |         |             |
| 11/16/2016 |              |              |              |              |              |          |         |         | 0.0027 (J)  |
| 1/12/2017  |              |              |              | 0.0041 (J)   | <0.01        |          |         |         |             |
| 1/13/2017  |              |              | <0.01        |              |              |          |         |         |             |
| 1/16/2017  |              |              |              |              |              | <0.01    |         |         |             |
| 2/27/2017  |              |              |              |              |              |          |         |         | 0.0031 (J)  |
| 3/6/2017   |              |              | <0.01        |              |              |          |         |         |             |
| 3/7/2017   |              |              |              | 0.0047 (J)   | <0.01        |          |         |         |             |
| 3/9/2017   |              |              |              |              |              | <0.01    |         |         |             |
| 5/1/2017   |              |              | <0.01        | 0.0045 (J)   |              |          |         |         |             |
| 5/2/2017   |              |              |              |              | <0.01        | <0.01    |         |         |             |
| 5/10/2017  |              |              |              |              |              |          |         |         | 0.0017 (J)  |
| 6/27/2017  |              |              |              | 0.004 (1)    | <0.01        |          |         |         |             |
| 6/29/2017  |              |              | <0.01        | 0.004 (0)    | -0.01        |          |         |         |             |
| 3/10/2017  |              |              | <0.01        |              |              | -0.01    |         |         |             |
| 7/10/2017  |              |              |              |              |              | <0.01    |         |         | 0.0014 ( 1) |
| //11/2017  |              |              |              |              |              |          |         |         | 0.0014 (J)  |
| 10/11/2017 | 0.0094 (J)   |              |              |              |              |          |         |         |             |
| 10/12/2017 |              | <0.01        |              |              |              |          | <0.01   | <0.01   | <0.01       |
| 11/20/2017 | 0.0081 (J)   | <0.01        |              |              |              |          | <0.01   |         |             |
| 11/21/2017 |              |              |              |              |              |          |         | <0.01   |             |
| 1/10/2018  |              | <0.01        |              |              |              |          |         |         |             |
| 1/11/2018  | 0.0074 (J)   |              |              |              |              |          |         | <0.01   |             |
| 1/12/2018  |              |              |              |              |              |          | <0.01   |         |             |
| 2/19/2018  |              | <0.01        |              |              |              |          |         | <0.01   |             |
| 2/20/2018  | <0.01        |              |              |              |              |          | <0.01   |         |             |
| 3/29/2018  |              |              | <0.01        | <0.01        | <0.01        |          |         |         |             |
| 3/30/2018  |              |              |              |              |              | <0.01    |         |         |             |
| 4/3/2018   | 0.006 (J)    | <0.01        |              |              |              |          | <0.01   | <0.01   |             |
| 4/4/2018   | /            |              |              |              |              |          |         |         | <0.01       |
| 6/27/2018  |              |              |              |              |              |          |         | <0.01   |             |
| 6/28/2019  | 0.005 ( !)   | <0.01        |              |              |              |          | <0.01   |         |             |
| 0/20/2018  | 0.003 (3)    | <0.01        |              |              |              |          | <0.01   | -0.01   |             |
| 8/7/2018   | 0.0045 (J)   | <0.01        |              |              |              |          | <0.01   | <0.01   | -0.01       |
| 9/20/2018  | / II         |              |              |              |              |          |         |         | <0.01       |
| 9/24/2018  | 0.0035 (J)   | <0.01        |              |              |              |          | <0.01   | <0.01   |             |
| 3/4/2019   |              |              | <0.01        | <0.01        | <0.01        |          |         |         |             |
| 3/6/2019   |              |              |              |              |              | <0.01    |         |         |             |
| 8/21/2019  | 0.0021 (J)   | <0.01        |              |              |              |          |         |         |             |
| 8/22/2019  |              |              |              |              |              |          | <0.01   | <0.01   | <0.01       |
| 10/9/2019  | 0.0018 (J)   | <0.01        |              |              |              |          | <0.01   | <0.01   | <0.01       |
| 2/12/2020  | 0.0025 (J)   | <0.01        | <0.01        | 0.0011 (J)   | <0.01        |          |         |         |             |
| 3/24/2020  |              | <0.01        |              | 0.0011 (J)   | <0.01        |          |         |         |             |
| 3/25/2020  | 0.002 (J)    |              | <0.01        |              |              |          | <0.01   | <0.01   | <0.01       |
| 3/26/2020  | . *          |              |              |              |              | <0.01    |         |         |             |
|            |              |              |              |              |              |          |         |         |             |

Constituent: Molybdenum (mg/L) Analysis Run 5/6/2021 8:36 PM

| 9/22/2020 | YGWA-39 (bg) | YGWA-40 (bg) | YGWA-4I (bg)<br><0.01 | YGWA-5D (bg)<br>0.00099 (J) | YGWA-5I (bg)<br><0.01 | YGWC-23S | YGWC-38 | YGWC-41 | YGWC-42     |
|-----------|--------------|--------------|-----------------------|-----------------------------|-----------------------|----------|---------|---------|-------------|
| 9/24/2020 | 0.0016 (J)   | <0.01        |                       |                             |                       | <0.01    |         |         | 0.00091 (J) |
| 9/25/2020 |              |              |                       |                             |                       |          | <0.01   | <0.01   |             |
| 2/8/2021  |              |              |                       | 0.0011 (J)                  | <0.01                 |          |         |         |             |
| 2/9/2021  |              |              | <0.01                 |                             |                       | <0.01    | <0.01   |         |             |
| 2/10/2021 | 0.0013 (J)   | <0.01        |                       |                             |                       |          |         | <0.01   | 0.00094 (J) |
| 3/2/2021  |              |              |                       | <0.01                       | <0.01                 |          |         |         |             |
| 3/3/2021  |              |              | <0.01                 |                             |                       |          |         |         |             |
| 3/4/2021  | 0.0014 (J)   | <0.01        |                       |                             |                       | <0.01    | <0.01   | <0.01   | 0.00085 (J) |
|           |              |              |                       |                             |                       |          |         |         |             |

Constituent: Molybdenum (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YGWC-43    | YGWC-49    | YGWA-47 (bg) | GWA-2 (bg) | YGWA-14S (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-2I (bg) | YGWA-30I (bg) |
|------------|------------|------------|--------------|------------|---------------|--------------|--------------|--------------|---------------|
| 6/1/2016   |            |            |              |            |               | 0.014 (J)    | 0.012 (J)    |              |               |
| 6/2/2016   |            |            |              |            | <0.01         |              |              |              | <0.01         |
| 7/25/2016  |            |            |              |            |               |              | 0.0098 (J)   |              | <0.01         |
| 7/26/2016  |            |            |              |            | <0.01         | 0.0132       |              |              |               |
| 8/30/2016  |            |            | <0.01        |            |               |              |              |              |               |
| 8/31/2016  | 0.0022 (J) |            |              | <0.01      |               |              |              |              |               |
| 9/1/2016   |            | <0.01      |              |            |               |              |              |              |               |
| 9/13/2016  |            |            |              |            |               | 0.0127       | 0.01 (J)     |              |               |
| 9/14/2016  |            |            |              |            |               |              |              | 0.0039 (J)   |               |
| 9/15/2016  |            |            |              |            | <0.01         |              |              |              |               |
| 9/19/2016  |            |            |              |            |               |              |              |              | <0.01         |
| 11/1/2016  |            |            |              |            |               | 0.0092 (J)   |              |              | <0.01         |
| 11/2/2016  |            |            |              |            | <0.01         |              |              |              |               |
| 11/4/2016  |            |            |              |            |               |              | 0.01         | 0.0077 (J)   |               |
| 11/14/2016 |            |            | <0.01        |            |               |              |              |              |               |
| 11/15/2016 |            | <0.01      |              |            |               |              |              |              |               |
| 11/16/2016 | <0.01      |            |              |            |               |              |              |              |               |
| 11/28/2016 |            |            |              | <0.01      |               |              |              |              |               |
| 12/15/2016 |            |            |              |            |               |              |              | 0.0066 (J)   |               |
| 1/10/2017  |            |            |              |            | <0.01         |              |              |              |               |
| 1/11/2017  |            |            |              |            |               | 0.0093 (J)   |              |              |               |
| 1/16/2017  |            |            |              |            |               |              | 0.0086 (J)   | 0.0056 (J)   | <0.01         |
| 2/21/2017  |            |            |              |            |               |              |              |              | <0.01         |
| 2/22/2017  |            |            |              | <0.01      |               |              |              |              |               |
| 2/24/2017  | <0.01      |            | <0.01        |            |               |              |              |              |               |
| 2/27/2017  |            | 0.0007 (J) |              |            |               |              |              |              |               |
| 3/2/2017   |            |            |              |            |               | 0.0099 (J)   | 0.01         |              |               |
| 3/3/2017   |            |            |              |            |               |              |              | 0.0049 (J)   |               |
| 3/8/2017   |            |            |              |            | <0.01         |              |              | ( )          |               |
| 4/26/2017  |            |            |              |            | <0.01         |              |              |              | <0.01         |
| 4/27/2017  |            |            |              |            |               | 0.0103       | 0.0101       |              |               |
| 4/28/2017  |            |            |              |            |               |              |              | 0.004 (J)    |               |
| 5/8/2017   |            |            | <0.01        | <0.01      |               |              |              |              |               |
| 5/9/2017   |            | <0.01      |              |            |               |              |              |              |               |
| 5/10/2017  | <0.01      |            |              |            |               |              |              |              |               |
| 5/26/2017  |            |            |              |            |               |              |              | 0.0029 (J)   |               |
| 6/27/2017  |            |            |              |            |               | 0.0097 (J)   | 0.0093 (J)   |              |               |
| 6/28/2017  |            |            |              |            |               |              |              | 0.0036 (J)   |               |
| 6/30/2017  |            |            |              |            | <0.01         |              |              |              | <0.01         |
| 7/11/2017  | <0.01      |            | <0.01        |            |               |              |              |              |               |
| 7/13/2017  |            | <0.01      |              |            |               |              |              |              |               |
| 7/17/2017  |            |            |              | <0.01      |               |              |              |              |               |
| 10/10/2017 |            |            | <0.01        |            |               |              |              |              |               |
| 10/11/2017 |            | <0.01      |              |            |               |              |              |              |               |
| 10/12/2017 | <0.01      |            |              |            |               |              |              |              |               |
| 10/16/2017 |            |            |              | <0.01      |               |              |              |              |               |
| 2/19/2018  |            |            |              | <0.01      |               |              |              |              |               |
| 3/27/2018  |            |            |              |            | <0.01         |              | 0.0074 (J)   |              | <0.01         |
| 3/28/2018  |            |            |              |            |               |              |              | 0.0038 (J)   |               |
| 3/29/2018  |            |            |              |            |               | 0.0076 (J)   |              |              |               |
| 4/2/2018   |            |            | <0.01        |            |               |              |              |              |               |
| 4/4/2018   | <0.01      | <0.01      |              |            |               |              |              |              |               |

#### Constituent: Molybdenum (mg/L) Analysis Run 5/6/2021 8:36 PM

| 6/5/2018  | YGWC-43    | YGWC-49 | YGWA-47 (bg) | GWA-2 (bg)   | YGWA-14S (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-2I (bg) | YGWA-30I (bg) |
|-----------|------------|---------|--------------|--------------|---------------|--------------|--------------|--------------|---------------|
| 6/6/2018  |            |         |              |              |               | 0.0002 (0)   | 0.0073 (J)   |              |               |
| 6/7/2018  |            |         |              |              |               |              | 0.0070(0)    | 0.004 (1)    |               |
| 6/8/2018  |            |         |              |              | <0.01         |              |              | 0.004 (3)    |               |
| 6/11/2018 |            |         |              |              | <b>\0.01</b>  |              |              |              | <0.01         |
| 8/6/2018  |            |         |              | <0.01        |               |              |              |              | -0.01         |
| 0/10/2018 |            |         | <0.01        | <b>~0.01</b> |               |              |              |              |               |
| 9/19/2018 | ~0.01      | ~0.01   | -0.01        |              |               |              |              |              |               |
| 9/20/2018 | <0.01      | <0.01   |              |              | -0.01         | 0.0085 (1)   | 0.0076 (1)   | 0.0042 (1)   |               |
| 10/1/2018 |            |         |              |              | <0.01         | 0.0085 (J)   | 0.0076 (3)   | 0.0042 (J)   | -0.01         |
| 10/2/2018 |            |         |              |              | -0.01         |              |              |              | <0.01         |
| 2/20/2019 |            |         |              |              | <0.01         | 0.0007 (1)   | 0.0070 (1)   | 0.0041 (1)   | <0.01         |
| 2/27/2019 |            |         |              |              |               | 0.0087 (J)   | 0.0078 (J)   | 0.0041 (J)   |               |
| 3/28/2019 |            |         |              |              | -0.01         | 0.0092 (J)   | 0.0082 (J)   | 0.0041 (1)   |               |
| 3/29/2019 |            |         |              |              | <0.01         |              |              | 0.0041 (J)   |               |
| 4/1/2019  |            |         |              |              |               |              |              |              | <0.01         |
| 8/19/2019 |            |         |              | <0.01        |               |              |              |              |               |
| 8/20/2019 |            |         | <0.01        |              |               |              |              |              |               |
| 8/21/2019 | 0.0012 (J) |         |              |              |               |              |              |              |               |
| 9/24/2019 |            |         |              |              |               | 0.0072 (J)   | 0.0074 (J)   | 0.0054 (J)   |               |
| 9/25/2019 |            |         |              |              | <0.01         |              |              |              | <0.01         |
| 10/8/2019 |            |         | <0.01        |              |               |              |              |              |               |
| 10/9/2019 | 0.0012 (J) |         |              |              |               |              |              |              |               |
| 2/10/2020 |            |         |              |              |               | 0.0087 (J)   | 0.0062 (J)   |              |               |
| 2/11/2020 |            |         |              |              |               |              |              | 0.0057 (J)   |               |
| 2/12/2020 |            |         |              |              | <0.01         |              |              |              | <0.01         |
| 3/17/2020 |            |         | <0.01        |              |               |              |              |              |               |
| 3/18/2020 |            |         |              |              | <0.01         |              | 0.0056 (J)   |              |               |
| 3/19/2020 |            |         |              |              |               | 0.0088 (J)   |              | 0.0046 (J)   | <0.01         |
| 3/25/2020 | 0.0015 (J) | <0.01   |              |              |               |              |              |              |               |
| 8/26/2020 |            |         |              | <0.01        |               |              |              |              |               |
| 8/27/2020 |            |         | <0.01        |              |               |              |              |              |               |
| 9/22/2020 |            |         | <0.01        |              |               |              |              |              |               |
| 9/23/2020 |            |         |              |              |               | 0.008 (J)    | 0.0059 (J)   | 0.0071 (J)   |               |
| 9/24/2020 |            | <0.01   |              |              |               |              |              |              | <0.01         |
| 9/25/2020 | 0.0011 (J) |         |              |              | <0.01         |              |              |              |               |
| 2/9/2021  | 0.0012 (J) | <0.01   |              |              |               |              |              |              |               |
| 2/10/2021 |            |         |              |              | <0.01         |              |              | 0.0041 (J)   |               |
| 2/11/2021 |            |         |              |              |               |              |              |              | <0.01         |
| 2/12/2021 |            |         |              |              |               | 0.008 (J)    | 0.0056 (J)   |              |               |
| 3/1/2021  |            |         | <0.01        |              |               |              |              |              | <0.01         |
| 3/2/2021  |            |         |              |              | <0.01         |              |              |              |               |
| 3/3/2021  |            |         |              |              |               | 0.0088 (J)   | 0.0049 (J)   | 0.0074 (J)   |               |
| 3/4/2021  | 0.0011 (J) | <0.01   |              |              |               |              |              |              |               |

Constituent: Molybdenum (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YGWA-3D (bg) | YGWA-3I (bg) | PZ-35      | PZ-37      | YGWC-24SA | YGWC-36A    |
|------------|--------------|--------------|------------|------------|-----------|-------------|
| 6/1/2016   |              | 0.0055 (J)   |            |            |           |             |
| 6/2/2016   | 0.0093 (J)   |              |            |            |           |             |
| 6/8/2016   |              |              |            |            | <0.01     |             |
| 7/25/2016  |              | 0.0037 (J)   |            |            |           |             |
| 7/26/2016  | 0.0113       |              |            |            |           |             |
| 8/1/2016   |              |              |            |            | <0.01     |             |
| 9/2/2016   |              |              |            |            |           | 0.0027 (J)  |
| 9/14/2016  |              | 0.0034 (J)   |            |            |           |             |
| 9/15/2016  | 0.0112       |              |            |            |           |             |
| 9/20/2016  |              |              |            |            | <0.01     |             |
| 11/1/2016  | 0.0099 (J)   | 0.0025 (J)   |            |            |           |             |
| 11/8/2016  |              |              |            |            | <0.01     |             |
| 11/14/2016 |              |              |            |            |           | 0.0071 (J)  |
| 1/11/2017  | 0.0093 (J)   | 0.0033 (J)   |            |            |           |             |
| 1/17/2017  |              |              |            |            | <0.01     |             |
| 2/28/2017  |              |              |            |            |           | 0.0038 (J)  |
| 3/1/2017   |              | 0.0044 (J)   |            |            |           |             |
| 3/2/2017   | 0.0103       |              |            |            |           |             |
| 3/8/2017   |              |              |            |            | <0.01     |             |
| 4/26/2017  | 0.01         | 0 0075 (J)   |            |            |           |             |
| 5/2/2017   | 0.01         | 0.0070 (0)   |            |            | <0.01     |             |
| 5/2/2017   |              |              |            |            | -0.01     | 0.0025 ( )) |
| 6/20/2017  | 0.0102       | 0.008 ( 1)   |            |            |           | 0.0023 (3)  |
| 0/20/2017  | 0.0102       | 0.008 (J)    |            |            | -0.01     |             |
| 7/7/2017   |              |              |            |            | <0.01     | 0.0014 (1)  |
| 7/13/2017  |              |              |            |            |           | 0.0014 (3)  |
| 9/22/2017  |              |              |            |            |           | <0.01       |
| 9/29/2017  |              |              |            |            |           | <0.01       |
| 10/6/2017  |              |              |            |            |           | <0.01       |
| 10/12/2017 |              |              |            | 0.0022 (J) |           |             |
| 11/21/2017 |              |              |            | 0.0016 (J) |           |             |
| 1/11/2018  |              |              |            | 0.0015 (J) |           |             |
| 2/20/2018  |              |              |            | <0.01      |           |             |
| 3/28/2018  | 0.011        | 0.0025 (J)   |            |            |           |             |
| 3/30/2018  |              |              |            |            | <0.01     | <0.01       |
| 4/3/2018   |              |              |            | <0.01      |           |             |
| 6/7/2018   | 0.011        |              |            |            |           |             |
| 6/8/2018   |              | 0.0041 (J)   |            |            |           |             |
| 6/29/2018  |              |              |            | 0.0021 (J) |           |             |
| 8/6/2018   |              |              |            | <0.01      |           |             |
| 9/24/2018  |              |              |            | <0.01      |           |             |
| 10/1/2018  | 0.012        | 0.0037 (J)   |            |            |           |             |
| 2/27/2019  | 0.011        | 0.0027 (J)   |            |            |           |             |
| 3/5/2019   |              |              |            |            | <0.01     |             |
| 3/6/2019   |              |              |            |            |           | <0.01       |
| 4/1/2019   | 0.012        | 0.0021 (J)   |            |            |           |             |
| 9/25/2019  | 0.012        | 0.0087 (J)   |            |            |           |             |
| 2/11/2020  |              | 0.003 (J)    |            |            |           |             |
| 2/12/2020  | 0.013        | . /          |            |            |           |             |
| 3/19/2020  | 0.013        | 0.0043 (J)   |            |            |           |             |
| 3/25/2020  |              | /            | 0.0019 (J) |            |           | <0.01       |
| 3/26/2020  |              |              | - \-/      |            | <0.01     |             |
| 9/23/2020  | 0.012        | 0.01         |            |            | <0.01     |             |
| -          |              |              |            |            |           |             |

Constituent: Molybdenum (mg/L) Analysis Run 5/6/2021 8:36 PM

| YGWA-3D (bg) | YGWA-3I (bg)                   | PZ-35                                                             | PZ-37                                                                                           | YGWC-24SA                                                                                                                | YGWC-36A                                                                                                                                                                          |
|--------------|--------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |                                | <0.01                                                             |                                                                                                 |                                                                                                                          |                                                                                                                                                                                   |
|              |                                |                                                                   | 0.0016 (J)                                                                                      |                                                                                                                          |                                                                                                                                                                                   |
|              |                                |                                                                   |                                                                                                 |                                                                                                                          | 0.0015 (J)                                                                                                                                                                        |
|              |                                |                                                                   | 0.0016 (J)                                                                                      | <0.01                                                                                                                    |                                                                                                                                                                                   |
| 0.014        | 0.0038 (J)                     | <0.01                                                             |                                                                                                 |                                                                                                                          | <0.01                                                                                                                                                                             |
| 0.013        | 0.0036 (J)                     |                                                                   |                                                                                                 | <0.01                                                                                                                    |                                                                                                                                                                                   |
|              |                                | <0.01                                                             | 0.0024 (J)                                                                                      |                                                                                                                          | <0.01                                                                                                                                                                             |
|              | YGWA-3D (bg)<br>0.014<br>0.013 | YGWA-3D (bg) YGWA-3I (bg)<br>0.014 0.0038 (J)<br>0.013 0.0036 (J) | YGWA-3D (bg) YGWA-3I (bg) PZ-35<br><0.01<br>0.014 0.0038 (J) <0.01<br>0.013 0.0036 (J)<br><0.01 | YGWA-3D (bg) YGWA-3I (bg) PZ-35 PZ-37<br><0.01 0.0016 (J)<br>0.014 0.0038 (J) <0.01<br>0.013 0.0036 (J) <0.01 0.0024 (J) | YGWA-3D (bg) YGWA-3I (bg) PZ-35 PZ-37 YGWC-24SA<br><0.01 0.0016 (J) - 0.0016 (J) - 0.011<br>0.014 0.0038 (J) - 0.01 - 0.01<br>0.013 0.0036 (J) - 0.01<br>- 0.01 0.0024 (J) - 0.01 |

Constituent: pH (S.U.) Analysis Run 5/6/2021 8:36 PM

|           | YAMW-1 | YAMW-2 | YAMW-4 | YAMW-5 | YGWA-17S (bg) | YGWA-18I (bg) | YGWA-18S (bg) | YGWA-20S (bg) | YGWA-21I (bg) |
|-----------|--------|--------|--------|--------|---------------|---------------|---------------|---------------|---------------|
| 6/6/2016  |        |        |        |        |               | 6.17          | 5.71          |               |               |
| 6/7/2016  |        |        |        |        | 5.62          |               |               | 5.77          | 6.1           |
| 7/27/2016 |        |        |        |        | 5.59          | 6.14          | 5.46          | 5.79          |               |
| 7/28/2016 |        |        |        |        |               |               |               |               | 6.12          |
| 9/16/2016 |        |        |        |        | 5.58          |               |               |               |               |
| 9/19/2016 |        |        |        |        |               | 6.04          | 5.59          | 5.73          | 6.12          |
| 11/2/2016 |        |        |        |        |               |               |               | 5.67          |               |
| 11/3/2016 |        |        |        |        | 5.59          | 5.97          | 5.39          |               | 6.07          |
| 1/11/2017 |        |        |        |        | 5.59          | 6.05          | 5.48          |               |               |
| 1/13/2017 |        |        |        |        |               |               |               | 5.79          | 6.41          |
| 3/1/2017  |        |        |        |        |               | 5.94          | 5.41          |               |               |
| 3/2/2017  |        |        |        |        | 5.54          |               |               |               |               |
| 3/6/2017  |        |        |        |        |               |               |               | 5.63          | 6.34          |
| 4/26/2017 |        |        |        |        |               | 5.99          | 5.4           | 5.66          | 6.32          |
| 5/2/2017  |        |        |        |        | 5.47          |               |               |               |               |
| 6/28/2017 |        |        |        |        |               | 6             | 5.36          |               |               |
| 6/29/2017 |        |        |        |        | 5.56          |               |               | 5.85          | 6.47          |
| 10/3/2017 |        |        |        |        |               |               |               |               | 6.56          |
| 10/4/2017 |        |        |        |        | 5.57          |               | 5.32          | 5.83          |               |
| 10/5/2017 |        |        |        |        |               | 6.11          |               |               |               |
| 3/28/2018 |        |        |        |        | 5.59          | 6.1           | 5.34          |               |               |
| 3/29/2018 |        |        |        |        |               |               |               | 5.93          | 6.75          |
| 6/5/2018  |        |        |        |        |               |               |               |               | 6.09          |
| 6/6/2018  |        |        |        |        |               |               |               | 5.86          |               |
| 6/7/2018  |        |        |        |        |               | 5.98          |               |               |               |
| 6/11/2018 |        |        |        |        | 5.58          |               | 5.28          |               |               |
| 9/25/2018 |        |        |        |        | 5.59          | 5.81          | 4.86          | 5.84          | 6.67          |
| 3/5/2019  |        |        |        |        | 5.48          |               | 5.26          | 6.07          | 7.22          |
| 3/6/2019  |        |        |        |        |               | 5.99          |               |               |               |
| 4/2/2019  |        |        |        |        | 5.74          |               |               |               | 6.94          |
| 4/3/2019  |        |        |        |        |               | 6.29          | 5.47          | 5.71          |               |
| 9/24/2019 |        |        |        |        |               |               |               |               | 6.87          |
| 9/25/2019 |        |        |        |        | 5.49          |               |               | 5.86          |               |
| 9/26/2019 |        |        |        |        |               | 6.04          | 5.2           |               |               |
| 1/3/2020  | 5.78   |        |        |        |               |               |               |               |               |
| 1/15/2020 |        | 6.25   |        | 5.64   |               |               |               |               |               |
| 1/16/2020 |        |        | 6.47   |        |               |               |               |               |               |
| 2/11/2020 |        |        |        | 5.37   | 5.58          | 6.07          | 5.3           |               |               |
| 2/12/2020 |        |        |        |        |               |               |               | 6             | 7.13          |
| 3/24/2020 |        |        |        |        | 5.57          | 5.98          | 5.33          | 5.86          | 6.35          |
| 3/25/2020 | 6.13   |        |        |        |               |               |               |               |               |
| 9/23/2020 |        | 5.66   | 5.89   |        | 5.58 (D)      | 6.01 (D)      | 5.29 (D)      |               |               |
| 9/24/2020 | 6      |        |        | 5.38   |               |               |               | 5.8 (D)       | 6.7 (D)       |
| 2/9/2021  | 6.42   | 5.81   | 6.96   | 5.34   |               | 6.12          | 5.43          | 5.86          | 6.95          |
| 3/3/2021  | 6.54   | 5.67   | 6.8    |        | 5.52          | 5.89          | 5.31          | 5.89          |               |
| 3/4/2021  |        |        |        | 5.32   |               |               |               |               | 6.8           |

Constituent: pH (S.U.) Analysis Run 5/6/2021 8:36 PM

|            | YGWA-39 (bg) | YGWA-40 (bg) | YGWA-4I (bg) | YGWA-5D (bg) | YGWA-5I (bg) | YGWC-23S | YGWC-38 | YGWC-41 | YGWC-42 |
|------------|--------------|--------------|--------------|--------------|--------------|----------|---------|---------|---------|
| 6/2/2016   |              |              | 6.36         | 7.67         | 5.75         |          |         |         |         |
| 6/7/2016   |              |              |              |              |              | 5.57     |         |         |         |
| 7/26/2016  |              |              | 6.22         | 7.66         | 5.72         |          |         |         |         |
| 7/28/2016  |              |              |              |              |              | 5.6      |         |         |         |
| 8/30/2016  |              |              |              |              |              |          |         |         | 5.64    |
| 9/14/2016  |              |              | 6.23         | 7.6          | 5.74         |          |         |         |         |
| 9/20/2016  |              |              |              |              |              | 5.53     |         |         |         |
| 11/2/2016  |              |              | 6.08         | 7.35         |              |          |         |         |         |
| 11/4/2016  |              |              |              |              | 5.61         |          |         |         |         |
| 11/8/2016  |              |              |              |              |              | 5.53     |         |         |         |
| 11/16/2016 |              |              |              |              |              |          |         |         | 6.21    |
| 1/12/2017  |              |              |              | 7 49         | 5 71         |          |         |         |         |
| 1/13/2017  |              |              | 6 19         |              | 0.71         |          |         |         |         |
| 1/16/2017  |              |              | 0.10         |              |              | 5 59     |         |         |         |
| 2/27/2017  |              |              |              |              |              | 5.55     |         |         | 6.00    |
| 2/2//2017  |              |              | 6.2          |              |              |          |         |         | 0.09    |
| 3/0/2017   |              |              | 0.2          | 7 42         | E 66         |          |         |         |         |
| 3/7/2017   |              |              |              | 7.43         | 5.00         | 5 50     |         |         |         |
| 3/9/2017   |              |              |              |              |              | 5.56     |         |         |         |
| 5/1/2017   |              |              | 6.21         | 7.22         |              |          |         |         |         |
| 5/2/2017   |              |              |              |              | 5.65         | 5.61     |         |         |         |
| 5/10/2017  |              |              |              |              |              |          |         |         | 5.79    |
| 6/27/2017  |              |              |              | 7.32         | 5.7          |          |         |         |         |
| 6/29/2017  |              |              | 6.21         |              |              |          |         |         |         |
| 7/10/2017  |              |              |              |              |              | 5.68     |         |         |         |
| 7/11/2017  |              |              |              |              |              |          |         |         | 5.45    |
| 10/3/2017  |              |              |              | 7.48         | 5.79         |          |         |         |         |
| 10/5/2017  |              |              | 6.16         |              |              |          |         |         |         |
| 10/11/2017 | 6.4          |              |              |              |              | 5.46     |         |         |         |
| 10/12/2017 |              | 5.43         |              |              |              |          | 4.85    | 4.94    | 5.48    |
| 11/20/2017 | 6.33         | 5.1          |              |              |              |          | 4.87    |         |         |
| 11/21/2017 |              |              |              |              |              |          |         | 4.69    |         |
| 1/10/2018  |              | 4.97         |              |              |              |          |         |         |         |
| 1/11/2018  | 6.29         |              |              |              |              |          |         | 4.73    |         |
| 1/12/2018  |              |              |              |              |              |          | 4.78    |         |         |
| 2/19/2018  |              | 5.6          |              |              |              |          |         | 4.96    |         |
| 2/20/2018  | 7.22         |              |              |              |              |          | 5.1     |         |         |
| 3/29/2018  |              |              | 6.09         | 7 02         | 5 63         |          |         |         |         |
| 3/30/2018  |              |              | 0.00         | 7.02         | 0.00         | 5 73     |         |         |         |
| 4/3/2018   | 6 87         | 5.84         |              |              |              | 5.75     | 4 76    | 5 31    |         |
| 4/3/2018   | 0.07         | 5.64         |              |              |              |          | 4.70    | 5.51    | E 02    |
| 4/4/2018   |              |              |              | 7.40         |              |          |         |         | 5.95    |
| 6/6/2018   |              |              |              | 7.43         |              |          |         |         |         |
| 6/7/2018   |              |              | 6.12         |              | 5.63         |          |         |         |         |
| 6/12/2018  |              |              |              |              |              | 5.63     |         |         |         |
| 6/27/2018  |              |              |              |              |              |          |         | 4.78    |         |
| 6/28/2018  | 6.18         | 5.24         |              |              |              |          | 4.75    |         |         |
| 8/7/2018   | 6.08         | 5.18         |              |              |              |          | 4.72    | 4.77    |         |
| 9/20/2018  |              |              |              |              |              |          |         |         | 5.63    |
| 9/24/2018  | 5.81         | 5.14         |              |              |              |          | 4.67    | 4.78    |         |
| 9/26/2018  |              |              | 5.84         | 7.13         | 5.63         |          |         |         |         |
| 9/27/2018  |              |              |              |              |              | 5.47     |         |         |         |
| 3/4/2019   |              |              | 6.18         | 7.46         | 5.75         |          |         |         |         |
| 3/6/2019   |              |              |              |              |              | 5.84     |         |         |         |
|            |              |              |              |              |              |          |         |         |         |

#### Constituent: pH (S.U.) Analysis Run 5/6/2021 8:36 PM

|           | YGWA-39 (bg) | YGWA-40 (bg) | YGWA-4I (bg) | YGWA-5D (bg) | YGWA-5I (bg) | YGWC-23S | YGWC-38 | YGWC-41 | YGWC-42 |
|-----------|--------------|--------------|--------------|--------------|--------------|----------|---------|---------|---------|
| 3/26/2019 |              | 5.3          |              |              |              |          |         |         |         |
| 3/27/2019 | 5.84         |              |              |              |              |          | 4.79    |         | 5.57    |
| 3/28/2019 |              |              |              |              |              |          |         | 5       |         |
| 4/3/2019  |              |              | 6.43         | 7.11         | 5.63         |          |         |         |         |
| 4/4/2019  |              |              |              |              |              | 5.64     |         |         |         |
| 8/21/2019 | 5.96         | 5.26         |              |              |              |          |         |         |         |
| 8/22/2019 |              |              |              |              |              |          | 4.81    | 4.89    | 5.61    |
| 9/24/2019 |              |              |              | 6.93         | 5.6          |          |         |         |         |
| 9/25/2019 |              |              | 6.2          |              |              |          |         |         |         |
| 9/27/2019 |              |              |              |              |              | 5.77     |         |         |         |
| 10/9/2019 | 5.81         | 5.22         |              |              |              |          | 4.8     | 4.86    | 5.5     |
| 2/12/2020 | 5.97         | 5.3          | 6.15         | 7.52         | 5.83         |          |         |         |         |
| 3/24/2020 |              | 5.29         |              | 7.34         | 5.81         |          |         |         |         |
| 3/25/2020 | 5.78         |              | 6.26         |              |              |          | 4.89    | 4.87    | 5.53    |
| 3/26/2020 |              |              |              |              |              | 5.69     |         |         |         |
| 9/22/2020 |              |              | 5.8 (D)      | 7.19 (D)     | 5.99 (D)     |          |         |         |         |
| 9/24/2020 | 5.7 (D)      | 5.43 (D)     |              |              |              | 5.51     |         |         | 5.55    |
| 9/25/2020 |              |              |              |              |              |          | 4.9     | 4.95    |         |
| 2/8/2021  |              |              |              |              | 5.67         |          |         |         |         |
| 2/9/2021  |              |              | 6.06         |              |              | 5.61     | 5.04    |         |         |
| 2/10/2021 | 5.8          | 5.19         |              |              |              |          |         | 4.98    | 5.65    |
| 3/2/2021  |              |              |              | 7.15         | 5.63         |          |         |         |         |
| 3/3/2021  |              |              | 6.21         |              |              |          |         |         |         |
| 3/4/2021  | 5.54         | 5.23         |              |              |              | 5.44     | 5.01    | 4.69    | 5.59    |

Constituent: pH (S.U.) Analysis Run 5/6/2021 8:36 PM

|            | YGWC-43 | YGWC-49 | YGWA-47 (bg) | GWA-2 (bg) | YGWA-14S (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-2I (bg) | YGWA-30I (bg) |
|------------|---------|---------|--------------|------------|---------------|--------------|--------------|--------------|---------------|
| 8/27/2008  |         |         |              | 6.53       |               |              |              |              |               |
| 3/3/2009   |         |         |              | 6.35       |               |              |              |              |               |
| 11/18/2009 |         |         |              | 6.47       |               |              |              |              |               |
| 3/3/2010   |         |         |              | 6.53       |               |              |              |              |               |
| 3/10/2011  |         |         |              | 5.83       |               |              |              |              |               |
| 9/8/2011   |         |         |              | 5.69       |               |              |              |              |               |
| 3/5/2012   |         |         |              | 6.27       |               |              |              |              |               |
| 9/10/2012  |         |         |              | 6.23       |               |              |              |              |               |
| 2/6/2013   |         |         |              | 7.56       |               |              |              |              |               |
| 8/12/2013  |         |         |              | 6.68       |               |              |              |              |               |
| 0/12/2013  |         |         |              | 6.00       |               |              |              |              |               |
| 2/3/2014   |         |         |              | 0.32       |               |              |              |              |               |
| 8/3/2015   |         |         |              | 6.13 (D)   |               |              |              |              |               |
| 2/16/2016  |         |         |              | 5.64       |               |              |              |              |               |
| 6/1/2016   |         |         |              |            |               | 7.46         | 6.33         |              |               |
| 6/2/2016   |         |         |              |            | 5.46          |              |              |              | 5.75          |
| 7/25/2016  |         |         |              |            |               |              | 6.21         |              | 5.82          |
| 7/26/2016  |         |         |              |            | 5.45          | 7.43         |              |              |               |
| 8/30/2016  |         |         | 5.75         |            |               |              |              |              |               |
| 8/31/2016  | 7.27    |         |              |            |               |              |              |              |               |
| 9/1/2016   |         | 5.78    |              |            |               |              |              |              |               |
| 9/13/2016  |         |         |              |            |               | 7.44         | 6.16         | 7.41         |               |
| 9/15/2016  |         |         |              |            | 5.45          |              |              |              |               |
| 9/19/2016  |         |         |              |            |               |              |              |              | 5.78 (D)      |
| 11/1/2016  |         |         |              |            |               | 7.24         |              |              | 5.62          |
| 11/2/2016  |         |         |              |            | 5.41          |              |              |              |               |
| 11/4/2016  |         |         |              |            |               |              | 6.29         | 7.12         |               |
| 11/14/2016 |         |         | 5.59         |            |               |              |              |              |               |
| 11/15/2016 |         | 5.81    |              |            |               |              |              |              |               |
| 11/16/2016 | 6.79    |         |              |            |               |              |              |              |               |
| 11/28/2016 |         |         |              | 6.23       |               |              |              |              |               |
| 12/15/2016 |         |         |              |            |               |              |              | 7.24         |               |
| 1/10/2017  |         |         |              |            | 5 37          |              |              |              |               |
| 1/11/2017  |         |         |              |            | 0.07          | 73           |              |              |               |
| 1/16/2017  |         |         |              |            |               | 7.0          | 6 20         | 7.24         | 5 72          |
| 2/21/2017  |         |         |              |            |               |              | 0.29         | 7.24         | 5.72          |
| 2/21/2017  |         |         |              | 6.01       |               |              |              |              | 5.07          |
| 2/22/2017  | 6.00    |         | 5.40         | 0.21       |               |              |              |              |               |
| 2/24/2017  | 6.39    | 5.00    | 5.49         |            |               |              |              |              |               |
| 2/2//2017  |         | 80.6    |              |            |               | 7.00         | C 00         |              |               |
| 3/2/2017   |         |         |              |            |               | 1.23         | 0.28         |              |               |
| 3/3/2017   |         |         |              |            |               |              |              | 1.22         |               |
| 3/8/2017   |         |         |              |            | 5.41          |              |              |              |               |
| 4/26/2017  |         |         |              |            | 5.02          |              |              |              | 5.56          |
| 4/27/2017  |         |         |              |            |               | 6.99         | 6.09         |              |               |
| 4/28/2017  |         |         |              |            |               |              |              | 7.21         |               |
| 5/8/2017   |         |         | 5.58         | 6.12       |               |              |              |              |               |
| 5/9/2017   |         | 6.18    |              |            |               |              |              |              |               |
| 5/10/2017  | 6.5     |         |              |            |               |              |              |              |               |
| 5/26/2017  |         |         |              |            |               |              |              | 7.13         |               |
| 6/27/2017  |         |         |              |            |               | 6.87         | 6.21         |              |               |
| 6/28/2017  |         |         |              |            |               |              |              | 7.06         |               |
| 6/30/2017  |         |         |              |            | 5.39          |              |              |              | 5.72          |
| 7/11/2017  | 6.32    |         | 5.58         |            |               |              |              |              |               |

|            | YGWC-43 | YGWC-49 | YGWA-47 (bg) | GWA-2 (bg) | YGWA-14S (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-2I (bg) | YGWA-30I (bg) |
|------------|---------|---------|--------------|------------|---------------|--------------|--------------|--------------|---------------|
| 7/13/2017  |         | 5.6     |              |            |               |              |              |              |               |
| 7/17/2017  |         |         |              | 6.03       |               |              |              |              |               |
| 10/3/2017  |         |         |              |            |               | 6.81         | 5.98         | 6.99         |               |
| 10/4/2017  |         |         |              |            |               |              |              |              | 5.87          |
| 10/5/2017  |         |         |              |            | 5.49          |              |              |              |               |
| 10/10/2017 |         |         | 5.49         |            |               |              |              |              |               |
| 10/11/2017 |         | 5.61    |              |            |               |              |              |              |               |
| 10/12/2017 | 5.97    |         |              |            |               |              |              |              |               |
| 10/16/2017 |         |         |              | 6.12       |               |              |              |              |               |
| 2/19/2018  |         |         |              | 6.13       |               |              |              |              |               |
| 3/27/2018  |         |         |              |            | 5.47          |              | 6.25         |              | 5.83          |
| 3/28/2018  |         |         |              |            |               |              |              | 7.3          |               |
| 3/29/2018  |         |         |              |            |               | 7.38         |              |              |               |
| 4/2/2018   |         |         | 6.3 (O)      |            |               |              |              |              |               |
| 4/4/2018   | 6.41    | 5.98    | (-)          |            |               |              |              |              |               |
| 6/5/2018   |         |         |              |            |               | 7 16         |              |              |               |
| 6/6/2018   |         |         |              |            |               |              | 6 17         |              |               |
| 6/7/2018   |         |         |              |            |               |              | 0.17         | 7 29         |               |
| 6/8/2018   |         |         |              |            | 5.45          |              |              | 7.25         |               |
| 6/11/2018  |         |         |              |            | 5.45          |              |              |              | 5 60          |
| 9/6/2019   |         |         |              | 6.01       |               |              |              |              | 5.05          |
| 8/0/2018   |         |         | E 40         | 0.01       |               |              |              |              |               |
| 9/19/2018  | 5.00    | F 67    | 5.46         |            |               |              |              |              |               |
| 9/20/2018  | 5.69    | 5.67    |              |            | 5.00          | <u> </u>     | 5.0          | 7.07         |               |
| 10/1/2018  |         |         |              |            | 5.39          | 0.8          | 5.9          | 7.07         | 5.00          |
| 10/2/2018  |         |         |              |            |               |              |              |              | 5.39          |
| 2/25/2019  |         |         |              | 6.51       |               |              |              |              |               |
| 2/26/2019  |         |         |              |            | 5.46          |              |              |              | 5.//          |
| 2/27/2019  |         |         |              |            |               | 6.84         | 5.8          | 7.27         |               |
| 3/27/2019  |         |         | 5.83         |            |               |              |              |              |               |
| 3/28/2019  | 5.96    | 5.86    |              |            |               | 6.99         | 6.15         |              |               |
| 3/29/2019  |         |         |              |            | 5.34          |              |              | 7.06         |               |
| 4/1/2019   |         |         |              |            |               |              |              |              | 5.62          |
| 6/12/2019  |         |         |              | 6.3        |               |              |              |              |               |
| 8/19/2019  |         |         |              | 6.23       |               |              |              |              |               |
| 8/20/2019  |         |         | 5.58         |            |               |              |              |              |               |
| 8/21/2019  | 5.84    |         |              |            |               |              |              |              |               |
| 9/24/2019  |         |         |              |            |               | 7.07         | 6.23         | 7.01         |               |
| 9/25/2019  |         |         |              |            | 5.19          |              |              |              | 5.69          |
| 9/26/2019  |         | 5.6     |              |            |               |              |              |              |               |
| 10/8/2019  |         |         | 5.59         | 6.28       |               |              |              |              |               |
| 10/9/2019  | 5.78    |         |              |            |               |              |              |              |               |
| 2/10/2020  |         |         |              |            |               | 7.2          | 6.1          |              |               |
| 2/11/2020  |         |         |              |            |               |              |              | 7.38         |               |
| 2/12/2020  |         |         |              |            | 5.48          |              |              |              | 5.8           |
| 3/17/2020  |         |         | 5.57         | 6.14       |               |              |              |              |               |
| 3/18/2020  |         |         |              |            | 5.38          |              | 6.19         |              |               |
| 3/19/2020  |         |         |              |            |               | 7.03         |              | 7.22         | 6             |
| 3/25/2020  | 5.79    | 5.69    |              |            |               |              |              |              |               |
| 5/6/2020   |         |         |              | 6.24       |               |              |              |              |               |
| 8/26/2020  |         |         |              | 5.67       |               |              |              |              |               |
| 8/27/2020  |         |         | 4.88         |            |               |              |              |              |               |
| 9/22/2020  |         |         | 5.46         | 5.78       |               |              |              |              |               |

Page 3

Constituent: pH (S.U.) Analysis Run 5/6/2021 8:36 PM

|           | YGWC-43 | YGWC-49 | YGWA-47 (bg) | GWA-2 (bg) | YGWA-14S (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-2I (bg) | YGWA-30I (bg) |
|-----------|---------|---------|--------------|------------|---------------|--------------|--------------|--------------|---------------|
| 9/23/2020 |         |         |              |            |               | 7.15         | 6.01         | 7.22         |               |
| 9/24/2020 |         | 5.62    |              |            |               |              |              |              | 5.67          |
| 9/25/2020 | 5.75    |         |              |            | 5.44          |              |              |              |               |
| 2/9/2021  | 5.86    | 5.79    |              |            |               |              |              |              |               |
| 2/10/2021 |         |         |              |            | 5.35          |              |              | 7.29         |               |
| 2/11/2021 |         |         |              |            |               |              |              |              | 5.73          |
| 2/12/2021 |         |         |              |            |               | 7.14         | 6.21         |              |               |
| 3/1/2021  |         |         | 5.48         |            |               |              |              |              | 5.78          |
| 3/2/2021  |         |         |              | 5.42       | 5.49          |              |              |              |               |
| 3/3/2021  |         |         |              |            |               | 7.2          | 5.38         | 7.92         |               |
| 3/4/2021  | 5.88    | 5.88    |              |            |               |              |              |              |               |

Constituent: pH (S.U.) Analysis Run 5/6/2021 8:36 PM

|                       | YGWA-3D (bg) | YGWA-3I (bg) | PZ-35 | PZ-37 | YGWC-24SA | YGWC-36A |
|-----------------------|--------------|--------------|-------|-------|-----------|----------|
| 6/1/2016              |              | 7.72         |       |       |           |          |
| 6/2/2016              | 7.84         |              |       |       |           |          |
| 6/8/2016              |              |              |       |       | 5.65      |          |
| 7/25/2016             |              | 7.74         |       |       |           |          |
| 7/26/2016             | 7.88         |              |       |       |           |          |
| 8/1/2016              |              |              |       |       | 5.47      |          |
| 9/2/2016              |              |              |       |       |           | 5.84     |
| 9/14/2016             |              | 7.65         |       |       |           |          |
| 9/15/2016             | 7.74         |              |       |       |           |          |
| 9/20/2016             |              |              |       |       | 5.61      |          |
| 11/1/2016             | 7.75         | 7.7          |       |       |           |          |
| 11/8/2016             |              |              |       |       | 5.55      |          |
| 11/14/2016            |              |              |       |       |           | 6.28     |
| 1/11/2017             | 7.66         | 7.53         |       |       |           |          |
| 1/17/2017             |              |              |       |       | 5.53      |          |
| 2/28/2017             |              |              |       |       |           | 5.99     |
| 3/1/2017              |              | 7 42         |       |       |           |          |
| 3/2/2017              | 7 68         |              |       |       |           |          |
| 3/8/2017              | 7.00         |              |       |       | 5.62      |          |
| 4/26/2017             | 7.45         | 74           |       |       | 5.02      |          |
| 4/20/2017<br>E/2/2017 | 7.45         | 7.4          |       |       | E 46      |          |
| 5/2/2017              |              |              |       |       | 5.40      |          |
| 5/9/2017              | 7.05         | 7.5          |       |       |           | 0.3      |
| 6/28/2017             | 7.65         | 7.5          |       |       | 5.04      |          |
| ////2017              |              |              |       |       | 5.81      |          |
| 7/13/2017             |              |              |       |       |           | 5.57     |
| 9/22/2017             |              |              |       |       |           | 5.5      |
| 9/29/2017             |              |              |       |       |           | 5.58     |
| 10/4/2017             | 7.49         | 7.45         |       |       |           |          |
| 10/5/2017             |              |              |       |       | 5.45      |          |
| 10/6/2017             |              |              |       |       |           | 5.51     |
| 10/11/2017            |              |              |       |       |           | 5.47     |
| 10/12/2017            |              |              |       | 5.57  |           |          |
| 11/21/2017            |              |              |       | 5.49  |           |          |
| 1/11/2018             |              |              |       | 5.87  |           |          |
| 2/20/2018             |              |              |       | 5.9   |           |          |
| 3/28/2018             | 7.91         | 7.74         |       |       |           |          |
| 3/30/2018             |              |              |       |       | 5.64      | 5.51     |
| 4/3/2018              |              |              |       | 5.66  |           |          |
| 6/7/2018              | 7.69         |              |       |       |           |          |
| 6/8/2018              |              | 7.64         |       |       |           |          |
| 6/12/2018             |              |              |       |       | 5.64      |          |
| 6/13/2018             |              |              |       |       |           | 5.5      |
| 6/29/2018             |              |              |       | 5.49  |           |          |
| 8/6/2018              |              |              |       | 5.52  |           |          |
| 9/24/2018             |              |              |       | 5.37  |           |          |
| 9/26/2018             |              |              |       |       | 5.61      | 5.53     |
| 10/1/2018             | 7.39         | 7.47         |       |       | -         |          |
| 2/27/2019             | 7 55         | 7 54         |       |       |           |          |
| 3/5/2019              |              |              |       |       | 5 72      |          |
| 3/6/2019              |              |              |       |       | 5.7 E     | 5 21     |
| 1/1/2019              | 7 87         | 7 74         |       |       |           | 0.21     |
| 4/4/2019              | 7.07         | 7.74         |       |       | 5 66      | 5 74     |
| 7/4/2013              |              |              |       |       | 5.00      | J./T     |

Constituent: pH (S.U.) Analysis Run 5/6/2021 8:36 PM

|           | YGWA-3D (bg) | YGWA-3I (bg) | PZ-35 | PZ-37 | YGWC-24SA | YGWC-36A |
|-----------|--------------|--------------|-------|-------|-----------|----------|
| 9/25/2019 | 7.64         | 7.47         |       |       |           |          |
| 9/26/2019 |              |              |       |       | 5.52      | 5.51     |
| 2/11/2020 |              | 7.09         |       |       |           |          |
| 2/12/2020 | 7.83         |              |       |       |           |          |
| 3/19/2020 | 7.65         | 7.31         |       |       |           |          |
| 3/25/2020 |              |              | 5.65  |       |           | 5.49     |
| 3/26/2020 |              |              |       |       | 5.51      |          |
| 9/23/2020 | 7.57         | 7.37         |       |       | 5.64      |          |
| 9/24/2020 |              |              | 5.52  |       |           |          |
| 9/25/2020 |              |              |       | 5.46  |           |          |
| 10/7/2020 |              |              |       |       |           | 5.86     |
| 2/9/2021  |              |              |       | 5.42  | 5.69      |          |
| 2/10/2021 | 7.81         | 7.58         | 5.53  |       |           | 6.31     |
| 3/3/2021  | 8.39         | 8.23         |       |       | 5.7       |          |
| 3/4/2021  |              |              | 5.64  | 5.51  |           | 5.67     |
|           |              |              |       |       |           |          |

Constituent: Selenium (mg/L) Analysis Run 5/6/2021 8:36 PM

| 6/6/2016   | YAMW-1     | YAMW-2 | YAMW-4     | YAMW-5 | YGWA-17S (bg) | YGWA-18I (bg) | YGWA-18S (bg) | YGWA-20S (bg) | YGWA-21I (bg) |
|------------|------------|--------|------------|--------|---------------|---------------|---------------|---------------|---------------|
| 6/0/2016   |            |        |            |        | 0.001 (1)     | <0.005        | <0.005        | <0.00E        | 0.00048 ( 1)  |
| 7/22/2016  |            |        |            |        | 0.001 (3)     | <0.005        | <0.00E        | <0.005        | 0.00048 (3)   |
| 7/28/2016  |            |        |            |        | 0.0012 (3)    | ~0.003        | ~0.003        | ~0.005        | <0.005        |
| 0/16/2016  |            |        |            |        | 0.0015 ( 1)   |               | <0.00E        |               | <0.005        |
| 9/10/2016  |            |        |            |        | 0.0015(3)     | <0.005        | <0.005        | <0.005        | 0.0014 (1)    |
| 11/2/2016  |            |        |            |        |               | <0.005        |               | <0.005        | 0.0014 (3)    |
| 11/2/2016  |            |        |            |        | 0.0015 (1)    | <0.00F        | -0.005        | <0.005        | <0.00F        |
| 1/11/2017  |            |        |            |        | 0.0015 (J)    | <0.005        | <0.005        |               | <0.005        |
| 1/11/2017  |            |        |            |        | 0.0014 (J)    | <0.005        | <0.005        | <0.00F        | <0.00F        |
| 1/13/2017  |            |        |            |        |               | -0.005        | -0.005        | <0.005        | <0.005        |
| 3/1/2017   |            |        |            |        | 0.0017 ( ))   | <0.005        | <0.005        |               |               |
| 3/2/2017   |            |        |            |        | 0.0017 (J)    |               |               | 0.005         |               |
| 3/6/2017   |            |        |            |        |               |               |               | <0.005        | <0.005        |
| 4/26/2017  |            |        |            |        |               | <0.005        | <0.005        | <0.005        | <0.005        |
| 5/2/2017   |            |        |            |        | <0.005        |               |               |               |               |
| 6/28/2017  |            |        |            |        |               | <0.005        | <0.005        |               |               |
| 6/29/2017  |            |        |            |        | <0.005        |               |               | <0.005        | <0.005        |
| 3/28/2018  |            |        |            |        | <0.005        | <0.005        | <0.005        |               |               |
| 3/29/2018  |            |        |            |        |               |               |               | <0.005        | <0.005        |
| 6/5/2018   |            |        |            |        |               |               |               |               | <0.005        |
| 6/6/2018   |            |        |            |        |               |               |               | <0.005        |               |
| 6/7/2018   |            |        |            |        |               | <0.005        |               |               |               |
| 6/11/2018  |            |        |            |        | <0.005        |               | <0.005        |               |               |
| 9/25/2018  |            |        |            |        | <0.005        | <0.005        | <0.005        | <0.005        | <0.005        |
| 10/16/2018 | 0.0019 (J) |        |            |        |               |               |               |               |               |
| 3/5/2019   |            |        |            |        | <0.005        |               | <0.005        | <0.005        | <0.005        |
| 3/6/2019   |            |        |            |        |               | <0.005        |               |               |               |
| 4/2/2019   |            |        |            |        | <0.005        |               |               |               | <0.005        |
| 4/3/2019   |            |        |            |        |               | <0.005        | <0.005        | <0.005        |               |
| 9/24/2019  |            |        |            |        |               |               |               |               | <0.005        |
| 9/25/2019  |            |        |            |        | <0.005        |               |               | <0.005        |               |
| 9/26/2019  | <0.005     |        |            |        |               | <0.005        | <0.005        |               |               |
| 1/15/2020  |            | <0.005 |            | 0.045  |               |               |               |               |               |
| 1/16/2020  |            |        | 0.0018 (J) |        |               |               |               |               |               |
| 2/11/2020  |            |        |            |        | <0.005        | <0.005        | <0.005        |               |               |
| 2/12/2020  |            |        |            |        |               |               |               | <0.005        | <0.005        |
| 3/24/2020  |            |        |            |        | <0.005        | <0.005        | <0.005        | <0.005        | <0.005        |
| 3/25/2020  | <0.005     |        |            |        |               |               |               |               |               |
| 9/23/2020  |            | <0.005 | 0.016      |        | <0.005        | <0.005        | <0.005        |               |               |
| 9/24/2020  | <0.005     |        |            | 0.026  |               |               |               | <0.005        | <0.005        |
| 2/9/2021   | <0.005     | <0.005 | <0.005     | 0.06   |               | <0.005        | <0.005        | <0.005        | <0.005        |
| 3/3/2021   | <0.005     | <0.005 | <0.005     |        | <0.005        | <0.005        | <0.005        | <0.005        |               |
| 3/4/2021   |            |        |            | 0.061  |               |               |               |               | <0.005        |
Constituent: Selenium (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YGWA-39 (ba) | YGWA-40 (ba)          | YGWA-4I (ba) | YGWA-5D (ba) | YGWA-5I (ba) | YGWC-23S | YGWC-38 | YGWC-41 | YGWC-42 |
|------------|--------------|-----------------------|--------------|--------------|--------------|----------|---------|---------|---------|
| 6/2/2016   |              |                       | <0.005       | <0.005       | < 0.005      |          |         |         |         |
| 6/7/2016   |              |                       |              |              |              | 0.037    |         |         |         |
| 7/26/2016  |              |                       | (J) 00009    | <0.005       | 0.0009 (J)   |          |         |         |         |
| 7/28/2016  |              |                       |              |              |              | 0.0385   |         |         |         |
| 8/30/2016  |              |                       |              |              |              |          |         |         | 0.0711  |
| 9/14/2016  |              |                       | <0.005       | <0.005       | <0.005       |          |         |         |         |
| 9/20/2016  |              |                       |              |              |              | 0.0464   |         |         |         |
| 11/2/2016  |              |                       | <0.005       | <0.005       |              |          |         |         |         |
| 11/4/2016  |              |                       |              |              | <0.005       |          |         |         |         |
| 11/8/2016  |              |                       |              |              | 0.000        | 0.0521   |         |         |         |
| 11/16/2016 |              |                       |              |              |              |          |         |         | 0 0313  |
| 1/12/2017  |              |                       |              | <0.005       | <0.005       |          |         |         | 0.0010  |
| 1/13/2017  |              |                       | <0.005       | -0.000       | -0.000       |          |         |         |         |
| 1/16/2017  |              |                       | 0.000        |              |              | 0.0469   |         |         |         |
| 2/27/2017  |              |                       |              |              |              | 0.0400   |         |         | 0.0316  |
| 3/6/2017   |              |                       | <0.005       |              |              |          |         |         | 0.0010  |
| 3/7/2017   |              |                       | -0.000       | <0.005       | <0.005       |          |         |         |         |
| 3/9/2017   |              |                       |              | -0.000       | -0.000       | 0.0437   |         |         |         |
| 5/1/2017   |              |                       | <0.005       | <0.005       |              | 0.0437   |         |         |         |
| 5/2/2017   |              |                       | -0.003       | -0.003       | <0.005       | 0.0395   |         |         |         |
| 5/10/2017  |              |                       |              |              | -0.005       | 0.0333   |         |         | 0.053   |
| 6/27/2017  |              |                       |              | <0.005       | <0.005       |          |         |         | 0.000   |
| 6/20/2017  |              |                       | <0.005       | -0.003       | -0.000       |          |         |         |         |
| 7/10/2017  |              |                       | ~0.003       |              |              | 0.0386   |         |         |         |
| 7/10/2017  |              |                       |              |              |              | 0.0300   |         |         | 0.0607  |
| 10/11/2017 | <0.005       |                       |              |              |              |          |         |         | 0.0037  |
| 10/11/2017 | <0.005       | <0.005                |              |              |              |          | 0.265   | 0.0191  | 0.0594  |
| 11/20/2017 | <0.005       | <0.003<br>0.0042 ( I) |              |              |              |          | 0.205   | 0.0191  | 0.0354  |
| 11/20/2017 | ~0.005       | 0.0042 (3)            |              |              |              |          | 0.240   | 0.0697  |         |
| 1/10/2019  |              | 0.0042 (1)            |              |              |              |          |         | 0.0087  |         |
| 1/11/2018  | <0.005       | 0.0043 (J)            |              |              |              |          |         | 0.069   |         |
| 1/12/2018  | <0.005       |                       |              |              |              |          | 0.249   | 0.009   |         |
| 2/10/2018  |              | <0.005                |              |              |              |          | 0.249   | 0.071   |         |
| 2/19/2018  | <0.005       | ~0.005                |              |              |              |          | 0.252   | 0.071   |         |
| 2/20/2018  | <0.005       |                       | <0.005       | <0.005       | <0.005       |          | 0.255   |         |         |
| 3/29/2018  |              |                       | ~0.003       | ~0.005       | <0.005       | 0.028    |         |         |         |
| 4/3/2018   | <0.005       | <0.005                |              |              |              | 0.020    | 0.23    | 0.067   |         |
| 4/3/2018   | ~0.005       | ~0.005                |              |              |              |          | 0.23    | 0.007   | 0.055   |
| 6/6/2018   |              |                       |              | <0.005       |              |          |         |         | 0.035   |
| 6/7/2018   |              |                       | <0.005       | ~0.005       | <0.005       |          |         |         |         |
| 6/12/2018  |              |                       | ~0.005       |              | <0.005       | 0.026    |         |         |         |
| 6/27/2018  |              |                       |              |              |              | 0.020    |         | 0.066   |         |
| 6/28/2018  | <0.005       | 0.0032 (1)            |              |              |              |          | 0.23    | 0.000   |         |
| 0/20/2010  | <0.005       | 0.0032 (3)            |              |              |              |          | 0.23    | 0.061   |         |
| 0/7/2018   | <0.005       | 0.0031 (J)            |              |              |              |          | 0.2     | 0.001   | 0.041   |
| 9/20/2018  | 0.0015 (1)   | 0.0026 ( 1)           |              |              |              |          | 0.2     | 0.061   | 0.041   |
| 0/26/2010  | 0.0013 (0)   | 0.0020 (0)            | <0.005       | <0.005       | <0.005       |          | 0.2     | 0.001   |         |
| 0/27/2010  |              |                       | ~0.000       | ~0.000       | ~0.003       | 0 023    |         |         |         |
| 312112010  |              |                       | <0.005       | <0.005       | <0.005       | 0.023    |         |         |         |
| 3/4/2019   |              |                       | ~0.000       | NU.000       | -0.003       | 0.019    |         |         |         |
| A/3/2010   |              |                       | <0.005       | <0.005       | <0.005       | 0.013    |         |         |         |
| 4/3/2019   |              |                       | ~0.000       | ~0.000       | ~0.003       | 0.017    |         |         |         |
| 4/4/2013   |              |                       |              |              |              | 0.017    |         |         |         |

|           | YGWA-39 (bg) | YGWA-40 (bg) | YGWA-4I (bg) | YGWA-5D (bg) | YGWA-5I (bg) | YGWC-23S | YGWC-38 | YGWC-41 | YGWC-42 |
|-----------|--------------|--------------|--------------|--------------|--------------|----------|---------|---------|---------|
| 8/21/2019 | <0.005       | 0.0024 (J)   |              |              |              |          |         |         |         |
| 8/22/2019 |              |              |              |              |              |          | 0.14    | 0.058   | 0.047   |
| 9/24/2019 |              |              |              | <0.005       | <0.005       |          |         |         |         |
| 9/25/2019 |              |              | <0.005       |              |              |          |         |         |         |
| 9/27/2019 |              |              |              |              |              | 0.018    |         |         |         |
| 10/9/2019 | <0.005       | 0.0026 (J)   |              |              |              |          | 0.12    | 0.052   | 0.042   |
| 2/12/2020 | <0.005       | 0.002 (J)    | <0.005       | <0.005       | <0.005       |          |         |         |         |
| 3/24/2020 |              | 0.002 (J)    |              | <0.005       | <0.005       |          |         |         |         |
| 3/25/2020 | <0.005       |              | <0.005       |              |              |          | 0.099   | 0.057   | 0.046   |
| 3/26/2020 |              |              |              |              |              | 0.024    |         |         |         |
| 9/22/2020 |              |              | <0.005       | <0.005       | <0.005       |          |         |         |         |
| 9/24/2020 | <0.005       | 0.0016 (J)   |              |              |              | 0.031    |         |         | 0.046   |
| 9/25/2020 |              |              |              |              |              |          | 0.076   | 0.046   |         |
| 2/8/2021  |              |              |              | <0.005       | <0.005       |          |         |         |         |
| 2/9/2021  |              |              | <0.005       |              |              | 0.032    | 0.073   |         |         |
| 2/10/2021 | <0.005       | <0.005       |              |              |              |          |         | 0.033   | 0.043   |
| 3/2/2021  |              |              |              | <0.005       | <0.005       |          |         |         |         |
| 3/3/2021  |              |              | 0.0019 (J)   |              |              |          |         |         |         |
| 3/4/2021  | <0.005       | <0.005       |              |              |              | 0.037    | 0.076   | 0.037   | 0.048   |
|           |              |              |              |              |              |          |         |         |         |

Constituent: Selenium (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YGWC-43 | YGWC-49    | YGWA-47 (bg) | GWA-2 (bg) | YGWA-14S (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-2I (bg) | YGWA-30I (bg) |
|------------|---------|------------|--------------|------------|---------------|--------------|--------------|--------------|---------------|
| 5/1/2007   |         |            |              | <0.005     |               |              |              |              |               |
| 9/11/2007  |         |            |              | <0.005     |               |              |              |              |               |
| 3/20/2008  |         |            |              | <0.005     |               |              |              |              |               |
| 8/27/2008  |         |            |              | <0.005     |               |              |              |              |               |
| 3/3/2009   |         |            |              | <0.005     |               |              |              |              |               |
| 11/18/2009 |         |            |              | <0.005     |               |              |              |              |               |
| 3/3/2010   |         |            |              | <0.005     |               |              |              |              |               |
| 9/8/2010   |         |            |              | <0.005     |               |              |              |              |               |
| 3/10/2011  |         |            |              | <0.005     |               |              |              |              |               |
| 9/8/2011   |         |            |              | <0.005     |               |              |              |              |               |
| 3/5/2012   |         |            |              | <0.005     |               |              |              |              |               |
| 9/10/2012  |         |            |              | <0.005     |               |              |              |              |               |
| 2/6/2013   |         |            |              | <0.005     |               |              |              |              |               |
| 8/12/2013  |         |            |              | <0.005     |               |              |              |              |               |
| 2/5/2014   |         |            |              | <0.005     |               |              |              |              |               |
| 8/5/2014   |         |            |              | <0.005     |               |              |              |              |               |
| 2/4/2015   |         |            |              | <0.005     |               |              |              |              |               |
| 2/4/2015   |         |            |              | <0.005     |               |              |              |              |               |
| 8/3/2015   |         |            |              | <0.005     |               |              |              |              |               |
| 2/16/2016  |         |            |              | <0.005     |               | -0.005       | -0.005       |              |               |
| 6/1/2016   |         |            |              |            | 0.0011 (1)    | <0.005       | <0.005       |              | 0.005         |
| 6/2/2016   |         |            |              |            | 0.0011 (J)    |              |              |              | <0.005        |
| 7/25/2016  |         |            |              |            |               |              | <0.005       |              | <0.005        |
| 7/26/2016  |         |            |              |            | 0.0016 (J)    | <0.005       |              |              |               |
| 8/30/2016  |         |            | 0.0017 (J)   |            |               |              |              |              |               |
| 8/31/2016  | <0.005  |            |              | <0.005     |               |              |              |              |               |
| 9/1/2016   |         | 0.0086 (J) |              |            |               |              |              |              |               |
| 9/13/2016  |         |            |              |            |               | <0.005       | <0.005       |              |               |
| 9/14/2016  |         |            |              |            |               |              |              | <0.005       |               |
| 9/15/2016  |         |            |              |            | 0.0014 (J)    |              |              |              |               |
| 9/19/2016  |         |            |              |            |               |              |              |              | <0.005        |
| 11/1/2016  |         |            |              |            |               | <0.005       |              |              | <0.005        |
| 11/2/2016  |         |            |              |            | <0.005        |              |              |              |               |
| 11/4/2016  |         |            |              |            |               |              | <0.005       | <0.005       |               |
| 11/14/2016 |         |            | <0.005       |            |               |              |              |              |               |
| 11/15/2016 |         | 0.0056 (J) |              |            |               |              |              |              |               |
| 11/16/2016 | <0.005  |            |              |            |               |              |              |              |               |
| 11/28/2016 |         |            |              | <0.005     |               |              |              |              |               |
| 12/15/2016 |         |            |              |            |               |              |              | <0.005       |               |
| 1/10/2017  |         |            |              |            | 0.0012 (J)    |              |              |              |               |
| 1/11/2017  |         |            |              |            |               | <0.005       |              |              |               |
| 1/16/2017  |         |            |              |            |               |              | <0.005       | <0.005       | <0.005        |
| 2/21/2017  |         |            |              |            |               |              |              |              | <0.005        |
| 2/22/2017  |         |            |              | <0.005     |               |              |              |              |               |
| 2/24/2017  | <0.005  |            | 0.0011 (J)   |            |               |              |              |              |               |
| 2/27/2017  |         | 0.0098 (J) |              |            |               |              |              |              |               |
| 3/2/2017   |         |            |              |            |               | <0.005       | <0.005       |              |               |
| 3/3/2017   |         |            |              |            |               | 0.000        | 0.000        | <0.005       |               |
| 3/8/2017   |         |            |              |            | <0.005        |              |              | 0.000        |               |
| 4/26/2017  |         |            |              |            | <0.005        |              |              |              | <0.005        |
| 4/27/2017  |         |            |              |            | -0.000        | <0.005       | <0.005       |              | -0.000        |
| 4/20/2017  |         |            |              |            |               | ~0.005       | ~0.005       | <0.005       |               |
| 4/20/2017  |         |            | <0.005       |            |               |              |              | <0.000       |               |
| 5/8/2017   |         |            | <0.005       | <0.005     |               |              |              |              |               |

|            | YGWC-43 | YGWC-49    | YGWA-47 (bg) | GWA-2 (bg) | YGWA-14S (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-2I (bg) | YGWA-30I (bq) |
|------------|---------|------------|--------------|------------|---------------|--------------|--------------|--------------|---------------|
| 5/9/2017   |         | 0.0076 (J) | (-3)         | (-3)       |               | (-3)         | (-3)         | (-3)         |               |
| 5/10/2017  | <0.005  |            |              |            |               |              |              |              |               |
| 5/26/2017  |         |            |              |            |               |              |              | <0.005       |               |
| 6/27/2017  |         |            |              |            |               | <0.005       | <0.005       |              |               |
| 6/28/2017  |         |            |              |            |               |              |              | <0.005       |               |
| 6/30/2017  |         |            |              |            | <0.005        |              |              |              | <0.005        |
| 7/11/2017  | <0.005  |            | <0.005       |            |               |              |              |              |               |
| 7/13/2017  |         | 0.0093 (J) |              |            |               |              |              |              |               |
| 7/17/2017  |         |            |              | <0.005     |               |              |              |              |               |
| 10/10/2017 |         |            | <0.005       |            |               |              |              |              |               |
| 10/11/2017 |         | 0.0089 (J) |              |            |               |              |              |              |               |
| 10/12/2017 | <0.005  |            |              |            |               |              |              |              |               |
| 10/16/2017 |         |            |              | <0.005     |               |              |              |              |               |
| 2/19/2018  |         |            |              | <0.005     |               |              |              |              |               |
| 3/27/2018  |         |            |              |            | <0.005        |              | <0.005       |              | <0.005        |
| 3/28/2018  |         |            |              |            |               |              |              | <0.005       |               |
| 3/29/2018  |         |            |              |            |               | <0.005       |              |              |               |
| 4/2/2018   |         |            | <0.005       |            |               |              |              |              |               |
| 4/4/2018   | <0.005  | <0.005     |              |            |               |              |              |              |               |
| 8/6/2018   |         |            |              | <0.005     |               |              |              |              |               |
| 9/19/2018  |         |            | <0.005       |            |               |              |              |              |               |
| 9/20/2018  | <0.005  | 0.0081 (J) |              |            |               |              |              |              |               |
| 2/25/2019  |         |            |              | <0.005     |               |              |              |              |               |
| 2/26/2019  |         |            |              |            | <0.005        |              |              |              | <0.005        |
| 2/27/2019  |         |            |              |            |               | <0.005       | <0.005       | <0.005       |               |
| 3/28/2019  |         |            |              |            |               | <0.005       | <0.005       |              |               |
| 3/29/2019  |         |            |              |            | 0.0019 (J)    |              |              | <0.005       |               |
| 4/1/2019   |         |            |              |            |               |              |              |              | <0.005        |
| 6/12/2019  |         |            |              | <0.005     |               |              |              |              |               |
| 8/19/2019  |         |            |              | <0.005     |               |              |              |              |               |
| 8/20/2019  |         |            | <0.005       |            |               |              |              |              |               |
| 8/21/2019  | <0.005  |            |              |            |               |              |              |              |               |
| 9/24/2019  |         |            |              |            |               | <0.005       | <0.005       | <0.005       |               |
| 9/25/2019  |         |            |              |            | <0.005        |              |              |              | <0.005        |
| 9/26/2019  |         | 0.0077 (J) |              |            |               |              |              |              |               |
| 10/8/2019  |         |            |              | <0.005     |               |              |              |              |               |
| 10/9/2019  | <0.005  |            |              |            |               |              |              |              |               |
| 2/10/2020  |         |            |              |            |               | <0.005       | <0.005       |              |               |
| 2/11/2020  |         |            |              |            |               |              |              | <0.005       |               |
| 2/12/2020  |         |            |              |            | <0.005        |              |              |              | <0.005        |
| 3/17/2020  |         |            |              | <0.005     |               |              |              |              |               |
| 3/18/2020  |         |            |              |            | <0.005        |              | <0.005       |              |               |
| 3/19/2020  |         |            |              |            |               | <0.005       |              | <0.005       | <0.005        |
| 3/25/2020  | <0.005  | 0.0085 (J) |              |            |               |              |              |              |               |
| 8/26/2020  |         |            |              | <0.005     |               |              |              |              |               |
| 8/27/2020  |         |            | <0.005       |            |               |              |              |              |               |
| 9/22/2020  |         |            |              | <0.005     |               |              |              |              |               |
| 9/23/2020  |         |            |              |            |               | <0.005       | <0.005       | <0.005       |               |
| 9/24/2020  |         | 0.0091 (J) |              |            |               |              |              |              | <0.005        |
| 9/25/2020  | <0.005  |            |              |            | <0.005        |              |              |              |               |
| 2/9/2021   | <0.005  | 0.0079 (J) |              |            |               |              |              |              |               |
| 2/10/2021  |         |            |              |            | <0.005        |              |              | <0.005       |               |

|           | YGWC-43 | YGWC-49 | YGWA-47 (bg) | GWA-2 (bg) | YGWA-14S (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-2I (bg) | YGWA-30I (bg) |
|-----------|---------|---------|--------------|------------|---------------|--------------|--------------|--------------|---------------|
| 2/11/2021 |         |         |              |            |               |              |              |              | <0.005        |
| 2/12/2021 |         |         |              |            |               | <0.005       | <0.005       |              |               |
| 3/1/2021  |         |         |              |            |               |              |              |              | <0.005        |
| 3/2/2021  |         |         |              | <0.005     | <0.005        |              |              |              |               |
| 3/3/2021  |         |         |              |            |               | <0.005       | <0.005       | <0.005       |               |
| 3/4/2021  | <0.005  | 0.0058  |              |            |               |              |              |              |               |

Constituent: Selenium (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YGWA-3D (bg) | YGWA-3I (bg) | PZ-35  | PZ-37 | YGWC-24SA | YGWC-36A    |
|------------|--------------|--------------|--------|-------|-----------|-------------|
| 6/1/2016   |              | <0.005       |        |       |           |             |
| 6/2/2016   | <0.005       |              |        |       |           |             |
| 6/8/2016   |              |              |        |       | <0.005    |             |
| 7/25/2016  |              | <0.005       |        |       |           |             |
| 7/26/2016  | <0.005       |              |        |       |           |             |
| 8/1/2016   |              |              |        |       | <0.005    |             |
| 9/2/2016   |              |              |        |       |           | 0.0012 (J)  |
| 9/14/2016  |              | <0.005       |        |       |           |             |
| 9/15/2016  | <0.005       |              |        |       |           |             |
| 9/20/2016  |              |              |        |       | <0.005    |             |
| 11/1/2016  | <0.005       | <0.005       |        |       |           |             |
| 11/8/2016  |              |              |        |       | <0.005    |             |
| 11/14/2016 |              |              |        |       |           | <0.005      |
| 1/11/2017  | <0.005       | <0.005       |        |       |           |             |
| 1/17/2017  |              |              |        |       | <0.005    |             |
| 2/28/2017  |              |              |        |       |           | 0.0017 (J)  |
| 3/1/2017   |              | <0.005       |        |       |           |             |
| 3/2/2017   | <0.005       |              |        |       |           |             |
| 3/8/2017   | 0.000        |              |        |       | <0.005    |             |
| 4/26/2017  | <0.005       | <0.005       |        |       | -0.000    |             |
| 5/2/2017   | -0.000       | -0.000       |        |       | <0.005    |             |
| 5/2/2017   |              |              |        |       | -0.000    | 0.0018 / I) |
| 6/28/2017  | <0.005       | <0.005       |        |       |           |             |
| 0/28/2017  | <0.005       | <0.005       |        |       | <0.005    |             |
| 7/12/2017  |              |              |        |       | <0.005    | 0.00317.0   |
| //13/2017  |              |              |        |       |           | 0.0031 (J)  |
| 9/22/2017  |              |              |        |       |           | 0.0024 (J)  |
| 9/29/2017  |              |              |        |       |           | 0.002 (J)   |
| 10/6/2017  |              |              |        |       |           | <0.005      |
| 10/12/2017 |              |              |        | 0.234 |           |             |
| 11/21/2017 |              |              |        | 0.225 |           |             |
| 1/11/2018  |              |              |        | 0.168 |           |             |
| 2/20/2018  |              |              |        | 0.315 |           |             |
| 3/28/2018  | <0.005       | <0.005       |        |       |           |             |
| 3/30/2018  |              |              |        |       | <0.005    | <0.005      |
| 4/3/2018   |              |              |        | 0.28  |           |             |
| 6/12/2018  |              |              |        |       | <0.005    |             |
| 6/13/2018  |              |              |        |       |           | 0.0024 (J)  |
| 6/29/2018  |              |              |        | 0.26  |           |             |
| 8/6/2018   |              |              |        | 0.21  |           |             |
| 9/24/2018  |              |              |        | 0.33  |           |             |
| 9/26/2018  |              |              |        |       | <0.005    | 0.0037 (J)  |
| 10/16/2018 |              |              | <0.005 |       |           |             |
| 2/27/2019  | <0.005       | <0.005       |        |       |           |             |
| 3/5/2019   |              |              |        |       | <0.005    |             |
| 3/6/2019   |              |              |        |       |           | 0.0033 (J)  |
| 4/1/2019   | <0.005       | <0.005       |        |       |           |             |
| 4/4/2019   |              |              |        |       | <0.005    | 0.0029 (J)  |
| 9/25/2019  | <0.005       | <0.005       |        |       |           |             |
| 9/26/2019  |              |              | <0.005 |       | <0.005    | 0.0019 (J)  |
| 2/11/2020  |              | <0.005       |        |       |           |             |
| 2/12/2020  | <0.005       |              |        |       |           |             |
| 3/19/2020  | <0.005       | <0.005       |        |       |           |             |

Constituent: Selenium (mg/L) Analysis Run 5/6/2021 8:36 PM

| 3/25/2020 | YGWA-3D (bg) | YGWA-3I (bg) | PZ-35<br><0.005 | PZ-37 | YGWC-24SA | YGWC-36A<br>0.0024 (J) |
|-----------|--------------|--------------|-----------------|-------|-----------|------------------------|
| 3/26/2020 |              |              |                 |       | <0.005    |                        |
| 9/23/2020 | <0.005       | <0.005       |                 |       | <0.005    |                        |
| 9/24/2020 |              |              | <0.005          |       |           |                        |
| 9/25/2020 |              |              |                 | 0.32  |           |                        |
| 10/7/2020 |              |              |                 |       |           | <0.005                 |
| 2/9/2021  |              |              |                 | 0.28  | <0.005    |                        |
| 2/10/2021 | <0.005       | <0.005       | <0.005          |       |           | <0.005                 |
| 3/3/2021  | <0.005       | <0.005       |                 |       | <0.005    |                        |
| 3/4/2021  |              |              | <0.005          | 0.27  |           | <0.005                 |

Constituent: Sulfate (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YAMW-1 | YAMW-2 | YAMW-4 | YAMW-5 | YGWA-17S (bg) | YGWA-18I (bg) | YGWA-18S (bg) | YGWA-20S (bg) | YGWA-21I (bg) |
|------------|--------|--------|--------|--------|---------------|---------------|---------------|---------------|---------------|
| 6/6/2016   |        |        |        |        |               | 1.2           | 1.8           |               |               |
| 6/7/2016   |        |        |        |        | 4.4           |               |               | <1            | 5.2           |
| 7/27/2016  |        |        |        |        | 4.7           | 1.7           | 1.9           | 0.08 (J)      |               |
| 7/28/2016  |        |        |        |        |               |               |               |               | 5.1           |
| 9/16/2016  |        |        |        |        | 4.8           |               | 1.7           |               |               |
| 9/19/2016  |        |        |        |        |               | 1.8           |               | 0.08 (J)      | 4.8           |
| 11/2/2016  |        |        |        |        |               |               |               | 0.1 (J)       |               |
| 11/3/2016  |        |        |        |        | 5.3           | 0.69 (J)      | 1.9           |               | 5             |
| 1/11/2017  |        |        |        |        | 5.2           | <1            | 1.7           |               |               |
| 1/13/2017  |        |        |        |        |               |               |               | <1            | 4.3           |
| 3/1/2017   |        |        |        |        |               | 1.8           | <1            |               |               |
| 3/2/2017   |        |        |        |        | 5             |               |               |               |               |
| 3/6/2017   |        |        |        |        |               |               |               | <1            | 4.5           |
| 4/26/2017  |        |        |        |        |               | 1.6           | 1.9           | <1            | 4.9           |
| 5/2/2017   |        |        |        |        | 5             |               |               |               |               |
| 6/28/2017  |        |        |        |        |               | <1            | <1            |               |               |
| 6/29/2017  |        |        |        |        | 5.2           |               |               | <1            | 5.5           |
| 10/3/2017  |        |        |        |        |               |               |               |               | 5.8           |
| 10/4/2017  |        |        |        |        | 5.3           |               | 1.7           | <1            |               |
| 10/5/2017  |        |        |        |        |               | 1.6           |               |               |               |
| 6/5/2018   |        |        |        |        |               |               |               |               | 6.1           |
| 6/6/2018   |        |        |        |        |               |               |               | 0.049 (J)     |               |
| 6/7/2018   |        |        |        |        |               | 0.68 (J)      |               |               |               |
| 6/11/2018  |        |        |        |        | 5.2           |               | 0.95 (J)      |               |               |
| 9/25/2018  |        |        |        |        | 6.1           | 1             | 1.5           | 0.13 (J)      | 7             |
| 10/16/2018 | 83.7   |        |        |        |               |               |               |               |               |
| 4/2/2019   |        |        |        |        | 5.1           |               |               |               | 3.8           |
| 4/3/2019   |        |        |        |        |               | 0.82 (J)      | 1.3           | 0.12 (J)      |               |
| 9/24/2019  |        |        |        |        |               |               |               |               | 1             |
| 9/25/2019  |        |        |        |        | 5.5           |               |               | <1            |               |
| 9/26/2019  | 46.6   |        |        |        |               | 0.64 (J)      | 1             |               |               |
| 3/24/2020  |        |        |        |        | 5.4           | <1            | 0.99 (J)      | <1            | 3             |
| 3/25/2020  | 11.7   |        |        |        |               |               |               |               |               |
| 9/23/2020  |        | 9.1    | 152    |        | 5.1           | 0.53 (J)      | 1.1           |               |               |
| 9/24/2020  | 13.1   |        |        | 438    |               |               |               | <1            | 3.6           |
| 3/3/2021   | 16.9   | 7.9    | 91.7   |        | 5.2           | <1            | 1             | <1            |               |
| 3/4/2021   |        |        |        | 340    |               |               |               |               | 4.5           |

Constituent: Sulfate (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YGWA-39 (bg) | YGWA-40 (bg) | YGWA-4I (bg) | YGWA-5D (bg) | YGWA-5I (bg) | YGWC-23S | YGWC-38 | YGWC-41 | YGWC-42 |
|------------|--------------|--------------|--------------|--------------|--------------|----------|---------|---------|---------|
| 6/2/2016   |              |              | 8            | 20           | 1.9          |          |         |         |         |
| 6/7/2016   |              |              |              |              |              | 56       |         |         |         |
| 7/26/2016  |              |              | 7.7          | 20           | 1.8          |          |         |         |         |
| 7/28/2016  |              |              |              |              |              | 57       |         |         |         |
| 8/30/2016  |              |              |              |              |              |          |         |         | 980     |
| 9/14/2016  |              |              | 7.5          | 19           | 1.8          |          |         |         |         |
| 9/20/2016  |              |              |              |              |              | 68       |         |         |         |
| 11/2/2016  |              |              | 8.2          | 20           |              |          |         |         |         |
| 11/4/2016  |              |              |              |              | 2            |          |         |         |         |
| 11/8/2016  |              |              |              |              |              | 79       |         |         |         |
| 11/16/2016 |              |              |              |              |              |          |         |         | 940     |
| 1/12/2017  |              |              |              | 19           | 19           |          |         |         |         |
| 1/13/2017  |              |              | 8 1          | 10           | 1.0          |          |         |         |         |
| 1/16/2017  |              |              | 0.1          |              |              | 72       |         |         |         |
| 2/27/2017  |              |              |              |              |              | 72       |         |         | 940     |
| 3/6/2017   |              |              | 8            |              |              |          |         |         | 540     |
| 3/7/2017   |              |              | 0            | 20           | 2.1          |          |         |         |         |
| 3/7/2017   |              |              |              | 20           | 2.1          | 60       |         |         |         |
| 5/9/2017   |              |              | 0.4          | 20           |              | 69       |         |         |         |
| 5/1/2017   |              |              | 8.4          | 20           | 2            | <u></u>  |         |         |         |
| 5/2/2017   |              |              |              |              | 2            | 60       |         |         | 1000    |
| 5/10/2017  |              |              |              |              |              |          |         |         | 1200    |
| 6/27/2017  |              |              |              | 18           | 2.1          |          |         |         |         |
| 6/29/2017  |              |              | 9.2          |              |              |          |         |         |         |
| 7/10/2017  |              |              |              |              |              | 57       |         |         |         |
| 7/11/2017  |              |              |              |              |              |          |         |         | 1300    |
| 10/3/2017  |              |              |              | 16           | 2.3          |          |         |         |         |
| 10/5/2017  |              |              | 9.6          |              |              |          |         |         |         |
| 10/11/2017 | 20           |              |              |              |              | 52       |         |         |         |
| 10/12/2017 |              | 17           |              |              |              |          | 940     | 400     | 1100    |
| 11/20/2017 | 24           | 71           |              |              |              |          | 980     |         |         |
| 11/21/2017 |              |              |              |              |              |          |         | 430     |         |
| 1/10/2018  |              | 66           |              |              |              |          |         |         |         |
| 1/11/2018  | 23           |              |              |              |              |          |         | 390     |         |
| 1/12/2018  |              |              |              |              |              |          | 880     |         |         |
| 2/19/2018  |              | 57.2         |              |              |              |          |         | 414     |         |
| 2/20/2018  | 20.6         |              |              |              |              |          | 905     |         |         |
| 4/3/2018   | 24.5         | 49.4         |              |              |              |          | 872     | 406     |         |
| 4/4/2018   |              |              |              |              |              |          |         |         | 1020    |
| 6/6/2018   |              |              |              | 8.3          |              |          |         |         |         |
| 6/7/2018   |              |              | 8.5          |              | 2            |          |         |         |         |
| 6/12/2018  |              |              |              |              |              | 41.4     |         |         |         |
| 6/27/2018  |              |              |              |              |              |          |         | 357     |         |
| 6/28/2018  | 22           | 43.8         |              |              |              |          | 869     |         |         |
| 8/7/2018   | 20.7         | 40.5         |              |              |              |          | 879     | 346     |         |
| 9/20/2018  |              |              |              |              |              |          |         |         | 810     |
| 9/24/2018  | 21.2         | 39.7         |              |              |              |          | 872     | 358     |         |
| 9/26/2018  |              |              | 10.2         | 7.9          | 2.3          |          |         |         |         |
| 9/27/2018  |              |              |              |              |              | 39.6     |         |         |         |
| 3/26/2019  |              | 34.3         |              |              |              |          |         |         |         |
| 3/27/2019  | 17.7         |              |              |              |              |          | 851     |         | 831     |
| 3/28/2019  |              |              |              |              |              |          | 50.     | 258     |         |
| 4/3/2019   |              |              | 8.5          | 7            | 21           |          |         | 200     |         |
| -1012013   |              |              | 5.5          | ,            | £.1          |          |         |         |         |

Constituent: Sulfate (mg/L) Analysis Run 5/6/2021 8:36 PM

|           | YGWA-39 (bg) | YGWA-40 (bg) | YGWA-4I (bg) | YGWA-5D (bg) | YGWA-5I (bg) | YGWC-23S  | YGWC-38 | YGWC-41 | YGWC-42 |
|-----------|--------------|--------------|--------------|--------------|--------------|-----------|---------|---------|---------|
| 4/4/2019  |              |              |              |              |              | 27.9      |         |         |         |
| 9/24/2019 |              |              |              | 5.5          | 2.4          |           |         |         |         |
| 9/25/2019 |              |              | 8.5          |              |              |           |         |         |         |
| 9/27/2019 |              |              |              |              |              | 30.3      |         |         |         |
| 10/9/2019 | 15           | 27.9         |              |              |              |           | 708     | 263     | 725     |
| 3/24/2020 |              | 25.2         |              | 5.9          | 2.1          |           |         |         |         |
| 3/25/2020 | 14.3         |              | 8.8          |              |              |           | 483     | 214     | 642     |
| 3/26/2020 |              |              |              |              |              | 36.5      |         |         |         |
| 9/22/2020 |              |              | 8.2          | 5.5          | 2.1          |           |         |         |         |
| 9/24/2020 | 11.7         | 22.9         |              |              |              | 52.5      |         |         | 579     |
| 9/25/2020 |              |              |              |              |              |           | 414     | 175     |         |
| 3/2/2021  |              |              |              | 2.6          | 2.3          |           |         |         |         |
| 3/3/2021  |              |              | 7.8          |              |              |           |         |         |         |
| 3/4/2021  | 12           | 21.5         |              |              |              | 61.7 (M1) | 356     | 117     | 537     |
|           |              |              |              |              |              |           |         |         |         |

Constituent: Sulfate (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YGWC-43 | YGWC-49 | YGWA-47 (bg) | GWA-2 (bg) | YGWA-14S (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-2I (bg) | YGWA-30I (bg) |
|------------|---------|---------|--------------|------------|---------------|--------------|--------------|--------------|---------------|
| 6/1/2016   |         |         |              |            |               | 5            | 4.2          |              |               |
| 6/2/2016   |         |         |              |            | 6.6           |              |              |              | 1.3           |
| //25/2016  |         |         |              |            |               |              | 3.7          |              | 1.2           |
| 7/26/2016  |         |         |              |            | 6.1           | 5.4          |              |              |               |
| 8/30/2016  |         |         | 160          |            |               |              |              |              |               |
| 8/31/2016  | 34      |         |              | 29         |               |              |              |              |               |
| 9/1/2016   |         | 95      |              |            |               |              |              |              |               |
| 9/13/2016  |         |         |              |            |               | 2.9          | 5.2          |              |               |
| 9/14/2016  |         |         |              |            |               |              |              | 9.4          |               |
| 9/15/2016  |         |         |              |            | 6.1           |              |              |              |               |
| 9/19/2016  |         |         |              |            |               |              |              |              | 1.2           |
| 11/1/2016  |         |         |              |            |               | 3.9          |              |              | 1.3           |
| 11/2/2016  |         |         |              |            | 6.3           |              |              |              |               |
| 11/4/2016  |         |         |              |            |               |              | 5            | 13           |               |
| 11/14/2016 |         |         | 150          |            |               |              |              |              |               |
| 11/15/2016 |         | 94      |              |            |               |              |              |              |               |
| 11/16/2016 | 240     |         |              |            |               |              |              |              |               |
| 11/28/2016 |         |         |              | 36         |               |              |              |              |               |
| 12/15/2016 |         |         |              |            |               |              |              | 1.8          |               |
| 1/10/2017  |         |         |              |            | 5.9           |              |              |              |               |
| 1/11/2017  |         |         |              |            |               | 3.7          |              |              |               |
| 1/16/2017  |         |         |              |            |               |              | 7.9          | 11           | <1            |
| 2/21/2017  |         |         |              |            |               |              |              |              | 1.4           |
| 2/22/2017  |         |         |              | 43         |               |              |              |              |               |
| 2/24/2017  | 89      |         | 120          |            |               |              |              |              |               |
| 2/27/2017  |         | 84      |              |            |               |              |              |              |               |
| 3/2/2017   |         |         |              |            |               | 4.6          | 7.4          |              |               |
| 3/3/2017   |         |         |              |            |               |              |              | 8.8          |               |
| 3/8/2017   |         |         |              |            | 7             |              |              |              |               |
| 4/26/2017  |         |         |              |            | 7             |              |              |              | 1.4           |
| 4/27/2017  |         |         |              |            |               | 5.2          | 7.4          |              |               |
| 4/28/2017  |         |         |              |            |               |              |              | 10           |               |
| 5/8/2017   |         |         | 120          | 60         |               |              |              |              |               |
| 5/9/2017   |         | 91      | 120          |            |               |              |              |              |               |
| 5/10/2017  | 100     | 51      |              |            |               |              |              |              |               |
| 5/26/2017  | 100     |         |              |            |               |              |              | 12           |               |
| 6/27/2017  |         |         |              |            |               | 5 9          | 64           | 12           |               |
| 6/28/2017  |         |         |              |            |               | 5.5          | 0.4          | 11           |               |
| 6/30/2017  |         |         |              |            | 6.5           |              |              |              | ~1            |
| 7/11/2017  | 110     |         | 110          |            | 0.5           |              |              |              |               |
| 7/11/2017  | 110     | 00      | 110          |            |               |              |              |              |               |
| 7/13/2017  |         | 00      |              | 62         |               |              |              |              |               |
| 10/2/2017  |         |         |              | 03         |               | <u> </u>     | 5.0          | 7.0          |               |
| 10/3/2017  |         |         |              |            |               | 0.0          | 5.9          | 7.9          |               |
| 10/4/2017  |         |         |              |            | 7.0           |              |              |              | 1.4           |
| 10/5/2017  |         |         | 00           |            | 7.9           |              |              |              |               |
| 10/10/2017 |         |         | 93           |            |               |              |              |              |               |
| 10/11/2017 |         | 86      |              |            |               |              |              |              |               |
| 10/12/2017 | 120     |         |              |            |               |              |              |              |               |
| 10/16/2017 |         |         |              | 62         |               |              |              |              |               |
| 2/19/2018  |         |         |              | 64.6       |               |              |              |              |               |
| 4/2/2018   |         |         | 88.8         |            |               |              |              |              |               |
| 4/4/2018   | 160     | 76.5    |              |            |               |              |              |              |               |

Constituent: Sulfate (mg/L) Analysis Run 5/6/2021 8:36 PM

|           | YGWC-43 | YGWC-49 | YGWA-47 (bg) | GWA-2 (bg) | YGWA-14S (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-2I (bg) | YGWA-30I (bg) |
|-----------|---------|---------|--------------|------------|---------------|--------------|--------------|--------------|---------------|
| 6/5/2018  |         |         |              |            |               | 6.4          |              |              |               |
| 6/6/2018  |         |         |              |            |               |              | 4.4          |              |               |
| 6/7/2018  |         |         |              |            |               |              |              | 8.8          |               |
| 6/8/2018  |         |         |              |            | 6.4           |              |              |              |               |
| 6/11/2018 |         |         |              |            |               |              |              |              | 1.1           |
| 8/6/2018  |         |         |              | 42.1       |               |              |              |              |               |
| 9/19/2018 |         |         | 75           |            |               |              |              |              |               |
| 9/20/2018 | 247     | 84.1    |              |            |               |              |              |              |               |
| 10/1/2018 |         |         |              |            | 6.8           | 5.6          | 4            | 9.1          |               |
| 10/2/2018 |         |         |              |            |               |              |              |              | 1             |
| 2/25/2019 |         |         |              | 42.1       |               |              |              |              |               |
| 3/27/2019 |         |         | 65.9         |            |               |              |              |              |               |
| 3/28/2019 | 181     | 82.8    |              |            |               | 8            | 4.3          |              |               |
| 3/29/2019 |         |         |              |            | 7.3           |              |              | 9            |               |
| 4/1/2019  |         |         |              |            |               |              |              |              | 0.96 (J)      |
| 6/12/2019 |         |         |              | 83.4       |               |              |              |              |               |
| 9/24/2019 |         |         |              |            |               | 5.3          | 4.3          | 9.1          |               |
| 9/25/2019 |         |         |              |            | 6.6           |              |              |              | 0.81 (J)      |
| 9/26/2019 |         | 80      |              |            |               |              |              |              |               |
| 10/8/2019 |         |         | 52.3         | 128        |               |              |              |              |               |
| 10/9/2019 | 279     |         |              |            |               |              |              |              |               |
| 3/17/2020 |         |         | 71.6         | 98.6       |               |              |              |              |               |
| 3/18/2020 |         |         |              |            | 8.1           |              | 5.3          |              |               |
| 3/19/2020 |         |         |              |            |               | 10           |              | 12.4         | 1.6           |
| 3/25/2020 | 164     | 76.1    |              |            |               |              |              |              |               |
| 9/22/2020 |         |         | 51.5         | 145        |               |              |              |              |               |
| 9/23/2020 |         |         |              |            |               | 8.1          | 3.4          | 11.8         |               |
| 9/24/2020 |         | 77      |              |            |               |              |              |              | 0.69 (J)      |
| 9/25/2020 | 281     |         |              |            | 6.1           |              |              |              |               |
| 3/1/2021  |         |         | 51.6         |            |               |              |              |              | 0.88 (J)      |
| 3/2/2021  |         |         |              | 156        | 6             |              |              |              |               |
| 3/3/2021  |         |         |              |            |               | 9            | 4.4          | 10.6         |               |
| 3/4/2021  | 328     | 75.1    |              |            |               |              |              |              |               |

Constituent: Sulfate (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YGWA-3D (bg) | YGWA-3I (bg) | PZ-35 | PZ-37 | YGWC-24SA | YGWC-36A |
|------------|--------------|--------------|-------|-------|-----------|----------|
| 6/1/2016   |              | 12           |       |       |           |          |
| 6/2/2016   | 5.8          |              |       |       |           |          |
| 6/8/2016   |              |              |       |       | <1        |          |
| 7/25/2016  |              | 8.4          |       |       |           |          |
| 7/26/2016  | 6.7          |              |       |       |           |          |
| 8/1/2016   |              |              |       |       | 1.1       |          |
| 9/2/2016   |              |              |       |       |           | 72       |
| 9/14/2016  |              | 8.6          |       |       |           |          |
| 9/15/2016  | 6            |              |       |       |           |          |
| 9/20/2016  |              |              |       |       | 0.38 (J)  |          |
| 11/1/2016  | 4.9          | 8.9          |       |       |           |          |
| 11/8/2016  |              |              |       |       | 0.39 (J)  |          |
| 11/14/2016 |              |              |       |       |           | 110      |
| 1/11/2017  | 4.5          | 8.6          |       |       |           |          |
| 1/17/2017  |              |              |       |       | <1        |          |
| 2/28/2017  |              |              |       |       |           | 110      |
| 3/1/2017   |              | 93           |       |       |           |          |
| 3/2/2017   | 11           | 0.0          |       |       |           |          |
| 3/2/2017   |              |              |       |       | 0.20 ( 1) |          |
| 4/26/2017  | <b>5</b> 1   | 11           |       |       | 0.29 (3)  |          |
| 4/20/2017  | 5.1          |              |       |       | 0.20 ( )) |          |
| 5/2/2017   |              |              |       |       | 0.29 (J)  | 100      |
| 5/9/2017   | - /          | 10           |       |       |           | 130      |
| 6/28/2017  | 5.4          | 12           |       |       |           |          |
| 7/7/2017   |              |              |       |       | 0.37 (J)  |          |
| 7/13/2017  |              |              |       |       |           | 140      |
| 9/22/2017  |              |              |       |       |           | 160      |
| 9/29/2017  |              |              |       |       |           | 160      |
| 10/4/2017  | 6.2          | 12           |       |       |           |          |
| 10/5/2017  |              |              |       |       | <1        |          |
| 10/6/2017  |              |              |       |       |           | 160      |
| 10/11/2017 |              |              |       |       |           | 150      |
| 10/12/2017 |              |              |       | 650   |           |          |
| 11/21/2017 |              |              |       | 700   |           |          |
| 1/11/2018  |              |              |       | 590   |           |          |
| 2/20/2018  |              |              |       | 677   |           |          |
| 4/3/2018   |              |              |       | 615   |           |          |
| 6/7/2018   | 6.7          |              |       |       |           |          |
| 6/8/2018   |              | 9.6          |       |       |           |          |
| 6/12/2018  |              |              |       |       | 0.35 (J)  |          |
| 6/13/2018  |              |              |       |       |           | 144      |
| 6/29/2018  |              |              |       | 634   |           |          |
| 8/6/2018   |              |              |       | 623   |           |          |
| 9/24/2018  |              |              |       | 674   |           |          |
| 9/26/2018  |              |              |       |       | 0.28 (1)  | 160      |
| 10/1/2018  | 71           | 9 1          |       |       | 0.20 (0)  |          |
| 10/16/2018 |              | 0.1          | 34.2  |       |           |          |
| 1/1/2019   | 7.2          | 8.5          | 5-T.L |       |           |          |
| 4/4/2010   | 1.2          | 0.0          |       |       | 0.29 ( !) | 110      |
| 4/4/2013   | 7            | 13.9         |       |       | 0.29 (J)  | 110      |
| 9/20/2019  | /            | 13.0         | 14.2  |       | 0.22 (1)  | 94.9     |
| 9/20/2019  | 2            | 10.0         | 14.3  |       | 0.23 (J)  | 04.0     |
| 3/19/2020  | 9            | 12.9         | 00.4  |       |           | 50.0     |
| 3/25/2020  |              |              | 36.1  |       |           | 58.8     |

Constituent: Sulfate (mg/L) Analysis Run 5/6/2021 8:36 PM

|           | YGWA-3D (bg) | YGWA-3I (bg) | PZ-35 | PZ-37 | YGWC-24SA | YGWC-36A |
|-----------|--------------|--------------|-------|-------|-----------|----------|
| 3/26/2020 |              |              |       |       | <1        |          |
| 9/23/2020 | 6.9          | 16.8         |       |       | <1        |          |
| 9/24/2020 |              |              | 7.2   |       |           |          |
| 9/25/2020 |              |              |       | 563   |           |          |
| 10/7/2020 |              |              |       |       |           | 18.2     |
| 3/3/2021  | 7            | 9.6          |       |       | <1        |          |
| 3/4/2021  |              |              | 8.8   | 485   |           | 6.3      |
|           |              |              |       |       |           |          |

Constituent: Thallium (mg/L) Analysis Run 5/6/2021 8:36 PM

|           | YAMW-1 | YAMW-2 | YAMW-4 | YAMW-5 | YGWA-17S (bg) | YGWA-18I (bg) | YGWA-18S (bg) | YGWA-20S (bg) | YGWA-21I (bg) |
|-----------|--------|--------|--------|--------|---------------|---------------|---------------|---------------|---------------|
| 6/6/2016  |        |        |        |        |               | <0.001        | <0.001        |               |               |
| 6/7/2016  |        |        |        |        | <0.001        |               |               | <0.001        | <0.001        |
| 7/27/2016 |        |        |        |        | <0.001        | <0.001        | <0.001        | <0.001        |               |
| 7/28/2016 |        |        |        |        |               |               |               |               | <0.001        |
| 9/16/2016 |        |        |        |        | <0.001        |               | <0.001        |               |               |
| 9/19/2016 |        |        |        |        |               | <0.001        |               | <0.001        | <0.001        |
| 11/2/2016 |        |        |        |        |               |               |               | <0.001        |               |
| 11/3/2016 |        |        |        |        | <0.001        | <0.001        | <0.001        |               | <0.001        |
| 1/11/2017 |        |        |        |        | <0.001        | <0.001        | <0.001        |               |               |
| 1/13/2017 |        |        |        |        |               |               |               | <0.001        | <0.001        |
| 3/1/2017  |        |        |        |        |               | <0.001        | <0.001        |               |               |
| 3/2/2017  |        |        |        |        | <0.001        |               |               |               |               |
| 3/6/2017  |        |        |        |        |               |               |               | <0.001        | <0.001        |
| 4/26/2017 |        |        |        |        |               | <0.001        | <0.001        | <0.001        | <0.001        |
| 5/2/2017  |        |        |        |        | <0.001        |               |               |               |               |
| 6/28/2017 |        |        |        |        |               | <0.001        | <0.001        |               |               |
| 6/29/2017 |        |        |        |        | <0.001        |               |               | <0.001        | <0.001        |
| 3/28/2018 |        |        |        |        | <0.001        | <0.001        | <0.001        |               |               |
| 3/29/2018 |        |        |        |        |               |               |               | <0.001        | <0.001        |
| 9/25/2018 |        |        |        |        |               |               |               |               | <0.001        |
| 3/5/2019  |        |        |        |        | <0.001        |               | <0.001        | <0.001        | <0.001        |
| 3/6/2019  |        |        |        |        |               | <0.001        |               |               |               |
| 4/2/2019  |        |        |        |        | <0.001        |               |               |               | <0.001        |
| 4/3/2019  |        |        |        |        |               | <0.001        | <0.001        | <0.001        |               |
| 9/24/2019 |        |        |        |        |               |               |               |               | <0.001        |
| 9/25/2019 |        |        |        |        | <0.001        |               |               | <0.001        |               |
| 9/26/2019 | <0.001 |        |        |        |               | <0.001        | <0.001        |               |               |
| 2/11/2020 |        |        |        |        | <0.001        | <0.001        | <0.001        |               |               |
| 2/12/2020 |        |        |        |        |               |               |               | <0.001        | <0.001        |
| 3/24/2020 |        |        |        |        | <0.001        | <0.001        | <0.001        | <0.001        | <0.001        |
| 3/25/2020 | <0.001 |        |        |        |               |               |               |               |               |
| 9/23/2020 |        | <0.001 | <0.001 |        | <0.001        | <0.001        | <0.001        |               |               |
| 9/24/2020 | <0.001 |        |        | <0.001 |               |               |               | <0.001        | <0.001        |
| 2/9/2021  | <0.001 | <0.001 | <0.001 | <0.001 |               | <0.001        | <0.001        | <0.001        | <0.001        |

Constituent: Thallium (mg/L) Analysis Run 5/6/2021 8:36 PM

|                       | YGWA-39 (bg)  | YGWA-40 (bg)  | YGWA-4I (bg) | YGWA-5D (bg)  | YGWA-5I (bg)   | YGWC-23S      | YGWC-38 | YGWC-41 | YGWC-42 |
|-----------------------|---------------|---------------|--------------|---------------|----------------|---------------|---------|---------|---------|
| 6/2/2016              |               |               | <0.001       | <0.001        | < 0.001        |               |         |         |         |
| 6/7/2016              |               |               |              |               |                | <0.001        |         |         |         |
| 7/26/2016             |               |               | <0.001       | <0.001        | <0.001         |               |         |         |         |
| 7/28/2016             |               |               |              |               |                | <0.001        |         |         |         |
| 8/30/2016             |               |               |              |               |                |               |         |         | <0.001  |
| 9/14/2016             |               |               | <0.001       | <0.001        | <0.001         |               |         |         |         |
| 9/20/2016             |               |               |              |               |                | <0.001        |         |         |         |
| 11/2/2016             |               |               | <0.001       | <0.001        |                |               |         |         |         |
| 11/4/2016             |               |               |              |               | <0.001         |               |         |         |         |
| 11/8/2016             |               |               |              |               |                | <0.001        |         |         |         |
| 11/16/2016            |               |               |              |               |                |               |         |         | <0.001  |
| 1/12/2017             |               |               |              | <0.001        | <0.001         |               |         |         |         |
| 1/13/2017             |               |               | <0.001       |               |                |               |         |         |         |
| 1/16/2017             |               |               |              |               |                | <0.001        |         |         |         |
| 2/27/2017             |               |               |              |               |                |               |         |         | <0.001  |
| 3/6/2017              |               |               | <0.001       |               |                |               |         |         |         |
| 3/7/2017              |               |               |              | <0.001        | <0.001         |               |         |         |         |
| 3/9/2017              |               |               |              |               |                | <0.001        |         |         |         |
| 5/1/2017              |               |               | <0.001       | <0.001        |                |               |         |         |         |
| 5/2/2017              |               |               |              |               | <0.001         | <0.001        |         |         |         |
| 5/10/2017             |               |               |              |               |                |               |         |         | <0.001  |
| 6/27/2017             |               |               |              | <0.001        | <0.001         |               |         |         |         |
| 6/29/2017             |               |               | <0.001       |               |                |               |         |         |         |
| 7/10/2017             |               |               |              |               |                | <0.001        |         |         |         |
| 7/11/2017             |               |               |              |               |                |               |         |         | <0.001  |
| 10/11/2017            | <0.001        |               |              |               |                |               |         |         |         |
| 10/12/2017            |               | <0.001        |              |               |                |               | <0.001  | <0.001  | <0.001  |
| 11/20/2017            | <0.001        | <0.001        |              |               |                |               | <0.001  |         |         |
| 11/21/2017            |               |               |              |               |                |               |         | <0.001  |         |
| 1/10/2018             |               | <0.001        |              |               |                |               |         |         |         |
| 1/11/2018             | <0.001        |               |              |               |                |               |         | <0.001  |         |
| 1/12/2018             |               |               |              |               |                |               | <0.001  |         |         |
| 2/19/2018             |               | <0.001        |              |               |                |               |         | <0.001  |         |
| 2/20/2018             | <0.001        |               |              |               |                |               | <0.001  |         |         |
| 3/29/2018             |               |               | <0.001       | <0.001        | <0.001         |               |         |         |         |
| 3/30/2018             |               |               |              |               |                | <0.001        |         |         |         |
| 4/3/2018              | <0.001        | <0.001        |              |               |                |               | <0.001  | <0.001  |         |
| 4/4/2018              |               |               |              |               |                |               |         |         | <0.001  |
| 6/2//2018             |               |               |              |               |                |               |         | <0.001  |         |
| 6/28/2018             | <0.001        | < 0.001       |              |               |                |               | <0.001  | .0.001  |         |
| 8/7/2018              | <0.001        | <0.001        |              |               |                |               | <0.001  | <0.001  | -0.001  |
| 9/20/2018             | -0.001        | -0.001        |              |               |                |               | -0.001  | -0.001  | <0.001  |
| 9/24/2018             | <0.001        | <0.001        | -0.001       | -0.001        | -0.001         |               | <0.001  | <0.001  |         |
| 3/4/2019              |               |               | <0.001       | <0.001        | <0.001         | <0.001        |         |         |         |
| JUIZU 19              |               |               | <0.001       | <0.001        | <0.001         | <b>~0.001</b> |         |         |         |
| 4/3/2019              |               |               | ~U.UU I      | <u>∼0.001</u> | <b>~</b> 0.001 | <0.001        |         |         |         |
| 4/4/2019<br>8/21/2010 | <0.001        | <0.001        |              |               |                | <b>~0.001</b> |         |         |         |
| 8/22/2010             | <u>∼0.001</u> | <u>~0.001</u> |              |               |                |               | <0.001  | <0.001  | <0.001  |
| 9/24/2019             |               |               |              | <0.001        | <0.001         |               | -0.001  | -0.001  | -9.001  |
| 9/25/2019             |               |               | <0.001       | -0.001        | ·0.001         |               |         |         |         |
| 9/27/2019             |               |               | -0.001       |               |                | <0.001        |         |         |         |
|                       |               |               |              |               |                |               |         |         |         |

Page 2

Constituent: Thallium (mg/L) Analysis Run 5/6/2021 8:36 PM

|           | YGWA-39 (bg) | YGWA-40 (bg) | YGWA-4I (bg) | YGWA-5D (bg) | YGWA-5I (bg) | YGWC-23S | YGWC-38 | YGWC-41 | YGWC-42 |
|-----------|--------------|--------------|--------------|--------------|--------------|----------|---------|---------|---------|
| 2/12/2020 | <0.001       | <0.001       | <0.001       | <0.001       | <0.001       |          |         |         |         |
| 3/24/2020 |              | <0.001       |              | <0.001       | <0.001       |          |         |         |         |
| 3/25/2020 | <0.001       |              | <0.001       |              |              |          | <0.001  | <0.001  | <0.001  |
| 3/26/2020 |              |              |              |              |              | <0.001   |         |         |         |
| 9/22/2020 |              |              | <0.001       | <0.001       | <0.001       |          |         |         |         |
| 9/24/2020 | <0.001       | <0.001       |              |              |              | <0.001   |         |         | <0.001  |
| 9/25/2020 |              |              |              |              |              |          | <0.001  | <0.001  |         |
| 2/8/2021  |              |              |              | <0.001       | <0.001       |          |         |         |         |
| 2/9/2021  |              |              | <0.001       |              |              | <0.001   | <0.001  |         |         |
| 2/10/2021 | <0.001       | <0.001       |              |              |              |          |         | <0.001  | <0.001  |
|           |              |              |              |              |              |          |         |         |         |

Constituent: Thallium (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YGWC-43 | YGWC-49      | YGWA-47 (bg) | GWA-2 (bg) | YGWA-14S (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-2I (bg) | YGWA-30I (bg) |
|------------|---------|--------------|--------------|------------|---------------|--------------|--------------|--------------|---------------|
| 5/1/2007   |         |              |              | <0.001     |               |              |              |              |               |
| 9/11/2007  |         |              |              | <0.001     |               |              |              |              |               |
| 3/20/2008  |         |              |              | <0.001     |               |              |              |              |               |
| 8/27/2008  |         |              |              | <0.001     |               |              |              |              |               |
| 3/3/2009   |         |              |              | <0.001     |               |              |              |              |               |
| 11/18/2009 |         |              |              | <0.001     |               |              |              |              |               |
| 3/3/2010   |         |              |              | <0.001     |               |              |              |              |               |
| 9/8/2010   |         |              |              | <0.001     |               |              |              |              |               |
| 3/10/2011  |         |              |              | <0.001     |               |              |              |              |               |
| 9/8/2011   |         |              |              | <0.001     |               |              |              |              |               |
| 3/5/2012   |         |              |              | <0.001     |               |              |              |              |               |
| 9/10/2012  |         |              |              | <0.001     |               |              |              |              |               |
| 2/6/2013   |         |              |              | <0.001     |               |              |              |              |               |
| 2/0/2013   |         |              |              | <0.001     |               |              |              |              |               |
| 8/12/2013  |         |              |              | <0.001     |               |              |              |              |               |
| 2/5/2014   |         |              |              | <0.001     |               |              |              |              |               |
| 8/5/2014   |         |              |              | <0.001     |               |              |              |              |               |
| 2/4/2015   |         |              |              | <0.001     |               |              |              |              |               |
| 2/16/2016  |         |              |              | <0.001     |               |              |              |              |               |
| 6/1/2016   |         |              |              |            |               | <0.001       | <0.001       |              |               |
| 6/2/2016   |         |              |              |            | <0.001        |              |              |              | <0.001        |
| 7/25/2016  |         |              |              |            |               |              | <0.001       |              | <0.001        |
| 7/26/2016  |         |              |              |            | <0.001        | <0.001       |              |              |               |
| 8/30/2016  |         |              | <0.001       |            |               |              |              |              |               |
| 8/31/2016  | <0.001  |              |              | <0.001     |               |              |              |              |               |
| 9/1/2016   |         | <0.001       |              |            |               |              |              |              |               |
| 9/13/2016  |         |              |              |            |               | <0.001       | <0.001       |              |               |
| 9/14/2016  |         |              |              |            |               |              |              | <0.001       |               |
| 9/15/2016  |         |              |              |            | <0.001        |              |              |              |               |
| 9/19/2016  |         |              |              |            |               |              |              |              | <0.001        |
| 11/1/2016  |         |              |              |            |               | <0.001       |              |              | <0.001        |
| 11/2/2016  |         |              |              |            | <0.001        |              |              |              |               |
| 11/4/2016  |         |              |              |            |               |              | <0.001       | <0.001       |               |
| 11/14/2016 |         |              | <0.001       |            |               |              |              |              |               |
| 11/15/2016 |         | <0.001       |              |            |               |              |              |              |               |
| 11/16/2016 | <0.001  |              |              |            |               |              |              |              |               |
| 11/28/2016 |         |              |              | <0.001     |               |              |              |              |               |
| 12/15/2016 |         |              |              |            |               |              |              | <0.001       |               |
| 1/10/2017  |         |              |              |            | <0.001        |              |              |              |               |
| 1/11/2017  |         |              |              |            |               | <0.001       |              |              |               |
| 1/16/2017  |         |              |              |            |               |              | <0.001       | <0.001       | <0.001        |
| 2/21/2017  |         |              |              |            |               |              |              |              | <0.001        |
| 2/22/2017  |         |              |              | <0.001     |               |              |              |              |               |
| 2/24/2017  | <0.001  |              | <0.001       |            |               |              |              |              |               |
| 2/27/2017  |         | 9E-05 (J)    |              |            |               |              |              |              |               |
| 3/2/2017   |         | 02 00 (0)    |              |            |               | <0.001       | <0.001       |              |               |
| 3/3/2017   |         |              |              |            |               |              |              | <0.001       |               |
| 3/8/2017   |         |              |              |            | <0.001        |              |              | -0.001       |               |
| 1/26/2017  |         |              |              |            | <0.001        |              |              |              | <0.001        |
| 4/27/2017  |         |              |              |            | -0.001        | <0.001       | <0.001       |              | -0.001        |
| 1/28/2017  |         |              |              |            |               | -0.001       | -0.001       | <0.001       |               |
| 5/8/2017   |         |              | <0.001       | 6E 05 (1)  |               |              |              | -0.001       |               |
| 5/0/2017   |         | ~0.001       | ~U.UU I      | 0⊑-00 (J)  |               |              |              |              |               |
| 0/9/2017   |         | <b>\U.UU</b> |              |            |               |              |              |              |               |

### Constituent: Thallium (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YGWC-43 | YGWC-49 | YGWA-47 (bg) | GWA-2 (bg)  | YGWA-14S (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-2I (bg) | YGWA-30I (bg) |
|------------|---------|---------|--------------|-------------|---------------|--------------|--------------|--------------|---------------|
| 5/10/2017  | <0.001  |         |              |             |               |              |              |              |               |
| 5/26/2017  |         |         |              |             |               |              |              | <0.001       |               |
| 6/27/2017  |         |         |              |             |               | <0.001       | <0.001       |              |               |
| 6/28/2017  |         |         |              |             |               |              |              | <0.001       |               |
| 6/30/2017  |         |         |              |             | <0.001        |              |              |              | <0.001        |
| 7/11/2017  | <0.001  |         | <0.001       |             |               |              |              |              |               |
| 7/13/2017  |         | <0.001  |              |             |               |              |              |              |               |
| 7/17/2017  |         |         |              | 6E-05 (J)   |               |              |              |              |               |
| 10/10/2017 |         |         | <0.001       |             |               |              |              |              |               |
| 10/11/2017 |         | <0.001  |              |             |               |              |              |              |               |
| 10/12/2017 | <0.001  |         |              |             |               |              |              |              |               |
| 10/16/2017 |         |         |              | 7E-05 (J)   |               |              |              |              |               |
| 2/19/2018  |         |         |              | <0.001      |               |              |              |              |               |
| 3/27/2018  |         |         |              |             | <0.001        |              | <0.001       |              | <0.001        |
| 3/28/2018  |         |         |              |             |               |              |              | <0.001       |               |
| 3/29/2018  |         |         |              |             |               | <0.001       |              |              |               |
| 4/2/2018   |         |         | <0.001       |             |               |              |              |              |               |
| 4/4/2018   | <0.001  | <0.001  |              |             |               |              |              |              |               |
| 8/6/2018   |         |         |              | <0.001      |               |              |              |              |               |
| 9/19/2018  |         |         | <0.001       |             |               |              |              |              |               |
| 9/20/2018  | <0.001  | <0.001  |              |             |               |              |              |              |               |
| 2/25/2019  |         |         |              | <0.001      |               |              |              |              |               |
| 2/26/2019  |         |         |              |             | <0.001        |              |              |              | <0.001        |
| 2/27/2019  |         |         |              |             |               | <0.001       | <0.001       | <0.001       |               |
| 6/12/2019  |         |         |              | <0.001      |               |              |              |              |               |
| 8/19/2019  |         |         |              | 5.5E-05 (J) |               |              |              |              |               |
| 8/20/2019  |         |         | 5.8E-05 (J)  |             |               |              |              |              |               |
| 8/21/2019  | <0.001  |         |              |             |               |              |              |              |               |
| 9/26/2019  |         | <0.001  |              |             |               |              |              |              |               |
| 10/8/2019  |         |         | 8.4E-05 (J)  | <0.001      |               |              |              |              |               |
| 2/10/2020  |         |         |              |             |               | <0.001       | 5.5E-05 (J)  |              |               |
| 2/11/2020  |         |         |              |             |               |              |              | <0.001       |               |
| 2/12/2020  |         |         |              |             | 8.9E-05 (J)   |              |              |              | <0.001        |
| 3/17/2020  |         |         | <0.001       | <0.001      |               |              |              |              |               |
| 3/18/2020  |         |         |              |             | <0.001        |              | <0.001       |              |               |
| 3/19/2020  |         |         |              |             |               | <0.001       |              | <0.001       | <0.001        |
| 3/25/2020  | <0.001  | <0.001  |              |             |               |              |              |              |               |
| 8/26/2020  |         |         |              | <0.001      |               |              |              |              |               |
| 8/27/2020  |         |         | <0.001       |             |               |              |              |              |               |
| 9/22/2020  |         |         |              | <0.001      |               |              |              |              |               |
| 9/23/2020  |         |         |              |             |               | <0.001       | <0.001       | <0.001       |               |
| 9/24/2020  |         | <0.001  |              |             |               |              |              |              | <0.001        |
| 9/25/2020  | <0.001  |         |              |             | <0.001        |              |              |              |               |
| 2/9/2021   | <0.001  | <0.001  |              |             |               |              |              |              |               |
| 2/10/2021  |         |         |              |             | <0.001        |              |              | <0.001       |               |
| 2/11/2021  |         |         |              |             |               |              |              |              | <0.001        |
| 2/12/2021  |         |         |              |             |               | <0.001       | <0.001       |              |               |
| 3/2/2021   |         |         |              | <0.001      |               |              |              |              |               |

### Constituent: Thallium (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YGWA-3D (bg) | YGWA-3I (bg) | PZ-35  | PZ-37  | YGWC-24SA | YGWC-36A |
|------------|--------------|--------------|--------|--------|-----------|----------|
| 6/1/2016   |              | <0.001       |        |        |           |          |
| 6/2/2016   | <0.001       |              |        |        |           |          |
| 6/8/2016   |              |              |        |        | <0.001    |          |
| 7/25/2016  |              | <0.001       |        |        |           |          |
| 7/26/2016  | 0.0001 (J)   |              |        |        |           |          |
| 8/1/2016   |              |              |        |        | <0.001    |          |
| 9/2/2016   |              |              |        |        |           | <0.001   |
| 9/14/2016  |              | <0.001       |        |        |           |          |
| 9/15/2016  | <0.001       |              |        |        |           |          |
| 9/20/2016  |              |              |        |        | <0.001    |          |
| 11/1/2016  | <0.001       | <0.001       |        |        |           |          |
| 11/8/2016  |              |              |        |        | <0.001    |          |
| 11/14/2016 |              |              |        |        |           | <0.001   |
| 1/11/2017  | <0.001       | <0.001       |        |        |           |          |
| 1/17/2017  |              |              |        |        | <0.001    |          |
| 2/28/2017  |              |              |        |        |           | <0.001   |
| 3/1/2017   |              | <0.001       |        |        |           |          |
| 3/2/2017   | <0.001       |              |        |        |           |          |
| 3/8/2017   |              |              |        |        | <0.001    |          |
| 4/26/2017  | <0.001       | <0.001       |        |        |           |          |
| 5/2/2017   |              |              |        |        | <0.001    |          |
| 5/9/2017   |              |              |        |        |           | <0.001   |
| 6/28/2017  | <0.001       | <0.001       |        |        |           |          |
| 7/7/2017   |              |              |        |        | <0.001    |          |
| 7/13/2017  |              |              |        |        |           | <0.001   |
| 9/22/2017  |              |              |        |        |           | <0.001   |
| 9/29/2017  |              |              |        |        |           | <0.001   |
| 10/6/2017  |              |              |        |        |           | <0.001   |
| 10/12/2017 |              |              |        | <0.001 |           |          |
| 11/21/2017 |              |              |        | <0.001 |           |          |
| 1/11/2018  |              |              |        | <0.001 |           |          |
| 2/20/2018  |              |              |        | <0.001 |           |          |
| 3/28/2018  | <0.001       | <0.001       |        |        |           |          |
| 3/30/2018  |              |              |        |        | <0.001    | <0.001   |
| 4/3/2018   |              |              |        | <0.001 |           |          |
| 6/29/2018  |              |              |        | <0.001 |           |          |
| 8/6/2018   |              |              |        | <0.001 |           |          |
| 9/24/2018  |              |              |        | <0.001 |           |          |
| 2/27/2019  | <0.001       | <0.001       |        |        |           |          |
| 3/5/2019   |              |              |        |        | <0.001    |          |
| 3/6/2019   |              |              |        |        |           | <0.001   |
| 4/4/2019   |              |              |        |        | <0.001    | <0.001   |
| 9/26/2019  |              |              | <0.001 |        | <0.001    | <0.001   |
| 2/11/2020  |              | <0.001       |        |        |           |          |
| 2/12/2020  | <0.001       |              |        |        |           |          |
| 3/19/2020  | <0.001       | <0.001       |        |        |           |          |
| 3/25/2020  |              |              | <0.001 |        |           | <0.001   |
| 3/26/2020  |              |              |        |        | <0.001    |          |
| 9/23/2020  | <0.001       | 0.00016 (J)  |        |        | <0.001    |          |
| 9/24/2020  |              |              | <0.001 |        |           |          |
| 9/25/2020  |              |              |        | <0.001 |           |          |
| 10/7/2020  |              |              |        |        |           | <0.001   |

Constituent: Thallium (mg/L) Analysis Run 5/6/2021 8:36 PM

|           | YGWA-3D (bg) | YGWA-3I (bg) | PZ-35  | PZ-37  | YGWC-24SA | YGWC-36A |
|-----------|--------------|--------------|--------|--------|-----------|----------|
| 2/9/2021  |              |              |        | <0.001 | <0.001    |          |
| 2/10/2021 | <0.001       | <0.001       | <0.001 |        |           | <0.001   |

Constituent: Total Dissolved Solids (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YAMW-1 | YAMW-2 | YAMW-4 | YAMW-5 | YGWA-17S (bg) | YGWA-18I (bg) | YGWA-18S (bg) | YGWA-20S (bg) | YGWA-21I (bg) |
|------------|--------|--------|--------|--------|---------------|---------------|---------------|---------------|---------------|
| 6/6/2016   |        |        |        |        |               | 120           | 58            |               |               |
| 6/7/2016   |        |        |        |        | 28            |               |               | 38            | 60            |
| 7/27/2016  |        |        |        |        | 74            | 94            | 35            | 74            |               |
| 7/28/2016  |        |        |        |        |               |               |               |               | 81            |
| 9/16/2016  |        |        |        |        | 67            |               | 35            |               |               |
| 9/19/2016  |        |        |        |        |               | 92            |               | 45            | 68            |
| 11/2/2016  |        |        |        |        |               |               |               | 53            |               |
| 11/3/2016  |        |        |        |        | 41            | 104           | 48            |               | 61            |
| 1/11/2017  |        |        |        |        | 104           | 133           | 95            |               |               |
| 1/13/2017  |        |        |        |        |               |               |               | 46            | 76            |
| 3/1/2017   |        |        |        |        |               | 119           | 79            |               |               |
| 3/2/2017   |        |        |        |        | 77            |               |               |               |               |
| 3/6/2017   |        |        |        |        |               |               |               | 164           | 167           |
| 4/26/2017  |        |        |        |        |               | 162           | 36            | 34            | 50            |
| 5/2/2017   |        |        |        |        | 142           |               |               |               |               |
| 6/28/2017  |        |        |        |        |               | 98            | 45            |               |               |
| 6/29/2017  |        |        |        |        | 53            |               |               | 68            | 94            |
| 10/3/2017  |        |        |        |        |               |               |               |               | 149           |
| 10/4/2017  |        |        |        |        | 61            |               | 45            | 54            |               |
| 10/5/2017  |        |        |        |        |               | 104           |               |               |               |
| 6/5/2018   |        |        |        |        |               |               |               |               | 109           |
| 6/6/2018   |        |        |        |        |               |               |               | 79            |               |
| 6/7/2018   |        |        |        |        |               | 68            |               |               |               |
| 6/11/2018  |        |        |        |        | 70            |               | 74            |               |               |
| 9/25/2018  |        |        |        |        | 86            | 109           | 63            | 73            | 122           |
| 10/16/2018 | 209    |        |        |        |               |               |               |               |               |
| 4/2/2019   |        |        |        |        | 72            |               |               |               | 134           |
| 4/3/2019   |        |        |        |        |               | 89            | 63            | 57            |               |
| 9/24/2019  |        |        |        |        |               |               |               |               | 157           |
| 9/25/2019  |        |        |        |        | 81            |               |               | 75            |               |
| 9/26/2019  |        |        |        |        |               | 126           | 72            |               |               |
| 3/24/2020  |        |        |        |        | 71            | 91            | 59            | 76            | 117           |
| 3/25/2020  | 139    |        |        |        |               |               |               |               |               |
| 9/23/2020  |        | 62     | 329    |        | 99            | 103           | 81            |               |               |
| 9/24/2020  | 106    |        |        | 788    |               |               |               | 69            | 113           |
| 3/3/2021   | 121    | 40     | 245    |        | 57            | 95            | 37            | 53            |               |
| 3/4/2021   |        |        |        | 604    |               |               |               |               | 110           |

Constituent: Total Dissolved Solids (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YGWA-39 (bg) | YGWA-40 (bg) | YGWA-4I (bg) | YGWA-5D (bg) | YGWA-5I (bg) | YGWC-23S | YGWC-38 | YGWC-41 | YGWC-42 |
|------------|--------------|--------------|--------------|--------------|--------------|----------|---------|---------|---------|
| 6/2/2016   |              |              | 96           | 160          | 66           |          |         |         |         |
| 6/7/2016   |              |              |              |              |              | 130      |         |         |         |
| 7/26/2016  |              |              | 92           | 177          | 78           |          |         |         |         |
| 7/28/2016  |              |              |              |              |              | 119      |         |         |         |
| 8/30/2016  |              |              |              |              |              |          |         |         | 1650    |
| 9/14/2016  |              |              | 102          | 187          | 73           |          |         |         |         |
| 9/20/2016  |              |              |              |              |              | 132      |         |         |         |
| 11/2/2016  |              |              | 115          | 181          |              |          |         |         |         |
| 11/4/2016  |              |              |              |              | 75           |          |         |         |         |
| 11/8/2016  |              |              |              |              |              | 146      |         |         |         |
| 11/16/2016 |              |              |              |              |              |          |         |         | 1420    |
| 1/12/2017  |              |              |              | 202          | 86           |          |         |         |         |
| 1/13/2017  |              |              | 67           | 202          |              |          |         |         |         |
| 1/16/2017  |              |              | 0.           |              |              | 194      |         |         |         |
| 2/27/2017  |              |              |              |              |              | 104      |         |         | 1640    |
| 3/6/2017   |              |              | 150          |              |              |          |         |         | 1040    |
| 3/0/2017   |              |              | 155          | 257          | 108          |          |         |         |         |
| 3/7/2017   |              |              |              | 237          | 100          | 200      |         |         |         |
| 5/9/2017   |              |              | 107          | 165          |              | 200      |         |         |         |
| 5/1/2017   |              |              | 107          | 100          | 102          | 221      |         |         |         |
| 5/2/2017   |              |              |              |              | 103          | 221      |         |         | 1000    |
| 5/10/2017  |              |              |              | 100          | 70           |          |         |         | 1630    |
| 6/2//2017  |              |              |              | 189          | /3           |          |         |         |         |
| 6/29/2017  |              |              | 79           |              |              |          |         |         |         |
| 7/10/2017  |              |              |              |              |              | 123      |         |         |         |
| 7/11/2017  |              |              |              |              |              |          |         |         | 1800    |
| 10/3/2017  |              |              |              | 170          | 89           |          |         |         |         |
| 10/5/2017  |              |              | 95           |              |              |          |         |         |         |
| 10/11/2017 | 68           |              |              |              |              | 100      |         |         |         |
| 10/12/2017 |              | 74           |              |              |              |          | 1360    | 636     | 1600    |
| 11/20/2017 | 139          | 179          |              |              |              |          | 1390    |         |         |
| 11/21/2017 |              |              |              |              |              |          |         | 706     |         |
| 1/10/2018  |              | 140          |              |              |              |          |         |         |         |
| 1/11/2018  | 153          |              |              |              |              |          |         | 701     |         |
| 1/12/2018  |              |              |              |              |              |          | 1400    |         |         |
| 2/19/2018  |              | 119          |              |              |              |          |         | 630     |         |
| 2/20/2018  | 87           |              |              |              |              |          | 1300    |         |         |
| 4/3/2018   | 85           | 106          |              |              |              |          | 1390    | 660     |         |
| 4/4/2018   |              |              |              |              |              |          |         |         | 1520    |
| 6/6/2018   |              |              |              | 151          |              |          |         |         |         |
| 6/7/2018   |              |              | 90           |              | 142          |          |         |         |         |
| 6/12/2018  |              |              |              |              |              | 115      |         |         |         |
| 6/27/2018  |              |              |              |              |              |          |         | 575     |         |
| 6/28/2018  | 88           | 112          |              |              |              |          | 1310    |         |         |
| 8/7/2018   | 89           | 103          |              |              |              |          | 1340    | 574     |         |
| 9/20/2018  |              |              |              |              |              |          |         |         | 1240    |
| 9/24/2018  | 82           | 107          |              |              |              |          | 1400    | 588     |         |
| 9/26/2018  |              |              | 116          | 144          | 86           |          |         |         |         |
| 9/27/2018  |              |              |              |              |              | 105      |         |         |         |
| 3/26/2019  |              | 90           |              |              |              |          |         |         |         |
| 3/27/2019  | 75           | -            |              |              |              |          | 1190    |         | 1100    |
| 3/28/2019  | -            |              |              |              |              |          |         | 372     |         |
| 4/3/2019   |              |              | 111          | 142          | 83           |          |         | 572     |         |
| -10/2010   |              |              |              | 174          |              |          |         |         |         |

|           | YGWA-39 (bg) | YGWA-40 (bg) | YGWA-4I (bg) | YGWA-5D (bg) | YGWA-5I (bg) | YGWC-23S | YGWC-38 | YGWC-41 | YGWC-42 |
|-----------|--------------|--------------|--------------|--------------|--------------|----------|---------|---------|---------|
| 4/4/2019  |              |              |              |              |              | 85       |         |         |         |
| 9/24/2019 |              |              |              | 129          | 79           |          |         |         |         |
| 9/25/2019 |              |              | 117          |              |              |          |         |         |         |
| 9/27/2019 |              |              |              |              |              | 96       |         |         |         |
| 10/9/2019 | 119          | 98           |              |              |              |          | 1100    | 440     | 1170    |
| 3/24/2020 |              | 84           |              | 139          | 68           |          |         |         |         |
| 3/25/2020 | 158          |              | 146          |              |              |          | 883     | 428     | 1200    |
| 3/26/2020 |              |              |              |              |              | 110      |         |         |         |
| 9/22/2020 |              |              | 83           | 104          | 75           |          |         |         |         |
| 9/24/2020 | 170          | 77           |              |              |              | 129      |         |         | 1060    |
| 9/25/2020 |              |              |              |              |              |          | 664     | 307     |         |
| 3/2/2021  |              |              |              | 52           | 67           |          |         |         |         |
| 3/3/2021  |              |              | 80           |              |              |          |         |         |         |
| 3/4/2021  | 168          | 57           |              |              |              | 96       | 600     | 224     | 501     |
|           |              |              |              |              |              |          |         |         |         |

Constituent: Total Dissolved Solids (mg/L) Analysis Run 5/6/2021 8:36 PM

|            | YGWC-43 | YGWC-49 | YGWA-47 (bg) | GWA-2 (bg) | YGWA-14S (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-2I (bg) | YGWA-30I (bg) |
|------------|---------|---------|--------------|------------|---------------|--------------|--------------|--------------|---------------|
| 6/1/2016   |         |         |              |            |               | 120          | 54           |              |               |
| 6/2/2016   |         |         |              |            | 46            |              |              |              | 36            |
| 7/25/2016  |         |         |              |            |               |              | 48           |              | 50            |
| 7/26/2016  |         |         |              |            | 54            | 94           |              |              |               |
| 8/30/2016  |         |         | 319          |            |               |              |              |              |               |
| 8/31/2016  | 80      |         |              | 209        |               |              |              |              |               |
| 9/1/2016   |         | 228     |              |            |               |              |              |              |               |
| 9/13/2016  |         |         |              |            |               | 105          | 67           |              |               |
| 9/14/2016  |         |         |              |            |               |              |              | 152          |               |
| 9/15/2016  |         |         |              |            | 54            |              |              |              |               |
| 9/19/2016  |         |         |              |            |               |              |              |              | 35            |
| 11/1/2016  |         |         |              |            |               | 44           |              |              | <25           |
| 11/2/2016  |         |         |              |            | 71            |              |              |              |               |
| 11/4/2016  |         |         |              |            |               |              | 60           | 148          |               |
| 11/1/2016  |         |         | 280          |            |               |              | 00           | 140          |               |
| 11/14/2010 |         | 211     | 200          |            |               |              |              |              |               |
| 11/15/2010 | 110     | 211     |              |            |               |              |              |              |               |
| 11/10/2010 | 112     |         |              | 100        |               |              |              |              |               |
| 11/28/2016 |         |         |              | 102        |               |              |              |              |               |
| 12/15/2016 |         |         |              |            |               |              |              | 191          |               |
| 1/10/2017  |         |         |              |            | 45            |              |              |              |               |
| 1/11/2017  |         |         |              |            |               | 107          |              |              |               |
| 1/16/2017  |         |         |              |            |               |              | 65           | 180          | 47            |
| 2/21/2017  |         |         |              |            |               |              |              |              | <25           |
| 2/22/2017  |         |         |              | 164        |               |              |              |              |               |
| 2/24/2017  | 147     |         | 162          |            |               |              |              |              |               |
| 2/27/2017  |         | 382     |              |            |               |              |              |              |               |
| 3/2/2017   |         |         |              |            |               | 98           | 61           |              |               |
| 3/3/2017   |         |         |              |            |               |              |              | 156          |               |
| 3/8/2017   |         |         |              |            | 178           |              |              |              |               |
| 4/26/2017  |         |         |              |            | 52            |              |              |              | 55            |
| 4/27/2017  |         |         |              |            |               | 116          | 31           |              |               |
| 4/28/2017  |         |         |              |            |               |              |              | 130          |               |
| 5/8/2017   |         |         | 194          | 145        |               |              |              |              |               |
| 5/9/2017   |         | 154     |              |            |               |              |              |              |               |
| 5/10/2017  | 203     |         |              |            |               |              |              |              |               |
| 5/26/2017  |         |         |              |            |               |              |              | 223          |               |
| 6/27/2017  |         |         |              |            |               | 89           | 12           | 220          |               |
| 6/28/2017  |         |         |              |            |               | 00           | 72           | 166          |               |
| 6/20/2017  |         |         |              |            | 45            |              |              | 100          | 40            |
| 7/11/2017  | 228     |         | 103          |            | 73            |              |              |              | 74            |
| 7/11/2017  | 230     | 102     | 190          |            |               |              |              |              |               |
| 7/13/2017  |         | 192     |              | 195        |               |              |              |              |               |
| //1//201/  |         |         |              | 691        |               | 110          | 50           | 450          |               |
| 10/3/2017  |         |         |              |            |               | 119          | 58           | 153          |               |
| 10/4/2017  |         |         |              |            |               |              |              |              | 31            |
| 10/5/2017  |         |         |              |            | 40            |              |              |              |               |
| 10/10/2017 |         |         | 175          |            |               |              |              |              |               |
| 10/11/2017 |         | 177     |              |            |               |              |              |              |               |
| 10/12/2017 | 287     |         |              |            |               |              |              |              |               |
| 10/16/2017 |         |         |              | 218        |               |              |              |              |               |
| 2/19/2018  |         |         |              | 173        |               |              |              |              |               |
| 4/0/0010   |         |         |              |            |               |              |              |              |               |
| 4/2/2018   |         |         | 192          |            |               |              |              |              |               |

### Constituent: Total Dissolved Solids (mg/L) Analysis Run 5/6/2021 8:36 PM

|           | YGWC-43 | YGWC-49 | YGWA-47 (bg) | GWA-2 (bg) | YGWA-14S (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-2I (bg) | YGWA-30I (bg) |
|-----------|---------|---------|--------------|------------|---------------|--------------|--------------|--------------|---------------|
| 6/5/2018  |         |         |              |            |               | 127          |              |              |               |
| 6/6/2018  |         |         |              |            |               |              | 96           |              |               |
| 6/7/2018  |         |         |              |            |               |              |              | 146          |               |
| 6/8/2018  |         |         |              |            | 114           |              |              |              |               |
| 6/11/2018 |         |         |              |            |               |              |              |              | 59            |
| 8/6/2018  |         |         |              | 158        |               |              |              |              |               |
| 9/19/2018 |         |         | 186          |            |               |              |              |              |               |
| 9/20/2018 | 434     | 186     |              |            |               |              |              |              |               |
| 10/1/2018 |         |         |              |            | 50            | 117          | 60           | 155          |               |
| 10/2/2018 |         |         |              |            |               |              |              |              | 57            |
| 2/25/2019 |         |         |              | 92         |               |              |              |              |               |
| 3/27/2019 |         |         | 170          |            |               |              |              |              |               |
| 3/28/2019 | 323     | 164     |              |            |               | 87           | 87           |              |               |
| 3/29/2019 |         |         |              |            | 63            |              |              | 150          |               |
| 4/1/2019  |         |         |              |            |               |              |              |              | 54            |
| 6/12/2019 |         |         |              | 226        |               |              |              |              |               |
| 9/24/2019 |         |         |              |            |               | 124          | 54           | 146          |               |
| 9/25/2019 |         |         |              |            | 64            |              |              |              | 51            |
| 9/26/2019 |         | 192     |              |            |               |              |              |              |               |
| 10/8/2019 |         |         | 172          | 276        |               |              |              |              |               |
| 10/9/2019 | 501     |         |              |            |               |              |              |              |               |
| 3/17/2020 |         |         | 165          | 185        |               |              |              |              |               |
| 3/18/2020 |         |         |              |            | 57            |              | 35           |              |               |
| 3/19/2020 |         |         |              |            |               | 116          |              | 148          | 47            |
| 3/25/2020 | 352     | 130     |              |            |               |              |              |              |               |
| 9/22/2020 |         |         | 141          | 281        |               |              |              |              |               |
| 9/23/2020 |         |         |              |            |               | 108          | 15           | 161          |               |
| 9/24/2020 |         | 187     |              |            |               |              |              |              | 51            |
| 9/25/2020 | 494     |         |              |            | 54            |              |              |              |               |
| 3/1/2021  |         |         | 145          |            |               |              |              |              | 23            |
| 3/2/2021  |         |         |              | 296        | 67            |              |              |              |               |
| 3/3/2021  |         |         |              |            |               | 99           | 39           | 138          |               |
| 3/4/2021  | 592     | 145     |              |            |               |              |              |              |               |

Constituent: Total Dissolved Solids (mg/L) Analysis Run 5/6/2021 8:36 PM

|            |              |              | DZ 25 | D7 27 | YOWC 3464 |          |
|------------|--------------|--------------|-------|-------|-----------|----------|
| 011/2010   | YGWA-3D (bg) | YGWA-3I (bg) | PZ-35 | PZ-37 | YGWC-245A | YGWC-30A |
| 6/1/2016   | 100          | 150          |       |       |           |          |
| 6/2/2016   | 130          |              |       |       |           |          |
| 6/8/2016   |              |              |       |       | 66        |          |
| //25/2016  |              | 135          |       |       |           |          |
| 7/26/2016  | 141          |              |       |       |           |          |
| 8/1/2016   |              |              |       |       | 56        |          |
| 9/2/2016   |              |              |       |       |           | 243      |
| 9/14/2016  |              | 127          |       |       |           |          |
| 9/15/2016  | 153          |              |       |       |           |          |
| 9/20/2016  |              |              |       |       | 53        |          |
| 11/1/2016  | 92           | 75           |       |       |           |          |
| 11/8/2016  |              |              |       |       | 58        |          |
| 11/14/2016 |              |              |       |       |           | 272      |
| 1/11/2017  | 159          | 148          |       |       |           |          |
| 1/17/2017  |              |              |       |       | 56        |          |
| 2/28/2017  |              |              |       |       |           | 306      |
| 3/1/2017   |              | 182          |       |       |           |          |
| 3/2/2017   | 117          |              |       |       |           |          |
| 3/8/2017   |              |              |       |       | 192       |          |
| 4/26/2017  | 181          | 92           |       |       |           |          |
| 5/2/2017   |              |              |       |       | 113       |          |
| 5/9/2017   |              |              |       |       |           | 303      |
| 6/28/2017  | 169          | 126          |       |       |           |          |
| 7/7/2017   |              |              |       |       | 46        |          |
| 7/13/2017  |              |              |       |       |           | 282      |
| 9/22/2017  |              |              |       |       |           | 309      |
| 9/29/2017  |              |              |       |       |           | 273      |
| 10/4/2017  | 141          | 147          |       |       |           |          |
| 10/5/2017  |              |              |       |       | 48        |          |
| 10/6/2017  |              |              |       |       |           | 287      |
| 10/11/2017 |              |              |       |       |           | 264      |
| 10/12/2017 |              |              |       | 1060  |           |          |
| 11/21/2017 |              |              |       | 1100  |           |          |
| 1/11/2018  |              |              |       | 1020  |           |          |
| 2/20/2018  |              |              |       | 1050  |           |          |
| 4/3/2018   |              |              |       | 1080  |           |          |
| 6/7/2018   | 95           |              |       |       |           |          |
| 6/8/2018   |              | 158          |       |       |           |          |
| 6/12/2018  |              |              |       |       | 79        |          |
| 6/13/2018  |              |              |       |       |           | 292      |
| 6/29/2018  |              |              |       | 979   |           |          |
| 8/6/2018   |              |              |       | 1020  |           |          |
| 9/24/2018  |              |              |       | 1090  |           |          |
| 9/26/2018  |              |              |       |       | 59        | 277      |
| 10/1/2018  | 165          | 138          |       |       |           |          |
| 10/16/2018 |              |              | 123   |       |           |          |
| 4/1/2019   | 149          | 19 (J)       |       |       |           |          |
| 4/4/2019   |              |              |       |       | 63        | 240      |
| 9/25/2019  | 157          | 159          |       |       |           |          |
| 9/26/2019  |              |              |       |       | 81        | 198      |
| 3/19/2020  | 146          | 148          |       |       |           |          |
| 3/25/2020  |              |              | 84    |       |           | 164      |

Constituent: Total Dissolved Solids (mg/L) Analysis Run 5/6/2021 8:36 PM

|           | YGWA-3D (bg) | YGWA-3I (bg) | PZ-35 | PZ-37 | YGWC-24SA | YGWC-36A |
|-----------|--------------|--------------|-------|-------|-----------|----------|
| 3/26/2020 |              |              |       |       | 67        |          |
| 9/23/2020 | 157          | 155          |       |       | 87        |          |
| 9/24/2020 |              |              | 100   |       |           |          |
| 9/25/2020 |              |              |       | 878   |           |          |
| 10/7/2020 |              |              |       |       |           | 137      |
| 3/3/2021  | 137          | 111          |       |       | 70        |          |
| 3/4/2021  |              |              | 59    | 856   |           | 69       |
|           |              |              |       |       |           |          |

# FIGURE B.

# Box & Whiskers Plot



Constituent: Antimony Analysis Run 5/6/2021 8:37 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Box & Whiskers Plot

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Box & Whiskers Plot



Constituent: Antimony Analysis Run 5/6/2021 8:37 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6







Constituent: Antimony Analysis Run 5/6/2021 8:37 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Constituent: Antimony Analysis Run 5/6/2021 8:37 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG

### Box & Whiskers Plot



Constituent: Arsenic Analysis Run 5/6/2021 8:37 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: Arsenic Analysis Run 5/6/2021 8:37 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Box & Whiskers Plot



Constituent: Arsenic Analysis Run 5/6/2021 8:37 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6







Constituent: Arsenic Analysis Run 5/6/2021 8:37 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG

### Box & Whiskers Plot



Constituent: Barium Analysis Run 5/6/2021 8:37 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Box & Whiskers Plot

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG



Constituent: Barium Analysis Run 5/6/2021 8:37 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6







Constituent: Barium Analysis Run 5/6/2021 8:37 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Constituent: Barium Analysis Run 5/6/2021 8:37 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Box & Whiskers Plot

Constituent: Beryllium Analysis Run 5/6/2021 8:37 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: Beryllium Analysis Run 5/6/2021 8:37 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Box & Whiskers Plot



Constituent: Beryllium Analysis Run 5/6/2021 8:37 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6







Constituent: Beryllium Analysis Run 5/6/2021 8:37 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Box & Whiskers Plot

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG

## 

Box & Whiskers Plot

Constituent: Boron Analysis Run 5/6/2021 8:37 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6





Constituent: Boron Analysis Run 5/6/2021 8:37 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Box & Whiskers Plot



Constituent: Boron Analysis Run 5/6/2021 8:37 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Box & Whiskers Plot



Constituent: Boron Analysis Run 5/6/2021 8:37 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

### Box & Whiskers Plot



Constituent: Cadmium Analysis Run 5/6/2021 8:37 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: Cadmium Analysis Run 5/6/2021 8:37 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Box & Whiskers Plot



Constituent: Cadmium Analysis Run 5/6/2021 8:37 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6







Constituent: Cadmium Analysis Run 5/6/2021 8:37 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

### Box & Whiskers Plot

# $\vec{D}_{E}^{200} +$

Box & Whiskers Plot

Constituent: Calcium Analysis Run 5/6/2021 8:37 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: Calcium Analysis Run 5/6/2021 8:37 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Box & Whiskers Plot



Constituent: Calcium Analysis Run 5/6/2021 8:37 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6







Constituent: Calcium Analysis Run 5/6/2021 8:37 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6


# $\vec{D}_{2}$

Box & Whiskers Plot

Constituent: Chloride Analysis Run 5/6/2021 8:37 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Box & Whiskers Plot

Constituent: Chloride Analysis Run 5/6/2021 8:37 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Box & Whiskers Plot



Constituent: Chloride Analysis Run 5/6/2021 8:37 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Box & Whiskers Plot



Constituent: Chloride Analysis Run 5/6/2021 8:37 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG

#### Box & Whiskers Plot



Constituent: Chromium Analysis Run 5/6/2021 8:37 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Box & Whiskers Plot



Constituent: Chromium Analysis Run 5/6/2021 8:37 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG



Constituent: Chromium Analysis Run 5/6/2021 8:37 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Box & Whiskers Plot



Constituent: Chromium Analysis Run 5/6/2021 8:37 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

#### Box & Whiskers Plot

# 

Box & Whiskers Plot

Constituent: Cobalt Analysis Run 5/6/2021 8:37 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: Cobalt Analysis Run 5/6/2021 8:37 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG

Box & Whiskers Plot



Constituent: Cobalt Analysis Run 5/6/2021 8:37 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG





Constituent: Cobalt Analysis Run 5/6/2021 8:37 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

#### Box & Whiskers Plot

#### Box & Whiskers Plot



Box & Whiskers Plot



Constituent: Combined Radium 226 + 228 Analysis Run 5/6/2021 8:37 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Box & Whiskers Plot



Constituent: Combined Radium 226 + 228 Analysis Run 5/6/2021 8:37 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6







Constituent: Combined Radium 226 + 228 Analysis Run 5/6/2021 8:37 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Constituent: Combined Radium 226 + 228 Analysis Run 5/6/2021 8:37 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG

# 

Box & Whiskers Plot

Constituent: Fluoride Analysis Run 5/6/2021 8:37 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6





Constituent: Fluoride Analysis Run 5/6/2021 8:37 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG

Box & Whiskers Plot



Constituent: Fluoride Analysis Run 5/6/2021 8:37 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6







Constituent: Fluoride Analysis Run 5/6/2021 8:38 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Box & Whiskers Plot

Constituent: Lead Analysis Run 5/6/2021 8:38 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Box & Whiskers Plot

Constituent: Lead Analysis Run 5/6/2021 8:38 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Box & Whiskers Plot



Constituent: Lead Analysis Run 5/6/2021 8:38 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6







Constituent: Lead Analysis Run 5/6/2021 8:38 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

# 

Box & Whiskers Plot

Constituent: Lithium Analysis Run 5/6/2021 8:38 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: Lithium Analysis Run 5/6/2021 8:38 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Box & Whiskers Plot



Constituent: Lithium Analysis Run 5/6/2021 8:38 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6







Constituent: Lithium Analysis Run 5/6/2021 8:38 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

#### Box & Whiskers Plot

# 

Box & Whiskers Plot

Constituent: Mercury Analysis Run 5/6/2021 8:38 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: Mercury Analysis Run 5/6/2021 8:38 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Box & Whiskers Plot



Constituent: Mercury Analysis Run 5/6/2021 8:38 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6







Constituent: Mercury Analysis Run 5/6/2021 8:38 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

#### Box & Whiskers Plot

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG



Box & Whiskers Plot



Box & Whiskers Plot

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG

Box & Whiskers Plot



Constituent: Molybdenum Analysis Run 5/6/2021 8:38 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Box & Whiskers Plot



Constituent: Molybdenum Analysis Run 5/6/2021 8:38 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Constituent: Molybdenum Analysis Run 5/6/2021 8:38 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Constituent: Molybdenum Analysis Run 5/6/2021 8:38 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG



Box & Whiskers Plot



Box & Whiskers Plot

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG



Constituent: pH Analysis Run 5/6/2021 8:38 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG

Box & Whiskers Plot



Constituent: pH Analysis Run 5/6/2021 8:38 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Constituent: pH Analysis Run 5/6/2021 8:38 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Constituent: pH Analysis Run 5/6/2021 8:38 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG

mg/L

# 

Box & Whiskers Plot

Constituent: Selenium Analysis Run 5/6/2021 8:38 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6





Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG

Box & Whiskers Plot



Constituent: Selenium Analysis Run 5/6/2021 8:38 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Box & Whiskers Plot



Constituent: Selenium Analysis Run 5/6/2021 8:38 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



# 

Box & Whiskers Plot

Constituent: Sulfate Analysis Run 5/6/2021 8:38 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: Sulfate Analysis Run 5/6/2021 8:38 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Box & Whiskers Plot



Constituent: Sulfate Analysis Run 5/6/2021 8:38 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Box & Whiskers Plot



Constituent: Sulfate Analysis Run 5/6/2021 8:38 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

#### Box & Whiskers Plot



Box & Whiskers Plot

Constituent: Thallium Analysis Run 5/6/2021 8:38 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Box & Whiskers Plot

Constituent: Thallium Analysis Run 5/6/2021 8:38 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Box & Whiskers Plot



Constituent: Thallium Analysis Run 5/6/2021 8:38 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Box & Whiskers Plot



Constituent: Thallium Analysis Run 5/6/2021 8:38 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

#### Box & Whiskers Plot



Constituent: Total Dissolved Solids Analysis Run 5/6/2021 8:38 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: Total Dissolved Solids Analysis Run 5/6/2021 8:38 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG

Box & Whiskers Plot



Constituent: Total Dissolved Solids Analysis Run 5/6/2021 8:38 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6







Constituent: Total Dissolved Solids Analysis Run 5/6/2021 8:38 PM Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



# FIGURE C.

|           |                                      |              | Outlie                   | er Summary               |                           |
|-----------|--------------------------------------|--------------|--------------------------|--------------------------|---------------------------|
|           |                                      | Plant Yates  | Client: Southern Company | Data: Plant Yates AMA-R6 | Printed 5/6/2021, 8:40 PM |
|           |                                      |              |                          |                          |                           |
|           |                                      |              |                          |                          |                           |
|           | GWA-2 Cobalt (mg/L)<br>VGWA-47 pH (S | <u>.</u> U.) |                          |                          |                           |
| /2/2018   | 6.3 (O)                              |              |                          |                          |                           |
| 8/26/2020 | 0.2 (O)                              |              |                          |                          |                           |
| 9/22/2020 | 0.16 (O)                             |              |                          |                          |                           |
| 3/2/2021  | 0.21 (O)                             |              |                          |                          |                           |
|           |                                      |              |                          |                          |                           |
|           |                                      |              |                          |                          |                           |
|           |                                      |              |                          |                          |                           |
|           |                                      |              |                          |                          |                           |
|           |                                      |              |                          |                          |                           |
|           |                                      |              |                          |                          |                           |
|           |                                      |              |                          |                          |                           |
|           |                                      |              |                          |                          |                           |
|           |                                      |              |                          |                          |                           |
|           |                                      |              |                          |                          |                           |
|           |                                      |              |                          |                          |                           |
|           |                                      |              |                          |                          |                           |
|           |                                      |              |                          |                          |                           |
|           |                                      |              |                          |                          |                           |
|           |                                      |              |                          |                          |                           |
|           |                                      |              |                          |                          |                           |
|           |                                      |              |                          |                          |                           |
|           |                                      |              |                          |                          |                           |
|           |                                      |              |                          |                          |                           |
|           |                                      |              |                          |                          |                           |
|           |                                      |              |                          |                          |                           |
|           |                                      |              |                          |                          |                           |
|           |                                      |              |                          |                          |                           |
|           |                                      |              |                          |                          |                           |
|           |                                      |              |                          |                          |                           |
|           |                                      |              |                          |                          |                           |
|           |                                      |              |                          |                          |                           |
|           |                                      |              |                          |                          |                           |
|           |                                      |              |                          |                          |                           |
|           |                                      |              |                          |                          |                           |
|           |                                      |              |                          |                          |                           |
|           |                                      |              |                          |                          |                           |
|           |                                      |              |                          |                          |                           |
|           |                                      |              |                          |                          |                           |
|           |                                      |              |                          |                          |                           |
|           |                                      |              |                          |                          |                           |
|           |                                      |              |                          |                          |                           |
|           |                                      |              |                          |                          |                           |

# FIGURE D.

# Appendix III Interwell Prediction Limits - Significant Results

Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Printed 5/6/2021, 8:46 PM

| Constituent                   | Well      | Upper Lim. | Lower Lim. | Date     | Observ. | <u>Sig.</u> Bg N | <u>Bg Mean</u> | Std. Dev. | <u>%NDs</u> ND | Adj. <u>Trar</u> | nsform Alpha |       | Method                      |
|-------------------------------|-----------|------------|------------|----------|---------|------------------|----------------|-----------|----------------|------------------|--------------|-------|-----------------------------|
| Boron (mg/L)                  | YGWC-23S  | 0.16       | n/a        | 3/4/2021 | 1.2     | Yes 293          | n/a            | n/a       | 45.73 n/a      | n/a              | 0.000        | 04917 | NP Inter (normality) 1 of 2 |
| Boron (mg/L)                  | YGWC-38   | 0.16       | n/a        | 3/4/2021 | 6.4     | Yes 293          | n/a            | n/a       | 45.73 n/a      | n/a              | 0.000        | 04917 | NP Inter (normality) 1 of 2 |
| Boron (mg/L)                  | YGWC-41   | 0.16       | n/a        | 3/4/2021 | 4       | Yes 293          | n/a            | n/a       | 45.73 n/a      | n/a              | 0.000        | 04917 | NP Inter (normality) 1 of 2 |
| Boron (mg/L)                  | YGWC-42   | 0.16       | n/a        | 3/4/2021 | 14.8    | Yes 293          | n/a            | n/a       | 45.73 n/a      | n/a              | 0.000        | 04917 | NP Inter (normality) 1 of 2 |
| Boron (mg/L)                  | YGWC-43   | 0.16       | n/a        | 3/4/2021 | 3.6     | Yes 293          | n/a            | n/a       | 45.73 n/a      | n/a              | 0.000        | 04917 | NP Inter (normality) 1 of 2 |
| Calcium (mg/L)                | YGWC-38   | 37         | n/a        | 3/4/2021 | 87      | Yes 293          | n/a            | n/a       | 1.024 n/a      | n/a              | 0.000        | 04917 | NP Inter (normality) 1 of 2 |
| Calcium (mg/L)                | YGWC-42   | 37         | n/a        | 3/4/2021 | 90.7    | Yes 293          | n/a            | n/a       | 1.024 n/a      | n/a              | 0.000        | 04917 | NP Inter (normality) 1 of 2 |
| Chloride (mg/L)               | YGWC-24SA | 7.9        | n/a        | 3/3/2021 | 8.6     | Yes 293          | n/a            | n/a       | 0 n/a          | n/a              | 0.000        | 04917 | NP Inter (normality) 1 of 2 |
| pH (S.U.)                     | YGWC-41   | 8.39       | 4.86       | 3/4/2021 | 4.69    | Yes 373          | n/a            | n/a       | 0 n/a          | n/a              | 0.000        | 09834 | NP Inter (normality) 1 of 2 |
| Sulfate (mg/L)                | YGWC-38   | 160        | n/a        | 3/4/2021 | 356     | Yes 293          | n/a            | n/a       | 6.143 n/a      | n/a              | 0.000        | 04917 | NP Inter (normality) 1 of 2 |
| Sulfate (mg/L)                | YGWC-42   | 160        | n/a        | 3/4/2021 | 537     | Yes 293          | n/a            | n/a       | 6.143 n/a      | n/a              | 0.000        | 04917 | NP Inter (normality) 1 of 2 |
| Sulfate (mg/L)                | YGWC-43   | 160        | n/a        | 3/4/2021 | 328     | Yes 293          | n/a            | n/a       | 6.143 n/a      | n/a              | 0.000        | 04917 | NP Inter (normality) 1 of 2 |
| Total Dissolved Solids (mg/L) | YGWC-38   | 221.5      | n/a        | 3/4/2021 | 600     | Yes 293          | 10.01          | 2.574     | 0.6826 Non     | e sqrt           | (x) 0.000    | 9403  | Param Inter 1 of 2          |
| Total Dissolved Solids (mg/L) | YGWC-41   | 221.5      | n/a        | 3/4/2021 | 224     | Yes 293          | 10.01          | 2.574     | 0.6826 Non     | e sqrt           | (x) 0.000    | 9403  | Param Inter 1 of 2          |
| Total Dissolved Solids (mg/L) | YGWC-42   | 221.5      | n/a        | 3/4/2021 | 501     | Yes 293          | 10.01          | 2.574     | 0.6826 Non     | e sqrt           | (x) 0.000    | 9403  | Param Inter 1 of 2          |
| Total Dissolved Solids (mg/L) | YGWC-43   | 221.5      | n/a        | 3/4/2021 | 592     | Yes 293          | 10.01          | 2.574     | 0.6826 Non     | e sqrt           | (x) 0.000    | 9403  | Param Inter 1 of 2          |
|                               |           |            |            |          |         |                  |                |           |                |                  |              |       |                             |

# Appendix III Interwell Prediction Limits - All Results

Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Printed 5/6/2021, 8:46 PM

| Constituent                   | Well      | Upper Lim | Lower Lim. | Date     | Observ. | Sig. | <u>Bg N</u> | <u>Bg Mean</u> | Std. Dev. | <u>%NDs</u> | <u>ND Adj.</u> | Transforr | n <u>Alpha</u> | Method                      |
|-------------------------------|-----------|-----------|------------|----------|---------|------|-------------|----------------|-----------|-------------|----------------|-----------|----------------|-----------------------------|
| Boron (mg/L)                  | YGWC-23S  | 0.16      | n/a        | 3/4/2021 | 1.2     | Yes  | 293         | n/a            | n/a       | 45.73       | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Boron (mg/L)                  | YGWC-38   | 0.16      | n/a        | 3/4/2021 | 6.4     | Yes  | 293         | n/a            | n/a       | 45.73       | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Boron (mg/L)                  | YGWC-41   | 0.16      | n/a        | 3/4/2021 | 4       | Yes  | 293         | n/a            | n/a       | 45.73       | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Boron (mg/L)                  | YGWC-42   | 0.16      | n/a        | 3/4/2021 | 14.8    | Yes  | 293         | n/a            | n/a       | 45.73       | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Boron (mg/L)                  | YGWC-43   | 0.16      | n/a        | 3/4/2021 | 3.6     | Yes  | 293         | n/a            | n/a       | 45.73       | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Boron (mg/L)                  | YGWC-49   | 0.16      | n/a        | 3/4/2021 | 0.04ND  | No   | 293         | n/a            | n/a       | 45.73       | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Boron (mg/L)                  | YGWC-24SA | 0.16      | n/a        | 3/3/2021 | 0.04ND  | No   | 293         | n/a            | n/a       | 45.73       | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Boron (mg/L)                  | YGWC-36A  | 0.16      | n/a        | 3/4/2021 | 0.0088J | No   | 293         | n/a            | n/a       | 45.73       | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Calcium (mg/L)                | YGWC-23S  | 37        | n/a        | 3/4/2021 | 10.2    | No   | 293         | n/a            | n/a       | 1.024       | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Calcium (mg/L)                | YGWC-38   | 37        | n/a        | 3/4/2021 | 87      | Yes  | 293         | n/a            | n/a       | 1.024       | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Calcium (mg/L)                | YGWC-41   | 37        | n/a        | 3/4/2021 | 16.4    | No   | 293         | n/a            | n/a       | 1.024       | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Calcium (mg/L)                | YGWC-42   | 37        | n/a        | 3/4/2021 | 90.7    | Yes  | 293         | n/a            | n/a       | 1.024       | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Calcium (mg/L)                | YGWC-43   | 37        | n/a        | 3/4/2021 | 32.2    | No   | 293         | n/a            | n/a       | 1.024       | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Calcium (mg/L)                | YGWC-49   | 37        | n/a        | 3/4/2021 | 13      | No   | 293         | n/a            | n/a       | 1.024       | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Calcium (mg/L)                | YGWC-24SA | 37        | n/a        | 3/3/2021 | 2.4     | No   | 293         | n/a            | n/a       | 1.024       | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Calcium (mg/L)                | YGWC-36A  | 37        | n/a        | 3/4/2021 | 5.6     | No   | 293         | n/a            | n/a       | 1.024       | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Chloride (mg/L)               | YGWC-23S  | 7.9       | n/a        | 3/4/2021 | 1.8     | No   | 293         | n/a            | n/a       | 0           | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Chloride (mg/L)               | YGWC-38   | 7.9       | n/a        | 3/4/2021 | 3.9     | No   | 293         | n/a            | n/a       | 0           | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Chloride (mg/L)               | YGWC-41   | 7.9       | n/a        | 3/4/2021 | 3.4     | No   | 293         | n/a            | n/a       | 0           | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Chloride (mg/L)               | YGWC-42   | 7.9       | n/a        | 3/4/2021 | 2.7     | No   | 293         | n/a            | n/a       | 0           | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Chloride (mg/L)               | YGWC-43   | 7.9       | n/a        | 3/4/2021 | 2.1     | No   | 293         | n/a            | n/a       | 0           | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Chloride (mg/L)               | YGWC-49   | 7.9       | n/a        | 3/4/2021 | 4.1     | No   | 293         | n/a            | n/a       | 0           | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Chloride (mg/L)               | YGWC-24SA | 7.9       | n/a        | 3/3/2021 | 8.6     | Yes  | 293         | n/a            | n/a       | 0           | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Chloride (mg/L)               | YGWC-36A  | 7.9       | n/a        | 3/4/2021 | 6.6     | No   | 293         | n/a            | n/a       | 0           | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Fluoride (mg/L)               | YGWC-23S  | 0.68      | n/a        | 3/4/2021 | 0.1ND   | No   | 362         | n/a            | n/a       | 68.51       | n/a            | n/a       | 0.00004917     | NP Inter (NDs) 1 of 2       |
| Fluoride (mg/L)               | YGWC-38   | 0.68      | n/a        | 3/4/2021 | 0.1ND   | No   | 362         | n/a            | n/a       | 68.51       | n/a            | n/a       | 0.00004917     | NP Inter (NDs) 1 of 2       |
| Fluoride (mg/L)               | YGWC-41   | 0.68      | n/a        | 3/4/2021 | 0.1ND   | No   | 362         | n/a            | n/a       | 68.51       | n/a            | n/a       | 0.00004917     | NP Inter (NDs) 1 of 2       |
| Fluoride (mg/L)               | YGWC-42   | 0.68      | n/a        | 3/4/2021 | 0.1ND   | No   | 362         | n/a            | n/a       | 68.51       | n/a            | n/a       | 0.00004917     | NP Inter (NDs) 1 of 2       |
| Fluoride (mg/L)               | YGWC-43   | 0.68      | n/a        | 3/4/2021 | 0.063J  | No   | 362         | n/a            | n/a       | 68.51       | n/a            | n/a       | 0.00004917     | NP Inter (NDs) 1 of 2       |
| Fluoride (mg/L)               | YGWC-49   | 0.68      | n/a        | 3/4/2021 | 0.1ND   | No   | 362         | n/a            | n/a       | 68.51       | n/a            | n/a       | 0.00004917     | NP Inter (NDs) 1 of 2       |
| Fluoride (mg/L)               | YGWC-24SA | 0.68      | n/a        | 3/3/2021 | 0.1ND   | No   | 362         | n/a            | n/a       | 68.51       | n/a            | n/a       | 0.00004917     | NP Inter (NDs) 1 of 2       |
| Fluoride (mg/L)               | YGWC-36A  | 0.68      | n/a        | 3/4/2021 | 0.1ND   | No   | 362         | n/a            | n/a       | 68.51       | n/a            | n/a       | 0.00004917     | NP Inter (NDs) 1 of 2       |
| pH (S.U.)                     | YGWC-23S  | 8.39      | 4.86       | 3/4/2021 | 5.44    | No   | 373         | n/a            | n/a       | 0           | n/a            | n/a       | 0.00009834     | NP Inter (normality) 1 of 2 |
| pH (S.U.)                     | YGWC-38   | 8.39      | 4.86       | 3/4/2021 | 5.01    | No   | 373         | n/a            | n/a       | 0           | n/a            | n/a       | 0.00009834     | NP Inter (normality) 1 of 2 |
| рН (S.U.)                     | YGWC-41   | 8.39      | 4.86       | 3/4/2021 | 4.69    | Yes  | 373         | n/a            | n/a       | 0           | n/a            | n/a       | 0.00009834     | NP Inter (normality) 1 of 2 |
| pH (S.U.)                     | YGWC-42   | 8.39      | 4.86       | 3/4/2021 | 5.59    | No   | 373         | n/a            | n/a       | 0           | n/a            | n/a       | 0.00009834     | NP Inter (normality) 1 of 2 |
| pH (S.U.)                     | YGWC-43   | 8.39      | 4.86       | 3/4/2021 | 5.88    | No   | 373         | n/a            | n/a       | 0           | n/a            | n/a       | 0.00009834     | NP Inter (normality) 1 of 2 |
| pH (S.U.)                     | YGWC-49   | 8.39      | 4.86       | 3/4/2021 | 5.88    | No   | 373         | n/a            | n/a       | 0           | n/a            | n/a       | 0.00009834     | NP Inter (normality) 1 of 2 |
| pH (S.U.)                     | YGWC-24SA | 8.39      | 4.86       | 3/3/2021 | 5.7     | No   | 373         | n/a            | n/a       | 0           | n/a            | n/a       | 0.00009834     | NP Inter (normality) 1 of 2 |
| pH (S.U.)                     | YGWC-36A  | 8.39      | 4.86       | 3/4/2021 | 5.67    | No   | 373         | n/a            | n/a       | 0           | n/a            | n/a       | 0.00009834     | NP Inter (normality) 1 of 2 |
| Sulfate (mg/L)                | YGWC-23S  | 160       | n/a        | 3/4/2021 | 61.7    | No   | 293         | n/a            | n/a       | 6.143       | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Sulfate (mg/L)                | YGWC-38   | 160       | n/a        | 3/4/2021 | 356     | Yes  | 293         | n/a            | n/a       | 6.143       | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Sulfate (mg/L)                | YGWC-41   | 160       | n/a        | 3/4/2021 | 117     | No   | 293         | n/a            | n/a       | 6.143       | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Sulfate (mg/L)                | YGWC-42   | 160       | n/a        | 3/4/2021 | 537     | Yes  | 293         | n/a            | n/a       | 6.143       | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Sulfate (mg/L)                | YGWC-43   | 160       | n/a        | 3/4/2021 | 328     | Yes  | 293         | n/a            | n/a       | 6.143       | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Sulfate (mg/L)                | YGWC-49   | 160       | n/a        | 3/4/2021 | 75.1    | No   | 293         | n/a            | n/a       | 6.143       | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Sulfate (mg/L)                | YGWC-24SA | 160       | n/a        | 3/3/2021 | 0.5ND   | No   | 293         | n/a            | n/a       | 6.143       | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Sulfate (mg/L)                | YGWC-36A  | 160       | n/a        | 3/4/2021 | 6.3     | No   | 293         | n/a            | n/a       | 6.143       | n/a            | n/a       | 0.00004917     | NP Inter (normality) 1 of 2 |
| Total Dissolved Solids (mg/L) | YGWC-23S  | 221.5     | n/a        | 3/4/2021 | 96      | No   | 293         | 10.01          | 2.574     | 0.682       | 6 None         | sqrt(x)   | 0.0009403      | Param Inter 1 of 2          |
| Total Dissolved Solids (mg/L) | YGWC-38   | 221.5     | n/a        | 3/4/2021 | 600     | Yes  | 293         | 10.01          | 2.574     | 0.682       | 6 None         | sqrt(x)   | 0.0009403      | Param Inter 1 of 2          |
| Total Dissolved Solids (mg/L) | YGWC-41   | 221.5     | n/a        | 3/4/2021 | 224     | Yes  | 293         | 10.01          | 2.574     | 0.682       | 6 None         | sqrt(x)   | 0.0009403      | Param Inter 1 of 2          |
| Total Dissolved Solids (mg/L) | YGWC-42   | 221.5     | n/a        | 3/4/2021 | 501     | Yes  | 293         | 10.01          | 2.574     | 0.682       | 6 None         | sqrt(x)   | 0.0009403      | Param Inter 1 of 2          |
| Total Dissolved Solids (mg/L) | YGWC-43   | 221.5     | n/a        | 3/4/2021 | 592     | Yes  | 293         | 10.01          | 2.574     | 0.682       | 6 None         | sqrt(x)   | 0.0009403      | Param Inter 1 of 2          |
| Total Dissolved Solids (mg/L) | YGWC-49   | 221.5     | n/a        | 3/4/2021 | 145     | No   | 293         | 10.01          | 2.574     | 0.682       | 6 None         | sqrt(x)   | 0.0009403      | Param Inter 1 of 2          |
| Total Dissolved Solids (mg/L) | YGWC-24SA | 221.5     | n/a        | 3/3/2021 | 70      | No   | 293         | 10.01          | 2.574     | 0.682       | 6 None         | sqrt(x)   | 0.0009403      | Param Inter 1 of 2          |
| Total Dissolved Solids (mg/L) | YGWC-36A  | 221.5     | n/a        | 3/4/2021 | 69      | No   | 293         | 10.01          | 2.574     | 0.682       | 6 None         | sqrt(x)   | 0.0009403      | Param Inter 1 of 2          |

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

Exceeds Limit: YGWC-23S, YGWC-38, YGWC-41, YGWC-42, YGWC-43

Prediction Limit Interwell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because the Chi Squared normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 293 background values. 45.73% NDs. Annual perconstituent alpha = 0.0007864. Individual comparison alpha = 0.00004917 (1 of 2). Comparing 8 points to limit.

> Constituent: Boron Analysis Run 5/6/2021 8:43 PM View: Appendix III Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG

Exceeds Limit: YGWC-38, YGWC-42

Hollow symbols indicate censored values

Non-parametric test used in lieu of parametric prediction limit because the Chi Squared normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 293 background values. 1.024% NDs. Annual perconstituent alpha = 0.0007864. Individual comparison alpha = 0.00004917 (1 of 2). Comparing 8 points to limit.

YGWC-38

YGWC-41

YGWC-42

YGWC-43

YGWC-49

YGWC-36A

Limit = 37

Constituent: Calcium Analysis Run 5/6/2021 8:43 PM View: Appendix III

Prediction Limit

Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG

Exceeds Limit: YGWC-24SA

Prediction Limit Interwell Non-parametric



Non-parametric test used in lieu of parametric prediction limit because the Chi Squared normality test showed the data to be non-normal at the 0.01 alpha level. Limit is highest of 293 background values. Annual per-constituent alpha = 0.0007864. Individual comparison alpha = 0.0004917 (1 of 2). Comparing 8 points to limit. Sanitas<sup>14</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Within Limit Prediction Limit Interwell Non-parametric 0.7 0.56 0.42



Non-parametric test used in lieu of parametric prediction limit because censored data exceeded 50%. Limit is highest of 362 background values. 68.51% NDs. Annual per-constituent alpha = 0.0007864. Individual comparison alpha = 0.0004917 (1 of 2). Comparing 8 points to limit.



Non-parametric test used in lieu of parametric prediction limit because the Chi Squared normality test showed the data to be non-normal at the 0.01 alpha level. Limits are highest and lowest of 373 background values. Annual perconstituent alpha = 0.001573. Individual comparison alpha = 0.00009834 (1 of 2). Comparing 8 points to limit.



Constituent: Sulfate Analysis Run 5/6/2021 8:43 PM View: Appendix III

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.

YGWC-43

mg/L

Exceeds Limit: YGWC-38, YGWC-42,

2000

1600

1200

800

400

0

6/7/16

5/19/17

Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

4/30/18 4/11/19 3/22/20

to be non-normal at the 0.01 alpha level. Limit is highest of 293 background values. 6.143% NDs. Annual per-

constituent alpha = 0.0007864. Individual comparison alpha = 0.00004917 (1 of 2). Comparing 8 points to limit.

Non-parametric test used in lieu of parametric prediction limit because the Chi Squared normality test showed the data

Prediction Limit

Interwell Non-parametric

.

V

3/4/21

YGWC-38

YGWC-41

YGWC-42

YGWC-43

YGWC-49

YGWC-36A

Limit = 160

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG



Background Data Summary (based on square root transformation): Mean=10.01, Std. Dev.=2.574, n=293, 0.6826% NDs. Normality test: Chi Squared @alpha = 0.01, calculated = 12.97, critical = 14.07. Kappa = 1.894 (c=7, w=8, 1 of 2, event alpha = 0.05132). N exceeds UG tables; Kappa based on n=150. Report alpha = 0.007498. Individual comparison alpha = 0.0009403. Comparing 8 points to limit.

Constituent: Total Dissolved Solids Analysis Run 5/6/2021 8:43 PM View: Appendix III

## **Prediction Limit**

Constituent: Boron (mg/L) Analysis Run 5/6/2021 8:46 PM View: Appendix III

|            | YGWA-3I (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-5D (bg) | YGWA-14S (bg) | YGWA-3D (bg) | YGWA-30I (bg) | YGWA-5I (bg) | YGWA-4I (bg) |
|------------|--------------|--------------|--------------|--------------|---------------|--------------|---------------|--------------|--------------|
| 6/1/2016   | <0.04        | <0.04        | <0.04        |              |               |              |               |              |              |
| 6/2/2016   |              |              |              | <0.04        | <0.04         | <0.04        | <0.04         | <0.04        | <0.04        |
| 6/6/2016   |              |              |              |              |               |              |               |              |              |
| 6/7/2016   |              |              |              |              |               |              |               |              |              |
| 6/8/2016   |              |              |              |              |               |              |               |              |              |
| 7/25/2016  | <0.04        |              | <0.04        |              |               | / N          | <0.04         |              |              |
| 7/26/2016  |              | 0.0055 (J)   |              | 0.0052 (J)   | 0.0177 (J)    | 0.0097 (J)   |               | <0.04        | 0.0047 (J)   |
| //2//2016  |              |              |              |              |               |              |               |              |              |
| 7/28/2016  |              |              |              |              |               |              |               |              |              |
| 8/1/2016   |              |              |              |              |               |              |               |              |              |
| 8/30/2016  |              |              |              |              |               |              |               |              |              |
| 8/31/2016  |              |              |              |              |               |              |               |              |              |
| 9/1/2016   |              |              |              |              |               |              |               |              |              |
| 9/2/2016   |              |              |              |              |               |              |               |              |              |
| 9/13/2016  |              | <0.04        | <0.04        |              |               |              |               |              |              |
| 9/14/2016  | <0.04        |              |              | 0.0071 (J)   |               | <b>.</b>     |               | 0.01 (J)     | <0.04        |
| 9/15/2016  |              |              |              |              | 0.0214 (J)    | 0.0102 (J)   |               |              |              |
| 9/16/2016  |              |              |              |              |               |              |               |              |              |
| 9/19/2016  |              |              |              |              |               |              | <0.04         |              |              |
| 9/20/2016  |              |              |              |              |               |              |               |              |              |
| 11/1/2016  | <0.04        | 0.0086 (J)   |              |              |               | <0.04        | <0.04         |              |              |
| 11/2/2016  |              |              |              | <0.04        | <0.04         |              |               |              | <0.04        |
| 11/3/2016  |              |              |              |              |               |              |               |              |              |
| 11/4/2016  |              |              | <0.04        |              |               |              |               | <0.04        |              |
| 11/8/2016  |              |              |              |              |               |              |               |              |              |
| 11/14/2016 |              |              |              |              |               |              |               |              |              |
| 11/15/2016 |              |              |              |              |               |              |               |              |              |
| 11/16/2016 |              |              |              |              |               |              |               |              |              |
| 11/28/2016 |              |              |              |              |               |              |               |              |              |
| 12/15/2016 |              |              |              |              |               |              |               |              |              |
| 1/10/2017  |              |              |              |              | 0.0198 (J)    |              |               |              |              |
| 1/11/2017  | <0.04        | 0.0074 (J)   |              |              |               | <0.04        |               |              |              |
| 1/12/2017  |              |              |              | 0.0076 (J)   |               |              |               | <0.04        |              |
| 1/13/2017  |              |              |              |              |               |              |               |              | <0.04        |
| 1/16/2017  |              |              | <0.04        |              |               |              | <0.04         |              |              |
| 1/1//201/  |              |              |              |              |               |              |               |              |              |
| 2/21/2017  |              |              |              |              |               |              | <0.04         |              |              |
| 2/22/2017  |              |              |              |              |               |              |               |              |              |
| 2/24/2017  |              |              |              |              |               |              |               |              |              |
| 2/2//2017  |              |              |              |              |               |              |               |              |              |
| 2/28/2017  |              |              |              |              |               |              |               |              |              |
| 3/1/2017   | <0.04        | 0.000 (1)    |              |              |               | 0.0004 (1)   |               |              |              |
| 3/2/2017   |              | U.UU8 (J)    | <0.04        |              |               | 0.0084 (J)   |               |              |              |
| 3/3/2017   |              |              |              |              |               |              |               |              |              |
| 3/6/2017   |              |              |              | 0.0000 ( 1)  |               |              |               | -0.04        | <0.04        |
| 3/7/2017   |              |              |              | 0.0089 (J)   | 0.0465.7%     |              |               | <0.04        |              |
| 3/8/2017   |              |              |              |              | 0.0189 (J)    |              |               |              |              |
| 3/9/2017   |              |              |              |              | 0.0101 ( ))   |              |               |              |              |
| 4/26/2017  | <0.04        | 0.0000 ( "   |              |              | 0.0161 (J)    | <0.04        | <0.04         |              |              |
| 4/2//2017  |              | 0.0066 (J)   | <0.04        |              |               |              |               |              |              |
| 4/28/2017  |              |              |              | 0.0001 (**   |               |              |               |              |              |
| 5/1/2017   |              |              |              | 0.0061 (J)   |               |              |               |              | <0.04        |

|            | YGWA-3I (bg)     | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-5D (bg) | YGWA-14S (bg) | YGWA-3D (bg) | YGWA-30I (bg) | YGWA-5I (bg) | YGWA-4I (bg) |
|------------|------------------|--------------|--------------|--------------|---------------|--------------|---------------|--------------|--------------|
| 5/2/2017   |                  |              |              |              |               |              |               | <0.04        |              |
| 5/8/2017   |                  |              |              |              |               |              |               |              |              |
| 5/9/2017   |                  |              |              |              |               |              |               |              |              |
| 5/10/2017  |                  |              |              |              |               |              |               |              |              |
| 5/26/2017  |                  |              |              |              |               |              |               |              |              |
| 6/27/2017  |                  | 0.0087 ( 1)  | 0.006 ( 1)   | 0.0079 ( 1)  |               |              |               | <0.04        |              |
| 0/27/2017  | -0.04            | 0.0087 (J)   | 0.000 (3)    | 0.0079(3)    |               | -0.04        |               | <0.04        |              |
| 6/28/2017  | <0.04            |              |              |              |               | <0.04        |               |              |              |
| 6/29/2017  |                  |              |              |              |               |              |               |              | <0.04        |
| 6/30/2017  |                  |              |              |              | 0.0173 (J)    |              | <0.04         |              |              |
| 7/7/2017   |                  |              |              |              |               |              |               |              |              |
| 7/10/2017  |                  |              |              |              |               |              |               |              |              |
| 7/11/2017  |                  |              |              |              |               |              |               |              |              |
| 7/13/2017  |                  |              |              |              |               |              |               |              |              |
| 7/17/2017  |                  |              |              |              |               |              |               |              |              |
| 9/22/2017  |                  |              |              |              |               |              |               |              |              |
| 9/29/2017  |                  |              |              |              |               |              |               |              |              |
| 10/3/2017  |                  | 0 0072 (.1)  | 0 0071 (.1)  | 0 0094 (.1)  |               |              |               | <0.04        |              |
| 10/4/2017  | <0.04            | 0.0072 (0)   | 0.007 (0)    | 0.0001(0)    |               | <0.04        | <0.04         | 0.01         |              |
| 10/4/2017  | -0.04            |              |              |              | 0.0172 ( 1)   | <b>10.04</b> | -0.04         |              | -0.04        |
| 10/5/2017  |                  |              |              |              | 0.0173 (3)    |              |               |              | <0.04        |
| 10/6/2017  |                  |              |              |              |               |              |               |              |              |
| 10/10/2017 |                  |              |              |              |               |              |               |              |              |
| 10/11/2017 |                  |              |              |              |               |              |               |              |              |
| 10/12/2017 |                  |              |              |              |               |              |               |              |              |
| 10/16/2017 |                  |              |              |              |               |              |               |              |              |
| 11/20/2017 |                  |              |              |              |               |              |               |              |              |
| 11/21/2017 |                  |              |              |              |               |              |               |              |              |
| 1/10/2018  |                  |              |              |              |               |              |               |              |              |
| 1/11/2018  |                  |              |              |              |               |              |               |              |              |
| 1/12/2018  |                  |              |              |              |               |              |               |              |              |
| 2/19/2018  |                  |              |              |              |               |              |               |              |              |
| 2/20/2018  |                  |              |              |              |               |              |               |              |              |
| 4/2/2018   |                  |              |              |              |               |              |               |              |              |
| 4/3/2018   |                  |              |              |              |               |              |               |              |              |
| 4/4/2018   |                  |              |              |              |               |              |               |              |              |
| 6/5/2018   |                  | 0.0052 (1)   |              |              |               |              |               |              |              |
| 6/6/2018   |                  | 0.0032 (3)   | -0.04        | 0.0008 ( 1)  |               |              |               |              |              |
| 0/0/2018   |                  |              | <0.04        | 0.0098 (J)   |               | 0.004 (1)    |               | -0.04        | 0.0045 (1)   |
| 0/7/2018   |                  |              |              |              | 0.010 (1)     | 0.004 (J)    |               | <0.04        | 0.0045 (J)   |
| 0/8/2018   | <b>&lt;</b> 0.04 |              |              |              | U.U.I.3 (J)   |              | 0.014 (15     |              |              |
| 6/11/2018  |                  |              |              |              |               |              | 0.014 (J)     |              |              |
| 6/12/2018  |                  |              |              |              |               |              |               |              |              |
| 6/13/2018  |                  |              |              |              |               |              |               |              |              |
| 6/27/2018  |                  |              |              |              |               |              |               |              |              |
| 6/28/2018  |                  |              |              |              |               |              |               |              |              |
| 8/6/2018   |                  |              |              |              |               |              |               |              |              |
| 8/7/2018   |                  |              |              |              |               |              |               |              |              |
| 9/19/2018  |                  |              |              |              |               |              |               |              |              |
| 9/20/2018  |                  |              |              |              |               |              |               |              |              |
| 9/24/2018  |                  |              |              |              |               |              |               |              |              |
| 9/25/2018  |                  |              |              |              |               |              |               |              |              |
| 9/26/2018  |                  |              |              | 0.01 (J)     |               |              |               | 0.0057 (J)   | 0.005 (J)    |
| 9/27/2018  |                  |              |              |              |               |              |               | . /          |              |
| 10/1/2018  | <0.04            | 0.021 (J)    | 0.0049 (J)   |              | 0.015 (J)     | <0.04        |               |              |              |

#### Constituent: Boron (mg/L) Analysis Run 5/6/2021 8:46 PM View: Appendix III

|           | YGWA-3I (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-5D (bg) | YGWA-14S (bg) | YGWA-3D (bg) | YGWA-30I (bg) | YGWA-5I (bg) | YGWA-4I (bg) |
|-----------|--------------|--------------|--------------|--------------|---------------|--------------|---------------|--------------|--------------|
| 10/2/2018 |              |              |              |              |               |              | <0.04         |              |              |
| 2/25/2019 |              |              |              |              |               |              |               |              |              |
| 3/26/2019 |              |              |              |              |               |              |               |              |              |
| 3/27/2019 |              |              |              |              |               |              |               |              |              |
| 3/28/2019 |              | 0.005 (J)    | <0.04        |              |               |              |               |              |              |
| 3/29/2019 |              |              |              |              | 0.014 (J)     |              |               |              |              |
| 4/1/2019  | <0.04        |              |              |              |               | <0.04        | <0.04         |              |              |
| 4/2/2019  |              |              |              |              |               |              |               |              |              |
| 4/3/2019  |              |              |              | 0.0076 (J)   |               |              |               | 0.0044 (J)   | 0.0055 (J)   |
| 4/4/2019  |              |              |              |              |               |              |               |              |              |
| 6/12/2019 |              |              |              |              |               |              |               |              |              |
| 9/24/2019 |              | 0.0064 (J)   | 0.0055 (J)   | 0.01 (J)     |               |              |               | 0.0049 (J)   |              |
| 9/25/2019 | <0.04        |              |              |              | 0.018 (J)     | 0.0054 (J)   | <0.04         |              | <0.04        |
| 9/26/2019 |              |              |              |              |               |              |               |              |              |
| 9/27/2019 |              |              |              |              |               |              |               |              |              |
| 10/8/2019 |              |              |              |              |               |              |               |              |              |
| 10/9/2019 |              |              |              |              |               |              |               |              |              |
| 3/17/2020 |              |              |              |              |               |              |               |              |              |
| 3/18/2020 |              |              | 0.0087 (J)   |              | 0.02 (J)      |              |               |              |              |
| 3/19/2020 | 0.0053 (J)   | 0.0085 (J)   |              |              |               | 0.0073 (J)   | 0.0052 (J)    |              |              |
| 3/24/2020 |              |              |              | 0.011 (J)    |               |              |               | 0.0068 (J)   |              |
| 3/25/2020 |              |              |              |              |               |              |               |              | 0.011 (J)    |
| 3/26/2020 |              |              |              |              |               |              |               |              |              |
| 9/22/2020 |              |              |              | 0.0079 (J)   |               |              |               | 0.0053 (J)   | <0.04        |
| 9/23/2020 | 0.0073 (J)   | <0.04        | <0.04        |              |               | 0.012 (J)    |               |              |              |
| 9/24/2020 |              |              |              |              |               |              | 0.0075 (J)    |              |              |
| 9/25/2020 |              |              |              |              | 0.02 (J)      |              |               |              |              |
| 10/7/2020 |              |              |              |              |               |              |               |              |              |
| 3/1/2021  |              |              |              |              |               |              | <0.04         |              |              |
| 3/2/2021  |              |              |              | 0.0068 (J)   | 0.017 (J)     |              |               | 0.011 (J)    |              |
| 3/3/2021  | <0.04        | <0.04        | <0.04        |              |               | <0.04        |               |              | 0.0056 (J)   |
| 3/4/2021  |              |              |              |              |               |              |               |              |              |

|            | YGWA-18I (bg) | YGWA-18S (bg) | YGWC-23S | YGWA-21I (bg) | YGWA-20S (bg) | YGWA-17S (bg) | YGWC-24SA | YGWA-47 (bg) | YGWC-42 |
|------------|---------------|---------------|----------|---------------|---------------|---------------|-----------|--------------|---------|
| 6/1/2016   |               |               |          |               |               |               |           |              |         |
| 6/2/2016   |               |               |          |               |               |               |           |              |         |
| 6/6/2016   | <0.04         | <0.04         |          |               |               |               |           |              |         |
| 6/7/2016   |               |               | 0.99     | <0.04         | <0.04         | <0.04         |           |              |         |
| 6/8/2016   |               |               |          |               |               |               | <0.04     |              |         |
| 7/25/2016  |               |               |          |               |               |               |           |              |         |
| 7/26/2016  |               |               |          |               |               |               |           |              |         |
| 7/27/2016  | <0.04         | 0.0059 (J)    |          |               | <0.04         | 0.008 (J)     |           |              |         |
| 7/28/2016  |               |               | 1.09     | <0.04         |               |               |           |              |         |
| 8/1/2016   |               |               |          |               |               |               | <0.04     |              |         |
| 8/30/2016  |               |               |          |               |               |               |           | 0.0166 (J)   | 24.7    |
| 8/31/2016  |               |               |          |               |               |               |           |              |         |
| 9/1/2016   |               |               |          |               |               |               |           |              |         |
| 9/2/2016   |               |               |          |               |               |               |           |              |         |
| 9/13/2016  |               |               |          |               |               |               |           |              |         |
| 9/14/2016  |               |               |          |               |               |               |           |              |         |
| 9/15/2016  |               |               |          |               |               |               |           |              |         |
| 9/16/2016  |               | 0.0079 (J)    |          |               |               | 0.0086 (J)    |           |              |         |
| 9/19/2016  | <0.04         |               |          | <0.04         | <0.04         |               |           |              |         |
| 9/20/2016  |               |               | 1.35     |               |               |               | <0.04     |              |         |
| 11/1/2016  |               |               |          |               |               |               |           |              |         |
| 11/2/2016  |               |               |          |               | <0.04         |               |           |              |         |
| 11/3/2016  | <0.04         | 0.0082 (J)    |          | <0.04         |               | 0.0077 (J)    |           |              |         |
| 11/4/2016  |               |               |          |               |               |               |           |              |         |
| 11/8/2016  |               |               | 1.5      |               |               |               | <0.04     |              |         |
| 11/14/2016 |               |               |          |               |               |               |           | 0.0166 (J)   |         |
| 11/15/2016 |               |               |          |               |               |               |           |              |         |
| 11/16/2016 |               |               |          |               |               |               |           |              | 16.4    |
| 11/28/2016 |               |               |          |               |               |               |           |              |         |
| 12/15/2016 |               |               |          |               |               |               |           |              |         |
| 1/10/2017  |               |               |          |               |               |               |           |              |         |
| 1/11/2017  | <0.04         | 0.0096 (J)    |          |               |               | 0.0092 (J)    |           |              |         |
| 1/12/2017  |               |               |          |               |               |               |           |              |         |
| 1/13/2017  |               |               |          | <0.04         | <0.04         |               |           |              |         |
| 1/16/2017  |               |               | 1.67     |               |               |               |           |              |         |
| 1/17/2017  |               |               |          |               |               |               | <0.04     |              |         |
| 2/21/2017  |               |               |          |               |               |               |           |              |         |
| 2/22/2017  |               |               |          |               |               |               |           |              |         |
| 2/24/2017  |               |               |          |               |               |               |           | 0.0145 (J)   |         |
| 2/27/2017  |               |               |          |               |               |               |           |              | 17.9    |
| 2/28/2017  |               |               |          |               |               |               |           |              |         |
| 3/1/2017   | <0.04         | <0.04         |          |               |               |               |           |              |         |
| 3/2/2017   |               |               |          |               |               | 0.0095 (J)    |           |              |         |
| 3/3/2017   |               |               |          | 0.04          |               |               |           |              |         |
| 3/6/2017   |               |               |          | <0.04         | <0.04         |               |           |              |         |
| 3///2017   |               |               |          |               |               |               | 0.04      |              |         |
| 3/8/2017   |               |               |          |               |               |               | <0.04     |              |         |
| 3/9/2017   |               | 0.0001 ( "    | 1.44     | 0.04          |               |               |           |              |         |
| 4/26/2017  | <0.04         | 0.0091 (J)    |          | <0.04         | <0.04         |               |           |              |         |
| 4/2//2017  |               |               |          |               |               |               |           |              |         |
| 4/28/2017  |               |               |          |               |               |               |           |              |         |
| 5/1/2017   |               |               |          |               |               |               |           |              |         |

|            | YGWA-18I (bg) | YGWA-18S (bg) | YGWC-23S | YGWA-21I (bg) | YGWA-20S (bg) | YGWA-17S (bg) | YGWC-24SA   | YGWA-47 (bg) | YGWC-42 |
|------------|---------------|---------------|----------|---------------|---------------|---------------|-------------|--------------|---------|
| 5/2/2017   |               |               | 1.2      |               |               | <0.04         | 0.0099 (J)  |              |         |
| 5/8/2017   |               |               |          |               |               |               |             | 0.0141 (J)   |         |
| 5/9/2017   |               |               |          |               |               |               |             |              |         |
| 5/10/2017  |               |               |          |               |               |               |             |              | 20.4    |
| 5/26/2017  |               |               |          |               |               |               |             |              |         |
| 6/27/2017  |               |               |          |               |               |               |             |              |         |
| 6/28/2017  | <0.04         | 0.0079 (J)    |          |               |               |               |             |              |         |
| 6/29/2017  |               |               |          | <0.04         | <0.04         | 0.0074 (J)    |             |              |         |
| 6/30/2017  |               |               |          |               |               |               |             |              |         |
| 7/7/2017   |               |               |          |               |               |               | 0.0076 (J)  |              |         |
| 7/10/2017  |               |               | 1.12     |               |               |               |             |              |         |
| 7/11/2017  |               |               |          |               |               |               |             | 0.0131 (J)   | 25.2    |
| 7/13/2017  |               |               |          |               |               |               |             |              |         |
| 7/17/2017  |               |               |          |               |               |               |             |              |         |
| 9/22/2017  |               |               |          |               |               |               |             |              |         |
| 9/29/2017  |               |               |          |               |               |               |             |              |         |
| 10/3/2017  |               |               |          | <0.04         |               |               |             |              |         |
| 10/4/2017  |               | 0.009 (J)     |          |               | <0.04         | 0.0077 (J)    |             |              |         |
| 10/5/2017  | <0.04         |               |          |               |               |               | <0.04       |              |         |
| 10/6/2017  |               |               |          |               |               |               |             |              |         |
| 10/10/2017 |               |               |          |               |               |               |             | 0.0124 (J)   |         |
| 10/11/2017 |               |               | 1.09     |               |               |               |             |              |         |
| 10/12/2017 |               |               |          |               |               |               |             |              | 20      |
| 10/16/2017 |               |               |          |               |               |               |             |              |         |
| 11/20/2017 |               |               |          |               |               |               |             |              |         |
| 11/21/2017 |               |               |          |               |               |               |             |              |         |
| 1/10/2018  |               |               |          |               |               |               |             |              |         |
| 1/11/2018  |               |               |          |               |               |               |             |              |         |
| 1/12/2018  |               |               |          |               |               |               |             |              |         |
| 2/19/2018  |               |               |          |               |               |               |             |              |         |
| 2/20/2018  |               |               |          |               |               |               |             |              |         |
| 4/2/2018   |               |               |          |               |               |               |             | 0.013 (J)    |         |
| 4/3/2018   |               |               |          |               |               |               |             |              |         |
| 4/4/2018   |               |               |          | 0.0000 (1)    |               |               |             |              | 22.7    |
| 6/5/2018   |               |               |          | 0.0092 (J)    | 0.0040 (1)    |               |             |              |         |
| 6/6/2018   |               |               |          |               | 0.0049 (J)    |               |             |              |         |
| 6/7/2018   | <0.04         |               |          |               |               |               |             |              |         |
| 6/6/2018   |               | 0.0002 (1)    |          |               |               | 0.01 (1)      |             |              |         |
| 6/11/2018  |               | 0.0093 (J)    | 0.0      |               |               | 0.01 (J)      | 0.018 ( 1)  |              |         |
| 6/12/2018  |               |               | 0.9      |               |               |               | 0.018 (J)   |              |         |
| 6/13/2018  |               |               |          |               |               |               |             |              |         |
| 6/22/2018  |               |               |          |               |               |               |             |              |         |
| 0/20/2010  |               |               |          |               |               |               |             |              |         |
| 8/7/2019   |               |               |          |               |               |               |             |              |         |
| 0/10/2010  |               |               |          |               |               |               |             | 0.012 ( 1)   |         |
| 9/19/2010  |               |               |          |               |               |               |             | 0.012 (J)    | 20.3    |
| 912012010  |               |               |          |               |               |               |             |              | 20.3    |
| J/24/2010  | 0.0046(1)     | 0.007 (1)     |          | 0.0054 ( !)   | <0.04         | 0.0096 ( !)   |             |              |         |
| 9/26/2019  | 0.0040 (0)    | 0.007 (0)     |          | 0.0004 (0)    | -0.04         | 0.0000 (0)    | 0.0055 ( 1) |              |         |
| 9/27/2019  |               |               | 0.71     |               |               |               | 0.0000 (0)  |              |         |
| 10/1/2018  |               |               | 0.71     |               |               |               |             |              |         |
| 10/1/2010  |               |               |          |               |               |               |             |              |         |

|           | YGWA-18I (bg) | YGWA-18S (bg) | YGWC-23S | YGWA-21I (bg) | YGWA-20S (bg) | YGWA-17S (bg) | YGWC-24SA  | YGWA-47 (bg) | YGWC-42 |
|-----------|---------------|---------------|----------|---------------|---------------|---------------|------------|--------------|---------|
| 10/2/2018 |               |               |          |               |               |               |            |              |         |
| 2/25/2019 |               |               |          |               |               |               |            |              |         |
| 3/26/2019 |               |               |          |               |               |               |            |              |         |
| 3/27/2019 |               |               |          |               |               |               |            | 0.013 (J)    | 20.3    |
| 3/28/2019 |               |               |          |               |               |               |            |              |         |
| 3/29/2019 |               |               |          |               |               |               |            |              |         |
| 4/1/2019  |               |               |          |               |               |               |            |              |         |
| 4/2/2019  |               |               |          | 0.011 (J)     |               | 0.0066 (J)    |            |              |         |
| 4/3/2019  | <0.04         | 0.0053 (J)    |          |               | <0.04         |               |            |              |         |
| 4/4/2019  |               |               | 0.6      |               |               |               | <0.04      |              |         |
| 6/12/2019 |               |               |          |               |               |               |            |              |         |
| 9/24/2019 |               |               |          | 0.018 (J)     |               |               |            |              |         |
| 9/25/2019 |               |               |          |               | <0.04         | 0.0081 (J)    |            |              |         |
| 9/26/2019 | 0.0062 (J)    | 0.0072 (J)    |          |               |               |               | 0.0068 (J) |              |         |
| 9/27/2019 |               |               | 0.58     |               |               |               |            |              |         |
| 10/8/2019 |               |               |          |               |               |               |            | 0.012 (J)    |         |
| 10/9/2019 |               |               |          |               |               |               |            |              | 16.6    |
| 3/17/2020 |               |               |          |               |               |               |            | 0.023 (J)    |         |
| 3/18/2020 |               |               |          |               |               |               |            |              |         |
| 3/19/2020 |               |               |          |               |               |               |            |              |         |
| 3/24/2020 | 0.0054 (J)    | 0.01 (J)      |          | 0.016 (J)     | <0.04         | 0.0092 (J)    |            |              |         |
| 3/25/2020 |               |               |          |               |               |               |            |              | 15.5    |
| 3/26/2020 |               |               | 0.94     |               |               |               | 0.033 (J)  |              |         |
| 9/22/2020 |               |               |          |               |               |               |            | 0.0076 (J)   |         |
| 9/23/2020 | 0.021 (J)     | 0.006 (J)     |          |               |               | 0.0066 (J)    | <0.04      |              |         |
| 9/24/2020 |               |               | 1.1      | 0.013 (J)     | 0.0094 (J)    |               |            |              | 15.2    |
| 9/25/2020 |               |               |          |               |               |               |            |              |         |
| 10/7/2020 |               |               |          |               |               |               |            |              |         |
| 3/1/2021  |               |               |          |               |               |               |            | 0.013 (J)    |         |
| 3/2/2021  |               |               |          |               |               |               |            |              |         |
| 3/3/2021  | <0.04         | 0.0094 (J)    |          |               | <0.04         | 0.01 (J)      | <0.04      |              |         |
| 3/4/2021  |               |               | 1.2      | 0.0079 (J)    |               |               |            |              | 14.8    |

# **Prediction Limit**

Constituent: Boron (mg/L) Analysis Run 5/6/2021 8:46 PM View: Appendix III

|            | GWA-2 (bg)  | YGWC-43 | YGWC-49    | YGWC-36A | YGWA-2I (bg)              | YGWA-39 (bg) | YGWC-38 | YGWC-41 | YGWA-40 (bg) |
|------------|-------------|---------|------------|----------|---------------------------|--------------|---------|---------|--------------|
| 6/1/2016   |             |         |            |          |                           |              |         |         |              |
| 6/2/2016   |             |         |            |          |                           |              |         |         |              |
| 6/6/2016   |             |         |            |          |                           |              |         |         |              |
| 6/7/2016   |             |         |            |          |                           |              |         |         |              |
| 6/8/2016   |             |         |            |          |                           |              |         |         |              |
| 7/25/2016  |             |         |            |          |                           |              |         |         |              |
| 7/26/2016  |             |         |            |          |                           |              |         |         |              |
| 7/27/2016  |             |         |            |          |                           |              |         |         |              |
| 7/28/2016  |             |         |            |          |                           |              |         |         |              |
| 8/1/2016   |             |         |            |          |                           |              |         |         |              |
| 8/30/2016  |             |         |            |          |                           |              |         |         |              |
| 8/31/2016  | 0.0315 ( 1) | 0 169   |            |          |                           |              |         |         |              |
| 0/1/2016   | 0.0313 (3)  | 0.109   | 0.0112 (1) |          |                           |              |         |         |              |
| 9/1/2016   |             |         | 0.0113 (J) | 0 100    |                           |              |         |         |              |
| 9/2/2016   |             |         |            | 0.133    |                           |              |         |         |              |
| 9/13/2016  |             |         |            |          |                           |              |         |         |              |
| 9/14/2016  |             |         |            |          | <0.04                     |              |         |         |              |
| 9/15/2016  |             |         |            |          |                           |              |         |         |              |
| 9/16/2016  |             |         |            |          |                           |              |         |         |              |
| 9/19/2016  |             |         |            |          |                           |              |         |         |              |
| 9/20/2016  |             |         |            |          |                           |              |         |         |              |
| 11/1/2016  |             |         |            |          |                           |              |         |         |              |
| 11/2/2016  |             |         |            |          |                           |              |         |         |              |
| 11/3/2016  |             |         |            |          |                           |              |         |         |              |
| 11/4/2016  |             |         |            |          | <0.04                     |              |         |         |              |
| 11/8/2016  |             |         |            |          |                           |              |         |         |              |
| 11/14/2016 |             |         |            | 0.287    |                           |              |         |         |              |
| 11/15/2016 |             |         | 0.0074 (J) |          |                           |              |         |         |              |
| 11/16/2016 |             | 0.406   |            |          |                           |              |         |         |              |
| 11/28/2016 | 0.0095 (J)  |         |            |          |                           |              |         |         |              |
| 12/15/2016 |             |         |            |          | 0.0107 (J)                |              |         |         |              |
| 1/10/2017  |             |         |            |          |                           |              |         |         |              |
| 1/11/2017  |             |         |            |          |                           |              |         |         |              |
| 1/12/2017  |             |         |            |          |                           |              |         |         |              |
| 1/13/2017  |             |         |            |          |                           |              |         |         |              |
| 1/16/2017  |             |         |            |          | <0.04                     |              |         |         |              |
| 1/17/2017  |             |         |            |          |                           |              |         |         |              |
| 2/21/2017  |             |         |            |          |                           |              |         |         |              |
| 2/22/2017  | <0.04       |         |            |          |                           |              |         |         |              |
| 2/24/2017  |             | 0.725   |            |          |                           |              |         |         |              |
| 2/27/2017  |             |         | <0.04      |          |                           |              |         |         |              |
| 2/28/2017  |             |         | 0.01       | 0 215    |                           |              |         |         |              |
| 3/1/2017   |             |         |            | 0.215    |                           |              |         |         |              |
| 3/2/2017   |             |         |            |          |                           |              |         |         |              |
| 3/2/2017   |             |         |            |          | <0.04                     |              |         |         |              |
| 3/6/2017   |             |         |            |          | <b>~</b> ∪.U <del>4</del> |              |         |         |              |
| 3/3/2017   |             |         |            |          |                           |              |         |         |              |
| 3///2017   |             |         |            |          |                           |              |         |         |              |
| 3/8/2017   |             |         |            |          |                           |              |         |         |              |
| 3/9/2017   |             |         |            |          |                           |              |         |         |              |
| 4/26/2017  |             |         |            |          |                           |              |         |         |              |
| 4/2//2017  |             |         |            |          |                           |              |         |         |              |
| 4/28/2017  |             |         |            |          | <0.04                     |              |         |         |              |
| 5/1/2017   |             |         |            |          |                           |              |         |         |              |

# **Prediction Limit**

#### Constituent: Boron (mg/L) Analysis Run 5/6/2021 8:46 PM View: Appendix III

|            | GWA-2 (bg)  | YGWC-43 | YGWC-49      | YGWC-36A | YGWA-2I (bg) | YGWA-39 (bg) | YGWC-38 | YGWC-41 | YGWA-40 (bg) |
|------------|-------------|---------|--------------|----------|--------------|--------------|---------|---------|--------------|
| 5/2/2017   |             |         |              |          |              |              |         |         |              |
| 5/8/2017   | 0.0084 (J)  |         |              |          |              |              |         |         |              |
| 5/9/2017   |             |         | <0.04        | 0.233    |              |              |         |         |              |
| 5/10/2017  |             | 0.955   |              |          |              |              |         |         |              |
| 5/26/2017  |             |         |              |          | <0.04        |              |         |         |              |
| 6/27/2017  |             |         |              |          |              |              |         |         |              |
| 6/28/2017  |             |         |              |          | <0.04        |              |         |         |              |
| 6/29/2017  |             |         |              |          |              |              |         |         |              |
| 6/30/2017  |             |         |              |          |              |              |         |         |              |
| 7/7/2017   |             |         |              |          |              |              |         |         |              |
| 7/10/2017  |             |         |              |          |              |              |         |         |              |
| 7/11/2017  |             | 0.994   |              |          |              |              |         |         |              |
| 7/13/2017  |             |         | 0.0093 (J)   | 0.262    |              |              |         |         |              |
| 7/17/2017  | 0 0092 (.1) |         |              |          |              |              |         |         |              |
| 9/22/2017  | 0.0002 (0)  |         |              | 0 238    |              |              |         |         |              |
| 9/29/2017  |             |         |              | 0.235    |              |              |         |         |              |
| 10/3/2017  |             |         |              | 0.200    | <0.04        |              |         |         |              |
| 10/0/2017  |             |         |              |          | -0.04        |              |         |         |              |
| 10/5/2017  |             |         |              |          |              |              |         |         |              |
| 10/6/2017  |             |         |              | 0.256    |              |              |         |         |              |
| 10/10/2017 |             |         |              | 0.230    |              |              |         |         |              |
| 10/10/2017 |             |         | -0.04        | 0.245    |              | 0.0125 (1)   |         |         |              |
| 10/11/2017 |             | 1 15    | <b>~0.04</b> | 0.245    |              | 0.0135 (3)   | 10.2    | 10      | 0.0401       |
| 10/12/2017 | -0.04       | 1.15    |              |          |              |              | 19.5    | 12      | 0.0401       |
| 11/20/2017 | <0.04       |         |              |          |              | 0.0251 (1)   | 21.0    |         | 0.156        |
| 11/20/2017 |             |         |              |          |              | 0.0251 (J)   | 21.0    | 10.1    | 0.150        |
| 1/12/2017  |             |         |              |          |              |              |         | 12.1    | 0.15         |
| 1/10/2018  |             |         |              |          |              | 0.0255 (1)   |         | 10.0    | 0.15         |
| 1/11/2018  |             |         |              |          |              | 0.0255 (J)   | 10 7    | 12.8    |              |
| 1/12/2018  |             |         |              |          |              |              | 18.7    | 15.0    | 0.440        |
| 2/19/2018  | <0.04       |         |              |          |              | -0.04        | 10.0    | 15.2    | 0.146        |
| 2/20/2018  |             |         |              |          |              | <0.04        | 18.0    |         |              |
| 4/2/2018   |             |         |              |          |              | <b>.</b>     |         |         |              |
| 4/3/2018   |             |         |              |          |              | 0.033 (J)    | 20.9    | 14.5    | 0.12         |
| 4/4/2018   |             | 1.2     | 0.0041 (J)   |          |              |              |         |         |              |
| 6/5/2018   |             |         |              |          |              |              |         |         |              |
| 6/6/2018   |             |         |              |          |              |              |         |         |              |
| 6/7/2018   |             |         |              |          | <0.04        |              |         |         |              |
| 6/8/2018   |             |         |              |          |              |              |         |         |              |
| 6/11/2018  |             |         |              |          |              |              |         |         |              |
| 6/12/2018  |             |         |              |          |              |              |         |         |              |
| 6/13/2018  |             |         |              | 0.25     |              |              |         |         |              |
| 6/27/2018  |             |         |              |          |              |              |         | 14.1    |              |
| 6/28/2018  |             |         |              |          |              | 0.053        | 22.7    |         | 0.16         |
| 8/6/2018   | <0.04       |         |              |          |              |              |         |         |              |
| 8/7/2018   |             |         |              |          |              | 0.024 (J)    | 19.1    | 11.9    | 0.12         |
| 9/19/2018  |             |         |              |          |              |              |         |         |              |
| 9/20/2018  |             | 2.1     | 0.0042 (J)   |          |              |              |         |         |              |
| 9/24/2018  |             |         |              |          |              | 0.028 (J)    | 18.4    | 12.2    | 0.099        |
| 9/25/2018  |             |         |              |          |              |              |         |         |              |
| 9/26/2018  |             |         |              | 0.24     |              |              |         |         |              |
| 9/27/2018  |             |         |              |          |              |              |         |         |              |
| 10/1/2018  |             |         |              |          | <0.04        |              |         |         |              |

|           | GWA-2 (bg) | YGWC-43 | YGWC-49   | YGWC-36A   | YGWA-2I (bg) | YGWA-39 (bg) | YGWC-38 | YGWC-41 | YGWA-40 (bg) |
|-----------|------------|---------|-----------|------------|--------------|--------------|---------|---------|--------------|
| 10/2/2018 |            |         |           |            |              |              |         |         |              |
| 2/25/2019 | <0.04      |         |           |            |              |              |         |         |              |
| 3/26/2019 |            |         |           |            |              |              |         |         | 0.096        |
| 3/27/2019 |            |         |           |            |              | 0.017 (J)    | 16.7    |         |              |
| 3/28/2019 |            | 1.8     | <0.04     |            |              |              |         | 7.1     |              |
| 3/29/2019 |            |         |           |            | 0.0065 (J)   |              |         |         |              |
| 4/1/2019  |            |         |           |            |              |              |         |         |              |
| 4/2/2019  |            |         |           |            |              |              |         |         |              |
| 4/3/2019  |            |         |           |            |              |              |         |         |              |
| 4/4/2019  |            |         |           | 0.22       |              |              |         |         |              |
| 6/12/2019 | <0.04      |         |           |            |              |              |         |         |              |
| 9/24/2019 |            |         |           |            | 0.0076 (J)   |              |         |         |              |
| 9/25/2019 |            |         |           |            |              |              |         |         |              |
| 9/26/2019 |            |         | <0.04     | 0.13       |              |              |         |         |              |
| 9/27/2019 |            |         |           |            |              |              |         |         |              |
| 10/8/2019 | <0.04      |         |           |            |              |              |         |         |              |
| 10/9/2019 |            | 2.7     |           |            |              | 0.017 (J)    | 13.5    | 8.6     | 0.079        |
| 3/17/2020 | 0.0051 (J) |         |           |            |              |              |         |         |              |
| 3/18/2020 |            |         |           |            |              |              |         |         |              |
| 3/19/2020 |            |         |           |            | 0.0073 (J)   |              |         |         |              |
| 3/24/2020 |            |         |           |            |              |              |         |         | 0.088 (J)    |
| 3/25/2020 |            | 2.4     | 0.012 (J) | 0.11       |              | 0.043 (J)    | 9.3     | 7.9     |              |
| 3/26/2020 |            |         |           |            |              |              |         |         |              |
| 9/22/2020 | 0.0079 (J) |         |           |            |              |              |         |         |              |
| 9/23/2020 |            |         |           |            | <0.04        |              |         |         |              |
| 9/24/2020 |            |         | 0.062 (J) |            |              | 0.037 (J)    |         |         | 0.087 (J)    |
| 9/25/2020 |            | 3.9     |           |            |              |              | 8       | 6       |              |
| 10/7/2020 |            |         |           | 0.018 (J)  |              |              |         |         |              |
| 3/1/2021  |            |         |           |            |              |              |         |         |              |
| 3/2/2021  | <0.04      |         |           |            |              |              |         |         |              |
| 3/3/2021  |            |         |           |            | <0.04        |              |         |         |              |
| 3/4/2021  |            | 3.6     | <0.04     | 0.0088 (J) |              | 0.033 (J)    | 6.4     | 4       | 0.078        |

## **Prediction Limit**

Constituent: Calcium (mg/L) Analysis Run 5/6/2021 8:46 PM View: Appendix III

|            | YGWA-3I (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-5D (bg) | YGWA-14S (bg) | YGWA-3D (bg) | YGWA-30I (bg) | YGWA-5I (bg) | YGWA-4I (bg) |
|------------|--------------|--------------|--------------|--------------|---------------|--------------|---------------|--------------|--------------|
| 6/1/2016   | 21           | 12           | 2.5          |              |               |              |               |              |              |
| 6/2/2016   |              |              |              | 33           | 1.3           | 28           | 1.3           | 2.4          | 8.8          |
| 6/6/2016   |              |              |              |              |               |              |               |              |              |
| 6/7/2016   |              |              |              |              |               |              |               |              |              |
| 6/8/2016   |              |              |              |              |               |              |               |              |              |
| 7/25/2016  | 20.3         |              | 2.16         |              |               |              | 1.17          |              |              |
| 7/26/2016  |              | 11           |              | 32.3         | 1.24          | 24.5         |               | 2.12         | 7.69         |
| 7/27/2016  |              |              |              |              |               |              |               |              |              |
| 7/28/2016  |              |              |              |              |               |              |               |              |              |
| 8/1/2016   |              |              |              |              |               |              |               |              |              |
| 8/30/2016  |              |              |              |              |               |              |               |              |              |
| 8/31/2016  |              |              |              |              |               |              |               |              |              |
| 9/1/2016   |              |              |              |              |               |              |               |              |              |
| 9/2/2016   |              |              |              |              |               |              |               |              |              |
| 9/13/2016  |              | 11.8         | 2.21         |              |               |              |               |              |              |
| 9/14/2016  | 19.7         |              |              | 31           |               |              |               | 2.18         | 8.49         |
| 9/15/2016  |              |              |              |              | 1.17          | 27           |               |              |              |
| 9/16/2016  |              |              |              |              |               |              |               |              |              |
| 9/19/2016  |              |              |              |              |               |              | 1.05          |              |              |
| 9/20/2016  |              |              |              |              |               |              |               |              |              |
| 11/1/2016  | 18.4         | 11           |              |              |               | 25.6         | 1.14          |              |              |
| 11/2/2016  |              |              |              | 30.9         | 1.23          |              |               |              | 7.83         |
| 11/3/2016  |              |              |              |              |               |              |               |              |              |
| 11/4/2016  |              |              | 2.67         |              |               |              |               | 2.17 (J)     |              |
| 11/8/2016  |              |              |              |              |               |              |               |              |              |
| 11/14/2016 |              |              |              |              |               |              |               |              |              |
| 11/15/2016 |              |              |              |              |               |              |               |              |              |
| 11/16/2016 |              |              |              |              |               |              |               |              |              |
| 11/28/2016 |              |              |              |              |               |              |               |              |              |
| 12/15/2016 |              |              |              |              |               |              |               |              |              |
| 1/10/2017  |              |              |              |              | 1.24          |              |               |              |              |
| 1/11/2017  | 20.3         | 11.2         |              |              |               | 27.5         |               |              |              |
| 1/12/2017  |              |              |              | 35.7         |               |              |               | 2.37         |              |
| 1/13/2017  |              |              |              |              |               |              |               |              | 8.08         |
| 1/16/2017  |              |              | 2.45         |              |               |              | 1.23          |              |              |
| 1/17/2017  |              |              |              |              |               |              |               |              |              |
| 2/21/2017  |              |              |              |              |               |              | 1.25          |              |              |
| 2/22/2017  |              |              |              |              |               |              |               |              |              |
| 2/24/2017  |              |              |              |              |               |              |               |              |              |
| 2/27/2017  |              |              |              |              |               |              |               |              |              |
| 2/28/2017  |              |              |              |              |               |              |               |              |              |
| 3/1/2017   | 18.6         |              |              |              |               |              |               |              |              |
| 3/2/2017   |              | 11           | 2.57         |              |               | 27.5         |               |              |              |
| 3/3/2017   |              |              |              |              |               |              |               |              |              |
| 3/6/2017   |              |              |              |              |               |              |               |              | 8.64         |
| 3/7/2017   |              |              |              | 32.7         |               |              |               | 2.34         |              |
| 3/8/2017   |              |              |              |              | 1.21          |              |               |              |              |
| 3/9/2017   |              |              |              |              |               |              |               |              |              |
| 4/26/2017  | 25.6         |              |              |              | 1.14          | 30.4         | 1.03          |              |              |
| 4/27/2017  |              | 11.1         | 2.38         |              |               |              |               |              |              |
| 4/28/2017  |              |              |              |              |               |              |               |              |              |
| 5/1/2017   |              |              |              | 37           |               |              |               |              | 13.4         |

#### Constituent: Calcium (mg/L) Analysis Run 5/6/2021 8:46 PM View: Appendix III

|            | YGWA-3I (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-5D (bg) | YGWA-14S (bg) | YGWA-3D (bg) | YGWA-30I (bg) | YGWA-5I (bg) | YGWA-4I (bg) |
|------------|--------------|--------------|--------------|--------------|---------------|--------------|---------------|--------------|--------------|
| 5/2/2017   |              |              |              |              |               |              |               | 2.17         |              |
| 5/8/2017   |              |              |              |              |               |              |               |              |              |
| 5/9/2017   |              |              |              |              |               |              |               |              |              |
| 5/10/2017  |              |              |              |              |               |              |               |              |              |
| 5/26/2017  |              |              |              |              |               |              |               |              |              |
| 6/27/2017  |              | 13.8         | 2.36         | 36.5         |               |              |               | 2.13         |              |
| 6/28/2017  | 23.9         | 10.0         | 2.00         | 00.0         |               | 29.8         |               | 2.10         |              |
| 6/20/2017  | 20.0         |              |              |              |               | 23.0         |               |              | Q Q1         |
| 6/29/2017  |              |              |              |              | 1.04          |              | 1 1 2         |              | 0.01         |
| 6/30/2017  |              |              |              |              | 1.24          |              | 1.13          |              |              |
| ////2017   |              |              |              |              |               |              |               |              |              |
| //10/2017  |              |              |              |              |               |              |               |              |              |
| 7/11/2017  |              |              |              |              |               |              |               |              |              |
| 7/13/2017  |              |              |              |              |               |              |               |              |              |
| 7/17/2017  |              |              |              |              |               |              |               |              |              |
| 9/22/2017  |              |              |              |              |               |              |               |              |              |
| 9/29/2017  |              |              |              |              |               |              |               |              |              |
| 10/3/2017  |              | 14           | 2.21         | 30.9         |               |              |               | 2.15         |              |
| 10/4/2017  | 22.1         |              |              |              |               | 29.7         | 1.09          |              |              |
| 10/5/2017  |              |              |              |              | 1.11          |              |               |              | 9.29         |
| 10/6/2017  |              |              |              |              |               |              |               |              |              |
| 10/10/2017 |              |              |              |              |               |              |               |              |              |
| 10/11/2017 |              |              |              |              |               |              |               |              |              |
| 10/12/2017 |              |              |              |              |               |              |               |              |              |
| 10/16/2017 |              |              |              |              |               |              |               |              |              |
| 11/20/2017 |              |              |              |              |               |              |               |              |              |
| 11/21/2017 |              |              |              |              |               |              |               |              |              |
| 1/10/2018  |              |              |              |              |               |              |               |              |              |
| 1/11/2019  |              |              |              |              |               |              |               |              |              |
| 1/11/2018  |              |              |              |              |               |              |               |              |              |
| 1/12/2018  |              |              |              |              |               |              |               |              |              |
| 2/19/2018  |              |              |              |              |               |              |               |              |              |
| 2/20/2018  |              |              |              |              |               |              |               |              |              |
| 4/2/2018   |              |              |              |              |               |              |               |              |              |
| 4/3/2018   |              |              |              |              |               |              |               |              |              |
| 4/4/2018   |              |              |              |              |               |              |               |              |              |
| 6/5/2018   |              | 15.2 (J)     |              |              |               |              |               |              |              |
| 6/6/2018   |              |              | 2.3          | 26.2         |               |              |               |              |              |
| 6/7/2018   |              |              |              |              |               | 29.1         |               | 2.3          | 8.2          |
| 6/8/2018   | 21.9 (J)     |              |              |              | 1.1           |              |               |              |              |
| 6/11/2018  |              |              |              |              |               |              | 1.1           |              |              |
| 6/12/2018  |              |              |              |              |               |              |               |              |              |
| 6/13/2018  |              |              |              |              |               |              |               |              |              |
| 6/27/2018  |              |              |              |              |               |              |               |              |              |
| 6/28/2018  |              |              |              |              |               |              |               |              |              |
| 8/6/2018   |              |              |              |              |               |              |               |              |              |
| 8/7/2018   |              |              |              |              |               |              |               |              |              |
| 9/19/2018  |              |              |              |              |               |              |               |              |              |
| 9/20/2018  |              |              |              |              |               |              |               |              |              |
| 9/24/2019  |              |              |              |              |               |              |               |              |              |
| 0/25/2010  |              |              |              |              |               |              |               |              |              |
| 0/26/2010  |              |              |              | 25.9         |               |              |               | 2.2          | 0.5 (1)      |
| 5/20/2018  |              |              |              | ∠0.0         |               |              |               | 2.3          | 9.0 (J)      |
| 9/2//2018  | 40.7         | 45.4         | 1.0          |              | 0.00          |              |               |              |              |
| 10/1/2018  | 19.7         | 15.1         | 1.8          |              | 0.99          | 26.9         |               |              |              |

#### Constituent: Calcium (mg/L) Analysis Run 5/6/2021 8:46 PM View: Appendix III

|           | YGWA-31 (ba) | YGWA-1D (ba) | YGWA-11 (ba) | YGWA-5D (ba) | YGWA-14S (bg)  | YGWA-3D (ba) | YGWA-301 (ba) | YGWA-5I (ba) | YGWA-41 (ba)    |
|-----------|--------------|--------------|--------------|--------------|----------------|--------------|---------------|--------------|-----------------|
| 10/2/2018 | (bg)         | ration (bg)  | ration (bg)  | (bg)         | 1 GW/ 140 (bg) | (bg)         | 1 1           | rative (bg)  | 1 GUN ( 41 (5g) |
| 2/25/2019 |              |              |              |              |                |              |               |              |                 |
| 3/26/2019 |              |              |              |              |                |              |               |              |                 |
| 3/27/2019 |              |              |              |              |                |              |               |              |                 |
| 3/28/2019 |              | 13.3 (J)     | 2.2          |              |                |              |               |              |                 |
| 3/29/2019 |              | ()           |              |              | 1.1            |              |               |              |                 |
| 4/1/2019  | 20.4 (J)     |              |              |              |                | 30.1         | 1.3           |              |                 |
| 4/2/2019  | - (-)        |              |              |              |                |              |               |              |                 |
| 4/3/2019  |              |              |              | 24.7 (J)     |                |              |               | 2.8          | 8.4             |
| 4/4/2019  |              |              |              | (-)          |                |              |               |              |                 |
| 6/12/2019 |              |              |              |              |                |              |               |              |                 |
| 9/24/2019 |              | 15.8         | 2.3          | 25.8         |                |              |               | 2.5          |                 |
| 9/25/2019 | 22.4         |              |              |              | 1.1            | 29.5         | 1.1           |              | 9.5             |
| 9/26/2019 |              |              |              |              |                |              |               |              |                 |
| 9/27/2019 |              |              |              |              |                |              |               |              |                 |
| 10/8/2019 |              |              |              |              |                |              |               |              |                 |
| 10/9/2019 |              |              |              |              |                |              |               |              |                 |
| 3/17/2020 |              |              |              |              |                |              |               |              |                 |
| 3/18/2020 |              |              | 2.1          |              | 1.1            |              |               |              |                 |
| 3/19/2020 | 21.9         | 15           |              |              |                | 31.5         | 1.2           |              |                 |
| 3/24/2020 |              |              |              | 26.1         |                |              |               | 2.5          |                 |
| 3/25/2020 |              |              |              |              |                |              |               |              | 10.5            |
| 3/26/2020 |              |              |              |              |                |              |               |              |                 |
| 9/22/2020 |              |              |              | 27.2         |                |              |               | 2.6          | 9.6             |
| 9/23/2020 | 23.6         | 14.1         | 1.8          |              |                | 28.6         |               |              |                 |
| 9/24/2020 |              |              |              |              |                |              | 1.1           |              |                 |
| 9/25/2020 |              |              |              |              | 1.3            |              |               |              |                 |
| 10/7/2020 |              |              |              |              |                |              |               |              |                 |
| 3/1/2021  |              |              |              |              |                |              | 1.2           |              |                 |
| 3/2/2021  |              |              |              | 1.6          | 1.2            |              |               | 2.6          |                 |
| 3/3/2021  | 20.6         | 14.1         | 1.8          |              |                | 29.8         |               |              | 7.7             |
| 3/4/2021  |              |              |              |              |                |              |               |              |                 |

|            | YGWA-18I (bg) | YGWA-18S (bg) | YGWC-23S | YGWA-21I (bg) | YGWA-20S (bg) | YGWA-17S (bg) | YGWC-24SA | YGWA-47 (bg) | YGWC-42 |
|------------|---------------|---------------|----------|---------------|---------------|---------------|-----------|--------------|---------|
| 6/1/2016   |               |               |          |               |               |               |           |              |         |
| 6/2/2016   |               |               |          |               |               |               |           |              |         |
| 6/6/2016   | 6.2           | 1.4           |          |               |               |               |           |              |         |
| 6/7/2016   |               |               | 9.6      | 3.7           | 2.3           | 2.2           |           |              |         |
| 6/8/2016   |               |               |          |               |               |               | 1.9       |              |         |
| 7/25/2016  |               |               |          |               |               |               |           |              |         |
| 7/26/2016  |               |               |          |               |               |               |           |              |         |
| 7/27/2016  | 4.73          | 1.19          |          |               | 2.08          | 2             |           |              |         |
| 7/28/2016  |               |               | 7 87     | 3 15          |               |               |           |              |         |
| 8/1/2016   |               |               |          |               |               |               | 1.83      |              |         |
| 8/30/2016  |               |               |          |               |               |               |           | 20.9         | 133     |
| 8/31/2016  |               |               |          |               |               |               |           | 20.0         | 100     |
| 9/1/2016   |               |               |          |               |               |               |           |              |         |
| 9/2/2016   |               |               |          |               |               |               |           |              |         |
| 9/13/2016  |               |               |          |               |               |               |           |              |         |
| 9/13/2016  |               |               |          |               |               |               |           |              |         |
| 9/14/2016  |               |               |          |               |               |               |           |              |         |
| 9/15/2016  |               | 1 5           |          |               |               | 1.07          |           |              |         |
| 9/16/2016  | 4.70          | 1.5           |          | 0.17          | 4.07          | 1.97          |           |              |         |
| 9/19/2016  | 4.76          |               | 0.00     | 3.17          | 1.97          |               | 1 70      |              |         |
| 9/20/2016  |               |               | 9.28     |               |               |               | 1.78      |              |         |
| 11/1/2016  |               |               |          |               |               |               |           |              |         |
| 11/2/2016  |               |               |          |               | 2.13          |               |           |              |         |
| 11/3/2016  | 5.25          | 1.31          |          | 3.4           |               | 1.99          |           |              |         |
| 11/4/2016  |               |               |          |               |               |               |           |              |         |
| 11/8/2016  |               |               | 8.6      |               |               |               | 1.77      |              |         |
| 11/14/2016 |               |               |          |               |               |               |           | 18.6         |         |
| 11/15/2016 |               |               |          |               |               |               |           |              |         |
| 11/16/2016 |               |               |          |               |               |               |           |              | 125     |
| 11/28/2016 |               |               |          |               |               |               |           |              |         |
| 12/15/2016 |               |               |          |               |               |               |           |              |         |
| 1/10/2017  |               |               |          |               |               |               |           |              |         |
| 1/11/2017  | 4.74          | 1.25          |          |               |               | 2.28          |           |              |         |
| 1/12/2017  |               |               |          |               |               |               |           |              |         |
| 1/13/2017  |               |               |          | 4.98          | 2.45          |               |           |              |         |
| 1/16/2017  |               |               | 8.85     |               |               |               |           |              |         |
| 1/17/2017  |               |               |          |               |               |               | 1.7       |              |         |
| 2/21/2017  |               |               |          |               |               |               |           |              |         |
| 2/22/2017  |               |               |          |               |               |               |           |              |         |
| 2/24/2017  |               |               |          |               |               |               |           | 16.1         |         |
| 2/27/2017  |               |               |          |               |               |               |           |              | 139     |
| 2/28/2017  |               |               |          |               |               |               |           |              |         |
| 3/1/2017   | 5.37          | 1.26          |          |               |               |               |           |              |         |
| 3/2/2017   |               |               |          |               |               | 2.15          |           |              |         |
| 3/3/2017   |               |               |          |               |               |               |           |              |         |
| 3/6/2017   |               |               |          | 6.28          | 2.48          |               |           |              |         |
| 3/7/2017   |               |               |          |               |               |               |           |              |         |
| 3/8/2017   |               |               |          |               |               |               | 1.77      |              |         |
| 3/9/2017   |               |               | 8.4      |               |               |               |           |              |         |
| 4/26/2017  | 4.28          | 1.05          |          | 6.65          | 2.3           |               |           |              |         |
| 4/27/2017  |               |               |          |               |               |               |           |              |         |
| 4/28/2017  |               |               |          |               |               |               |           |              |         |
| 5/1/2017   |               |               |          |               |               |               |           |              |         |
|            |               |               |          |               |               |               |           |              |         |

Constituent: Calcium (mg/L) Analysis Run 5/6/2021 8:46 PM View: Appendix III

| 5/2/2017   | YGWA-18I (bg) | YGWA-18S (bg) | YGWC-23S | YGWA-21I (bg) | YGWA-20S (bg) | YGWA-17S (bg) | YGWC-24SA | YGWA-47 (bg) | YGWC-42 |
|------------|---------------|---------------|----------|---------------|---------------|---------------|-----------|--------------|---------|
| 5/8/2017   |               |               | 12.5     |               |               | 1.55          | 1.57      | 14.6         |         |
| 5/9/2017   |               |               |          |               |               |               |           |              |         |
| 5/10/2017  |               |               |          |               |               |               |           |              | 130     |
| 5/26/2017  |               |               |          |               |               |               |           |              |         |
| 6/27/2017  |               |               |          |               |               |               |           |              |         |
| 6/28/2017  | 4.95          | 1.06          |          |               |               |               |           |              |         |
| 6/29/2017  |               |               |          | 6.04          | 2.54          | 2.02          |           |              |         |
| 6/30/2017  |               |               |          |               |               |               |           |              |         |
| 7/7/2017   |               |               |          |               |               |               | 1.8       |              |         |
| 7/10/2017  |               |               | 8.09     |               |               |               |           |              |         |
| 7/11/2017  |               |               |          |               |               |               |           | 14.3         | 172     |
| 7/13/2017  |               |               |          |               |               |               |           |              |         |
| 7/17/2017  |               |               |          |               |               |               |           |              |         |
| 9/22/2017  |               |               |          |               |               |               |           |              |         |
| 9/29/2017  |               |               |          |               |               |               |           |              |         |
| 10/3/2017  |               |               |          | 8.28          |               |               |           |              |         |
| 10/4/2017  |               | 1.1           |          |               | 2.25          | 2.03          |           |              |         |
| 10/5/2017  | 5.28          |               |          |               |               |               | 1.7       |              |         |
| 10/6/2017  |               |               |          |               |               |               |           |              |         |
| 10/10/2017 |               |               |          |               |               |               |           | 12.1         |         |
| 10/11/2017 |               |               | 6.36     |               |               |               |           |              |         |
| 10/12/2017 |               |               |          |               |               |               |           |              | 144     |
| 10/16/2017 |               |               |          |               |               |               |           |              |         |
| 11/20/2017 |               |               |          |               |               |               |           |              |         |
| 11/21/2017 |               |               |          |               |               |               |           |              |         |
| 1/10/2018  |               |               |          |               |               |               |           |              |         |
| 1/11/2018  |               |               |          |               |               |               |           |              |         |
| 1/12/2018  |               |               |          |               |               |               |           |              |         |
| 2/19/2018  |               |               |          |               |               |               |           |              |         |
| 2/20/2018  |               |               |          |               |               |               |           |              |         |
| 4/2/2018   |               |               |          |               |               |               |           | <25          |         |
| 4/3/2018   |               |               |          |               |               |               |           |              |         |
| 4/4/2018   |               |               |          |               |               |               |           |              | 137     |
| 6/5/2018   |               |               |          | 9.1           |               |               |           |              |         |
| 6/6/2018   |               |               |          |               | 2.3           |               |           |              |         |
| 6/7/2018   | 4.8           |               |          |               |               |               |           |              |         |
| 6/8/2018   |               |               |          |               |               |               |           |              |         |
| 6/11/2018  |               | 1.4           |          |               |               | 2.1           |           |              |         |
| 6/12/2018  |               |               | 4.7      |               |               |               | 1.8       |              |         |
| 6/13/2018  |               |               |          |               |               |               |           |              |         |
| 6/27/2018  |               |               |          |               |               |               |           |              |         |
| 6/28/2018  |               |               |          |               |               |               |           |              |         |
| 8/6/2018   |               |               |          |               |               |               |           |              |         |
| 8/7/2018   |               |               |          |               |               |               |           |              |         |
| 9/19/2018  |               |               |          |               |               |               |           | 11.1 (J)     |         |
| 9/20/2018  |               |               |          |               |               |               |           |              | 108     |
| 9/24/2018  |               |               |          |               |               |               |           |              |         |
| 9/25/2018  | 4.6           | 1             |          | 10.4 (J)      | 2.3           | 2.1           |           |              |         |
| 9/26/2018  |               |               |          |               |               |               | 1.7       |              |         |
| 9/27/2018  |               |               | 4.1      |               |               |               |           |              |         |
| 10/1/2018  |               |               |          |               |               |               |           |              |         |

|           | YGWA-18I (bg) | YGWA-18S (bg) | YGWC-23S | YGWA-21I (bg) | YGWA-20S (bg) | YGWA-17S (bg) | YGWC-24SA | YGWA-47 (bg) | YGWC-42 |
|-----------|---------------|---------------|----------|---------------|---------------|---------------|-----------|--------------|---------|
| 10/2/2018 |               |               |          |               |               |               |           |              |         |
| 2/25/2019 |               |               |          |               |               |               |           |              |         |
| 3/26/2019 |               |               |          |               |               |               |           |              |         |
| 3/27/2019 |               |               |          |               |               |               |           | 10.8 (J)     | 109     |
| 3/28/2019 |               |               |          |               |               |               |           |              |         |
| 3/29/2019 |               |               |          |               |               |               |           |              |         |
| 4/1/2019  |               |               |          |               |               |               |           |              |         |
| 4/2/2019  |               |               |          | 8.8           |               | 2.5           |           |              |         |
| 4/3/2019  | 5.3           | 1.2           |          |               | 2.9           |               |           |              |         |
| 4/4/2019  |               |               | 3.7      |               |               |               | 1.9       |              |         |
| 6/12/2019 |               |               |          |               |               |               |           |              |         |
| 9/24/2019 |               |               |          | 7.7           |               |               |           |              |         |
| 9/25/2019 |               |               |          |               | 2.4           | 2.6           |           |              |         |
| 9/26/2019 | 4.9           | 1.1           |          |               |               |               | 1.7       |              |         |
| 9/27/2019 |               |               | 3.7      |               |               |               |           |              |         |
| 10/8/2019 |               |               |          |               |               |               |           | 9.7          |         |
| 10/9/2019 |               |               |          |               |               |               |           |              | 92      |
| 3/17/2020 |               |               |          |               |               |               |           | 14.8         |         |
| 3/18/2020 |               |               |          |               |               |               |           |              |         |
| 3/19/2020 |               |               |          |               |               |               |           |              |         |
| 3/24/2020 | 5.3           | 1             |          | 6             | 2.6           | 2.7           |           |              |         |
| 3/25/2020 |               |               |          |               |               |               |           |              | 107     |
| 3/26/2020 |               |               | 5.6      |               |               |               | 1.7       |              |         |
| 9/22/2020 |               |               |          |               |               |               |           | 10.1         |         |
| 9/23/2020 | 5.2           | 0.91 (J)      |          |               |               | 2.6           | 2.4       |              |         |
| 9/24/2020 |               |               | 7.9      | 7.8           | 2.6           |               |           |              | 84.3    |
| 9/25/2020 |               |               |          |               |               |               |           |              |         |
| 10/7/2020 |               |               |          |               |               |               |           |              |         |
| 3/1/2021  |               |               |          |               |               |               |           | 10.3         |         |
| 3/2/2021  |               |               |          |               |               |               |           |              |         |
| 3/3/2021  | 5.2           | 0.96 (J)      |          |               | 2.4           | 2.5           | 2.4       |              |         |
| 3/4/2021  |               |               | 10.2     | 8.7           |               |               |           |              | 90.7    |

Page 6
Constituent: Calcium (mg/L) Analysis Run 5/6/2021 8:46 PM View: Appendix III

|            | GWA-2 (bg) | YGWC-43 | YGWC-49 | YGWC-36A | YGWA-2I (bg) | YGWA-39 (bg) | YGWC-38 | YGWC-41 | YGWA-40 (bg) |
|------------|------------|---------|---------|----------|--------------|--------------|---------|---------|--------------|
| 6/1/2016   |            |         |         |          |              |              |         |         |              |
| 6/2/2016   |            |         |         |          |              |              |         |         |              |
| 6/6/2016   |            |         |         |          |              |              |         |         |              |
| 6/7/2016   |            |         |         |          |              |              |         |         |              |
| 6/8/2016   |            |         |         |          |              |              |         |         |              |
| 7/25/2016  |            |         |         |          |              |              |         |         |              |
| 7/26/2016  |            |         |         |          |              |              |         |         |              |
| 7/27/2016  |            |         |         |          |              |              |         |         |              |
| 7/28/2016  |            |         |         |          |              |              |         |         |              |
| 8/1/2016   |            |         |         |          |              |              |         |         |              |
| 8/30/2016  |            |         |         |          |              |              |         |         |              |
| 8/31/2016  | 9 31       | 34      |         |          |              |              |         |         |              |
| 9/1/2016   | 0.01       | 0.1     | 13.9    |          |              |              |         |         |              |
| 9/2/2016   |            |         | 10.0    | 11.2     |              |              |         |         |              |
| 0/12/2016  |            |         |         | 11.2     |              |              |         |         |              |
| 9/13/2016  |            |         |         |          | 22 F         |              |         |         |              |
| 9/14/2016  |            |         |         |          | 23.5         |              |         |         |              |
| 9/15/2016  |            |         |         |          |              |              |         |         |              |
| 9/16/2016  |            |         |         |          |              |              |         |         |              |
| 9/19/2016  |            |         |         |          |              |              |         |         |              |
| 9/20/2016  |            |         |         |          |              |              |         |         |              |
| 11/1/2016  |            |         |         |          |              |              |         |         |              |
| 11/2/2016  |            |         |         |          |              |              |         |         |              |
| 11/3/2016  |            |         |         |          |              |              |         |         |              |
| 11/4/2016  |            |         |         |          | 23.7         |              |         |         |              |
| 11/8/2016  |            |         |         |          |              |              |         |         |              |
| 11/14/2016 |            |         |         | 7.79     |              |              |         |         |              |
| 11/15/2016 |            |         | 13.5    |          |              |              |         |         |              |
| 11/16/2016 |            | 3.79    |         |          |              |              |         |         |              |
| 11/28/2016 | 9.47 (B)   |         |         |          |              |              |         |         |              |
| 12/15/2016 |            |         |         |          | 23.1         |              |         |         |              |
| 1/10/2017  |            |         |         |          |              |              |         |         |              |
| 1/11/2017  |            |         |         |          |              |              |         |         |              |
| 1/12/2017  |            |         |         |          |              |              |         |         |              |
| 1/13/2017  |            |         |         |          |              |              |         |         |              |
| 1/16/2017  |            |         |         |          | 23.3         |              |         |         |              |
| 1/17/2017  |            |         |         |          |              |              |         |         |              |
| 2/21/2017  |            |         |         |          |              |              |         |         |              |
| 2/22/2017  | 10.4       |         |         |          |              |              |         |         |              |
| 2/24/2017  |            | 6.42    |         |          |              |              |         |         |              |
| 2/27/2017  |            |         | 12.5    |          |              |              |         |         |              |
| 2/28/2017  |            |         |         | 8.37     |              |              |         |         |              |
| 3/1/2017   |            |         |         |          |              |              |         |         |              |
| 3/2/2017   |            |         |         |          |              |              |         |         |              |
| 3/3/2017   |            |         |         |          | 25.1         |              |         |         |              |
| 3/6/2017   |            |         |         |          |              |              |         |         |              |
| 3/7/2017   |            |         |         |          |              |              |         |         |              |
| 3/8/2017   |            |         |         |          |              |              |         |         |              |
| 3/9/2017   |            |         |         |          |              |              |         |         |              |
| A/26/2017  |            |         |         |          |              |              |         |         |              |
| 4/27/2017  |            |         |         |          |              |              |         |         |              |
| 4/20/2017  |            |         |         |          | 20.7         |              |         |         |              |
| 4/20/2017  |            |         |         |          | 30.7         |              |         |         |              |
| 5/1/2017   |            |         |         |          |              |              |         |         |              |

#### Constituent: Calcium (mg/L) Analysis Run 5/6/2021 8:46 PM View: Appendix III

|            | GWA-2 (bg) | YGWC-43  | YGWC-49 | YGWC-36A | YGWA-2I (bg) | YGWA-39 (bg) | YGWC-38 | YGWC-41 | YGWA-40 (bg) |
|------------|------------|----------|---------|----------|--------------|--------------|---------|---------|--------------|
| 5/2/2017   |            |          |         |          |              |              |         |         |              |
| 5/8/2017   | 14.2       |          |         |          |              |              |         |         |              |
| 5/9/2017   |            |          | 14.4    | 13.9     |              |              |         |         |              |
| 5/10/2017  |            | 7.9      |         |          |              |              |         |         |              |
| 5/26/2017  |            |          |         |          | 26.2         |              |         |         |              |
| 6/27/2017  |            |          |         |          |              |              |         |         |              |
| 6/28/2017  |            |          |         |          | 26.1         |              |         |         |              |
| 6/29/2017  |            |          |         |          |              |              |         |         |              |
| 6/30/2017  |            |          |         |          |              |              |         |         |              |
| 7/7/2017   |            |          |         |          |              |              |         |         |              |
| 7/10/2017  |            |          |         |          |              |              |         |         |              |
| 7/11/2017  |            | 6.71     |         |          |              |              |         |         |              |
| 7/13/2017  |            | 0.71     | 14.1    | 16.6     |              |              |         |         |              |
| 7/17/2017  | 14 1       |          |         |          |              |              |         |         |              |
| 9/22/2017  | 17.1       |          |         | 18 /     |              |              |         |         |              |
| 9/29/2017  |            |          |         | 16.1     |              |              |         |         |              |
| 10/3/2017  |            |          |         | 10.1     | 26.7         |              |         |         |              |
| 10/3/2017  |            |          |         |          | 20.7         |              |         |         |              |
| 10/5/2017  |            |          |         |          |              |              |         |         |              |
| 10/6/2017  |            |          |         | 16.6     |              |              |         |         |              |
| 10/0/2017  |            |          |         | 10.0     |              |              |         |         |              |
| 10/10/2017 |            |          | 10.4    | 10.1     |              | 0.74         |         |         |              |
| 10/11/2017 |            | 7.05     | 12.4    | 10.1     |              | 2.74         | 100     | 44.5    | 2.0          |
| 10/12/2017 | 12.6       | 7.05     |         |          |              |              | 190     | 44.5    | 2.9          |
| 10/16/2017 | 13.0       |          |         |          |              | 1.01         | 104     |         | 10.4         |
| 11/20/2017 |            |          |         |          |              | 1.81         | 184     |         | 10.4         |
| 11/21/2017 |            |          |         |          |              |              |         | 44.4    | 40.0         |
| 1/10/2018  |            |          |         |          |              |              |         | 40.0    | 10.2         |
| 1/11/2018  |            |          |         |          |              | 1.54         |         | 43.9    |              |
| 1/12/2018  |            |          |         |          |              |              | 178     |         |              |
| 2/19/2018  | <25        |          |         |          |              |              |         | 45.3    | <25          |
| 2/20/2018  |            |          |         |          |              | 1.71         | 184     |         |              |
| 4/2/2018   |            |          |         |          |              |              |         |         |              |
| 4/3/2018   |            |          |         |          |              | 1.4          | 174     | 42.7    | 6.3          |
| 4/4/2018   |            | 8.6      | <25     |          |              |              |         |         |              |
| 6/5/2018   |            |          |         |          |              |              |         |         |              |
| 6/6/2018   |            |          |         |          |              |              |         |         |              |
| 6/7/2018   |            |          |         |          | 25           |              |         |         |              |
| 6/8/2018   |            |          |         |          |              |              |         |         |              |
| 6/11/2018  |            |          |         |          |              |              |         |         |              |
| 6/12/2018  |            |          |         |          |              |              |         |         |              |
| 6/13/2018  |            |          |         | 18.7 (J) |              |              |         |         |              |
| 6/27/2018  |            |          |         |          |              |              |         | 42.2    |              |
| 6/28/2018  |            |          |         |          |              | 1.4          | 190     |         | 6.7          |
| 8/6/2018   | 11.4 (J)   |          |         |          |              |              |         |         |              |
| 8/7/2018   |            |          |         |          |              | 1.2          | 176     | 40.7    | 6.3          |
| 9/19/2018  |            |          |         |          |              |              |         |         |              |
| 9/20/2018  |            | 15.9 (J) | 12 (J)  |          |              |              |         |         |              |
| 9/24/2018  |            |          |         |          |              | 1.1          | 172     | 38.5    | 5.7          |
| 9/25/2018  |            |          |         |          |              |              |         |         |              |
| 9/26/2018  |            |          |         | 19.8 (J) |              |              |         |         |              |
| 9/27/2018  |            |          |         |          |              |              |         |         |              |
| 10/1/2018  |            |          |         |          | 25           |              |         |         |              |

|           | GWA-2 (bg) | YGWC-43 | YGWC-49  | YGWC-36A | YGWA-2I (bg) | YGWA-39 (bg) | YGWC-38 | YGWC-41 | YGWA-40 (bg) |
|-----------|------------|---------|----------|----------|--------------|--------------|---------|---------|--------------|
| 10/2/2018 |            |         |          |          |              |              |         |         |              |
| 2/25/2019 | 12.7 (J)   |         |          |          |              |              |         |         |              |
| 3/26/2019 |            |         |          |          |              |              |         |         | 5.6          |
| 3/27/2019 |            |         |          |          |              | 1.5          | 155     |         |              |
| 3/28/2019 |            | 8.9     | 11.3 (J) |          |              |              |         | 26      |              |
| 3/29/2019 |            |         |          |          | 23.5 (J)     |              |         |         |              |
| 4/1/2019  |            |         |          |          |              |              |         |         |              |
| 4/2/2019  |            |         |          |          |              |              |         |         |              |
| 4/3/2019  |            |         |          |          |              |              |         |         |              |
| 4/4/2019  |            |         |          | 16.9 (J) |              |              |         |         |              |
| 6/12/2019 | 18.9       |         |          |          |              |              |         |         |              |
| 9/24/2019 |            |         |          |          | 26.4         |              |         |         |              |
| 9/25/2019 |            |         |          |          |              |              |         |         |              |
| 9/26/2019 |            |         | 12.1     | 11.7     |              |              |         |         |              |
| 9/27/2019 |            |         |          |          |              |              |         |         |              |
| 10/8/2019 | 28.3       |         |          |          |              |              |         |         |              |
| 10/9/2019 |            | 18.2    |          |          |              | 2.4          | 133     | 27.6    | 4.9          |
| 3/17/2020 | 24.3       |         |          |          |              |              |         |         |              |
| 3/18/2020 |            |         |          |          |              |              |         |         |              |
| 3/19/2020 |            |         |          |          | 27.4         |              |         |         |              |
| 3/24/2020 |            |         |          |          |              |              |         |         | 4.8          |
| 3/25/2020 |            | 12.1    | 13.2     | 10.6     |              | 2.7          | 124     | 29.6    |              |
| 3/26/2020 |            |         |          |          |              |              |         |         |              |
| 9/22/2020 | 31         |         |          |          |              |              |         |         |              |
| 9/23/2020 |            |         |          |          | 26.3         |              |         |         |              |
| 9/24/2020 |            |         | 12       |          |              | 3.7          |         |         | 4.4          |
| 9/25/2020 |            | 19.8    |          |          |              |              | 93.7    | 20.5    |              |
| 10/7/2020 |            |         |          | 9.9      |              |              |         |         |              |
| 3/1/2021  |            |         |          |          |              |              |         |         |              |
| 3/2/2021  | 34.2       |         |          |          |              |              |         |         |              |
| 3/3/2021  |            |         |          |          | 25.6         |              |         |         |              |
| 3/4/2021  |            | 32.2    | 13       | 5.6      |              | 8.2          | 87      | 16.4    | 4.6          |

Constituent: Chloride (mg/L) Analysis Run 5/6/2021 8:46 PM View: Appendix III

|            | YGWA-3I (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-5D (bg) | YGWA-14S (bg) | YGWA-3D (bg) | YGWA-30I (bg) | YGWA-5I (bg) | YGWA-4I (bg) |
|------------|--------------|--------------|--------------|--------------|---------------|--------------|---------------|--------------|--------------|
| 6/1/2016   | 1.3          | 1.3          | 1.6          |              |               |              |               |              |              |
| 6/2/2016   |              |              |              | 7.2          | 4.1           | 1.4          | 1.9           | 4.3          | 3.7          |
| 6/6/2016   |              |              |              |              |               |              |               |              |              |
| 6/7/2016   |              |              |              |              |               |              |               |              |              |
| 6/8/2016   |              |              |              |              |               |              |               |              |              |
| 7/25/2016  | 1.3          |              | 1.4          |              |               |              | 1.7           |              |              |
| 7/26/2016  |              | 1.2          |              | 6.6          | 4             | 1.6          |               | 4.4          | 3.6          |
| 7/27/2016  |              |              |              |              |               |              |               |              |              |
| 7/28/2016  |              |              |              |              |               |              |               |              |              |
| 8/1/2016   |              |              |              |              |               |              |               |              |              |
| 8/30/2016  |              |              |              |              |               |              |               |              |              |
| 8/31/2016  |              |              |              |              |               |              |               |              |              |
| 9/1/2016   |              |              |              |              |               |              |               |              |              |
| 9/2/2016   |              |              |              |              |               |              |               |              |              |
| 9/13/2016  |              | 1.1          | 1.3          |              |               |              |               |              |              |
| 9/14/2016  | 1.3          |              |              | 6.6          |               |              |               | 3.8          | 3.4          |
| 9/15/2016  |              |              |              |              | 4.2           | 1.5          |               |              |              |
| 9/16/2016  |              |              |              |              |               |              |               |              |              |
| 9/19/2016  |              |              |              |              |               |              | 1.6           |              |              |
| 9/20/2016  |              |              |              |              |               |              |               |              |              |
| 11/1/2016  | 1.4          | 1.3          |              |              |               | 1.7          | 1.8           |              |              |
| 11/2/2016  |              |              |              | 7.6          | 4.9           |              |               |              | 4.5          |
| 11/3/2016  |              |              |              |              |               |              |               |              |              |
| 11/4/2016  |              |              | 1.6          |              |               |              |               | 4.8          |              |
| 11/8/2016  |              |              |              |              |               |              |               |              |              |
| 11/14/2016 |              |              |              |              |               |              |               |              |              |
| 11/15/2016 |              |              |              |              |               |              |               |              |              |
| 11/16/2016 |              |              |              |              |               |              |               |              |              |
| 11/28/2016 |              |              |              |              |               |              |               |              |              |
| 12/15/2016 |              |              |              |              |               |              |               |              |              |
| 1/10/2017  |              |              |              |              | 4.1           |              |               |              |              |
| 1/11/2017  | 1.1          | 1.1          |              |              |               | 1.2          |               |              |              |
| 1/12/2017  |              |              |              | 6.8          |               |              |               | 3.8          |              |
| 1/13/2017  |              |              |              |              |               |              |               |              | 4.2          |
| 1/16/2017  |              |              | 1.4          |              |               |              | 1.7           |              |              |
| 1/17/2017  |              |              |              |              |               |              |               |              |              |
| 2/21/2017  |              |              |              |              |               |              | 1.7           |              |              |
| 2/22/2017  |              |              |              |              |               |              |               |              |              |
| 2/24/2017  |              |              |              |              |               |              |               |              |              |
| 2/27/2017  |              |              |              |              |               |              |               |              |              |
| 2/28/2017  |              |              |              |              |               |              |               |              |              |
| 3/1/2017   | 1.1          |              |              |              |               |              |               |              |              |
| 3/2/2017   |              | 1            | 1.3          |              |               | 1.2          |               |              |              |
| 3/3/2017   |              |              |              |              |               |              |               |              |              |
| 3/6/2017   |              |              |              |              |               |              |               |              | 3.6          |
| 3/7/2017   |              |              |              | 6.8          |               |              |               | 4.5          |              |
| 3/8/2017   |              |              |              |              | 4.2           |              |               |              |              |
| 3/9/2017   |              |              |              |              |               |              |               |              |              |
| 4/26/2017  | 1.1          |              |              |              | 4.1           | 1.2          | 1.7           |              |              |
| 4/27/2017  |              | 1            | 1.3          |              |               |              |               |              |              |
| 4/28/2017  |              |              |              |              |               |              |               |              |              |
| 5/1/2017   |              |              |              | 7.2          |               |              |               |              | 4.3          |

#### Constituent: Chloride (mg/L) Analysis Run 5/6/2021 8:46 PM View: Appendix III

|            | YGWA-3I (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-5D (bg) | YGWA-14S (bg) | YGWA-3D (bg) | YGWA-30I (bg) | YGWA-5I (bg) | YGWA-4I (bg) |
|------------|--------------|--------------|--------------|--------------|---------------|--------------|---------------|--------------|--------------|
| 5/2/2017   |              |              |              |              |               |              |               | 4.6          |              |
| 5/8/2017   |              |              |              |              |               |              |               |              |              |
| 5/9/2017   |              |              |              |              |               |              |               |              |              |
| 5/10/2017  |              |              |              |              |               |              |               |              |              |
| 5/26/2017  |              |              |              |              |               |              |               |              |              |
| 6/27/2017  |              | 1.1          | 1.4          | 7            |               |              |               | 4.3          |              |
| 6/28/2017  | 12           |              |              | -            |               | 13           |               |              |              |
| 6/29/2017  | 1.2          |              |              |              |               | 1.0          |               |              | 12           |
| 6/20/2017  |              |              |              |              | 27            |              | 1 0           |              | 7.2          |
| 0/30/2017  |              |              |              |              | 5.7           |              | 1.0           |              |              |
| 7/7/2017   |              |              |              |              |               |              |               |              |              |
| 7/10/2017  |              |              |              |              |               |              |               |              |              |
| //11/2017  |              |              |              |              |               |              |               |              |              |
| //13/2017  |              |              |              |              |               |              |               |              |              |
| 7/17/2017  |              |              |              |              |               |              |               |              |              |
| 9/22/2017  |              |              |              |              |               |              |               |              |              |
| 9/29/2017  |              |              |              |              |               |              |               |              |              |
| 10/3/2017  |              | 1.1          | 1.7          | 6.5          |               |              |               | 4.2          |              |
| 10/4/2017  | 1.2          |              |              |              |               | 1.5          | 1.8           |              |              |
| 10/5/2017  |              |              |              |              | 3.8           |              |               |              | 4.7          |
| 10/6/2017  |              |              |              |              |               |              |               |              |              |
| 10/10/2017 |              |              |              |              |               |              |               |              |              |
| 10/11/2017 |              |              |              |              |               |              |               |              |              |
| 10/12/2017 |              |              |              |              |               |              |               |              |              |
| 10/16/2017 |              |              |              |              |               |              |               |              |              |
| 11/20/2017 |              |              |              |              |               |              |               |              |              |
| 11/21/2017 |              |              |              |              |               |              |               |              |              |
| 1/10/2018  |              |              |              |              |               |              |               |              |              |
| 1/11/2018  |              |              |              |              |               |              |               |              |              |
| 1/12/2018  |              |              |              |              |               |              |               |              |              |
| 2/19/2018  |              |              |              |              |               |              |               |              |              |
| 2/20/2018  |              |              |              |              |               |              |               |              |              |
| 4/2/2019   |              |              |              |              |               |              |               |              |              |
| 4/2/2018   |              |              |              |              |               |              |               |              |              |
| 4/3/2018   |              |              |              |              |               |              |               |              |              |
| 4/4/2018   |              |              |              |              |               |              |               |              |              |
| 6/5/2018   |              | 1.1          |              | . –          |               |              |               |              |              |
| 6/6/2018   |              |              | 1.4          | 4./          |               |              |               |              |              |
| 6/7/2018   |              |              |              |              |               | 1.2          |               | 4.5          | 4.4          |
| 6/8/2018   | 1.2          |              |              |              | 3.4           |              |               |              |              |
| 6/11/2018  |              |              |              |              |               |              | 2             |              |              |
| 6/12/2018  |              |              |              |              |               |              |               |              |              |
| 6/13/2018  |              |              |              |              |               |              |               |              |              |
| 6/27/2018  |              |              |              |              |               |              |               |              |              |
| 6/28/2018  |              |              |              |              |               |              |               |              |              |
| 8/6/2018   |              |              |              |              |               |              |               |              |              |
| 8/7/2018   |              |              |              |              |               |              |               |              |              |
| 9/19/2018  |              |              |              |              |               |              |               |              |              |
| 9/20/2018  |              |              |              |              |               |              |               |              |              |
| 9/24/2018  |              |              |              |              |               |              |               |              |              |
| 9/25/2018  |              |              |              |              |               |              |               |              |              |
| 9/26/2018  |              |              |              | 4.8          |               |              |               | 5.1          | 4.8          |
| 9/27/2018  |              |              |              |              |               |              |               |              |              |
| 10/1/2018  | 1.2          | 1.1          | 1.4          |              | 3.8           | 1.5          |               |              |              |

#### Constituent: Chloride (mg/L) Analysis Run 5/6/2021 8:46 PM View: Appendix III

|           | YGWA-3I (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-5D (bg) | YGWA-14S (bg) | YGWA-3D (bg) | YGWA-30I (bg) | YGWA-5I (bg) | YGWA-4I (bg) |
|-----------|--------------|--------------|--------------|--------------|---------------|--------------|---------------|--------------|--------------|
| 10/2/2018 |              |              |              |              |               |              | 1.8           |              |              |
| 2/25/2019 |              |              |              |              |               |              |               |              |              |
| 3/26/2019 |              |              |              |              |               |              |               |              |              |
| 3/27/2019 |              |              |              |              |               |              |               |              |              |
| 3/28/2019 |              | 1.4          | 1.5          |              |               |              |               |              |              |
| 3/29/2019 |              |              |              |              | 4.2           |              |               |              |              |
| 4/1/2019  | 1.1          |              |              |              |               | 1.2          | 1.7           |              |              |
| 4/2/2019  |              |              |              |              |               |              |               |              |              |
| 4/3/2019  |              |              |              | 4            |               |              |               | 4.2          | 4.3          |
| 4/4/2019  |              |              |              |              |               |              |               |              |              |
| 6/12/2019 |              |              |              |              |               |              |               |              |              |
| 9/24/2019 |              | 1.1          | 1.3          | 3.7          |               |              |               | 4.5          |              |
| 9/25/2019 | 1.1          |              |              |              | 4.8           | 1.1          | 1.6           |              | 4.5          |
| 9/26/2019 |              |              |              |              |               |              |               |              |              |
| 9/27/2019 |              |              |              |              |               |              |               |              |              |
| 10/8/2019 |              |              |              |              |               |              |               |              |              |
| 10/9/2019 |              |              |              |              |               |              |               |              |              |
| 3/17/2020 |              |              |              |              |               |              |               |              |              |
| 3/18/2020 |              |              | 1.4          |              | 5.2           |              |               |              |              |
| 3/19/2020 | 1.1          | 1.1          |              |              |               | 1.2          | 1.8           |              |              |
| 3/24/2020 |              |              |              | 3.5          |               |              |               | 4.3          |              |
| 3/25/2020 |              |              |              |              |               |              |               |              | 3.9          |
| 3/26/2020 |              |              |              |              |               |              |               |              |              |
| 9/22/2020 |              |              |              | 3.6          |               |              |               | 4.2          | 4.5          |
| 9/23/2020 | 1            | 0.99 (J)     | 1.2          |              |               | 1.1          |               |              |              |
| 9/24/2020 |              |              |              |              |               |              | 1.5           |              |              |
| 9/25/2020 |              |              |              |              | 5.3           |              |               |              |              |
| 10/7/2020 |              |              |              |              | 0.0           |              |               |              |              |
| 3/1/2021  |              |              |              |              |               |              | 16            |              |              |
| 3/2/2021  |              |              |              | 3.2          | 19            |              | 1.0           | 13           |              |
| 3/3/2021  | 0.99 (1)     | 0.96(1)      | 12           | 5.2          | J.J           | 11           |               | т.5          | 4.1          |
| 3/3/2021  | 0.99 (3)     | 0.90 (3)     | 1.2          |              |               | 1.1          |               |              | 4.1          |
| 3/4/2021  |              |              |              |              |               |              |               |              |              |

|            | YGWA-18I (bg) | YGWA-18S (bg) | YGWC-23S | YGWA-21I (bg) | YGWA-20S (bg) | YGWA-17S (bg) | YGWC-24SA  | YGWA-47 (bg) | YGWC-42 |
|------------|---------------|---------------|----------|---------------|---------------|---------------|------------|--------------|---------|
| 6/1/2016   |               |               |          |               |               |               |            |              |         |
| 6/2/2016   |               |               |          |               |               |               |            |              |         |
| 6/6/2016   | 6.8           | 6.4           |          |               |               |               |            |              |         |
| 6/7/2016   |               |               | 2.9      | 2.8           | 1.9           | 4.5           |            |              |         |
| 6/8/2016   |               |               |          |               |               |               | 5.9        |              |         |
| 7/25/2016  |               |               |          |               |               |               |            |              |         |
| 7/26/2016  |               |               |          |               |               |               |            |              |         |
| 7/27/2016  | 6.7           | 6.2           |          |               | 1.9           | 4.5           |            |              |         |
| 7/28/2016  |               |               | 3.5      | 2.6           |               |               |            |              |         |
| 8/1/2016   |               |               |          |               |               |               | 5.3        |              |         |
| 8/30/2016  |               |               |          |               |               |               |            | 5.2          | 4.4     |
| 8/31/2016  |               |               |          |               |               |               |            |              |         |
| 9/1/2016   |               |               |          |               |               |               |            |              |         |
| 9/2/2016   |               |               |          |               |               |               |            |              |         |
| 9/13/2016  |               |               |          |               |               |               |            |              |         |
| 9/14/2016  |               |               |          |               |               |               |            |              |         |
| 9/15/2016  |               |               |          |               |               |               |            |              |         |
| 9/16/2016  |               | 6.1           |          |               |               | 4.5           |            |              |         |
| 9/19/2016  | 7             | 0.1           |          | 24            | 19            |               |            |              |         |
| 9/20/2016  | ,             |               | 24       | 2.7           | 1.0           |               | 5 5        |              |         |
| 11/1/2016  |               |               |          |               |               |               | 0.0        |              |         |
| 11/2/2016  |               |               |          |               | 2.6           |               |            |              |         |
| 11/2/2016  | 7.5           | 74            |          | 20            | 2.0           | 5.4           |            |              |         |
| 11/3/2016  | 7.5           | 7.4           |          | 2.5           |               | 5.4           |            |              |         |
| 11/4/2010  |               |               | 2 0      |               |               |               | 6.4        |              |         |
| 11/14/2016 |               |               | 2.0      |               |               |               | 0.4        | 6.4          |         |
| 11/14/2016 |               |               |          |               |               |               |            | 0.4          |         |
| 11/15/2016 |               |               |          |               |               |               |            |              | 4.7     |
| 11/10/2010 |               |               |          |               |               |               |            |              | 4.7     |
| 11/28/2016 |               |               |          |               |               |               |            |              |         |
| 12/15/2016 |               |               |          |               |               |               |            |              |         |
| 1/10/2017  | C F           | 6.1           |          |               |               | 47            |            |              |         |
| 1/11/2017  | 0.5           | 0.1           |          |               |               | 4.7           |            |              |         |
| 1/12/2017  |               |               |          | 0.5           |               |               |            |              |         |
| 1/13/2017  |               |               | 1.0      | 2.5           | 2.3           |               |            |              |         |
| 1/10/2017  |               |               | 1.0      |               |               |               |            |              |         |
| 1/1//2017  |               |               |          |               |               |               | 5.5        |              |         |
| 2/21/2017  |               |               |          |               |               |               |            |              |         |
| 2/22/2017  |               |               |          |               |               |               |            |              |         |
| 2/24/2017  |               |               |          |               |               |               |            | 5.5          | 47      |
| 2/2//201/  |               |               |          |               |               |               |            |              | 4.7     |
| 2/28/2017  |               | 2             |          |               |               |               |            |              |         |
| 3/1/2017   | 6.9           | 6             |          |               |               |               |            |              |         |
| 3/2/2017   |               |               |          |               |               | 4.8           |            |              |         |
| 3/3/2017   |               |               |          |               |               |               |            |              |         |
| 3/6/2017   |               |               |          | 2.1           | 1.9           |               |            |              |         |
| 3/7/2017   |               |               |          |               |               |               | <b>F</b> 4 |              |         |
| 3/8/2017   |               |               |          |               |               |               | 5.4        |              |         |
| 3/9/2017   | _             |               | 1.7      |               |               |               |            |              |         |
| 4/26/2017  | 7             | 6.5           |          | 2.1           | 2             |               |            |              |         |
| 4/27/2017  |               |               |          |               |               |               |            |              |         |
| 4/28/2017  |               |               |          |               |               |               |            |              |         |
| 5/1/2017   |               |               |          |               |               |               |            |              |         |

Constituent: Chloride (mg/L) Analysis Run 5/6/2021 8:46 PM View: Appendix III

|            | YGWA-18I (bg) | YGWA-18S (bg) | YGWC-23S | YGWA-21I (bg) | YGWA-20S (bg) | YGWA-17S (bg) | YGWC-24SA | YGWA-47 (bg) | YGWC-42 |
|------------|---------------|---------------|----------|---------------|---------------|---------------|-----------|--------------|---------|
| 5/2/2017   |               |               | 1.8      |               |               | 4.6           | 5.7       |              |         |
| 5/8/2017   |               |               |          |               |               |               |           | 5.8          |         |
| 5/9/2017   |               |               |          |               |               |               |           |              |         |
| 5/10/2017  |               |               |          |               |               |               |           |              | 4.4     |
| 5/26/2017  |               |               |          |               |               |               |           |              |         |
| 6/27/2017  |               |               |          |               |               |               |           |              |         |
| 6/28/2017  | 7             | 6.4           |          |               |               |               |           |              |         |
| 6/29/2017  |               |               |          | 2.8           | 2.6           | 4.5           |           |              |         |
| 6/30/2017  |               |               |          |               |               |               |           |              |         |
| 7/7/2017   |               |               |          |               |               |               | 5.7       |              |         |
| 7/10/2017  |               |               | 1.9      |               |               |               |           |              |         |
| 7/11/2017  |               |               |          |               |               |               |           | 5.8          | 4.7     |
| 7/13/2017  |               |               |          |               |               |               |           |              |         |
| 7/17/2017  |               |               |          |               |               |               |           |              |         |
| 9/22/2017  |               |               |          |               |               |               |           |              |         |
| 9/29/2017  |               |               |          |               |               |               |           |              |         |
| 10/3/2017  |               |               |          | 2.2           |               |               |           |              |         |
| 10/4/2017  |               | 6.8           |          |               | 2.6           | 4.7           |           |              |         |
| 10/5/2017  | 7             |               |          |               |               |               | 6         |              |         |
| 10/6/2017  |               |               |          |               |               |               |           |              |         |
| 10/10/2017 |               |               |          |               |               |               |           | 59           |         |
| 10/11/2017 |               |               | 24       |               |               |               |           | 0.0          |         |
| 10/12/2017 |               |               | 2.7      |               |               |               |           |              | 13      |
| 10/16/2017 |               |               |          |               |               |               |           |              | 4.5     |
| 10/10/2017 |               |               |          |               |               |               |           |              |         |
| 11/20/2017 |               |               |          |               |               |               |           |              |         |
| 11/21/2017 |               |               |          |               |               |               |           |              |         |
| 1/10/2018  |               |               |          |               |               |               |           |              |         |
| 1/11/2018  |               |               |          |               |               |               |           |              |         |
| 1/12/2018  |               |               |          |               |               |               |           |              |         |
| 2/19/2018  |               |               |          |               |               |               |           |              |         |
| 2/20/2018  |               |               |          |               |               |               |           |              |         |
| 4/2/2018   |               |               |          |               |               |               |           | 4.8          |         |
| 4/3/2018   |               |               |          |               |               |               |           |              |         |
| 4/4/2018   |               |               |          |               |               |               |           |              | 3.7     |
| 6/5/2018   |               |               |          | 1.7           |               |               |           |              |         |
| 6/6/2018   |               |               |          |               | 2.7           |               |           |              |         |
| 6/7/2018   | 6.8           |               |          |               |               |               |           |              |         |
| 6/8/2018   |               |               |          |               |               |               |           |              |         |
| 6/11/2018  |               | 6.8           |          |               |               | 4.9           |           |              |         |
| 6/12/2018  |               |               | 1.8      |               |               |               | 6.2       |              |         |
| 6/13/2018  |               |               |          |               |               |               |           |              |         |
| 6/27/2018  |               |               |          |               |               |               |           |              |         |
| 6/28/2018  |               |               |          |               |               |               |           |              |         |
| 8/6/2018   |               |               |          |               |               |               |           |              |         |
| 8/7/2018   |               |               |          |               |               |               |           |              |         |
| 9/19/2018  |               |               |          |               |               |               |           | 4            |         |
| 9/20/2018  |               |               |          |               |               |               |           |              | 3.8     |
| 9/24/2018  |               |               |          |               |               |               |           |              |         |
| 9/25/2018  | 7.9           | 7.8           |          | 2.2           | 3.6           | 5.6           |           |              |         |
| 9/26/2018  | -             | -             |          |               |               |               | 6.9       |              |         |
| 9/27/2018  |               |               | 2        |               |               |               |           |              |         |
| 10/1/2018  |               |               | -        |               |               |               |           |              |         |
|            |               |               |          |               |               |               |           |              |         |

|           | YGWA-18I (bg) | YGWA-18S (bg) | YGWC-23S | YGWA-21I (bg) | YGWA-20S (bg) | YGWA-17S (bg) | YGWC-24SA | YGWA-47 (bg) | YGWC-42 |
|-----------|---------------|---------------|----------|---------------|---------------|---------------|-----------|--------------|---------|
| 10/2/2018 |               |               |          |               |               |               |           |              |         |
| 2/25/2019 |               |               |          |               |               |               |           |              |         |
| 3/26/2019 |               |               |          |               |               |               |           |              |         |
| 3/27/2019 |               |               |          |               |               |               |           | 4.3          | 3.9     |
| 3/28/2019 |               |               |          |               |               |               |           |              |         |
| 3/29/2019 |               |               |          |               |               |               |           |              |         |
| 4/1/2019  |               |               |          |               |               |               |           |              |         |
| 4/2/2019  |               |               |          | 2.5           |               | 4.8           |           |              |         |
| 4/3/2019  | 6.9           | 6.3           |          |               | 3.1           |               |           |              |         |
| 4/4/2019  |               |               | 1.7      |               |               |               | 5.9       |              |         |
| 6/12/2019 |               |               |          |               |               |               |           |              |         |
| 9/24/2019 |               |               |          | 3.1           |               |               |           |              |         |
| 9/25/2019 |               |               |          |               | 2.8           | 5.7           |           |              |         |
| 9/26/2019 | 7             | 7.1           |          |               |               |               | 6.5       |              |         |
| 9/27/2019 |               |               | 1.7      |               |               |               |           |              |         |
| 10/8/2019 |               |               |          |               |               |               |           | 4.4          |         |
| 10/9/2019 |               |               |          |               |               |               |           |              | 4.1     |
| 3/17/2020 |               |               |          |               |               |               |           | 4.1          |         |
| 3/18/2020 |               |               |          |               |               |               |           |              |         |
| 3/19/2020 |               |               |          |               |               |               |           |              |         |
| 3/24/2020 | 7             | 6.8           |          | 2.8           | 2.7           | 5             |           |              |         |
| 3/25/2020 |               |               |          |               |               |               |           |              | 3.2     |
| 3/26/2020 |               |               | 1.6      |               |               |               | 5.4       |              |         |
| 9/22/2020 |               |               |          |               |               |               |           | 4.2          |         |
| 9/23/2020 | 7.2           | 7.2           |          |               |               | 6.6           | 9.3       |              |         |
| 9/24/2020 |               |               | 2        | 2             | 2.7           |               |           |              | 3.3     |
| 9/25/2020 |               |               |          |               |               |               |           |              |         |
| 10/7/2020 |               |               |          |               |               |               |           |              |         |
| 3/1/2021  |               |               |          |               |               |               |           | 3.7          |         |
| 3/2/2021  |               |               |          |               |               |               |           |              |         |
| 3/3/2021  | 7             | 7.2           |          |               | 2.7           | 7.1           | 8.6       |              |         |
| 3/4/2021  |               |               | 1.8      | 1.8           |               |               |           |              | 2.7     |

Constituent: Chloride (mg/L) Analysis Run 5/6/2021 8:46 PM View: Appendix III

|            | GWA-2 (bg) | YGWC-43 | YGWC-49 | YGWC-36A | YGWA-2I (bg) | YGWA-39 (bg) | YGWC-38 | YGWC-41 | YGWA-40 (bg) |
|------------|------------|---------|---------|----------|--------------|--------------|---------|---------|--------------|
| 6/1/2016   |            |         |         |          |              |              |         |         |              |
| 6/2/2016   |            |         |         |          |              |              |         |         |              |
| 6/6/2016   |            |         |         |          |              |              |         |         |              |
| 6/7/2016   |            |         |         |          |              |              |         |         |              |
| 6/8/2016   |            |         |         |          |              |              |         |         |              |
| 7/25/2016  |            |         |         |          |              |              |         |         |              |
| 7/26/2016  |            |         |         |          |              |              |         |         |              |
| 7/27/2016  |            |         |         |          |              |              |         |         |              |
| 7/28/2016  |            |         |         |          |              |              |         |         |              |
| 8/1/2016   |            |         |         |          |              |              |         |         |              |
| 8/30/2016  |            |         |         |          |              |              |         |         |              |
| 8/31/2016  | 4          | 1.5     |         |          |              |              |         |         |              |
| 9/1/2016   |            |         | 5.3     |          |              |              |         |         |              |
| 9/2/2016   |            |         |         | 6.3      |              |              |         |         |              |
| 9/13/2016  |            |         |         |          |              |              |         |         |              |
| 9/14/2016  |            |         |         |          | 11           |              |         |         |              |
| 9/15/2016  |            |         |         |          |              |              |         |         |              |
| 9/16/2016  |            |         |         |          |              |              |         |         |              |
| 9/19/2016  |            |         |         |          |              |              |         |         |              |
| 9/20/2016  |            |         |         |          |              |              |         |         |              |
| 11/1/2016  |            |         |         |          |              |              |         |         |              |
| 11/1/2016  |            |         |         |          |              |              |         |         |              |
| 11/2/2016  |            |         |         |          |              |              |         |         |              |
| 11/3/2016  |            |         |         |          |              |              |         |         |              |
| 11/4/2016  |            |         |         |          | 1.4          |              |         |         |              |
| 11/8/2016  |            |         |         |          |              |              |         |         |              |
| 11/14/2016 |            |         |         | 6.7      |              |              |         |         |              |
| 11/15/2016 |            |         | 5.8     |          |              |              |         |         |              |
| 11/16/2016 |            | 1.7     |         |          |              |              |         |         |              |
| 11/28/2016 | 4.2        |         |         |          |              |              |         |         |              |
| 12/15/2016 |            |         |         |          | 2.9          |              |         |         |              |
| 1/10/2017  |            |         |         |          |              |              |         |         |              |
| 1/11/2017  |            |         |         |          |              |              |         |         |              |
| 1/12/2017  |            |         |         |          |              |              |         |         |              |
| 1/13/2017  |            |         |         |          |              |              |         |         |              |
| 1/16/2017  |            |         |         |          | 0.98         |              |         |         |              |
| 1/17/2017  |            |         |         |          |              |              |         |         |              |
| 2/21/2017  |            |         |         |          |              |              |         |         |              |
| 2/22/2017  | 3.7        |         |         |          |              |              |         |         |              |
| 2/24/2017  |            | 1.5     |         |          |              |              |         |         |              |
| 2/27/2017  |            |         | 4.6     |          |              |              |         |         |              |
| 2/28/2017  |            |         |         | 5.4      |              |              |         |         |              |
| 3/1/2017   |            |         |         |          |              |              |         |         |              |
| 3/2/2017   |            |         |         |          |              |              |         |         |              |
| 3/3/2017   |            |         |         |          | 1.1          |              |         |         |              |
| 3/6/2017   |            |         |         |          |              |              |         |         |              |
| 3/7/2017   |            |         |         |          |              |              |         |         |              |
| 3/8/2017   |            |         |         |          |              |              |         |         |              |
| 3/9/2017   |            |         |         |          |              |              |         |         |              |
| 4/26/2017  |            |         |         |          |              |              |         |         |              |
| 4/27/2017  |            |         |         |          |              |              |         |         |              |
| 4/28/2017  |            |         |         |          | 0.91         |              |         |         |              |
| 5/1/2017   |            |         |         |          |              |              |         |         |              |
|            |            |         |         |          |              |              |         |         |              |

#### Constituent: Chloride (mg/L) Analysis Run 5/6/2021 8:46 PM View: Appendix III

|            | GWA-2 (bg) | YGWC-43 | YGWC-49 | YGWC-36A | YGWA-2I (bg) | YGWA-39 (bg) | YGWC-38 | YGWC-41 | YGWA-40 (bg) |
|------------|------------|---------|---------|----------|--------------|--------------|---------|---------|--------------|
| 5/2/2017   |            |         |         |          |              |              |         |         |              |
| 5/8/2017   | 4.2        |         |         |          |              |              |         |         |              |
| 5/9/2017   |            |         | 5.3     | 5.7      |              |              |         |         |              |
| 5/10/2017  |            | 1.2     |         |          |              |              |         |         |              |
| 5/26/2017  |            |         |         |          | 0.93         |              |         |         |              |
| 6/27/2017  |            |         |         |          |              |              |         |         |              |
| 6/28/2017  |            |         |         |          | 1            |              |         |         |              |
| 6/29/2017  |            |         |         |          |              |              |         |         |              |
| 6/30/2017  |            |         |         |          |              |              |         |         |              |
| 7/7/2017   |            |         |         |          |              |              |         |         |              |
| 7/10/2017  |            |         |         |          |              |              |         |         |              |
| 7/10/2017  |            | 15      |         |          |              |              |         |         |              |
| 7/11/2017  |            | 1.5     | 47      | E 4      |              |              |         |         |              |
| 7/13/2017  | 2.0        |         | 4.7     | 5.4      |              |              |         |         |              |
| 7/17/2017  | 3.8        |         |         |          |              |              |         |         |              |
| 9/22/2017  |            |         |         | 6.9      |              |              |         |         |              |
| 9/29/2017  |            |         |         | 5.5      |              |              |         |         |              |
| 10/3/2017  |            |         |         |          | 1.2          |              |         |         |              |
| 10/4/2017  |            |         |         |          |              |              |         |         |              |
| 10/5/2017  |            |         |         |          |              |              |         |         |              |
| 10/6/2017  |            |         |         | 5.5      |              |              |         |         |              |
| 10/10/2017 |            |         |         |          |              |              |         |         |              |
| 10/11/2017 |            |         | 5.8     | 6.4      |              | 2.4          |         |         |              |
| 10/12/2017 |            | 1.6     |         |          |              |              | 6       | 3.1     | 3.8          |
| 10/16/2017 | 4.2        |         |         |          |              |              |         |         |              |
| 11/20/2017 |            |         |         |          |              | 1.8          | 6.9     |         | 4.4          |
| 11/21/2017 |            |         |         |          |              |              |         | 4.2     |              |
| 1/10/2018  |            |         |         |          |              |              |         |         | 4.6          |
| 1/11/2018  |            |         |         |          |              | 1.6          |         | 3.8     |              |
| 1/12/2018  |            |         |         |          |              |              | 6.6     |         |              |
| 2/19/2018  | 4.3        |         |         |          |              |              |         | 3.5     | 4.6          |
| 2/20/2018  |            |         |         |          |              | 2            | 6.2     |         |              |
| 4/2/2018   |            |         |         |          |              |              |         |         |              |
| 4/3/2018   |            |         |         |          |              | 3.3          | 6.9     | 4.4     | 5.9          |
| 4/4/2018   |            | 1.8     | 4.3     |          |              |              |         |         |              |
| 6/5/2018   |            |         |         |          |              |              |         |         |              |
| 6/6/2018   |            |         |         |          |              |              |         |         |              |
| 6/7/2018   |            |         |         |          | 1            |              |         |         |              |
| 6/8/2018   |            |         |         |          |              |              |         |         |              |
| 6/11/2018  |            |         |         |          |              |              |         |         |              |
| 6/12/2018  |            |         |         |          |              |              |         |         |              |
| 6/13/2018  |            |         |         | 5.6      |              |              |         |         |              |
| 6/27/2018  |            |         |         | 0.0      |              |              |         | 3.6     |              |
| 6/28/2018  |            |         |         |          |              | 2.1          | 64      | 5.0     | 5            |
| 0/28/2018  | 2.0        |         |         |          |              | 2.1          | 0.4     |         | 5            |
| 8/0/2018   | 3.0        |         |         |          |              | 10           | F F     | 2.2     | 4.2          |
| 8/7/2018   |            |         |         |          |              | 1.2          | 5.5     | 3.3     | 4.3          |
| 9/19/2018  |            | 1.0     | 4.0     |          |              |              |         |         |              |
| 9/20/2018  |            | 1.9     | 4.8     |          |              | 1.0          | 5.0     |         | 4.0          |
| 9/24/2018  |            |         |         |          |              | 1.3          | 5.9     | 3.3     | 4.9          |
| 9/25/2018  |            |         |         | <u>.</u> |              |              |         |         |              |
| 9/26/2018  |            |         |         | 6        |              |              |         |         |              |
| 9/27/2018  |            |         |         |          |              |              |         |         |              |
| 10/1/2018  |            |         |         |          | 1.1          |              |         |         |              |

|           | GWA-2 (bg) | YGWC-43 | YGWC-49 | YGWC-36A | YGWA-2I (bg) | YGWA-39 (bg) | YGWC-38 | YGWC-41 | YGWA-40 (bg) |
|-----------|------------|---------|---------|----------|--------------|--------------|---------|---------|--------------|
| 10/2/2018 |            |         |         |          |              |              |         |         |              |
| 2/25/2019 | 4.1        |         |         |          |              |              |         |         |              |
| 3/26/2019 |            |         |         |          |              |              |         |         | 4.4          |
| 3/27/2019 |            |         |         |          |              | 1.4          | 6.2     |         |              |
| 3/28/2019 |            | 1.8     | 4.4     |          |              |              |         | 3.2     |              |
| 3/29/2019 |            |         |         |          | 1.2          |              |         |         |              |
| 4/1/2019  |            |         |         |          |              |              |         |         |              |
| 4/2/2019  |            |         |         |          |              |              |         |         |              |
| 4/3/2019  |            |         |         |          |              |              |         |         |              |
| 4/4/2019  |            |         |         | 5.4      |              |              |         |         |              |
| 6/12/2019 | 4.7        |         |         |          |              |              |         |         |              |
| 9/24/2019 |            |         |         |          | 0.95 (J)     |              |         |         |              |
| 9/25/2019 |            |         |         |          |              |              |         |         |              |
| 9/26/2019 |            |         | 5       | 7.1      |              |              |         |         |              |
| 9/27/2019 |            |         |         |          |              |              |         |         |              |
| 10/8/2019 | 5.1        |         |         |          |              |              |         |         |              |
| 10/9/2019 |            | 2.3     |         |          |              | 2.1          | 5       | 3.3     | 5.1          |
| 3/17/2020 | 4.8        |         |         |          |              |              |         |         |              |
| 3/18/2020 |            |         |         |          |              |              |         |         |              |
| 3/19/2020 |            |         |         |          | 0.97 (J)     |              |         |         |              |
| 3/24/2020 |            |         |         |          |              |              |         |         | 4.7          |
| 3/25/2020 |            | 1.8     | 4.1     | 6.3      |              | 1.9          | 4       | 2.7     |              |
| 3/26/2020 |            |         |         |          |              |              |         |         |              |
| 9/22/2020 | 4.2        |         |         |          |              |              |         |         |              |
| 9/23/2020 |            |         |         |          | 0.88 (J)     |              |         |         |              |
| 9/24/2020 |            |         | 4.6     |          |              | 2.7          |         |         | 5            |
| 9/25/2020 |            | 2.3     |         |          |              |              | 4       | 3       |              |
| 10/7/2020 |            |         |         | 8.7      |              |              |         |         |              |
| 3/1/2021  |            |         |         |          |              |              |         |         |              |
| 3/2/2021  | 4.1        |         |         |          |              |              |         |         |              |
| 3/3/2021  |            |         |         |          | 0.86 (J)     |              |         |         |              |
| 3/4/2021  |            | 2.1     | 4.1     | 6.6      |              | 4.9          | 3.9     | 3.4     | 4.9          |

Constituent: Fluoride (mg/L) Analysis Run 5/6/2021 8:46 PM View: Appendix III

|            | YGWA-1I (bg) | YGWA-1D (bg) | YGWA-3I (bg) | YGWA-30I (bg) | YGWA-4I (bg) | YGWA-5I (bg) | YGWA-14S (bg) | YGWA-3D (bg) | YGWA-5D (bg) |
|------------|--------------|--------------|--------------|---------------|--------------|--------------|---------------|--------------|--------------|
| 6/1/2016   | <0.1         | 0.12 (J)     | 0.15 (J)     |               |              |              |               |              |              |
| 6/2/2016   |              |              |              | <0.1          | <0.1         | <0.1         | <0.1          | 0.62         | 0.11 (J)     |
| 6/6/2016   |              |              |              |               |              |              |               |              |              |
| 6/7/2016   |              |              |              |               |              |              |               |              |              |
| 6/8/2016   |              |              |              |               |              |              |               |              |              |
| 7/25/2016  | 0.06 (J)     |              | 0.14 (J)     | 0.06 (J)      |              |              |               |              |              |
| 7/26/2016  |              | 0.08 (J)     |              |               | <0.1         | <0.1         | 0.02 (J)      | 0.49         | 0.05 (J)     |
| 7/27/2016  |              |              |              |               |              |              |               |              |              |
| 7/28/2016  |              |              |              |               |              |              |               |              |              |
| 8/1/2016   |              |              |              |               |              |              |               |              |              |
| 8/30/2016  |              |              |              |               |              |              |               |              |              |
| 8/31/2016  |              |              |              |               |              |              |               |              |              |
| 9/1/2016   |              |              |              |               |              |              |               |              |              |
| 9/2/2016   |              |              |              |               |              |              |               |              |              |
| 9/13/2016  | <0.1         | 0.11 (J)     |              |               |              |              |               |              |              |
| 9/14/2016  |              |              | 0.18 (J)     |               | <0.1         | <0.1         |               |              | 0.04 (J)     |
| 9/15/2016  |              |              |              |               |              |              | <0.1          | 0.54         |              |
| 9/16/2016  |              |              |              |               |              |              |               |              |              |
| 9/19/2016  |              |              |              | <0.1          |              |              |               |              |              |
| 9/20/2016  |              |              |              |               |              |              |               |              |              |
| 11/1/2016  |              | <0.1         | <0.1         | <0.1          |              |              |               | 0.68         |              |
| 11/2/2016  |              |              |              |               | <0 1         |              | <0.1          |              | <0.1         |
| 11/3/2016  |              |              |              |               | 0.1          |              |               |              |              |
| 11/4/2016  | <0.1         |              |              |               |              | <0.1         |               |              |              |
| 11/8/2016  | -0.1         |              |              |               |              | -0.1         |               |              |              |
| 11/14/2016 |              |              |              |               |              |              |               |              |              |
| 11/14/2016 |              |              |              |               |              |              |               |              |              |
| 11/15/2016 |              |              |              |               |              |              |               |              |              |
| 11/16/2016 |              |              |              |               |              |              |               |              |              |
| 10/15/2010 |              |              |              |               |              |              |               |              |              |
| 12/15/2016 |              |              |              |               |              |              | -0.1          |              |              |
| 1/10/2017  |              | 0.05 (1)     | 0.00 ( ))    |               |              |              | <0.1          | 0.40         |              |
| 1/11/2017  |              | 0.05 (J)     | 0.09 (J)     |               |              |              |               | 0.49         |              |
| 1/12/2017  |              |              |              |               |              | <0.1         |               |              | 0.04 (J)     |
| 1/13/2017  |              |              |              |               | <0.1         |              |               |              |              |
| 1/16/2017  | <0.1         |              |              | <0.1          |              |              |               |              |              |
| 1/17/2017  |              |              |              |               |              |              |               |              |              |
| 2/21/2017  |              |              |              | <0.1          |              |              |               |              |              |
| 2/22/2017  |              |              |              |               |              |              |               |              |              |
| 2/24/2017  |              |              |              |               |              |              |               |              |              |
| 2/27/2017  |              |              |              |               |              |              |               |              |              |
| 2/28/2017  |              |              |              |               |              |              |               |              |              |
| 3/1/2017   |              |              | <0.1         |               |              |              |               |              |              |
| 3/2/2017   | <0.1         | <0.1         |              |               |              |              |               | 0.48         |              |
| 3/3/2017   |              |              |              |               |              |              |               |              |              |
| 3/6/2017   |              |              |              |               | <0.1         |              |               |              |              |
| 3/7/2017   |              |              |              |               |              | <0.1         |               |              | <0.1         |
| 3/8/2017   |              |              |              |               |              |              | <0.1          |              |              |
| 3/9/2017   |              |              |              |               |              |              |               |              |              |
| 4/26/2017  |              |              | 0.08 (J)     | <0.1          |              |              | <0.1          | 0.48         |              |
| 4/27/2017  | 0.01 (J)     | 0.04 (J)     |              |               |              |              |               |              |              |
| 4/28/2017  |              |              |              |               |              |              |               |              |              |
| 5/1/2017   |              |              |              |               | <0.1         |              |               |              | <0.1         |

|            | YGWA-1I (bg) | YGWA-1D (bg) | YGWA-3I (bg) | YGWA-30I (bg) | YGWA-4I (bg) | YGWA-5I (bg) | YGWA-14S (bg) | YGWA-3D (bg) | YGWA-5D (bg) |
|------------|--------------|--------------|--------------|---------------|--------------|--------------|---------------|--------------|--------------|
| 5/2/2017   |              |              |              |               |              | <0.1         |               |              |              |
| 5/8/2017   |              |              |              |               |              |              |               |              |              |
| 5/9/2017   |              |              |              |               |              |              |               |              |              |
| 5/10/2017  |              |              |              |               |              |              |               |              |              |
| 5/26/2017  |              |              |              |               |              |              |               |              |              |
| 6/27/2017  | <0.1         | <0.1         |              |               |              | <0.1         |               |              | <0.1         |
| 6/28/2017  |              |              | 0.12 (J)     |               |              |              |               | 0.47         |              |
| 6/29/2017  |              |              |              |               | <0.1         |              |               |              |              |
| 6/30/2017  |              |              |              | <0.1          |              |              | <0.1          |              |              |
| 7/7/2017   |              |              |              |               |              |              |               |              |              |
| 7/10/2017  |              |              |              |               |              |              |               |              |              |
| 7/11/2017  |              |              |              |               |              |              |               |              |              |
| 7/13/2017  |              |              |              |               |              |              |               |              |              |
| 7/17/2017  |              |              |              |               |              |              |               |              |              |
| 9/22/2017  |              |              |              |               |              |              |               |              |              |
| 9/29/2017  |              |              |              |               |              |              |               |              |              |
| 10/3/2017  | <0.1         | <0.1         |              |               |              | <0.1         |               |              | <0.1         |
| 10/4/2017  |              |              | <0.1         | <0.1          |              |              |               | <0.1         |              |
| 10/5/2017  |              |              |              |               | <0.1         |              | <0.1          |              |              |
| 10/6/2017  |              |              |              |               |              |              |               |              |              |
| 10/10/2017 |              |              |              |               |              |              |               |              |              |
| 10/11/2017 |              |              |              |               |              |              |               |              |              |
| 10/12/2017 |              |              |              |               |              |              |               |              |              |
| 10/16/2017 |              |              |              |               |              |              |               |              |              |
| 11/20/2017 |              |              |              |               |              |              |               |              |              |
| 11/21/2017 |              |              |              |               |              |              |               |              |              |
| 1/10/2018  |              |              |              |               |              |              |               |              |              |
| 1/11/2018  |              |              |              |               |              |              |               |              |              |
| 1/12/2018  |              |              |              |               |              |              |               |              |              |
| 2/19/2018  |              |              |              |               |              |              |               |              |              |
| 2/20/2018  |              |              |              |               |              |              |               |              |              |
| 3/27/2018  | <0.1         |              |              | <0.1          |              |              | <0.1          |              |              |
| 3/28/2018  |              |              | <0.1         |               |              |              |               | 0.56         |              |
| 3/29/2018  |              | <0.1         |              |               | <0.1         | <0.1         |               |              | <0.1         |
| 3/30/2018  |              |              |              |               |              |              |               |              |              |
| 4/2/2018   |              |              |              |               |              |              |               |              |              |
| 4/3/2018   |              |              |              |               |              |              |               |              |              |
| 4/4/2018   |              |              |              |               |              |              |               |              |              |
| 6/5/2018   |              | 0.055 (J)    |              |               |              |              |               |              |              |
| 6/6/2018   | <0.1         |              |              |               |              |              |               |              | 0.15 (J)     |
| 6/7/2018   |              |              |              |               | <0.1         | <0.1         |               | 0.48         |              |
| 6/8/2018   |              |              | 0.2 (J)      |               |              |              | <0.1          |              |              |
| 6/11/2018  |              |              |              | <0.1          |              |              |               |              |              |
| 6/12/2018  |              |              |              |               |              |              |               |              |              |
| 6/13/2018  |              |              |              |               |              |              |               |              |              |
| 6/27/2018  |              |              |              |               |              |              |               |              |              |
| 6/28/2018  |              |              |              |               |              |              |               |              |              |
| 8/6/2018   |              |              |              |               |              |              |               |              |              |
| 8/7/2018   |              |              |              |               |              |              |               |              |              |
| 9/19/2018  |              |              |              |               |              |              |               |              |              |
| 9/20/2018  |              |              |              |               |              |              |               |              |              |
| 9/24/2018  |              |              |              |               |              |              |               |              |              |
| 5.22010    |              |              |              |               |              |              |               |              |              |

Constituent: Fluoride (mg/L) Analysis Run 5/6/2021 8:46 PM View: Appendix III

|           | YGWA-1I (bg) | YGWA-1D (bg) | YGWA-3I (bg) | YGWA-30I (bg) | YGWA-4I (bg) | YGWA-5I (bg) | YGWA-14S (bg) | YGWA-3D (bg) | YGWA-5D (bg) |
|-----------|--------------|--------------|--------------|---------------|--------------|--------------|---------------|--------------|--------------|
| 9/25/2018 |              |              |              |               |              |              |               |              |              |
| 9/26/2018 |              |              |              |               | <0.1         | <0.1         |               |              | <0.1         |
| 9/27/2018 |              |              |              |               |              |              |               |              |              |
| 10/1/2018 | <0.1         | <0.1         | <0.1         |               |              |              | <0.1          | 0.44         |              |
| 10/2/2018 |              |              |              | <0.1          |              |              |               |              |              |
| 2/25/2019 |              |              |              |               |              |              |               |              |              |
| 2/26/2019 |              |              |              | <0.1          |              |              | <0.1          |              |              |
| 2/27/2019 | <0.1         | 0.052 (J)    | 0.13 (J)     |               |              |              |               | 0.53         |              |
| 3/4/2019  |              |              |              |               | <0.1         | <0.1         |               |              | 0.19 (J)     |
| 3/5/2019  |              |              |              |               |              |              |               |              |              |
| 3/6/2019  |              |              |              |               |              |              |               |              |              |
| 3/26/2019 |              |              |              |               |              |              |               |              |              |
| 3/27/2019 |              |              |              |               |              |              |               |              |              |
| 3/28/2019 | <0.1         | 0.036 (J)    |              |               |              |              |               |              |              |
| 3/29/2019 |              |              |              |               |              |              | <0.1          |              |              |
| 4/1/2019  |              |              | 0.1 (J)      | <0.1          |              |              |               | 0.45         |              |
| 4/2/2019  |              |              |              |               |              |              |               |              |              |
| 4/3/2019  |              |              |              |               | <0.1         | <0.1         |               |              | 0.047 (J)    |
| 4/4/2019  |              |              |              |               |              |              |               |              |              |
| 6/12/2019 |              |              |              |               |              |              |               |              |              |
| 8/19/2019 |              |              |              |               |              |              |               |              |              |
| 8/20/2019 |              |              |              |               |              |              |               |              |              |
| 8/21/2019 |              |              |              |               |              |              |               |              |              |
| 8/22/2019 |              |              |              |               |              |              |               |              |              |
| 9/24/2019 | <0.1         | 0.063 (J)    |              |               |              | <0.1         |               |              | 0.05 (J)     |
| 9/25/2019 |              |              | 0.1 (J)      | <0.1          | <0.1         |              | <0.1          | 0.46         |              |
| 9/26/2019 |              |              |              |               |              |              |               |              |              |
| 9/27/2019 |              |              |              |               |              |              |               |              |              |
| 10/8/2019 |              |              |              |               |              |              |               |              |              |
| 10/9/2019 |              |              |              |               |              |              |               |              |              |
| 2/10/2020 | <0.1         | 0.061 (J)    |              |               |              |              |               |              |              |
| 2/11/2020 |              |              | 0.094 (J)    |               |              |              |               |              |              |
| 2/12/2020 |              |              |              | <0.1          | <0.1         | <0.1         | <0.1          | 0.4          | <0.1         |
| 3/17/2020 |              |              |              |               |              |              |               |              |              |
| 3/18/2020 | <0.1         |              |              |               |              |              | <0.1          |              |              |
| 3/19/2020 |              | 0.064 (J)    | 0.11 (J)     | <0.1          |              |              |               | 0.51         |              |
| 3/24/2020 |              |              |              |               |              | <0.1         |               |              | <0.1         |
| 3/25/2020 |              |              |              |               | <0.1         |              |               |              |              |
| 3/26/2020 |              |              |              |               |              |              |               |              |              |
| 8/26/2020 |              |              |              |               |              |              |               |              |              |
| 8/27/2020 |              |              |              |               |              |              |               |              |              |
| 9/22/2020 |              |              |              |               | <0.1         | <0.1         |               |              | 0.056 (J)    |
| 9/23/2020 | <0.1         | 0.058 (J)    | 0.098 (J)    |               |              |              |               | 0.47         |              |
| 9/24/2020 |              |              |              | <0.1          |              |              |               |              |              |
| 9/25/2020 |              |              |              |               |              |              | <0.1          |              |              |
| 10/7/2020 |              |              |              |               |              |              |               |              |              |
| 2/8/2021  |              |              |              |               |              | <0.1         |               |              | 0.055 (J)    |
| 2/9/2021  |              |              |              |               | <0.1         |              |               |              |              |
| 2/10/2021 |              |              | <0.1         |               |              |              | <0.1          | 0.43         |              |
| 2/11/2021 |              |              |              | <0.1          |              |              |               |              |              |
| 2/12/2021 | <0.1         | 0.068 (J)    |              |               |              |              |               |              |              |
| 3/1/2021  |              |              |              | <0.1          |              |              |               |              |              |

Constituent: Fluoride (mg/L) Analysis Run 5/6/2021 8:46 PM View: Appendix III

|          | YGWA-1I (bg) | YGWA-1D (bg) | YGWA-3I (bg) | YGWA-30I (bg) | YGWA-4I (bg) | YGWA-5I (bg) | YGWA-14S (bg) | YGWA-3D (bg) | YGWA-5D (bg) |
|----------|--------------|--------------|--------------|---------------|--------------|--------------|---------------|--------------|--------------|
| 3/2/2021 |              |              |              |               |              | <0.1         | <0.1          |              | <0.1         |
| 3/3/2021 | <0.1         | 0.078 (J)    | 0.1          |               | <0.1         |              |               | 0.44         |              |
| 3/4/2021 |              |              |              |               |              |              |               |              |              |

|            | YGWA-18I (bg) | YGWA-18S (bg) | YGWA-21I (bg) | YGWA-20S (bg) | YGWC-23S | YGWA-17S (bg) | YGWC-24SA | YGWA-47 (bg) | YGWC-42  |
|------------|---------------|---------------|---------------|---------------|----------|---------------|-----------|--------------|----------|
| 6/1/2016   |               |               |               |               |          |               |           |              |          |
| 6/2/2016   |               |               |               |               |          |               |           |              |          |
| 6/6/2016   | <0.1          | <0.1          |               |               |          |               |           |              |          |
| 6/7/2016   |               |               | <0.1          | <0.1          | <0.1     | <0.1          |           |              |          |
| 6/8/2016   |               |               |               |               |          |               | <0.1      |              |          |
| 7/25/2016  |               |               |               |               |          |               |           |              |          |
| 7/26/2016  |               |               |               |               |          |               |           |              |          |
| 7/27/2016  | <0.1          | <0.1          |               | <0.1          |          | <0.1          |           |              |          |
| 7/28/2016  |               |               | 0.02 (J)      |               | 0.03 (J) |               |           |              |          |
| 8/1/2016   |               |               |               |               |          |               | <0.1      |              |          |
| 8/30/2016  |               |               |               |               |          |               |           | 0.09(.1)     | 0.02(.1) |
| 8/31/2016  |               |               |               |               |          |               |           | 0.00 (0)     | 0.02 (0) |
| 9/1/2016   |               |               |               |               |          |               |           |              |          |
| 9/2/2016   |               |               |               |               |          |               |           |              |          |
| 9/2/2010   |               |               |               |               |          |               |           |              |          |
| 9/13/2010  |               |               |               |               |          |               |           |              |          |
| 9/14/2016  |               |               |               |               |          |               |           |              |          |
| 9/15/2016  |               |               |               |               |          |               |           |              |          |
| 9/16/2016  |               | <0.1          | 0 00 ( N      |               |          | <0.1          |           |              |          |
| 9/19/2016  | <0.1          |               | 0.02 (J)      | <0.1          |          |               |           |              |          |
| 9/20/2016  |               |               |               |               | <0.1     |               | <0.1      |              |          |
| 11/1/2016  |               |               |               |               |          |               |           |              |          |
| 11/2/2016  |               |               |               | <0.1          |          |               |           |              |          |
| 11/3/2016  | <0.1          | <0.1          | <0.1          |               |          | <0.1          |           |              |          |
| 11/4/2016  |               |               |               |               |          |               |           |              |          |
| 11/8/2016  |               |               |               |               | <0.1     |               | <0.1      |              |          |
| 11/14/2016 |               |               |               |               |          |               |           | 0.18 (J)     |          |
| 11/15/2016 |               |               |               |               |          |               |           |              |          |
| 11/16/2016 |               |               |               |               |          |               |           |              | 0.07 (J) |
| 11/28/2016 |               |               |               |               |          |               |           |              |          |
| 12/15/2016 |               |               |               |               |          |               |           |              |          |
| 1/10/2017  |               |               |               |               |          |               |           |              |          |
| 1/11/2017  | <0.1          | <0.1          |               |               |          | <0.1          |           |              |          |
| 1/12/2017  |               |               |               |               |          |               |           |              |          |
| 1/13/2017  |               |               | <0.1          | <0.1          |          |               |           |              |          |
| 1/16/2017  |               |               |               |               | <0.1     |               |           |              |          |
| 1/17/2017  |               |               |               |               |          |               | <0.1      |              |          |
| 2/21/2017  |               |               |               |               |          |               |           |              |          |
| 2/22/2017  |               |               |               |               |          |               |           |              |          |
| 2/24/2017  |               |               |               |               |          |               |           | 0.05 (J)     |          |
| 2/27/2017  |               |               |               |               |          |               |           |              | 0.06 (J) |
| 2/28/2017  |               |               |               |               |          |               |           |              | ()       |
| 3/1/2017   | <0.1          | <0.1          |               |               |          |               |           |              |          |
| 3/2/2017   |               |               |               |               |          | <0.1          |           |              |          |
| 3/3/2017   |               |               |               |               |          |               |           |              |          |
| 3/6/2017   |               |               | <0.1          | <0.1          |          |               |           |              |          |
| 3/7/2017   |               |               |               |               |          |               |           |              |          |
| 3/8/2017   |               |               |               |               |          |               | <0.1      |              |          |
| 3/0/2017   |               |               |               |               | -0.1     |               | -0.1      |              |          |
| J/26/2017  | <0.1          | <0.1          | 0.04 ( 1)     | <0.1          | SU. 1    |               |           |              |          |
| 4/20/2017  | <b>~</b> 0.1  | <b>~</b> 0.1  | 0.04 (J)      | <b>∼</b> 0.1  |          |               |           |              |          |
| 4/2//2017  |               |               |               |               |          |               |           |              |          |
| 4/28/2017  |               |               |               |               |          |               |           |              |          |
| 5/1/2017   |               |               |               |               |          |               |           |              |          |

| 5/0/0017   | YGWA-18I (bg) | YGWA-18S (bg) | YGWA-21I (bg) | YGWA-20S (bg) | YGWC-23S | YGWA-17S (bg) | YGWC-24SA | YGWA-47 (bg) | YGWC-42   |
|------------|---------------|---------------|---------------|---------------|----------|---------------|-----------|--------------|-----------|
| 5/2/2017   |               |               |               |               | <0.1     | <0.1          | <0.1      | 0.02 ( 1)    |           |
| 5/8/2017   |               |               |               |               |          |               |           | 0.03 (J)     |           |
| 5/9/2017   |               |               |               |               |          |               |           |              | -0.1      |
| 5/10/2017  |               |               |               |               |          |               |           |              | S0.1      |
| 5/20/2017  |               |               |               |               |          |               |           |              |           |
| 6/27/2017  | -0.1          | -0.1          |               |               |          |               |           |              |           |
| 6/26/2017  | <0.1          | <0.1          | -0.1          | -0.1          |          | -0.1          |           |              |           |
| 6/29/2017  |               |               | <0.1          | <0.1          |          | <0.1          |           |              |           |
| 6/30/2017  |               |               |               |               |          |               | -0.1      |              |           |
| 7/7/2017   |               |               |               |               | -0.1     |               | <0.1      |              |           |
| 7/10/2017  |               |               |               |               | <0.1     |               |           | 0.07 (1)     | -0.1      |
| 7/11/2017  |               |               |               |               |          |               |           | 0.07 (J)     | <0.1      |
| 7/13/2017  |               |               |               |               |          |               |           |              |           |
| 0/22/2017  |               |               |               |               |          |               |           |              |           |
| 9/22/2017  |               |               |               |               |          |               |           |              |           |
| 9/29/2017  |               |               | -0.1          |               |          |               |           |              |           |
| 10/3/2017  |               | -0.1          | <0.1          | -0.1          |          | -0.1          |           |              |           |
| 10/4/2017  | -0.1          | <0.1          |               | <0.1          |          | <0.1          | -0.1      |              |           |
| 10/5/2017  | <0.1          |               |               |               |          |               | <0.1      |              |           |
| 10/0/2017  |               |               |               |               |          |               |           | -0.1         |           |
| 10/10/2017 |               |               |               |               | -0.1     |               |           | <0.1         |           |
| 10/11/2017 |               |               |               |               | <0.1     |               |           |              |           |
| 10/12/2017 |               |               |               |               |          |               |           |              | <0.1      |
| 10/16/2017 |               |               |               |               |          |               |           |              |           |
| 11/20/2017 |               |               |               |               |          |               |           |              |           |
| 11/21/2017 |               |               |               |               |          |               |           |              |           |
| 1/10/2018  |               |               |               |               |          |               |           |              |           |
| 1/11/2018  |               |               |               |               |          |               |           |              |           |
| 1/12/2018  |               |               |               |               |          |               |           |              |           |
| 2/19/2018  |               |               |               |               |          |               |           |              |           |
| 2/20/2018  |               |               |               |               |          |               |           |              |           |
| 3/27/2018  |               |               |               |               |          |               |           |              |           |
| 3/28/2018  | <0.1          | <0.1          |               |               |          | <0.1          |           |              |           |
| 3/29/2018  |               |               | <0.1          | <0.1          |          |               |           |              |           |
| 3/30/2018  |               |               |               |               | <0.1     |               | <0.1      |              |           |
| 4/2/2018   |               |               |               |               |          |               |           | <0.1         |           |
| 4/3/2018   |               |               |               |               |          |               |           |              |           |
| 4/4/2018   |               |               |               |               |          |               |           |              | <0.1      |
| 6/5/2018   |               |               | 0.13 (J)      |               |          |               |           |              |           |
| 6/6/2018   |               |               |               | <0.1          |          |               |           |              |           |
| 6/7/2018   | <0.1          |               |               |               |          |               |           |              |           |
| 6/8/2018   |               |               |               |               |          |               |           |              |           |
| 6/11/2018  |               | <0.1          |               |               |          | <0.1          |           |              |           |
| 6/12/2018  |               |               |               |               | <0.1     |               | <0.1      |              |           |
| 6/13/2018  |               |               |               |               |          |               |           |              |           |
| 6/27/2018  |               |               |               |               |          |               |           |              |           |
| 6/28/2018  |               |               |               |               |          |               |           |              |           |
| 8/6/2018   |               |               |               |               |          |               |           |              |           |
| 8/7/2018   |               |               |               |               |          |               |           |              |           |
| 9/19/2018  |               |               |               |               |          |               |           | <0.1         |           |
| 9/20/2018  |               |               |               |               |          |               |           |              | 0.041 (J) |
| 9/24/2018  |               |               |               |               |          |               |           |              |           |

|           | YGWA-18I (bg) | YGWA-18S (bg) | YGWA-21I (bg) | YGWA-20S (bg) | YGWC-23S  | YGWA-17S (bg) | YGWC-24SA | YGWA-47 (bg) | YGWC-42     |
|-----------|---------------|---------------|---------------|---------------|-----------|---------------|-----------|--------------|-------------|
| 9/25/2018 | <0.1          | <0.1          | 0 (J)         | <0.1          |           | <0.1          |           |              |             |
| 9/26/2018 |               |               |               |               |           |               | <0.1      |              |             |
| 9/27/2018 |               |               |               |               | <0.1      |               |           |              |             |
| 10/1/2018 |               |               |               |               |           |               |           |              |             |
| 10/2/2018 |               |               |               |               |           |               |           |              |             |
| 2/25/2019 |               |               |               |               |           |               |           |              |             |
| 2/26/2019 |               |               |               |               |           |               |           |              |             |
| 2/27/2019 |               |               |               |               |           |               |           |              |             |
| 3/4/2019  |               |               |               |               |           |               |           |              |             |
| 3/5/2019  |               | <0.1          | 0.32          | <0.1          |           | <0.1          | <0.1      |              |             |
| 3/6/2019  | <0.1          | -0.1          | 0.52          | 50.1          | <01       | -0.1          | -0.1      |              |             |
| 3/0/2019  | -0.1          |               |               |               | -0.1      |               |           |              |             |
| 3/20/2019 |               |               |               |               |           |               |           | 0.001 ( 1)   | -0.1        |
| 3/2//2019 |               |               |               |               |           |               |           | 0.081 (3)    | <b>NO.1</b> |
| 3/28/2019 |               |               |               |               |           |               |           |              |             |
| 3/29/2019 |               |               |               |               |           |               |           |              |             |
| 4/1/2019  |               |               |               |               |           |               |           |              |             |
| 4/2/2019  |               |               | 0.12 (J)      |               |           | <0.1          |           |              |             |
| 4/3/2019  | <0.1          | <0.1          |               | <0.1          |           |               |           |              |             |
| 4/4/2019  |               |               |               |               | 0.049 (J) |               | 0.033 (J) |              |             |
| 6/12/2019 |               |               |               |               |           |               |           |              |             |
| 8/19/2019 |               |               |               |               |           |               |           |              |             |
| 8/20/2019 |               |               |               |               |           |               |           | <0.1         |             |
| 8/21/2019 |               |               |               |               |           |               |           |              |             |
| 8/22/2019 |               |               |               |               |           |               |           |              | <0.1        |
| 9/24/2019 |               |               | 0.15 (J)      |               |           |               |           |              |             |
| 9/25/2019 |               |               |               | <0.1          |           | <0.1          |           |              |             |
| 9/26/2019 | <0.1          | <0.1          |               |               |           |               | 0.098 (J) |              |             |
| 9/27/2019 |               |               |               |               | 0.12 (J)  |               |           |              |             |
| 10/8/2019 |               |               |               |               |           |               |           | 0.034 (J)    |             |
| 10/9/2019 |               |               |               |               |           |               |           |              | <0.1        |
| 2/10/2020 |               |               |               |               |           |               |           |              |             |
| 2/11/2020 | <0.1          | <0.1          |               |               |           | <0.1          |           |              |             |
| 2/12/2020 |               |               | 0.1 (J)       | <0.1          |           |               |           |              |             |
| 3/17/2020 |               |               |               |               |           |               |           | <0.1         |             |
| 3/18/2020 |               |               |               |               |           |               |           |              |             |
| 3/19/2020 |               |               |               |               |           |               |           |              |             |
| 3/24/2020 | <0.1          | <0 1          | 0.081(1)      | <0.1          |           | <0.1          |           |              |             |
| 3/25/2020 | -0.1          | -0.1          | 0.001 (0)     | -0.1          |           | -0.1          |           |              | <0.1        |
| 3/26/2020 |               |               |               |               | <0.1      |               | <0.1      |              | -0.1        |
| 8/26/2020 |               |               |               |               | 50.1      |               | -0.1      |              |             |
| 8/20/2020 |               |               |               |               |           |               |           | -0.1         |             |
| 0/22/2020 |               |               |               |               |           |               |           | <0.1         |             |
| 9/22/2020 | -0.1          | -0.1          |               |               |           | -0.1          | -0.1      | <0.1         |             |
| 9/23/2020 | <0.1          | <0.1          | 0.070 ( ))    |               |           | <0.1          | <0.1      |              |             |
| 9/24/2020 |               |               | 0.079 (J)     | <0.1          | <0.1      |               |           |              | <0.1        |
| 9/25/2020 |               |               |               |               |           |               |           |              |             |
| 10/7/2020 |               |               |               |               |           |               |           |              |             |
| 2/8/2021  |               |               |               |               |           |               |           |              |             |
| 2/9/2021  | <0.1          | <0.1          | 0.092 (J)     | <0.1          | <0.1      |               | <0.1      |              |             |
| 2/10/2021 |               |               |               |               |           |               |           |              | <0.1        |
| 2/11/2021 |               |               |               |               |           |               |           |              |             |
| 2/12/2021 |               |               |               |               |           |               |           |              |             |
| 3/1/2021  |               |               |               |               |           |               |           | <0.1         |             |

Page 7

|          | YGWA-18I (bg) | YGWA-18S (bg) | YGWA-21I (bg) | YGWA-20S (bg) | YGWC-23S | YGWA-17S (bg) | YGWC-24SA | YGWA-47 (bg) | YGWC-42 |
|----------|---------------|---------------|---------------|---------------|----------|---------------|-----------|--------------|---------|
| 3/2/2021 |               |               |               |               |          |               |           |              |         |
| 3/3/2021 | <0.1          | <0.1          |               | <0.1          |          | <0.1          | <0.1      |              |         |
| 3/4/2021 |               |               | 0.091 (J)     |               | <0.1     |               |           |              | <0.1    |

Constituent: Fluoride (mg/L) Analysis Run 5/6/2021 8:46 PM View: Appendix III

|                       | YGWC-43   | GWA-2 (bg) | YGWC-49  | YGWC-36A | YGWA-2I (bg) | YGWA-39 (bg) | YGWA-40 (bg) | YGWC-41 | YGWC-38 |
|-----------------------|-----------|------------|----------|----------|--------------|--------------|--------------|---------|---------|
| 6/1/2016              |           |            |          |          |              |              |              |         |         |
| 6/2/2016              |           |            |          |          |              |              |              |         |         |
| 6/6/2016              |           |            |          |          |              |              |              |         |         |
| 6/7/2016              |           |            |          |          |              |              |              |         |         |
| 6/8/2016              |           |            |          |          |              |              |              |         |         |
| 7/25/2016             |           |            |          |          |              |              |              |         |         |
| 7/26/2016             |           |            |          |          |              |              |              |         |         |
| 7/27/2016             |           |            |          |          |              |              |              |         |         |
| 7/28/2016             |           |            |          |          |              |              |              |         |         |
| 8/1/2016              |           |            |          |          |              |              |              |         |         |
| 8/30/2016             |           |            |          |          |              |              |              |         |         |
| 8/31/2016             | 0 12 (.1) | 0 14 (.1)  |          |          |              |              |              |         |         |
| 9/1/2016              | 0.12(0)   | 0.1.1 (0)  | 0.09(1)  |          |              |              |              |         |         |
| 9/2/2016              |           |            | 0.00 (0) | 0.05(1)  |              |              |              |         |         |
| 9/13/2016             |           |            |          | 0.00 (0) |              |              |              |         |         |
| 9/13/2016             |           |            |          |          | 0.08 ( 1)    |              |              |         |         |
| 9/14/2016             |           |            |          |          | 0.08 (J)     |              |              |         |         |
| 9/15/2016             |           |            |          |          |              |              |              |         |         |
| 9/16/2016             |           |            |          |          |              |              |              |         |         |
| 9/19/2016             |           |            |          |          |              |              |              |         |         |
| 9/20/2016             |           |            |          |          |              |              |              |         |         |
| 11/1/2016             |           |            |          |          |              |              |              |         |         |
| 11/2/2016             |           |            |          |          |              |              |              |         |         |
| 11/3/2016             |           |            |          |          |              |              |              |         |         |
| 11/4/2016             |           |            |          |          | <0.1         |              |              |         |         |
| 11/8/2016             |           |            |          |          |              |              |              |         |         |
| 11/14/2016            |           |            |          | 0.18 (J) |              |              |              |         |         |
| 11/15/2016            |           |            | 0.16 (J) |          |              |              |              |         |         |
| 11/16/2016            | 0.2 (J)   |            |          |          |              |              |              |         |         |
| 11/28/2016            |           | 0.12 (J)   |          |          |              |              |              |         |         |
| 12/15/2016            |           |            |          |          | 0.06 (J)     |              |              |         |         |
| 1/10/2017             |           |            |          |          |              |              |              |         |         |
| 1/11/2017             |           |            |          |          |              |              |              |         |         |
| 1/12/2017             |           |            |          |          |              |              |              |         |         |
| 1/13/2017             |           |            |          |          |              |              |              |         |         |
| 1/16/2017             |           |            |          |          | 0.1 (J)      |              |              |         |         |
| 1/17/2017             |           |            |          |          |              |              |              |         |         |
| 2/21/2017             |           |            |          |          |              |              |              |         |         |
| 2/22/2017             |           | 0.09 (J)   |          |          |              |              |              |         |         |
| 2/24/2017             | 0.21 (J)  |            |          |          |              |              |              |         |         |
| 2/27/2017             |           |            | 0.06 (J) |          |              |              |              |         |         |
| 2/28/2017             |           |            |          | 0.09 (J) |              |              |              |         |         |
| 3/1/2017              |           |            |          |          |              |              |              |         |         |
| 3/2/2017              |           |            |          |          |              |              |              |         |         |
| 3/3/2017              |           |            |          |          | <0.1         |              |              |         |         |
| 3/6/2017              |           |            |          |          | 0.1          |              |              |         |         |
| 3/7/2017              |           |            |          |          |              |              |              |         |         |
| 3/8/2017              |           |            |          |          |              |              |              |         |         |
| 3/0/2017              |           |            |          |          |              |              |              |         |         |
| JIJIZUTI<br>1/26/2017 |           |            |          |          |              |              |              |         |         |
| 4/20/2017             |           |            |          |          |              |              |              |         |         |
| 4/2//2017             |           |            |          |          | 0.00 (1)     |              |              |         |         |
| 4/28/2017             |           |            |          |          | υ.υσ (J)     |              |              |         |         |
| 5/1/2017              |           |            |          |          |              |              |              |         |         |

#### Constituent: Fluoride (mg/L) Analysis Run 5/6/2021 8:46 PM View: Appendix III

|            | YGWC-43  | GWA-2 (bg) | YGWC-49  | YGWC-36A  | YGWA-2I (bg) | YGWA-39 (bg) | YGWA-40 (bg) | YGWC-41  | YGWC-38   |
|------------|----------|------------|----------|-----------|--------------|--------------|--------------|----------|-----------|
| 5/2/2017   |          |            |          |           |              |              |              |          |           |
| 5/8/2017   |          | 0.05 (J)   |          |           |              |              |              |          |           |
| 5/9/2017   |          |            | 0.05 (J) | 0.009 (J) |              |              |              |          |           |
| 5/10/2017  | 0.04 (J) |            |          |           |              |              |              |          |           |
| 5/26/2017  |          |            |          |           | 0.09 (J)     |              |              |          |           |
| 6/27/2017  |          |            |          |           |              |              |              |          |           |
| 6/28/2017  |          |            |          |           | 0.11 (J)     |              |              |          |           |
| 6/29/2017  |          |            |          |           |              |              |              |          |           |
| 6/30/2017  |          |            |          |           |              |              |              |          |           |
| 7/7/2017   |          |            |          |           |              |              |              |          |           |
| 7/10/2017  |          |            |          |           |              |              |              |          |           |
| 7/11/2017  | 0.2 (J)  |            |          |           |              |              |              |          |           |
| 7/13/2017  |          |            | <0.1     | <0.1      |              |              |              |          |           |
| 7/17/2017  |          | 0 14 (.1)  |          |           |              |              |              |          |           |
| 9/22/2017  |          | 0(0)       |          | 0.09(1)   |              |              |              |          |           |
| 9/29/2017  |          |            |          | <0.1      |              |              |              |          |           |
| 10/3/2017  |          |            |          | -0.1      | <0.1         |              |              |          |           |
| 10/4/2017  |          |            |          |           | -0.1         |              |              |          |           |
| 10/5/2017  |          |            |          |           |              |              |              |          |           |
| 10/5/2017  |          |            |          | <0.1      |              |              |              |          |           |
| 10/0/2017  |          |            |          | -0.1      |              |              |              |          |           |
| 10/11/2017 |          |            | 0.14 (1) | -0.1      |              | -0.1         |              |          |           |
| 10/11/2017 | 0.1 (1)  |            | 0.14 (J) | <0.1      |              | <0.1         | -0.1         | -0.1     | -0.1      |
| 10/12/2017 | 0.1 (J)  | 0.10 (1)   |          |           |              |              | <0.1         | <0.1     | <0.1      |
| 10/16/2017 |          | 0.12 (J)   |          |           |              |              |              |          | 0.0 (1)   |
| 11/20/2017 |          |            |          |           |              | <0.1         | <0.1         |          | 0.2 (J)   |
| 11/21/2017 |          |            |          |           |              |              |              | <0.1     |           |
| 1/10/2018  |          |            |          |           |              |              | <0.1         |          |           |
| 1/11/2018  |          |            |          |           |              | <0.1         |              | <0.1     |           |
| 1/12/2018  |          |            |          |           |              |              |              |          | 0.21 (J)  |
| 2/19/2018  |          | 0.17       |          |           |              |              | <0.1         | <0.1     |           |
| 2/20/2018  |          |            |          |           |              | 0.23         |              |          | <0.1      |
| 3/27/2018  |          |            |          |           |              |              |              |          |           |
| 3/28/2018  |          |            |          |           | 0.31         |              |              |          |           |
| 3/29/2018  |          |            |          |           |              |              |              |          |           |
| 3/30/2018  |          |            |          | <0.1      |              |              |              |          |           |
| 4/2/2018   |          |            |          |           |              |              |              |          |           |
| 4/3/2018   |          |            |          |           |              | <0.1         | <0.1         | <0.1     | 0.41      |
| 4/4/2018   | <0.1     |            | <0.1     |           |              |              |              |          |           |
| 6/5/2018   |          |            |          |           |              |              |              |          |           |
| 6/6/2018   |          |            |          |           |              |              |              |          |           |
| 6/7/2018   |          |            |          |           | 0.11 (J)     |              |              |          |           |
| 6/8/2018   |          |            |          |           |              |              |              |          |           |
| 6/11/2018  |          |            |          |           |              |              |              |          |           |
| 6/12/2018  |          |            |          |           |              |              |              |          |           |
| 6/13/2018  |          |            |          | <0.1      |              |              |              |          |           |
| 6/27/2018  |          |            |          |           |              |              |              | <0.1     |           |
| 6/28/2018  |          |            |          |           |              | <0.1         | <0.1         |          | 0.43      |
| 8/6/2018   |          | 0.087 (J)  |          |           |              |              |              |          |           |
| 8/7/2018   |          |            |          |           |              | 0.048 (J)    | <0.1         | 0.11 (J) | <0.1      |
| 9/19/2018  |          |            |          |           |              |              |              |          |           |
| 9/20/2018  | <0.1     |            | <0.1     |           |              |              |              |          |           |
| 9/24/2018  |          |            |          |           |              | <0.1         | <0.1         | <0.1     | 0.034 (J) |
|            |          |            |          |           |              |              |              |          |           |

|           | YGWC-43   | GWA-2 (bg) | YGWC-49  | YGWC-36A  | YGWA-2I (bg) | YGWA-39 (bg) | YGWA-40 (bg) | YGWC-41 | YGWC-38  |
|-----------|-----------|------------|----------|-----------|--------------|--------------|--------------|---------|----------|
| 9/25/2018 |           |            |          |           |              |              |              |         |          |
| 9/26/2018 |           |            |          | <0.1      |              |              |              |         |          |
| 9/27/2018 |           |            |          |           |              |              |              |         |          |
| 10/1/2018 |           |            |          |           | <0.1         |              |              |         |          |
| 10/2/2018 |           |            |          |           |              |              |              |         |          |
| 2/25/2019 |           | 0.14 (J)   |          |           |              |              |              |         |          |
| 2/26/2019 |           |            |          |           |              |              |              |         |          |
| 2/27/2019 |           |            |          |           | 0.12 (J)     |              |              |         |          |
| 3/4/2019  |           |            |          |           |              |              |              |         |          |
| 3/5/2019  |           |            |          |           |              |              |              |         |          |
| 3/6/2019  |           |            |          | <0.1      |              |              |              |         |          |
| 3/26/2019 |           |            |          |           |              |              | <0.1         |         |          |
| 3/27/2019 |           |            |          |           |              | <0.1         |              |         | 0.24 (J) |
| 3/28/2019 | 0.078 (J) |            | <0.1     |           |              |              |              | 0.1 (J) |          |
| 3/29/2019 |           |            |          |           | 0.13 (J)     |              |              |         |          |
| 4/1/2019  |           |            |          |           |              |              |              |         |          |
| 4/2/2019  |           |            |          |           |              |              |              |         |          |
| 4/3/2019  |           |            |          |           |              |              |              |         |          |
| 4/4/2019  |           |            |          | 0.043 (J) |              |              |              |         |          |
| 6/12/2019 |           | 0.12 (J)   |          |           |              |              |              |         |          |
| 8/19/2019 |           | <0.1       |          |           |              |              |              |         |          |
| 8/20/2019 |           |            |          |           |              |              |              |         |          |
| 8/21/2019 | 0.062 (J) |            |          |           |              | <0.1         | <0.1         |         |          |
| 8/22/2019 |           |            |          |           |              |              |              | <0.1    | <0.1     |
| 9/24/2019 |           |            |          |           | 0.081 (J)    |              |              |         |          |
| 9/25/2019 |           |            |          |           |              |              |              |         |          |
| 9/26/2019 |           |            | 0.09 (J) | 0.094 (J) |              |              |              |         |          |
| 9/27/2019 |           |            |          |           |              |              |              |         |          |
| 10/8/2019 |           | 0.052 (J)  |          |           |              |              |              |         |          |
| 10/9/2019 | <0.1      |            |          |           |              | <0.1         | <0.1         | <0.1    | <0.1     |
| 2/10/2020 |           |            |          |           |              |              |              |         |          |
| 2/11/2020 |           |            |          |           | 0.075 (J)    |              |              |         |          |
| 2/12/2020 |           |            |          |           |              | <0.1         | <0.1         |         |          |
| 3/17/2020 |           | 0.053 (J)  |          |           |              |              |              |         |          |
| 3/18/2020 |           |            |          |           |              |              |              |         |          |
| 3/19/2020 |           |            |          |           | 0.093 (J)    |              |              |         |          |
| 3/24/2020 |           |            |          |           |              |              | <0.1         |         |          |
| 3/25/2020 | 0.073 (J) |            | <0.1     | <0.1      |              | <0.1         |              | <0.1    | <0.1     |
| 3/26/2020 |           |            |          |           |              |              |              |         |          |
| 8/26/2020 |           | 0.068 (J)  |          |           |              |              |              |         |          |
| 8/27/2020 |           |            |          |           |              |              |              |         |          |
| 9/22/2020 |           | 0.058 (J)  |          |           |              |              |              |         |          |
| 9/23/2020 |           |            |          |           | 0.08 (J)     |              |              |         |          |
| 9/24/2020 |           |            | <0.1     |           |              | <0.1         | <0.1         |         |          |
| 9/25/2020 | <0.1      |            |          |           |              |              |              | <0.1    | <0.1     |
| 10/7/2020 |           |            |          | <0.1      |              |              |              |         |          |
| 2/8/2021  |           |            |          | -         |              |              |              |         |          |
| 2/9/2021  | 0.058 (J) |            | <0.1     |           |              |              |              |         | <0.1     |
| 2/10/2021 |           |            |          | <0.1      | 0.094 (J)    | <0.1         | <0.1         | <0.1    |          |
| 2/11/2021 |           |            |          | -         | /            | -            | -            | -       |          |
| 2/12/2021 |           |            |          |           |              |              |              |         |          |
| 3/1/2021  |           |            |          |           |              |              |              |         |          |
|           |           |            |          |           |              |              |              |         |          |

Page 11

#### Constituent: Fluoride (mg/L) Analysis Run 5/6/2021 8:46 PM View: Appendix III

|          | YGWC-43   | GWA-2 (bg) | YGWC-49 | YGWC-36A | YGWA-2I (bg) | YGWA-39 (bg) | YGWA-40 (bg) | YGWC-41 | YGWC-38 |
|----------|-----------|------------|---------|----------|--------------|--------------|--------------|---------|---------|
| 3/2/2021 |           | 0.073 (J)  |         |          |              |              |              |         |         |
| 3/3/2021 |           |            |         |          | 0.085 (J)    |              |              |         |         |
| 3/4/2021 | 0.063 (J) |            | <0.1    | <0.1     |              | <0.1         | <0.1         | <0.1    | <0.1    |

Constituent: pH (S.U.) Analysis Run 5/6/2021 8:46 PM View: Appendix III

|            | GWA-2 (bg) | YGWA-3I (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-30I (bg) | YGWA-4I (bg) | YGWA-5D (bg) | YGWA-3D (bg) | YGWA-5I (bg) |
|------------|------------|--------------|--------------|--------------|---------------|--------------|--------------|--------------|--------------|
| 8/27/2008  | 6.53       |              |              |              |               |              |              |              |              |
| 3/3/2009   | 6.35       |              |              |              |               |              |              |              |              |
| 11/18/2009 | 6.47       |              |              |              |               |              |              |              |              |
| 3/3/2010   | 6.53       |              |              |              |               |              |              |              |              |
| 3/10/2011  | 5.83       |              |              |              |               |              |              |              |              |
| 9/8/2011   | 5.69       |              |              |              |               |              |              |              |              |
| 3/5/2012   | 6.27       |              |              |              |               |              |              |              |              |
| 9/10/2012  | 6.23       |              |              |              |               |              |              |              |              |
| 2/6/2013   | 7.56       |              |              |              |               |              |              |              |              |
| 8/12/2013  | 6.68       |              |              |              |               |              |              |              |              |
| 2/5/2014   | 6.32       |              |              |              |               |              |              |              |              |
| 8/3/2015   | 6 13 (D)   |              |              |              |               |              |              |              |              |
| 2/16/2016  | 5.64       |              |              |              |               |              |              |              |              |
| 6/1/2016   | 0.01       | 7 72         | 7 46         | 6 33         |               |              |              |              |              |
| 6/2/2016   |            | 1.12         | 7.40         | 0.00         | 5 75          | 6 36         | 7 67         | 7 84         | 5 75         |
| 6/6/2016   |            |              |              |              | 5.75          | 0.00         | 7.07         | 7.04         | 5.75         |
| 6/7/2016   |            |              |              |              |               |              |              |              |              |
| 6/9/2016   |            |              |              |              |               |              |              |              |              |
| 7/25/2016  |            | 7 74         |              | 6.01         | E 92          |              |              |              |              |
| 7/25/2016  |            | 7.74         | 7 40         | 0.21         | 5.62          | 6.00         | 7 66         | 7 00         | E 70         |
| 7/20/2016  |            |              | 7.43         |              |               | 0.22         | 7.00         | 7.00         | 5.72         |
| 7/27/2016  |            |              |              |              |               |              |              |              |              |
| 7/28/2016  |            |              |              |              |               |              |              |              |              |
| 8/1/2016   |            |              |              |              |               |              |              |              |              |
| 8/30/2016  |            |              |              |              |               |              |              |              |              |
| 8/31/2016  |            |              |              |              |               |              |              |              |              |
| 9/1/2016   |            |              |              |              |               |              |              |              |              |
| 9/2/2016   |            |              |              |              |               |              |              |              |              |
| 9/13/2016  |            |              | 7.44         | 6.16         |               |              |              |              |              |
| 9/14/2016  |            | 7.65         |              |              |               | 6.23         | 7.6          |              | 5.74         |
| 9/15/2016  |            |              |              |              |               |              |              | 7.74         |              |
| 9/16/2016  |            |              |              |              |               |              |              |              |              |
| 9/19/2016  |            |              |              |              | 5.78 (D)      |              |              |              |              |
| 9/20/2016  |            |              |              |              |               |              |              |              |              |
| 11/1/2016  |            | 7.7          | 7.24         |              | 5.62          |              |              | 7.75         |              |
| 11/2/2016  |            |              |              |              |               | 6.08         | 7.35         |              |              |
| 11/3/2016  |            |              |              |              |               |              |              |              |              |
| 11/4/2016  |            |              |              | 6.29         |               |              |              |              | 5.61         |
| 11/8/2016  |            |              |              |              |               |              |              |              |              |
| 11/14/2016 |            |              |              |              |               |              |              |              |              |
| 11/15/2016 |            |              |              |              |               |              |              |              |              |
| 11/16/2016 |            |              |              |              |               |              |              |              |              |
| 11/28/2016 | 6.23       |              |              |              |               |              |              |              |              |
| 12/15/2016 |            |              |              |              |               |              |              |              |              |
| 1/10/2017  |            |              |              |              |               |              |              |              |              |
| 1/11/2017  |            | 7.53         | 7.3          |              |               |              |              | 7.66         |              |
| 1/12/2017  |            |              |              |              |               |              | 7.49         |              | 5.71         |
| 1/13/2017  |            |              |              |              |               | 6.19         |              |              |              |
| 1/16/2017  |            |              |              | 6.29         | 5.72          |              |              |              |              |
| 1/17/2017  |            |              |              |              |               |              |              |              |              |
| 2/21/2017  |            |              |              |              | 5.67          |              |              |              |              |
| 2/22/2017  | 6.21       |              |              |              |               |              |              |              |              |
| 2/24/2017  |            |              |              |              |               |              |              |              |              |

|            | GWA-2 (bg) | YGWA-3I (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-30I (bg) | YGWA-4I (bg) | YGWA-5D (bg) | YGWA-3D (bg) | YGWA-5I (bg) |
|------------|------------|--------------|--------------|--------------|---------------|--------------|--------------|--------------|--------------|
| 2/27/2017  |            |              |              |              |               |              |              |              |              |
| 2/28/2017  |            |              |              |              |               |              |              |              |              |
| 3/1/2017   |            | 7.42         |              |              |               |              |              |              |              |
| 3/2/2017   |            |              | 7.23         | 6.28         |               |              |              | 7.68         |              |
| 3/3/2017   |            |              |              |              |               |              |              |              |              |
| 3/6/2017   |            |              |              |              |               | 6.2          |              |              |              |
| 3/7/2017   |            |              |              |              |               |              | 7.43         |              | 5.66         |
| 3/8/2017   |            |              |              |              |               |              |              |              |              |
| 3/9/2017   |            |              |              |              |               |              |              |              |              |
| 4/26/2017  |            | 7.4          |              |              | 5.56          |              |              | 7.45         |              |
| 4/27/2017  |            |              | 6.99         | 6.09         |               |              |              |              |              |
| 4/28/2017  |            |              |              |              |               |              |              |              |              |
| 5/1/2017   |            |              |              |              |               | 6.21         | 7.22         |              |              |
| 5/2/2017   |            |              |              |              |               |              |              |              | 5.65         |
| 5/8/2017   | 6 12       |              |              |              |               |              |              |              | 0.00         |
| 5/9/2017   | 0.12       |              |              |              |               |              |              |              |              |
| 5/10/2017  |            |              |              |              |               |              |              |              |              |
| 5/26/2017  |            |              |              |              |               |              |              |              |              |
| 6/27/2017  |            |              | 6 97         | 6.01         |               |              | 7 22         |              | F 7          |
| 6/22/2017  |            | 7.5          | 0.07         | 0.21         |               |              | 1.32         | 7.65         | 5.7          |
| 6/20/2017  |            | 7.5          |              |              |               | 6 21         |              | 7.05         |              |
| 6/29/2017  |            |              |              |              | F 70          | 0.21         |              |              |              |
| 0/30/2017  |            |              |              |              | 5.72          |              |              |              |              |
| 7/7/2017   |            |              |              |              |               |              |              |              |              |
| 7/10/2017  |            |              |              |              |               |              |              |              |              |
| 7/11/2017  |            |              |              |              |               |              |              |              |              |
| //13/2017  |            |              |              |              |               |              |              |              |              |
| //1//201/  | 6.03       |              |              |              |               |              |              |              |              |
| 9/22/2017  |            |              |              |              |               |              |              |              |              |
| 9/29/2017  |            |              |              |              |               |              |              |              |              |
| 10/3/2017  |            |              | 6.81         | 5.98         |               |              | 7.48         |              | 5.79         |
| 10/4/2017  |            | 7.45         |              |              | 5.87          |              |              | 7.49         |              |
| 10/5/2017  |            |              |              |              |               | 6.16         |              |              |              |
| 10/6/2017  |            |              |              |              |               |              |              |              |              |
| 10/10/2017 |            |              |              |              |               |              |              |              |              |
| 10/11/2017 |            |              |              |              |               |              |              |              |              |
| 10/12/2017 |            |              |              |              |               |              |              |              |              |
| 10/16/2017 | 6.12       |              |              |              |               |              |              |              |              |
| 11/20/2017 |            |              |              |              |               |              |              |              |              |
| 11/21/2017 |            |              |              |              |               |              |              |              |              |
| 1/10/2018  |            |              |              |              |               |              |              |              |              |
| 1/11/2018  |            |              |              |              |               |              |              |              |              |
| 1/12/2018  |            |              |              |              |               |              |              |              |              |
| 2/19/2018  | 6.13       |              |              |              |               |              |              |              |              |
| 2/20/2018  |            |              |              |              |               |              |              |              |              |
| 3/27/2018  |            |              |              | 6.25         | 5.83          |              |              |              |              |
| 3/28/2018  |            | 7.74         |              |              |               |              |              | 7.91         |              |
| 3/29/2018  |            |              | 7.38         |              |               | 6.09         | 7.02         |              | 5.63         |
| 3/30/2018  |            |              |              |              |               |              |              |              |              |
| 4/2/2018   |            |              |              |              |               |              |              |              |              |
| 4/3/2018   |            |              |              |              |               |              |              |              |              |
| 4/4/2018   |            |              |              |              |               |              |              |              |              |
| 6/5/2018   |            |              | 7.16         |              |               |              |              |              |              |

|           | GWA-2 (bg) | YGWA-3I (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-30I (bg) | YGWA-4I (bg) | YGWA-5D (bg) | YGWA-3D (bg) | YGWA-5I (bg) |
|-----------|------------|--------------|--------------|--------------|---------------|--------------|--------------|--------------|--------------|
| 6/6/2018  |            |              |              | 6.17         |               | 0.40         | 7.43         | 7.00         | 5.00         |
| 6/7/2018  |            |              |              |              |               | 6.12         |              | 7.69         | 5.63         |
| 6/8/2018  |            | 7.64         |              |              |               |              |              |              |              |
| 6/11/2018 |            |              |              |              | 5.69          |              |              |              |              |
| 6/12/2018 |            |              |              |              |               |              |              |              |              |
| 6/13/2018 |            |              |              |              |               |              |              |              |              |
| 6/27/2018 |            |              |              |              |               |              |              |              |              |
| 6/28/2018 |            |              |              |              |               |              |              |              |              |
| 8/6/2018  | 6.01       |              |              |              |               |              |              |              |              |
| 8/7/2018  |            |              |              |              |               |              |              |              |              |
| 9/19/2018 |            |              |              |              |               |              |              |              |              |
| 9/20/2018 |            |              |              |              |               |              |              |              |              |
| 9/24/2018 |            |              |              |              |               |              |              |              |              |
| 9/25/2018 |            |              |              |              |               |              |              |              |              |
| 9/26/2018 |            |              |              |              |               | 5.84         | 7.13         |              | 5.63         |
| 9/27/2018 |            |              |              |              |               |              |              |              |              |
| 10/1/2018 |            | 7.47         | 6.8          | 5.9          |               |              |              | 7.39         |              |
| 10/2/2018 |            |              |              |              | 5.39          |              |              |              |              |
| 2/25/2019 | 6.51       |              |              |              |               |              |              |              |              |
| 2/26/2019 |            |              |              |              | 5.77          |              |              |              |              |
| 2/27/2019 |            | 7.54         | 6.84         | 5.8          |               |              |              | 7.55         |              |
| 3/4/2019  |            |              |              |              |               | 6.18         | 7.46         |              | 5.75         |
| 3/5/2019  |            |              |              |              |               |              |              |              |              |
| 3/6/2019  |            |              |              |              |               |              |              |              |              |
| 3/26/2019 |            |              |              |              |               |              |              |              |              |
| 3/27/2019 |            |              |              |              |               |              |              |              |              |
| 3/28/2019 |            |              | 6.99         | 6.15         |               |              |              |              |              |
| 3/29/2019 |            |              |              |              |               |              |              |              |              |
| 4/1/2019  |            | 7.74         |              |              | 5.62          |              |              | 7.87         |              |
| 4/2/2019  |            |              |              |              |               |              |              |              |              |
| 4/3/2019  |            |              |              |              |               | 6.43         | 7.11         |              | 5.63         |
| 4/4/2019  |            |              |              |              |               |              |              |              |              |
| 6/12/2019 | 6.3        |              |              |              |               |              |              |              |              |
| 8/19/2019 | 6.23       |              |              |              |               |              |              |              |              |
| 8/20/2019 |            |              |              |              |               |              |              |              |              |
| 8/21/2019 |            |              |              |              |               |              |              |              |              |
| 8/22/2019 |            |              |              |              |               |              |              |              |              |
| 9/24/2019 |            |              | 7.07         | 6.23         |               |              | 6.93         |              | 5.6          |
| 9/25/2019 |            | 7.47         |              |              | 5.69          | 6.2          |              | 7.64         |              |
| 9/26/2019 |            |              |              |              |               |              |              |              |              |
| 9/27/2019 |            |              |              |              |               |              |              |              |              |
| 10/8/2019 | 6.28       |              |              |              |               |              |              |              |              |
| 10/9/2019 |            |              |              |              |               |              |              |              |              |
| 2/10/2020 |            |              | 7.2          | 6.1          |               |              |              |              |              |
| 2/11/2020 |            | 7.09         |              |              |               |              |              |              |              |
| 2/12/2020 |            |              |              |              | 5.8           | 6.15         | 7.52         | 7.83         | 5.83         |
| 3/17/2020 | 6.14       |              |              |              |               |              |              |              |              |
| 3/18/2020 |            |              |              | 6.19         |               |              |              |              |              |
| 3/19/2020 |            | 7.31         | 7.03         |              | 6             |              |              | 7.65         |              |
| 3/24/2020 |            |              |              |              |               |              | 7.34         |              | 5.81         |
| 3/25/2020 |            |              |              |              |               | 6.26         |              |              |              |
| 3/26/2020 |            |              |              |              |               |              |              |              |              |

|           | GWA-2 (bg) | YGWA-3I (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-30I (bg) | YGWA-4I (bg) | YGWA-5D (bg) | YGWA-3D (bg) | YGWA-5I (bg) |
|-----------|------------|--------------|--------------|--------------|---------------|--------------|--------------|--------------|--------------|
| 5/6/2020  | 6.24       |              |              |              |               |              |              |              |              |
| 8/26/2020 | 5.67       |              |              |              |               |              |              |              |              |
| 8/27/2020 |            |              |              |              |               |              |              |              |              |
| 9/22/2020 | 5.78       |              |              |              |               | 5.8 (D)      | 7.19 (D)     |              | 5.99 (D)     |
| 9/23/2020 |            | 7.37         | 7.15         | 6.01         |               |              |              | 7.57         |              |
| 9/24/2020 |            |              |              |              | 5.67          |              |              |              |              |
| 9/25/2020 |            |              |              |              |               |              |              |              |              |
| 10/7/2020 |            |              |              |              |               |              |              |              |              |
| 2/8/2021  |            |              |              |              |               |              |              |              | 5.67         |
| 2/9/2021  |            |              |              |              |               | 6.06         |              |              |              |
| 2/10/2021 |            | 7.58         |              |              |               |              |              | 7.81         |              |
| 2/11/2021 |            |              |              |              | 5.73          |              |              |              |              |
| 2/12/2021 |            |              | 7.14         | 6.21         |               |              |              |              |              |
| 3/1/2021  |            |              |              |              | 5.78          |              |              |              |              |
| 3/2/2021  | 5.42       |              |              |              |               |              | 7.15         |              | 5.63         |
| 3/3/2021  |            | 8.23         | 7.2          | 5.38         |               | 6.21         |              | 8.39         |              |
| 3/4/2021  |            |              |              |              |               |              |              |              |              |

Constituent: pH (S.U.) Analysis Run 5/6/2021 8:46 PM View: Appendix III

|            | YGWA-14S (bg) | YGWA-18S (bg) | YGWA-18I (bg) | YGWA-20S (bg) | YGWA-21I (bg) | YGWA-17S (bg) | YGWC-23S | YGWC-24SA | YGWA-47 (bg) |
|------------|---------------|---------------|---------------|---------------|---------------|---------------|----------|-----------|--------------|
| 8/27/2008  |               |               |               |               |               |               |          |           |              |
| 3/3/2009   |               |               |               |               |               |               |          |           |              |
| 11/18/2009 |               |               |               |               |               |               |          |           |              |
| 3/3/2010   |               |               |               |               |               |               |          |           |              |
| 3/10/2011  |               |               |               |               |               |               |          |           |              |
| 9/8/2011   |               |               |               |               |               |               |          |           |              |
| 3/5/2012   |               |               |               |               |               |               |          |           |              |
| 9/10/2012  |               |               |               |               |               |               |          |           |              |
| 2/6/2013   |               |               |               |               |               |               |          |           |              |
| 8/12/2013  |               |               |               |               |               |               |          |           |              |
| 2/5/2014   |               |               |               |               |               |               |          |           |              |
| 8/3/2015   |               |               |               |               |               |               |          |           |              |
| 2/16/2016  |               |               |               |               |               |               |          |           |              |
| 6/1/2016   |               |               |               |               |               |               |          |           |              |
| 6/2/2016   | 5.46          |               |               |               |               |               |          |           |              |
| 6/6/2016   | 3.40          | 5 71          | 6 17          |               |               |               |          |           |              |
| 6/0/2016   |               | 5.71          | 0.17          | 5 77          | 6.1           | 5.62          | 5 57     |           |              |
| 6/8/2016   |               |               |               | 5.77          | 0.1           | 5.02          | 5.57     | E CE      |              |
| 0/0/2010   |               |               |               |               |               |               |          | 5.05      |              |
| 7/25/2016  | 5.45          |               |               |               |               |               |          |           |              |
| 7/26/2016  | 5.45          | 5.40          |               | 5 70          |               | 5 50          |          |           |              |
| //2//2016  |               | 5.46          | 6.14          | 5.79          |               | 5.59          |          |           |              |
| //28/2016  |               |               |               |               | 6.12          |               | 5.6      |           |              |
| 8/1/2016   |               |               |               |               |               |               |          | 5.47      |              |
| 8/30/2016  |               |               |               |               |               |               |          |           | 5.75         |
| 8/31/2016  |               |               |               |               |               |               |          |           |              |
| 9/1/2016   |               |               |               |               |               |               |          |           |              |
| 9/2/2016   |               |               |               |               |               |               |          |           |              |
| 9/13/2016  |               |               |               |               |               |               |          |           |              |
| 9/14/2016  |               |               |               |               |               |               |          |           |              |
| 9/15/2016  | 5.45          |               |               |               |               |               |          |           |              |
| 9/16/2016  |               |               |               |               |               | 5.58          |          |           |              |
| 9/19/2016  |               | 5.59          | 6.04          | 5.73          | 6.12          |               |          |           |              |
| 9/20/2016  |               |               |               |               |               |               | 5.53     | 5.61      |              |
| 11/1/2016  |               |               |               |               |               |               |          |           |              |
| 11/2/2016  | 5.41          |               |               | 5.67          |               |               |          |           |              |
| 11/3/2016  |               | 5.39          | 5.97          |               | 6.07          | 5.59          |          |           |              |
| 11/4/2016  |               |               |               |               |               |               |          |           |              |
| 11/8/2016  |               |               |               |               |               |               | 5.53     | 5.55      |              |
| 11/14/2016 |               |               |               |               |               |               |          |           | 5.59         |
| 11/15/2016 |               |               |               |               |               |               |          |           |              |
| 11/16/2016 |               |               |               |               |               |               |          |           |              |
| 11/28/2016 |               |               |               |               |               |               |          |           |              |
| 12/15/2016 |               |               |               |               |               |               |          |           |              |
| 1/10/2017  | 5.37          |               |               |               |               |               |          |           |              |
| 1/11/2017  |               | 5.48          | 6.05          |               |               | 5.59          |          |           |              |
| 1/12/2017  |               |               |               |               |               |               |          |           |              |
| 1/13/2017  |               |               |               | 5.79          | 6.41          |               |          |           |              |
| 1/16/2017  |               |               |               |               |               |               | 5.59     |           |              |
| 1/17/2017  |               |               |               |               |               |               |          | 5.53      |              |
| 2/21/2017  |               |               |               |               |               |               |          |           |              |
| 2/22/2017  |               |               |               |               |               |               |          |           |              |
| 2/24/2017  |               |               |               |               |               |               |          |           | 5.49         |

|            | YGWA-14S (bg) | YGWA-18S (bg) | YGWA-18I (bg) | YGWA-20S (bg) | YGWA-21I (bg) | YGWA-17S (bg) | YGWC-23S | YGWC-24SA | YGWA-47 (bg) |
|------------|---------------|---------------|---------------|---------------|---------------|---------------|----------|-----------|--------------|
| 2/27/2017  |               |               |               |               |               |               |          |           |              |
| 2/28/2017  |               |               |               |               |               |               |          |           |              |
| 3/1/2017   |               | 5.41          | 5.94          |               |               |               |          |           |              |
| 3/2/2017   |               |               |               |               |               | 5.54          |          |           |              |
| 3/3/2017   |               |               |               |               |               |               |          |           |              |
| 3/6/2017   |               |               |               | 5.63          | 6.34          |               |          |           |              |
| 3/7/2017   |               |               |               |               |               |               |          |           |              |
| 3/8/2017   | 5 41          |               |               |               |               |               |          | 5 62      |              |
| 3/9/2017   |               |               |               |               |               |               | 5 56     |           |              |
| 4/26/2017  | 5.02          | 51            | 5 99          | 5 66          | 6 32          |               | 0.00     |           |              |
| 4/27/2017  | 0.02          | 0.4           | 0.00          | 0.00          | 0.02          |               |          |           |              |
| 4/27/2017  |               |               |               |               |               |               |          |           |              |
| 4/28/2017  |               |               |               |               |               |               |          |           |              |
| 5/1/2017   |               |               |               |               |               | F 47          | F 61     | F 40      |              |
| 5/2/2017   |               |               |               |               |               | 5.47          | 5.01     | 5.46      | 5 50         |
| 5/8/2017   |               |               |               |               |               |               |          |           | 5.58         |
| 5/9/2017   |               |               |               |               |               |               |          |           |              |
| 5/10/2017  |               |               |               |               |               |               |          |           |              |
| 5/26/2017  |               |               |               |               |               |               |          |           |              |
| 6/27/2017  |               |               |               |               |               |               |          |           |              |
| 6/28/2017  |               | 5.36          | 6             |               |               |               |          |           |              |
| 6/29/2017  |               |               |               | 5.85          | 6.47          | 5.56          |          |           |              |
| 6/30/2017  | 5.39          |               |               |               |               |               |          |           |              |
| 7/7/2017   |               |               |               |               |               |               |          | 5.81      |              |
| 7/10/2017  |               |               |               |               |               |               | 5.68     |           |              |
| 7/11/2017  |               |               |               |               |               |               |          |           | 5.58         |
| 7/13/2017  |               |               |               |               |               |               |          |           |              |
| 7/17/2017  |               |               |               |               |               |               |          |           |              |
| 9/22/2017  |               |               |               |               |               |               |          |           |              |
| 9/29/2017  |               |               |               |               |               |               |          |           |              |
| 10/3/2017  |               |               |               |               | 6.56          |               |          |           |              |
| 10/4/2017  |               | 5.32          |               | 5.83          |               | 5.57          |          |           |              |
| 10/5/2017  | 5.49          |               | 6.11          |               |               |               |          | 5.45      |              |
| 10/6/2017  |               |               |               |               |               |               |          |           |              |
| 10/10/2017 |               |               |               |               |               |               |          |           | 5.49         |
| 10/11/2017 |               |               |               |               |               |               | 5.46     |           |              |
| 10/12/2017 |               |               |               |               |               |               |          |           |              |
| 10/16/2017 |               |               |               |               |               |               |          |           |              |
| 11/20/2017 |               |               |               |               |               |               |          |           |              |
| 11/21/2017 |               |               |               |               |               |               |          |           |              |
| 1/10/2018  |               |               |               |               |               |               |          |           |              |
| 1/11/2018  |               |               |               |               |               |               |          |           |              |
| 1/12/2018  |               |               |               |               |               |               |          |           |              |
| 2/19/2018  |               |               |               |               |               |               |          |           |              |
| 2/20/2018  |               |               |               |               |               |               |          |           |              |
| 3/27/2018  | 5 47          |               |               |               |               |               |          |           |              |
| 3/28/2018  | 0.17          | 5 34          | 61            |               |               | 5 59          |          |           |              |
| 3/20/2010  |               | 0.04          | 0.1           | 5.03          | 6 75          | 0.00          |          |           |              |
| 3/23/2010  |               |               |               | 0.00          | 0.75          |               | E 72     | E 64      |              |
| 3/30/2018  |               |               |               |               |               |               | 0.70     | 3.04      | 6.2 (0)      |
| 4/2/2010   |               |               |               |               |               |               |          |           | 0.0 (0)      |
| 4/3/2018   |               |               |               |               |               |               |          |           |              |
| 4/4/2018   |               |               |               |               | 0.00          |               |          |           |              |
| 6/5/2018   |               |               |               |               | 6.09          |               |          |           |              |

|           | YGWA-14S (bg) | YGWA-18S (bg) | YGWA-18I (bg) | YGWA-20S (bg) | YGWA-21I (bg) | YGWA-17S (bg) | YGWC-23S | YGWC-24SA | YGWA-47 (bg) |
|-----------|---------------|---------------|---------------|---------------|---------------|---------------|----------|-----------|--------------|
| 6/6/2018  |               |               | 5.00          | 5.86          |               |               |          |           |              |
| 6/7/2018  |               |               | 5.98          |               |               |               |          |           |              |
| 6/8/2018  | 5.45          |               |               |               |               |               |          |           |              |
| 6/11/2018 |               | 5.28          |               |               |               | 5.58          |          |           |              |
| 6/12/2018 |               |               |               |               |               |               | 5.63     | 5.64      |              |
| 6/13/2018 |               |               |               |               |               |               |          |           |              |
| 6/27/2018 |               |               |               |               |               |               |          |           |              |
| 6/28/2018 |               |               |               |               |               |               |          |           |              |
| 8/6/2018  |               |               |               |               |               |               |          |           |              |
| 8/7/2018  |               |               |               |               |               |               |          |           |              |
| 9/19/2018 |               |               |               |               |               |               |          |           | 5.48         |
| 9/20/2018 |               |               |               |               |               |               |          |           |              |
| 9/24/2018 |               |               |               |               |               |               |          |           |              |
| 9/25/2018 |               | 4.86          | 5.81          | 5.84          | 6.67          | 5.59          |          |           |              |
| 9/26/2018 |               |               |               |               |               |               |          | 5.61      |              |
| 9/27/2018 |               |               |               |               |               |               | 5.47     |           |              |
| 10/1/2018 | 5.39          |               |               |               |               |               |          |           |              |
| 10/2/2018 |               |               |               |               |               |               |          |           |              |
| 2/25/2019 |               |               |               |               |               |               |          |           |              |
| 2/26/2019 | 5.46          |               |               |               |               |               |          |           |              |
| 2/27/2019 |               |               |               |               |               |               |          |           |              |
| 3///2019  |               |               |               |               |               |               |          |           |              |
| 3/4/2013  |               | E 26          |               | 6.07          | 7 22          | E 49          |          | 5 70      |              |
| 3/5/2019  |               | 5.20          | F 00          | 0.07          | 1.22          | 5.46          | E 9/     | 5.72      |              |
| 3/0/2019  |               |               | 5.99          |               |               |               | 5.64     |           |              |
| 3/26/2019 |               |               |               |               |               |               |          |           | 5.00         |
| 3/27/2019 |               |               |               |               |               |               |          |           | 5.83         |
| 3/28/2019 |               |               |               |               |               |               |          |           |              |
| 3/29/2019 | 5.34          |               |               |               |               |               |          |           |              |
| 4/1/2019  |               |               |               |               |               |               |          |           |              |
| 4/2/2019  |               |               |               |               | 6.94          | 5.74          |          |           |              |
| 4/3/2019  |               | 5.47          | 6.29          | 5.71          |               |               |          |           |              |
| 4/4/2019  |               |               |               |               |               |               | 5.64     | 5.66      |              |
| 6/12/2019 |               |               |               |               |               |               |          |           |              |
| 8/19/2019 |               |               |               |               |               |               |          |           |              |
| 8/20/2019 |               |               |               |               |               |               |          |           | 5.58         |
| 8/21/2019 |               |               |               |               |               |               |          |           |              |
| 8/22/2019 |               |               |               |               |               |               |          |           |              |
| 9/24/2019 |               |               |               |               | 6.87          |               |          |           |              |
| 9/25/2019 | 5.19          |               |               | 5.86          |               | 5.49          |          |           |              |
| 9/26/2019 |               | 5.2           | 6.04          |               |               |               |          | 5.52      |              |
| 9/27/2019 |               |               |               |               |               |               | 5.77     |           |              |
| 10/8/2019 |               |               |               |               |               |               |          |           | 5.59         |
| 10/9/2019 |               |               |               |               |               |               |          |           |              |
| 2/10/2020 |               |               |               |               |               |               |          |           |              |
| 2/11/2020 |               | 5.3           | 6.07          |               |               | 5.58          |          |           |              |
| 2/12/2020 | 5.48          | -             | -             | 6             | 7.13          |               |          |           |              |
| 3/17/2020 |               |               |               | -             |               |               |          |           | 5.57         |
| 3/18/2020 | 5 38          |               |               |               |               |               |          |           | 0.07         |
| 3/19/2020 | 0.00          |               |               |               |               |               |          |           |              |
| 3/24/2020 |               | 5 33          | 5.08          | 5 86          | 6 35          | 5 57          |          |           |              |
| 3/24/2020 |               | 5.33          | 5.30          | 5.00          | 0.00          | 3.37          |          |           |              |
| 3/23/2020 |               |               |               |               |               |               | E 60     | E E 1     |              |
| 3/20/2020 |               |               |               |               |               |               | 5.09     | 0.0 I     |              |

|           | YGWA-14S (bg) | YGWA-18S (bg) | YGWA-18I (bg) | YGWA-20S (bg) | YGWA-21I (bg) | YGWA-17S (bg) | YGWC-23S | YGWC-24SA | YGWA-47 (bg) |
|-----------|---------------|---------------|---------------|---------------|---------------|---------------|----------|-----------|--------------|
| 5/6/2020  |               |               |               |               |               |               |          |           |              |
| 8/26/2020 |               |               |               |               |               |               |          |           |              |
| 8/27/2020 |               |               |               |               |               |               |          |           | 4.88         |
| 9/22/2020 |               |               |               |               |               |               |          |           | 5.46         |
| 9/23/2020 |               | 5.29 (D)      | 6.01 (D)      |               |               | 5.58 (D)      |          | 5.64      |              |
| 9/24/2020 |               |               |               | 5.8 (D)       | 6.7 (D)       |               | 5.51     |           |              |
| 9/25/2020 | 5.44          |               |               |               |               |               |          |           |              |
| 10/7/2020 |               |               |               |               |               |               |          |           |              |
| 2/8/2021  |               |               |               |               |               |               |          |           |              |
| 2/9/2021  |               | 5.43          | 6.12          | 5.86          | 6.95          |               | 5.61     | 5.69      |              |
| 2/10/2021 | 5.35          |               |               |               |               |               |          |           |              |
| 2/11/2021 |               |               |               |               |               |               |          |           |              |
| 2/12/2021 |               |               |               |               |               |               |          |           |              |
| 3/1/2021  |               |               |               |               |               |               |          |           | 5.48         |
| 3/2/2021  | 5.49          |               |               |               |               |               |          |           |              |
| 3/3/2021  |               | 5.31          | 5.89          | 5.89          |               | 5.52          |          | 5.7       |              |
| 3/4/2021  |               |               |               |               | 6.8           |               | 5.44     |           |              |

Constituent: pH (S.U.) Analysis Run 5/6/2021 8:46 PM View: Appendix III

|            | YGWC-42 | YGWC-43 | YGWC-49 | YGWC-36A | YGWA-2I (bg) | YGWA-39 (bg) | YGWC-41 | YGWC-38 | YGWA-40 (bg) |
|------------|---------|---------|---------|----------|--------------|--------------|---------|---------|--------------|
| 8/27/2008  |         |         |         |          |              |              |         |         | ,            |
| 3/3/2009   |         |         |         |          |              |              |         |         |              |
| 11/18/2009 |         |         |         |          |              |              |         |         |              |
| 3/3/2010   |         |         |         |          |              |              |         |         |              |
| 3/10/2011  |         |         |         |          |              |              |         |         |              |
| 9/8/2011   |         |         |         |          |              |              |         |         |              |
| 3/5/2012   |         |         |         |          |              |              |         |         |              |
| 9/10/2012  |         |         |         |          |              |              |         |         |              |
| 3/10/2012  |         |         |         |          |              |              |         |         |              |
| 2/0/2013   |         |         |         |          |              |              |         |         |              |
| 0/12/2013  |         |         |         |          |              |              |         |         |              |
| 2/5/2014   |         |         |         |          |              |              |         |         |              |
| 8/3/2015   |         |         |         |          |              |              |         |         |              |
| 2/10/2010  |         |         |         |          |              |              |         |         |              |
| 6/1/2016   |         |         |         |          |              |              |         |         |              |
| 6/2/2016   |         |         |         |          |              |              |         |         |              |
| 6/6/2016   |         |         |         |          |              |              |         |         |              |
| 6/7/2016   |         |         |         |          |              |              |         |         |              |
| 6/8/2016   |         |         |         |          |              |              |         |         |              |
| 7/25/2016  |         |         |         |          |              |              |         |         |              |
| 7/26/2016  |         |         |         |          |              |              |         |         |              |
| 7/27/2016  |         |         |         |          |              |              |         |         |              |
| 7/28/2016  |         |         |         |          |              |              |         |         |              |
| 8/1/2016   |         |         |         |          |              |              |         |         |              |
| 8/30/2016  | 5.64    |         |         |          |              |              |         |         |              |
| 8/31/2016  |         | 7.27    |         |          |              |              |         |         |              |
| 9/1/2016   |         |         | 5.78    |          |              |              |         |         |              |
| 9/2/2016   |         |         |         | 5.84     |              |              |         |         |              |
| 9/13/2016  |         |         |         |          | 7.41         |              |         |         |              |
| 9/14/2016  |         |         |         |          |              |              |         |         |              |
| 9/15/2016  |         |         |         |          |              |              |         |         |              |
| 9/16/2016  |         |         |         |          |              |              |         |         |              |
| 9/19/2016  |         |         |         |          |              |              |         |         |              |
| 9/20/2016  |         |         |         |          |              |              |         |         |              |
| 11/1/2016  |         |         |         |          |              |              |         |         |              |
| 11/2/2016  |         |         |         |          |              |              |         |         |              |
| 11/3/2016  |         |         |         |          |              |              |         |         |              |
| 11/4/2016  |         |         |         |          | 7.12         |              |         |         |              |
| 11/8/2016  |         |         |         |          |              |              |         |         |              |
| 11/14/2016 |         |         |         | 6.28     |              |              |         |         |              |
| 11/15/2016 |         |         | 5.81    |          |              |              |         |         |              |
| 11/16/2016 | 6.21    | 6.79    |         |          |              |              |         |         |              |
| 11/28/2016 |         |         |         |          |              |              |         |         |              |
| 12/15/2016 |         |         |         |          | 7.24         |              |         |         |              |
| 1/10/2017  |         |         |         |          |              |              |         |         |              |
| 1/11/2017  |         |         |         |          |              |              |         |         |              |
| 1/12/2017  |         |         |         |          |              |              |         |         |              |
| 1/13/2017  |         |         |         |          |              |              |         |         |              |
| 1/16/2017  |         |         |         |          | 7.24         |              |         |         |              |
| 1/17/2017  |         |         |         |          |              |              |         |         |              |
| 2/21/2017  |         |         |         |          |              |              |         |         |              |
| 2/22/2017  |         |         |         |          |              |              |         |         |              |
| 2/24/2017  |         | 6.39    |         |          |              |              |         |         |              |

Constituent: pH (S.U.) Analysis Run 5/6/2021 8:46 PM View: Appendix III

|                      | YGWC-42 | YGWC-43 | YGWC-49 | YGWC-36A | YGWA-2I (bg) | YGWA-39 (bg) | YGWC-41 | YGWC-38 | YGWA-40 (bg) |
|----------------------|---------|---------|---------|----------|--------------|--------------|---------|---------|--------------|
| 2/27/2017            | 6.09    |         | 5.68    |          |              |              |         |         |              |
| 2/28/2017            |         |         |         | 5.99     |              |              |         |         |              |
| 3/1/2017             |         |         |         |          |              |              |         |         |              |
| 3/2/2017             |         |         |         |          |              |              |         |         |              |
| 3/3/2017             |         |         |         |          | 7.22         |              |         |         |              |
| 3/6/2017             |         |         |         |          |              |              |         |         |              |
| 3/7/2017             |         |         |         |          |              |              |         |         |              |
| 3/8/2017             |         |         |         |          |              |              |         |         |              |
| 3/9/2017             |         |         |         |          |              |              |         |         |              |
| 4/26/2017            |         |         |         |          |              |              |         |         |              |
| 4/27/2017            |         |         |         |          |              |              |         |         |              |
| 4/28/2017            |         |         |         |          | 7.21         |              |         |         |              |
| 5/1/2017             |         |         |         |          |              |              |         |         |              |
| 5/2/2017             |         |         |         |          |              |              |         |         |              |
| 5/8/2017             |         |         |         |          |              |              |         |         |              |
| 5/9/2017             |         |         | 6.18    | 6.3      |              |              |         |         |              |
| 5/10/2017            | 5.79    | 6.5     |         |          |              |              |         |         |              |
| 5/26/2017            |         |         |         |          | 7.13         |              |         |         |              |
| 6/27/2017            |         |         |         |          |              |              |         |         |              |
| 6/28/2017            |         |         |         |          | 7.06         |              |         |         |              |
| 6/29/2017            |         |         |         |          |              |              |         |         |              |
| 6/30/2017            |         |         |         |          |              |              |         |         |              |
| 7/7/2017             |         |         |         |          |              |              |         |         |              |
| 7/10/2017            |         |         |         |          |              |              |         |         |              |
| 7/11/2017            | 5.45    | 6.32    |         |          |              |              |         |         |              |
| 7/13/2017            |         |         | 5.6     | 5.57     |              |              |         |         |              |
| 7/17/2017            |         |         |         |          |              |              |         |         |              |
| 9/22/2017            |         |         |         | 5.5      |              |              |         |         |              |
| 9/29/2017            |         |         |         | 5.58     |              |              |         |         |              |
| 10/3/2017            |         |         |         |          | 6.99         |              |         |         |              |
| 10/4/2017            |         |         |         |          |              |              |         |         |              |
| 10/5/2017            |         |         |         |          |              |              |         |         |              |
| 10/6/2017            |         |         |         | 5.51     |              |              |         |         |              |
| 10/10/2017           |         |         |         |          |              |              |         |         |              |
| 10/11/2017           |         |         | 5.61    | 5.47     |              | 6.4          |         |         |              |
| 10/12/2017           | 5 48    | 5 97    |         |          |              |              | 4 94    | 4 85    | 5 43         |
| 10/16/2017           | 0.10    | 0.07    |         |          |              |              |         |         | 0.10         |
| 11/20/2017           |         |         |         |          |              | 6.33         |         | 4 87    | 51           |
| 11/21/2017           |         |         |         |          |              | 0.00         | 4 69    |         | 0.1          |
| 1/10/2018            |         |         |         |          |              |              | 4.00    |         | 4 97         |
| 1/11/2018            |         |         |         |          |              | 6 29         | 1 73    |         | 4.07         |
| 1/12/2018            |         |         |         |          |              | 0.23         | 4.75    | 4 78    |              |
| 2/10/2018            |         |         |         |          |              |              | 4.96    | 4.70    | 5.6          |
| 2/20/2018            |         |         |         |          |              | 7 22         | 4.50    | 5 1     | 5.0          |
| 3/27/2018            |         |         |         |          |              | 1.22         |         | 5.1     |              |
| 3/28/2018            |         |         |         |          | 73           |              |         |         |              |
| 3/20/2010            |         |         |         |          | 1.5          |              |         |         |              |
| 3/20/2010            |         |         |         | 5 51     |              |              |         |         |              |
| 1/2/2019             |         |         |         | J.J I    |              |              |         |         |              |
| 41212010             |         |         |         |          |              | 6 87         | 5 31    | 4 76    | 5.84         |
| 4/3/2010             | 5.03    | 6.41    | 5.08    |          |              | 0.07         | 3.31    | 4.70    | 5.04         |
| 4/4/2010<br>6/5/2019 | J.33    | 0.41    | 3.30    |          |              |              |         |         |              |
| 0/5/2018             |         |         |         |          |              |              |         |         |              |

|           | YGWC-42 | YGWC-43 | YGWC-49 | YGWC-36A | YGWA-2I (bg) | YGWA-39 (bg) | YGWC-41 | YGWC-38 | YGWA-40 (bg) |
|-----------|---------|---------|---------|----------|--------------|--------------|---------|---------|--------------|
| 6/6/2018  |         |         |         |          |              |              |         |         |              |
| 6/7/2018  |         |         |         |          | 7.29         |              |         |         |              |
| 6/8/2018  |         |         |         |          |              |              |         |         |              |
| 6/11/2018 |         |         |         |          |              |              |         |         |              |
| 6/12/2018 |         |         |         |          |              |              |         |         |              |
| 6/13/2018 |         |         |         | 5.5      |              |              |         |         |              |
| 6/27/2018 |         |         |         |          |              |              | 4.78    |         |              |
| 6/28/2018 |         |         |         |          |              | 6 18         |         | 4 75    | 5 24         |
| 8/6/2018  |         |         |         |          |              | 0.10         |         |         | 0.2.         |
| 8/7/2018  |         |         |         |          |              | 6.08         | 4 77    | 1 72    | 5 18         |
| 0/10/2018 |         |         |         |          |              | 0.00         | 4.77    | 1.72    | 0.10         |
| 0/20/2018 | 5.62    | E 60    | E 67    |          |              |              |         |         |              |
| 9/20/2018 | 5.05    | 5.09    | 5.07    |          |              | E 01         | 4 70    | 4.67    | E 14         |
| 9/24/2018 |         |         |         |          |              | 0.01         | 4.70    | 4.07    | 5.14         |
| 9/25/2018 |         |         |         |          |              |              |         |         |              |
| 9/26/2018 |         |         |         | 5.53     |              |              |         |         |              |
| 9/2//2018 |         |         |         |          |              |              |         |         |              |
| 10/1/2018 |         |         |         |          | 7.07         |              |         |         |              |
| 10/2/2018 |         |         |         |          |              |              |         |         |              |
| 2/25/2019 |         |         |         |          |              |              |         |         |              |
| 2/26/2019 |         |         |         |          |              |              |         |         |              |
| 2/27/2019 |         |         |         |          | 7.27         |              |         |         |              |
| 3/4/2019  |         |         |         |          |              |              |         |         |              |
| 3/5/2019  |         |         |         |          |              |              |         |         |              |
| 3/6/2019  |         |         |         | 5.21     |              |              |         |         |              |
| 3/26/2019 |         |         |         |          |              |              |         |         | 5.3          |
| 3/27/2019 | 5.57    |         |         |          |              | 5.84         |         | 4.79    |              |
| 3/28/2019 |         | 5.96    | 5.86    |          |              |              | 5       |         |              |
| 3/29/2019 |         |         |         |          | 7.06         |              |         |         |              |
| 4/1/2019  |         |         |         |          |              |              |         |         |              |
| 4/2/2019  |         |         |         |          |              |              |         |         |              |
| 4/3/2019  |         |         |         |          |              |              |         |         |              |
| 4/4/2019  |         |         |         | 5.74     |              |              |         |         |              |
| 6/12/2019 |         |         |         |          |              |              |         |         |              |
| 8/19/2019 |         |         |         |          |              |              |         |         |              |
| 8/20/2019 |         |         |         |          |              |              |         |         |              |
| 8/21/2019 |         | 5.84    |         |          |              | 5.96         |         |         | 5.26         |
| 8/22/2019 | 5.61    | 0.04    |         |          |              | 0.00         | 1 89    | / 81    | 0.20         |
| 9/24/2019 | 5.01    |         |         |          | 7.01         |              | 4.05    | 4.01    |              |
| 0/25/2010 |         |         |         |          | 7.01         |              |         |         |              |
| 9/25/2019 |         |         | FC      | E E 1    |              |              |         |         |              |
| 9/20/2019 |         |         | 5.0     | 5.51     |              |              |         |         |              |
| 9/27/2019 |         |         |         |          |              |              |         |         |              |
| 10/8/2019 |         |         |         |          |              |              |         |         |              |
| 10/9/2019 | 5.5     | 5.78    |         |          |              | 5.81         | 4.86    | 4.8     | 5.22         |
| 2/10/2020 |         |         |         |          |              |              |         |         |              |
| 2/11/2020 |         |         |         |          | 7.38         |              |         |         |              |
| 2/12/2020 |         |         |         |          |              | 5.97         |         |         | 5.3          |
| 3/17/2020 |         |         |         |          |              |              |         |         |              |
| 3/18/2020 |         |         |         |          |              |              |         |         |              |
| 3/19/2020 |         |         |         |          | 7.22         |              |         |         |              |
| 3/24/2020 |         |         |         |          |              |              |         |         | 5.29         |
| 3/25/2020 | 5.53    | 5.79    | 5.69    | 5.49     |              | 5.78         | 4.87    | 4.89    |              |
| 3/26/2020 |         |         |         |          |              |              |         |         |              |

Page 12

#### Constituent: pH (S.U.) Analysis Run 5/6/2021 8:46 PM View: Appendix III

|           | YGWC-42 | YGWC-43 | YGWC-49 | YGWC-36A | YGWA-2I (bg) | YGWA-39 (bg) | YGWC-41 | YGWC-38 | YGWA-40 (bg) |
|-----------|---------|---------|---------|----------|--------------|--------------|---------|---------|--------------|
| 5/6/2020  |         |         |         |          |              |              |         |         |              |
| 8/26/2020 |         |         |         |          |              |              |         |         |              |
| 8/27/2020 |         |         |         |          |              |              |         |         |              |
| 9/22/2020 |         |         |         |          |              |              |         |         |              |
| 9/23/2020 |         |         |         |          | 7.22         |              |         |         |              |
| 9/24/2020 | 5.55    |         | 5.62    |          |              | 5.7 (D)      |         |         | 5.43 (D)     |
| 9/25/2020 |         | 5.75    |         |          |              |              | 4.95    | 4.9     |              |
| 10/7/2020 |         |         |         | 5.86     |              |              |         |         |              |
| 2/8/2021  |         |         |         |          |              |              |         |         |              |
| 2/9/2021  |         | 5.86    | 5.79    |          |              |              |         | 5.04    |              |
| 2/10/2021 | 5.65    |         |         | 6.31     | 7.29         | 5.8          | 4.98    |         | 5.19         |
| 2/11/2021 |         |         |         |          |              |              |         |         |              |
| 2/12/2021 |         |         |         |          |              |              |         |         |              |
| 3/1/2021  |         |         |         |          |              |              |         |         |              |
| 3/2/2021  |         |         |         |          |              |              |         |         |              |
| 3/3/2021  |         |         |         |          | 7.92         |              |         |         |              |
| 3/4/2021  | 5.59    | 5.88    | 5.88    | 5.67     |              | 5.54         | 4.69    | 5.01    | 5.23         |
Constituent: Sulfate (mg/L) Analysis Run 5/6/2021 8:46 PM View: Appendix III

|            | YGWA-3I (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-5D (bg) | YGWA-14S (bg) | YGWA-3D (bg) | YGWA-30I (bg) | YGWA-5I (bg) | YGWA-4I (bg) |
|------------|--------------|--------------|--------------|--------------|---------------|--------------|---------------|--------------|--------------|
| 6/1/2016   | 12           | 5            | 4.2          |              |               |              |               |              |              |
| 6/2/2016   |              |              |              | 20           | 6.6           | 5.8          | 1.3           | 1.9          | 8            |
| 6/6/2016   |              |              |              |              |               |              |               |              |              |
| 6/7/2016   |              |              |              |              |               |              |               |              |              |
| 6/8/2016   |              |              |              |              |               |              |               |              |              |
| 7/25/2016  | 8.4          |              | 3.7          |              |               |              | 1.2           |              |              |
| 7/26/2016  |              | 5.4          |              | 20           | 6.1           | 6.7          |               | 1.8          | 7.7          |
| 7/27/2016  |              |              |              |              |               |              |               |              |              |
| 7/28/2016  |              |              |              |              |               |              |               |              |              |
| 8/1/2016   |              |              |              |              |               |              |               |              |              |
| 8/30/2016  |              |              |              |              |               |              |               |              |              |
| 8/31/2016  |              |              |              |              |               |              |               |              |              |
| 9/1/2016   |              |              |              |              |               |              |               |              |              |
| 9/2/2016   |              |              |              |              |               |              |               |              |              |
| 9/13/2016  |              | 2.9          | 5.2          |              |               |              |               |              |              |
| 9/14/2016  | 8.6          |              |              | 19           |               |              |               | 1.8          | 7.5          |
| 9/15/2016  |              |              |              |              | 6.1           | 6            |               |              |              |
| 9/16/2016  |              |              |              |              |               |              |               |              |              |
| 9/19/2016  |              |              |              |              |               |              | 1.2           |              |              |
| 9/20/2016  |              |              |              |              |               |              |               |              |              |
| 11/1/2016  | 8.9          | 3.9          |              |              |               | 4.9          | 1.3           |              |              |
| 11/2/2016  |              |              |              | 20           | 6.3           |              |               |              | 8.2          |
| 11/3/2016  |              |              |              |              |               |              |               |              |              |
| 11/4/2016  |              |              | 5            |              |               |              |               | 2            |              |
| 11/8/2016  |              |              |              |              |               |              |               |              |              |
| 11/14/2016 |              |              |              |              |               |              |               |              |              |
| 11/15/2016 |              |              |              |              |               |              |               |              |              |
| 11/16/2016 |              |              |              |              |               |              |               |              |              |
| 11/28/2016 |              |              |              |              |               |              |               |              |              |
| 12/15/2016 |              |              |              |              |               |              |               |              |              |
| 1/10/2017  |              |              |              |              | 5.9           |              |               |              |              |
| 1/11/2017  | 8.6          | 3.7          |              |              |               | 4.5          |               |              |              |
| 1/12/2017  |              |              |              | 19           |               |              |               | 1.9          |              |
| 1/13/2017  |              |              |              |              |               |              |               |              | 8.1          |
| 1/16/2017  |              |              | 7.9          |              |               |              | <1            |              |              |
| 1/17/2017  |              |              |              |              |               |              |               |              |              |
| 2/21/2017  |              |              |              |              |               |              | 1.4           |              |              |
| 2/22/2017  |              |              |              |              |               |              |               |              |              |
| 2/24/2017  |              |              |              |              |               |              |               |              |              |
| 2/27/2017  |              |              |              |              |               |              |               |              |              |
| 2/28/2017  |              |              |              |              |               |              |               |              |              |
| 3/1/2017   | 9.3          |              |              |              |               |              |               |              |              |
| 3/2/2017   |              | 4.6          | 7.4          |              |               | 4.4          |               |              |              |
| 3/3/2017   |              |              |              |              |               |              |               |              |              |
| 3/6/2017   |              |              |              |              |               |              |               |              | 8            |
| 3/7/2017   |              |              |              | 20           |               |              |               | 2.1          |              |
| 3/8/2017   |              |              |              |              | 7             |              |               |              |              |
| 3/9/2017   |              |              |              |              |               |              |               |              |              |
| 4/26/2017  | 11           |              |              |              | 7             | 5.1          | 1.4           |              |              |
| 4/27/2017  |              | 5.2          | 7.4          |              |               |              |               |              |              |
| 4/28/2017  |              |              |              |              |               |              |               |              |              |
| 5/1/2017   |              |              |              | 20           |               |              |               |              | 8.4          |
|            |              |              |              |              |               |              |               |              |              |

|            | YGWA-3I (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-5D (bg) | YGWA-14S (bg) | YGWA-3D (bg) | YGWA-30I (bg) | YGWA-5I (bg) | YGWA-4I (bg) |
|------------|--------------|--------------|--------------|--------------|---------------|--------------|---------------|--------------|--------------|
| 5/2/2017   |              |              |              |              |               |              |               | 2            |              |
| 5/8/2017   |              |              |              |              |               |              |               |              |              |
| 5/9/2017   |              |              |              |              |               |              |               |              |              |
| 5/10/2017  |              |              |              |              |               |              |               |              |              |
| 5/26/2017  |              |              |              |              |               |              |               |              |              |
| 6/27/2017  |              | 59           | 64           | 18           |               |              |               | 21           |              |
| 6/29/2017  | 10           | 5.5          | 0.4          | 10           |               | E 4          |               | 2.1          |              |
| 6/20/2017  | 12           |              |              |              |               | 5.4          |               |              | 0.0          |
| 6/29/2017  |              |              |              |              | 0.5           |              |               |              | 9.2          |
| 6/30/2017  |              |              |              |              | 6.5           |              | <1            |              |              |
| ////2017   |              |              |              |              |               |              |               |              |              |
| 7/10/2017  |              |              |              |              |               |              |               |              |              |
| 7/11/2017  |              |              |              |              |               |              |               |              |              |
| 7/13/2017  |              |              |              |              |               |              |               |              |              |
| 7/17/2017  |              |              |              |              |               |              |               |              |              |
| 9/22/2017  |              |              |              |              |               |              |               |              |              |
| 9/29/2017  |              |              |              |              |               |              |               |              |              |
| 10/3/2017  |              | 6.6          | 5.9          | 16           |               |              |               | 2.3          |              |
| 10/4/2017  | 12           |              |              |              |               | 6.2          | 1.4           |              |              |
| 10/5/2017  |              |              |              |              | 7.9           |              |               |              | 9.6          |
| 10/6/2017  |              |              |              |              |               |              |               |              |              |
| 10/10/2017 |              |              |              |              |               |              |               |              |              |
| 10/11/2017 |              |              |              |              |               |              |               |              |              |
| 10/12/2017 |              |              |              |              |               |              |               |              |              |
| 10/16/2017 |              |              |              |              |               |              |               |              |              |
| 10/10/2017 |              |              |              |              |               |              |               |              |              |
| 11/20/2017 |              |              |              |              |               |              |               |              |              |
| 11/21/2017 |              |              |              |              |               |              |               |              |              |
| 1/10/2018  |              |              |              |              |               |              |               |              |              |
| 1/11/2018  |              |              |              |              |               |              |               |              |              |
| 1/12/2018  |              |              |              |              |               |              |               |              |              |
| 2/19/2018  |              |              |              |              |               |              |               |              |              |
| 2/20/2018  |              |              |              |              |               |              |               |              |              |
| 4/2/2018   |              |              |              |              |               |              |               |              |              |
| 4/3/2018   |              |              |              |              |               |              |               |              |              |
| 4/4/2018   |              |              |              |              |               |              |               |              |              |
| 6/5/2018   |              | 6.4          |              |              |               |              |               |              |              |
| 6/6/2018   |              |              | 4.4          | 8.3          |               |              |               |              |              |
| 6/7/2018   |              |              |              |              |               | 6.7          |               | 2            | 8.5          |
| 6/8/2018   | 9.6          |              |              |              | 6.4           |              |               |              |              |
| 6/11/2018  |              |              |              |              |               |              | 1.1           |              |              |
| 6/12/2018  |              |              |              |              |               |              |               |              |              |
| 6/13/2018  |              |              |              |              |               |              |               |              |              |
| 6/27/2018  |              |              |              |              |               |              |               |              |              |
| 6/28/2018  |              |              |              |              |               |              |               |              |              |
| 8/6/2019   |              |              |              |              |               |              |               |              |              |
| 8/7/2010   |              |              |              |              |               |              |               |              |              |
| 0/10/2010  |              |              |              |              |               |              |               |              |              |
| 9/19/2018  |              |              |              |              |               |              |               |              |              |
| 9/20/2018  |              |              |              |              |               |              |               |              |              |
| 9/24/2018  |              |              |              |              |               |              |               |              |              |
| 9/25/2018  |              |              |              |              |               |              |               |              |              |
| 9/26/2018  |              |              |              | 7.9          |               |              |               | 2.3          | 10.2         |
| 9/27/2018  |              |              |              |              |               |              |               |              |              |
| 10/1/2018  | 9.1          | 5.6          | 4            |              | 6.8           | 7.1          |               |              |              |

|           | YGWA-3I (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-5D (bg) | YGWA-14S (bg) | YGWA-3D (bg) | YGWA-30I (bg) | YGWA-5I (bg) | YGWA-4I (bg) |
|-----------|--------------|--------------|--------------|--------------|---------------|--------------|---------------|--------------|--------------|
| 10/2/2018 |              |              |              |              |               |              | 1             |              |              |
| 2/25/2019 |              |              |              |              |               |              |               |              |              |
| 3/26/2019 |              |              |              |              |               |              |               |              |              |
| 3/27/2019 |              |              |              |              |               |              |               |              |              |
| 3/28/2019 |              | 8            | 4.3          |              |               |              |               |              |              |
| 3/29/2019 |              |              |              |              | 7.3           |              |               |              |              |
| 4/1/2019  | 8.5          |              |              |              |               | 7.2          | 0.96 (J)      |              |              |
| 4/2/2019  |              |              |              |              |               |              |               |              |              |
| 4/3/2019  |              |              |              | 7            |               |              |               | 2.1          | 8.5          |
| 4/4/2019  |              |              |              |              |               |              |               |              |              |
| 6/12/2019 |              |              |              |              |               |              |               |              |              |
| 9/24/2019 |              | 5.3          | 4.3          | 5.5          |               |              |               | 2.4          |              |
| 9/25/2019 | 13.8         |              |              |              | 6.6           | 7            | 0.81 (J)      |              | 8.5          |
| 9/26/2019 |              |              |              |              |               |              |               |              |              |
| 9/27/2019 |              |              |              |              |               |              |               |              |              |
| 10/8/2019 |              |              |              |              |               |              |               |              |              |
| 10/9/2019 |              |              |              |              |               |              |               |              |              |
| 3/17/2020 |              |              |              |              |               |              |               |              |              |
| 3/18/2020 |              |              | 5.3          |              | 8.1           |              |               |              |              |
| 3/19/2020 | 12.9         | 10           |              |              |               | 9            | 1.6           |              |              |
| 3/24/2020 |              |              |              | 5.9          |               |              |               | 2.1          |              |
| 3/25/2020 |              |              |              |              |               |              |               |              | 8.8          |
| 3/26/2020 |              |              |              |              |               |              |               |              |              |
| 9/22/2020 |              |              |              | 5.5          |               |              |               | 2.1          | 8.2          |
| 9/23/2020 | 16.8         | 8.1          | 3.4          |              |               | 6.9          |               |              |              |
| 9/24/2020 |              |              |              |              |               |              | 0.69 (J)      |              |              |
| 9/25/2020 |              |              |              |              | 6.1           |              |               |              |              |
| 10/7/2020 |              |              |              |              |               |              |               |              |              |
| 3/1/2021  |              |              |              |              |               |              | 0.88 (J)      |              |              |
| 3/2/2021  |              |              |              | 2.6          | 6             |              |               | 2.3          |              |
| 3/3/2021  | 9.6          | 9            | 4.4          |              |               | 7            |               |              | 7.8          |
| 3/4/2021  |              |              |              |              |               |              |               |              |              |
|           |              |              |              |              |               |              |               |              |              |

|            | YGWA-18I (bg) | YGWA-18S (bg) | YGWC-23S | YGWA-21I (bg) | YGWA-20S (bg) | YGWA-17S (bg) | YGWC-24SA | YGWA-47 (bg) | YGWC-42 |
|------------|---------------|---------------|----------|---------------|---------------|---------------|-----------|--------------|---------|
| 6/1/2016   |               |               |          |               |               |               |           |              |         |
| 6/2/2016   |               |               |          |               |               |               |           |              |         |
| 6/6/2016   | 1.2           | 1.8           |          |               |               |               |           |              |         |
| 6/7/2016   |               |               | 56       | 5.2           | <1            | 4.4           |           |              |         |
| 6/8/2016   |               |               |          |               |               |               | <1        |              |         |
| 7/25/2016  |               |               |          |               |               |               |           |              |         |
| 7/26/2016  |               |               |          |               |               |               |           |              |         |
| 7/27/2016  | 1.7           | 1.9           |          |               | (L) 80.0      | 4.7           |           |              |         |
| 7/28/2016  |               |               | 57       | 51            |               |               |           |              |         |
| 8/1/2016   |               |               |          | 0.1           |               |               | 11        |              |         |
| 8/30/2016  |               |               |          |               |               |               |           | 160          | 980     |
| 8/31/2016  |               |               |          |               |               |               |           | 100          | 500     |
| 9/1/2016   |               |               |          |               |               |               |           |              |         |
| 0/2/2016   |               |               |          |               |               |               |           |              |         |
| 9/2/2010   |               |               |          |               |               |               |           |              |         |
| 9/13/2010  |               |               |          |               |               |               |           |              |         |
| 9/14/2016  |               |               |          |               |               |               |           |              |         |
| 9/15/2016  |               | 4.7           |          |               |               | 4.0           |           |              |         |
| 9/16/2016  | 1.0           | 1.7           |          | 4.0           | 0.00 (1)      | 4.8           |           |              |         |
| 9/19/2016  | 1.8           |               |          | 4.8           | 0.08 (J)      |               |           |              |         |
| 9/20/2016  |               |               | 68       |               |               |               | 0.38 (J)  |              |         |
| 11/1/2016  |               |               |          |               |               |               |           |              |         |
| 11/2/2016  |               |               |          |               | 0.1 (J)       |               |           |              |         |
| 11/3/2016  | 0.69 (J)      | 1.9           |          | 5             |               | 5.3           |           |              |         |
| 11/4/2016  |               |               |          |               |               |               |           |              |         |
| 11/8/2016  |               |               | 79       |               |               |               | 0.39 (J)  |              |         |
| 11/14/2016 |               |               |          |               |               |               |           | 150          |         |
| 11/15/2016 |               |               |          |               |               |               |           |              |         |
| 11/16/2016 |               |               |          |               |               |               |           |              | 940     |
| 11/28/2016 |               |               |          |               |               |               |           |              |         |
| 12/15/2016 |               |               |          |               |               |               |           |              |         |
| 1/10/2017  |               |               |          |               |               |               |           |              |         |
| 1/11/2017  | <1            | 1.7           |          |               |               | 5.2           |           |              |         |
| 1/12/2017  |               |               |          |               |               |               |           |              |         |
| 1/13/2017  |               |               |          | 4.3           | <1            |               |           |              |         |
| 1/16/2017  |               |               | 72       |               |               |               |           |              |         |
| 1/17/2017  |               |               |          |               |               |               | <1        |              |         |
| 2/21/2017  |               |               |          |               |               |               |           |              |         |
| 2/22/2017  |               |               |          |               |               |               |           |              |         |
| 2/24/2017  |               |               |          |               |               |               |           | 120          |         |
| 2/27/2017  |               |               |          |               |               |               |           |              | 940     |
| 2/28/2017  |               |               |          |               |               |               |           |              |         |
| 3/1/2017   | 1.8           | <1            |          |               |               |               |           |              |         |
| 3/2/2017   |               |               |          |               |               | 5             |           |              |         |
| 3/3/2017   |               |               |          |               |               |               |           |              |         |
| 3/6/2017   |               |               |          | 4.5           | <1            |               |           |              |         |
| 3/7/2017   |               |               |          |               |               |               |           |              |         |
| 3/8/2017   |               |               |          |               |               |               | 0.29 (J)  |              |         |
| 3/9/2017   |               |               | 69       |               |               |               |           |              |         |
| 4/26/2017  | 1.6           | 1.9           |          | 4.9           | <1            |               |           |              |         |
| 4/27/2017  |               |               |          |               |               |               |           |              |         |
| 4/28/2017  |               |               |          |               |               |               |           |              |         |
| 5/1/2017   |               |               |          |               |               |               |           |              |         |
|            |               |               |          |               |               |               |           |              |         |

| 5/0/0017   | YGWA-18I (bg) | YGWA-18S (bg) | YGWC-23S | YGWA-21I (bg) | YGWA-20S (bg) | YGWA-17S (bg) | YGWC-24SA | YGWA-47 (bg) | YGWC-42 |
|------------|---------------|---------------|----------|---------------|---------------|---------------|-----------|--------------|---------|
| 5/2/2017   |               |               | 60       |               |               | 5             | 0.29 (J)  | 100          |         |
| 5/8/2017   |               |               |          |               |               |               |           | 120          |         |
| 5/9/2017   |               |               |          |               |               |               |           |              |         |
| 5/10/2017  |               |               |          |               |               |               |           |              | 1200    |
| 5/26/2017  |               |               |          |               |               |               |           |              |         |
| 6/27/2017  |               |               |          |               |               |               |           |              |         |
| 6/28/2017  | <1            | <1            |          |               |               |               |           |              |         |
| 6/29/2017  |               |               |          | 5.5           | <1            | 5.2           |           |              |         |
| 6/30/2017  |               |               |          |               |               |               |           |              |         |
| 7/7/2017   |               |               |          |               |               |               | 0.37 (J)  |              |         |
| 7/10/2017  |               |               | 57       |               |               |               |           |              |         |
| 7/11/2017  |               |               |          |               |               |               |           | 110          | 1300    |
| 7/13/2017  |               |               |          |               |               |               |           |              |         |
| 7/17/2017  |               |               |          |               |               |               |           |              |         |
| 9/22/2017  |               |               |          |               |               |               |           |              |         |
| 9/29/2017  |               |               |          |               |               |               |           |              |         |
| 10/3/2017  |               |               |          | 5.8           |               |               |           |              |         |
| 10/0/2017  |               | 17            |          | 0.0           | <1            | 53            |           |              |         |
| 10/5/2017  | 16            | 1.7           |          |               |               | 5.5           | -1        |              |         |
| 10/5/2017  | 1.0           |               |          |               |               |               |           |              |         |
| 10/6/2017  |               |               |          |               |               |               |           |              |         |
| 10/10/2017 |               |               |          |               |               |               |           | 93           |         |
| 10/11/2017 |               |               | 52       |               |               |               |           |              |         |
| 10/12/2017 |               |               |          |               |               |               |           |              | 1100    |
| 10/16/2017 |               |               |          |               |               |               |           |              |         |
| 11/20/2017 |               |               |          |               |               |               |           |              |         |
| 11/21/2017 |               |               |          |               |               |               |           |              |         |
| 1/10/2018  |               |               |          |               |               |               |           |              |         |
| 1/11/2018  |               |               |          |               |               |               |           |              |         |
| 1/12/2018  |               |               |          |               |               |               |           |              |         |
| 2/19/2018  |               |               |          |               |               |               |           |              |         |
| 2/20/2018  |               |               |          |               |               |               |           |              |         |
| 4/2/2018   |               |               |          |               |               |               |           | 88.8         |         |
| 4/3/2018   |               |               |          |               |               |               |           |              |         |
| 4/4/2018   |               |               |          |               |               |               |           |              | 1020    |
| 6/5/2018   |               |               |          | 61            |               |               |           |              |         |
| 6/6/2018   |               |               |          | 0.1           | 0.049 (.1)    |               |           |              |         |
| 6/7/2018   | 0.68 ( 1)     |               |          |               | 0.040 (0)     |               |           |              |         |
| 6/8/2018   | 0.00 (0)      |               |          |               |               |               |           |              |         |
| 6/11/2018  |               | 0.05 (1)      |          |               |               | 5.0           |           |              |         |
| 0/11/2010  |               | 0.30 (J)      | 41.4     |               |               | J.Z           | 0.25 (1)  |              |         |
| 0/12/2018  |               |               | 41.4     |               |               |               | U.35 (J)  |              |         |
| 6/13/2018  |               |               |          |               |               |               |           |              |         |
| 6/2//2018  |               |               |          |               |               |               |           |              |         |
| 6/28/2018  |               |               |          |               |               |               |           |              |         |
| 8/6/2018   |               |               |          |               |               |               |           |              |         |
| 8/7/2018   |               |               |          |               |               |               |           |              |         |
| 9/19/2018  |               |               |          |               |               |               |           | 75           |         |
| 9/20/2018  |               |               |          |               |               |               |           |              | 810     |
| 9/24/2018  |               |               |          |               |               |               |           |              |         |
| 9/25/2018  | 1             | 1.5           |          | 7             | 0.13 (J)      | 6.1           |           |              |         |
| 9/26/2018  |               |               |          |               |               |               | 0.28 (J)  |              |         |
| 9/27/2018  |               |               | 39.6     |               |               |               |           |              |         |
| 10/1/2018  |               |               |          |               |               |               |           |              |         |

|           | YGWA-18I (bg) | YGWA-18S (bg) | YGWC-23S  | YGWA-21I (bg) | YGWA-20S (bg) | YGWA-17S (bg) | YGWC-24SA | YGWA-47 (bg) | YGWC-42 |
|-----------|---------------|---------------|-----------|---------------|---------------|---------------|-----------|--------------|---------|
| 10/2/2018 |               |               |           |               |               |               |           |              |         |
| 2/25/2019 |               |               |           |               |               |               |           |              |         |
| 3/26/2019 |               |               |           |               |               |               |           |              |         |
| 3/27/2019 |               |               |           |               |               |               |           | 65.9         | 831     |
| 3/28/2019 |               |               |           |               |               |               |           |              |         |
| 3/29/2019 |               |               |           |               |               |               |           |              |         |
| 4/1/2019  |               |               |           |               |               |               |           |              |         |
| 4/2/2019  |               |               |           | 3.8           |               | 5.1           |           |              |         |
| 4/3/2019  | 0.82 (J)      | 1.3           |           |               | 0.12 (J)      |               |           |              |         |
| 4/4/2019  |               |               | 27.9      |               |               |               | 0.29 (J)  |              |         |
| 6/12/2019 |               |               |           |               |               |               |           |              |         |
| 9/24/2019 |               |               |           | 1             |               |               |           |              |         |
| 9/25/2019 |               |               |           |               | <1            | 5.5           |           |              |         |
| 9/26/2019 | 0.64 (J)      | 1             |           |               |               |               | 0.23 (J)  |              |         |
| 9/27/2019 |               |               | 30.3      |               |               |               |           |              |         |
| 10/8/2019 |               |               |           |               |               |               |           | 52.3         |         |
| 10/9/2019 |               |               |           |               |               |               |           |              | 725     |
| 3/17/2020 |               |               |           |               |               |               |           | 71.6         |         |
| 3/18/2020 |               |               |           |               |               |               |           |              |         |
| 3/19/2020 |               |               |           |               |               |               |           |              |         |
| 3/24/2020 | <1            | 0.99 (J)      |           | 3             | <1            | 5.4           |           |              |         |
| 3/25/2020 |               |               |           |               |               |               |           |              | 642     |
| 3/26/2020 |               |               | 36.5      |               |               |               | <1        |              |         |
| 9/22/2020 |               |               |           |               |               |               |           | 51.5         |         |
| 9/23/2020 | 0.53 (J)      | 1.1           |           |               |               | 5.1           | <1        |              |         |
| 9/24/2020 |               |               | 52.5      | 3.6           | <1            |               |           |              | 579     |
| 9/25/2020 |               |               |           |               |               |               |           |              |         |
| 10/7/2020 |               |               |           |               |               |               |           |              |         |
| 3/1/2021  |               |               |           |               |               |               |           | 51.6         |         |
| 3/2/2021  |               |               |           |               |               |               |           |              |         |
| 3/3/2021  | <1            | 1             |           |               | <1            | 5.2           | <1        |              |         |
| 3/4/2021  |               |               | 61.7 (M1) | 4.5           |               |               |           |              | 537     |

Page 6

Constituent: Sulfate (mg/L) Analysis Run 5/6/2021 8:46 PM View: Appendix III

|            | GWA-2 (bg) | YGWC-43 | YGWC-49 | YGWC-36A | YGWA-2I (bg) | YGWA-39 (bg) | YGWC-38 | YGWC-41 | YGWA-40 (bg) |
|------------|------------|---------|---------|----------|--------------|--------------|---------|---------|--------------|
| 6/1/2016   |            |         |         |          |              |              |         |         |              |
| 6/2/2016   |            |         |         |          |              |              |         |         |              |
| 6/6/2016   |            |         |         |          |              |              |         |         |              |
| 6/7/2016   |            |         |         |          |              |              |         |         |              |
| 6/8/2016   |            |         |         |          |              |              |         |         |              |
| 7/25/2016  |            |         |         |          |              |              |         |         |              |
| 7/26/2016  |            |         |         |          |              |              |         |         |              |
| 7/27/2016  |            |         |         |          |              |              |         |         |              |
| 7/28/2016  |            |         |         |          |              |              |         |         |              |
| 8/1/2016   |            |         |         |          |              |              |         |         |              |
| 8/30/2016  |            |         |         |          |              |              |         |         |              |
| 8/31/2016  | 29         | 34      |         |          |              |              |         |         |              |
| 9/1/2016   |            |         | 95      |          |              |              |         |         |              |
| 9/2/2016   |            |         |         | 72       |              |              |         |         |              |
| 9/13/2016  |            |         |         |          |              |              |         |         |              |
| 9/14/2016  |            |         |         |          | 94           |              |         |         |              |
| 9/15/2016  |            |         |         |          | 0.1          |              |         |         |              |
| 9/16/2016  |            |         |         |          |              |              |         |         |              |
| 9/19/2016  |            |         |         |          |              |              |         |         |              |
| 9/20/2016  |            |         |         |          |              |              |         |         |              |
| 11/1/2016  |            |         |         |          |              |              |         |         |              |
| 11/1/2016  |            |         |         |          |              |              |         |         |              |
| 11/2/2016  |            |         |         |          |              |              |         |         |              |
| 11/3/2016  |            |         |         |          | 10           |              |         |         |              |
| 11/4/2016  |            |         |         |          | 15           |              |         |         |              |
| 11/8/2016  |            |         |         | 110      |              |              |         |         |              |
| 11/14/2016 |            |         |         | 110      |              |              |         |         |              |
| 11/15/2016 |            | 0.40    | 94      |          |              |              |         |         |              |
| 11/16/2016 |            | 240     |         |          |              |              |         |         |              |
| 11/28/2016 | 36         |         |         |          |              |              |         |         |              |
| 12/15/2016 |            |         |         |          | 1.8          |              |         |         |              |
| 1/10/2017  |            |         |         |          |              |              |         |         |              |
| 1/11/2017  |            |         |         |          |              |              |         |         |              |
| 1/12/2017  |            |         |         |          |              |              |         |         |              |
| 1/13/2017  |            |         |         |          |              |              |         |         |              |
| 1/16/2017  |            |         |         |          | 11           |              |         |         |              |
| 1/17/2017  |            |         |         |          |              |              |         |         |              |
| 2/21/2017  |            |         |         |          |              |              |         |         |              |
| 2/22/2017  | 43         |         |         |          |              |              |         |         |              |
| 2/24/2017  |            | 89      |         |          |              |              |         |         |              |
| 2/27/2017  |            |         | 84      |          |              |              |         |         |              |
| 2/28/2017  |            |         |         | 110      |              |              |         |         |              |
| 3/1/2017   |            |         |         |          |              |              |         |         |              |
| 3/2/2017   |            |         |         |          |              |              |         |         |              |
| 3/3/2017   |            |         |         |          | 8.8          |              |         |         |              |
| 3/6/2017   |            |         |         |          |              |              |         |         |              |
| 3/7/2017   |            |         |         |          |              |              |         |         |              |
| 3/8/2017   |            |         |         |          |              |              |         |         |              |
| 3/9/2017   |            |         |         |          |              |              |         |         |              |
| 4/26/2017  |            |         |         |          |              |              |         |         |              |
| 4/27/2017  |            |         |         |          |              |              |         |         |              |
| 4/28/2017  |            |         |         |          | 10           |              |         |         |              |
| 5/1/2017   |            |         |         |          |              |              |         |         |              |

#### Constituent: Sulfate (mg/L) Analysis Run 5/6/2021 8:46 PM View: Appendix III

|            | GWA-2 (bg) | YGWC-43 | YGWC-49 | YGWC-36A | YGWA-2I (bg) | YGWA-39 (bg) | YGWC-38 | YGWC-41 | YGWA-40 (bg) |
|------------|------------|---------|---------|----------|--------------|--------------|---------|---------|--------------|
| 5/2/2017   |            |         |         |          |              |              |         |         |              |
| 5/8/2017   | 60         |         |         |          |              |              |         |         |              |
| 5/9/2017   |            |         | 91      | 130      |              |              |         |         |              |
| 5/10/2017  |            | 100     |         |          |              |              |         |         |              |
| 5/26/2017  |            |         |         |          | 12           |              |         |         |              |
| 6/27/2017  |            |         |         |          |              |              |         |         |              |
| 6/28/2017  |            |         |         |          | 11           |              |         |         |              |
| 6/29/2017  |            |         |         |          |              |              |         |         |              |
| 6/30/2017  |            |         |         |          |              |              |         |         |              |
| 7/7/2017   |            |         |         |          |              |              |         |         |              |
| 7/10/2017  |            |         |         |          |              |              |         |         |              |
| 7/11/2017  |            | 110     |         |          |              |              |         |         |              |
| 7/13/2017  |            |         | 88      | 140      |              |              |         |         |              |
| 7/17/2017  | 63         |         |         |          |              |              |         |         |              |
| 9/22/2017  |            |         |         | 160      |              |              |         |         |              |
| 9/29/2017  |            |         |         | 160      |              |              |         |         |              |
| 10/3/2017  |            |         |         |          | 7.9          |              |         |         |              |
| 10/4/2017  |            |         |         |          |              |              |         |         |              |
| 10/5/2017  |            |         |         |          |              |              |         |         |              |
| 10/6/2017  |            |         |         | 160      |              |              |         |         |              |
| 10/10/2017 |            |         |         | 100      |              |              |         |         |              |
| 10/11/2017 |            |         | 86      | 150      |              | 20           |         |         |              |
| 10/12/2017 |            | 120     | 00      | 130      |              | 20           | 940     | 400     | 17           |
| 10/16/2017 | 62         | 120     |         |          |              |              | 540     | 400     | 17           |
| 10/10/2017 | 02         |         |         |          |              | 24           | 090     |         | 71           |
| 11/20/2017 |            |         |         |          |              | 24           | 980     | 420     | /1           |
| 1//21/2017 |            |         |         |          |              |              |         | 430     | 66           |
| 1/10/2018  |            |         |         |          |              | 00           |         | 200     | 00           |
| 1/11/2018  |            |         |         |          |              | 23           | 000     | 390     |              |
| 1/12/2018  |            |         |         |          |              |              | 880     |         | 57.0         |
| 2/19/2018  | 64.6       |         |         |          |              | 20.0         | 005     | 414     | 57.2         |
| 2/20/2018  |            |         |         |          |              | 20.6         | 905     |         |              |
| 4/2/2018   |            |         |         |          |              | 04.5         | 070     | 400     | 10.1         |
| 4/3/2018   |            |         |         |          |              | 24.5         | 8/2     | 406     | 49.4         |
| 4/4/2018   |            | 160     | /6.5    |          |              |              |         |         |              |
| 6/5/2018   |            |         |         |          |              |              |         |         |              |
| 6/6/2018   |            |         |         |          |              |              |         |         |              |
| 6/7/2018   |            |         |         |          | 8.8          |              |         |         |              |
| 6/8/2018   |            |         |         |          |              |              |         |         |              |
| 6/11/2018  |            |         |         |          |              |              |         |         |              |
| 6/12/2018  |            |         |         |          |              |              |         |         |              |
| 6/13/2018  |            |         |         | 144      |              |              |         |         |              |
| 6/2//2018  |            |         |         |          |              |              |         | 357     | 10.0         |
| 6/28/2018  |            |         |         |          |              | 22           | 869     |         | 43.8         |
| 8/6/2018   | 42.1       |         |         |          |              |              |         |         |              |
| 8/7/2018   |            |         |         |          |              | 20.7         | 879     | 346     | 40.5         |
| 9/19/2018  |            |         |         |          |              |              |         |         |              |
| 9/20/2018  |            | 247     | 84.1    |          |              |              |         |         |              |
| 9/24/2018  |            |         |         |          |              | 21.2         | 872     | 358     | 39.7         |
| 9/25/2018  |            |         |         |          |              |              |         |         |              |
| 9/26/2018  |            |         |         | 160      |              |              |         |         |              |
| 9/27/2018  |            |         |         |          |              |              |         |         |              |
| 10/1/2018  |            |         |         |          | 9.1          |              |         |         |              |

|           | GWA-2 (bg) | YGWC-43 | YGWC-49 | YGWC-36A | YGWA-2I (bg) | YGWA-39 (bg) | YGWC-38 | YGWC-41 | YGWA-40 (bg) |
|-----------|------------|---------|---------|----------|--------------|--------------|---------|---------|--------------|
| 10/2/2018 |            |         |         |          |              |              |         |         |              |
| 2/25/2019 | 42.1       |         |         |          |              |              |         |         |              |
| 3/26/2019 |            |         |         |          |              |              |         |         | 34.3         |
| 3/27/2019 |            |         |         |          |              | 17.7         | 851     |         |              |
| 3/28/2019 |            | 181     | 82.8    |          |              |              |         | 258     |              |
| 3/29/2019 |            |         |         |          | 9            |              |         |         |              |
| 4/1/2019  |            |         |         |          |              |              |         |         |              |
| 4/2/2019  |            |         |         |          |              |              |         |         |              |
| 4/3/2019  |            |         |         |          |              |              |         |         |              |
| 4/4/2019  |            |         |         | 119      |              |              |         |         |              |
| 6/12/2019 | 83.4       |         |         |          |              |              |         |         |              |
| 9/24/2019 |            |         |         |          | 9.1          |              |         |         |              |
| 9/25/2019 |            |         |         |          |              |              |         |         |              |
| 9/26/2019 |            |         | 80      | 84.8     |              |              |         |         |              |
| 9/27/2019 |            |         |         |          |              |              |         |         |              |
| 10/8/2019 | 128        |         |         |          |              |              |         |         |              |
| 10/9/2019 |            | 279     |         |          |              | 15           | 708     | 263     | 27.9         |
| 3/17/2020 | 98.6       |         |         |          |              |              |         |         |              |
| 3/18/2020 |            |         |         |          |              |              |         |         |              |
| 3/19/2020 |            |         |         |          | 12.4         |              |         |         |              |
| 3/24/2020 |            |         |         |          |              |              |         |         | 25.2         |
| 3/25/2020 |            | 164     | 76.1    | 58.8     |              | 14.3         | 483     | 214     |              |
| 3/26/2020 |            |         |         |          |              |              |         |         |              |
| 9/22/2020 | 145        |         |         |          |              |              |         |         |              |
| 9/23/2020 |            |         |         |          | 11.8         |              |         |         |              |
| 9/24/2020 |            |         | 77      |          |              | 11.7         |         |         | 22.9         |
| 9/25/2020 |            | 281     |         |          |              |              | 414     | 175     |              |
| 10/7/2020 |            |         |         | 18.2     |              |              |         |         |              |
| 3/1/2021  |            |         |         |          |              |              |         |         |              |
| 3/2/2021  | 156        |         |         |          |              |              |         |         |              |
| 3/3/2021  |            |         |         |          | 10.6         |              |         |         |              |
| 3/4/2021  |            | 328     | 75.1    | 6.3      |              | 12           | 356     | 117     | 21.5         |

Constituent: Total Dissolved Solids (mg/L) Analysis Run 5/6/2021 8:46 PM View: Appendix III

|            | YGWA-3I (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-5D (bg) | YGWA-14S (bg) | YGWA-3D (bg) | YGWA-30I (bg) | YGWA-5I (bg) | YGWA-4I (bg) |
|------------|--------------|--------------|--------------|--------------|---------------|--------------|---------------|--------------|--------------|
| 6/1/2016   | 150          | 120          | 54           |              |               |              |               |              |              |
| 6/2/2016   |              |              |              | 160          | 46            | 130          | 36            | 66           | 96           |
| 6/6/2016   |              |              |              |              |               |              |               |              |              |
| 6/7/2016   |              |              |              |              |               |              |               |              |              |
| 6/8/2016   |              |              |              |              |               |              |               |              |              |
| 7/25/2016  | 135          |              | 48           |              |               |              | 50            |              |              |
| 7/26/2016  |              | 94           |              | 177          | 54            | 141          |               | 78           | 92           |
| 7/27/2016  |              |              |              |              |               |              |               |              |              |
| 7/28/2016  |              |              |              |              |               |              |               |              |              |
| 8/1/2016   |              |              |              |              |               |              |               |              |              |
| 8/30/2016  |              |              |              |              |               |              |               |              |              |
| 8/31/2016  |              |              |              |              |               |              |               |              |              |
| 9/1/2016   |              |              |              |              |               |              |               |              |              |
| 9/2/2016   |              |              |              |              |               |              |               |              |              |
| 9/13/2016  |              | 105          | 67           |              |               |              |               |              |              |
| 9/14/2016  | 127          |              |              | 187          |               |              |               | 73           | 102          |
| 9/15/2016  |              |              |              |              | 54            | 153          |               |              |              |
| 9/16/2016  |              |              |              |              |               |              |               |              |              |
| 9/19/2016  |              |              |              |              |               |              | 35            |              |              |
| 9/20/2016  |              |              |              |              |               |              |               |              |              |
| 11/1/2016  | 75           | 44           |              |              |               | 92           | <25           |              |              |
| 11/2/2016  |              |              |              | 181          | 71            |              |               |              | 115          |
| 11/3/2016  |              |              |              |              |               |              |               |              |              |
| 11/4/2016  |              |              | 60           |              |               |              |               | 75           |              |
| 11/8/2016  |              |              |              |              |               |              |               |              |              |
| 11/14/2016 |              |              |              |              |               |              |               |              |              |
| 11/15/2016 |              |              |              |              |               |              |               |              |              |
| 11/16/2016 |              |              |              |              |               |              |               |              |              |
| 11/28/2016 |              |              |              |              |               |              |               |              |              |
| 12/15/2016 |              |              |              |              |               |              |               |              |              |
| 1/10/2017  |              |              |              |              | 45            |              |               |              |              |
| 1/11/2017  | 148          | 107          |              |              |               | 159          |               |              |              |
| 1/12/2017  |              |              |              | 202          |               |              |               | 86           |              |
| 1/13/2017  |              |              |              |              |               |              |               |              | 67           |
| 1/16/2017  |              |              | 65           |              |               |              | 47            |              |              |
| 1/17/2017  |              |              |              |              |               |              |               |              |              |
| 2/21/2017  |              |              |              |              |               |              | <25           |              |              |
| 2/22/2017  |              |              |              |              |               |              |               |              |              |
| 2/24/2017  |              |              |              |              |               |              |               |              |              |
| 2/27/2017  |              |              |              |              |               |              |               |              |              |
| 2/28/2017  |              |              |              |              |               |              |               |              |              |
| 3/1/2017   | 182          |              |              |              |               |              |               |              |              |
| 3/2/2017   |              | 98           | 61           |              |               | 117          |               |              |              |
| 3/3/2017   |              |              |              |              |               |              |               |              |              |
| 3/6/2017   |              |              |              |              |               |              |               |              | 159          |
| 3/7/2017   |              |              |              | 257          |               |              |               | 108          |              |
| 3/8/2017   |              |              |              |              | 178           |              |               |              |              |
| 3/9/2017   |              |              |              |              |               |              |               |              |              |
| 4/26/2017  | 92           |              |              |              | 52            | 181          | 55            |              |              |
| 4/27/2017  |              | 116          | 31           |              |               |              |               |              |              |
| 4/28/2017  |              |              |              |              |               |              |               |              |              |
| 5/1/2017   |              |              |              | 165          |               |              |               |              | 107          |

#### Constituent: Total Dissolved Solids (mg/L) Analysis Run 5/6/2021 8:46 PM View: Appendix III

|            | YGWA-3I (ba) | YGWA-1D (ba) | YGWA-11 (ba) | YGWA-5D (ba) | YGWA-14S (ba) | YGWA-3D (ba) | YGWA-30I (ba) | YGWA-5I (ba) | YGWA-4I (ba) |
|------------|--------------|--------------|--------------|--------------|---------------|--------------|---------------|--------------|--------------|
| 5/2/2017   | (-3)         | (-3)         | (-3)         | (-3)         | (-3)          | (-3)         | (-3)          | 103          |              |
| 5/8/2017   |              |              |              |              |               |              |               |              |              |
| 5/9/2017   |              |              |              |              |               |              |               |              |              |
| 5/10/2017  |              |              |              |              |               |              |               |              |              |
| 5/26/2017  |              |              |              |              |               |              |               |              |              |
| 5/20/2017  |              | 80           | 40           | 190          |               |              |               | 72           |              |
| 6/28/2017  | 100          | 89           | 42           | 109          |               | 160          |               | 73           |              |
| 6/28/2017  | 126          |              |              |              |               | 169          |               |              | 70           |
| 6/29/2017  |              |              |              |              |               |              | 10            |              | 79           |
| 6/30/2017  |              |              |              |              | 45            |              | 42            |              |              |
| ////2017   |              |              |              |              |               |              |               |              |              |
| 7/10/2017  |              |              |              |              |               |              |               |              |              |
| 7/11/2017  |              |              |              |              |               |              |               |              |              |
| 7/13/2017  |              |              |              |              |               |              |               |              |              |
| 7/17/2017  |              |              |              |              |               |              |               |              |              |
| 9/22/2017  |              |              |              |              |               |              |               |              |              |
| 9/29/2017  |              |              |              |              |               |              |               |              |              |
| 10/3/2017  |              | 119          | 58           | 170          |               |              |               | 89           |              |
| 10/4/2017  | 147          |              |              |              |               | 141          | 31            |              |              |
| 10/5/2017  |              |              |              |              | 40            |              |               |              | 95           |
| 10/6/2017  |              |              |              |              |               |              |               |              |              |
| 10/10/2017 |              |              |              |              |               |              |               |              |              |
| 10/11/2017 |              |              |              |              |               |              |               |              |              |
| 10/12/2017 |              |              |              |              |               |              |               |              |              |
| 10/16/2017 |              |              |              |              |               |              |               |              |              |
| 11/20/2017 |              |              |              |              |               |              |               |              |              |
| 11/21/2017 |              |              |              |              |               |              |               |              |              |
| 1/10/2018  |              |              |              |              |               |              |               |              |              |
| 1/11/2018  |              |              |              |              |               |              |               |              |              |
| 1/12/2018  |              |              |              |              |               |              |               |              |              |
| 2/19/2018  |              |              |              |              |               |              |               |              |              |
| 2/20/2018  |              |              |              |              |               |              |               |              |              |
| 4/2/2018   |              |              |              |              |               |              |               |              |              |
| 1/3/2018   |              |              |              |              |               |              |               |              |              |
| 4/4/2018   |              |              |              |              |               |              |               |              |              |
| 6/5/2018   |              | 107          |              |              |               |              |               |              |              |
| 6/6/2018   |              | 127          | 06           | 151          |               |              |               |              |              |
| 6/0/2018   |              |              | 30           | 151          |               | 05           |               | 140          | 00           |
| 6/7/2018   | 150          |              |              |              | 114           | 95           |               | 142          | 90           |
| 0/0/2010   | 100          |              |              |              | 114           |              | 50            |              |              |
| 6/11/2018  |              |              |              |              |               |              | 59            |              |              |
| 6/12/2018  |              |              |              |              |               |              |               |              |              |
| 6/13/2018  |              |              |              |              |               |              |               |              |              |
| 6/27/2018  |              |              |              |              |               |              |               |              |              |
| 6/28/2018  |              |              |              |              |               |              |               |              |              |
| 8/6/2018   |              |              |              |              |               |              |               |              |              |
| 8/7/2018   |              |              |              |              |               |              |               |              |              |
| 9/19/2018  |              |              |              |              |               |              |               |              |              |
| 9/20/2018  |              |              |              |              |               |              |               |              |              |
| 9/24/2018  |              |              |              |              |               |              |               |              |              |
| 9/25/2018  |              |              |              |              |               |              |               |              |              |
| 9/26/2018  |              |              |              | 144          |               |              |               | 86           | 116          |
| 9/27/2018  |              |              |              |              |               |              |               |              |              |
| 10/1/2018  | 138          | 117          | 60           |              | 50            | 165          |               |              |              |

#### Constituent: Total Dissolved Solids (mg/L) Analysis Run 5/6/2021 8:46 PM View: Appendix III

|           | YGWA-3I (bg) | YGWA-1D (bg) | YGWA-1I (bg) | YGWA-5D (bg) | YGWA-14S (bg) | YGWA-3D (bg) | YGWA-30I (bg) | YGWA-5I (bg) | YGWA-4I (bg) |
|-----------|--------------|--------------|--------------|--------------|---------------|--------------|---------------|--------------|--------------|
| 10/2/2018 |              |              |              |              |               |              | 57            |              |              |
| 2/25/2019 |              |              |              |              |               |              |               |              |              |
| 3/26/2019 |              |              |              |              |               |              |               |              |              |
| 3/27/2019 |              |              |              |              |               |              |               |              |              |
| 3/28/2019 |              | 87           | 87           |              |               |              |               |              |              |
| 3/29/2019 |              |              |              |              | 63            |              |               |              |              |
| 4/1/2019  | 19 (J)       |              |              |              |               | 149          | 54            |              |              |
| 4/2/2019  |              |              |              |              |               |              |               |              |              |
| 4/3/2019  |              |              |              | 142          |               |              |               | 83           | 111          |
| 4/4/2019  |              |              |              |              |               |              |               |              |              |
| 6/12/2019 |              |              |              |              |               |              |               |              |              |
| 9/24/2019 |              | 124          | 54           | 129          |               |              |               | 79           |              |
| 9/25/2019 | 159          |              |              |              | 64            | 157          | 51            |              | 117          |
| 9/26/2019 |              |              |              |              |               |              |               |              |              |
| 9/27/2019 |              |              |              |              |               |              |               |              |              |
| 10/8/2019 |              |              |              |              |               |              |               |              |              |
| 10/9/2019 |              |              |              |              |               |              |               |              |              |
| 3/17/2020 |              |              |              |              |               |              |               |              |              |
| 3/18/2020 |              |              | 35           |              | 57            |              |               |              |              |
| 3/19/2020 | 148          | 116          |              |              |               | 146          | 47            |              |              |
| 3/24/2020 |              |              |              | 139          |               |              |               | 68           |              |
| 3/25/2020 |              |              |              |              |               |              |               |              | 146          |
| 3/26/2020 |              |              |              |              |               |              |               |              |              |
| 9/22/2020 |              |              |              | 104          |               |              |               | 75           | 83           |
| 9/23/2020 | 155          | 108          | 15           |              |               | 157          |               |              |              |
| 9/24/2020 |              |              |              |              |               |              | 51            |              |              |
| 9/25/2020 |              |              |              |              | 54            |              |               |              |              |
| 10/7/2020 |              |              |              |              |               |              |               |              |              |
| 3/1/2021  |              |              |              |              |               |              | 23            |              |              |
| 3/2/2021  |              |              |              | 52           | 67            |              |               | 67           |              |
| 3/3/2021  | 111          | 99           | 39           |              |               | 137          |               |              | 80           |
| 3/4/2021  |              |              |              |              |               |              |               |              |              |

|            | YGWA-18I (bg) | YGWA-18S (bg) | YGWC-23S | YGWA-21I (bg) | YGWA-20S (bg) | YGWA-17S (bg) | YGWC-24SA | YGWA-47 (bg) | YGWC-42 |
|------------|---------------|---------------|----------|---------------|---------------|---------------|-----------|--------------|---------|
| 6/1/2016   |               |               |          |               |               |               |           |              |         |
| 6/2/2016   |               |               |          |               |               |               |           |              |         |
| 6/6/2016   | 120           | 58            |          |               |               |               |           |              |         |
| 6/7/2016   |               |               | 130      | 60            | 38            | 28            |           |              |         |
| 6/8/2016   |               |               |          |               |               |               | 66        |              |         |
| 7/25/2016  |               |               |          |               |               |               |           |              |         |
| 7/26/2016  |               |               |          |               |               |               |           |              |         |
| 7/27/2016  | 94            | 35            |          |               | 74            | 74            |           |              |         |
| 7/28/2016  |               |               | 119      | 81            |               |               |           |              |         |
| 8/1/2016   |               |               |          |               |               |               | 56        |              |         |
| 8/30/2016  |               |               |          |               |               |               |           | 319          | 1650    |
| 8/31/2016  |               |               |          |               |               |               |           |              |         |
| 9/1/2016   |               |               |          |               |               |               |           |              |         |
| 9/2/2016   |               |               |          |               |               |               |           |              |         |
| 9/13/2016  |               |               |          |               |               |               |           |              |         |
| 9/14/2016  |               |               |          |               |               |               |           |              |         |
| 9/15/2016  |               |               |          |               |               |               |           |              |         |
| 9/16/2016  |               | 35            |          |               |               | 67            |           |              |         |
| 9/19/2016  | 92            |               |          | 68            | 45            |               |           |              |         |
| 9/20/2016  |               |               | 132      |               |               |               | 53        |              |         |
| 11/1/2016  |               |               |          |               |               |               |           |              |         |
| 11/2/2016  |               |               |          |               | 53            |               |           |              |         |
| 11/3/2016  | 104           | 48            |          | 61            |               | 41            |           |              |         |
| 11/4/2016  |               |               |          |               |               |               |           |              |         |
| 11/8/2016  |               |               | 146      |               |               |               | 58        |              |         |
| 11/14/2016 |               |               |          |               |               |               |           | 280          |         |
| 11/15/2016 |               |               |          |               |               |               |           |              |         |
| 11/16/2016 |               |               |          |               |               |               |           |              | 1420    |
| 11/28/2016 |               |               |          |               |               |               |           |              |         |
| 12/15/2016 |               |               |          |               |               |               |           |              |         |
| 1/10/2017  |               |               |          |               |               |               |           |              |         |
| 1/11/2017  | 133           | 95            |          |               |               | 104           |           |              |         |
| 1/12/2017  |               |               |          |               |               |               |           |              |         |
| 1/13/2017  |               |               |          | 76            | 46            |               |           |              |         |
| 1/16/2017  |               |               | 194      |               |               |               |           |              |         |
| 1/17/2017  |               |               |          |               |               |               | 56        |              |         |
| 2/21/2017  |               |               |          |               |               |               |           |              |         |
| 2/22/2017  |               |               |          |               |               |               |           |              |         |
| 2/24/2017  |               |               |          |               |               |               |           | 162          |         |
| 2/27/2017  |               |               |          |               |               |               |           |              | 1640    |
| 2/28/2017  |               |               |          |               |               |               |           |              |         |
| 3/1/2017   | 119           | 79            |          |               |               |               |           |              |         |
| 3/2/2017   |               |               |          |               |               | 77            |           |              |         |
| 3/3/2017   |               |               |          |               |               |               |           |              |         |
| 3/6/2017   |               |               |          | 167           | 164           |               |           |              |         |
| 3/7/2017   |               |               |          |               |               |               |           |              |         |
| 3/8/2017   |               |               |          |               |               |               | 192       |              |         |
| 3/9/2017   |               |               | 288      |               |               |               |           |              |         |
| 4/26/2017  | 162           | 36            |          | 50            | 34            |               |           |              |         |
| 4/27/2017  |               |               |          |               |               |               |           |              |         |
| 4/28/2017  |               |               |          |               |               |               |           |              |         |
| 5/1/2017   |               |               |          |               |               |               |           |              |         |

Constituent: Total Dissolved Solids (mg/L) Analysis Run 5/6/2021 8:46 PM View: Appendix III

|            | YGWA-18I (bg) | YGWA-18S (bg) | YGWC-23S | YGWA-21I (bg) | YGWA-20S (bg) | YGWA-17S (bg) | YGWC-24SA | YGWA-47 (bg) | YGWC-42 |
|------------|---------------|---------------|----------|---------------|---------------|---------------|-----------|--------------|---------|
| 5/2/2017   |               |               | 221      |               |               | 142           | 113       | 101          |         |
| 5/8/2017   |               |               |          |               |               |               |           | 194          |         |
| 5/9/2017   |               |               |          |               |               |               |           |              |         |
| 5/10/2017  |               |               |          |               |               |               |           |              | 1630    |
| 5/26/2017  |               |               |          |               |               |               |           |              |         |
| 6/27/2017  |               |               |          |               |               |               |           |              |         |
| 6/28/2017  | 98            | 45            |          |               |               |               |           |              |         |
| 6/29/2017  |               |               |          | 94            | 68            | 53            |           |              |         |
| 6/30/2017  |               |               |          |               |               |               |           |              |         |
| 7/7/2017   |               |               |          |               |               |               | 46        |              |         |
| 7/10/2017  |               |               | 123      |               |               |               |           |              |         |
| 7/11/2017  |               |               |          |               |               |               |           | 193          | 1800    |
| 7/13/2017  |               |               |          |               |               |               |           |              |         |
| 7/17/2017  |               |               |          |               |               |               |           |              |         |
| 9/22/2017  |               |               |          |               |               |               |           |              |         |
| 9/29/2017  |               |               |          |               |               |               |           |              |         |
| 10/3/2017  |               |               |          | 149           |               |               |           |              |         |
| 10/4/2017  |               | 45            |          |               | 54            | 61            |           |              |         |
| 10/5/2017  | 104           | 40            |          |               | 04            | 01            | 48        |              |         |
| 10/6/2017  | 104           |               |          |               |               |               | -0        |              |         |
| 10/10/2017 |               |               |          |               |               |               |           | 175          |         |
| 10/10/2017 |               |               | 100      |               |               |               |           | 175          |         |
| 10/11/2017 |               |               | 100      |               |               |               |           |              |         |
| 10/12/2017 |               |               |          |               |               |               |           |              | 1600    |
| 10/16/2017 |               |               |          |               |               |               |           |              |         |
| 11/20/2017 |               |               |          |               |               |               |           |              |         |
| 11/21/2017 |               |               |          |               |               |               |           |              |         |
| 1/10/2018  |               |               |          |               |               |               |           |              |         |
| 1/11/2018  |               |               |          |               |               |               |           |              |         |
| 1/12/2018  |               |               |          |               |               |               |           |              |         |
| 2/19/2018  |               |               |          |               |               |               |           |              |         |
| 2/20/2018  |               |               |          |               |               |               |           |              |         |
| 4/2/2018   |               |               |          |               |               |               |           | 192          |         |
| 4/3/2018   |               |               |          |               |               |               |           |              |         |
| 4/4/2018   |               |               |          |               |               |               |           |              | 1520    |
| 6/5/2018   |               |               |          | 109           |               |               |           |              |         |
| 6/6/2018   |               |               |          |               | 79            |               |           |              |         |
| 6/7/2018   | 68            |               |          |               |               |               |           |              |         |
| 6/8/2018   |               |               |          |               |               |               |           |              |         |
| 6/11/2018  |               | 74            |          |               |               | 70            |           |              |         |
| 6/12/2018  |               |               | 115      |               |               |               | 79        |              |         |
| 6/13/2018  |               |               | 110      |               |               |               | ,,,       |              |         |
| 6/27/2018  |               |               |          |               |               |               |           |              |         |
| 6/28/2018  |               |               |          |               |               |               |           |              |         |
| 0/28/2018  |               |               |          |               |               |               |           |              |         |
| 0/0/2018   |               |               |          |               |               |               |           |              |         |
| 8/7/2018   |               |               |          |               |               |               |           |              |         |
| 9/19/2018  |               |               |          |               |               |               |           | 186          |         |
| 9/20/2018  |               |               |          |               |               |               |           |              | 1240    |
| 9/24/2018  |               |               |          |               |               |               |           |              |         |
| 9/25/2018  | 109           | 63            |          | 122           | 73            | 86            |           |              |         |
| 9/26/2018  |               |               |          |               |               |               | 59        |              |         |
| 9/27/2018  |               |               | 105      |               |               |               |           |              |         |
| 10/1/2018  |               |               |          |               |               |               |           |              |         |

Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

|           | YGWA-18I (bg) | YGWA-18S (bg) | YGWC-23S | YGWA-21I (bg) | YGWA-20S (bg) | YGWA-17S (bg) | YGWC-24SA | YGWA-47 (bg) | YGWC-42 |
|-----------|---------------|---------------|----------|---------------|---------------|---------------|-----------|--------------|---------|
| 10/2/2018 |               |               |          |               |               |               |           |              |         |
| 2/25/2019 |               |               |          |               |               |               |           |              |         |
| 3/26/2019 |               |               |          |               |               |               |           |              |         |
| 3/27/2019 |               |               |          |               |               |               |           | 170          | 1100    |
| 3/28/2019 |               |               |          |               |               |               |           |              |         |
| 3/29/2019 |               |               |          |               |               |               |           |              |         |
| 4/1/2019  |               |               |          |               |               |               |           |              |         |
| 4/2/2019  |               |               |          | 134           |               | 72            |           |              |         |
| 4/3/2019  | 89            | 63            |          |               | 57            |               |           |              |         |
| 4/4/2019  |               |               | 85       |               |               |               | 63        |              |         |
| 6/12/2019 |               |               |          |               |               |               |           |              |         |
| 9/24/2019 |               |               |          | 157           |               |               |           |              |         |
| 9/25/2019 |               |               |          |               | 75            | 81            |           |              |         |
| 9/26/2019 | 126           | 72            |          |               |               |               | 81        |              |         |
| 9/27/2019 |               |               | 96       |               |               |               |           |              |         |
| 10/8/2019 |               |               |          |               |               |               |           | 172          |         |
| 10/9/2019 |               |               |          |               |               |               |           |              | 1170    |
| 3/17/2020 |               |               |          |               |               |               |           | 165          |         |
| 3/18/2020 |               |               |          |               |               |               |           |              |         |
| 3/19/2020 |               |               |          |               |               |               |           |              |         |
| 3/24/2020 | 91            | 59            |          | 117           | 76            | 71            |           |              |         |
| 3/25/2020 |               |               |          |               |               |               |           |              | 1200    |
| 3/26/2020 |               |               | 110      |               |               |               | 67        |              |         |
| 9/22/2020 |               |               |          |               |               |               |           | 141          |         |
| 9/23/2020 | 103           | 81            |          |               |               | 99            | 87        |              |         |
| 9/24/2020 |               |               | 129      | 113           | 69            |               |           |              | 1060    |
| 9/25/2020 |               |               |          |               |               |               |           |              |         |
| 10/7/2020 |               |               |          |               |               |               |           |              |         |
| 3/1/2021  |               |               |          |               |               |               |           | 145          |         |
| 3/2/2021  |               |               |          |               |               |               |           |              |         |
| 3/3/2021  | 95            | 37            |          |               | 53            | 57            | 70        |              |         |
| 3/4/2021  |               |               | 96       | 110           |               |               |           |              | 501     |

Page 6

Constituent: Total Dissolved Solids (mg/L) Analysis Run 5/6/2021 8:46 PM View: Appendix III

|            | GWA-2 (bg) | YGWC-43 | YGWC-49 | YGWC-36A | YGWA-2I (bg) | YGWA-39 (bg) | YGWC-38 | YGWC-41 | YGWA-40 (bg) |
|------------|------------|---------|---------|----------|--------------|--------------|---------|---------|--------------|
| 6/1/2016   |            |         |         |          |              |              |         |         |              |
| 6/2/2016   |            |         |         |          |              |              |         |         |              |
| 6/6/2016   |            |         |         |          |              |              |         |         |              |
| 6/7/2016   |            |         |         |          |              |              |         |         |              |
| 6/8/2016   |            |         |         |          |              |              |         |         |              |
| 7/25/2016  |            |         |         |          |              |              |         |         |              |
| 7/26/2016  |            |         |         |          |              |              |         |         |              |
| 7/27/2016  |            |         |         |          |              |              |         |         |              |
| 7/28/2016  |            |         |         |          |              |              |         |         |              |
| 8/1/2016   |            |         |         |          |              |              |         |         |              |
| 8/30/2016  |            |         |         |          |              |              |         |         |              |
| 8/31/2016  | 209        | 80      |         |          |              |              |         |         |              |
| 9/1/2016   |            |         | 228     |          |              |              |         |         |              |
| 9/2/2016   |            |         |         | 243      |              |              |         |         |              |
| 9/13/2016  |            |         |         | 210      |              |              |         |         |              |
| 9/14/2016  |            |         |         |          | 152          |              |         |         |              |
| 9/15/2016  |            |         |         |          | 152          |              |         |         |              |
| 9/15/2016  |            |         |         |          |              |              |         |         |              |
| 9/10/2016  |            |         |         |          |              |              |         |         |              |
| 9/19/2016  |            |         |         |          |              |              |         |         |              |
| 9/20/2016  |            |         |         |          |              |              |         |         |              |
| 11/1/2016  |            |         |         |          |              |              |         |         |              |
| 11/2/2016  |            |         |         |          |              |              |         |         |              |
| 11/3/2016  |            |         |         |          |              |              |         |         |              |
| 11/4/2016  |            |         |         |          | 148          |              |         |         |              |
| 11/8/2016  |            |         |         |          |              |              |         |         |              |
| 11/14/2016 |            |         |         | 272      |              |              |         |         |              |
| 11/15/2016 |            |         | 211     |          |              |              |         |         |              |
| 11/16/2016 |            | 112     |         |          |              |              |         |         |              |
| 11/28/2016 | 102        |         |         |          |              |              |         |         |              |
| 12/15/2016 |            |         |         |          | 191          |              |         |         |              |
| 1/10/2017  |            |         |         |          |              |              |         |         |              |
| 1/11/2017  |            |         |         |          |              |              |         |         |              |
| 1/12/2017  |            |         |         |          |              |              |         |         |              |
| 1/13/2017  |            |         |         |          |              |              |         |         |              |
| 1/16/2017  |            |         |         |          | 180          |              |         |         |              |
| 1/17/2017  |            |         |         |          |              |              |         |         |              |
| 2/21/2017  |            |         |         |          |              |              |         |         |              |
| 2/22/2017  | 164        |         |         |          |              |              |         |         |              |
| 2/24/2017  |            | 147     |         |          |              |              |         |         |              |
| 2/27/2017  |            |         | 382     |          |              |              |         |         |              |
| 2/28/2017  |            |         |         | 306      |              |              |         |         |              |
| 3/1/2017   |            |         |         |          |              |              |         |         |              |
| 3/2/2017   |            |         |         |          |              |              |         |         |              |
| 3/3/2017   |            |         |         |          | 156          |              |         |         |              |
| 3/6/2017   |            |         |         |          |              |              |         |         |              |
| 3/7/2017   |            |         |         |          |              |              |         |         |              |
| 3/8/2017   |            |         |         |          |              |              |         |         |              |
| 3/9/2017   |            |         |         |          |              |              |         |         |              |
| 4/26/2017  |            |         |         |          |              |              |         |         |              |
| 4/27/2017  |            |         |         |          |              |              |         |         |              |
| 4/28/2017  |            |         |         |          | 130          |              |         |         |              |
| 5/1/2017   |            |         |         |          |              |              |         |         |              |
|            |            |         |         |          |              |              |         |         |              |

#### Constituent: Total Dissolved Solids (mg/L) Analysis Run 5/6/2021 8:46 PM View: Appendix III

|                        | GWA-2 (bg) | YGWC-43 | YGWC-49 | YGWC-36A | YGWA-2I (bg) | YGWA-39 (bg) | YGWC-38 | YGWC-41 | YGWA-40 (bg) |
|------------------------|------------|---------|---------|----------|--------------|--------------|---------|---------|--------------|
| 5/2/2017               |            |         |         |          |              |              |         |         |              |
| 5/8/2017               | 145        |         |         |          |              |              |         |         |              |
| 5/9/2017               |            |         | 154     | 303      |              |              |         |         |              |
| 5/10/2017              |            | 203     |         |          |              |              |         |         |              |
| 5/26/2017              |            |         |         |          | 223          |              |         |         |              |
| 6/27/2017              |            |         |         |          |              |              |         |         |              |
| 6/28/2017              |            |         |         |          | 166          |              |         |         |              |
| 6/29/2017              |            |         |         |          |              |              |         |         |              |
| 6/30/2017              |            |         |         |          |              |              |         |         |              |
| 7/7/2017               |            |         |         |          |              |              |         |         |              |
| 7/10/2017              |            |         |         |          |              |              |         |         |              |
| 7/11/2017              |            | 238     |         |          |              |              |         |         |              |
| 7/13/2017              |            | 230     | 102     | 282      |              |              |         |         |              |
| 7/13/2017              | 195        |         | 192     | 202      |              |              |         |         |              |
| 0/22/2017              | 165        |         |         | 200      |              |              |         |         |              |
| 9/22/2017              |            |         |         | 309      |              |              |         |         |              |
| 9/29/2017              |            |         |         | 273      | 150          |              |         |         |              |
| 10/3/2017              |            |         |         |          | 153          |              |         |         |              |
| 10/4/2017              |            |         |         |          |              |              |         |         |              |
| 10/5/2017              |            |         |         |          |              |              |         |         |              |
| 10/6/2017              |            |         |         | 287      |              |              |         |         |              |
| 10/10/2017             |            |         |         |          |              |              |         |         |              |
| 10/11/2017             |            |         | 177     | 264      |              | 68           |         |         |              |
| 10/12/2017             |            | 287     |         |          |              |              | 1360    | 636     | 74           |
| 10/16/2017             | 218        |         |         |          |              |              |         |         |              |
| 11/20/2017             |            |         |         |          |              | 139          | 1390    |         | 179          |
| 11/21/2017             |            |         |         |          |              |              |         | 706     |              |
| 1/10/2018              |            |         |         |          |              |              |         |         | 140          |
| 1/11/2018              |            |         |         |          |              | 153          |         | 701     |              |
| 1/12/2018              |            |         |         |          |              |              | 1400    |         |              |
| 2/19/2018              | 173        |         |         |          |              |              |         | 630     | 119          |
| 2/20/2018              |            |         |         |          |              | 87           | 1300    |         |              |
| 4/2/2018               |            |         |         |          |              |              |         |         |              |
| 4/3/2018               |            |         |         |          |              | 85           | 1390    | 660     | 106          |
| 4/4/2018               |            | 292     | 174     |          |              |              |         |         |              |
| 6/5/2018               |            |         |         |          |              |              |         |         |              |
| 6/6/2018               |            |         |         |          |              |              |         |         |              |
| 6/7/2018               |            |         |         |          | 146          |              |         |         |              |
| 6/8/2018               |            |         |         |          |              |              |         |         |              |
| 6/11/2018              |            |         |         |          |              |              |         |         |              |
| 6/12/2018              |            |         |         |          |              |              |         |         |              |
| 6/13/2018              |            |         |         | 292      |              |              |         |         |              |
| 6/27/2018              |            |         |         |          |              |              |         | 575     |              |
| 6/28/2018              |            |         |         |          |              | 88           | 1310    |         | 112          |
| 8/6/2018               | 158        |         |         |          |              |              |         |         |              |
| 8/7/2018               | 100        |         |         |          |              | 89           | 1340    | 574     | 103          |
| 9/19/2018              |            |         |         |          |              | 00           | 1040    | 074     | 100          |
| 9/20/2018              |            | 131     | 186     |          |              |              |         |         |              |
| 9/24/2019              |            |         | 100     |          |              | 82           | 1400    | 588     | 107          |
| 3/24/2010<br>0/25/2019 |            |         |         |          |              | <b>UZ</b>    | 1400    | 500     | 107          |
| 5/23/2010              |            |         |         | 777      |              |              |         |         |              |
| 5/20/2018              |            |         |         | 211      |              |              |         |         |              |
| 9/2//2018              |            |         |         |          | 155          |              |         |         |              |
| 10/1/2018              |            |         |         |          | 155          |              |         |         |              |

#### Constituent: Total Dissolved Solids (mg/L) Analysis Run 5/6/2021 8:46 PM View: Appendix III

|           | GWA-2 (bg) | YGWC-43 | YGWC-49 | YGWC-36A | YGWA-2I (bg) | YGWA-39 (bg) | YGWC-38 | YGWC-41 | YGWA-40 (bg) |
|-----------|------------|---------|---------|----------|--------------|--------------|---------|---------|--------------|
| 10/2/2018 |            |         |         |          |              |              |         |         |              |
| 2/25/2019 | 92         |         |         |          |              |              |         |         |              |
| 3/26/2019 |            |         |         |          |              |              |         |         | 90           |
| 3/27/2019 |            |         |         |          |              | 75           | 1190    |         |              |
| 3/28/2019 |            | 323     | 164     |          |              |              |         | 372     |              |
| 3/29/2019 |            |         |         |          | 150          |              |         |         |              |
| 4/1/2019  |            |         |         |          |              |              |         |         |              |
| 4/2/2019  |            |         |         |          |              |              |         |         |              |
| 4/3/2019  |            |         |         |          |              |              |         |         |              |
| 4/4/2019  |            |         |         | 240      |              |              |         |         |              |
| 6/12/2019 | 226        |         |         |          |              |              |         |         |              |
| 9/24/2019 |            |         |         |          | 146          |              |         |         |              |
| 9/25/2019 |            |         |         |          |              |              |         |         |              |
| 9/26/2019 |            |         | 192     | 198      |              |              |         |         |              |
| 9/27/2019 |            |         |         |          |              |              |         |         |              |
| 10/8/2019 | 276        |         |         |          |              |              |         |         |              |
| 10/9/2019 |            | 501     |         |          |              | 119          | 1100    | 440     | 98           |
| 3/17/2020 | 185        |         |         |          |              |              |         |         |              |
| 3/18/2020 |            |         |         |          |              |              |         |         |              |
| 3/19/2020 |            |         |         |          | 148          |              |         |         |              |
| 3/24/2020 |            |         |         |          |              |              |         |         | 84           |
| 3/25/2020 |            | 352     | 130     | 164      |              | 158          | 883     | 428     |              |
| 3/26/2020 |            |         |         |          |              |              |         |         |              |
| 9/22/2020 | 281        |         |         |          |              |              |         |         |              |
| 9/23/2020 |            |         |         |          | 161          |              |         |         |              |
| 9/24/2020 |            |         | 187     |          |              | 170          |         |         | 77           |
| 9/25/2020 |            | 494     |         |          |              |              | 664     | 307     |              |
| 10/7/2020 |            |         |         | 137      |              |              |         |         |              |
| 3/1/2021  |            |         |         |          |              |              |         |         |              |
| 3/2/2021  | 296        |         |         |          |              |              |         |         |              |
| 3/3/2021  |            |         |         |          | 138          |              |         |         |              |
| 3/4/2021  |            | 592     | 145     | 69       |              | 168          | 600     | 224     | 57           |

# FIGURE E.

# Appendix III Trend Tests - Prediction Limits Exceedances - Significant Results

| Constituent                   | Well          | Slope     | Calc. | Critical | Sig. | N  | %NDs  | Normality | Xform | Alpha | Method |
|-------------------------------|---------------|-----------|-------|----------|------|----|-------|-----------|-------|-------|--------|
| Boron (mg/L)                  | YGWA-21I (bg) | -0.006801 | -60   | -58      | Yes  | 16 | 56.25 | n/a       | n/a   | 0.01  | NP     |
| Boron (mg/L)                  | YGWC-38       | -4.08     | -56   | -43      | Yes  | 13 | 0     | n/a       | n/a   | 0.01  | NP     |
| Boron (mg/L)                  | YGWC-41       | -2.779    | -44   | -43      | Yes  | 13 | 0     | n/a       | n/a   | 0.01  | NP     |
| Boron (mg/L)                  | YGWC-43       | 0.7481    | 72    | 43       | Yes  | 13 | 0     | n/a       | n/a   | 0.01  | NP     |
| Calcium (mg/L)                | YGWA-17S (bg) | 0.118     | 59    | 58       | Yes  | 16 | 0     | n/a       | n/a   | 0.01  | NP     |
| Calcium (mg/L)                | YGWA-18S (bg) | -0.0863   | -67   | -58      | Yes  | 16 | 0     | n/a       | n/a   | 0.01  | NP     |
| Calcium (mg/L)                | YGWA-21I (bg) | 1.232     | 68    | 58       | Yes  | 16 | 0     | n/a       | n/a   | 0.01  | NP     |
| Calcium (mg/L)                | YGWA-40 (bg)  | -0.9737   | -45   | -43      | Yes  | 13 | 7.692 | n/a       | n/a   | 0.01  | NP     |
| Calcium (mg/L)                | YGWA-5D (bg)  | -2.574    | -62   | -58      | Yes  | 16 | 0     | n/a       | n/a   | 0.01  | NP     |
| Calcium (mg/L)                | YGWC-38       | -30.07    | -64   | -43      | Yes  | 13 | 0     | n/a       | n/a   | 0.01  | NP     |
| Calcium (mg/L)                | YGWC-42       | -11.87    | -44   | -43      | Yes  | 13 | 0     | n/a       | n/a   | 0.01  | NP     |
| Calcium (mg/L)                | YGWA-47 (bg)  | -2.036    | -56   | -43      | Yes  | 13 | 7.692 | n/a       | n/a   | 0.01  | NP     |
| Calcium (mg/L)                | GWA-2 (bg)    | 4.949     | 63    | 48       | Yes  | 14 | 7.143 | n/a       | n/a   | 0.01  | NP     |
| Calcium (mg/L)                | YGWA-1D (bg)  | 0.7865    | 60    | 58       | Yes  | 16 | 0     | n/a       | n/a   | 0.01  | NP     |
| Calcium (mg/L)                | YGWA-1I (bg)  | -0.1168   | -63   | -58      | Yes  | 16 | 0     | n/a       | n/a   | 0.01  | NP     |
| Chloride (mg/L)               | YGWA-17S (bg) | 0.3002    | 76    | 58       | Yes  | 16 | 0     | n/a       | n/a   | 0.01  | NP     |
| Chloride (mg/L)               | YGWA-20S (bg) | 0.189     | 71    | 58       | Yes  | 16 | 0     | n/a       | n/a   | 0.01  | NP     |
| Chloride (mg/L)               | YGWA-5D (bg)  | -0.9116   | -83   | -58      | Yes  | 16 | 0     | n/a       | n/a   | 0.01  | NP     |
| Chloride (mg/L)               | YGWA-47 (bg)  | -0.5003   | -45   | -43      | Yes  | 13 | 0     | n/a       | n/a   | 0.01  | NP     |
| Chloride (mg/L)               | YGWA-3D (bg)  | -0.06529  | -59   | -58      | Yes  | 16 | 0     | n/a       | n/a   | 0.01  | NP     |
| Chloride (mg/L)               | YGWA-3I (bg)  | -0.05699  | -66   | -58      | Yes  | 16 | 0     | n/a       | n/a   | 0.01  | NP     |
| pH (S.U.)                     | YGWA-18S (bg) | -0.05702  | -88   | -81      | Yes  | 20 | 0     | n/a       | n/a   | 0.01  | NP     |
| pH (S.U.)                     | YGWA-21I (bg) | 0.2015    | 107   | 81       | Yes  | 20 | 0     | n/a       | n/a   | 0.01  | NP     |
| pH (S.U.)                     | YGWA-39 (bg)  | -0.2384   | -89   | -58      | Yes  | 16 | 0     | n/a       | n/a   | 0.01  | NP     |
| pH (S.U.)                     | YGWA-5D (bg)  | -0.09849  | -78   | -74      | Yes  | 19 | 0     | n/a       | n/a   | 0.01  | NP     |
| Sulfate (mg/L)                | YGWA-39 (bg)  | -3.687    | -48   | -43      | Yes  | 13 | 0     | n/a       | n/a   | 0.01  | NP     |
| Sulfate (mg/L)                | YGWA-40 (bg)  | -12.05    | -54   | -43      | Yes  | 13 | 0     | n/a       | n/a   | 0.01  | NP     |
| Sulfate (mg/L)                | YGWA-5D (bg)  | -3.891    | -96   | -58      | Yes  | 16 | 0     | n/a       | n/a   | 0.01  | NP     |
| Sulfate (mg/L)                | YGWA-5I (bg)  | 0.09335   | 70    | 58       | Yes  | 16 | 0     | n/a       | n/a   | 0.01  | NP     |
| Sulfate (mg/L)                | YGWC-38       | -145.1    | -67   | -43      | Yes  | 13 | 0     | n/a       | n/a   | 0.01  | NP     |
| Sulfate (mg/L)                | YGWC-42       | -113.1    | -49   | -43      | Yes  | 13 | 0     | n/a       | n/a   | 0.01  | NP     |
| Sulfate (mg/L)                | YGWC-43       | 54        | 56    | 43       | Yes  | 13 | 0     | n/a       | n/a   | 0.01  | NP     |
| Sulfate (mg/L)                | YGWA-47 (bg)  | -25.19    | -71   | -43      | Yes  | 13 | 0     | n/a       | n/a   | 0.01  | NP     |
| Sulfate (mg/L)                | GWA-2 (bg)    | 25.64     | 66    | 48       | Yes  | 14 | 0     | n/a       | n/a   | 0.01  | NP     |
| Sulfate (mg/L)                | YGWA-1D (bg)  | 1.091     | 76    | 58       | Yes  | 16 | 0     | n/a       | n/a   | 0.01  | NP     |
| Sulfate (mg/L)                | YGWA-3D (bg)  | 0.4938    | 60    | 58       | Yes  | 16 | 0     | n/a       | n/a   | 0.01  | NP     |
| Total Dissolved Solids (mg/L) | YGWA-40 (bg)  | -18.83    | -48   | -43      | Yes  | 13 | 0     | n/a       | n/a   | 0.01  | NP     |
| Total Dissolved Solids (mg/L) | YGWA-5D (bg)  | -18.77    | -74   | -58      | Yes  | 16 | 0     | n/a       | n/a   | 0.01  | NP     |
| Total Dissolved Solids (mg/L) | YGWC-38       | -198      | -48   | -43      | Yes  | 13 | 0     | n/a       | n/a   | 0.01  | NP     |
| Total Dissolved Solids (mg/L) | YGWC-41       | -134.8    | -62   | -43      | Yes  | 13 | 0     | n/a       | n/a   | 0.01  | NP     |
| Total Dissolved Solids (mg/L) | YGWC-42       | -168.3    | -56   | -43      | Yes  | 13 | 0     | n/a       | n/a   | 0.01  | NP     |
| Total Dissolved Solids (mg/L) | YGWC-43       | 111.1     | 70    | 43       | Yes  | 13 | 0     | n/a       | n/a   | 0.01  | NP     |
| Total Dissolved Solids (mg/L) | YGWA-47 (bg)  | -14.88    | -54   | -43      | Yes  | 13 | 0     | n/a       | n/a   | 0.01  | NP     |

# Appendix III Trend Tests - Prediction Limits Exceedances - All Results

| Constituent     | Well           | Slope      | Calc         | Critical  | Sia | N  | %NDs  | Normality | Xform | Alpha | Method |
|-----------------|----------------|------------|--------------|-----------|-----|----|-------|-----------|-------|-------|--------|
| Boron (mg/l)    | YGWA-17S (bg)  | -0 0002497 | -11          | -58       | No  | 16 | 12.5  | n/a       | n/a   | 0.01  | NP     |
| Boron (mg/L)    | YGWA-18I (bg)  | 0          | -34          | -58       | No  | 16 | 75    | n/a       | n/a   | 0.01  | NP     |
| Boron (mg/L)    | YGWA-18S (bg)  | -0 0003285 | -14          | -58       | No  | 16 | 12.5  | n/a       | n/a   | 0.01  | NP     |
| Boron (mg/L)    | YGWA-20S (bg)  | 0          | -15          | -58       | No  | 16 | 87.5  | n/a       | n/a   | 0.01  | NP     |
| Boron (mg/L)    | YGWA-211 (bg)  | -0.006801  | -60          | -58       | Yes | 16 | 56.25 | n/a       | n/a   | 0.01  | NP     |
| Boron (mg/L)    | YGWA-39 (ba)   | 0.002402   | 14           | 43        | No  | 13 | 7.692 | n/a       | n/a   | 0.01  | NP     |
| Boron (ma/L)    | YGWA-40 (bg)   | -0.02279   | -41          | -43       | No  | 13 | 0     | n/a       | n/a   | 0.01  | NP     |
| Boron (ma/L)    | YGWA-41 (bg)   | 0          | -17          | -58       | No  | 16 | 62.5  | n/a       | n/a   | 0.01  | NP     |
| Boron (ma/L)    | YGWA-5D (ba)   | 0.0001974  | 12           | 58        | No  | 16 | 12.5  | n/a       | n/a   | 0.01  | NP     |
| Boron (mg/L)    | YGWA-5I (bg)   | -0.0019    | -46          | -58       | No  | 16 | 56.25 | n/a       | n/a   | 0.01  | NP     |
| Boron (mg/L)    | YGWC-23S       | -0.1172    | -38          | -58       | No  | 16 | 0     | n/a       | n/a   | 0.01  | NP     |
| Boron (mg/L)    | YGWC-38        | -4.08      | -56          | -43       | Yes | 13 | 0     | n/a       | n/a   | 0.01  | NP     |
| Boron (mg/L)    | YGWC-41        | -2.779     | -44          | -43       | Yes | 13 | 0     | n/a       | n/a   | 0.01  | NP     |
| Boron (mg/L)    | YGWC-42        | -1.536     | -37          | -43       | No  | 13 | 0     | n/a       | n/a   | 0.01  | NP     |
| Boron (mg/L)    | YGWC-43        | 0.7481     | 72           | 43        | Yes | 13 | 0     | n/a       | n/a   | 0.01  | NP     |
| Boron (mg/L)    | YGWA-47 (bg)   | -0.001291  | -39          | -43       | No  | 13 | 0     | n/a       | n/a   | 0.01  | NP     |
| Boron (mg/L)    | GWA-2 (bg)     | 0          | 5            | 48        | No  | 14 | 57 14 | n/a       | n/a   | 0.01  | NP     |
| Boron (mg/L)    | YGWA-14S (bg)  | -0.00131   | -37          | -58       | No  | 16 | 12.5  | n/a       | n/a   | 0.01  | NP     |
| Boron (mg/L)    | YGWA-1D (bg)   | 0          | -2           | -58       | No  | 16 | 25    | n/a       | n/a   | 0.01  | NP     |
| Boron (mg/L)    | YGWA-11 (bg)   | 0          | -23          | -58       | No  | 16 | 68 75 | n/a       | n/a   | 0.01  | NP     |
| Boron (mg/L)    | YGWA-21 (bg)   | 0          | -23          | -58       | No  | 16 | 75    | n/a       | n/a   | 0.01  |        |
| Boron (mg/L)    | YGWA-30L(bg)   | 0          | -28          | -58       | No  | 16 | 81 25 | n/a       | n/a   | 0.01  |        |
| Boron (mg/L)    | YGWA-3D (bg)   | 0          | -20          | -58       | No  | 16 | 56.25 | n/a       | n/a   | 0.01  |        |
| Boron (mg/L)    | YGWA-3L (bg)   | 0          | -0           | -58       | No  | 16 | 87.5  | n/a       | n/a   | 0.01  |        |
| Calcium (mg/L)  |                | 0 119      | -23          | -30       | Noc | 16 | 07.5  | n/a       | n/a   | 0.01  |        |
|                 |                | 0.02122    | 10           | 50        | No  | 16 | 0     | n/a       | n/a   | 0.01  |        |
| Calcium (mg/L)  |                | 0.02122    | 67           | 50        | Noc | 16 | 0     | n/a       | n/a   | 0.01  |        |
|                 | VGW(A 205 (bg) | 0.00145    | -07          | -50       | No  | 16 | 0     | n/a       | n/a   | 0.01  |        |
| Calcium (mg/L)  | YCWA 241 (bg)  | 4 222      | 54<br>69     | 50        | No  | 10 | •     | n/a       | n/a   | 0.01  |        |
|                 |                | 1.232      | 10           | <b>58</b> | res | 10 | 0     | n/a       | n/a   | 0.01  |        |
|                 | YCWA 40 (bg)   | 0.4473     | 45           | 43        | No  | 13 | 7 602 | n/a       | n/a   | 0.01  |        |
|                 |                | -0.9737    | - <b>4</b> 0 | -43       | Ne  | 10 | 1.092 | n/a       | n/a   | 0.01  |        |
|                 |                | 0.2746     | 37           | 56        | NO  | 10 | 0     | n/a       | n/a   | 0.01  | NP     |
|                 |                | -2.5/4     | -62          | -38       | res | 16 | 0     | n/a       | n/a   | 0.01  |        |
|                 |                | 0.09171    | 50           | 30        | NO  | 10 | 0     | n/a       | 11/a  | 0.01  |        |
|                 | rGwc-38        | -30.07     | -64          | -43       | res | 13 | 0     | n/a       | n/a   | 0.01  | NP     |
|                 | 1GWC-42        | -11.07     | -44          | -43       | Ves | 13 | 7 000 | n/a       | n/a   | 0.01  | NP     |
|                 | FGWA-47 (bg)   | -2.036     | -00          | -43       | res | 13 | 7.692 | n/a       | n/a   | 0.01  | NP     |
|                 |                | 4.949      | 63           | 48        | tes | 14 | 7.143 | n/a       | n/a   | 0.01  | NP     |
|                 | YGWA-143 (bg)  | -0.03039   | -40          | -30       | NO  | 10 | 0     | n/a       | 11/a  | 0.01  |        |
|                 |                | 0.7865     | 60           | 58        | res | 16 | 0     | n/a       | n/a   | 0.01  | NP     |
|                 |                | -0.1168    | -03          | -58       | tes | 16 | 0     | n/a       | n/a   | 0.01  | NP     |
|                 |                | 0.5792     | 38           | 58        | NO  | 10 | 0     | n/a       | n/a   | 0.01  | NP     |
|                 | YGWA-30I (bg)  | 0          | -0           | -58       | NO  | 16 | 0     | n/a       | n/a   | 0.01  | NP     |
| Calcium (mg/L)  | YGWA-3D (bg)   | 0.7746     | 48           | 58        | NO  | 16 | 0     | n/a       | n/a   | 0.01  | NP     |
| Calcium (mg/L)  | YGWA-3I (bg)   | 0.43       | 27           | 58        | No  | 16 | 0     | n/a       | n/a   | 0.01  | NP     |
| Chloride (mg/L) | YGWA-17S (bg)  | 0.3002     | 76           | 58        | Yes | 16 | 0     | n/a       | n/a   | 0.01  | NP     |
| Chloride (mg/L) | YGWA-18I (bg)  | 0.05099    | 35           | 58        | No  | 16 | 0     | n/a       | n/a   | 0.01  | NP     |
| Chloride (mg/L) | YGWA-18S (bg)  | 0.2082     | 50           | 58        | No  | 16 | 0     | n/a       | n/a   | 0.01  | NP     |
| Chloride (mg/L) | YGWA-20S (bg)  | 0.189      | 71           | 58        | Yes | 16 | 0     | n/a       | n/a   | 0.01  | NP     |
| Chloride (mg/L) | YGWA-21I (bg)  | -0.1117    | -28          | -58       | No  | 16 | 0     | n/a       | n/a   | 0.01  | NP     |
| Chloride (mg/L) | YGWA-39 (bg)   | 0.2329     | 13           | 43        | No  | 13 | 0     | n/a       | n/a   | 0.01  | NP     |
| Chloride (mg/L) | YGWA-40 (bg)   | 0.1751     | 26           | 43        | No  | 13 | 0     | n/a       | n/a   | 0.01  | NP     |
| Chloride (mg/L) | YGWA-4I (bg)   | 0.1099     | 36           | 58        | No  | 16 | 0     | n/a       | n/a   | 0.01  | NP     |
| Chloride (mg/L) | YGWA-5D (bg)   | -0.9116    | -83          | -58       | Yes | 16 | 0     | n/a       | n/a   | 0.01  | NP     |
| Chloride (mg/L) | YGWA-5I (bg)   | 0          | -1           | -58       | No  | 16 | 0     | n/a       | n/a   | 0.01  | NP     |

# Appendix III Trend Tests - Prediction Limits Exceedances - All Results<sup>2</sup>

| Constituent                    | Well           | Slope     | Calc.      | Critical  | <u>Sig.</u> | N  | <u>%NDs</u> | Normality   | <u>Xform</u> | <u>Alpha</u> | Method |
|--------------------------------|----------------|-----------|------------|-----------|-------------|----|-------------|-------------|--------------|--------------|--------|
| Chloride (mg/L)                | YGWA-47 (bg)   | -0.5003   | -45        | -43       | Yes         | 13 | 0           | n/a         | n/a          | 0.01         | NP     |
| Chloride (mg/L)                | GWA-2 (bg)     | 0.1272    | 29         | 48        | No          | 14 | 0           | n/a         | n/a          | 0.01         | NP     |
| Chloride (mg/L)                | YGWA-14S (bg)  | 0.1626    | 30         | 58        | No          | 16 | 0           | n/a         | n/a          | 0.01         | NP     |
| Chloride (mg/L)                | YGWA-1D (bg)   | -0.02735  | -40        | -58       | No          | 16 | 0           | n/a         | n/a          | 0.01         | NP     |
| Chloride (mg/L)                | YGWA-1I (bg)   | -0.02869  | -33        | -58       | No          | 16 | 0           | n/a         | n/a          | 0.01         | NP     |
| Chloride (mg/L)                | YGWA-2I (bg)   | -0.05296  | -45        | -58       | No          | 16 | 0           | n/a         | n/a          | 0.01         | NP     |
| Chloride (mg/L)                | YGWA-30I (bg)  | 0         | -21        | -58       | No          | 16 | 0           | n/a         | n/a          | 0.01         | NP     |
| Chloride (mg/L)                | YGWA-3D (bg)   | -0.06529  | -59        | -58       | Yes         | 16 | 0           | n/a         | n/a          | 0.01         | NP     |
| Chloride (mg/L)                | YGWA-3I (bg)   | -0.05699  | -66        | -58       | Yes         | 16 | 0           | n/a         | n/a          | 0.01         | NP     |
| Chloride (mg/L)                | YGWC-24SA      | 0.4282    | 54         | 58        | No          | 16 | 0           | n/a         | n/a          | 0.01         | NP     |
| pH (S.U.)                      | YGWA-17S (bg)  | -0.005007 | -36        | -74       | No          | 19 | 0           | n/a         | n/a          | 0.01         | NP     |
| pH (S.U.)                      | YGWA-18I (bg)  | -0.01164  | -23        | -81       | No          | 20 | 0           | n/a         | n/a          | 0.01         | NP     |
| pH (S.U.)                      | YGWA-18S (bg)  | -0.05702  | -88        | -81       | Yes         | 20 | 0           | n/a         | n/a          | 0.01         | NP     |
| pH (S.U.)                      | YGWA-20S (bg)  | 0.03      | 81         | 81        | No          | 20 | 0           | n/a         | n/a          | 0.01         | NP     |
| pH (S.U.)                      | YGWA-21I (bg)  | 0.2015    | 107        | 81        | Yes         | 20 | 0           | n/a         | n/a          | 0.01         | NP     |
| pH (S.U.)                      | YGWA-39 (bg)   | -0.2384   | -89        | -58       | Yes         | 16 | 0           | n/a         | n/a          | 0.01         | NP     |
| pH (S.U.)                      | YGWA-40 (bg)   | 0.005552  | 4          | 58        | No          | 16 | 0           | n/a         | n/a          | 0.01         | NP     |
| pH (S.U.)                      | YGWA-4I (bg)   | -0.02017  | -44        | -81       | No          | 20 | 0           | n/a         | n/a          | 0.01         | NP     |
| pH (S.U.)                      | YGWA-5D (bg)   | -0.09849  | -78        | -74       | Yes         | 19 | 0           | n/a         | n/a          | 0.01         | NP     |
| pH (S.U.)                      | YGWA-5I (bg)   | 0         | -7         | -81       | No          | 20 | 0           | n/a         | n/a          | 0.01         | NP     |
| pH (S.U.)                      | YGWC-41        | 0.04117   | 13         | 53        | No          | 15 | 0           | n/a         | n/a          | 0.01         | NP     |
| pH (S.U.)                      | YGWA-47 (bg)   | -0.0262   | -37        | -48       | No          | 14 | 0           | n/a         | n/a          | 0.01         | NP     |
| pH (S.U.)                      | GWA-2 (bg)     | -0.03439  | -128       | -139      | No          | 29 | 0           | n/a         | n/a          | 0.01         | NP     |
| DH (S.U.)                      | YGWA-14S (bg)  | -0.003962 | -13        | -81       | No          | 20 | 0           | n/a         | n/a          | 0.01         | NP     |
| pH (S.U.)                      | YGWA-1D (bg)   | -0.06046  | -60        | -81       | No          | 20 | 0           | n/a         | n/a          | 0.01         | NP     |
| pH (S.U.)                      | YGWA-11 (bg)   | -0.05767  | -78        | -81       | No          | 20 | 0           | n/a         | n/a          | 0.01         | NP     |
| рн (с.с.)<br>рн (S.U.)         | YGWA-2I (bg)   | 0.005696  | 10         | 81        | No          | 20 | 0           | n/a         | n/a          | 0.01         | NP     |
| DH (S.U.)                      | YGWA-30I (bg)  | 0.002608  | 7          | 81        | No          | 20 | 0           | n/a         | n/a          | 0.01         | NP     |
| nH (SU)                        | YGWA-3D (bg)   | -0.006892 | -11        | -81       | No          | 20 | 0           | n/a         | n/a          | 0.01         | NP     |
| pH (S.U.)                      | YGWA-3I (bg)   | -0.03856  | -36        | -81       | No          | 20 | 0           | n/a         | n/a          | 0.01         | NP     |
| Sulfate (mg/L)                 | YGWA-17S (bg)  | 0 1322    | 51         | 58        | No          | 16 | 0           | n/a         | n/a          | 0.01         | NP     |
| Sulfate (mg/L)                 | YGWA-18I (bg)  | -0 2007   | -54        | -58       | No          | 16 | 25          | n/a         | n/a          | 0.01         | NP     |
| Sulfate (mg/L)                 | YGWA-18S (bg)  | -0 1939   | -48        | -58       | No          | 16 | 12.5        | n/a         | n/a          | 0.01         | NP     |
| Sulfate (mg/L)                 | YGWA-20S (bg)  | 0         | 24         | 58        | No          | 16 | 62.5        | n/a         | n/a          | 0.01         | NP     |
| Sulfate (mg/L)                 | YGWA-211 (bg)  | -0 2852   | -25        | -58       | No          | 16 | 0           | n/a         | n/a          | 0.01         | NP     |
| Sulfate (mg/L)                 | YGWA-39 (bg)   | -3 687    | -48        | -43       | Yes         | 13 | 0           | n/a         | n/a          | 0.01         | NP     |
| Sulfate (mg/L)                 | YGWA-40 (bg)   | -12 05    | -54        | -43       | Yes         | 13 | 0           | n/a         | n/a          | 0.01         | NP     |
| Sulfate (mg/L)                 | YGWA-41 (bg)   | 0 1751    | 39         | 58        | No          | 16 | 0           | n/a         | n/a          | 0.01         | NP     |
| Sulfate (mg/L)                 | YGWA-5D (bg)   | -3 891    | -96        | -58       | Vac         | 16 | 0           | n/a         | n/a          | 0.01         | ND     |
| Sulfate (mg/L)                 | YGWA-51 (bg)   | 0.09335   | 70         | 58        | Vac         | 16 | 0           | n/a         | n/a          | 0.01         | ND     |
| Sulfate (mg/L)                 | VGWC-38        | -145 1    | -67        | -43       | Vae         | 13 | 0           | n/a         | n/a          | 0.01         | ND     |
| Sulfate (mg/L)                 | VGWC-42        | -143.1    | -07        | -43       | Vae         | 13 | 0           | n/a         | n/a          | 0.01         | ND     |
| Sulfate (mg/L)                 | VGWC-43        | 54        | -45        | 43        | Vae         | 13 | 0           | n/a         | n/a          | 0.01         | ND     |
| Sulfate (mg/L)                 | VGWA-47 (bg)   | -25 19    | -71        | -13       | Vae         | 13 | 0           | n/a         | n/a          | 0.01         | ND     |
| Sulfate (mg/L)                 |                | 25.15     |            | 49        | Voc         | 14 | 0           | n/a         | n/a          | 0.01         |        |
|                                |                | 0.00460   | 17         | <b>+0</b> | Ne          | 14 | 0           | n/a         | n/a          | 0.01         |        |
| Sulfate (mg/L)                 |                | 0.09469   | 17         | 58        | NO          | 10 | 0           | n/a         | n/a          | 0.01         |        |
|                                |                | 0.2047    | / <b>0</b> | 50        | Ne          | 16 | 0           | n/a         | n/a          | 0.01         |        |
|                                |                | -0.2941   | -20        | -50       | No          | 10 | 0           | 11/a<br>n/o | n/a          | 0.01         |        |
| Sulfate (IIIQ/L)               | VGWA-21 (bg)   | 0.1720    | 20         | 50        | INO         | 10 | 10 5        | n/a         | n/a          | 0.01         |        |
| Sunate (IIIQ/L)                | COVA-SUI (Dg)  | -0.08892  | -20<br>60  | -JO       |             | 10 | 12.5        | 11/d        | n/a          | 0.01         |        |
|                                |                | 0.4938    | 00         | 50        | Tes         | 10 | U           | 11/a        | n/a          | 0.01         |        |
| Sunate (mg/L)                  | YGWA-3I (Dg)   | 0.6094    | 45         | 50        | NO          | 16 | U           | n/a         | n/a          | 0.01         | NP     |
|                                |                | 4.826     | 22         | 58        | NO          | 16 | U           | n/a         | n/a          | 0.01         |        |
|                                | rGvvA-18I (bg) | -2.316    | -19        | -58       | NO          | 10 | U           | n/a         | n/a          | 0.01         | NP     |
| i otai Dissolved Solids (mg/L) | YGVVA-18S (bg) | 3.74      | 25         | 58        | No          | 16 | U           | n/a         | n/a          | 0.01         | NP     |

# Appendix III Trend Tests - Prediction Limits Exceedances - All Results<sup>3</sup>

| Constituent                   | Well          | Slope  | Calc. | <u>Critical</u> | <u>Sig.</u> | <u>N</u> | <u>%NDs</u> | Normality | <u>Xform</u> | <u>Alpha</u> | Method |
|-------------------------------|---------------|--------|-------|-----------------|-------------|----------|-------------|-----------|--------------|--------------|--------|
| Total Dissolved Solids (mg/L) | YGWA-20S (bg) | 3.156  | 31    | 58              | No          | 16       | 0           | n/a       | n/a          | 0.01         | NP     |
| Total Dissolved Solids (mg/L) | YGWA-21I (bg) | 15.05  | 46    | 58              | No          | 16       | 0           | n/a       | n/a          | 0.01         | NP     |
| Total Dissolved Solids (mg/L) | YGWA-39 (bg)  | 17.14  | 28    | 43              | No          | 13       | 0           | n/a       | n/a          | 0.01         | NP     |
| Total Dissolved Solids (mg/L) | YGWA-40 (bg)  | -18.83 | -48   | -43             | Yes         | 13       | 0           | n/a       | n/a          | 0.01         | NP     |
| Total Dissolved Solids (mg/L) | YGWA-4I (bg)  | 1.119  | 8     | 58              | No          | 16       | 0           | n/a       | n/a          | 0.01         | NP     |
| Total Dissolved Solids (mg/L) | YGWA-5D (bg)  | -18.77 | -74   | -58             | Yes         | 16       | 0           | n/a       | n/a          | 0.01         | NP     |
| Total Dissolved Solids (mg/L) | YGWA-5I (bg)  | -1.204 | -7    | -58             | No          | 16       | 0           | n/a       | n/a          | 0.01         | NP     |
| Total Dissolved Solids (mg/L) | YGWC-38       | -198   | -48   | -43             | Yes         | 13       | 0           | n/a       | n/a          | 0.01         | NP     |
| Total Dissolved Solids (mg/L) | YGWC-41       | -134.8 | -62   | -43             | Yes         | 13       | 0           | n/a       | n/a          | 0.01         | NP     |
| Total Dissolved Solids (mg/L) | YGWC-42       | -168.3 | -56   | -43             | Yes         | 13       | 0           | n/a       | n/a          | 0.01         | NP     |
| Total Dissolved Solids (mg/L) | YGWC-43       | 111.1  | 70    | 43              | Yes         | 13       | 0           | n/a       | n/a          | 0.01         | NP     |
| Total Dissolved Solids (mg/L) | YGWA-47 (bg)  | -14.88 | -54   | -43             | Yes         | 13       | 0           | n/a       | n/a          | 0.01         | NP     |
| Total Dissolved Solids (mg/L) | GWA-2 (bg)    | 29.32  | 40    | 48              | No          | 14       | 0           | n/a       | n/a          | 0.01         | NP     |
| Total Dissolved Solids (mg/L) | YGWA-14S (bg) | 2.021  | 18    | 58              | No          | 16       | 0           | n/a       | n/a          | 0.01         | NP     |
| Total Dissolved Solids (mg/L) | YGWA-1D (bg)  | 1.869  | 13    | 58              | No          | 16       | 0           | n/a       | n/a          | 0.01         | NP     |
| Total Dissolved Solids (mg/L) | YGWA-1I (bg)  | -3.828 | -26   | -58             | No          | 16       | 0           | n/a       | n/a          | 0.01         | NP     |
| Total Dissolved Solids (mg/L) | YGWA-2I (bg)  | -3.302 | -32   | -58             | No          | 16       | 0           | n/a       | n/a          | 0.01         | NP     |
| Total Dissolved Solids (mg/L) | YGWA-30I (bg) | 2.131  | 17    | 58              | No          | 16       | 12.5        | n/a       | n/a          | 0.01         | NP     |
| Total Dissolved Solids (mg/L) | YGWA-3D (bg)  | 1.956  | 12    | 58              | No          | 16       | 0           | n/a       | n/a          | 0.01         | NP     |
| Total Dissolved Solids (mg/L) | YGWA-3I (bg)  | 0.9644 | 5     | 58              | No          | 16       | 0           | n/a       | n/a          | 0.01         | NP     |
|                               |               |        |       |                 |             |          |             |           |              |              |        |

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



Constituent: Boron Analysis Run 5/6/2021 8:49 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: Boron Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



Constituent: Boron Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



Constituent: Boron Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: Boron Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG



Constituent: Boron Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



Constituent: Boron Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: Boron Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG



Constituent: Boron Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG



Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG



Constituent: Boron Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: Boron Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG



Constituent: Boron Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6





Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



Constituent: Boron Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: Boron Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



Constituent: Boron Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



Constituent: Boron Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: Boron Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



Constituent: Boron Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG



Constituent: Calcium Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: Calcium Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG



Constituent: Calcium Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6







Constituent: Calcium Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: Calcium Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



Constituent: Calcium Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG



Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG



Constituent: Calcium Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: Calcium Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG



Constituent: Calcium Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6





Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.



Constituent: Calcium Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: Calcium Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG



Constituent: Calcium Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6





Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG



Constituent: Calcium Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: Calcium Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG



Constituent: Calcium Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6





Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG



Constituent: Calcium Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: Chloride Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG



Constituent: Chloride Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6







Constituent: Chloride Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: Chloride Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG



Constituent: Chloride Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG






Constituent: Chloride Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: Chloride Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: Chloride Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6









Constituent: Chloride Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: Chloride Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: Chloride Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG





Constituent: Chloride Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: Chloride Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG



Constituent: Chloride Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6







Constituent: Chloride Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: pH Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG



Constituent: pH Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6







Constituent: pH Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: pH Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG



Constituent: pH Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG





Constituent: pH Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: pH Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG



Constituent: pH Analysis Run 5/6/2021 8:50 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG





Constituent: pH Analysis Run 5/6/2021 8:51 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: pH Analysis Run 5/6/2021 8:51 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG



Constituent: pH Analysis Run 5/6/2021 8:51 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG





Constituent: pH Analysis Run 5/6/2021 8:51 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: pH Analysis Run 5/6/2021 8:51 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG



Constituent: pH Analysis Run 5/6/2021 8:51 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG





Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: Sulfate Analysis Run 5/6/2021 8:51 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG



Constituent: Sulfate Analysis Run 5/6/2021 8:51 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values.





Constituent: Sulfate Analysis Run 5/6/2021 8:51 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: Sulfate Analysis Run 5/6/2021 8:51 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: Sulfate Analysis Run 5/6/2021 8:51 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6







Constituent: Sulfate Analysis Run 5/6/2021 8:51 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: Sulfate Analysis Run 5/6/2021 8:51 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG



Constituent: Sulfate Analysis Run 5/6/2021 8:51 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6







Constituent: Sulfate Analysis Run 5/6/2021 8:51 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: Sulfate Analysis Run 5/6/2021 8:51 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: Sulfate Analysis Run 5/6/2021 8:51 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6







Constituent: Sulfate Analysis Run 5/6/2021 8:51 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: Sulfate Analysis Run 5/6/2021 8:51 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG



Constituent: Sulfate Analysis Run 5/6/2021 8:51 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG



Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG Hollow symbols indicate censored values. Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG



Constituent: Sulfate Analysis Run 5/6/2021 8:51 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: Sulfate Analysis Run 5/6/2021 8:51 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG



Constituent: Sulfate Analysis Run 5/6/2021 8:51 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG



 Constituent: Total Dissolved Solids
 Analysis Run 5/6/2021
 8:51 PM
 View: Appendix III - Trend Tests

 Plant Yates
 Client: Southern Company
 Data: Plant Yates AMA-R6



Constituent: Total Dissolved Solids Analysis Run 5/6/2021 8:51 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: Total Dissolved Solids Analysis Run 5/6/2021 8:51 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG



Constituent: Total Dissolved Solids Analysis Run 5/6/2021 8:51 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6







Constituent: Total Dissolved Solids Analysis Run 5/6/2021 8:51 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: Total Dissolved Solids Analysis Run 5/6/2021 8:51 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG



Constituent: Total Dissolved Solids Analysis Run 5/6/2021 8:51 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG





Constituent: Total Dissolved Solids Analysis Run 5/6/2021 8:51 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: Total Dissolved Solids Analysis Run 5/6/2021 8:51 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG



Constituent: Total Dissolved Solids Analysis Run 5/6/2021 8:51 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6







Constituent: Total Dissolved Solids Analysis Run 5/6/2021 8:51 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: Total Dissolved Solids Analysis Run 5/6/2021 8:51 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG



Constituent: Total Dissolved Solids Analysis Run 5/6/2021 8:51 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6





Constituent: Total Dissolved Solids Analysis Run 5/6/2021 8:51 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: Total Dissolved Solids Analysis Run 5/6/2021 8:51 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: Total Dissolved Solids Analysis Run 5/6/2021 8:51 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6





Constituent: Total Dissolved Solids Analysis Run 5/6/2021 8:51 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: Total Dissolved Solids Analysis Run 5/6/2021 8:51 PM View: Appendix III - Trend Tests Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

# FIGURE F.

# Upper Tolerance Limits Summary Table

| Constituent                       | Upper Lim. | Lower Lim. | <u>Sig.</u> | <u>Bg N</u> | <u>Bg Mean</u> | Std. Dev. | <u>%NDs</u> | ND Adj. | Transform | <u>Alpha</u> | Method              |
|-----------------------------------|------------|------------|-------------|-------------|----------------|-----------|-------------|---------|-----------|--------------|---------------------|
| Antimony (mg/L)                   | 0.0047     | n/a        | n/a         | 315         | n/a            | n/a       | 86.03       | n/a     | n/a       | NaN          | NP Inter(NDs)       |
| Arsenic (mg/L)                    | 0.005      | n/a        | n/a         | 363         | n/a            | n/a       | 77.96       | n/a     | n/a       | NaN          | NP Inter(NDs)       |
| Barium (mg/L)                     | 0.071      | n/a        | n/a         | 363         | n/a            | n/a       | 3.03        | n/a     | n/a       | NaN          | NP Inter(normality) |
| Beryllium (mg/L)                  | 0.0005     | n/a        | n/a         | 347         | n/a            | n/a       | 81.27       | n/a     | n/a       | NaN          | NP Inter(NDs)       |
| Cadmium (mg/L)                    | 0.0005     | n/a        | n/a         | 347         | n/a            | n/a       | 95.68       | n/a     | n/a       | NaN          | NP Inter(NDs)       |
| Chromium (mg/L)                   | 0.0093     | n/a        | n/a         | 315         | n/a            | n/a       | 77.46       | n/a     | n/a       | NaN          | NP Inter(NDs)       |
| Cobalt (mg/L)                     | 0.035      | n/a        | n/a         | 360         | n/a            | n/a       | 69.72       | n/a     | n/a       | NaN          | NP Inter(NDs)       |
| Combined Radium 226 + 228 (pCi/L) | 6.92       | n/a        | n/a         | 342         | n/a            | n/a       | 0           | n/a     | n/a       | NaN          | NP Inter(normality) |
| Fluoride (mg/L)                   | 0.68       | n/a        | n/a         | 362         | n/a            | n/a       | 68.51       | n/a     | n/a       | NaN          | NP Inter(NDs)       |
| Lead (mg/L)                       | 0.0013     | n/a        | n/a         | 317         | n/a            | n/a       | 82.65       | n/a     | n/a       | NaN          | NP Inter(NDs)       |
| Lithium (mg/L)                    | 0.03       | n/a        | n/a         | 342         | n/a            | n/a       | 27.49       | n/a     | n/a       | NaN          | NP Inter(normality) |
| Mercury (mg/L)                    | 0.0002     | n/a        | n/a         | 278         | n/a            | n/a       | 93.17       | n/a     | n/a       | NaN          | NP Inter(NDs)       |
| Molybdenum (mg/L)                 | 0.014      | n/a        | n/a         | 306         | n/a            | n/a       | 59.8        | n/a     | n/a       | NaN          | NP Inter(NDs)       |
| Selenium (mg/L)                   | 0.005      | n/a        | n/a         | 345         | n/a            | n/a       | 91.59       | n/a     | n/a       | NaN          | NP Inter(NDs)       |
| Thallium (mg/L)                   | 0.001      | n/a        | n/a         | 298         | n/a            | n/a       | 96.64       | n/a     | n/a       | NaN          | NP Inter(NDs)       |

# FIGURE G.

|                                | YATES AMA | -R6 GWPS  |         |       |        |
|--------------------------------|-----------|-----------|---------|-------|--------|
|                                |           | CCR-Rule  | Federal | State |        |
| Constituent Name               | MCL       | Specified | Limit   | GWPS  | GWPS   |
| Antimony, Total (mg/L)         | 0.006     |           | 0.0047  | 0.006 | 0.006  |
| Arsenic, Total (mg/L)          | 0.01      |           | 0.005   | 0.01  | 0.01   |
| Barium, Total (mg/L)           | 2         |           | 0.071   | 2     | 2      |
| Beryllium, Total (mg/L)        | 0.004     |           | 0.0005  | 0.004 | 0.004  |
| Cadmium, Total (mg/L)          | 0.005     |           | 0.0005  | 0.005 | 0.005  |
| Chromium, Total (mg/L)         | 0.1       |           | 0.0093  | 0.1   | 0.1    |
| Cobalt, Total (mg/L)           |           | 0.006     | 0.035   | 0.035 | 0.035  |
| Combined Radium, Total (pCi/L) | 5         |           | 6.92    | 6.92  | 6.92   |
| Fluoride, Total (mg/L)         | 4         |           | 0.68    | 4     | 4      |
| Lead, Total (mg/L)             |           | 0.015     | 0.0013  | 0.015 | 0.0013 |
| Lithium, Total (mg/L)          |           | 0.04      | 0.03    | 0.04  | 0.03   |
| Mercury, Total (mg/L)          | 0.002     |           | 0.0002  | 0.002 | 0.002  |
| Molybdenum, Total (mg/L)       |           | 0.1       | 0.014   | 0.1   | 0.014  |
| Selenium, Total (mg/L)         | 0.05      |           | 0.005   | 0.05  | 0.05   |
| Thallium, Total (mg/L)         | 0.002     |           | 0.001   | 0.002 | 0.002  |

\*Grey cell indicates Background Limit is higher than MCL or CCR Rule Specified Level

\*MCL = Maximum Contaminant Level

\*CCR = Coal Combustion Residual

\*GWPS = Groundwater Protection Standard

# FIGURE H.

## Federal Confidence Intervals - Significant Results

| Constituent      | Well    | Upper Lim. | Lower Lim. | Compliance | <u>Sig.</u> | <u>N</u> | Mean     | Std. Dev. | <u>%NDs</u> | ND Adj. | Transform | <u>Alpha</u> | Method         |
|------------------|---------|------------|------------|------------|-------------|----------|----------|-----------|-------------|---------|-----------|--------------|----------------|
| Beryllium (mg/L) | YGWC-38 | 0.005497   | 0.004113   | 0.004      | Yes         | 14       | 0.004743 | 0.001073  | 0           | None    | x^2       | 0.01         | Param.         |
| Selenium (mg/L)  | YGWC-38 | 0.249      | 0.076      | 0.05       | Yes         | 14       | 0.1755   | 0.07444   | 0           | None    | No        | 0.01         | NP (normality) |
| Selenium (mg/L)  | PZ-37   | 0.3047     | 0.2211     | 0.05       | Yes         | 11       | 0.2629   | 0.0502    | 0           | None    | No        | 0.01         | Param.         |

## Federal Confidence Intervals - All Results

| Constituent      | Well      | Upper Lim. | Lower Lim. | Compliance | <u>Sig.</u> | <u>N</u> | Mean      | Std. Dev.  | <u>%NDs</u> | <u>ND Adj.</u> | Transform | <u>Alpha</u> | Method         |
|------------------|-----------|------------|------------|------------|-------------|----------|-----------|------------|-------------|----------------|-----------|--------------|----------------|
| Antimony (mg/L)  | YAMW-1    | 0.025      | 0.00037    | 0.006      | No          | 5        | 0.006874  | 0.0102     | 60          | None           | No        | 0.031        | NP (NDs)       |
| Antimony (mg/L)  | YGWC-23S  | 0.003      | 0.00085    | 0.006      | No          | 16       | 0.002541  | 0.0009916  | 81.25       | None           | No        | 0.01         | NP (NDs)       |
| Antimony (mg/L)  | YGWC-38   | 0.003      | 0.00061    | 0.006      | No          | 13       | 0.002312  | 0.001105   | 69.23       | None           | No        | 0.01         | NP (NDs)       |
| Antimony (mg/L)  | YGWC-41   | 0.003      | 0.0014     | 0.006      | No          | 13       | 0.002877  | 0.0004438  | 92.31       | None           | No        | 0.01         | NP (NDs)       |
| Antimony (mg/L)  | YGWC-42   | 0.003      | 0.00053    | 0.006      | No          | 13       | 0.00281   | 0.0006851  | 92.31       | None           | No        | 0.01         | NP (NDs)       |
| Antimony (mg/L)  | YGWC-43   | 0.003      | 0.00031    | 0.006      | No          | 13       | 0.002793  | 0.0007461  | 92.31       | None           | No        | 0.01         | NP (NDs)       |
| Antimony (mg/L)  | YGWC-49   | 0.003      | 0.0011     | 0.006      | No          | 13       | 0.002664  | 0.0008287  | 84.62       | None           | No        | 0.01         | NP (NDs)       |
| Antimony (mg/L)  | PZ-35     | 0.003      | 0.00039    | 0.006      | No          | 5        | 0.002478  | 0.001167   | 80          | None           | No        | 0.031        | NP (NDs)       |
| Antimony (mg/L)  | PZ-37     | 0.003      | 0.0014     | 0.006      | No          | 11       | 0.002614  | 0.0008911  | 81.82       | None           | No        | 0.006        | NP (NDs)       |
| Antimony (mg/L)  | YGWC-24SA | 0.003      | 0.0009     | 0.006      | No          | 16       | 0.002869  | 0.000525   | 93.75       | None           | No        | 0.01         | NP (NDs)       |
| Antimony (mg/L)  | YGWC-36A  | 0.0041     | 0.0014     | 0.006      | No          | 16       | 0.004256  | 0.006491   | 50          | None           | No        | 0.01         | NP (normality) |
| Arsenic (mg/L)   | YGWC-23S  | 0.005      | 0.0012     | 0.01       | No          | 18       | 0.004789  | 0.0008957  | 94.44       | None           | No        | 0.01         | NP (NDs)       |
| Arsenic (mg/L)   | YGWC-38   | 0.00212    | 0.0007623  | 0.01       | No          | 14       | 0.001676  | 0.001497   | 14.29       | None           | ln(x)     | 0.01         | Param.         |
| Arsenic (mg/L)   | YGWC-41   | 0.005      | 0.00062    | 0.01       | No          | 14       | 0.00288   | 0.002208   | 50          | None           | No        | 0.01         | NP (normality) |
| Arsenic (mg/L)   | YGWC-42   | 0.003139   | 0.00143    | 0.01       | No          | 14       | 0.002355  | 0.001306   | 14.29       | None           | sqrt(x)   | 0.01         | Param.         |
| Arsenic (mg/L)   | YGWC-43   | 0.005      | 0.00099    | 0.01       | No          | 14       | 0.004086  | 0.001819   | 78.57       | None           | No        | 0.01         | NP (NDs)       |
| Arsenic (mg/L)   | YGWC-49   | 0.005      | 0.00086    | 0.01       | No          | 13       | 0.004035  | 0.001835   | 76.92       | None           | No        | 0.01         | NP (NDs)       |
| Arsenic (mg/L)   | PZ-35     | 0.005      | 0.00069    | 0.01       | No          | 6        | 0.003608  | 0.002158   | 66.67       | None           | No        | 0.0155       | NP (NDs)       |
| Arsenic (mg/L)   | PZ-37     | 0.005      | 0.0008     | 0.01       | No          | 11       | 0.002504  | 0.001995   | 36.36       | None           | No        | 0.006        | NP (normality) |
| Arsenic (mg/L)   | YGWC-24SA | 0.005      | 0.0015     | 0.01       | No          | 18       | 0.004806  | 0.000825   | 94.44       | None           | No        | 0.01         | NP (NDs)       |
| Arsenic (mg/L)   | YGWC-36A  | 0.005      | 0.00088    | 0.01       | No          | 18       | 0.004041  | 0.001847   | 77.78       | None           | No        | 0.01         | NP (NDs)       |
| Barium (mɑ/L)    | YAMW-1    | 0.04981    | 0.02919    | 2          | No          | 6        | 0.0395    | 0.007503   | 0           | None           | No        | 0.01         | Param.         |
| Barium (mg/L)    | YGWC-23S  | 0.04499    | 0.02913    | 2          | No          | 18       | 0.03706   | 0.01311    | 0           | None           | No        | 0.01         | Param.         |
| Barium (mg/L)    | YGWC-38   | 0.0239     | 0.01832    | 2          | No          | 14       | 0.02111   | 0.003941   | 0           | None           | No        | 0.01         | Param.         |
| Barium (mg/L)    | YGWC-41   | 0.03029    | 0.0206     | 2          | No          | 14       | 0.02544   | 0.00684    | 0           | None           | No        | 0.01         | Param.         |
| Barium (mg/L)    | YGWC-42   | 0.04675    | 0.03191    | 2          | No          | 14       | 0.03933   | 0.01047    | 0           | None           | No        | 0.01         | Param          |
| Barium (mg/L)    | YGWC-43   | 0.03572    | 0.01774    | 2          | No          | 14       | 0.02673   | 0.01269    | 0           | None           | No        | 0.01         | Param.         |
| Barium (mg/L)    | YGWC-49   | 0.07999    | 0.06987    | 2          | No          | 13       | 0.07493   | 0.006807   | 0           | None           | No        | 0.01         | Param.         |
| Barium (mg/L)    | P7-35     | 0.063      | 0.032      | 2          | No          | 6        | 0.04      | 0.01166    | 0           | None           | No        | 0.0155       | NP (normality) |
| Barium (mg/L)    | P7-37     | 0.05778    | 0.04078    | 2          | No          | - 11     | 0.04928   | 0.0102     | 0           | None           | No        | 0.01         | Param          |
| Barium (mg/L)    | YGWC-24SA | 0.0203     | 0.0189     | 2          | No          | 18       | 0.02053   | 0.003411   | 0           | None           | No        | 0.01         | NP (normality) |
| Barium (mg/L)    | YGWC-36A  | 0.04411    | 0.03184    | 2          | No          | 18       | 0.03797   | 0.01014    | 0           | None           | No        | 0.01         | Param          |
| Bendlium (mg/L)  | YAMW-1    | 0.0005     | 0.000058   | 0 004      | No          | 6        | 0.0004047 | 0.0001776  | 66 67       | None           | No        | 0.0155       |                |
| Beryllium (mg/L) | YAMW-5    | 0.0002156  | 0.00005244 | 0.004      | No          | 4        | 0.000134  | 0.00003593 | 10          | None           | No        | 0.01         | Param          |
| Beryllium (mg/L) | YGWC-23S  | 0.0005     | 0.000081   | 0.004      | No          | 18       | 0.0002109 | 0.0001859  | 27 78       | None           | No        | 0.01         | NP (normality) |
| Benyllium (mg/L) | YGWC-38   | 0.005497   | 0.004113   | 0.004      | Vee         | 14       | 0.0002100 | 0.001073   | 0           | None           | ×^2       | 0.01         | Param          |
| Beryllium (mg/L) | YGWC-41   | 0.003457   | 0.002      | 0.004      | No          | 14       | 0.003     | 0.000862   | 0           | None           | No        | 0.01         | NP (normality) |
| Bonyllium (mg/L) | YGWC 42   | 0.0005     | 0.002      | 0.004      | No          | 14       | 0.0003503 | 0.000002   | 64 20       | None           | No        | 0.01         |                |
| Benyllium (mg/L) | YGWC 43   | 0.00053    | 0.000007   | 0.004      | No          | 14       | 0.0003303 | 0.0002087  | 42.86       | None           | No        | 0.01         | NP (normality) |
| Benyllium (mg/L) | YGWC 40   | 0.00033    | 0.0003     | 0.004      | No          | 14       | 0.0004200 | 0.000100   | 42.00       | None           | No        | 0.01         | NP (normality) |
| Beryllium (mg/L) | PZ 25     | 0.00013    | 0.0001     | 0.004      | No          | 7        | 0.0001408 | 0.00011088 | 29.57       | Kaplan Mojor   | No        | 0.01         | Dorom          |
| Benyllium (mg/L) | FZ-33     | 0.0004301  | 0.0002224  | 0.004      | No          | 1        | 0.0003071 | 0.0001160  | 10.10       |                | No        | 0.01         | Param          |
| Beryllium (mg/L) | FZ-37     | 0.0003551  | 0.0002091  | 0.004      | No          | 10       | 0.0003355 | 0.0001009  | 10.10       | Napa           | No        | 0.01         | Parani.        |
| Beryllium (mg/L) | YGWC-24SA | 0.00016    | 0.0001     | 0.004      | NO          | 18       | 0.0001811 | 0.000149   | 10.07       | None           | NO        | 0.01         | NP (normality) |
| Beryllium (mg/L) | YGWC-36A  | 0.0003195  | 0.0001904  | 0.004      | NO No       | 18       | 0.0002549 | 0.0001067  | 5.550       | None           | NO        | 0.0155       | Param.         |
| Cadmium (mg/L)   | YAMVV-1   | 0.0005     | 0.00013    | 0.005      | NO          | 6        | 0.0003233 | 0.000194   | 50          | None           | NO        | 0.0155       | NP (normality) |
| Cadmium (mg/L)   | YGWC-23S  | 0.0005     | 0.00007    | 0.005      | No          | 18       | 0.0004761 | 0.0001014  | 94.44       | None           | No        | 0.01         | NP (NDs)       |
|                  | YGWC-38   | 0.002798   | 0.002139   | 0.005      | NO<br>N-    | 14       | 0.00235   | 0.0004449  | U<br>29.57  | None           | x^4       | 0.01         | Param.         |
| Cadmium (mg/L)   | YGWC-41   | 0.0005     | 0.00017    | 0.005      | No          | 14       | 0.0002886 | 0.0001446  | 28.57       | None           | No        | 0.01         | NP (normality) |
| Cadmium (mg/L)   | YGWC-42   | 0.0006     | 0.00017    | 0.005      | No          | 14       | 0.0003764 | 0.0001667  | 42.86       | None           | NO        | 0.01         | NP (normality) |
| Cadmium (mg/L)   | YGWC-49   | 0.0005     | 0.00007    | 0.005      | No          | 13       | 0.0004669 | 0.0001193  | 92.31       | None           | No        | 0.01         | NP (NDs)       |
| Cadmium (mg/L)   | PZ-35     | 0.0005     | 0.00016    | 0.005      | No          | 6        | 0.0004433 | 0.0001388  | 83.33       | None           | No        | 0.0155       | NP (NDs)       |
| Cadmium (mg/L)   | PZ-37     | 0.0006329  | 0.0002453  | 0.005      | No          | 11       | 0.0004727 | 0.0002328  | 18.18       | Kaplan-Meier   | No        | 0.01         | Param.         |
| Cadmium (mg/L)   | YGWC-36A  | 0.0005     | 0.00015    | 0.005      | No          | 18       | 0.0002433 | 0.0001453  | 22.22       | None           | No        | 0.01         | NP (normality) |
| Chromium (mg/L)  | YAMW-1    | 0.001163   | 0.0003768  | U.1        | No          | 4        | 0.00077   | 0.0001732  | 0           | None           | No        | 0.01         | Param.         |
| Chromium (mg/L)  | YGWC-23S  | 0.005      | 0.0008     | 0.1        | No          | 14       | 0.003296  | 0.002061   | 57.14       | None           | No        | 0.01         | NP (NDs)       |

## Federal Confidence Intervals - All Results

| Constituent                       | Well      | Upper Lim. | Lower Lim. | Compliance | <u>Sig.</u> | N  | Mean      | Std. Dev. | <u>%NDs</u> | ND Adj.      | Transform | <u>Alpha</u> | Method         |
|-----------------------------------|-----------|------------|------------|------------|-------------|----|-----------|-----------|-------------|--------------|-----------|--------------|----------------|
| Chromium (mg/L)                   | YGWC-38   | 0.005      | 0.00065    | 0.1        | No          | 14 | 0.004368  | 0.001607  | 85.71       | None         | No        | 0.01         | NP (NDs)       |
| Chromium (mg/L)                   | YGWC-41   | 0.005      | 0.00039    | 0.1        | No          | 14 | 0.004671  | 0.001232  | 92.86       | None         | No        | 0.01         | NP (NDs)       |
| Chromium (mg/L)                   | YGWC-42   | 0.005      | 0.0013     | 0.1        | No          | 14 | 0.004095  | 0.001807  | 78.57       | None         | No        | 0.01         | NP (NDs)       |
| Chromium (mg/L)                   | YGWC-43   | 0.005      | 0.00071    | 0.1        | No          | 14 | 0.003755  | 0.002043  | 71.43       | None         | No        | 0.01         | NP (NDs)       |
| Chromium (mg/L)                   | YGWC-49   | 0.002      | 0.0014     | 0.1        | No          | 12 | 0.001958  | 0.0009839 | 8.333       | None         | No        | 0.01         | NP (normality) |
| Chromium (mg/L)                   | PZ-35     | 0.0012     | 0.0006     | 0.1        | No          | 4  | 0.0007775 | 0.0002852 | 0           | None         | No        | 0.0625       | NP (normality) |
| Chromium (mg/L)                   | PZ-37     | 0.005      | 0.0017     | 0.1        | No          | 11 | 0.004055  | 0.001633  | 72.73       | None         | No        | 0.006        | NP (NDs)       |
| Chromium (mg/L)                   | YGWC-24SA | 0.005      | 0.0011     | 0.1        | No          | 14 | 0.004153  | 0.001684  | 78.57       | None         | No        | 0.01         | NP (NDs)       |
| Chromium (mg/L)                   | YGWC-36A  | 0.005      | 0.0013     | 0.1        | No          | 14 | 0.004034  | 0.001699  | 71.43       | None         | No        | 0.01         | NP (NDs)       |
| Cobalt (mg/L)                     | YAMW-1    | 0.02859    | 0.004268   | 0.035      | No          | 7  | 0.01643   | 0.01106   | 28.57       | Kaplan-Meier | No        | 0.01         | Param.         |
| Cobalt (mg/L)                     | YGWC-41   | 0.005      | 0.00069    | 0.035      | No          | 14 | 0.003742  | 0.002072  | 71.43       | Kaplan-Meier | No        | 0.01         | NP (NDs)       |
| Cobalt (mg/L)                     | YGWC-42   | 0.0025     | 0.0017     | 0.035      | No          | 14 | 0.0022    | 0.0008927 | 7.143       | None         | No        | 0.01         | NP (normality) |
| Cobalt (mg/L)                     | YGWC-43   | 0.005      | 0.0016     | 0.035      | No          | 14 | 0.00325   | 0.001688  | 42.86       | None         | No        | 0.01         | NP (normality) |
| Cobalt (mg/L)                     | YGWC-49   | 0.005      | 0.0006     | 0.035      | No          | 13 | 0.003654  | 0.002103  | 69.23       | None         | No        | 0.01         | NP (NDs)       |
| Cobalt (mg/L)                     | PZ-35     | 0.0059     | 0.005      | 0.035      | No          | 6  | 0.00515   | 0.0003674 | 83.33       | None         | No        | 0.0155       | NP (NDs)       |
| Cobalt (mg/L)                     | PZ-37     | 0.0129     | 0.004336   | 0.035      | No          | 11 | 0.008618  | 0.005139  | 0           | None         | No        | 0.01         | Param.         |
| Cobalt (mg/L)                     | YGWC-36A  | 0.005      | 0.0006     | 0.035      | No          | 18 | 0.003761  | 0.002058  | 72.22       | None         | No        | 0.01         | NP (NDs)       |
| Combined Radium 226 + 228 (pCi/L) | YAMW-1    | 0.8723     | 0.2073     | 6.92       | No          | 5  | 0.5398    | 0.1984    | 0           | None         | No        | 0.01         | Param.         |
| Combined Radium 226 + 228 (pCi/L) | YGWC-23S  | 0.8108     | 0.3587     | 6.92       | No          | 18 | 0.5848    | 0.3736    | 0           | None         | No        | 0.01         | Param.         |
| Combined Radium 226 + 228 (pCi/L) | YGWC-38   | 1.326      | 0.5981     | 6.92       | No          | 14 | 0.962     | 0.5138    | 0           | None         | No        | 0.01         | Param.         |
| Combined Radium 226 + 228 (pCi/L) | YGWC-41   | 1.374      | 0.6299     | 6.92       | No          | 14 | 1.032     | 0.5676    | 0           | None         | sqrt(x)   | 0.01         | Param.         |
| Combined Radium 226 + 228 (pCi/L) | YGWC-42   | 2.942      | 1.277      | 6.92       | No          | 14 | 2.11      | 1.175     | 0           | None         | No        | 0.01         | Param.         |
| Combined Radium 226 + 228 (pCi/L) | YGWC-43   | 4.059      | 1.333      | 6.92       | No          | 14 | 2.696     | 1.924     | 0           | None         | No        | 0.01         | Param.         |
| Combined Radium 226 + 228 (pCi/L) | YGWC-49   | 1.175      | 0.4779     | 6.92       | No          | 13 | 0.8266    | 0.469     | 0           | None         | No        | 0.01         | Param.         |
| Combined Radium 226 + 228 (pCi/L) | PZ-35     | 1.075      | -0.04565   | 6.92       | No          | 5  | 0.5146    | 0.3343    | 0           | None         | No        | 0.01         | Param.         |
| Combined Radium 226 + 228 (pCi/L) | PZ-37     | 2.039      | 1.437      | 6.92       | No          | 11 | 1.749     | 0.4126    | 0           | None         | ln(x)     | 0.01         | Param.         |
| Combined Radium 226 + 228 (pCi/L) | YGWC-24SA | 0.7865     | 0.4799     | 6.92       | No          | 18 | 0.6332    | 0.2534    | 0           | None         | No        | 0.01         | Param.         |
| Combined Radium 226 + 228 (pCi/L) | YGWC-36A  | 1.095      | 0.5456     | 6.92       | No          | 18 | 0.8205    | 0.4544    | 0           | None         | No        | 0.01         | Param.         |
| Fluoride (mg/L)                   | YGWC-23S  | 0.12       | 0.049      | 4          | No          | 19 | 0.09468   | 0.02023   | 84.21       | None         | No        | 0.01         | NP (NDs)       |
| Fluoride (mg/L)                   | YGWC-38   | 0.24       | 0.034      | 4          | No          | 15 | 0.1616    | 0.1178    | 60          | None         | No        | 0.01         | NP (NDs)       |
| Fluoride (mg/L)                   | YGWC-41   | 0.11       | 0.1        | 4          | No          | 15 | 0.1007    | 0.002582  | 86.67       | None         | No        | 0.01         | NP (NDs)       |
| Fluoride (mg/L)                   | YGWC-42   | 0.1        | 0.06       | 4          | No          | 15 | 0.08607   | 0.02601   | 73.33       | None         | No        | 0.01         | NP (NDs)       |
| Fluoride (mg/L)                   | YGWC-43   | 0.1159     | 0.05777    | 4          | No          | 15 | 0.1069    | 0.05423   | 26.67       | Kaplan-Meier | sqrt(x)   | 0.01         | Param.         |
| Fluoride (mg/L)                   | YGWC-49   | 0.14       | 0.06       | 4          | No          | 14 | 0.09929   | 0.02702   | 57.14       | Kaplan-Meier | No        | 0.01         | NP (NDs)       |
| Fluoride (mg/L)                   | PZ-37     | 0.31       | 0.1        | 4          | No          | 11 | 0.1773    | 0.1198    | 63.64       | None         | No        | 0.006        | NP (NDs)       |
| Fluoride (mg/L)                   | YGWC-24SA | 0.1        | 0.098      | 4          | No          | 19 | 0.09637   | 0.01535   | 89.47       | None         | No        | 0.01         | NP (NDs)       |
| Fluoride (mg/L)                   | YGWC-36A  | 0.1        | 0.09       | 4          | No          | 19 | 0.09242   | 0.03298   | 63.16       | None         | No        | 0.01         | NP (NDs)       |
| Lead (mg/L)                       | YAMW-1    | 0.001      | 0.00019    | 0.015      | No          | 5  | 0.000838  | 0.0003622 | 80          | None         | No        | 0.031        | NP (NDs)       |
| Lead (mg/L)                       | YGWC-23S  | 0.001      | 0.00021    | 0.015      | No          | 16 | 0.0008016 | 0.0003629 | 75          | None         | No        | 0.01         | NP (NDs)       |
| Lead (mg/L)                       | YGWC-38   | 0.001      | 0.0001     | 0.015      | No          | 14 | 0.0008071 | 0.0003832 | 78.57       | None         | No        | 0.01         | NP (NDs)       |
| Lead (mg/L)                       | YGWC-41   | 0.0011     | 0.00012    | 0.015      | No          | 14 | 0.0007541 | 0.0004218 | 64.29       | None         | No        | 0.01         | NP (NDs)       |
| Lead (mg/L)                       | YGWC-42   | 0.001      | 0.00009    | 0.015      | No          | 14 | 0.0007422 | 0.0004243 | 71.43       | None         | No        | 0.01         | NP (NDs)       |
| Lead (mg/L)                       | YGWC-43   | 0.001      | 80000.0    | 0.015      | No          | 14 | 0.0008682 | 0.000335  | 85.71       | None         | No        | 0.01         | NP (NDs)       |
| Lead (mg/L)                       | YGWC-49   | 0.001      | 0.000059   | 0.015      | No          | 13 | 0.0009276 | 0.000261  | 92.31       | None         | No        | 0.01         | NP (NDs)       |
| Lead (mg/L)                       | PZ-35     | 0.001      | 0.000087   | 0.015      | No          | 5  | 0.0006474 | 0.0004833 | 60          | None         | No        | 0.031        | NP (NDs)       |
| Lead (mg/L)                       | PZ-37     | 0.001      | 0.000088   | 0.015      | No          | 11 | 0.0006066 | 0.0004535 | 54.55       | None         | No        | 0.006        | NP (NDs)       |
| Lead (mg/L)                       | YGWC-24SA | 0.001      | 0.00036    | 0.015      | No          | 16 | 0.0009008 | 0.0002768 | 87.5        | None         | No        | 0.01         | NP (NDs)       |
| Lead (mg/L)                       | YGWC-36A  | 0.000658   | 0.0002358  | 0.015      | No          | 16 | 0.0004956 | 0.0004239 | 12.5        | None         | x^(1/3)   | 0.01         | Param.         |
| Lithium (mg/L)                    | YAMW-1    | 0.0235     | 0.0006154  | 0.04       | No          | 6  | 0.01255   | 0.008417  | 16.67       | Kaplan-Meier | No        | 0.01         | Param.         |
| Lithium (ma/L)                    | YGWC-23S  | 0.0026     | 0.0018     | 0.04       | No          | 18 | 0.002994  | 0.003057  | 5.556       | None         | No        | 0.01         | NP (normality) |
| Lithium (mg/L)                    | YGWC-38   | 0.008994   | 0.007591   | 0.04       | No          | 14 | 0.008293  | 0.0009903 | 0           | None         | No        | 0.01         | Param.         |
| Lithium (mg/L)                    | YGWC-41   | 0.0044     | 0.0025     | 0.04       | No          | 14 | 0.004314  | 0.003188  | 7.143       | None         | No        | 0.01         | NP (normalitv) |
| Lithium (mg/L)                    | YGWC-42   | 0.0478     | 0.02983    | 0.04       | No          | 14 | 0.03881   | 0.01268   | 0           | None         | No        | 0.01         | Param.         |
| Lithium (mg/L)                    | YGWC-43   | 0.01912    | 0.01164    | 0.04       | No          | 14 | 0.01538   | 0.005279  | 0           | None         | No        | 0.01         | Param.         |
| Lithium (mg/L)                    | YGWC-49   | 0.0039     | 0.0035     | 0.04       | No          | 13 | 0.003708  | 0.0002465 | 0           | None         | No        | 0.01         | NP (normality) |
|                                   | -         | -          | -          |            |             |    |           |           |             |              |           |              | . ,            |

## Federal Confidence Intervals - All Results

| Constituent       | Well     | Upper Lim. | Lower Lim. | Compliance | <u>Sig.</u> | <u>N</u> | Mean      | Std. Dev.  | <u>%NDs</u> | <u>ND Adj.</u> | Transform | <u>Alpha</u> | Method         |
|-------------------|----------|------------|------------|------------|-------------|----------|-----------|------------|-------------|----------------|-----------|--------------|----------------|
| Lithium (mg/L)    | PZ-35    | 0.015      | 0.001      | 0.04       | No          | 6        | 0.005133  | 0.006226   | 16.67       | None           | No        | 0.0155       | NP (normality) |
| Lithium (mg/L)    | PZ-37    | 0.03042    | 0.02345    | 0.04       | No          | 11       | 0.02679   | 0.004677   | 9.091       | None           | x^2       | 0.01         | Param.         |
| Lithium (mg/L)    | YGWC-36A | 0.006884   | 0.003471   | 0.04       | No          | 18       | 0.005478  | 0.002992   | 5.556       | None           | x^(1/3)   | 0.01         | Param.         |
| Mercury (mg/L)    | YGWC-23S | 0.0002     | 0.00015    | 0.002      | No          | 13       | 0.0001883 | 0.00003045 | 5 84.62     | None           | No        | 0.01         | NP (NDs)       |
| Mercury (mg/L)    | YGWC-38  | 0.0002     | 0.00008    | 0.002      | No          | 11       | 0.0001743 | 0.00005804 | 81.82       | None           | No        | 0.006        | NP (NDs)       |
| Mercury (mg/L)    | YGWC-41  | 0.0002     | 0.0002     | 0.002      | No          | 11       | 0.0001873 | 0.00004221 | 90.91       | None           | No        | 0.006        | NP (NDs)       |
| Mercury (mg/L)    | YGWC-42  | 0.0002     | 0.0002     | 0.002      | No          | 11       | 0.0001862 | 0.00004583 | 8 90.91     | None           | No        | 0.006        | NP (NDs)       |
| Mercury (mg/L)    | YGWC-43  | 0.0002     | 0.0002     | 0.002      | No          | 11       | 0.0001865 | 0.00004462 | 2 90.91     | None           | No        | 0.006        | NP (NDs)       |
| Mercury (mg/L)    | YGWC-49  | 0.0002     | 0.00014    | 0.002      | No          | 10       | 0.0001801 | 0.0000459  | 80          | None           | No        | 0.011        | NP (NDs)       |
| Mercury (mg/L)    | PZ-37    | 0.0002     | 0.0002     | 0.002      | No          | 11       | 0.0001873 | 0.00004221 | 90.91       | None           | No        | 0.006        | NP (NDs)       |
| Molybdenum (mg/L) | YAMW-1   | 0.004895   | 0.001572   | 0.1        | No          | 4        | 0.004925  | 0.003462   | 25          | Kaplan-Meier   | No        | 0.01         | Param.         |
| Molybdenum (mg/L) | YGWC-42  | 0.01       | 0.00094    | 0.1        | No          | 14       | 0.00525   | 0.004314   | 42.86       | None           | No        | 0.01         | NP (normality) |
| Molybdenum (mg/L) | YGWC-43  | 0.01       | 0.0011     | 0.1        | No          | 14       | 0.005679  | 0.004493   | 50          | None           | No        | 0.01         | NP (normality) |
| Molybdenum (mg/L) | YGWC-49  | 0.01       | 0.0007     | 0.1        | No          | 12       | 0.009225  | 0.002685   | 91.67       | None           | No        | 0.01         | NP (NDs)       |
| Molybdenum (mg/L) | PZ-35    | 0.01       | 0.0019     | 0.1        | No          | 4        | 0.007975  | 0.00405    | 75          | None           | No        | 0.0625       | NP (NDs)       |
| Molybdenum (mg/L) | PZ-37    | 0.01       | 0.0016     | 0.1        | No          | 11       | 0.004818  | 0.004118   | 36.36       | None           | No        | 0.006        | NP (normality) |
| Molybdenum (mg/L) | YGWC-36A | 0.01       | 0.0025     | 0.1        | No          | 14       | 0.007071  | 0.003747   | 57.14       | None           | No        | 0.01         | NP (NDs)       |
| Selenium (mg/L)   | YAMW-1   | 0.0025     | 0.0019     | 0.05       | No          | 6        | 0.0024    | 0.0002449  | 83.33       | None           | No        | 0.0155       | NP (NDs)       |
| Selenium (mg/L)   | YAMW-4   | 0.016      | 0.0018     | 0.05       | No          | 4        | 0.0057    | 0.006875   | 50          | None           | No        | 0.0625       | NP (normality) |
| Selenium (mg/L)   | YAMW-5   | 0.08521    | 0.01079    | 0.05       | No          | 4        | 0.048     | 0.01639    | 0           | None           | No        | 0.01         | Param.         |
| Selenium (mg/L)   | YGWC-23S | 0.03964    | 0.02677    | 0.05       | No          | 18       | 0.03321   | 0.01064    | 0           | None           | No        | 0.01         | Param.         |
| Selenium (mg/L)   | YGWC-38  | 0.249      | 0.076      | 0.05       | Yes         | 14       | 0.1755    | 0.07444    | 0           | None           | No        | 0.01         | NP (normality) |
| Selenium (mg/L)   | YGWC-41  | 0.06577    | 0.04363    | 0.05       | No          | 14       | 0.0547    | 0.01563    | 0           | None           | No        | 0.01         | Param.         |
| Selenium (mg/L)   | YGWC-42  | 0.05735    | 0.04038    | 0.05       | No          | 14       | 0.04886   | 0.01198    | 0           | None           | No        | 0.01         | Param.         |
| Selenium (mg/L)   | YGWC-49  | 0.00899    | 0.006583   | 0.05       | No          | 13       | 0.007646  | 0.00198    | 7.692       | None           | x^2       | 0.01         | Param.         |
| Selenium (mg/L)   | PZ-37    | 0.3047     | 0.2211     | 0.05       | Yes         | 11       | 0.2629    | 0.0502     | 0           | None           | No        | 0.01         | Param.         |
| Selenium (mg/L)   | YGWC-36A | 0.002744   | 0.001829   | 0.05       | No          | 18       | 0.002433  | 0.0005931  | 33.33       | Kaplan-Meier   | No        | 0.01         | Param.         |

#### Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG





Constituent: Antimony Analysis Run 5/6/2021 9:15 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Constituent: Antimony Analysis Run 5/6/2021 9:15 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG





Non-Parametric Confidence Interval



Constituent: Arsenic Analysis Run 5/6/2021 9:15 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Constituent: Arsenic Analysis Run 5/6/2021 9:15 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG

### Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.





Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Barium Analysis Run 5/6/2021 9:15 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Constituent: Barium Analysis Run 5/6/2021 9:15 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG





Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Beryllium Analysis Run 5/6/2021 9:15 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Constituent: Beryllium Analysis Run 5/6/2021 9:15 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

#### Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG

### Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Cadmium Analysis Run 5/6/2021 9:15 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Parametric and Non-Parametric (NP) Confidence Interval Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Cadmium Analysis Run 5/6/2021 9:15 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG



Non-Parametric Confidence Interval

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG



Constituent: Chromium Analysis Run 5/6/2021 9:15 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Constituent: Chromium Analysis Run 5/6/2021 9:15 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

#### Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG

### Parametric and Non-Parametric (NP) Confidence Interval





Constituent: Cobalt Analysis Run 5/6/2021 9:15 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Cobalt Analysis Run 5/6/2021 9:15 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG



Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG

Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Combined Radium 226 + 228 Analysis Run 5/6/2021 9:15 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Constituent: Combined Radium 226 + 228 Analysis Run 5/6/2021 9:15 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

#### Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG

### Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Fluoride Analysis Run 5/6/2021 9:15 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: Fluoride Analysis Run 5/6/2021 9:15 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG



Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG

#### Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Lead Analysis Run 5/6/2021 9:15 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Constituent: Lead Analysis Run 5/6/2021 9:15 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

#### Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG

### Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Lithium Analysis Run 5/6/2021 9:16 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Parametric and Non-Parametric (NP) Confidence Interval Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Lithium Analysis Run 5/6/2021 9:16 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG







Constituent: Mercury Analysis Run 5/6/2021 9:16 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Constituent: Mercury Analysis Run 5/6/2021 9:16 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

#### Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG

### Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Molybdenum Analysis Run 5/6/2021 9:16 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: Molybdenum Analysis Run 5/6/2021 9:16 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG



Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG

#### Parametric Confidence Interval

Compliance limit is exceeded.\* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Selenium Analysis Run 5/6/2021 9:16 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Constituent: Selenium Analysis Run 5/6/2021 9:16 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6
# FIGURE I.

# State Confidence Intervals - Significant Results

Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Printed 5/6/2021, 9:21 PM

| Constituent      | Well    | Upper Lim. | Lower Lim. | Compliance | <u>Sig.</u> | <u>N</u> | Mean     | Std. Dev. | <u>%NDs</u> | ND Adj. | Transform | Alpha | Method         |
|------------------|---------|------------|------------|------------|-------------|----------|----------|-----------|-------------|---------|-----------|-------|----------------|
| Beryllium (mg/L) | YGWC-38 | 0.005497   | 0.004113   | 0.004      | Yes         | 14       | 0.004743 | 0.001073  | 0           | None    | x^2       | 0.01  | Param.         |
| Selenium (mg/L)  | YGWC-38 | 0.249      | 0.076      | 0.05       | Yes         | 14       | 0.1755   | 0.07444   | 0           | None    | No        | 0.01  | NP (normality) |
| Selenium (mg/L)  | PZ-37   | 0.3047     | 0.2211     | 0.05       | Yes         | 11       | 0.2629   | 0.0502    | 0           | None    | No        | 0.01  | Param.         |

# State Confidence Intervals - All Results

Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Printed 5/6/2021, 9:21 PM

| Constituent       | Well      | Upper Lim. | Lower Lim. | Compliance | Sig.  | N       | Mean      | Std. Dev.  | <u>%NDs</u>    | <u>ND Adj.</u> | Transform | <u>Alpha</u> | Method         |
|-------------------|-----------|------------|------------|------------|-------|---------|-----------|------------|----------------|----------------|-----------|--------------|----------------|
| Antimony (mg/L)   | YAMW-1    | 0.025      | 0.00037    | 0.006      | No    | 5       | 0.006874  | 0.0102     | 60             | None           | No        | 0.031        | NP (NDs)       |
| Antimony (mg/L)   | YGWC-23S  | 0.003      | 0.00085    | 0.006      | No    | 16      | 0.002541  | 0.0009916  | 81.25          | None           | No        | 0.01         | NP (NDs)       |
| Antimony (mg/L)   | YGWC-38   | 0.003      | 0.00061    | 0.006      | No    | 13      | 0.002312  | 0.001105   | 69.23          | None           | No        | 0.01         | NP (NDs)       |
| Antimony (mg/L)   | YGWC-41   | 0.003      | 0.0014     | 0.006      | No    | 13      | 0.002877  | 0.0004438  | 92.31          | None           | No        | 0.01         | NP (NDs)       |
| Antimony (mg/L)   | YGWC-42   | 0.003      | 0.00053    | 0.006      | No    | 13      | 0.00281   | 0.0006851  | 92.31          | None           | No        | 0.01         | NP (NDs)       |
| Antimony (mg/L)   | YGWC-43   | 0.003      | 0.00031    | 0.006      | No    | 13      | 0.002793  | 0.0007461  | 92.31          | None           | No        | 0.01         | NP (NDs)       |
| Antimony (mg/L)   | YGWC-49   | 0.003      | 0.0011     | 0.006      | No    | 13      | 0.002664  | 0.0008287  | 84.62          | None           | No        | 0.01         | NP (NDs)       |
| Antimony (mg/L)   | PZ-35     | 0.003      | 0.00039    | 0.006      | No    | 5       | 0.002478  | 0.001167   | 80             | None           | No        | 0.031        | NP (NDs)       |
| Antimony (mg/L)   | PZ-37     | 0.003      | 0.0014     | 0.006      | No    | 11      | 0.002614  | 0.0008911  | 81.82          | None           | No        | 0.006        | NP (NDs)       |
| Antimony (mg/L)   | YGWC-24SA | 0.003      | 0.0009     | 0.006      | No    | 16      | 0.002869  | 0.000525   | 93.75          | None           | No        | 0.01         | NP (NDs)       |
| Antimony (mg/L)   | YGWC-36A  | 0.0041     | 0.0014     | 0.006      | No    | 16      | 0.004256  | 0.006491   | 50             | None           | No        | 0.01         | NP (normality) |
| Arsenic (mg/L)    | YGWC-23S  | 0.005      | 0.0012     | 0.01       | No    | 18      | 0.004789  | 0.0008957  | 94.44          | None           | No        | 0.01         | NP (NDs)       |
| Arsenic (mg/L)    | YGWC-38   | 0.00212    | 0.0007623  | 0.01       | No    | 14      | 0.001676  | 0.001497   | 14.29          | None           | ln(x)     | 0.01         | Param.         |
| Arsenic (mg/L)    | YGWC-41   | 0.005      | 0.00062    | 0.01       | No    | 14      | 0.00288   | 0.002208   | 50             | None           | No        | 0.01         | NP (normality) |
| Arsenic (mg/L)    | YGWC-42   | 0.003139   | 0.00143    | 0.01       | No    | 14      | 0.002355  | 0.001306   | 14.29          | None           | sqrt(x)   | 0.01         | Param.         |
| Arsenic (mg/L)    | YGWC-43   | 0.005      | 0.00099    | 0.01       | No    | 14      | 0.004086  | 0.001819   | 78.57          | None           | No        | 0.01         | NP (NDs)       |
| Arsenic (mg/L)    | YGWC-49   | 0.005      | 0.00086    | 0.01       | No    | 13      | 0.004035  | 0.001835   | 76.92          | None           | No        | 0.01         | NP (NDs)       |
| Arsenic (mg/L)    | PZ-35     | 0.005      | 0.00069    | 0.01       | No    | 6       | 0.003608  | 0.002158   | 66.67          | None           | No        | 0.0155       | NP (NDs)       |
| Arsenic (mg/L)    | PZ-37     | 0.005      | 0.0008     | 0.01       | No    | 11      | 0.002504  | 0.001995   | 36.36          | None           | No        | 0.006        | NP (normality) |
| Arsenic (mg/L)    | YGWC-24SA | 0.005      | 0.0015     | 0.01       | No    | 18      | 0.004806  | 0.000825   | 94.44          | None           | No        | 0.01         | NP (NDs)       |
| Arsenic (mg/L)    | YGWC-36A  | 0.005      | 0.00088    | 0.01       | No    | 18      | 0.004041  | 0.001847   | 77.78          | None           | No        | 0.01         | NP (NDs)       |
| Barium (mg/L)     | YAMW-1    | 0.04981    | 0.02919    | 2          | No    | 6       | 0.0395    | 0.007503   | 0              | None           | No        | 0.01         | Param.         |
| Barium (mɑ/L)     | YGWC-23S  | 0.04499    | 0.02913    | 2          | No    | 18      | 0.03706   | 0.01311    | 0              | None           | No        | 0.01         | Param.         |
| Barium (mg/L)     | YGWC-38   | 0.0239     | 0.01832    | 2          | No    | 14      | 0.02111   | 0.003941   | 0              | None           | No        | 0.01         | Param.         |
| Barium (mg/L)     | YGWC-41   | 0.03029    | 0.0206     | 2          | No    | 14      | 0.02544   | 0.00684    | 0              | None           | No        | 0.01         | Param.         |
| Barium (mg/L)     | YGWC-42   | 0.04675    | 0.03191    | 2          | No    | 14      | 0.03933   | 0.01047    | 0              | None           | No        | 0.01         | Param.         |
| Barium (mg/L)     | YGWC-43   | 0.03572    | 0.01774    | 2          | No    | 14      | 0.02673   | 0.01269    | 0              | None           | No        | 0.01         | Param.         |
| Barium (mg/L)     | YGWC-49   | 0.07999    | 0.06987    | 2          | No    | 13      | 0.07493   | 0.006807   | 0              | None           | No        | 0.01         | Param.         |
| Barium (mg/L)     | PZ-35     | 0.063      | 0.032      | 2          | No    | 6       | 0.04      | 0.01166    | 0              | None           | No        | 0.0155       | NP (normality) |
| Barium (mg/L)     | PZ-37     | 0.05778    | 0.04078    | 2          | No    | - 11    | 0.04928   | 0.0102     | 0              | None           | No        | 0.01         | Param.         |
| Barium (mg/L)     | YGWC-24SA | 0.0203     | 0.0189     | 2          | No    | 18      | 0 02053   | 0.003411   | 0              | None           | No        | 0.01         | NP (normality) |
| Barium (mg/L)     | YGWC-36A  | 0.04411    | 0.03184    | 2          | No    | 18      | 0.03797   | 0.01014    | 0              | None           | No        | 0.01         | Param          |
| Bervllium (mg/L)  | YAMW-1    | 0.0005     | 0.000058   | - 0.004    | No    | 6       | 0 0004047 | 0.0001776  | 66 67          | None           | No        | 0.0155       | NP (NDs)       |
| Beryllium (mg/L)  | YAMW-5    | 0.0002156  | 0 00005244 | 0.004      | No    | 4       | 0.000134  | 0.00003593 | 3.0            | None           | No        | 0.01         | Param          |
| Beryllium (mg/L)  | YGWC-23S  | 0.0005     | 0.000081   | 0.004      | No    | 18      | 0.0002109 | 0.0001859  | 27 78          | None           | No        | 0.01         | NP (normality) |
| Beryllium (mg/l ) | YGWC-38   | 0.005497   | 0.004113   | 0.004      | Yes   | 14      | 0.004743  | 0.001073   | 0              | None           | x^2       | 0.01         | Param.         |
| Beryllium (ma/L)  | YGWC-41   | 0.0038     | 0.002      | 0.004      | No    | 14      | 0.003     | 0.000862   | 0              | None           | No.       | 0.01         | NP (normality) |
| Beryllium (mg/L)  | YGWC-42   | 0.0005     | 0.000067   | 0.004      | No    | 14      | 0.0003503 | 0.0002087  | 64 29          | None           | No        | 0.01         |                |
| Beryllium (mg/L)  | YGWC-43   | 0.00053    | 0.0003     | 0.004      | No    | 14      | 0.0004286 | 0.000133   | 12.86          | None           | No        | 0.01         | NP (normality) |
| Beryllium (mg/L)  | YGWC-49   | 0.00033    | 0.0003     | 0.004      | No    | 13      | 0.0004200 | 0.0001088  | 7 602          | None           | No        | 0.01         | NP (normality) |
| Beryllium (mg/L)  | P7-35     | 0.00013    | 0.0001     | 0.004      | No    | 7       | 0.0001400 | 0.0001188  | 28.57          | Kanlan-Meier   | No        | 0.01         | Param          |
| Beryllium (mg/L)  | PZ-37     | 0.0004301  | 0.0002224  | 0.004      | No    | '<br>11 | 0.0003355 | 0.0001069  | 18 18          | Kaplan-Meier   | No        | 0.01         | Param          |
| Bonyllium (mg/L)  | YGWC 2484 | 0.00016    | 0.0002031  | 0.004      | No    | 10      | 0.0001911 | 0.000140   | 16.67          | Nono           | No        | 0.01         | ND (normality) |
| Beryllium (mg/L)  | YCWC 264  | 0.00010    | 0.0001     | 0.004      | No    | 10      | 0.0001511 | 0.000149   | 10.07<br>E EEC | None           | No        | 0.01         | Derem          |
| Codmium (mg/L)    | YANNA 1   | 0.0005195  | 0.0001904  | 0.004      | No    | 10      | 0.0002349 | 0.0001067  | 5.550          | None           | No        | 0.0155       | Parani.        |
| Cadmium (mg/L)    | TAMW-1    | 0.0005     | 0.00013    | 0.005      | NO No | 0       | 0.0003233 | 0.000194   | 50             | None           | No        | 0.0155       |                |
| Cadmium (mg/L)    | YGWC-23S  | 0.0005     | 0.00007    | 0.005      | NO    | 18      | 0.0004761 | 0.0001014  | 94.44          | None           | NO        | 0.01         | NP (NDS)       |
| Cadmium (mg/L)    | YGWC-38   | 0.002798   | 0.002139   | 0.005      | NO    | 14      | 0.00235   | 0.0006149  | 0              | None           | x^4       | 0.01         | Param.         |
| Cadmium (mg/L)    | YGWC-41   | 0.0005     | 0.00017    | 0.005      | NO No | 14      | 0.0002886 | 0.0001446  | 28.57          | None           | NO        | 0.01         | NP (normality) |
|                   | rGWC-42   | 0.0006     | 0.00017    | 0.005      | NO    | 14      | 0.0003764 | 0.0001667  | 42.86          | None           | INO       | 0.01         | NP (normality) |
| Caomium (mg/L)    | rGWC-49   | 0.0005     | 0.00007    | 0.005      | NO    | 13      | 0.0004669 | 0.0001193  | 92.31          | ivone          | INO       | 0.01         |                |
|                   | PZ-35     | 0.0005     | 0.00016    | 0.005      | NO    | 6       | 0.0004433 | 0.0001388  | 83.33          | None           | INO       | 0.0155       | NP (NDS)       |
| Cadmium (mg/L)    | PZ-37     | 0.0006329  | 0.0002453  | 0.005      | No    | 11      | 0.0004727 | 0.0002328  | 18.18          | Kaplan-Meier   | No        | 0.01         | Param.         |
| Cadmium (mg/L)    | YGWC-36A  | 0.0005     | 0.00015    | 0.005      | No    | 18      | 0.0002433 | 0.0001453  | 22.22          | None           | No        | 0.01         | NP (normality) |
| Chromium (mg/L)   | YAMW-1    | 0.001163   | 0.0003768  | U.1        | No    | 4       | 0.00077   | 0.0001732  | 0              | None           | No        | 0.01         | Param.         |
| Chromium (mg/L)   | YGWC-23S  | 0.005      | 0.0008     | 0.1        | No    | 14      | 0.003296  | 0.002061   | 57.14          | None           | No        | 0.01         | NP (NDs)       |

# State Confidence Intervals - All Results

| Constituent                       | Well      | Upper Lim. | Lower Lim. | Compliance  | <u>Sig.</u> | <u>N</u> | Mean      | Std. Dev. | <u>%NDs</u> | ND Adj.      | Transform | <u>Alpha</u> | Method         |
|-----------------------------------|-----------|------------|------------|-------------|-------------|----------|-----------|-----------|-------------|--------------|-----------|--------------|----------------|
| Chromium (mg/L)                   | YGWC-38   | 0.005      | 0.00065    | 0.1         | No          | 14       | 0.004368  | 0.001607  | 85.71       | None         | No        | 0.01         | NP (NDs)       |
| Chromium (mg/L)                   | YGWC-41   | 0.005      | 0.00039    | 0.1         | No          | 14       | 0.004671  | 0.001232  | 92.86       | None         | No        | 0.01         | NP (NDs)       |
| Chromium (mg/L)                   | YGWC-42   | 0.005      | 0.0013     | 0.1         | No          | 14       | 0.004095  | 0.001807  | 78.57       | None         | No        | 0.01         | NP (NDs)       |
| Chromium (mg/L)                   | YGWC-43   | 0.005      | 0.00071    | 0.1         | No          | 14       | 0.003755  | 0.002043  | 71.43       | None         | No        | 0.01         | NP (NDs)       |
| Chromium (mg/L)                   | YGWC-49   | 0.002      | 0.0014     | 0.1         | No          | 12       | 0.001958  | 0.0009839 | 8.333       | None         | No        | 0.01         | NP (normality) |
| Chromium (mg/L)                   | PZ-35     | 0.0012     | 0.0006     | 0.1         | No          | 4        | 0.0007775 | 0.0002852 | 0           | None         | No        | 0.0625       | NP (normality) |
| Chromium (mg/L)                   | PZ-37     | 0.005      | 0.0017     | 0.1         | No          | 11       | 0.004055  | 0.001633  | 72.73       | None         | No        | 0.006        | NP (NDs)       |
| Chromium (mg/L)                   | YGWC-24SA | 0.005      | 0.0011     | 0.1         | No          | 14       | 0.004153  | 0.001684  | 78.57       | None         | No        | 0.01         | NP (NDs)       |
| Chromium (mg/L)                   | YGWC-36A  | 0.005      | 0.0013     | 0.1         | No          | 14       | 0.004034  | 0.001699  | 71.43       | None         | No        | 0.01         | NP (NDs)       |
| Cobalt (mg/L)                     | YAMW-1    | 0.02859    | 0.004268   | 0.035       | No          | 7        | 0.01643   | 0.01106   | 28.57       | Kaplan-Meier | No        | 0.01         | Param.         |
| Cobalt (mg/L)                     | YGWC-41   | 0.005      | 0.00069    | 0.035       | No          | 14       | 0.003742  | 0.002072  | 71.43       | Kaplan-Meier | No        | 0.01         | NP (NDs)       |
| Cobalt (mg/L)                     | YGWC-42   | 0.0025     | 0.0017     | 0.035       | No          | 14       | 0.0022    | 0.0008927 | 7.143       | None         | No        | 0.01         | NP (normality) |
| Cobalt (mg/L)                     | YGWC-43   | 0.005      | 0.0016     | 0.035       | No          | 14       | 0.00325   | 0.001688  | 42.86       | None         | No        | 0.01         | NP (normality) |
| Cobalt (mg/L)                     | YGWC-49   | 0.005      | 0.0006     | 0.035       | No          | 13       | 0.003654  | 0.002103  | 69.23       | None         | No        | 0.01         | NP (NDs)       |
| Cobalt (mg/L)                     | PZ-35     | 0.0059     | 0.005      | 0.035       | No          | 6        | 0.00515   | 0.0003674 | 83.33       | None         | No        | 0.0155       | NP (NDs)       |
| Cobalt (mg/L)                     | PZ-37     | 0.0129     | 0.004336   | 0.035       | No          | 11       | 0.008618  | 0.005139  | 0           | None         | No        | 0.01         | Param.         |
| Cobalt (mg/L)                     | YGWC-36A  | 0.005      | 0.0006     | 0.035       | No          | 18       | 0.003761  | 0.002058  | 72.22       | None         | No        | 0.01         | NP (NDs)       |
| Combined Radium 226 + 228 (pCi/L) | YAMW-1    | 0.8723     | 0.2073     | 6.92        | No          | 5        | 0.5398    | 0.1984    | 0           | None         | No        | 0.01         | Param.         |
| Combined Radium 226 + 228 (pCi/L) | YGWC-23S  | 0.8108     | 0.3587     | 6.92        | No          | 18       | 0.5848    | 0.3736    | 0           | None         | No        | 0.01         | Param.         |
| Combined Radium 226 + 228 (pCi/L) | YGWC-38   | 1.326      | 0.5981     | 6.92        | No          | 14       | 0.962     | 0.5138    | 0           | None         | No        | 0.01         | Param.         |
| Combined Radium 226 + 228 (pCi/L) | YGWC-41   | 1.374      | 0.6299     | 6.92        | No          | 14       | 1.032     | 0.5676    | 0           | None         | sqrt(x)   | 0.01         | Param.         |
| Combined Radium 226 + 228 (pCi/L) | YGWC-42   | 2.942      | 1.277      | 6.92        | No          | 14       | 2.11      | 1.175     | 0           | None         | No        | 0.01         | Param.         |
| Combined Radium 226 + 228 (pCi/L) | YGWC-43   | 4.059      | 1.333      | 6.92        | No          | 14       | 2.696     | 1.924     | 0           | None         | No        | 0.01         | Param.         |
| Combined Radium 226 + 228 (pCi/L) | YGWC-49   | 1.175      | 0.4779     | 6.92        | No          | 13       | 0.8266    | 0.469     | 0           | None         | No        | 0.01         | Param.         |
| Combined Radium 226 + 228 (pCi/L) | PZ-35     | 1.075      | -0.04565   | 6.92        | No          | 5        | 0.5146    | 0.3343    | 0           | None         | No        | 0.01         | Param.         |
| Combined Radium 226 + 228 (pCi/L) | PZ-37     | 2.039      | 1.437      | 6.92        | No          | - 11     | 1.749     | 0.4126    | 0           | None         | ln(x)     | 0.01         | Param.         |
| Combined Radium 226 + 228 (pCi/L) | YGWC-24SA | 0.7865     | 0.4799     | 6.92        | No          | 18       | 0.6332    | 0.2534    | 0           | None         | No        | 0.01         | Param.         |
| Combined Radium 226 + 228 (pCi/L) | YGWC-36A  | 1.095      | 0.5456     | 6.92        | No          | 18       | 0.8205    | 0.4544    | 0           | None         | No        | 0.01         | Param.         |
| Fluoride (mg/L)                   | YGWC-23S  | 0.12       | 0.049      | 4           | No          | 19       | 0.09468   | 0.02023   | 84.21       | None         | No        | 0.01         | NP (NDs)       |
| Fluoride (mg/L)                   | YGWC-38   | 0.24       | 0.034      | 4           | No          | 15       | 0.1616    | 0.1178    | 60          | None         | No        | 0.01         | NP (NDs)       |
| Fluoride (mg/L)                   | YGWC-41   | 0.11       | 0.1        | 4           | No          | 15       | 0.1007    | 0.002582  | 86.67       | None         | No        | 0.01         | NP (NDs)       |
| Fluoride (mg/L)                   | YGWC-42   | 0.1        | 0.06       | 4           | No          | 15       | 0.08607   | 0.02601   | 73 33       | None         | No        | 0.01         | NP (NDs)       |
| Fluoride (mg/L)                   | YGWC-43   | 0 1159     | 0.05777    | 4           | No          | 15       | 0 1069    | 0.05423   | 26.67       | Kanlan-Meier | sart(x)   | 0.01         | Param          |
| Fluoride (mg/L)                   | YGWC-49   | 0.14       | 0.06       | 4           | No          | 14       | 0.09929   | 0.02702   | 57 14       | Kaplan-Meier | No.       | 0.01         | NP (NDs)       |
| Fluoride (mg/L)                   | P7-37     | 0.31       | 0.1        | 4           | No          | 11       | 0 1773    | 0 1198    | 63.64       | None         | No        | 0.006        | NP (NDs)       |
| Fluoride (mg/L)                   | YGWC-24SA | 0.1        | 0.098      | 4           | No          | 19       | 0.09637   | 0.01535   | 89.47       | None         | No        | 0.01         | NP (NDs)       |
| Fluoride (mg/L)                   | YGWC-364  | 0.1        | 0.030      | 4           | No          | 10       | 0.09242   | 0.013308  | 63.16       | None         | No        | 0.01         |                |
| Lood (mg/L)                       |           | 0.001      | 0.00010    | -<br>0.0012 | No          | 5        | 0.00242   | 0.000250  | 90          | None         | No        | 0.031        |                |
| Lead (mg/L)                       |           | 0.001      | 0.00019    | 0.0013      | No          | J<br>16  | 0.0008016 | 0.0003022 | 75          | None         | No        | 0.031        |                |
| Lead (mg/L)                       | YGWC 28   | 0.001      | 0.00021    | 0.0013      | No          | 14       | 0.0008010 | 0.0003029 | 79 57       | None         | No        | 0.01         |                |
| Lead (mg/L)                       | YGWC 41   | 0.001      | 0.0001     | 0.0013      | No          | 14       | 0.0007541 | 0.0003032 | 64.20       | None         | No        | 0.01         |                |
| Lead (mg/L)                       | YGWC 42   | 0.001      | 0.00012    | 0.0013      | No          | 14       | 0.0007341 | 0.0004210 | 71 42       | None         | No        | 0.01         |                |
| Lead (mg/L)                       | YGWC 42   | 0.001      | 0.00009    | 0.0013      | No          | 14       | 0.0007422 | 0.0004243 | 71.43       | None         | No        | 0.01         |                |
| Lead (mg/L)                       | YGWC-43   | 0.001      | 0.00008    | 0.0013      | NO          | 14       | 0.0008082 | 0.000335  | 00.04       | None         | NO        | 0.01         | NP (NDs)       |
| Lead (mg/L)                       | YGWC-49   | 0.001      | 0.000059   | 0.0013      | NO          | 13       | 0.0009276 | 0.000261  | 92.31       | None         | NO        | 0.01         | NP (NDS)       |
| Lead (mg/L)                       | PZ-35     | 0.001      | 0.000087   | 0.0013      | No          | 5        | 0.0006474 | 0.0004833 | 60          | None         | No        | 0.031        | NP (NDs)       |
| Lead (mg/L)                       | PZ-37     | 0.001      | 0.000088   | 0.0013      | NO          | 11       | 0.0006066 | 0.0004535 | 54.55       | None         | NO        | 0.006        | NP (NDS)       |
| Lead (mg/L)                       | YGWC-24SA | 0.001      | 0.00036    | 0.0013      | No          | 16       | 0.0009008 | 0.0002768 | 87.5        | None         | No        | 0.01         | NP (NDs)       |
| Lead (mg/L)                       | YGWC-36A  | 0.000658   | 0.0002358  | 0.0013      | NO          | 16       | 0.0004956 | 0.0004239 | 12.5        | None         | x^(1/3)   | 0.01         | Param.         |
| Litnium (mg/L)                    | YAMW-1    | 0.0235     | 0.0006154  | 0.03        | No          | б        | 0.01255   | 0.008417  | 16.67       | Kaplan-Meier | No        | 0.01         | Param.         |
| Litnium (mg/L)                    | YGWC-23S  | 0.0026     | 0.0018     | 0.03        | No          | 18       | 0.002994  | 0.003057  | 5.556       | None         | No        | 0.01         | NP (normality) |
| Lithium (mg/L)                    | YGWC-38   | 0.008994   | 0.007591   | 0.03        | No          | 14       | 0.008293  | 0.0009903 | 0           | None         | No        | 0.01         | Param.         |
| Lithium (mg/L)                    | YGWC-41   | 0.0044     | 0.0025     | 0.03        | No          | 14       | 0.004314  | 0.003188  | 7.143       | None         | No        | 0.01         | NP (normality) |
| Lithium (mg/L)                    | YGWC-42   | 0.0478     | 0.02983    | 0.03        | No          | 14       | 0.03881   | 0.01268   | 0           | None         | No        | 0.01         | Param.         |
| Lithium (mg/L)                    | YGWC-43   | 0.01912    | 0.01164    | 0.03        | No          | 14       | 0.01538   | 0.005279  | 0           | None         | No        | 0.01         | Param.         |
| Lithium (mg/L)                    | YGWC-49   | 0.0039     | 0.0035     | 0.03        | No          | 13       | 0.003708  | 0.0002465 | 0           | None         | No        | 0.01         | NP (normality) |

# State Confidence Intervals - All Results

Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Printed 5/6/2021, 9:21 PM

| Constituent       | Well     | Upper Lim. | Lower Lim. | Compliance | <u>Sig.</u> | <u>N</u> | Mean      | Std. Dev.  | <u>%NDs</u> | ND Adj.      | Transform | <u>Alpha</u> | Method         |
|-------------------|----------|------------|------------|------------|-------------|----------|-----------|------------|-------------|--------------|-----------|--------------|----------------|
| Lithium (mg/L)    | PZ-35    | 0.015      | 0.001      | 0.03       | No          | 6        | 0.005133  | 0.006226   | 16.67       | None         | No        | 0.0155       | NP (normality) |
| Lithium (mg/L)    | PZ-37    | 0.03042    | 0.02345    | 0.03       | No          | 11       | 0.02679   | 0.004677   | 9.091       | None         | x^2       | 0.01         | Param.         |
| Lithium (mg/L)    | YGWC-36A | 0.006884   | 0.003471   | 0.03       | No          | 18       | 0.005478  | 0.002992   | 5.556       | None         | x^(1/3)   | 0.01         | Param.         |
| Mercury (mg/L)    | YGWC-23S | 0.0002     | 0.00015    | 0.002      | No          | 13       | 0.0001883 | 0.00003045 | 84.62       | None         | No        | 0.01         | NP (NDs)       |
| Mercury (mg/L)    | YGWC-38  | 0.0002     | 80000.0    | 0.002      | No          | 11       | 0.0001743 | 0.00005804 | 81.82       | None         | No        | 0.006        | NP (NDs)       |
| Mercury (mg/L)    | YGWC-41  | 0.0002     | 0.0002     | 0.002      | No          | 11       | 0.0001873 | 0.00004221 | 90.91       | None         | No        | 0.006        | NP (NDs)       |
| Mercury (mg/L)    | YGWC-42  | 0.0002     | 0.0002     | 0.002      | No          | 11       | 0.0001862 | 0.00004583 | 90.91       | None         | No        | 0.006        | NP (NDs)       |
| Mercury (mg/L)    | YGWC-43  | 0.0002     | 0.0002     | 0.002      | No          | 11       | 0.0001865 | 0.00004462 | 90.91       | None         | No        | 0.006        | NP (NDs)       |
| Mercury (mg/L)    | YGWC-49  | 0.0002     | 0.00014    | 0.002      | No          | 10       | 0.0001801 | 0.0000459  | 80          | None         | No        | 0.011        | NP (NDs)       |
| Mercury (mg/L)    | PZ-37    | 0.0002     | 0.0002     | 0.002      | No          | 11       | 0.0001873 | 0.00004221 | 90.91       | None         | No        | 0.006        | NP (NDs)       |
| Molybdenum (mg/L) | YAMW-1   | 0.004895   | 0.001572   | 0.014      | No          | 4        | 0.004925  | 0.003462   | 25          | Kaplan-Meier | No        | 0.01         | Param.         |
| Molybdenum (mg/L) | YGWC-42  | 0.01       | 0.00094    | 0.014      | No          | 14       | 0.00525   | 0.004314   | 42.86       | None         | No        | 0.01         | NP (normality) |
| Molybdenum (mg/L) | YGWC-43  | 0.01       | 0.0011     | 0.014      | No          | 14       | 0.005679  | 0.004493   | 50          | None         | No        | 0.01         | NP (normality) |
| Molybdenum (mg/L) | YGWC-49  | 0.01       | 0.0007     | 0.014      | No          | 12       | 0.009225  | 0.002685   | 91.67       | None         | No        | 0.01         | NP (NDs)       |
| Molybdenum (mg/L) | PZ-35    | 0.01       | 0.0019     | 0.014      | No          | 4        | 0.007975  | 0.00405    | 75          | None         | No        | 0.0625       | NP (NDs)       |
| Molybdenum (mg/L) | PZ-37    | 0.01       | 0.0016     | 0.014      | No          | 11       | 0.004818  | 0.004118   | 36.36       | None         | No        | 0.006        | NP (normality) |
| Molybdenum (mg/L) | YGWC-36A | 0.01       | 0.0025     | 0.014      | No          | 14       | 0.007071  | 0.003747   | 57.14       | None         | No        | 0.01         | NP (NDs)       |
| Selenium (mg/L)   | YAMW-1   | 0.0025     | 0.0019     | 0.05       | No          | 6        | 0.0024    | 0.0002449  | 83.33       | None         | No        | 0.0155       | NP (NDs)       |
| Selenium (mg/L)   | YAMW-4   | 0.016      | 0.0018     | 0.05       | No          | 4        | 0.0057    | 0.006875   | 50          | None         | No        | 0.0625       | NP (normality) |
| Selenium (mg/L)   | YAMW-5   | 0.08521    | 0.01079    | 0.05       | No          | 4        | 0.048     | 0.01639    | 0           | None         | No        | 0.01         | Param.         |
| Selenium (mg/L)   | YGWC-23S | 0.03964    | 0.02677    | 0.05       | No          | 18       | 0.03321   | 0.01064    | 0           | None         | No        | 0.01         | Param.         |
| Selenium (mg/L)   | YGWC-38  | 0.249      | 0.076      | 0.05       | Yes         | 14       | 0.1755    | 0.07444    | 0           | None         | No        | 0.01         | NP (normality) |
| Selenium (mg/L)   | YGWC-41  | 0.06577    | 0.04363    | 0.05       | No          | 14       | 0.0547    | 0.01563    | 0           | None         | No        | 0.01         | Param.         |
| Selenium (mg/L)   | YGWC-42  | 0.05735    | 0.04038    | 0.05       | No          | 14       | 0.04886   | 0.01198    | 0           | None         | No        | 0.01         | Param.         |
| Selenium (mg/L)   | YGWC-49  | 0.00899    | 0.006583   | 0.05       | No          | 13       | 0.007646  | 0.00198    | 7.692       | None         | x^2       | 0.01         | Param.         |
| Selenium (mg/L)   | PZ-37    | 0.3047     | 0.2211     | 0.05       | Yes         | 11       | 0.2629    | 0.0502     | 0           | None         | No        | 0.01         | Param.         |
| Selenium (mg/L)   | YGWC-36A | 0.002744   | 0.001829   | 0.05       | No          | 18       | 0.002433  | 0.0005931  | 33.33       | Kaplan-Meier | No        | 0.01         | Param.         |

#### Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG





Constituent: Antimony Analysis Run 5/6/2021 9:19 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Constituent: Antimony Analysis Run 5/6/2021 9:19 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG





Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted.



Constituent: Arsenic Analysis Run 5/6/2021 9:19 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Constituent: Arsenic Analysis Run 5/6/2021 9:19 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

#### Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG

### Parametric Confidence Interval



Parametric and Non-Parametric (NP) Confidence Interval Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Barium Analysis Run 5/6/2021 9:19 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Constituent: Barium Analysis Run 5/6/2021 9:19 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG





Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Beryllium Analysis Run 5/6/2021 9:19 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Constituent: Beryllium Analysis Run 5/6/2021 9:19 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

#### Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG

### Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Cadmium Analysis Run 5/6/2021 9:19 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Parametric and Non-Parametric (NP) Confidence Interval Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Cadmium Analysis Run 5/6/2021 9:19 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG



Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG



Constituent: Chromium Analysis Run 5/6/2021 9:19 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Constituent: Chromium Analysis Run 5/6/2021 9:20 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

#### Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG

### Parametric and Non-Parametric (NP) Confidence Interval

Parametric and Non-Parametric (NP) Confidence Interval Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Cobalt Analysis Run 5/6/2021 9:20 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Cobalt Analysis Run 5/6/2021 9:20 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG



Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG

Parametric Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Combined Radium 226 + 228 Analysis Run 5/6/2021 9:20 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

#### Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG

### Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Fluoride Analysis Run 5/6/2021 9:20 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: Fluoride Analysis Run 5/6/2021 9:20 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG



Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG

#### Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Lead Analysis Run 5/6/2021 9:20 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Constituent: Lead Analysis Run 5/6/2021 9:20 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

#### Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG

### Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Lithium Analysis Run 5/6/2021 9:20 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Parametric and Non-Parametric (NP) Confidence Interval Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Lithium Analysis Run 5/6/2021 9:20 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG



Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG



#### Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG

### Parametric and Non-Parametric (NP) Confidence Interval

Compliance Limit is not exceeded. Per-well alpha = 0.01 except as noted. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Molybdenum Analysis Run 5/6/2021 9:20 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Constituent: Molybdenum Analysis Run 5/6/2021 9:20 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6

Sanitas™ v.9.6.28 Groundwater Stats Consulting. UG



Sanitas<sup>™</sup> v.9.6.28 Groundwater Stats Consulting. UG

#### Parametric Confidence Interval

Compliance limit is exceeded.\* Per-well alpha = 0.01. Normality Test: Shapiro Wilk, alpha based on n.



Constituent: Selenium Analysis Run 5/6/2021 9:20 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6 Constituent: Selenium Analysis Run 5/6/2021 9:20 PM View: Appendix IV Plant Yates Client: Southern Company Data: Plant Yates AMA-R6



Arcadis U.S., Inc.

2839 Paces Ferry Road Suite 900 Atlanta, Georgia 30339 Tel 770 431 8666 Fax 770 435 2666

www.arcadis.com